1// Copyright 2013 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "url/url_canon_ip.h"
6
7#include <stdlib.h>
8
9#include "base/basictypes.h"
10#include "base/logging.h"
11#include "url/url_canon_internal.h"
12
13namespace url_canon {
14
15namespace {
16
17// Converts one of the character types that represent a numerical base to the
18// corresponding base.
19int BaseForType(SharedCharTypes type) {
20  switch (type) {
21    case CHAR_HEX:
22      return 16;
23    case CHAR_DEC:
24      return 10;
25    case CHAR_OCT:
26      return 8;
27    default:
28      return 0;
29  }
30}
31
32template<typename CHAR, typename UCHAR>
33bool DoFindIPv4Components(const CHAR* spec,
34                          const url_parse::Component& host,
35                          url_parse::Component components[4]) {
36  if (!host.is_nonempty())
37    return false;
38
39  int cur_component = 0;  // Index of the component we're working on.
40  int cur_component_begin = host.begin;  // Start of the current component.
41  int end = host.end();
42  for (int i = host.begin; /* nothing */; i++) {
43    if (i >= end || spec[i] == '.') {
44      // Found the end of the current component.
45      int component_len = i - cur_component_begin;
46      components[cur_component] =
47          url_parse::Component(cur_component_begin, component_len);
48
49      // The next component starts after the dot.
50      cur_component_begin = i + 1;
51      cur_component++;
52
53      // Don't allow empty components (two dots in a row), except we may
54      // allow an empty component at the end (this would indicate that the
55      // input ends in a dot). We also want to error if the component is
56      // empty and it's the only component (cur_component == 1).
57      if (component_len == 0 && (i < end || cur_component == 1))
58        return false;
59
60      if (i >= end)
61        break;  // End of the input.
62
63      if (cur_component == 4) {
64        // Anything else after the 4th component is an error unless it is a
65        // dot that would otherwise be treated as the end of input.
66        if (spec[i] == '.' && i + 1 == end)
67          break;
68        return false;
69      }
70    } else if (static_cast<UCHAR>(spec[i]) >= 0x80 ||
71               !IsIPv4Char(static_cast<unsigned char>(spec[i]))) {
72      // Invalid character for an IPv4 address.
73      return false;
74    }
75  }
76
77  // Fill in any unused components.
78  while (cur_component < 4)
79    components[cur_component++] = url_parse::Component();
80  return true;
81}
82
83// Converts an IPv4 component to a 32-bit number, while checking for overflow.
84//
85// Possible return values:
86// - IPV4    - The number was valid, and did not overflow.
87// - BROKEN  - The input was numeric, but too large for a 32-bit field.
88// - NEUTRAL - Input was not numeric.
89//
90// The input is assumed to be ASCII. FindIPv4Components should have stripped
91// out any input that is greater than 7 bits. The components are assumed
92// to be non-empty.
93template<typename CHAR>
94CanonHostInfo::Family IPv4ComponentToNumber(
95    const CHAR* spec,
96    const url_parse::Component& component,
97    uint32* number) {
98  // Figure out the base
99  SharedCharTypes base;
100  int base_prefix_len = 0;  // Size of the prefix for this base.
101  if (spec[component.begin] == '0') {
102    // Either hex or dec, or a standalone zero.
103    if (component.len == 1) {
104      base = CHAR_DEC;
105    } else if (spec[component.begin + 1] == 'X' ||
106               spec[component.begin + 1] == 'x') {
107      base = CHAR_HEX;
108      base_prefix_len = 2;
109    } else {
110      base = CHAR_OCT;
111      base_prefix_len = 1;
112    }
113  } else {
114    base = CHAR_DEC;
115  }
116
117  // Extend the prefix to consume all leading zeros.
118  while (base_prefix_len < component.len &&
119         spec[component.begin + base_prefix_len] == '0')
120    base_prefix_len++;
121
122  // Put the component, minus any base prefix, into a NULL-terminated buffer so
123  // we can call the standard library.  Because leading zeros have already been
124  // discarded, filling the entire buffer is guaranteed to trigger the 32-bit
125  // overflow check.
126  const int kMaxComponentLen = 16;
127  char buf[kMaxComponentLen + 1];  // digits + '\0'
128  int dest_i = 0;
129  for (int i = component.begin + base_prefix_len; i < component.end(); i++) {
130    // We know the input is 7-bit, so convert to narrow (if this is the wide
131    // version of the template) by casting.
132    char input = static_cast<char>(spec[i]);
133
134    // Validate that this character is OK for the given base.
135    if (!IsCharOfType(input, base))
136      return CanonHostInfo::NEUTRAL;
137
138    // Fill the buffer, if there's space remaining.  This check allows us to
139    // verify that all characters are numeric, even those that don't fit.
140    if (dest_i < kMaxComponentLen)
141      buf[dest_i++] = input;
142  }
143
144  buf[dest_i] = '\0';
145
146  // Use the 64-bit strtoi so we get a big number (no hex, decimal, or octal
147  // number can overflow a 64-bit number in <= 16 characters).
148  uint64 num = _strtoui64(buf, NULL, BaseForType(base));
149
150  // Check for 32-bit overflow.
151  if (num > kuint32max)
152    return CanonHostInfo::BROKEN;
153
154  // No overflow.  Success!
155  *number = static_cast<uint32>(num);
156  return CanonHostInfo::IPV4;
157}
158
159// See declaration of IPv4AddressToNumber for documentation.
160template<typename CHAR>
161CanonHostInfo::Family DoIPv4AddressToNumber(const CHAR* spec,
162                                            const url_parse::Component& host,
163                                            unsigned char address[4],
164                                            int* num_ipv4_components) {
165  // The identified components. Not all may exist.
166  url_parse::Component components[4];
167  if (!FindIPv4Components(spec, host, components))
168    return CanonHostInfo::NEUTRAL;
169
170  // Convert existing components to digits. Values up to
171  // |existing_components| will be valid.
172  uint32 component_values[4];
173  int existing_components = 0;
174
175  // Set to true if one or more components are BROKEN.  BROKEN is only
176  // returned if all components are IPV4 or BROKEN, so, for example,
177  // 12345678912345.de returns NEUTRAL rather than broken.
178  bool broken = false;
179  for (int i = 0; i < 4; i++) {
180    if (components[i].len <= 0)
181      continue;
182    CanonHostInfo::Family family = IPv4ComponentToNumber(
183        spec, components[i], &component_values[existing_components]);
184
185    if (family == CanonHostInfo::BROKEN) {
186      broken = true;
187    } else if (family != CanonHostInfo::IPV4) {
188      // Stop if we hit a non-BROKEN invalid non-empty component.
189      return family;
190    }
191
192    existing_components++;
193  }
194
195  if (broken)
196    return CanonHostInfo::BROKEN;
197
198  // Use that sequence of numbers to fill out the 4-component IP address.
199
200  // First, process all components but the last, while making sure each fits
201  // within an 8-bit field.
202  for (int i = 0; i < existing_components - 1; i++) {
203    if (component_values[i] > kuint8max)
204      return CanonHostInfo::BROKEN;
205    address[i] = static_cast<unsigned char>(component_values[i]);
206  }
207
208  // Next, consume the last component to fill in the remaining bytes.
209  uint32 last_value = component_values[existing_components - 1];
210  for (int i = 3; i >= existing_components - 1; i--) {
211    address[i] = static_cast<unsigned char>(last_value);
212    last_value >>= 8;
213  }
214
215  // If the last component has residual bits, report overflow.
216  if (last_value != 0)
217    return CanonHostInfo::BROKEN;
218
219  // Tell the caller how many components we saw.
220  *num_ipv4_components = existing_components;
221
222  // Success!
223  return CanonHostInfo::IPV4;
224}
225
226// Return true if we've made a final IPV4/BROKEN decision, false if the result
227// is NEUTRAL, and we could use a second opinion.
228template<typename CHAR, typename UCHAR>
229bool DoCanonicalizeIPv4Address(const CHAR* spec,
230                               const url_parse::Component& host,
231                               CanonOutput* output,
232                               CanonHostInfo* host_info) {
233  host_info->family = IPv4AddressToNumber(
234      spec, host, host_info->address, &host_info->num_ipv4_components);
235
236  switch (host_info->family) {
237    case CanonHostInfo::IPV4:
238      // Definitely an IPv4 address.
239      host_info->out_host.begin = output->length();
240      AppendIPv4Address(host_info->address, output);
241      host_info->out_host.len = output->length() - host_info->out_host.begin;
242      return true;
243    case CanonHostInfo::BROKEN:
244      // Definitely broken.
245      return true;
246    default:
247      // Could be IPv6 or a hostname.
248      return false;
249  }
250}
251
252// Helper class that describes the main components of an IPv6 input string.
253// See the following examples to understand how it breaks up an input string:
254//
255// [Example 1]: input = "[::aa:bb]"
256//  ==> num_hex_components = 2
257//  ==> hex_components[0] = Component(3,2) "aa"
258//  ==> hex_components[1] = Component(6,2) "bb"
259//  ==> index_of_contraction = 0
260//  ==> ipv4_component = Component(0, -1)
261//
262// [Example 2]: input = "[1:2::3:4:5]"
263//  ==> num_hex_components = 5
264//  ==> hex_components[0] = Component(1,1) "1"
265//  ==> hex_components[1] = Component(3,1) "2"
266//  ==> hex_components[2] = Component(6,1) "3"
267//  ==> hex_components[3] = Component(8,1) "4"
268//  ==> hex_components[4] = Component(10,1) "5"
269//  ==> index_of_contraction = 2
270//  ==> ipv4_component = Component(0, -1)
271//
272// [Example 3]: input = "[::ffff:192.168.0.1]"
273//  ==> num_hex_components = 1
274//  ==> hex_components[0] = Component(3,4) "ffff"
275//  ==> index_of_contraction = 0
276//  ==> ipv4_component = Component(8, 11) "192.168.0.1"
277//
278// [Example 4]: input = "[1::]"
279//  ==> num_hex_components = 1
280//  ==> hex_components[0] = Component(1,1) "1"
281//  ==> index_of_contraction = 1
282//  ==> ipv4_component = Component(0, -1)
283//
284// [Example 5]: input = "[::192.168.0.1]"
285//  ==> num_hex_components = 0
286//  ==> index_of_contraction = 0
287//  ==> ipv4_component = Component(8, 11) "192.168.0.1"
288//
289struct IPv6Parsed {
290  // Zero-out the parse information.
291  void reset() {
292    num_hex_components = 0;
293    index_of_contraction = -1;
294    ipv4_component.reset();
295  }
296
297  // There can be up to 8 hex components (colon separated) in the literal.
298  url_parse::Component hex_components[8];
299
300  // The count of hex components present. Ranges from [0,8].
301  int num_hex_components;
302
303  // The index of the hex component that the "::" contraction precedes, or
304  // -1 if there is no contraction.
305  int index_of_contraction;
306
307  // The range of characters which are an IPv4 literal.
308  url_parse::Component ipv4_component;
309};
310
311// Parse the IPv6 input string. If parsing succeeded returns true and fills
312// |parsed| with the information. If parsing failed (because the input is
313// invalid) returns false.
314template<typename CHAR, typename UCHAR>
315bool DoParseIPv6(const CHAR* spec,
316                 const url_parse::Component& host,
317                 IPv6Parsed* parsed) {
318  // Zero-out the info.
319  parsed->reset();
320
321  if (!host.is_nonempty())
322    return false;
323
324  // The index for start and end of address range (no brackets).
325  int begin = host.begin;
326  int end = host.end();
327
328  int cur_component_begin = begin;  // Start of the current component.
329
330  // Scan through the input, searching for hex components, "::" contractions,
331  // and IPv4 components.
332  for (int i = begin; /* i <= end */; i++) {
333    bool is_colon = spec[i] == ':';
334    bool is_contraction = is_colon && i < end - 1 && spec[i + 1] == ':';
335
336    // We reached the end of the current component if we encounter a colon
337    // (separator between hex components, or start of a contraction), or end of
338    // input.
339    if (is_colon || i == end) {
340      int component_len = i - cur_component_begin;
341
342      // A component should not have more than 4 hex digits.
343      if (component_len > 4)
344        return false;
345
346      // Don't allow empty components.
347      if (component_len == 0) {
348        // The exception is when contractions appear at beginning of the
349        // input or at the end of the input.
350        if (!((is_contraction && i == begin) || (i == end &&
351            parsed->index_of_contraction == parsed->num_hex_components)))
352          return false;
353      }
354
355      // Add the hex component we just found to running list.
356      if (component_len > 0) {
357        // Can't have more than 8 components!
358        if (parsed->num_hex_components >= 8)
359          return false;
360
361        parsed->hex_components[parsed->num_hex_components++] =
362            url_parse::Component(cur_component_begin, component_len);
363      }
364    }
365
366    if (i == end)
367      break;  // Reached the end of the input, DONE.
368
369    // We found a "::" contraction.
370    if (is_contraction) {
371      // There can be at most one contraction in the literal.
372      if (parsed->index_of_contraction != -1)
373        return false;
374      parsed->index_of_contraction = parsed->num_hex_components;
375      ++i;  // Consume the colon we peeked.
376    }
377
378    if (is_colon) {
379      // Colons are separators between components, keep track of where the
380      // current component started (after this colon).
381      cur_component_begin = i + 1;
382    } else {
383      if (static_cast<UCHAR>(spec[i]) >= 0x80)
384        return false;  // Not ASCII.
385
386      if (!IsHexChar(static_cast<unsigned char>(spec[i]))) {
387        // Regular components are hex numbers. It is also possible for
388        // a component to be an IPv4 address in dotted form.
389        if (IsIPv4Char(static_cast<unsigned char>(spec[i]))) {
390          // Since IPv4 address can only appear at the end, assume the rest
391          // of the string is an IPv4 address. (We will parse this separately
392          // later).
393          parsed->ipv4_component = url_parse::Component(
394              cur_component_begin, end - cur_component_begin);
395          break;
396        } else {
397          // The character was neither a hex digit, nor an IPv4 character.
398          return false;
399        }
400      }
401    }
402  }
403
404  return true;
405}
406
407// Verifies the parsed IPv6 information, checking that the various components
408// add up to the right number of bits (hex components are 16 bits, while
409// embedded IPv4 formats are 32 bits, and contractions are placeholdes for
410// 16 or more bits). Returns true if sizes match up, false otherwise. On
411// success writes the length of the contraction (if any) to
412// |out_num_bytes_of_contraction|.
413bool CheckIPv6ComponentsSize(const IPv6Parsed& parsed,
414                             int* out_num_bytes_of_contraction) {
415  // Each group of four hex digits contributes 16 bits.
416  int num_bytes_without_contraction = parsed.num_hex_components * 2;
417
418  // If an IPv4 address was embedded at the end, it contributes 32 bits.
419  if (parsed.ipv4_component.is_valid())
420    num_bytes_without_contraction += 4;
421
422  // If there was a "::" contraction, its size is going to be:
423  // MAX([16bits], [128bits] - num_bytes_without_contraction).
424  int num_bytes_of_contraction = 0;
425  if (parsed.index_of_contraction != -1) {
426    num_bytes_of_contraction = 16 - num_bytes_without_contraction;
427    if (num_bytes_of_contraction < 2)
428      num_bytes_of_contraction = 2;
429  }
430
431  // Check that the numbers add up.
432  if (num_bytes_without_contraction + num_bytes_of_contraction != 16)
433    return false;
434
435  *out_num_bytes_of_contraction = num_bytes_of_contraction;
436  return true;
437}
438
439// Converts a hex comonent into a number. This cannot fail since the caller has
440// already verified that each character in the string was a hex digit, and
441// that there were no more than 4 characters.
442template<typename CHAR>
443uint16 IPv6HexComponentToNumber(const CHAR* spec,
444                                const url_parse::Component& component) {
445  DCHECK(component.len <= 4);
446
447  // Copy the hex string into a C-string.
448  char buf[5];
449  for (int i = 0; i < component.len; ++i)
450    buf[i] = static_cast<char>(spec[component.begin + i]);
451  buf[component.len] = '\0';
452
453  // Convert it to a number (overflow is not possible, since with 4 hex
454  // characters we can at most have a 16 bit number).
455  return static_cast<uint16>(_strtoui64(buf, NULL, 16));
456}
457
458// Converts an IPv6 address to a 128-bit number (network byte order), returning
459// true on success. False means that the input was not a valid IPv6 address.
460template<typename CHAR, typename UCHAR>
461bool DoIPv6AddressToNumber(const CHAR* spec,
462                           const url_parse::Component& host,
463                           unsigned char address[16]) {
464  // Make sure the component is bounded by '[' and ']'.
465  int end = host.end();
466  if (!host.is_nonempty() || spec[host.begin] != '[' || spec[end - 1] != ']')
467    return false;
468
469  // Exclude the square brackets.
470  url_parse::Component ipv6_comp(host.begin + 1, host.len - 2);
471
472  // Parse the IPv6 address -- identify where all the colon separated hex
473  // components are, the "::" contraction, and the embedded IPv4 address.
474  IPv6Parsed ipv6_parsed;
475  if (!DoParseIPv6<CHAR, UCHAR>(spec, ipv6_comp, &ipv6_parsed))
476    return false;
477
478  // Do some basic size checks to make sure that the address doesn't
479  // specify more than 128 bits or fewer than 128 bits. This also resolves
480  // how may zero bytes the "::" contraction represents.
481  int num_bytes_of_contraction;
482  if (!CheckIPv6ComponentsSize(ipv6_parsed, &num_bytes_of_contraction))
483    return false;
484
485  int cur_index_in_address = 0;
486
487  // Loop through each hex components, and contraction in order.
488  for (int i = 0; i <= ipv6_parsed.num_hex_components; ++i) {
489    // Append the contraction if it appears before this component.
490    if (i == ipv6_parsed.index_of_contraction) {
491      for (int j = 0; j < num_bytes_of_contraction; ++j)
492        address[cur_index_in_address++] = 0;
493    }
494    // Append the hex component's value.
495    if (i != ipv6_parsed.num_hex_components) {
496      // Get the 16-bit value for this hex component.
497      uint16 number = IPv6HexComponentToNumber<CHAR>(
498          spec, ipv6_parsed.hex_components[i]);
499      // Append to |address|, in network byte order.
500      address[cur_index_in_address++] = (number & 0xFF00) >> 8;
501      address[cur_index_in_address++] = (number & 0x00FF);
502    }
503  }
504
505  // If there was an IPv4 section, convert it into a 32-bit number and append
506  // it to |address|.
507  if (ipv6_parsed.ipv4_component.is_valid()) {
508    // Append the 32-bit number to |address|.
509    int ignored_num_ipv4_components;
510    if (CanonHostInfo::IPV4 !=
511        IPv4AddressToNumber(spec,
512                            ipv6_parsed.ipv4_component,
513                            &address[cur_index_in_address],
514                            &ignored_num_ipv4_components))
515      return false;
516  }
517
518  return true;
519}
520
521// Searches for the longest sequence of zeros in |address|, and writes the
522// range into |contraction_range|. The run of zeros must be at least 16 bits,
523// and if there is a tie the first is chosen.
524void ChooseIPv6ContractionRange(const unsigned char address[16],
525                                url_parse::Component* contraction_range) {
526  // The longest run of zeros in |address| seen so far.
527  url_parse::Component max_range;
528
529  // The current run of zeros in |address| being iterated over.
530  url_parse::Component cur_range;
531
532  for (int i = 0; i < 16; i += 2) {
533    // Test for 16 bits worth of zero.
534    bool is_zero = (address[i] == 0 && address[i + 1] == 0);
535
536    if (is_zero) {
537      // Add the zero to the current range (or start a new one).
538      if (!cur_range.is_valid())
539        cur_range = url_parse::Component(i, 0);
540      cur_range.len += 2;
541    }
542
543    if (!is_zero || i == 14) {
544      // Just completed a run of zeros. If the run is greater than 16 bits,
545      // it is a candidate for the contraction.
546      if (cur_range.len > 2 && cur_range.len > max_range.len) {
547        max_range = cur_range;
548      }
549      cur_range.reset();
550    }
551  }
552  *contraction_range = max_range;
553}
554
555// Return true if we've made a final IPV6/BROKEN decision, false if the result
556// is NEUTRAL, and we could use a second opinion.
557template<typename CHAR, typename UCHAR>
558bool DoCanonicalizeIPv6Address(const CHAR* spec,
559                               const url_parse::Component& host,
560                               CanonOutput* output,
561                               CanonHostInfo* host_info) {
562  // Turn the IP address into a 128 bit number.
563  if (!IPv6AddressToNumber(spec, host, host_info->address)) {
564    // If it's not an IPv6 address, scan for characters that should *only*
565    // exist in an IPv6 address.
566    for (int i = host.begin; i < host.end(); i++) {
567      switch (spec[i]) {
568        case '[':
569        case ']':
570        case ':':
571          host_info->family = CanonHostInfo::BROKEN;
572          return true;
573      }
574    }
575
576    // No invalid characters.  Could still be IPv4 or a hostname.
577    host_info->family = CanonHostInfo::NEUTRAL;
578    return false;
579  }
580
581  host_info->out_host.begin = output->length();
582  output->push_back('[');
583  AppendIPv6Address(host_info->address, output);
584  output->push_back(']');
585  host_info->out_host.len = output->length() - host_info->out_host.begin;
586
587  host_info->family = CanonHostInfo::IPV6;
588  return true;
589}
590
591}  // namespace
592
593void AppendIPv4Address(const unsigned char address[4], CanonOutput* output) {
594  for (int i = 0; i < 4; i++) {
595    char str[16];
596    _itoa_s(address[i], str, 10);
597
598    for (int ch = 0; str[ch] != 0; ch++)
599      output->push_back(str[ch]);
600
601    if (i != 3)
602      output->push_back('.');
603  }
604}
605
606void AppendIPv6Address(const unsigned char address[16], CanonOutput* output) {
607  // We will output the address according to the rules in:
608  // http://tools.ietf.org/html/draft-kawamura-ipv6-text-representation-01#section-4
609
610  // Start by finding where to place the "::" contraction (if any).
611  url_parse::Component contraction_range;
612  ChooseIPv6ContractionRange(address, &contraction_range);
613
614  for (int i = 0; i <= 14;) {
615    // We check 2 bytes at a time, from bytes (0, 1) to (14, 15), inclusive.
616    DCHECK(i % 2 == 0);
617    if (i == contraction_range.begin && contraction_range.len > 0) {
618      // Jump over the contraction.
619      if (i == 0)
620        output->push_back(':');
621      output->push_back(':');
622      i = contraction_range.end();
623    } else {
624      // Consume the next 16 bits from |address|.
625      int x = address[i] << 8 | address[i + 1];
626
627      i += 2;
628
629      // Stringify the 16 bit number (at most requires 4 hex digits).
630      char str[5];
631      _itoa_s(x, str, 16);
632      for (int ch = 0; str[ch] != 0; ++ch)
633        output->push_back(str[ch]);
634
635      // Put a colon after each number, except the last.
636      if (i < 16)
637        output->push_back(':');
638    }
639  }
640}
641
642bool FindIPv4Components(const char* spec,
643                        const url_parse::Component& host,
644                        url_parse::Component components[4]) {
645  return DoFindIPv4Components<char, unsigned char>(spec, host, components);
646}
647
648bool FindIPv4Components(const base::char16* spec,
649                        const url_parse::Component& host,
650                        url_parse::Component components[4]) {
651  return DoFindIPv4Components<base::char16, base::char16>(
652      spec, host, components);
653}
654
655void CanonicalizeIPAddress(const char* spec,
656                           const url_parse::Component& host,
657                           CanonOutput* output,
658                           CanonHostInfo* host_info) {
659  if (DoCanonicalizeIPv4Address<char, unsigned char>(
660          spec, host, output, host_info))
661    return;
662  if (DoCanonicalizeIPv6Address<char, unsigned char>(
663          spec, host, output, host_info))
664    return;
665}
666
667void CanonicalizeIPAddress(const base::char16* spec,
668                           const url_parse::Component& host,
669                           CanonOutput* output,
670                           CanonHostInfo* host_info) {
671  if (DoCanonicalizeIPv4Address<base::char16, base::char16>(
672          spec, host, output, host_info))
673    return;
674  if (DoCanonicalizeIPv6Address<base::char16, base::char16>(
675          spec, host, output, host_info))
676    return;
677}
678
679CanonHostInfo::Family IPv4AddressToNumber(const char* spec,
680                                          const url_parse::Component& host,
681                                          unsigned char address[4],
682                                          int* num_ipv4_components) {
683  return DoIPv4AddressToNumber<char>(spec, host, address, num_ipv4_components);
684}
685
686CanonHostInfo::Family IPv4AddressToNumber(const base::char16* spec,
687                                          const url_parse::Component& host,
688                                          unsigned char address[4],
689                                          int* num_ipv4_components) {
690  return DoIPv4AddressToNumber<base::char16>(
691      spec, host, address, num_ipv4_components);
692}
693
694bool IPv6AddressToNumber(const char* spec,
695                         const url_parse::Component& host,
696                         unsigned char address[16]) {
697  return DoIPv6AddressToNumber<char, unsigned char>(spec, host, address);
698}
699
700bool IPv6AddressToNumber(const base::char16* spec,
701                         const url_parse::Component& host,
702                         unsigned char address[16]) {
703  return DoIPv6AddressToNumber<base::char16, base::char16>(spec, host, address);
704}
705
706}  // namespace url_canon
707