1// Copyright 2012 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28/** \mainpage V8 API Reference Guide
29 *
30 * V8 is Google's open source JavaScript engine.
31 *
32 * This set of documents provides reference material generated from the
33 * V8 header file, include/v8.h.
34 *
35 * For other documentation see http://code.google.com/apis/v8/
36 */
37
38#ifndef V8_H_
39#define V8_H_
40
41#include "v8stdint.h"
42
43// We reserve the V8_* prefix for macros defined in V8 public API and
44// assume there are no name conflicts with the embedder's code.
45
46#ifdef V8_OS_WIN
47
48// Setup for Windows DLL export/import. When building the V8 DLL the
49// BUILDING_V8_SHARED needs to be defined. When building a program which uses
50// the V8 DLL USING_V8_SHARED needs to be defined. When either building the V8
51// static library or building a program which uses the V8 static library neither
52// BUILDING_V8_SHARED nor USING_V8_SHARED should be defined.
53#if defined(BUILDING_V8_SHARED) && defined(USING_V8_SHARED)
54#error both BUILDING_V8_SHARED and USING_V8_SHARED are set - please check the\
55  build configuration to ensure that at most one of these is set
56#endif
57
58#ifdef BUILDING_V8_SHARED
59# define V8_EXPORT __declspec(dllexport)
60#elif USING_V8_SHARED
61# define V8_EXPORT __declspec(dllimport)
62#else
63# define V8_EXPORT
64#endif  // BUILDING_V8_SHARED
65
66#else  // V8_OS_WIN
67
68// Setup for Linux shared library export.
69#if V8_HAS_ATTRIBUTE_VISIBILITY && defined(V8_SHARED)
70# ifdef BUILDING_V8_SHARED
71#  define V8_EXPORT __attribute__ ((visibility("default")))
72# else
73#  define V8_EXPORT
74# endif
75#else
76# define V8_EXPORT
77#endif
78
79#endif  // V8_OS_WIN
80
81/**
82 * The v8 JavaScript engine.
83 */
84namespace v8 {
85
86class AccessorSignature;
87class Array;
88class Boolean;
89class BooleanObject;
90class Context;
91class CpuProfiler;
92class Data;
93class Date;
94class DeclaredAccessorDescriptor;
95class External;
96class Function;
97class FunctionTemplate;
98class HeapProfiler;
99class ImplementationUtilities;
100class Int32;
101class Integer;
102class Isolate;
103class Number;
104class NumberObject;
105class Object;
106class ObjectOperationDescriptor;
107class ObjectTemplate;
108class Platform;
109class Primitive;
110class RawOperationDescriptor;
111class Signature;
112class StackFrame;
113class StackTrace;
114class String;
115class StringObject;
116class Symbol;
117class SymbolObject;
118class Private;
119class Uint32;
120class Utils;
121class Value;
122template <class T> class Handle;
123template <class T> class Local;
124template <class T> class Eternal;
125template<class T> class NonCopyablePersistentTraits;
126template<class T> class PersistentBase;
127template<class T,
128         class M = NonCopyablePersistentTraits<T> > class Persistent;
129template<class T> class UniquePersistent;
130template<class T, class P> class WeakCallbackObject;
131class FunctionTemplate;
132class ObjectTemplate;
133class Data;
134template<typename T> class PropertyCallbackInfo;
135class StackTrace;
136class StackFrame;
137class Isolate;
138class DeclaredAccessorDescriptor;
139class ObjectOperationDescriptor;
140class RawOperationDescriptor;
141class CallHandlerHelper;
142class EscapableHandleScope;
143
144namespace internal {
145class Arguments;
146class Heap;
147class HeapObject;
148class Isolate;
149class Object;
150template<typename T> class CustomArguments;
151class PropertyCallbackArguments;
152class FunctionCallbackArguments;
153class GlobalHandles;
154}
155
156
157/**
158 * General purpose unique identifier.
159 */
160class UniqueId {
161 public:
162  explicit UniqueId(intptr_t data)
163      : data_(data) {}
164
165  bool operator==(const UniqueId& other) const {
166    return data_ == other.data_;
167  }
168
169  bool operator!=(const UniqueId& other) const {
170    return data_ != other.data_;
171  }
172
173  bool operator<(const UniqueId& other) const {
174    return data_ < other.data_;
175  }
176
177 private:
178  intptr_t data_;
179};
180
181// --- Handles ---
182
183#define TYPE_CHECK(T, S)                                       \
184  while (false) {                                              \
185    *(static_cast<T* volatile*>(0)) = static_cast<S*>(0);      \
186  }
187
188
189/**
190 * An object reference managed by the v8 garbage collector.
191 *
192 * All objects returned from v8 have to be tracked by the garbage
193 * collector so that it knows that the objects are still alive.  Also,
194 * because the garbage collector may move objects, it is unsafe to
195 * point directly to an object.  Instead, all objects are stored in
196 * handles which are known by the garbage collector and updated
197 * whenever an object moves.  Handles should always be passed by value
198 * (except in cases like out-parameters) and they should never be
199 * allocated on the heap.
200 *
201 * There are two types of handles: local and persistent handles.
202 * Local handles are light-weight and transient and typically used in
203 * local operations.  They are managed by HandleScopes.  Persistent
204 * handles can be used when storing objects across several independent
205 * operations and have to be explicitly deallocated when they're no
206 * longer used.
207 *
208 * It is safe to extract the object stored in the handle by
209 * dereferencing the handle (for instance, to extract the Object* from
210 * a Handle<Object>); the value will still be governed by a handle
211 * behind the scenes and the same rules apply to these values as to
212 * their handles.
213 */
214template <class T> class Handle {
215 public:
216  /**
217   * Creates an empty handle.
218   */
219  V8_INLINE Handle() : val_(0) {}
220
221  /**
222   * Creates a handle for the contents of the specified handle.  This
223   * constructor allows you to pass handles as arguments by value and
224   * to assign between handles.  However, if you try to assign between
225   * incompatible handles, for instance from a Handle<String> to a
226   * Handle<Number> it will cause a compile-time error.  Assigning
227   * between compatible handles, for instance assigning a
228   * Handle<String> to a variable declared as Handle<Value>, is legal
229   * because String is a subclass of Value.
230   */
231  template <class S> V8_INLINE Handle(Handle<S> that)
232      : val_(reinterpret_cast<T*>(*that)) {
233    /**
234     * This check fails when trying to convert between incompatible
235     * handles. For example, converting from a Handle<String> to a
236     * Handle<Number>.
237     */
238    TYPE_CHECK(T, S);
239  }
240
241  /**
242   * Returns true if the handle is empty.
243   */
244  V8_INLINE bool IsEmpty() const { return val_ == 0; }
245
246  /**
247   * Sets the handle to be empty. IsEmpty() will then return true.
248   */
249  V8_INLINE void Clear() { val_ = 0; }
250
251  V8_INLINE T* operator->() const { return val_; }
252
253  V8_INLINE T* operator*() const { return val_; }
254
255  /**
256   * Checks whether two handles are the same.
257   * Returns true if both are empty, or if the objects
258   * to which they refer are identical.
259   * The handles' references are not checked.
260   */
261  template <class S> V8_INLINE bool operator==(const Handle<S>& that) const {
262    internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
263    internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
264    if (a == 0) return b == 0;
265    if (b == 0) return false;
266    return *a == *b;
267  }
268
269  template <class S> V8_INLINE bool operator==(
270      const PersistentBase<S>& that) const {
271    internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
272    internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
273    if (a == 0) return b == 0;
274    if (b == 0) return false;
275    return *a == *b;
276  }
277
278  /**
279   * Checks whether two handles are different.
280   * Returns true if only one of the handles is empty, or if
281   * the objects to which they refer are different.
282   * The handles' references are not checked.
283   */
284  template <class S> V8_INLINE bool operator!=(const Handle<S>& that) const {
285    return !operator==(that);
286  }
287
288  template <class S> V8_INLINE bool operator!=(
289      const Persistent<S>& that) const {
290    return !operator==(that);
291  }
292
293  template <class S> V8_INLINE static Handle<T> Cast(Handle<S> that) {
294#ifdef V8_ENABLE_CHECKS
295    // If we're going to perform the type check then we have to check
296    // that the handle isn't empty before doing the checked cast.
297    if (that.IsEmpty()) return Handle<T>();
298#endif
299    return Handle<T>(T::Cast(*that));
300  }
301
302  template <class S> V8_INLINE Handle<S> As() {
303    return Handle<S>::Cast(*this);
304  }
305
306  V8_INLINE static Handle<T> New(Isolate* isolate, Handle<T> that) {
307    return New(isolate, that.val_);
308  }
309  V8_INLINE static Handle<T> New(Isolate* isolate,
310                                 const PersistentBase<T>& that) {
311    return New(isolate, that.val_);
312  }
313
314#ifndef V8_ALLOW_ACCESS_TO_RAW_HANDLE_CONSTRUCTOR
315
316 private:
317#endif
318  /**
319   * Creates a new handle for the specified value.
320   */
321  V8_INLINE explicit Handle(T* val) : val_(val) {}
322
323 private:
324  friend class Utils;
325  template<class F, class M> friend class Persistent;
326  template<class F> friend class PersistentBase;
327  template<class F> friend class Handle;
328  template<class F> friend class Local;
329  template<class F> friend class FunctionCallbackInfo;
330  template<class F> friend class PropertyCallbackInfo;
331  template<class F> friend class internal::CustomArguments;
332  friend Handle<Primitive> Undefined(Isolate* isolate);
333  friend Handle<Primitive> Null(Isolate* isolate);
334  friend Handle<Boolean> True(Isolate* isolate);
335  friend Handle<Boolean> False(Isolate* isolate);
336  friend class Context;
337  friend class HandleScope;
338  friend class Object;
339  friend class Private;
340
341  V8_INLINE static Handle<T> New(Isolate* isolate, T* that);
342
343  T* val_;
344};
345
346
347/**
348 * A light-weight stack-allocated object handle.  All operations
349 * that return objects from within v8 return them in local handles.  They
350 * are created within HandleScopes, and all local handles allocated within a
351 * handle scope are destroyed when the handle scope is destroyed.  Hence it
352 * is not necessary to explicitly deallocate local handles.
353 */
354template <class T> class Local : public Handle<T> {
355 public:
356  V8_INLINE Local();
357  template <class S> V8_INLINE Local(Local<S> that)
358      : Handle<T>(reinterpret_cast<T*>(*that)) {
359    /**
360     * This check fails when trying to convert between incompatible
361     * handles. For example, converting from a Handle<String> to a
362     * Handle<Number>.
363     */
364    TYPE_CHECK(T, S);
365  }
366
367
368  template <class S> V8_INLINE static Local<T> Cast(Local<S> that) {
369#ifdef V8_ENABLE_CHECKS
370    // If we're going to perform the type check then we have to check
371    // that the handle isn't empty before doing the checked cast.
372    if (that.IsEmpty()) return Local<T>();
373#endif
374    return Local<T>(T::Cast(*that));
375  }
376  template <class S> V8_INLINE Local(Handle<S> that)
377      : Handle<T>(reinterpret_cast<T*>(*that)) {
378    TYPE_CHECK(T, S);
379  }
380
381  template <class S> V8_INLINE Local<S> As() {
382    return Local<S>::Cast(*this);
383  }
384
385  /**
386   * Create a local handle for the content of another handle.
387   * The referee is kept alive by the local handle even when
388   * the original handle is destroyed/disposed.
389   */
390  V8_INLINE static Local<T> New(Isolate* isolate, Handle<T> that);
391  V8_INLINE static Local<T> New(Isolate* isolate,
392                                const PersistentBase<T>& that);
393
394#ifndef V8_ALLOW_ACCESS_TO_RAW_HANDLE_CONSTRUCTOR
395
396 private:
397#endif
398  template <class S> V8_INLINE Local(S* that) : Handle<T>(that) { }
399
400 private:
401  friend class Utils;
402  template<class F> friend class Eternal;
403  template<class F> friend class PersistentBase;
404  template<class F, class M> friend class Persistent;
405  template<class F> friend class Handle;
406  template<class F> friend class Local;
407  template<class F> friend class FunctionCallbackInfo;
408  template<class F> friend class PropertyCallbackInfo;
409  friend class String;
410  friend class Object;
411  friend class Context;
412  template<class F> friend class internal::CustomArguments;
413  friend class HandleScope;
414  friend class EscapableHandleScope;
415
416  V8_INLINE static Local<T> New(Isolate* isolate, T* that);
417};
418
419
420// Eternal handles are set-once handles that live for the life of the isolate.
421template <class T> class Eternal {
422 public:
423  V8_INLINE Eternal() : index_(kInitialValue) { }
424  template<class S>
425  V8_INLINE Eternal(Isolate* isolate, Local<S> handle) : index_(kInitialValue) {
426    Set(isolate, handle);
427  }
428  // Can only be safely called if already set.
429  V8_INLINE Local<T> Get(Isolate* isolate);
430  V8_INLINE bool IsEmpty() { return index_ == kInitialValue; }
431  template<class S> V8_INLINE void Set(Isolate* isolate, Local<S> handle);
432
433 private:
434  static const int kInitialValue = -1;
435  int index_;
436};
437
438
439template<class T, class P>
440class WeakCallbackData {
441 public:
442  typedef void (*Callback)(const WeakCallbackData<T, P>& data);
443
444  V8_INLINE Isolate* GetIsolate() const { return isolate_; }
445  V8_INLINE Local<T> GetValue() const { return handle_; }
446  V8_INLINE P* GetParameter() const { return parameter_; }
447
448 private:
449  friend class internal::GlobalHandles;
450  WeakCallbackData(Isolate* isolate, Local<T> handle, P* parameter)
451    : isolate_(isolate), handle_(handle), parameter_(parameter) { }
452  Isolate* isolate_;
453  Local<T> handle_;
454  P* parameter_;
455};
456
457
458// TODO(dcarney): Remove this class.
459template<typename T,
460         typename P,
461         typename M = NonCopyablePersistentTraits<T> >
462class WeakReferenceCallbacks {
463 public:
464  typedef void (*Revivable)(Isolate* isolate,
465                            Persistent<T, M>* object,
466                            P* parameter);
467};
468
469
470/**
471 * An object reference that is independent of any handle scope.  Where
472 * a Local handle only lives as long as the HandleScope in which it was
473 * allocated, a PersistentBase handle remains valid until it is explicitly
474 * disposed.
475 *
476 * A persistent handle contains a reference to a storage cell within
477 * the v8 engine which holds an object value and which is updated by
478 * the garbage collector whenever the object is moved.  A new storage
479 * cell can be created using the constructor or PersistentBase::Reset and
480 * existing handles can be disposed using PersistentBase::Reset.
481 *
482 */
483template <class T> class PersistentBase {
484 public:
485  /**
486   * If non-empty, destroy the underlying storage cell
487   * IsEmpty() will return true after this call.
488   */
489  V8_INLINE void Reset();
490  /**
491   * If non-empty, destroy the underlying storage cell
492   * and create a new one with the contents of other if other is non empty
493   */
494  template <class S>
495  V8_INLINE void Reset(Isolate* isolate, const Handle<S>& other);
496
497  /**
498   * If non-empty, destroy the underlying storage cell
499   * and create a new one with the contents of other if other is non empty
500   */
501  template <class S>
502  V8_INLINE void Reset(Isolate* isolate, const PersistentBase<S>& other);
503
504  V8_INLINE bool IsEmpty() const { return val_ == 0; }
505
506  template <class S>
507  V8_INLINE bool operator==(const PersistentBase<S>& that) const {
508    internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
509    internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
510    if (a == 0) return b == 0;
511    if (b == 0) return false;
512    return *a == *b;
513  }
514
515  template <class S> V8_INLINE bool operator==(const Handle<S>& that) const {
516    internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
517    internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
518    if (a == 0) return b == 0;
519    if (b == 0) return false;
520    return *a == *b;
521  }
522
523  template <class S>
524  V8_INLINE bool operator!=(const PersistentBase<S>& that) const {
525    return !operator==(that);
526  }
527
528  template <class S> V8_INLINE bool operator!=(const Handle<S>& that) const {
529    return !operator==(that);
530  }
531
532  template<typename P>
533  V8_INLINE void SetWeak(
534      P* parameter,
535      typename WeakCallbackData<T, P>::Callback callback);
536
537  template<typename S, typename P>
538  V8_INLINE void SetWeak(
539      P* parameter,
540      typename WeakCallbackData<S, P>::Callback callback);
541
542  V8_INLINE void ClearWeak();
543
544  /**
545   * Marks the reference to this object independent. Garbage collector is free
546   * to ignore any object groups containing this object. Weak callback for an
547   * independent handle should not assume that it will be preceded by a global
548   * GC prologue callback or followed by a global GC epilogue callback.
549   */
550  V8_INLINE void MarkIndependent();
551
552  /**
553   * Marks the reference to this object partially dependent. Partially dependent
554   * handles only depend on other partially dependent handles and these
555   * dependencies are provided through object groups. It provides a way to build
556   * smaller object groups for young objects that represent only a subset of all
557   * external dependencies. This mark is automatically cleared after each
558   * garbage collection.
559   */
560  V8_INLINE void MarkPartiallyDependent();
561
562  V8_INLINE bool IsIndependent() const;
563
564  /** Checks if the handle holds the only reference to an object. */
565  V8_INLINE bool IsNearDeath() const;
566
567  /** Returns true if the handle's reference is weak.  */
568  V8_INLINE bool IsWeak() const;
569
570  /**
571   * Assigns a wrapper class ID to the handle. See RetainedObjectInfo interface
572   * description in v8-profiler.h for details.
573   */
574  V8_INLINE void SetWrapperClassId(uint16_t class_id);
575
576  /**
577   * Returns the class ID previously assigned to this handle or 0 if no class ID
578   * was previously assigned.
579   */
580  V8_INLINE uint16_t WrapperClassId() const;
581
582 private:
583  friend class Isolate;
584  friend class Utils;
585  template<class F> friend class Handle;
586  template<class F> friend class Local;
587  template<class F1, class F2> friend class Persistent;
588  template<class F> friend class UniquePersistent;
589  template<class F> friend class PersistentBase;
590  template<class F> friend class ReturnValue;
591
592  explicit V8_INLINE PersistentBase(T* val) : val_(val) {}
593  PersistentBase(PersistentBase& other); // NOLINT
594  void operator=(PersistentBase&);
595  V8_INLINE static T* New(Isolate* isolate, T* that);
596
597  T* val_;
598};
599
600
601/**
602 * Default traits for Persistent. This class does not allow
603 * use of the copy constructor or assignment operator.
604 * At present kResetInDestructor is not set, but that will change in a future
605 * version.
606 */
607template<class T>
608class NonCopyablePersistentTraits {
609 public:
610  typedef Persistent<T, NonCopyablePersistentTraits<T> > NonCopyablePersistent;
611  static const bool kResetInDestructor = false;
612  template<class S, class M>
613  V8_INLINE static void Copy(const Persistent<S, M>& source,
614                             NonCopyablePersistent* dest) {
615    Uncompilable<Object>();
616  }
617  // TODO(dcarney): come up with a good compile error here.
618  template<class O> V8_INLINE static void Uncompilable() {
619    TYPE_CHECK(O, Primitive);
620  }
621};
622
623
624/**
625 * Helper class traits to allow copying and assignment of Persistent.
626 * This will clone the contents of storage cell, but not any of the flags, etc.
627 */
628template<class T>
629struct CopyablePersistentTraits {
630  typedef Persistent<T, CopyablePersistentTraits<T> > CopyablePersistent;
631  static const bool kResetInDestructor = true;
632  template<class S, class M>
633  static V8_INLINE void Copy(const Persistent<S, M>& source,
634                             CopyablePersistent* dest) {
635    // do nothing, just allow copy
636  }
637};
638
639
640/**
641 * A PersistentBase which allows copy and assignment.
642 *
643 * Copy, assignment and destructor bevavior is controlled by the traits
644 * class M.
645 *
646 * Note: Persistent class hierarchy is subject to future changes.
647 */
648template <class T, class M> class Persistent : public PersistentBase<T> {
649 public:
650  /**
651   * A Persistent with no storage cell.
652   */
653  V8_INLINE Persistent() : PersistentBase<T>(0) { }
654  /**
655   * Construct a Persistent from a Handle.
656   * When the Handle is non-empty, a new storage cell is created
657   * pointing to the same object, and no flags are set.
658   */
659  template <class S> V8_INLINE Persistent(Isolate* isolate, Handle<S> that)
660      : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
661    TYPE_CHECK(T, S);
662  }
663  /**
664   * Construct a Persistent from a Persistent.
665   * When the Persistent is non-empty, a new storage cell is created
666   * pointing to the same object, and no flags are set.
667   */
668  template <class S, class M2>
669  V8_INLINE Persistent(Isolate* isolate, const Persistent<S, M2>& that)
670    : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
671    TYPE_CHECK(T, S);
672  }
673  /**
674   * The copy constructors and assignment operator create a Persistent
675   * exactly as the Persistent constructor, but the Copy function from the
676   * traits class is called, allowing the setting of flags based on the
677   * copied Persistent.
678   */
679  V8_INLINE Persistent(const Persistent& that) : PersistentBase<T>(0) {
680    Copy(that);
681  }
682  template <class S, class M2>
683  V8_INLINE Persistent(const Persistent<S, M2>& that) : PersistentBase<T>(0) {
684    Copy(that);
685  }
686  V8_INLINE Persistent& operator=(const Persistent& that) { // NOLINT
687    Copy(that);
688    return *this;
689  }
690  template <class S, class M2>
691  V8_INLINE Persistent& operator=(const Persistent<S, M2>& that) { // NOLINT
692    Copy(that);
693    return *this;
694  }
695  /**
696   * The destructor will dispose the Persistent based on the
697   * kResetInDestructor flags in the traits class.  Since not calling dispose
698   * can result in a memory leak, it is recommended to always set this flag.
699   */
700  V8_INLINE ~Persistent() {
701    if (M::kResetInDestructor) this->Reset();
702  }
703
704  V8_DEPRECATED("Use Reset instead",
705                V8_INLINE void Dispose()) { this->Reset(); }
706
707  // TODO(dcarney): this is pretty useless, fix or remove
708  template <class S>
709  V8_INLINE static Persistent<T>& Cast(Persistent<S>& that) { // NOLINT
710#ifdef V8_ENABLE_CHECKS
711    // If we're going to perform the type check then we have to check
712    // that the handle isn't empty before doing the checked cast.
713    if (!that.IsEmpty()) T::Cast(*that);
714#endif
715    return reinterpret_cast<Persistent<T>&>(that);
716  }
717
718  // TODO(dcarney): this is pretty useless, fix or remove
719  template <class S> V8_INLINE Persistent<S>& As() { // NOLINT
720    return Persistent<S>::Cast(*this);
721  }
722
723  template<typename S, typename P>
724  V8_DEPRECATED(
725      "Use SetWeak instead",
726      V8_INLINE void MakeWeak(
727          P* parameter,
728          typename WeakReferenceCallbacks<S, P>::Revivable callback));
729
730  template<typename P>
731  V8_DEPRECATED(
732      "Use SetWeak instead",
733      V8_INLINE void MakeWeak(
734          P* parameter,
735          typename WeakReferenceCallbacks<T, P>::Revivable callback));
736
737  // This will be removed.
738  V8_INLINE T* ClearAndLeak();
739
740  V8_DEPRECATED("This will be removed",
741                V8_INLINE void Clear()) { this->val_ = 0; }
742
743  // TODO(dcarney): remove
744#ifndef V8_ALLOW_ACCESS_TO_RAW_HANDLE_CONSTRUCTOR
745
746 private:
747#endif
748  template <class S> V8_INLINE Persistent(S* that) : PersistentBase<T>(that) { }
749
750  V8_INLINE T* operator*() const { return this->val_; }
751
752 private:
753  friend class Isolate;
754  friend class Utils;
755  template<class F> friend class Handle;
756  template<class F> friend class Local;
757  template<class F1, class F2> friend class Persistent;
758  template<class F> friend class ReturnValue;
759
760  template<class S, class M2>
761  V8_INLINE void Copy(const Persistent<S, M2>& that);
762};
763
764
765/**
766 * A PersistentBase which has move semantics.
767 *
768 * Note: Persistent class hierarchy is subject to future changes.
769 */
770template<class T>
771class UniquePersistent : public PersistentBase<T> {
772  struct RValue {
773    V8_INLINE explicit RValue(UniquePersistent* object) : object(object) {}
774    UniquePersistent* object;
775  };
776
777 public:
778    /**
779   * A UniquePersistent with no storage cell.
780   */
781  V8_INLINE UniquePersistent() : PersistentBase<T>(0) { }
782  /**
783   * Construct a UniquePersistent from a Handle.
784   * When the Handle is non-empty, a new storage cell is created
785   * pointing to the same object, and no flags are set.
786   */
787  template <class S>
788  V8_INLINE UniquePersistent(Isolate* isolate, Handle<S> that)
789      : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
790    TYPE_CHECK(T, S);
791  }
792  /**
793   * Construct a UniquePersistent from a PersistentBase.
794   * When the Persistent is non-empty, a new storage cell is created
795   * pointing to the same object, and no flags are set.
796   */
797  template <class S>
798  V8_INLINE UniquePersistent(Isolate* isolate, const PersistentBase<S>& that)
799    : PersistentBase<T>(PersistentBase<T>::New(isolate, that.val_)) {
800    TYPE_CHECK(T, S);
801  }
802  /**
803   * Move constructor.
804   */
805  V8_INLINE UniquePersistent(RValue rvalue)
806    : PersistentBase<T>(rvalue.object->val_) {
807    rvalue.object->val_ = 0;
808  }
809  V8_INLINE ~UniquePersistent() { this->Reset(); }
810  /**
811   * Move via assignment.
812   */
813  template<class S>
814  V8_INLINE UniquePersistent& operator=(UniquePersistent<S> rhs) {
815    TYPE_CHECK(T, S);
816    this->val_ = rhs.val_;
817    rhs.val_ = 0;
818    return *this;
819  }
820  /**
821   * Cast operator for moves.
822   */
823  V8_INLINE operator RValue() { return RValue(this); }
824  /**
825   * Pass allows returning uniques from functions, etc.
826   */
827  V8_INLINE UniquePersistent Pass() { return UniquePersistent(RValue(this)); }
828
829 private:
830  UniquePersistent(UniquePersistent&);
831  void operator=(UniquePersistent&);
832};
833
834
835 /**
836 * A stack-allocated class that governs a number of local handles.
837 * After a handle scope has been created, all local handles will be
838 * allocated within that handle scope until either the handle scope is
839 * deleted or another handle scope is created.  If there is already a
840 * handle scope and a new one is created, all allocations will take
841 * place in the new handle scope until it is deleted.  After that,
842 * new handles will again be allocated in the original handle scope.
843 *
844 * After the handle scope of a local handle has been deleted the
845 * garbage collector will no longer track the object stored in the
846 * handle and may deallocate it.  The behavior of accessing a handle
847 * for which the handle scope has been deleted is undefined.
848 */
849class V8_EXPORT HandleScope {
850 public:
851  HandleScope(Isolate* isolate);
852
853  ~HandleScope();
854
855  template <class T>
856  V8_DEPRECATED("Use EscapableHandleScope::Escape instead",
857                Local<T> Close(Handle<T> value));
858
859  /**
860   * Counts the number of allocated handles.
861   */
862  static int NumberOfHandles();
863
864 private:
865  /**
866   * Creates a new handle with the given value.
867   */
868  static internal::Object** CreateHandle(internal::Isolate* isolate,
869                                         internal::Object* value);
870  // Uses HeapObject to obtain the current Isolate.
871  static internal::Object** CreateHandle(internal::HeapObject* heap_object,
872                                         internal::Object* value);
873
874  V8_INLINE HandleScope() {}
875  void Initialize(Isolate* isolate);
876
877  // Make it hard to create heap-allocated or illegal handle scopes by
878  // disallowing certain operations.
879  HandleScope(const HandleScope&);
880  void operator=(const HandleScope&);
881  void* operator new(size_t size);
882  void operator delete(void*, size_t);
883
884  // This Data class is accessible internally as HandleScopeData through a
885  // typedef in the ImplementationUtilities class.
886  class V8_EXPORT Data {
887   public:
888    internal::Object** next;
889    internal::Object** limit;
890    int level;
891    V8_INLINE void Initialize() {
892      next = limit = NULL;
893      level = 0;
894    }
895  };
896
897  void Leave();
898
899  internal::Isolate* isolate_;
900  internal::Object** prev_next_;
901  internal::Object** prev_limit_;
902
903  // TODO(dcarney): remove this field
904  // Allow for the active closing of HandleScopes which allows to pass a handle
905  // from the HandleScope being closed to the next top most HandleScope.
906  bool is_closed_;
907  internal::Object** RawClose(internal::Object** value);
908
909  friend class ImplementationUtilities;
910  friend class EscapableHandleScope;
911  template<class F> friend class Handle;
912  template<class F> friend class Local;
913  friend class Object;
914  friend class Context;
915};
916
917
918/**
919 * A HandleScope which first allocates a handle in the current scope
920 * which will be later filled with the escape value.
921 */
922class V8_EXPORT EscapableHandleScope : public HandleScope {
923 public:
924  EscapableHandleScope(Isolate* isolate);
925  V8_INLINE ~EscapableHandleScope() {}
926
927  /**
928   * Pushes the value into the previous scope and returns a handle to it.
929   * Cannot be called twice.
930   */
931  template <class T>
932  V8_INLINE Local<T> Escape(Local<T> value) {
933    internal::Object** slot =
934        Escape(reinterpret_cast<internal::Object**>(*value));
935    return Local<T>(reinterpret_cast<T*>(slot));
936  }
937
938 private:
939  internal::Object** Escape(internal::Object** escape_value);
940
941  // Make it hard to create heap-allocated or illegal handle scopes by
942  // disallowing certain operations.
943  EscapableHandleScope(const EscapableHandleScope&);
944  void operator=(const EscapableHandleScope&);
945  void* operator new(size_t size);
946  void operator delete(void*, size_t);
947
948  internal::Object** escape_slot_;
949};
950
951
952/**
953 * A simple Maybe type, representing an object which may or may not have a
954 * value.
955 */
956template<class T>
957struct Maybe {
958  Maybe() : has_value(false) {}
959  explicit Maybe(T t) : has_value(true), value(t) {}
960  Maybe(bool has, T t) : has_value(has), value(t) {}
961
962  bool has_value;
963  T value;
964};
965
966
967// --- Special objects ---
968
969
970/**
971 * The superclass of values and API object templates.
972 */
973class V8_EXPORT Data {
974 private:
975  Data();
976};
977
978
979/**
980 * Pre-compilation data that can be associated with a script.  This
981 * data can be calculated for a script in advance of actually
982 * compiling it, and can be stored between compilations.  When script
983 * data is given to the compile method compilation will be faster.
984 */
985class V8_EXPORT ScriptData {  // NOLINT
986 public:
987  virtual ~ScriptData() { }
988
989  /**
990   * Pre-compiles the specified script (context-independent).
991   *
992   * \param input Pointer to UTF-8 script source code.
993   * \param length Length of UTF-8 script source code.
994   */
995  static ScriptData* PreCompile(Isolate* isolate,
996                                const char* input,
997                                int length);
998
999  /**
1000   * Pre-compiles the specified script (context-independent).
1001   *
1002   * NOTE: Pre-compilation using this method cannot happen on another thread
1003   * without using Lockers.
1004   *
1005   * \param source Script source code.
1006   */
1007  static ScriptData* PreCompile(Handle<String> source);
1008
1009  /**
1010   * Load previous pre-compilation data.
1011   *
1012   * \param data Pointer to data returned by a call to Data() of a previous
1013   *   ScriptData. Ownership is not transferred.
1014   * \param length Length of data.
1015   */
1016  static ScriptData* New(const char* data, int length);
1017
1018  /**
1019   * Returns the length of Data().
1020   */
1021  virtual int Length() = 0;
1022
1023  /**
1024   * Returns a serialized representation of this ScriptData that can later be
1025   * passed to New(). NOTE: Serialized data is platform-dependent.
1026   */
1027  virtual const char* Data() = 0;
1028
1029  /**
1030   * Returns true if the source code could not be parsed.
1031   */
1032  virtual bool HasError() = 0;
1033};
1034
1035
1036/**
1037 * The origin, within a file, of a script.
1038 */
1039class ScriptOrigin {
1040 public:
1041  V8_INLINE ScriptOrigin(
1042      Handle<Value> resource_name,
1043      Handle<Integer> resource_line_offset = Handle<Integer>(),
1044      Handle<Integer> resource_column_offset = Handle<Integer>(),
1045      Handle<Boolean> resource_is_shared_cross_origin = Handle<Boolean>())
1046      : resource_name_(resource_name),
1047        resource_line_offset_(resource_line_offset),
1048        resource_column_offset_(resource_column_offset),
1049        resource_is_shared_cross_origin_(resource_is_shared_cross_origin) { }
1050  V8_INLINE Handle<Value> ResourceName() const;
1051  V8_INLINE Handle<Integer> ResourceLineOffset() const;
1052  V8_INLINE Handle<Integer> ResourceColumnOffset() const;
1053  V8_INLINE Handle<Boolean> ResourceIsSharedCrossOrigin() const;
1054 private:
1055  Handle<Value> resource_name_;
1056  Handle<Integer> resource_line_offset_;
1057  Handle<Integer> resource_column_offset_;
1058  Handle<Boolean> resource_is_shared_cross_origin_;
1059};
1060
1061
1062/**
1063 * A compiled JavaScript script.
1064 */
1065class V8_EXPORT Script {
1066 public:
1067  /**
1068   * Compiles the specified script (context-independent).
1069   *
1070   * \param source Script source code.
1071   * \param origin Script origin, owned by caller, no references are kept
1072   *   when New() returns
1073   * \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile()
1074   *   using pre_data speeds compilation if it's done multiple times.
1075   *   Owned by caller, no references are kept when New() returns.
1076   * \param script_data Arbitrary data associated with script. Using
1077   *   this has same effect as calling SetData(), but allows data to be
1078   *   available to compile event handlers.
1079   * \return Compiled script object (context independent; when run it
1080   *   will use the currently entered context).
1081   */
1082  static Local<Script> New(Handle<String> source,
1083                           ScriptOrigin* origin = NULL,
1084                           ScriptData* pre_data = NULL,
1085                           Handle<String> script_data = Handle<String>());
1086
1087  /**
1088   * Compiles the specified script using the specified file name
1089   * object (typically a string) as the script's origin.
1090   *
1091   * \param source Script source code.
1092   * \param file_name file name object (typically a string) to be used
1093   *   as the script's origin.
1094   * \return Compiled script object (context independent; when run it
1095   *   will use the currently entered context).
1096   */
1097  static Local<Script> New(Handle<String> source,
1098                           Handle<Value> file_name);
1099
1100  /**
1101   * Compiles the specified script (bound to current context).
1102   *
1103   * \param source Script source code.
1104   * \param origin Script origin, owned by caller, no references are kept
1105   *   when Compile() returns
1106   * \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile()
1107   *   using pre_data speeds compilation if it's done multiple times.
1108   *   Owned by caller, no references are kept when Compile() returns.
1109   * \param script_data Arbitrary data associated with script. Using
1110   *   this has same effect as calling SetData(), but makes data available
1111   *   earlier (i.e. to compile event handlers).
1112   * \return Compiled script object, bound to the context that was active
1113   *   when this function was called.  When run it will always use this
1114   *   context.
1115   */
1116  static Local<Script> Compile(Handle<String> source,
1117                               ScriptOrigin* origin = NULL,
1118                               ScriptData* pre_data = NULL,
1119                               Handle<String> script_data = Handle<String>());
1120
1121  /**
1122   * Compiles the specified script using the specified file name
1123   * object (typically a string) as the script's origin.
1124   *
1125   * \param source Script source code.
1126   * \param file_name File name to use as script's origin
1127   * \param script_data Arbitrary data associated with script. Using
1128   *   this has same effect as calling SetData(), but makes data available
1129   *   earlier (i.e. to compile event handlers).
1130   * \return Compiled script object, bound to the context that was active
1131   *   when this function was called.  When run it will always use this
1132   *   context.
1133   */
1134  static Local<Script> Compile(Handle<String> source,
1135                               Handle<Value> file_name,
1136                               Handle<String> script_data = Handle<String>());
1137
1138  /**
1139   * Runs the script returning the resulting value.  If the script is
1140   * context independent (created using ::New) it will be run in the
1141   * currently entered context.  If it is context specific (created
1142   * using ::Compile) it will be run in the context in which it was
1143   * compiled.
1144   */
1145  Local<Value> Run();
1146
1147  /**
1148   * Returns the script id value.
1149   */
1150  V8_DEPRECATED("Use GetId instead", Local<Value> Id());
1151
1152  /**
1153   * Returns the script id.
1154   */
1155  int GetId();
1156
1157  /**
1158   * Associate an additional data object with the script. This is mainly used
1159   * with the debugger as this data object is only available through the
1160   * debugger API.
1161   */
1162  void SetData(Handle<String> data);
1163
1164  /**
1165   * Returns the name value of one Script.
1166   */
1167  Handle<Value> GetScriptName();
1168
1169  /**
1170   * Returns zero based line number of the code_pos location in the script.
1171   * -1 will be returned if no information available.
1172   */
1173  int GetLineNumber(int code_pos);
1174
1175  static const int kNoScriptId = 0;
1176};
1177
1178
1179/**
1180 * An error message.
1181 */
1182class V8_EXPORT Message {
1183 public:
1184  Local<String> Get() const;
1185  Local<String> GetSourceLine() const;
1186
1187  /**
1188   * Returns the resource name for the script from where the function causing
1189   * the error originates.
1190   */
1191  Handle<Value> GetScriptResourceName() const;
1192
1193  /**
1194   * Returns the resource data for the script from where the function causing
1195   * the error originates.
1196   */
1197  Handle<Value> GetScriptData() const;
1198
1199  /**
1200   * Exception stack trace. By default stack traces are not captured for
1201   * uncaught exceptions. SetCaptureStackTraceForUncaughtExceptions allows
1202   * to change this option.
1203   */
1204  Handle<StackTrace> GetStackTrace() const;
1205
1206  /**
1207   * Returns the number, 1-based, of the line where the error occurred.
1208   */
1209  int GetLineNumber() const;
1210
1211  /**
1212   * Returns the index within the script of the first character where
1213   * the error occurred.
1214   */
1215  int GetStartPosition() const;
1216
1217  /**
1218   * Returns the index within the script of the last character where
1219   * the error occurred.
1220   */
1221  int GetEndPosition() const;
1222
1223  /**
1224   * Returns the index within the line of the first character where
1225   * the error occurred.
1226   */
1227  int GetStartColumn() const;
1228
1229  /**
1230   * Returns the index within the line of the last character where
1231   * the error occurred.
1232   */
1233  int GetEndColumn() const;
1234
1235  /**
1236   * Passes on the value set by the embedder when it fed the script from which
1237   * this Message was generated to V8.
1238   */
1239  bool IsSharedCrossOrigin() const;
1240
1241  // TODO(1245381): Print to a string instead of on a FILE.
1242  static void PrintCurrentStackTrace(Isolate* isolate, FILE* out);
1243  V8_DEPRECATED("Will be removed",
1244                static void PrintCurrentStackTrace(FILE* out));
1245
1246  static const int kNoLineNumberInfo = 0;
1247  static const int kNoColumnInfo = 0;
1248  static const int kNoScriptIdInfo = 0;
1249};
1250
1251
1252/**
1253 * Representation of a JavaScript stack trace. The information collected is a
1254 * snapshot of the execution stack and the information remains valid after
1255 * execution continues.
1256 */
1257class V8_EXPORT StackTrace {
1258 public:
1259  /**
1260   * Flags that determine what information is placed captured for each
1261   * StackFrame when grabbing the current stack trace.
1262   */
1263  enum StackTraceOptions {
1264    kLineNumber = 1,
1265    kColumnOffset = 1 << 1 | kLineNumber,
1266    kScriptName = 1 << 2,
1267    kFunctionName = 1 << 3,
1268    kIsEval = 1 << 4,
1269    kIsConstructor = 1 << 5,
1270    kScriptNameOrSourceURL = 1 << 6,
1271    kScriptId = 1 << 7,
1272    kOverview = kLineNumber | kColumnOffset | kScriptName | kFunctionName,
1273    kDetailed = kOverview | kIsEval | kIsConstructor | kScriptNameOrSourceURL
1274  };
1275
1276  /**
1277   * Returns a StackFrame at a particular index.
1278   */
1279  Local<StackFrame> GetFrame(uint32_t index) const;
1280
1281  /**
1282   * Returns the number of StackFrames.
1283   */
1284  int GetFrameCount() const;
1285
1286  /**
1287   * Returns StackTrace as a v8::Array that contains StackFrame objects.
1288   */
1289  Local<Array> AsArray();
1290
1291  /**
1292   * Grab a snapshot of the current JavaScript execution stack.
1293   *
1294   * \param frame_limit The maximum number of stack frames we want to capture.
1295   * \param options Enumerates the set of things we will capture for each
1296   *   StackFrame.
1297   */
1298  static Local<StackTrace> CurrentStackTrace(
1299      Isolate* isolate,
1300      int frame_limit,
1301      StackTraceOptions options = kOverview);
1302  V8_DEPRECATED("Will be removed",
1303                static Local<StackTrace> CurrentStackTrace(
1304                    int frame_limit, StackTraceOptions options = kOverview));
1305};
1306
1307
1308/**
1309 * A single JavaScript stack frame.
1310 */
1311class V8_EXPORT StackFrame {
1312 public:
1313  /**
1314   * Returns the number, 1-based, of the line for the associate function call.
1315   * This method will return Message::kNoLineNumberInfo if it is unable to
1316   * retrieve the line number, or if kLineNumber was not passed as an option
1317   * when capturing the StackTrace.
1318   */
1319  int GetLineNumber() const;
1320
1321  /**
1322   * Returns the 1-based column offset on the line for the associated function
1323   * call.
1324   * This method will return Message::kNoColumnInfo if it is unable to retrieve
1325   * the column number, or if kColumnOffset was not passed as an option when
1326   * capturing the StackTrace.
1327   */
1328  int GetColumn() const;
1329
1330  /**
1331   * Returns the id of the script for the function for this StackFrame.
1332   * This method will return Message::kNoScriptIdInfo if it is unable to
1333   * retrieve the script id, or if kScriptId was not passed as an option when
1334   * capturing the StackTrace.
1335   */
1336  int GetScriptId() const;
1337
1338  /**
1339   * Returns the name of the resource that contains the script for the
1340   * function for this StackFrame.
1341   */
1342  Local<String> GetScriptName() const;
1343
1344  /**
1345   * Returns the name of the resource that contains the script for the
1346   * function for this StackFrame or sourceURL value if the script name
1347   * is undefined and its source ends with //# sourceURL=... string or
1348   * deprecated //@ sourceURL=... string.
1349   */
1350  Local<String> GetScriptNameOrSourceURL() const;
1351
1352  /**
1353   * Returns the name of the function associated with this stack frame.
1354   */
1355  Local<String> GetFunctionName() const;
1356
1357  /**
1358   * Returns whether or not the associated function is compiled via a call to
1359   * eval().
1360   */
1361  bool IsEval() const;
1362
1363  /**
1364   * Returns whether or not the associated function is called as a
1365   * constructor via "new".
1366   */
1367  bool IsConstructor() const;
1368};
1369
1370
1371/**
1372 * A JSON Parser.
1373 */
1374class V8_EXPORT JSON {
1375 public:
1376  /**
1377   * Tries to parse the string |json_string| and returns it as value if
1378   * successful.
1379   *
1380   * \param json_string The string to parse.
1381   * \return The corresponding value if successfully parsed.
1382   */
1383  static Local<Value> Parse(Local<String> json_string);
1384};
1385
1386
1387// --- Value ---
1388
1389
1390/**
1391 * The superclass of all JavaScript values and objects.
1392 */
1393class V8_EXPORT Value : public Data {
1394 public:
1395  /**
1396   * Returns true if this value is the undefined value.  See ECMA-262
1397   * 4.3.10.
1398   */
1399  V8_INLINE bool IsUndefined() const;
1400
1401  /**
1402   * Returns true if this value is the null value.  See ECMA-262
1403   * 4.3.11.
1404   */
1405  V8_INLINE bool IsNull() const;
1406
1407   /**
1408   * Returns true if this value is true.
1409   */
1410  bool IsTrue() const;
1411
1412  /**
1413   * Returns true if this value is false.
1414   */
1415  bool IsFalse() const;
1416
1417  /**
1418   * Returns true if this value is an instance of the String type.
1419   * See ECMA-262 8.4.
1420   */
1421  V8_INLINE bool IsString() const;
1422
1423  /**
1424   * Returns true if this value is a symbol.
1425   * This is an experimental feature.
1426   */
1427  bool IsSymbol() const;
1428
1429  /**
1430   * Returns true if this value is a function.
1431   */
1432  bool IsFunction() const;
1433
1434  /**
1435   * Returns true if this value is an array.
1436   */
1437  bool IsArray() const;
1438
1439  /**
1440   * Returns true if this value is an object.
1441   */
1442  bool IsObject() const;
1443
1444  /**
1445   * Returns true if this value is boolean.
1446   */
1447  bool IsBoolean() const;
1448
1449  /**
1450   * Returns true if this value is a number.
1451   */
1452  bool IsNumber() const;
1453
1454  /**
1455   * Returns true if this value is external.
1456   */
1457  bool IsExternal() const;
1458
1459  /**
1460   * Returns true if this value is a 32-bit signed integer.
1461   */
1462  bool IsInt32() const;
1463
1464  /**
1465   * Returns true if this value is a 32-bit unsigned integer.
1466   */
1467  bool IsUint32() const;
1468
1469  /**
1470   * Returns true if this value is a Date.
1471   */
1472  bool IsDate() const;
1473
1474  /**
1475   * Returns true if this value is a Boolean object.
1476   */
1477  bool IsBooleanObject() const;
1478
1479  /**
1480   * Returns true if this value is a Number object.
1481   */
1482  bool IsNumberObject() const;
1483
1484  /**
1485   * Returns true if this value is a String object.
1486   */
1487  bool IsStringObject() const;
1488
1489  /**
1490   * Returns true if this value is a Symbol object.
1491   * This is an experimental feature.
1492   */
1493  bool IsSymbolObject() const;
1494
1495  /**
1496   * Returns true if this value is a NativeError.
1497   */
1498  bool IsNativeError() const;
1499
1500  /**
1501   * Returns true if this value is a RegExp.
1502   */
1503  bool IsRegExp() const;
1504
1505
1506  /**
1507   * Returns true if this value is an ArrayBuffer.
1508   * This is an experimental feature.
1509   */
1510  bool IsArrayBuffer() const;
1511
1512  /**
1513   * Returns true if this value is an ArrayBufferView.
1514   * This is an experimental feature.
1515   */
1516  bool IsArrayBufferView() const;
1517
1518  /**
1519   * Returns true if this value is one of TypedArrays.
1520   * This is an experimental feature.
1521   */
1522  bool IsTypedArray() const;
1523
1524  /**
1525   * Returns true if this value is an Uint8Array.
1526   * This is an experimental feature.
1527   */
1528  bool IsUint8Array() const;
1529
1530  /**
1531   * Returns true if this value is an Uint8ClampedArray.
1532   * This is an experimental feature.
1533   */
1534  bool IsUint8ClampedArray() const;
1535
1536  /**
1537   * Returns true if this value is an Int8Array.
1538   * This is an experimental feature.
1539   */
1540  bool IsInt8Array() const;
1541
1542  /**
1543   * Returns true if this value is an Uint16Array.
1544   * This is an experimental feature.
1545   */
1546  bool IsUint16Array() const;
1547
1548  /**
1549   * Returns true if this value is an Int16Array.
1550   * This is an experimental feature.
1551   */
1552  bool IsInt16Array() const;
1553
1554  /**
1555   * Returns true if this value is an Uint32Array.
1556   * This is an experimental feature.
1557   */
1558  bool IsUint32Array() const;
1559
1560  /**
1561   * Returns true if this value is an Int32Array.
1562   * This is an experimental feature.
1563   */
1564  bool IsInt32Array() const;
1565
1566  /**
1567   * Returns true if this value is a Float32Array.
1568   * This is an experimental feature.
1569   */
1570  bool IsFloat32Array() const;
1571
1572  /**
1573   * Returns true if this value is a Float64Array.
1574   * This is an experimental feature.
1575   */
1576  bool IsFloat64Array() const;
1577
1578  /**
1579   * Returns true if this value is a DataView.
1580   * This is an experimental feature.
1581   */
1582  bool IsDataView() const;
1583
1584  Local<Boolean> ToBoolean() const;
1585  Local<Number> ToNumber() const;
1586  Local<String> ToString() const;
1587  Local<String> ToDetailString() const;
1588  Local<Object> ToObject() const;
1589  Local<Integer> ToInteger() const;
1590  Local<Uint32> ToUint32() const;
1591  Local<Int32> ToInt32() const;
1592
1593  /**
1594   * Attempts to convert a string to an array index.
1595   * Returns an empty handle if the conversion fails.
1596   */
1597  Local<Uint32> ToArrayIndex() const;
1598
1599  bool BooleanValue() const;
1600  double NumberValue() const;
1601  int64_t IntegerValue() const;
1602  uint32_t Uint32Value() const;
1603  int32_t Int32Value() const;
1604
1605  /** JS == */
1606  bool Equals(Handle<Value> that) const;
1607  bool StrictEquals(Handle<Value> that) const;
1608  bool SameValue(Handle<Value> that) const;
1609
1610  template <class T> V8_INLINE static Value* Cast(T* value);
1611
1612 private:
1613  V8_INLINE bool QuickIsUndefined() const;
1614  V8_INLINE bool QuickIsNull() const;
1615  V8_INLINE bool QuickIsString() const;
1616  bool FullIsUndefined() const;
1617  bool FullIsNull() const;
1618  bool FullIsString() const;
1619};
1620
1621
1622/**
1623 * The superclass of primitive values.  See ECMA-262 4.3.2.
1624 */
1625class V8_EXPORT Primitive : public Value { };
1626
1627
1628/**
1629 * A primitive boolean value (ECMA-262, 4.3.14).  Either the true
1630 * or false value.
1631 */
1632class V8_EXPORT Boolean : public Primitive {
1633 public:
1634  bool Value() const;
1635  V8_INLINE static Handle<Boolean> New(Isolate* isolate, bool value);
1636  V8_DEPRECATED("Will be removed",
1637                V8_INLINE static Handle<Boolean> New(bool value));
1638};
1639
1640
1641/**
1642 * A JavaScript string value (ECMA-262, 4.3.17).
1643 */
1644class V8_EXPORT String : public Primitive {
1645 public:
1646  enum Encoding {
1647    UNKNOWN_ENCODING = 0x1,
1648    TWO_BYTE_ENCODING = 0x0,
1649    ASCII_ENCODING = 0x4,
1650    ONE_BYTE_ENCODING = 0x4
1651  };
1652  /**
1653   * Returns the number of characters in this string.
1654   */
1655  int Length() const;
1656
1657  /**
1658   * Returns the number of bytes in the UTF-8 encoded
1659   * representation of this string.
1660   */
1661  int Utf8Length() const;
1662
1663  /**
1664   * Returns whether this string is known to contain only one byte data.
1665   * Does not read the string.
1666   * False negatives are possible.
1667   */
1668  bool IsOneByte() const;
1669
1670  /**
1671   * Returns whether this string contain only one byte data.
1672   * Will read the entire string in some cases.
1673   */
1674  bool ContainsOnlyOneByte() const;
1675
1676  /**
1677   * Write the contents of the string to an external buffer.
1678   * If no arguments are given, expects the buffer to be large
1679   * enough to hold the entire string and NULL terminator. Copies
1680   * the contents of the string and the NULL terminator into the
1681   * buffer.
1682   *
1683   * WriteUtf8 will not write partial UTF-8 sequences, preferring to stop
1684   * before the end of the buffer.
1685   *
1686   * Copies up to length characters into the output buffer.
1687   * Only null-terminates if there is enough space in the buffer.
1688   *
1689   * \param buffer The buffer into which the string will be copied.
1690   * \param start The starting position within the string at which
1691   * copying begins.
1692   * \param length The number of characters to copy from the string.  For
1693   *    WriteUtf8 the number of bytes in the buffer.
1694   * \param nchars_ref The number of characters written, can be NULL.
1695   * \param options Various options that might affect performance of this or
1696   *    subsequent operations.
1697   * \return The number of characters copied to the buffer excluding the null
1698   *    terminator.  For WriteUtf8: The number of bytes copied to the buffer
1699   *    including the null terminator (if written).
1700   */
1701  enum WriteOptions {
1702    NO_OPTIONS = 0,
1703    HINT_MANY_WRITES_EXPECTED = 1,
1704    NO_NULL_TERMINATION = 2,
1705    PRESERVE_ASCII_NULL = 4
1706  };
1707
1708  // 16-bit character codes.
1709  int Write(uint16_t* buffer,
1710            int start = 0,
1711            int length = -1,
1712            int options = NO_OPTIONS) const;
1713  // One byte characters.
1714  int WriteOneByte(uint8_t* buffer,
1715                   int start = 0,
1716                   int length = -1,
1717                   int options = NO_OPTIONS) const;
1718  // UTF-8 encoded characters.
1719  int WriteUtf8(char* buffer,
1720                int length = -1,
1721                int* nchars_ref = NULL,
1722                int options = NO_OPTIONS) const;
1723
1724  /**
1725   * A zero length string.
1726   */
1727  static v8::Local<v8::String> Empty();
1728  V8_INLINE static v8::Local<v8::String> Empty(Isolate* isolate);
1729
1730  /**
1731   * Returns true if the string is external
1732   */
1733  bool IsExternal() const;
1734
1735  /**
1736   * Returns true if the string is both external and ASCII
1737   */
1738  bool IsExternalAscii() const;
1739
1740  class V8_EXPORT ExternalStringResourceBase {  // NOLINT
1741   public:
1742    virtual ~ExternalStringResourceBase() {}
1743
1744   protected:
1745    ExternalStringResourceBase() {}
1746
1747    /**
1748     * Internally V8 will call this Dispose method when the external string
1749     * resource is no longer needed. The default implementation will use the
1750     * delete operator. This method can be overridden in subclasses to
1751     * control how allocated external string resources are disposed.
1752     */
1753    virtual void Dispose() { delete this; }
1754
1755   private:
1756    // Disallow copying and assigning.
1757    ExternalStringResourceBase(const ExternalStringResourceBase&);
1758    void operator=(const ExternalStringResourceBase&);
1759
1760    friend class v8::internal::Heap;
1761  };
1762
1763  /**
1764   * An ExternalStringResource is a wrapper around a two-byte string
1765   * buffer that resides outside V8's heap. Implement an
1766   * ExternalStringResource to manage the life cycle of the underlying
1767   * buffer.  Note that the string data must be immutable.
1768   */
1769  class V8_EXPORT ExternalStringResource
1770      : public ExternalStringResourceBase {
1771   public:
1772    /**
1773     * Override the destructor to manage the life cycle of the underlying
1774     * buffer.
1775     */
1776    virtual ~ExternalStringResource() {}
1777
1778    /**
1779     * The string data from the underlying buffer.
1780     */
1781    virtual const uint16_t* data() const = 0;
1782
1783    /**
1784     * The length of the string. That is, the number of two-byte characters.
1785     */
1786    virtual size_t length() const = 0;
1787
1788   protected:
1789    ExternalStringResource() {}
1790  };
1791
1792  /**
1793   * An ExternalAsciiStringResource is a wrapper around an ASCII
1794   * string buffer that resides outside V8's heap. Implement an
1795   * ExternalAsciiStringResource to manage the life cycle of the
1796   * underlying buffer.  Note that the string data must be immutable
1797   * and that the data must be strict (7-bit) ASCII, not Latin-1 or
1798   * UTF-8, which would require special treatment internally in the
1799   * engine and, in the case of UTF-8, do not allow efficient indexing.
1800   * Use String::New or convert to 16 bit data for non-ASCII.
1801   */
1802
1803  class V8_EXPORT ExternalAsciiStringResource
1804      : public ExternalStringResourceBase {
1805   public:
1806    /**
1807     * Override the destructor to manage the life cycle of the underlying
1808     * buffer.
1809     */
1810    virtual ~ExternalAsciiStringResource() {}
1811    /** The string data from the underlying buffer.*/
1812    virtual const char* data() const = 0;
1813    /** The number of ASCII characters in the string.*/
1814    virtual size_t length() const = 0;
1815   protected:
1816    ExternalAsciiStringResource() {}
1817  };
1818
1819  typedef ExternalAsciiStringResource ExternalOneByteStringResource;
1820
1821  /**
1822   * If the string is an external string, return the ExternalStringResourceBase
1823   * regardless of the encoding, otherwise return NULL.  The encoding of the
1824   * string is returned in encoding_out.
1825   */
1826  V8_INLINE ExternalStringResourceBase* GetExternalStringResourceBase(
1827      Encoding* encoding_out) const;
1828
1829  /**
1830   * Get the ExternalStringResource for an external string.  Returns
1831   * NULL if IsExternal() doesn't return true.
1832   */
1833  V8_INLINE ExternalStringResource* GetExternalStringResource() const;
1834
1835  /**
1836   * Get the ExternalAsciiStringResource for an external ASCII string.
1837   * Returns NULL if IsExternalAscii() doesn't return true.
1838   */
1839  const ExternalAsciiStringResource* GetExternalAsciiStringResource() const;
1840
1841  V8_INLINE static String* Cast(v8::Value* obj);
1842
1843  /**
1844   * Allocates a new string from either UTF-8 encoded or ASCII data.
1845   * The second parameter 'length' gives the buffer length. If omitted,
1846   * the function calls 'strlen' to determine the buffer length.
1847   */
1848  V8_DEPRECATED(
1849      "Use NewFromUtf8 instead",
1850      V8_INLINE static Local<String> New(const char* data, int length = -1));
1851
1852  /** Allocates a new string from 16-bit character codes.*/
1853  V8_DEPRECATED(
1854      "Use NewFromTwoByte instead",
1855      V8_INLINE static Local<String> New(
1856          const uint16_t* data, int length = -1));
1857
1858  /**
1859   * Creates an internalized string (historically called a "symbol",
1860   * not to be confused with ES6 symbols). Returns one if it exists already.
1861   */
1862  V8_DEPRECATED(
1863      "Use NewFromUtf8 instead",
1864      V8_INLINE static Local<String> NewSymbol(
1865          const char* data, int length = -1));
1866
1867  enum NewStringType {
1868    kNormalString, kInternalizedString, kUndetectableString
1869  };
1870
1871  /** Allocates a new string from UTF-8 data.*/
1872  static Local<String> NewFromUtf8(Isolate* isolate,
1873                                  const char* data,
1874                                  NewStringType type = kNormalString,
1875                                  int length = -1);
1876
1877  /** Allocates a new string from Latin-1 data.*/
1878  static Local<String> NewFromOneByte(
1879      Isolate* isolate,
1880      const uint8_t* data,
1881      NewStringType type = kNormalString,
1882      int length = -1);
1883
1884  /** Allocates a new string from UTF-16 data.*/
1885  static Local<String> NewFromTwoByte(
1886      Isolate* isolate,
1887      const uint16_t* data,
1888      NewStringType type = kNormalString,
1889      int length = -1);
1890
1891  /**
1892   * Creates a new string by concatenating the left and the right strings
1893   * passed in as parameters.
1894   */
1895  static Local<String> Concat(Handle<String> left, Handle<String> right);
1896
1897  /**
1898   * Creates a new external string using the data defined in the given
1899   * resource. When the external string is no longer live on V8's heap the
1900   * resource will be disposed by calling its Dispose method. The caller of
1901   * this function should not otherwise delete or modify the resource. Neither
1902   * should the underlying buffer be deallocated or modified except through the
1903   * destructor of the external string resource.
1904   */
1905  static Local<String> NewExternal(Isolate* isolate,
1906                                   ExternalStringResource* resource);
1907  V8_DEPRECATED("Will be removed", static Local<String> NewExternal(
1908                                        ExternalStringResource* resource));
1909
1910  /**
1911   * Associate an external string resource with this string by transforming it
1912   * in place so that existing references to this string in the JavaScript heap
1913   * will use the external string resource. The external string resource's
1914   * character contents need to be equivalent to this string.
1915   * Returns true if the string has been changed to be an external string.
1916   * The string is not modified if the operation fails. See NewExternal for
1917   * information on the lifetime of the resource.
1918   */
1919  bool MakeExternal(ExternalStringResource* resource);
1920
1921  /**
1922   * Creates a new external string using the ASCII data defined in the given
1923   * resource. When the external string is no longer live on V8's heap the
1924   * resource will be disposed by calling its Dispose method. The caller of
1925   * this function should not otherwise delete or modify the resource. Neither
1926   * should the underlying buffer be deallocated or modified except through the
1927   * destructor of the external string resource.
1928   */
1929  static Local<String> NewExternal(Isolate* isolate,
1930                                   ExternalAsciiStringResource* resource);
1931  V8_DEPRECATED("Will be removed", static Local<String> NewExternal(
1932                                        ExternalAsciiStringResource* resource));
1933
1934  /**
1935   * Associate an external string resource with this string by transforming it
1936   * in place so that existing references to this string in the JavaScript heap
1937   * will use the external string resource. The external string resource's
1938   * character contents need to be equivalent to this string.
1939   * Returns true if the string has been changed to be an external string.
1940   * The string is not modified if the operation fails. See NewExternal for
1941   * information on the lifetime of the resource.
1942   */
1943  bool MakeExternal(ExternalAsciiStringResource* resource);
1944
1945  /**
1946   * Returns true if this string can be made external.
1947   */
1948  bool CanMakeExternal();
1949
1950  /** Creates an undetectable string from the supplied ASCII or UTF-8 data.*/
1951  V8_DEPRECATED(
1952      "Use NewFromUtf8 instead",
1953      V8_INLINE static Local<String> NewUndetectable(const char* data,
1954                                                     int length = -1));
1955
1956  /** Creates an undetectable string from the supplied 16-bit character codes.*/
1957  V8_DEPRECATED(
1958      "Use NewFromTwoByte instead",
1959      V8_INLINE static Local<String> NewUndetectable(const uint16_t* data,
1960                                                     int length = -1));
1961
1962  /**
1963   * Converts an object to a UTF-8-encoded character array.  Useful if
1964   * you want to print the object.  If conversion to a string fails
1965   * (e.g. due to an exception in the toString() method of the object)
1966   * then the length() method returns 0 and the * operator returns
1967   * NULL.
1968   */
1969  class V8_EXPORT Utf8Value {
1970   public:
1971    explicit Utf8Value(Handle<v8::Value> obj);
1972    ~Utf8Value();
1973    char* operator*() { return str_; }
1974    const char* operator*() const { return str_; }
1975    int length() const { return length_; }
1976   private:
1977    char* str_;
1978    int length_;
1979
1980    // Disallow copying and assigning.
1981    Utf8Value(const Utf8Value&);
1982    void operator=(const Utf8Value&);
1983  };
1984
1985  /**
1986   * Converts an object to an ASCII string.
1987   * Useful if you want to print the object.
1988   * If conversion to a string fails (eg. due to an exception in the toString()
1989   * method of the object) then the length() method returns 0 and the * operator
1990   * returns NULL.
1991   */
1992  class V8_EXPORT AsciiValue {
1993   public:
1994    V8_DEPRECATED("Use Utf8Value instead",
1995                  explicit AsciiValue(Handle<v8::Value> obj));
1996    ~AsciiValue();
1997    char* operator*() { return str_; }
1998    const char* operator*() const { return str_; }
1999    int length() const { return length_; }
2000   private:
2001    char* str_;
2002    int length_;
2003
2004    // Disallow copying and assigning.
2005    AsciiValue(const AsciiValue&);
2006    void operator=(const AsciiValue&);
2007  };
2008
2009  /**
2010   * Converts an object to a two-byte string.
2011   * If conversion to a string fails (eg. due to an exception in the toString()
2012   * method of the object) then the length() method returns 0 and the * operator
2013   * returns NULL.
2014   */
2015  class V8_EXPORT Value {
2016   public:
2017    explicit Value(Handle<v8::Value> obj);
2018    ~Value();
2019    uint16_t* operator*() { return str_; }
2020    const uint16_t* operator*() const { return str_; }
2021    int length() const { return length_; }
2022   private:
2023    uint16_t* str_;
2024    int length_;
2025
2026    // Disallow copying and assigning.
2027    Value(const Value&);
2028    void operator=(const Value&);
2029  };
2030
2031 private:
2032  void VerifyExternalStringResourceBase(ExternalStringResourceBase* v,
2033                                        Encoding encoding) const;
2034  void VerifyExternalStringResource(ExternalStringResource* val) const;
2035  static void CheckCast(v8::Value* obj);
2036};
2037
2038
2039/**
2040 * A JavaScript symbol (ECMA-262 edition 6)
2041 *
2042 * This is an experimental feature. Use at your own risk.
2043 */
2044class V8_EXPORT Symbol : public Primitive {
2045 public:
2046  // Returns the print name string of the symbol, or undefined if none.
2047  Local<Value> Name() const;
2048
2049  // Create a symbol. If data is not NULL, it will be used as a print name.
2050  static Local<Symbol> New(
2051      Isolate *isolate, const char* data = NULL, int length = -1);
2052
2053  V8_INLINE static Symbol* Cast(v8::Value* obj);
2054 private:
2055  Symbol();
2056  static void CheckCast(v8::Value* obj);
2057};
2058
2059
2060/**
2061 * A private symbol
2062 *
2063 * This is an experimental feature. Use at your own risk.
2064 */
2065class V8_EXPORT Private : public Data {
2066 public:
2067  // Returns the print name string of the private symbol, or undefined if none.
2068  Local<Value> Name() const;
2069
2070  // Create a private symbol. If data is not NULL, it will be the print name.
2071  static Local<Private> New(
2072      Isolate *isolate, const char* data = NULL, int length = -1);
2073
2074 private:
2075  Private();
2076};
2077
2078
2079/**
2080 * A JavaScript number value (ECMA-262, 4.3.20)
2081 */
2082class V8_EXPORT Number : public Primitive {
2083 public:
2084  double Value() const;
2085  static Local<Number> New(Isolate* isolate, double value);
2086  // Will be deprecated soon.
2087  static Local<Number> New(double value);
2088  V8_INLINE static Number* Cast(v8::Value* obj);
2089 private:
2090  Number();
2091  static void CheckCast(v8::Value* obj);
2092};
2093
2094
2095/**
2096 * A JavaScript value representing a signed integer.
2097 */
2098class V8_EXPORT Integer : public Number {
2099 public:
2100  static Local<Integer> New(Isolate* isolate, int32_t value);
2101  static Local<Integer> NewFromUnsigned(Isolate* isolate, uint32_t value);
2102  // Will be deprecated soon.
2103  static Local<Integer> New(int32_t value, Isolate*);
2104  static Local<Integer> NewFromUnsigned(uint32_t value, Isolate*);
2105  static Local<Integer> New(int32_t value);
2106  static Local<Integer> NewFromUnsigned(uint32_t value);
2107  int64_t Value() const;
2108  V8_INLINE static Integer* Cast(v8::Value* obj);
2109 private:
2110  Integer();
2111  static void CheckCast(v8::Value* obj);
2112};
2113
2114
2115/**
2116 * A JavaScript value representing a 32-bit signed integer.
2117 */
2118class V8_EXPORT Int32 : public Integer {
2119 public:
2120  int32_t Value() const;
2121 private:
2122  Int32();
2123};
2124
2125
2126/**
2127 * A JavaScript value representing a 32-bit unsigned integer.
2128 */
2129class V8_EXPORT Uint32 : public Integer {
2130 public:
2131  uint32_t Value() const;
2132 private:
2133  Uint32();
2134};
2135
2136
2137enum PropertyAttribute {
2138  None       = 0,
2139  ReadOnly   = 1 << 0,
2140  DontEnum   = 1 << 1,
2141  DontDelete = 1 << 2
2142};
2143
2144enum ExternalArrayType {
2145  kExternalByteArray = 1,
2146  kExternalUnsignedByteArray,
2147  kExternalShortArray,
2148  kExternalUnsignedShortArray,
2149  kExternalIntArray,
2150  kExternalUnsignedIntArray,
2151  kExternalFloatArray,
2152  kExternalDoubleArray,
2153  kExternalPixelArray
2154};
2155
2156/**
2157 * Accessor[Getter|Setter] are used as callback functions when
2158 * setting|getting a particular property. See Object and ObjectTemplate's
2159 * method SetAccessor.
2160 */
2161typedef void (*AccessorGetterCallback)(
2162    Local<String> property,
2163    const PropertyCallbackInfo<Value>& info);
2164
2165
2166typedef void (*AccessorSetterCallback)(
2167    Local<String> property,
2168    Local<Value> value,
2169    const PropertyCallbackInfo<void>& info);
2170
2171
2172/**
2173 * Access control specifications.
2174 *
2175 * Some accessors should be accessible across contexts.  These
2176 * accessors have an explicit access control parameter which specifies
2177 * the kind of cross-context access that should be allowed.
2178 *
2179 * Additionally, for security, accessors can prohibit overwriting by
2180 * accessors defined in JavaScript.  For objects that have such
2181 * accessors either locally or in their prototype chain it is not
2182 * possible to overwrite the accessor by using __defineGetter__ or
2183 * __defineSetter__ from JavaScript code.
2184 */
2185enum AccessControl {
2186  DEFAULT               = 0,
2187  ALL_CAN_READ          = 1,
2188  ALL_CAN_WRITE         = 1 << 1,
2189  PROHIBITS_OVERWRITING = 1 << 2
2190};
2191
2192
2193/**
2194 * A JavaScript object (ECMA-262, 4.3.3)
2195 */
2196class V8_EXPORT Object : public Value {
2197 public:
2198  bool Set(Handle<Value> key,
2199           Handle<Value> value,
2200           PropertyAttribute attribs = None);
2201
2202  bool Set(uint32_t index, Handle<Value> value);
2203
2204  // Sets a local property on this object bypassing interceptors and
2205  // overriding accessors or read-only properties.
2206  //
2207  // Note that if the object has an interceptor the property will be set
2208  // locally, but since the interceptor takes precedence the local property
2209  // will only be returned if the interceptor doesn't return a value.
2210  //
2211  // Note also that this only works for named properties.
2212  bool ForceSet(Handle<Value> key,
2213                Handle<Value> value,
2214                PropertyAttribute attribs = None);
2215
2216  Local<Value> Get(Handle<Value> key);
2217
2218  Local<Value> Get(uint32_t index);
2219
2220  /**
2221   * Gets the property attributes of a property which can be None or
2222   * any combination of ReadOnly, DontEnum and DontDelete. Returns
2223   * None when the property doesn't exist.
2224   */
2225  PropertyAttribute GetPropertyAttributes(Handle<Value> key);
2226
2227  bool Has(Handle<Value> key);
2228
2229  bool Delete(Handle<Value> key);
2230
2231  // Delete a property on this object bypassing interceptors and
2232  // ignoring dont-delete attributes.
2233  bool ForceDelete(Handle<Value> key);
2234
2235  bool Has(uint32_t index);
2236
2237  bool Delete(uint32_t index);
2238
2239  bool SetAccessor(Handle<String> name,
2240                   AccessorGetterCallback getter,
2241                   AccessorSetterCallback setter = 0,
2242                   Handle<Value> data = Handle<Value>(),
2243                   AccessControl settings = DEFAULT,
2244                   PropertyAttribute attribute = None);
2245
2246  // This function is not yet stable and should not be used at this time.
2247  bool SetDeclaredAccessor(Local<String> name,
2248                           Local<DeclaredAccessorDescriptor> descriptor,
2249                           PropertyAttribute attribute = None,
2250                           AccessControl settings = DEFAULT);
2251
2252  /**
2253   * Functionality for private properties.
2254   * This is an experimental feature, use at your own risk.
2255   * Note: Private properties are inherited. Do not rely on this, since it may
2256   * change.
2257   */
2258  bool HasPrivate(Handle<Private> key);
2259  bool SetPrivate(Handle<Private> key, Handle<Value> value);
2260  bool DeletePrivate(Handle<Private> key);
2261  Local<Value> GetPrivate(Handle<Private> key);
2262
2263  /**
2264   * Returns an array containing the names of the enumerable properties
2265   * of this object, including properties from prototype objects.  The
2266   * array returned by this method contains the same values as would
2267   * be enumerated by a for-in statement over this object.
2268   */
2269  Local<Array> GetPropertyNames();
2270
2271  /**
2272   * This function has the same functionality as GetPropertyNames but
2273   * the returned array doesn't contain the names of properties from
2274   * prototype objects.
2275   */
2276  Local<Array> GetOwnPropertyNames();
2277
2278  /**
2279   * Get the prototype object.  This does not skip objects marked to
2280   * be skipped by __proto__ and it does not consult the security
2281   * handler.
2282   */
2283  Local<Value> GetPrototype();
2284
2285  /**
2286   * Set the prototype object.  This does not skip objects marked to
2287   * be skipped by __proto__ and it does not consult the security
2288   * handler.
2289   */
2290  bool SetPrototype(Handle<Value> prototype);
2291
2292  /**
2293   * Finds an instance of the given function template in the prototype
2294   * chain.
2295   */
2296  Local<Object> FindInstanceInPrototypeChain(Handle<FunctionTemplate> tmpl);
2297
2298  /**
2299   * Call builtin Object.prototype.toString on this object.
2300   * This is different from Value::ToString() that may call
2301   * user-defined toString function. This one does not.
2302   */
2303  Local<String> ObjectProtoToString();
2304
2305  /**
2306   * Returns the function invoked as a constructor for this object.
2307   * May be the null value.
2308   */
2309  Local<Value> GetConstructor();
2310
2311  /**
2312   * Returns the name of the function invoked as a constructor for this object.
2313   */
2314  Local<String> GetConstructorName();
2315
2316  /** Gets the number of internal fields for this Object. */
2317  int InternalFieldCount();
2318
2319  /** Gets the value from an internal field. */
2320  V8_INLINE Local<Value> GetInternalField(int index);
2321
2322  /** Sets the value in an internal field. */
2323  void SetInternalField(int index, Handle<Value> value);
2324
2325  /**
2326   * Gets a 2-byte-aligned native pointer from an internal field. This field
2327   * must have been set by SetAlignedPointerInInternalField, everything else
2328   * leads to undefined behavior.
2329   */
2330  V8_INLINE void* GetAlignedPointerFromInternalField(int index);
2331
2332  /**
2333   * Sets a 2-byte-aligned native pointer in an internal field. To retrieve such
2334   * a field, GetAlignedPointerFromInternalField must be used, everything else
2335   * leads to undefined behavior.
2336   */
2337  void SetAlignedPointerInInternalField(int index, void* value);
2338
2339  // Testers for local properties.
2340  bool HasOwnProperty(Handle<String> key);
2341  bool HasRealNamedProperty(Handle<String> key);
2342  bool HasRealIndexedProperty(uint32_t index);
2343  bool HasRealNamedCallbackProperty(Handle<String> key);
2344
2345  /**
2346   * If result.IsEmpty() no real property was located in the prototype chain.
2347   * This means interceptors in the prototype chain are not called.
2348   */
2349  Local<Value> GetRealNamedPropertyInPrototypeChain(Handle<String> key);
2350
2351  /**
2352   * If result.IsEmpty() no real property was located on the object or
2353   * in the prototype chain.
2354   * This means interceptors in the prototype chain are not called.
2355   */
2356  Local<Value> GetRealNamedProperty(Handle<String> key);
2357
2358  /** Tests for a named lookup interceptor.*/
2359  bool HasNamedLookupInterceptor();
2360
2361  /** Tests for an index lookup interceptor.*/
2362  bool HasIndexedLookupInterceptor();
2363
2364  /**
2365   * Turns on access check on the object if the object is an instance of
2366   * a template that has access check callbacks. If an object has no
2367   * access check info, the object cannot be accessed by anyone.
2368   */
2369  void TurnOnAccessCheck();
2370
2371  /**
2372   * Returns the identity hash for this object. The current implementation
2373   * uses a hidden property on the object to store the identity hash.
2374   *
2375   * The return value will never be 0. Also, it is not guaranteed to be
2376   * unique.
2377   */
2378  int GetIdentityHash();
2379
2380  /**
2381   * Access hidden properties on JavaScript objects. These properties are
2382   * hidden from the executing JavaScript and only accessible through the V8
2383   * C++ API. Hidden properties introduced by V8 internally (for example the
2384   * identity hash) are prefixed with "v8::".
2385   */
2386  bool SetHiddenValue(Handle<String> key, Handle<Value> value);
2387  Local<Value> GetHiddenValue(Handle<String> key);
2388  bool DeleteHiddenValue(Handle<String> key);
2389
2390  /**
2391   * Returns true if this is an instance of an api function (one
2392   * created from a function created from a function template) and has
2393   * been modified since it was created.  Note that this method is
2394   * conservative and may return true for objects that haven't actually
2395   * been modified.
2396   */
2397  bool IsDirty();
2398
2399  /**
2400   * Clone this object with a fast but shallow copy.  Values will point
2401   * to the same values as the original object.
2402   */
2403  Local<Object> Clone();
2404
2405  /**
2406   * Returns the context in which the object was created.
2407   */
2408  Local<Context> CreationContext();
2409
2410  /**
2411   * Set the backing store of the indexed properties to be managed by the
2412   * embedding layer. Access to the indexed properties will follow the rules
2413   * spelled out in CanvasPixelArray.
2414   * Note: The embedding program still owns the data and needs to ensure that
2415   *       the backing store is preserved while V8 has a reference.
2416   */
2417  void SetIndexedPropertiesToPixelData(uint8_t* data, int length);
2418  bool HasIndexedPropertiesInPixelData();
2419  uint8_t* GetIndexedPropertiesPixelData();
2420  int GetIndexedPropertiesPixelDataLength();
2421
2422  /**
2423   * Set the backing store of the indexed properties to be managed by the
2424   * embedding layer. Access to the indexed properties will follow the rules
2425   * spelled out for the CanvasArray subtypes in the WebGL specification.
2426   * Note: The embedding program still owns the data and needs to ensure that
2427   *       the backing store is preserved while V8 has a reference.
2428   */
2429  void SetIndexedPropertiesToExternalArrayData(void* data,
2430                                               ExternalArrayType array_type,
2431                                               int number_of_elements);
2432  bool HasIndexedPropertiesInExternalArrayData();
2433  void* GetIndexedPropertiesExternalArrayData();
2434  ExternalArrayType GetIndexedPropertiesExternalArrayDataType();
2435  int GetIndexedPropertiesExternalArrayDataLength();
2436
2437  /**
2438   * Checks whether a callback is set by the
2439   * ObjectTemplate::SetCallAsFunctionHandler method.
2440   * When an Object is callable this method returns true.
2441   */
2442  bool IsCallable();
2443
2444  /**
2445   * Call an Object as a function if a callback is set by the
2446   * ObjectTemplate::SetCallAsFunctionHandler method.
2447   */
2448  Local<Value> CallAsFunction(Handle<Value> recv,
2449                              int argc,
2450                              Handle<Value> argv[]);
2451
2452  /**
2453   * Call an Object as a constructor if a callback is set by the
2454   * ObjectTemplate::SetCallAsFunctionHandler method.
2455   * Note: This method behaves like the Function::NewInstance method.
2456   */
2457  Local<Value> CallAsConstructor(int argc, Handle<Value> argv[]);
2458
2459  static Local<Object> New(Isolate* isolate);
2460  // Will be deprecated soon.
2461  static Local<Object> New();
2462  V8_INLINE static Object* Cast(Value* obj);
2463
2464 private:
2465  Object();
2466  static void CheckCast(Value* obj);
2467  Local<Value> SlowGetInternalField(int index);
2468  void* SlowGetAlignedPointerFromInternalField(int index);
2469};
2470
2471
2472/**
2473 * An instance of the built-in array constructor (ECMA-262, 15.4.2).
2474 */
2475class V8_EXPORT Array : public Object {
2476 public:
2477  uint32_t Length() const;
2478
2479  /**
2480   * Clones an element at index |index|.  Returns an empty
2481   * handle if cloning fails (for any reason).
2482   */
2483  Local<Object> CloneElementAt(uint32_t index);
2484
2485  /**
2486   * Creates a JavaScript array with the given length. If the length
2487   * is negative the returned array will have length 0.
2488   */
2489  static Local<Array> New(Isolate* isolate, int length = 0);
2490  V8_DEPRECATED("Will be removed", static Local<Array> New(int length = 0));
2491
2492  V8_INLINE static Array* Cast(Value* obj);
2493 private:
2494  Array();
2495  static void CheckCast(Value* obj);
2496};
2497
2498
2499template<typename T>
2500class ReturnValue {
2501 public:
2502  template <class S> V8_INLINE ReturnValue(const ReturnValue<S>& that)
2503      : value_(that.value_) {
2504    TYPE_CHECK(T, S);
2505  }
2506  // Handle setters
2507  template <typename S> V8_INLINE void Set(const Persistent<S>& handle);
2508  template <typename S> V8_INLINE void Set(const Handle<S> handle);
2509  // Fast primitive setters
2510  V8_INLINE void Set(bool value);
2511  V8_INLINE void Set(double i);
2512  V8_INLINE void Set(int32_t i);
2513  V8_INLINE void Set(uint32_t i);
2514  // Fast JS primitive setters
2515  V8_INLINE void SetNull();
2516  V8_INLINE void SetUndefined();
2517  V8_INLINE void SetEmptyString();
2518  // Convenience getter for Isolate
2519  V8_INLINE Isolate* GetIsolate();
2520
2521 private:
2522  template<class F> friend class ReturnValue;
2523  template<class F> friend class FunctionCallbackInfo;
2524  template<class F> friend class PropertyCallbackInfo;
2525  V8_INLINE internal::Object* GetDefaultValue();
2526  V8_INLINE explicit ReturnValue(internal::Object** slot);
2527  internal::Object** value_;
2528};
2529
2530
2531/**
2532 * The argument information given to function call callbacks.  This
2533 * class provides access to information about the context of the call,
2534 * including the receiver, the number and values of arguments, and
2535 * the holder of the function.
2536 */
2537template<typename T>
2538class FunctionCallbackInfo {
2539 public:
2540  V8_INLINE int Length() const;
2541  V8_INLINE Local<Value> operator[](int i) const;
2542  V8_INLINE Local<Function> Callee() const;
2543  V8_INLINE Local<Object> This() const;
2544  V8_INLINE Local<Object> Holder() const;
2545  V8_INLINE bool IsConstructCall() const;
2546  V8_INLINE Local<Value> Data() const;
2547  V8_INLINE Isolate* GetIsolate() const;
2548  V8_INLINE ReturnValue<T> GetReturnValue() const;
2549  // This shouldn't be public, but the arm compiler needs it.
2550  static const int kArgsLength = 7;
2551
2552 protected:
2553  friend class internal::FunctionCallbackArguments;
2554  friend class internal::CustomArguments<FunctionCallbackInfo>;
2555  static const int kHolderIndex = 0;
2556  static const int kIsolateIndex = 1;
2557  static const int kReturnValueDefaultValueIndex = 2;
2558  static const int kReturnValueIndex = 3;
2559  static const int kDataIndex = 4;
2560  static const int kCalleeIndex = 5;
2561  static const int kContextSaveIndex = 6;
2562
2563  V8_INLINE FunctionCallbackInfo(internal::Object** implicit_args,
2564                   internal::Object** values,
2565                   int length,
2566                   bool is_construct_call);
2567  internal::Object** implicit_args_;
2568  internal::Object** values_;
2569  int length_;
2570  bool is_construct_call_;
2571};
2572
2573
2574/**
2575 * The information passed to a property callback about the context
2576 * of the property access.
2577 */
2578template<typename T>
2579class PropertyCallbackInfo {
2580 public:
2581  V8_INLINE Isolate* GetIsolate() const;
2582  V8_INLINE Local<Value> Data() const;
2583  V8_INLINE Local<Object> This() const;
2584  V8_INLINE Local<Object> Holder() const;
2585  V8_INLINE ReturnValue<T> GetReturnValue() const;
2586  // This shouldn't be public, but the arm compiler needs it.
2587  static const int kArgsLength = 6;
2588
2589 protected:
2590  friend class MacroAssembler;
2591  friend class internal::PropertyCallbackArguments;
2592  friend class internal::CustomArguments<PropertyCallbackInfo>;
2593  static const int kHolderIndex = 0;
2594  static const int kIsolateIndex = 1;
2595  static const int kReturnValueDefaultValueIndex = 2;
2596  static const int kReturnValueIndex = 3;
2597  static const int kDataIndex = 4;
2598  static const int kThisIndex = 5;
2599
2600  V8_INLINE PropertyCallbackInfo(internal::Object** args) : args_(args) {}
2601  internal::Object** args_;
2602};
2603
2604
2605typedef void (*FunctionCallback)(const FunctionCallbackInfo<Value>& info);
2606
2607
2608/**
2609 * A JavaScript function object (ECMA-262, 15.3).
2610 */
2611class V8_EXPORT Function : public Object {
2612 public:
2613  /**
2614   * Create a function in the current execution context
2615   * for a given FunctionCallback.
2616   */
2617  static Local<Function> New(Isolate* isolate,
2618                             FunctionCallback callback,
2619                             Local<Value> data = Local<Value>(),
2620                             int length = 0);
2621
2622  Local<Object> NewInstance() const;
2623  Local<Object> NewInstance(int argc, Handle<Value> argv[]) const;
2624  Local<Value> Call(Handle<Value> recv, int argc, Handle<Value> argv[]);
2625  void SetName(Handle<String> name);
2626  Handle<Value> GetName() const;
2627
2628  /**
2629   * Name inferred from variable or property assignment of this function.
2630   * Used to facilitate debugging and profiling of JavaScript code written
2631   * in an OO style, where many functions are anonymous but are assigned
2632   * to object properties.
2633   */
2634  Handle<Value> GetInferredName() const;
2635
2636  /**
2637   * User-defined name assigned to the "displayName" property of this function.
2638   * Used to facilitate debugging and profiling of JavaScript code.
2639   */
2640  Handle<Value> GetDisplayName() const;
2641
2642  /**
2643   * Returns zero based line number of function body and
2644   * kLineOffsetNotFound if no information available.
2645   */
2646  int GetScriptLineNumber() const;
2647  /**
2648   * Returns zero based column number of function body and
2649   * kLineOffsetNotFound if no information available.
2650   */
2651  int GetScriptColumnNumber() const;
2652
2653  /**
2654   * Tells whether this function is builtin.
2655   */
2656  bool IsBuiltin() const;
2657
2658  /**
2659   * Returns scriptId object.
2660   */
2661  V8_DEPRECATED("Use ScriptId instead", Handle<Value> GetScriptId() const);
2662
2663  /**
2664   * Returns scriptId.
2665   */
2666  int ScriptId() const;
2667
2668  ScriptOrigin GetScriptOrigin() const;
2669  V8_INLINE static Function* Cast(Value* obj);
2670  static const int kLineOffsetNotFound;
2671
2672 private:
2673  Function();
2674  static void CheckCast(Value* obj);
2675};
2676
2677#ifndef V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT
2678// The number of required internal fields can be defined by embedder.
2679#define V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT 2
2680#endif
2681
2682/**
2683 * An instance of the built-in ArrayBuffer constructor (ES6 draft 15.13.5).
2684 * This API is experimental and may change significantly.
2685 */
2686class V8_EXPORT ArrayBuffer : public Object {
2687 public:
2688  /**
2689   * Allocator that V8 uses to allocate |ArrayBuffer|'s memory.
2690   * The allocator is a global V8 setting. It should be set with
2691   * V8::SetArrayBufferAllocator prior to creation of a first ArrayBuffer.
2692   *
2693   * This API is experimental and may change significantly.
2694   */
2695  class V8_EXPORT Allocator { // NOLINT
2696   public:
2697    virtual ~Allocator() {}
2698
2699    /**
2700     * Allocate |length| bytes. Return NULL if allocation is not successful.
2701     * Memory should be initialized to zeroes.
2702     */
2703    virtual void* Allocate(size_t length) = 0;
2704
2705    /**
2706     * Allocate |length| bytes. Return NULL if allocation is not successful.
2707     * Memory does not have to be initialized.
2708     */
2709    virtual void* AllocateUninitialized(size_t length) = 0;
2710    /**
2711     * Free the memory block of size |length|, pointed to by |data|.
2712     * That memory is guaranteed to be previously allocated by |Allocate|.
2713     */
2714    virtual void Free(void* data, size_t length) = 0;
2715  };
2716
2717  /**
2718   * The contents of an |ArrayBuffer|. Externalization of |ArrayBuffer|
2719   * returns an instance of this class, populated, with a pointer to data
2720   * and byte length.
2721   *
2722   * The Data pointer of ArrayBuffer::Contents is always allocated with
2723   * Allocator::Allocate that is set with V8::SetArrayBufferAllocator.
2724   *
2725   * This API is experimental and may change significantly.
2726   */
2727  class V8_EXPORT Contents { // NOLINT
2728   public:
2729    Contents() : data_(NULL), byte_length_(0) {}
2730
2731    void* Data() const { return data_; }
2732    size_t ByteLength() const { return byte_length_; }
2733
2734   private:
2735    void* data_;
2736    size_t byte_length_;
2737
2738    friend class ArrayBuffer;
2739  };
2740
2741
2742  /**
2743   * Data length in bytes.
2744   */
2745  size_t ByteLength() const;
2746
2747  /**
2748   * Create a new ArrayBuffer. Allocate |byte_length| bytes.
2749   * Allocated memory will be owned by a created ArrayBuffer and
2750   * will be deallocated when it is garbage-collected,
2751   * unless the object is externalized.
2752   */
2753  static Local<ArrayBuffer> New(Isolate* isolate, size_t byte_length);
2754  V8_DEPRECATED("Will be removed",
2755                static Local<ArrayBuffer> New(size_t byte_length));
2756
2757  /**
2758   * Create a new ArrayBuffer over an existing memory block.
2759   * The created array buffer is immediately in externalized state.
2760   * The memory block will not be reclaimed when a created ArrayBuffer
2761   * is garbage-collected.
2762   */
2763  static Local<ArrayBuffer> New(Isolate* isolate, void* data,
2764                                size_t byte_length);
2765  V8_DEPRECATED("Will be removed",
2766                static Local<ArrayBuffer> New(void* data, size_t byte_length));
2767
2768  /**
2769   * Returns true if ArrayBuffer is extrenalized, that is, does not
2770   * own its memory block.
2771   */
2772  bool IsExternal() const;
2773
2774  /**
2775   * Neuters this ArrayBuffer and all its views (typed arrays).
2776   * Neutering sets the byte length of the buffer and all typed arrays to zero,
2777   * preventing JavaScript from ever accessing underlying backing store.
2778   * ArrayBuffer should have been externalized.
2779   */
2780  void Neuter();
2781
2782  /**
2783   * Make this ArrayBuffer external. The pointer to underlying memory block
2784   * and byte length are returned as |Contents| structure. After ArrayBuffer
2785   * had been etxrenalized, it does no longer owns the memory block. The caller
2786   * should take steps to free memory when it is no longer needed.
2787   *
2788   * The memory block is guaranteed to be allocated with |Allocator::Allocate|
2789   * that has been set with V8::SetArrayBufferAllocator.
2790   */
2791  Contents Externalize();
2792
2793  V8_INLINE static ArrayBuffer* Cast(Value* obj);
2794
2795  static const int kInternalFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT;
2796
2797 private:
2798  ArrayBuffer();
2799  static void CheckCast(Value* obj);
2800};
2801
2802
2803#ifndef V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT
2804// The number of required internal fields can be defined by embedder.
2805#define V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT 2
2806#endif
2807
2808
2809/**
2810 * A base class for an instance of one of "views" over ArrayBuffer,
2811 * including TypedArrays and DataView (ES6 draft 15.13).
2812 *
2813 * This API is experimental and may change significantly.
2814 */
2815class V8_EXPORT ArrayBufferView : public Object {
2816 public:
2817  /**
2818   * Returns underlying ArrayBuffer.
2819   */
2820  Local<ArrayBuffer> Buffer();
2821  /**
2822   * Byte offset in |Buffer|.
2823   */
2824  size_t ByteOffset();
2825  /**
2826   * Size of a view in bytes.
2827   */
2828  size_t ByteLength();
2829
2830  V8_INLINE static ArrayBufferView* Cast(Value* obj);
2831
2832  static const int kInternalFieldCount =
2833      V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT;
2834
2835 private:
2836  ArrayBufferView();
2837  static void CheckCast(Value* obj);
2838};
2839
2840
2841/**
2842 * A base class for an instance of TypedArray series of constructors
2843 * (ES6 draft 15.13.6).
2844 * This API is experimental and may change significantly.
2845 */
2846class V8_EXPORT TypedArray : public ArrayBufferView {
2847 public:
2848  /**
2849   * Number of elements in this typed array
2850   * (e.g. for Int16Array, |ByteLength|/2).
2851   */
2852  size_t Length();
2853
2854  V8_INLINE static TypedArray* Cast(Value* obj);
2855
2856 private:
2857  TypedArray();
2858  static void CheckCast(Value* obj);
2859};
2860
2861
2862/**
2863 * An instance of Uint8Array constructor (ES6 draft 15.13.6).
2864 * This API is experimental and may change significantly.
2865 */
2866class V8_EXPORT Uint8Array : public TypedArray {
2867 public:
2868  static Local<Uint8Array> New(Handle<ArrayBuffer> array_buffer,
2869                               size_t byte_offset, size_t length);
2870  V8_INLINE static Uint8Array* Cast(Value* obj);
2871
2872 private:
2873  Uint8Array();
2874  static void CheckCast(Value* obj);
2875};
2876
2877
2878/**
2879 * An instance of Uint8ClampedArray constructor (ES6 draft 15.13.6).
2880 * This API is experimental and may change significantly.
2881 */
2882class V8_EXPORT Uint8ClampedArray : public TypedArray {
2883 public:
2884  static Local<Uint8ClampedArray> New(Handle<ArrayBuffer> array_buffer,
2885                               size_t byte_offset, size_t length);
2886  V8_INLINE static Uint8ClampedArray* Cast(Value* obj);
2887
2888 private:
2889  Uint8ClampedArray();
2890  static void CheckCast(Value* obj);
2891};
2892
2893/**
2894 * An instance of Int8Array constructor (ES6 draft 15.13.6).
2895 * This API is experimental and may change significantly.
2896 */
2897class V8_EXPORT Int8Array : public TypedArray {
2898 public:
2899  static Local<Int8Array> New(Handle<ArrayBuffer> array_buffer,
2900                               size_t byte_offset, size_t length);
2901  V8_INLINE static Int8Array* Cast(Value* obj);
2902
2903 private:
2904  Int8Array();
2905  static void CheckCast(Value* obj);
2906};
2907
2908
2909/**
2910 * An instance of Uint16Array constructor (ES6 draft 15.13.6).
2911 * This API is experimental and may change significantly.
2912 */
2913class V8_EXPORT Uint16Array : public TypedArray {
2914 public:
2915  static Local<Uint16Array> New(Handle<ArrayBuffer> array_buffer,
2916                               size_t byte_offset, size_t length);
2917  V8_INLINE static Uint16Array* Cast(Value* obj);
2918
2919 private:
2920  Uint16Array();
2921  static void CheckCast(Value* obj);
2922};
2923
2924
2925/**
2926 * An instance of Int16Array constructor (ES6 draft 15.13.6).
2927 * This API is experimental and may change significantly.
2928 */
2929class V8_EXPORT Int16Array : public TypedArray {
2930 public:
2931  static Local<Int16Array> New(Handle<ArrayBuffer> array_buffer,
2932                               size_t byte_offset, size_t length);
2933  V8_INLINE static Int16Array* Cast(Value* obj);
2934
2935 private:
2936  Int16Array();
2937  static void CheckCast(Value* obj);
2938};
2939
2940
2941/**
2942 * An instance of Uint32Array constructor (ES6 draft 15.13.6).
2943 * This API is experimental and may change significantly.
2944 */
2945class V8_EXPORT Uint32Array : public TypedArray {
2946 public:
2947  static Local<Uint32Array> New(Handle<ArrayBuffer> array_buffer,
2948                               size_t byte_offset, size_t length);
2949  V8_INLINE static Uint32Array* Cast(Value* obj);
2950
2951 private:
2952  Uint32Array();
2953  static void CheckCast(Value* obj);
2954};
2955
2956
2957/**
2958 * An instance of Int32Array constructor (ES6 draft 15.13.6).
2959 * This API is experimental and may change significantly.
2960 */
2961class V8_EXPORT Int32Array : public TypedArray {
2962 public:
2963  static Local<Int32Array> New(Handle<ArrayBuffer> array_buffer,
2964                               size_t byte_offset, size_t length);
2965  V8_INLINE static Int32Array* Cast(Value* obj);
2966
2967 private:
2968  Int32Array();
2969  static void CheckCast(Value* obj);
2970};
2971
2972
2973/**
2974 * An instance of Float32Array constructor (ES6 draft 15.13.6).
2975 * This API is experimental and may change significantly.
2976 */
2977class V8_EXPORT Float32Array : public TypedArray {
2978 public:
2979  static Local<Float32Array> New(Handle<ArrayBuffer> array_buffer,
2980                               size_t byte_offset, size_t length);
2981  V8_INLINE static Float32Array* Cast(Value* obj);
2982
2983 private:
2984  Float32Array();
2985  static void CheckCast(Value* obj);
2986};
2987
2988
2989/**
2990 * An instance of Float64Array constructor (ES6 draft 15.13.6).
2991 * This API is experimental and may change significantly.
2992 */
2993class V8_EXPORT Float64Array : public TypedArray {
2994 public:
2995  static Local<Float64Array> New(Handle<ArrayBuffer> array_buffer,
2996                               size_t byte_offset, size_t length);
2997  V8_INLINE static Float64Array* Cast(Value* obj);
2998
2999 private:
3000  Float64Array();
3001  static void CheckCast(Value* obj);
3002};
3003
3004
3005/**
3006 * An instance of DataView constructor (ES6 draft 15.13.7).
3007 * This API is experimental and may change significantly.
3008 */
3009class V8_EXPORT DataView : public ArrayBufferView {
3010 public:
3011  static Local<DataView> New(Handle<ArrayBuffer> array_buffer,
3012                             size_t byte_offset, size_t length);
3013  V8_INLINE static DataView* Cast(Value* obj);
3014
3015 private:
3016  DataView();
3017  static void CheckCast(Value* obj);
3018};
3019
3020
3021/**
3022 * An instance of the built-in Date constructor (ECMA-262, 15.9).
3023 */
3024class V8_EXPORT Date : public Object {
3025 public:
3026  static Local<Value> New(Isolate* isolate, double time);
3027  V8_DEPRECATED("Will be removed", static Local<Value> New(double time));
3028
3029  V8_DEPRECATED(
3030      "Use ValueOf instead",
3031      double NumberValue() const) { return ValueOf(); }
3032
3033  /**
3034   * A specialization of Value::NumberValue that is more efficient
3035   * because we know the structure of this object.
3036   */
3037  double ValueOf() const;
3038
3039  V8_INLINE static Date* Cast(v8::Value* obj);
3040
3041  /**
3042   * Notification that the embedder has changed the time zone,
3043   * daylight savings time, or other date / time configuration
3044   * parameters.  V8 keeps a cache of various values used for
3045   * date / time computation.  This notification will reset
3046   * those cached values for the current context so that date /
3047   * time configuration changes would be reflected in the Date
3048   * object.
3049   *
3050   * This API should not be called more than needed as it will
3051   * negatively impact the performance of date operations.
3052   */
3053  static void DateTimeConfigurationChangeNotification(Isolate* isolate);
3054  V8_DEPRECATED("Will be removed",
3055                static void DateTimeConfigurationChangeNotification());
3056
3057 private:
3058  static void CheckCast(v8::Value* obj);
3059};
3060
3061
3062/**
3063 * A Number object (ECMA-262, 4.3.21).
3064 */
3065class V8_EXPORT NumberObject : public Object {
3066 public:
3067  static Local<Value> New(Isolate* isolate, double value);
3068  V8_DEPRECATED("Will be removed", static Local<Value> New(double value));
3069
3070  V8_DEPRECATED(
3071      "Use ValueOf instead",
3072      double NumberValue() const) { return ValueOf(); }
3073
3074  /**
3075   * Returns the Number held by the object.
3076   */
3077  double ValueOf() const;
3078
3079  V8_INLINE static NumberObject* Cast(v8::Value* obj);
3080
3081 private:
3082  static void CheckCast(v8::Value* obj);
3083};
3084
3085
3086/**
3087 * A Boolean object (ECMA-262, 4.3.15).
3088 */
3089class V8_EXPORT BooleanObject : public Object {
3090 public:
3091  static Local<Value> New(bool value);
3092
3093  V8_DEPRECATED(
3094      "Use ValueOf instead",
3095      bool BooleanValue() const) { return ValueOf(); }
3096
3097  /**
3098   * Returns the Boolean held by the object.
3099   */
3100  bool ValueOf() const;
3101
3102  V8_INLINE static BooleanObject* Cast(v8::Value* obj);
3103
3104 private:
3105  static void CheckCast(v8::Value* obj);
3106};
3107
3108
3109/**
3110 * A String object (ECMA-262, 4.3.18).
3111 */
3112class V8_EXPORT StringObject : public Object {
3113 public:
3114  static Local<Value> New(Handle<String> value);
3115
3116  V8_DEPRECATED(
3117      "Use ValueOf instead",
3118      Local<String> StringValue() const) { return ValueOf(); }
3119
3120  /**
3121   * Returns the String held by the object.
3122   */
3123  Local<String> ValueOf() const;
3124
3125  V8_INLINE static StringObject* Cast(v8::Value* obj);
3126
3127 private:
3128  static void CheckCast(v8::Value* obj);
3129};
3130
3131
3132/**
3133 * A Symbol object (ECMA-262 edition 6).
3134 *
3135 * This is an experimental feature. Use at your own risk.
3136 */
3137class V8_EXPORT SymbolObject : public Object {
3138 public:
3139  static Local<Value> New(Isolate* isolate, Handle<Symbol> value);
3140
3141  V8_DEPRECATED(
3142      "Use ValueOf instead",
3143      Local<Symbol> SymbolValue() const) { return ValueOf(); }
3144
3145  /**
3146   * Returns the Symbol held by the object.
3147   */
3148  Local<Symbol> ValueOf() const;
3149
3150  V8_INLINE static SymbolObject* Cast(v8::Value* obj);
3151
3152 private:
3153  static void CheckCast(v8::Value* obj);
3154};
3155
3156
3157/**
3158 * An instance of the built-in RegExp constructor (ECMA-262, 15.10).
3159 */
3160class V8_EXPORT RegExp : public Object {
3161 public:
3162  /**
3163   * Regular expression flag bits. They can be or'ed to enable a set
3164   * of flags.
3165   */
3166  enum Flags {
3167    kNone = 0,
3168    kGlobal = 1,
3169    kIgnoreCase = 2,
3170    kMultiline = 4
3171  };
3172
3173  /**
3174   * Creates a regular expression from the given pattern string and
3175   * the flags bit field. May throw a JavaScript exception as
3176   * described in ECMA-262, 15.10.4.1.
3177   *
3178   * For example,
3179   *   RegExp::New(v8::String::New("foo"),
3180   *               static_cast<RegExp::Flags>(kGlobal | kMultiline))
3181   * is equivalent to evaluating "/foo/gm".
3182   */
3183  static Local<RegExp> New(Handle<String> pattern, Flags flags);
3184
3185  /**
3186   * Returns the value of the source property: a string representing
3187   * the regular expression.
3188   */
3189  Local<String> GetSource() const;
3190
3191  /**
3192   * Returns the flags bit field.
3193   */
3194  Flags GetFlags() const;
3195
3196  V8_INLINE static RegExp* Cast(v8::Value* obj);
3197
3198 private:
3199  static void CheckCast(v8::Value* obj);
3200};
3201
3202
3203/**
3204 * A JavaScript value that wraps a C++ void*. This type of value is mainly used
3205 * to associate C++ data structures with JavaScript objects.
3206 */
3207class V8_EXPORT External : public Value {
3208 public:
3209  static Local<External> New(Isolate* isolate, void* value);
3210  V8_DEPRECATED("Will be removed", static Local<External> New(void *value));
3211  V8_INLINE static External* Cast(Value* obj);
3212  void* Value() const;
3213 private:
3214  static void CheckCast(v8::Value* obj);
3215};
3216
3217
3218// --- Templates ---
3219
3220
3221/**
3222 * The superclass of object and function templates.
3223 */
3224class V8_EXPORT Template : public Data {
3225 public:
3226  /** Adds a property to each instance created by this template.*/
3227  void Set(Handle<String> name, Handle<Data> value,
3228           PropertyAttribute attributes = None);
3229  V8_INLINE void Set(Isolate* isolate, const char* name, Handle<Data> value);
3230  V8_DEPRECATED("Will be removed",
3231                V8_INLINE void Set(const char* name, Handle<Data> value));
3232
3233  void SetAccessorProperty(
3234     Local<String> name,
3235     Local<FunctionTemplate> getter = Local<FunctionTemplate>(),
3236     Local<FunctionTemplate> setter = Local<FunctionTemplate>(),
3237     PropertyAttribute attribute = None,
3238     AccessControl settings = DEFAULT);
3239
3240  /**
3241   * Whenever the property with the given name is accessed on objects
3242   * created from this Template the getter and setter callbacks
3243   * are called instead of getting and setting the property directly
3244   * on the JavaScript object.
3245   *
3246   * \param name The name of the property for which an accessor is added.
3247   * \param getter The callback to invoke when getting the property.
3248   * \param setter The callback to invoke when setting the property.
3249   * \param data A piece of data that will be passed to the getter and setter
3250   *   callbacks whenever they are invoked.
3251   * \param settings Access control settings for the accessor. This is a bit
3252   *   field consisting of one of more of
3253   *   DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
3254   *   The default is to not allow cross-context access.
3255   *   ALL_CAN_READ means that all cross-context reads are allowed.
3256   *   ALL_CAN_WRITE means that all cross-context writes are allowed.
3257   *   The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
3258   *   cross-context access.
3259   * \param attribute The attributes of the property for which an accessor
3260   *   is added.
3261   * \param signature The signature describes valid receivers for the accessor
3262   *   and is used to perform implicit instance checks against them. If the
3263   *   receiver is incompatible (i.e. is not an instance of the constructor as
3264   *   defined by FunctionTemplate::HasInstance()), an implicit TypeError is
3265   *   thrown and no callback is invoked.
3266   */
3267  void SetNativeDataProperty(Local<String> name,
3268                             AccessorGetterCallback getter,
3269                             AccessorSetterCallback setter = 0,
3270                             // TODO(dcarney): gcc can't handle Local below
3271                             Handle<Value> data = Handle<Value>(),
3272                             PropertyAttribute attribute = None,
3273                             Local<AccessorSignature> signature =
3274                                 Local<AccessorSignature>(),
3275                             AccessControl settings = DEFAULT);
3276
3277  // This function is not yet stable and should not be used at this time.
3278  bool SetDeclaredAccessor(Local<String> name,
3279                           Local<DeclaredAccessorDescriptor> descriptor,
3280                           PropertyAttribute attribute = None,
3281                           Local<AccessorSignature> signature =
3282                               Local<AccessorSignature>(),
3283                           AccessControl settings = DEFAULT);
3284
3285 private:
3286  Template();
3287
3288  friend class ObjectTemplate;
3289  friend class FunctionTemplate;
3290};
3291
3292
3293/**
3294 * NamedProperty[Getter|Setter] are used as interceptors on object.
3295 * See ObjectTemplate::SetNamedPropertyHandler.
3296 */
3297typedef void (*NamedPropertyGetterCallback)(
3298    Local<String> property,
3299    const PropertyCallbackInfo<Value>& info);
3300
3301
3302/**
3303 * Returns the value if the setter intercepts the request.
3304 * Otherwise, returns an empty handle.
3305 */
3306typedef void (*NamedPropertySetterCallback)(
3307    Local<String> property,
3308    Local<Value> value,
3309    const PropertyCallbackInfo<Value>& info);
3310
3311
3312/**
3313 * Returns a non-empty handle if the interceptor intercepts the request.
3314 * The result is an integer encoding property attributes (like v8::None,
3315 * v8::DontEnum, etc.)
3316 */
3317typedef void (*NamedPropertyQueryCallback)(
3318    Local<String> property,
3319    const PropertyCallbackInfo<Integer>& info);
3320
3321
3322/**
3323 * Returns a non-empty handle if the deleter intercepts the request.
3324 * The return value is true if the property could be deleted and false
3325 * otherwise.
3326 */
3327typedef void (*NamedPropertyDeleterCallback)(
3328    Local<String> property,
3329    const PropertyCallbackInfo<Boolean>& info);
3330
3331
3332/**
3333 * Returns an array containing the names of the properties the named
3334 * property getter intercepts.
3335 */
3336typedef void (*NamedPropertyEnumeratorCallback)(
3337    const PropertyCallbackInfo<Array>& info);
3338
3339
3340/**
3341 * Returns the value of the property if the getter intercepts the
3342 * request.  Otherwise, returns an empty handle.
3343 */
3344typedef void (*IndexedPropertyGetterCallback)(
3345    uint32_t index,
3346    const PropertyCallbackInfo<Value>& info);
3347
3348
3349/**
3350 * Returns the value if the setter intercepts the request.
3351 * Otherwise, returns an empty handle.
3352 */
3353typedef void (*IndexedPropertySetterCallback)(
3354    uint32_t index,
3355    Local<Value> value,
3356    const PropertyCallbackInfo<Value>& info);
3357
3358
3359/**
3360 * Returns a non-empty handle if the interceptor intercepts the request.
3361 * The result is an integer encoding property attributes.
3362 */
3363typedef void (*IndexedPropertyQueryCallback)(
3364    uint32_t index,
3365    const PropertyCallbackInfo<Integer>& info);
3366
3367
3368/**
3369 * Returns a non-empty handle if the deleter intercepts the request.
3370 * The return value is true if the property could be deleted and false
3371 * otherwise.
3372 */
3373typedef void (*IndexedPropertyDeleterCallback)(
3374    uint32_t index,
3375    const PropertyCallbackInfo<Boolean>& info);
3376
3377
3378/**
3379 * Returns an array containing the indices of the properties the
3380 * indexed property getter intercepts.
3381 */
3382typedef void (*IndexedPropertyEnumeratorCallback)(
3383    const PropertyCallbackInfo<Array>& info);
3384
3385
3386/**
3387 * Access type specification.
3388 */
3389enum AccessType {
3390  ACCESS_GET,
3391  ACCESS_SET,
3392  ACCESS_HAS,
3393  ACCESS_DELETE,
3394  ACCESS_KEYS
3395};
3396
3397
3398/**
3399 * Returns true if cross-context access should be allowed to the named
3400 * property with the given key on the host object.
3401 */
3402typedef bool (*NamedSecurityCallback)(Local<Object> host,
3403                                      Local<Value> key,
3404                                      AccessType type,
3405                                      Local<Value> data);
3406
3407
3408/**
3409 * Returns true if cross-context access should be allowed to the indexed
3410 * property with the given index on the host object.
3411 */
3412typedef bool (*IndexedSecurityCallback)(Local<Object> host,
3413                                        uint32_t index,
3414                                        AccessType type,
3415                                        Local<Value> data);
3416
3417
3418/**
3419 * A FunctionTemplate is used to create functions at runtime. There
3420 * can only be one function created from a FunctionTemplate in a
3421 * context.  The lifetime of the created function is equal to the
3422 * lifetime of the context.  So in case the embedder needs to create
3423 * temporary functions that can be collected using Scripts is
3424 * preferred.
3425 *
3426 * A FunctionTemplate can have properties, these properties are added to the
3427 * function object when it is created.
3428 *
3429 * A FunctionTemplate has a corresponding instance template which is
3430 * used to create object instances when the function is used as a
3431 * constructor. Properties added to the instance template are added to
3432 * each object instance.
3433 *
3434 * A FunctionTemplate can have a prototype template. The prototype template
3435 * is used to create the prototype object of the function.
3436 *
3437 * The following example shows how to use a FunctionTemplate:
3438 *
3439 * \code
3440 *    v8::Local<v8::FunctionTemplate> t = v8::FunctionTemplate::New();
3441 *    t->Set("func_property", v8::Number::New(1));
3442 *
3443 *    v8::Local<v8::Template> proto_t = t->PrototypeTemplate();
3444 *    proto_t->Set("proto_method", v8::FunctionTemplate::New(InvokeCallback));
3445 *    proto_t->Set("proto_const", v8::Number::New(2));
3446 *
3447 *    v8::Local<v8::ObjectTemplate> instance_t = t->InstanceTemplate();
3448 *    instance_t->SetAccessor("instance_accessor", InstanceAccessorCallback);
3449 *    instance_t->SetNamedPropertyHandler(PropertyHandlerCallback, ...);
3450 *    instance_t->Set("instance_property", Number::New(3));
3451 *
3452 *    v8::Local<v8::Function> function = t->GetFunction();
3453 *    v8::Local<v8::Object> instance = function->NewInstance();
3454 * \endcode
3455 *
3456 * Let's use "function" as the JS variable name of the function object
3457 * and "instance" for the instance object created above.  The function
3458 * and the instance will have the following properties:
3459 *
3460 * \code
3461 *   func_property in function == true;
3462 *   function.func_property == 1;
3463 *
3464 *   function.prototype.proto_method() invokes 'InvokeCallback'
3465 *   function.prototype.proto_const == 2;
3466 *
3467 *   instance instanceof function == true;
3468 *   instance.instance_accessor calls 'InstanceAccessorCallback'
3469 *   instance.instance_property == 3;
3470 * \endcode
3471 *
3472 * A FunctionTemplate can inherit from another one by calling the
3473 * FunctionTemplate::Inherit method.  The following graph illustrates
3474 * the semantics of inheritance:
3475 *
3476 * \code
3477 *   FunctionTemplate Parent  -> Parent() . prototype -> { }
3478 *     ^                                                  ^
3479 *     | Inherit(Parent)                                  | .__proto__
3480 *     |                                                  |
3481 *   FunctionTemplate Child   -> Child()  . prototype -> { }
3482 * \endcode
3483 *
3484 * A FunctionTemplate 'Child' inherits from 'Parent', the prototype
3485 * object of the Child() function has __proto__ pointing to the
3486 * Parent() function's prototype object. An instance of the Child
3487 * function has all properties on Parent's instance templates.
3488 *
3489 * Let Parent be the FunctionTemplate initialized in the previous
3490 * section and create a Child FunctionTemplate by:
3491 *
3492 * \code
3493 *   Local<FunctionTemplate> parent = t;
3494 *   Local<FunctionTemplate> child = FunctionTemplate::New();
3495 *   child->Inherit(parent);
3496 *
3497 *   Local<Function> child_function = child->GetFunction();
3498 *   Local<Object> child_instance = child_function->NewInstance();
3499 * \endcode
3500 *
3501 * The Child function and Child instance will have the following
3502 * properties:
3503 *
3504 * \code
3505 *   child_func.prototype.__proto__ == function.prototype;
3506 *   child_instance.instance_accessor calls 'InstanceAccessorCallback'
3507 *   child_instance.instance_property == 3;
3508 * \endcode
3509 */
3510class V8_EXPORT FunctionTemplate : public Template {
3511 public:
3512  /** Creates a function template.*/
3513  static Local<FunctionTemplate> New(
3514      Isolate* isolate,
3515      FunctionCallback callback = 0,
3516      Handle<Value> data = Handle<Value>(),
3517      Handle<Signature> signature = Handle<Signature>(),
3518      int length = 0);
3519  // Will be deprecated soon.
3520  static Local<FunctionTemplate> New(
3521      FunctionCallback callback = 0,
3522      Handle<Value> data = Handle<Value>(),
3523      Handle<Signature> signature = Handle<Signature>(),
3524      int length = 0);
3525
3526  /** Returns the unique function instance in the current execution context.*/
3527  Local<Function> GetFunction();
3528
3529  /**
3530   * Set the call-handler callback for a FunctionTemplate.  This
3531   * callback is called whenever the function created from this
3532   * FunctionTemplate is called.
3533   */
3534  void SetCallHandler(FunctionCallback callback,
3535                      Handle<Value> data = Handle<Value>());
3536
3537  /** Set the predefined length property for the FunctionTemplate. */
3538  void SetLength(int length);
3539
3540  /** Get the InstanceTemplate. */
3541  Local<ObjectTemplate> InstanceTemplate();
3542
3543  /** Causes the function template to inherit from a parent function template.*/
3544  void Inherit(Handle<FunctionTemplate> parent);
3545
3546  /**
3547   * A PrototypeTemplate is the template used to create the prototype object
3548   * of the function created by this template.
3549   */
3550  Local<ObjectTemplate> PrototypeTemplate();
3551
3552  /**
3553   * Set the class name of the FunctionTemplate.  This is used for
3554   * printing objects created with the function created from the
3555   * FunctionTemplate as its constructor.
3556   */
3557  void SetClassName(Handle<String> name);
3558
3559  /**
3560   * Determines whether the __proto__ accessor ignores instances of
3561   * the function template.  If instances of the function template are
3562   * ignored, __proto__ skips all instances and instead returns the
3563   * next object in the prototype chain.
3564   *
3565   * Call with a value of true to make the __proto__ accessor ignore
3566   * instances of the function template.  Call with a value of false
3567   * to make the __proto__ accessor not ignore instances of the
3568   * function template.  By default, instances of a function template
3569   * are not ignored.
3570   */
3571  void SetHiddenPrototype(bool value);
3572
3573  /**
3574   * Sets the ReadOnly flag in the attributes of the 'prototype' property
3575   * of functions created from this FunctionTemplate to true.
3576   */
3577  void ReadOnlyPrototype();
3578
3579  /**
3580   * Removes the prototype property from functions created from this
3581   * FunctionTemplate.
3582   */
3583  void RemovePrototype();
3584
3585  /**
3586   * Returns true if the given object is an instance of this function
3587   * template.
3588   */
3589  bool HasInstance(Handle<Value> object);
3590
3591 private:
3592  FunctionTemplate();
3593  friend class Context;
3594  friend class ObjectTemplate;
3595};
3596
3597
3598/**
3599 * An ObjectTemplate is used to create objects at runtime.
3600 *
3601 * Properties added to an ObjectTemplate are added to each object
3602 * created from the ObjectTemplate.
3603 */
3604class V8_EXPORT ObjectTemplate : public Template {
3605 public:
3606  /** Creates an ObjectTemplate. */
3607  static Local<ObjectTemplate> New(Isolate* isolate);
3608  // Will be deprecated soon.
3609  static Local<ObjectTemplate> New();
3610
3611  /** Creates a new instance of this template.*/
3612  Local<Object> NewInstance();
3613
3614  /**
3615   * Sets an accessor on the object template.
3616   *
3617   * Whenever the property with the given name is accessed on objects
3618   * created from this ObjectTemplate the getter and setter callbacks
3619   * are called instead of getting and setting the property directly
3620   * on the JavaScript object.
3621   *
3622   * \param name The name of the property for which an accessor is added.
3623   * \param getter The callback to invoke when getting the property.
3624   * \param setter The callback to invoke when setting the property.
3625   * \param data A piece of data that will be passed to the getter and setter
3626   *   callbacks whenever they are invoked.
3627   * \param settings Access control settings for the accessor. This is a bit
3628   *   field consisting of one of more of
3629   *   DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
3630   *   The default is to not allow cross-context access.
3631   *   ALL_CAN_READ means that all cross-context reads are allowed.
3632   *   ALL_CAN_WRITE means that all cross-context writes are allowed.
3633   *   The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
3634   *   cross-context access.
3635   * \param attribute The attributes of the property for which an accessor
3636   *   is added.
3637   * \param signature The signature describes valid receivers for the accessor
3638   *   and is used to perform implicit instance checks against them. If the
3639   *   receiver is incompatible (i.e. is not an instance of the constructor as
3640   *   defined by FunctionTemplate::HasInstance()), an implicit TypeError is
3641   *   thrown and no callback is invoked.
3642   */
3643  void SetAccessor(Handle<String> name,
3644                   AccessorGetterCallback getter,
3645                   AccessorSetterCallback setter = 0,
3646                   Handle<Value> data = Handle<Value>(),
3647                   AccessControl settings = DEFAULT,
3648                   PropertyAttribute attribute = None,
3649                   Handle<AccessorSignature> signature =
3650                       Handle<AccessorSignature>());
3651
3652  /**
3653   * Sets a named property handler on the object template.
3654   *
3655   * Whenever a named property is accessed on objects created from
3656   * this object template, the provided callback is invoked instead of
3657   * accessing the property directly on the JavaScript object.
3658   *
3659   * \param getter The callback to invoke when getting a property.
3660   * \param setter The callback to invoke when setting a property.
3661   * \param query The callback to invoke to check if a property is present,
3662   *   and if present, get its attributes.
3663   * \param deleter The callback to invoke when deleting a property.
3664   * \param enumerator The callback to invoke to enumerate all the named
3665   *   properties of an object.
3666   * \param data A piece of data that will be passed to the callbacks
3667   *   whenever they are invoked.
3668   */
3669  void SetNamedPropertyHandler(
3670      NamedPropertyGetterCallback getter,
3671      NamedPropertySetterCallback setter = 0,
3672      NamedPropertyQueryCallback query = 0,
3673      NamedPropertyDeleterCallback deleter = 0,
3674      NamedPropertyEnumeratorCallback enumerator = 0,
3675      Handle<Value> data = Handle<Value>());
3676
3677  /**
3678   * Sets an indexed property handler on the object template.
3679   *
3680   * Whenever an indexed property is accessed on objects created from
3681   * this object template, the provided callback is invoked instead of
3682   * accessing the property directly on the JavaScript object.
3683   *
3684   * \param getter The callback to invoke when getting a property.
3685   * \param setter The callback to invoke when setting a property.
3686   * \param query The callback to invoke to check if an object has a property.
3687   * \param deleter The callback to invoke when deleting a property.
3688   * \param enumerator The callback to invoke to enumerate all the indexed
3689   *   properties of an object.
3690   * \param data A piece of data that will be passed to the callbacks
3691   *   whenever they are invoked.
3692   */
3693  void SetIndexedPropertyHandler(
3694      IndexedPropertyGetterCallback getter,
3695      IndexedPropertySetterCallback setter = 0,
3696      IndexedPropertyQueryCallback query = 0,
3697      IndexedPropertyDeleterCallback deleter = 0,
3698      IndexedPropertyEnumeratorCallback enumerator = 0,
3699      Handle<Value> data = Handle<Value>());
3700
3701  /**
3702   * Sets the callback to be used when calling instances created from
3703   * this template as a function.  If no callback is set, instances
3704   * behave like normal JavaScript objects that cannot be called as a
3705   * function.
3706   */
3707  void SetCallAsFunctionHandler(FunctionCallback callback,
3708                                Handle<Value> data = Handle<Value>());
3709
3710  /**
3711   * Mark object instances of the template as undetectable.
3712   *
3713   * In many ways, undetectable objects behave as though they are not
3714   * there.  They behave like 'undefined' in conditionals and when
3715   * printed.  However, properties can be accessed and called as on
3716   * normal objects.
3717   */
3718  void MarkAsUndetectable();
3719
3720  /**
3721   * Sets access check callbacks on the object template.
3722   *
3723   * When accessing properties on instances of this object template,
3724   * the access check callback will be called to determine whether or
3725   * not to allow cross-context access to the properties.
3726   * The last parameter specifies whether access checks are turned
3727   * on by default on instances. If access checks are off by default,
3728   * they can be turned on on individual instances by calling
3729   * Object::TurnOnAccessCheck().
3730   */
3731  void SetAccessCheckCallbacks(NamedSecurityCallback named_handler,
3732                               IndexedSecurityCallback indexed_handler,
3733                               Handle<Value> data = Handle<Value>(),
3734                               bool turned_on_by_default = true);
3735
3736  /**
3737   * Gets the number of internal fields for objects generated from
3738   * this template.
3739   */
3740  int InternalFieldCount();
3741
3742  /**
3743   * Sets the number of internal fields for objects generated from
3744   * this template.
3745   */
3746  void SetInternalFieldCount(int value);
3747
3748 private:
3749  ObjectTemplate();
3750  static Local<ObjectTemplate> New(internal::Isolate* isolate,
3751                                   Handle<FunctionTemplate> constructor);
3752  friend class FunctionTemplate;
3753};
3754
3755
3756/**
3757 * A Signature specifies which receivers and arguments are valid
3758 * parameters to a function.
3759 */
3760class V8_EXPORT Signature : public Data {
3761 public:
3762  static Local<Signature> New(Isolate* isolate,
3763                              Handle<FunctionTemplate> receiver =
3764                                  Handle<FunctionTemplate>(),
3765                              int argc = 0,
3766                              Handle<FunctionTemplate> argv[] = 0);
3767  V8_DEPRECATED("Will be removed",
3768                static Local<Signature> New(Handle<FunctionTemplate> receiver =
3769                                                Handle<FunctionTemplate>(),
3770                                            int argc = 0,
3771                                            Handle<FunctionTemplate> argv[] =
3772                                                0));
3773
3774 private:
3775  Signature();
3776};
3777
3778
3779/**
3780 * An AccessorSignature specifies which receivers are valid parameters
3781 * to an accessor callback.
3782 */
3783class V8_EXPORT AccessorSignature : public Data {
3784 public:
3785  static Local<AccessorSignature> New(Isolate* isolate,
3786                                      Handle<FunctionTemplate> receiver =
3787                                          Handle<FunctionTemplate>());
3788  V8_DEPRECATED("Will be removed", static Local<AccessorSignature> New(
3789                                       Handle<FunctionTemplate> receiver =
3790                                           Handle<FunctionTemplate>()));
3791
3792 private:
3793  AccessorSignature();
3794};
3795
3796
3797class V8_EXPORT DeclaredAccessorDescriptor : public Data {
3798 private:
3799  DeclaredAccessorDescriptor();
3800};
3801
3802
3803class V8_EXPORT ObjectOperationDescriptor : public Data {
3804 public:
3805  // This function is not yet stable and should not be used at this time.
3806  static Local<RawOperationDescriptor> NewInternalFieldDereference(
3807      Isolate* isolate,
3808      int internal_field);
3809 private:
3810  ObjectOperationDescriptor();
3811};
3812
3813
3814enum DeclaredAccessorDescriptorDataType {
3815    kDescriptorBoolType,
3816    kDescriptorInt8Type, kDescriptorUint8Type,
3817    kDescriptorInt16Type, kDescriptorUint16Type,
3818    kDescriptorInt32Type, kDescriptorUint32Type,
3819    kDescriptorFloatType, kDescriptorDoubleType
3820};
3821
3822
3823class V8_EXPORT RawOperationDescriptor : public Data {
3824 public:
3825  Local<DeclaredAccessorDescriptor> NewHandleDereference(Isolate* isolate);
3826  Local<RawOperationDescriptor> NewRawDereference(Isolate* isolate);
3827  Local<RawOperationDescriptor> NewRawShift(Isolate* isolate,
3828                                            int16_t byte_offset);
3829  Local<DeclaredAccessorDescriptor> NewPointerCompare(Isolate* isolate,
3830                                                      void* compare_value);
3831  Local<DeclaredAccessorDescriptor> NewPrimitiveValue(
3832      Isolate* isolate,
3833      DeclaredAccessorDescriptorDataType data_type,
3834      uint8_t bool_offset = 0);
3835  Local<DeclaredAccessorDescriptor> NewBitmaskCompare8(Isolate* isolate,
3836                                                       uint8_t bitmask,
3837                                                       uint8_t compare_value);
3838  Local<DeclaredAccessorDescriptor> NewBitmaskCompare16(
3839      Isolate* isolate,
3840      uint16_t bitmask,
3841      uint16_t compare_value);
3842  Local<DeclaredAccessorDescriptor> NewBitmaskCompare32(
3843      Isolate* isolate,
3844      uint32_t bitmask,
3845      uint32_t compare_value);
3846
3847 private:
3848  RawOperationDescriptor();
3849};
3850
3851
3852/**
3853 * A utility for determining the type of objects based on the template
3854 * they were constructed from.
3855 */
3856class V8_EXPORT TypeSwitch : public Data {
3857 public:
3858  static Local<TypeSwitch> New(Handle<FunctionTemplate> type);
3859  static Local<TypeSwitch> New(int argc, Handle<FunctionTemplate> types[]);
3860  int match(Handle<Value> value);
3861 private:
3862  TypeSwitch();
3863};
3864
3865
3866// --- Extensions ---
3867
3868class V8_EXPORT ExternalAsciiStringResourceImpl
3869    : public String::ExternalAsciiStringResource {
3870 public:
3871  ExternalAsciiStringResourceImpl() : data_(0), length_(0) {}
3872  ExternalAsciiStringResourceImpl(const char* data, size_t length)
3873      : data_(data), length_(length) {}
3874  const char* data() const { return data_; }
3875  size_t length() const { return length_; }
3876
3877 private:
3878  const char* data_;
3879  size_t length_;
3880};
3881
3882/**
3883 * Ignore
3884 */
3885class V8_EXPORT Extension {  // NOLINT
3886 public:
3887  // Note that the strings passed into this constructor must live as long
3888  // as the Extension itself.
3889  Extension(const char* name,
3890            const char* source = 0,
3891            int dep_count = 0,
3892            const char** deps = 0,
3893            int source_length = -1);
3894  virtual ~Extension() { }
3895  virtual v8::Handle<v8::FunctionTemplate> GetNativeFunctionTemplate(
3896      v8::Isolate* isolate, v8::Handle<v8::String> name) {
3897#if defined(V8_DEPRECATION_WARNINGS)
3898    return v8::Handle<v8::FunctionTemplate>();
3899#else
3900    return GetNativeFunction(name);
3901#endif
3902  }
3903
3904  V8_DEPRECATED("Will be removed",
3905                virtual v8::Handle<v8::FunctionTemplate> GetNativeFunction(
3906                    v8::Handle<v8::String> name)) {
3907    return v8::Handle<v8::FunctionTemplate>();
3908  }
3909
3910  const char* name() const { return name_; }
3911  size_t source_length() const { return source_length_; }
3912  const String::ExternalAsciiStringResource* source() const {
3913    return &source_; }
3914  int dependency_count() { return dep_count_; }
3915  const char** dependencies() { return deps_; }
3916  void set_auto_enable(bool value) { auto_enable_ = value; }
3917  bool auto_enable() { return auto_enable_; }
3918
3919 private:
3920  const char* name_;
3921  size_t source_length_;  // expected to initialize before source_
3922  ExternalAsciiStringResourceImpl source_;
3923  int dep_count_;
3924  const char** deps_;
3925  bool auto_enable_;
3926
3927  // Disallow copying and assigning.
3928  Extension(const Extension&);
3929  void operator=(const Extension&);
3930};
3931
3932
3933void V8_EXPORT RegisterExtension(Extension* extension);
3934
3935
3936/**
3937 * Ignore
3938 */
3939class V8_EXPORT DeclareExtension {
3940 public:
3941  V8_INLINE DeclareExtension(Extension* extension) {
3942    RegisterExtension(extension);
3943  }
3944};
3945
3946
3947// --- Statics ---
3948
3949V8_INLINE Handle<Primitive> Undefined(Isolate* isolate);
3950V8_INLINE Handle<Primitive> Null(Isolate* isolate);
3951V8_INLINE Handle<Boolean> True(Isolate* isolate);
3952V8_INLINE Handle<Boolean> False(Isolate* isolate);
3953
3954V8_DEPRECATED("Will be removed", Handle<Primitive> V8_EXPORT Undefined());
3955V8_DEPRECATED("Will be removed", Handle<Primitive> V8_EXPORT Null());
3956V8_DEPRECATED("Will be removed", Handle<Boolean> V8_EXPORT True());
3957V8_DEPRECATED("Will be removed", Handle<Boolean> V8_EXPORT False());
3958
3959
3960/**
3961 * A set of constraints that specifies the limits of the runtime's memory use.
3962 * You must set the heap size before initializing the VM - the size cannot be
3963 * adjusted after the VM is initialized.
3964 *
3965 * If you are using threads then you should hold the V8::Locker lock while
3966 * setting the stack limit and you must set a non-default stack limit separately
3967 * for each thread.
3968 */
3969class V8_EXPORT ResourceConstraints {
3970 public:
3971  ResourceConstraints();
3972
3973  /**
3974   * Configures the constraints with reasonable default values based on the
3975   * capabilities of the current device the VM is running on.
3976   *
3977   * \param physical_memory The total amount of physical memory on the current
3978   *   device, in bytes.
3979   * \param number_of_processors The number of CPUs available on the current
3980   *   device.
3981   */
3982  void ConfigureDefaults(uint64_t physical_memory,
3983                         uint32_t number_of_processors);
3984  V8_DEPRECATED("Will be removed",
3985                void ConfigureDefaults(uint64_t physical_memory));
3986
3987  int max_young_space_size() const { return max_young_space_size_; }
3988  void set_max_young_space_size(int value) { max_young_space_size_ = value; }
3989  int max_old_space_size() const { return max_old_space_size_; }
3990  void set_max_old_space_size(int value) { max_old_space_size_ = value; }
3991  int max_executable_size() const { return max_executable_size_; }
3992  void set_max_executable_size(int value) { max_executable_size_ = value; }
3993  uint32_t* stack_limit() const { return stack_limit_; }
3994  // Sets an address beyond which the VM's stack may not grow.
3995  void set_stack_limit(uint32_t* value) { stack_limit_ = value; }
3996  int max_available_threads() const { return max_available_threads_; }
3997  // Set the number of threads available to V8, assuming at least 1.
3998  void set_max_available_threads(int value) {
3999    max_available_threads_ = value;
4000  }
4001
4002 private:
4003  int max_young_space_size_;
4004  int max_old_space_size_;
4005  int max_executable_size_;
4006  uint32_t* stack_limit_;
4007  int max_available_threads_;
4008};
4009
4010
4011/**
4012 * Sets the given ResourceConstraints on the given Isolate.
4013 */
4014bool V8_EXPORT SetResourceConstraints(Isolate* isolate,
4015                                      ResourceConstraints* constraints);
4016
4017
4018// --- Exceptions ---
4019
4020
4021typedef void (*FatalErrorCallback)(const char* location, const char* message);
4022
4023
4024typedef void (*MessageCallback)(Handle<Message> message, Handle<Value> error);
4025
4026
4027V8_DEPRECATED(
4028    "Use Isolate::ThrowException instead",
4029    Handle<Value> V8_EXPORT ThrowException(Handle<Value> exception));
4030
4031/**
4032 * Create new error objects by calling the corresponding error object
4033 * constructor with the message.
4034 */
4035class V8_EXPORT Exception {
4036 public:
4037  static Local<Value> RangeError(Handle<String> message);
4038  static Local<Value> ReferenceError(Handle<String> message);
4039  static Local<Value> SyntaxError(Handle<String> message);
4040  static Local<Value> TypeError(Handle<String> message);
4041  static Local<Value> Error(Handle<String> message);
4042};
4043
4044
4045// --- Counters Callbacks ---
4046
4047typedef int* (*CounterLookupCallback)(const char* name);
4048
4049typedef void* (*CreateHistogramCallback)(const char* name,
4050                                         int min,
4051                                         int max,
4052                                         size_t buckets);
4053
4054typedef void (*AddHistogramSampleCallback)(void* histogram, int sample);
4055
4056// --- Memory Allocation Callback ---
4057  enum ObjectSpace {
4058    kObjectSpaceNewSpace = 1 << 0,
4059    kObjectSpaceOldPointerSpace = 1 << 1,
4060    kObjectSpaceOldDataSpace = 1 << 2,
4061    kObjectSpaceCodeSpace = 1 << 3,
4062    kObjectSpaceMapSpace = 1 << 4,
4063    kObjectSpaceLoSpace = 1 << 5,
4064
4065    kObjectSpaceAll = kObjectSpaceNewSpace | kObjectSpaceOldPointerSpace |
4066      kObjectSpaceOldDataSpace | kObjectSpaceCodeSpace | kObjectSpaceMapSpace |
4067      kObjectSpaceLoSpace
4068  };
4069
4070  enum AllocationAction {
4071    kAllocationActionAllocate = 1 << 0,
4072    kAllocationActionFree = 1 << 1,
4073    kAllocationActionAll = kAllocationActionAllocate | kAllocationActionFree
4074  };
4075
4076typedef void (*MemoryAllocationCallback)(ObjectSpace space,
4077                                         AllocationAction action,
4078                                         int size);
4079
4080// --- Leave Script Callback ---
4081typedef void (*CallCompletedCallback)();
4082
4083// --- Failed Access Check Callback ---
4084typedef void (*FailedAccessCheckCallback)(Local<Object> target,
4085                                          AccessType type,
4086                                          Local<Value> data);
4087
4088// --- AllowCodeGenerationFromStrings callbacks ---
4089
4090/**
4091 * Callback to check if code generation from strings is allowed. See
4092 * Context::AllowCodeGenerationFromStrings.
4093 */
4094typedef bool (*AllowCodeGenerationFromStringsCallback)(Local<Context> context);
4095
4096// --- Garbage Collection Callbacks ---
4097
4098/**
4099 * Applications can register callback functions which will be called
4100 * before and after a garbage collection.  Allocations are not
4101 * allowed in the callback functions, you therefore cannot manipulate
4102 * objects (set or delete properties for example) since it is possible
4103 * such operations will result in the allocation of objects.
4104 */
4105enum GCType {
4106  kGCTypeScavenge = 1 << 0,
4107  kGCTypeMarkSweepCompact = 1 << 1,
4108  kGCTypeAll = kGCTypeScavenge | kGCTypeMarkSweepCompact
4109};
4110
4111enum GCCallbackFlags {
4112  kNoGCCallbackFlags = 0,
4113  kGCCallbackFlagCompacted = 1 << 0,
4114  kGCCallbackFlagConstructRetainedObjectInfos = 1 << 1
4115};
4116
4117typedef void (*GCPrologueCallback)(GCType type, GCCallbackFlags flags);
4118typedef void (*GCEpilogueCallback)(GCType type, GCCallbackFlags flags);
4119
4120
4121/**
4122 * Collection of V8 heap information.
4123 *
4124 * Instances of this class can be passed to v8::V8::HeapStatistics to
4125 * get heap statistics from V8.
4126 */
4127class V8_EXPORT HeapStatistics {
4128 public:
4129  HeapStatistics();
4130  size_t total_heap_size() { return total_heap_size_; }
4131  size_t total_heap_size_executable() { return total_heap_size_executable_; }
4132  size_t total_physical_size() { return total_physical_size_; }
4133  size_t used_heap_size() { return used_heap_size_; }
4134  size_t heap_size_limit() { return heap_size_limit_; }
4135
4136 private:
4137  size_t total_heap_size_;
4138  size_t total_heap_size_executable_;
4139  size_t total_physical_size_;
4140  size_t used_heap_size_;
4141  size_t heap_size_limit_;
4142
4143  friend class V8;
4144  friend class Isolate;
4145};
4146
4147
4148class RetainedObjectInfo;
4149
4150/**
4151 * Isolate represents an isolated instance of the V8 engine.  V8
4152 * isolates have completely separate states.  Objects from one isolate
4153 * must not be used in other isolates.  When V8 is initialized a
4154 * default isolate is implicitly created and entered.  The embedder
4155 * can create additional isolates and use them in parallel in multiple
4156 * threads.  An isolate can be entered by at most one thread at any
4157 * given time.  The Locker/Unlocker API must be used to synchronize.
4158 */
4159class V8_EXPORT Isolate {
4160 public:
4161  /**
4162   * Stack-allocated class which sets the isolate for all operations
4163   * executed within a local scope.
4164   */
4165  class V8_EXPORT Scope {
4166   public:
4167    explicit Scope(Isolate* isolate) : isolate_(isolate) {
4168      isolate->Enter();
4169    }
4170
4171    ~Scope() { isolate_->Exit(); }
4172
4173   private:
4174    Isolate* const isolate_;
4175
4176    // Prevent copying of Scope objects.
4177    Scope(const Scope&);
4178    Scope& operator=(const Scope&);
4179  };
4180
4181  /**
4182   * Creates a new isolate.  Does not change the currently entered
4183   * isolate.
4184   *
4185   * When an isolate is no longer used its resources should be freed
4186   * by calling Dispose().  Using the delete operator is not allowed.
4187   */
4188  static Isolate* New();
4189
4190  /**
4191   * Returns the entered isolate for the current thread or NULL in
4192   * case there is no current isolate.
4193   */
4194  static Isolate* GetCurrent();
4195
4196  /**
4197   * Methods below this point require holding a lock (using Locker) in
4198   * a multi-threaded environment.
4199   */
4200
4201  /**
4202   * Sets this isolate as the entered one for the current thread.
4203   * Saves the previously entered one (if any), so that it can be
4204   * restored when exiting.  Re-entering an isolate is allowed.
4205   */
4206  void Enter();
4207
4208  /**
4209   * Exits this isolate by restoring the previously entered one in the
4210   * current thread.  The isolate may still stay the same, if it was
4211   * entered more than once.
4212   *
4213   * Requires: this == Isolate::GetCurrent().
4214   */
4215  void Exit();
4216
4217  /**
4218   * Disposes the isolate.  The isolate must not be entered by any
4219   * thread to be disposable.
4220   */
4221  void Dispose();
4222
4223  V8_DEPRECATED("Use SetData(0, data) instead.",
4224                V8_INLINE void SetData(void* data));
4225  V8_DEPRECATED("Use GetData(0) instead.", V8_INLINE void* GetData());
4226
4227  /**
4228   * Associate embedder-specific data with the isolate. |slot| has to be
4229   * between 0 and GetNumberOfDataSlots() - 1.
4230   */
4231  V8_INLINE void SetData(uint32_t slot, void* data);
4232
4233  /**
4234   * Retrieve embedder-specific data from the isolate.
4235   * Returns NULL if SetData has never been called for the given |slot|.
4236   */
4237  V8_INLINE void* GetData(uint32_t slot);
4238
4239  /**
4240   * Returns the maximum number of available embedder data slots. Valid slots
4241   * are in the range of 0 - GetNumberOfDataSlots() - 1.
4242   */
4243  V8_INLINE static uint32_t GetNumberOfDataSlots();
4244
4245  /**
4246   * Get statistics about the heap memory usage.
4247   */
4248  void GetHeapStatistics(HeapStatistics* heap_statistics);
4249
4250  /**
4251   * Adjusts the amount of registered external memory. Used to give V8 an
4252   * indication of the amount of externally allocated memory that is kept alive
4253   * by JavaScript objects. V8 uses this to decide when to perform global
4254   * garbage collections. Registering externally allocated memory will trigger
4255   * global garbage collections more often than it would otherwise in an attempt
4256   * to garbage collect the JavaScript objects that keep the externally
4257   * allocated memory alive.
4258   *
4259   * \param change_in_bytes the change in externally allocated memory that is
4260   *   kept alive by JavaScript objects.
4261   * \returns the adjusted value.
4262   */
4263  int64_t AdjustAmountOfExternalAllocatedMemory(int64_t change_in_bytes);
4264
4265  /**
4266   * Returns heap profiler for this isolate. Will return NULL until the isolate
4267   * is initialized.
4268   */
4269  HeapProfiler* GetHeapProfiler();
4270
4271  /**
4272   * Returns CPU profiler for this isolate. Will return NULL unless the isolate
4273   * is initialized. It is the embedder's responsibility to stop all CPU
4274   * profiling activities if it has started any.
4275   */
4276  CpuProfiler* GetCpuProfiler();
4277
4278  /** Returns true if this isolate has a current context. */
4279  bool InContext();
4280
4281  /** Returns the context that is on the top of the stack. */
4282  Local<Context> GetCurrentContext();
4283
4284  /**
4285   * Returns the context of the calling JavaScript code.  That is the
4286   * context of the top-most JavaScript frame.  If there are no
4287   * JavaScript frames an empty handle is returned.
4288   */
4289  Local<Context> GetCallingContext();
4290
4291  /** Returns the last entered context. */
4292  Local<Context> GetEnteredContext();
4293
4294  /**
4295   * Schedules an exception to be thrown when returning to JavaScript.  When an
4296   * exception has been scheduled it is illegal to invoke any JavaScript
4297   * operation; the caller must return immediately and only after the exception
4298   * has been handled does it become legal to invoke JavaScript operations.
4299   */
4300  Local<Value> ThrowException(Local<Value> exception);
4301
4302  /**
4303   * Allows the host application to group objects together. If one
4304   * object in the group is alive, all objects in the group are alive.
4305   * After each garbage collection, object groups are removed. It is
4306   * intended to be used in the before-garbage-collection callback
4307   * function, for instance to simulate DOM tree connections among JS
4308   * wrapper objects. Object groups for all dependent handles need to
4309   * be provided for kGCTypeMarkSweepCompact collections, for all other
4310   * garbage collection types it is sufficient to provide object groups
4311   * for partially dependent handles only.
4312   */
4313  template<typename T> void SetObjectGroupId(const Persistent<T>& object,
4314                                             UniqueId id);
4315
4316  /**
4317   * Allows the host application to declare implicit references from an object
4318   * group to an object. If the objects of the object group are alive, the child
4319   * object is alive too. After each garbage collection, all implicit references
4320   * are removed. It is intended to be used in the before-garbage-collection
4321   * callback function.
4322   */
4323  template<typename T> void SetReferenceFromGroup(UniqueId id,
4324                                                  const Persistent<T>& child);
4325
4326  /**
4327   * Allows the host application to declare implicit references from an object
4328   * to another object. If the parent object is alive, the child object is alive
4329   * too. After each garbage collection, all implicit references are removed. It
4330   * is intended to be used in the before-garbage-collection callback function.
4331   */
4332  template<typename T, typename S>
4333  void SetReference(const Persistent<T>& parent, const Persistent<S>& child);
4334
4335  typedef void (*GCPrologueCallback)(Isolate* isolate,
4336                                     GCType type,
4337                                     GCCallbackFlags flags);
4338  typedef void (*GCEpilogueCallback)(Isolate* isolate,
4339                                     GCType type,
4340                                     GCCallbackFlags flags);
4341
4342  /**
4343   * Enables the host application to receive a notification before a
4344   * garbage collection.  Allocations are not allowed in the
4345   * callback function, you therefore cannot manipulate objects (set
4346   * or delete properties for example) since it is possible such
4347   * operations will result in the allocation of objects. It is possible
4348   * to specify the GCType filter for your callback. But it is not possible to
4349   * register the same callback function two times with different
4350   * GCType filters.
4351   */
4352  void AddGCPrologueCallback(
4353      GCPrologueCallback callback, GCType gc_type_filter = kGCTypeAll);
4354
4355  /**
4356   * This function removes callback which was installed by
4357   * AddGCPrologueCallback function.
4358   */
4359  void RemoveGCPrologueCallback(GCPrologueCallback callback);
4360
4361  /**
4362   * Enables the host application to receive a notification after a
4363   * garbage collection.  Allocations are not allowed in the
4364   * callback function, you therefore cannot manipulate objects (set
4365   * or delete properties for example) since it is possible such
4366   * operations will result in the allocation of objects. It is possible
4367   * to specify the GCType filter for your callback. But it is not possible to
4368   * register the same callback function two times with different
4369   * GCType filters.
4370   */
4371  void AddGCEpilogueCallback(
4372      GCEpilogueCallback callback, GCType gc_type_filter = kGCTypeAll);
4373
4374  /**
4375   * This function removes callback which was installed by
4376   * AddGCEpilogueCallback function.
4377   */
4378  void RemoveGCEpilogueCallback(GCEpilogueCallback callback);
4379
4380 private:
4381  Isolate();
4382  Isolate(const Isolate&);
4383  ~Isolate();
4384  Isolate& operator=(const Isolate&);
4385  void* operator new(size_t size);
4386  void operator delete(void*, size_t);
4387
4388  void SetObjectGroupId(internal::Object** object, UniqueId id);
4389  void SetReferenceFromGroup(UniqueId id, internal::Object** object);
4390  void SetReference(internal::Object** parent, internal::Object** child);
4391};
4392
4393class V8_EXPORT StartupData {
4394 public:
4395  enum CompressionAlgorithm {
4396    kUncompressed,
4397    kBZip2
4398  };
4399
4400  const char* data;
4401  int compressed_size;
4402  int raw_size;
4403};
4404
4405
4406/**
4407 * A helper class for driving V8 startup data decompression.  It is based on
4408 * "CompressedStartupData" API functions from the V8 class.  It isn't mandatory
4409 * for an embedder to use this class, instead, API functions can be used
4410 * directly.
4411 *
4412 * For an example of the class usage, see the "shell.cc" sample application.
4413 */
4414class V8_EXPORT StartupDataDecompressor {  // NOLINT
4415 public:
4416  StartupDataDecompressor();
4417  virtual ~StartupDataDecompressor();
4418  int Decompress();
4419
4420 protected:
4421  virtual int DecompressData(char* raw_data,
4422                             int* raw_data_size,
4423                             const char* compressed_data,
4424                             int compressed_data_size) = 0;
4425
4426 private:
4427  char** raw_data;
4428};
4429
4430
4431/**
4432 * EntropySource is used as a callback function when v8 needs a source
4433 * of entropy.
4434 */
4435typedef bool (*EntropySource)(unsigned char* buffer, size_t length);
4436
4437
4438/**
4439 * ReturnAddressLocationResolver is used as a callback function when v8 is
4440 * resolving the location of a return address on the stack. Profilers that
4441 * change the return address on the stack can use this to resolve the stack
4442 * location to whereever the profiler stashed the original return address.
4443 *
4444 * \param return_addr_location points to a location on stack where a machine
4445 *    return address resides.
4446 * \returns either return_addr_location, or else a pointer to the profiler's
4447 *    copy of the original return address.
4448 *
4449 * \note the resolver function must not cause garbage collection.
4450 */
4451typedef uintptr_t (*ReturnAddressLocationResolver)(
4452    uintptr_t return_addr_location);
4453
4454
4455/**
4456 * FunctionEntryHook is the type of the profile entry hook called at entry to
4457 * any generated function when function-level profiling is enabled.
4458 *
4459 * \param function the address of the function that's being entered.
4460 * \param return_addr_location points to a location on stack where the machine
4461 *    return address resides. This can be used to identify the caller of
4462 *    \p function, and/or modified to divert execution when \p function exits.
4463 *
4464 * \note the entry hook must not cause garbage collection.
4465 */
4466typedef void (*FunctionEntryHook)(uintptr_t function,
4467                                  uintptr_t return_addr_location);
4468
4469
4470/**
4471 * A JIT code event is issued each time code is added, moved or removed.
4472 *
4473 * \note removal events are not currently issued.
4474 */
4475struct JitCodeEvent {
4476  enum EventType {
4477    CODE_ADDED,
4478    CODE_MOVED,
4479    CODE_REMOVED,
4480    CODE_ADD_LINE_POS_INFO,
4481    CODE_START_LINE_INFO_RECORDING,
4482    CODE_END_LINE_INFO_RECORDING
4483  };
4484  // Definition of the code position type. The "POSITION" type means the place
4485  // in the source code which are of interest when making stack traces to
4486  // pin-point the source location of a stack frame as close as possible.
4487  // The "STATEMENT_POSITION" means the place at the beginning of each
4488  // statement, and is used to indicate possible break locations.
4489  enum PositionType {
4490    POSITION,
4491    STATEMENT_POSITION
4492  };
4493
4494  // Type of event.
4495  EventType type;
4496  // Start of the instructions.
4497  void* code_start;
4498  // Size of the instructions.
4499  size_t code_len;
4500  // Script info for CODE_ADDED event.
4501  Handle<Script> script;
4502  // User-defined data for *_LINE_INFO_* event. It's used to hold the source
4503  // code line information which is returned from the
4504  // CODE_START_LINE_INFO_RECORDING event. And it's passed to subsequent
4505  // CODE_ADD_LINE_POS_INFO and CODE_END_LINE_INFO_RECORDING events.
4506  void* user_data;
4507
4508  struct name_t {
4509    // Name of the object associated with the code, note that the string is not
4510    // zero-terminated.
4511    const char* str;
4512    // Number of chars in str.
4513    size_t len;
4514  };
4515
4516  struct line_info_t {
4517    // PC offset
4518    size_t offset;
4519    // Code postion
4520    size_t pos;
4521    // The position type.
4522    PositionType position_type;
4523  };
4524
4525  union {
4526    // Only valid for CODE_ADDED.
4527    struct name_t name;
4528
4529    // Only valid for CODE_ADD_LINE_POS_INFO
4530    struct line_info_t line_info;
4531
4532    // New location of instructions. Only valid for CODE_MOVED.
4533    void* new_code_start;
4534  };
4535};
4536
4537/**
4538 * Option flags passed to the SetJitCodeEventHandler function.
4539 */
4540enum JitCodeEventOptions {
4541  kJitCodeEventDefault = 0,
4542  // Generate callbacks for already existent code.
4543  kJitCodeEventEnumExisting = 1
4544};
4545
4546
4547/**
4548 * Callback function passed to SetJitCodeEventHandler.
4549 *
4550 * \param event code add, move or removal event.
4551 */
4552typedef void (*JitCodeEventHandler)(const JitCodeEvent* event);
4553
4554
4555/**
4556 * Interface for iterating through all external resources in the heap.
4557 */
4558class V8_EXPORT ExternalResourceVisitor {  // NOLINT
4559 public:
4560  virtual ~ExternalResourceVisitor() {}
4561  virtual void VisitExternalString(Handle<String> string) {}
4562};
4563
4564
4565/**
4566 * Interface for iterating through all the persistent handles in the heap.
4567 */
4568class V8_EXPORT PersistentHandleVisitor {  // NOLINT
4569 public:
4570  virtual ~PersistentHandleVisitor() {}
4571  virtual void VisitPersistentHandle(Persistent<Value>* value,
4572                                     uint16_t class_id) {}
4573};
4574
4575
4576/**
4577 * Asserts that no action is performed that could cause a handle's value
4578 * to be modified. Useful when otherwise unsafe handle operations need to
4579 * be performed.
4580 */
4581class V8_EXPORT AssertNoGCScope {
4582#ifndef DEBUG
4583  // TODO(yangguo): remove isolate argument.
4584  V8_INLINE AssertNoGCScope(Isolate* isolate) {}
4585#else
4586  AssertNoGCScope(Isolate* isolate);
4587  ~AssertNoGCScope();
4588 private:
4589  void* disallow_heap_allocation_;
4590#endif
4591};
4592
4593
4594/**
4595 * Container class for static utility functions.
4596 */
4597class V8_EXPORT V8 {
4598 public:
4599  /** Set the callback to invoke in case of fatal errors. */
4600  static void SetFatalErrorHandler(FatalErrorCallback that);
4601
4602  /**
4603   * Set the callback to invoke to check if code generation from
4604   * strings should be allowed.
4605   */
4606  static void SetAllowCodeGenerationFromStringsCallback(
4607      AllowCodeGenerationFromStringsCallback that);
4608
4609  /**
4610   * Set allocator to use for ArrayBuffer memory.
4611   * The allocator should be set only once. The allocator should be set
4612   * before any code tha uses ArrayBuffers is executed.
4613   * This allocator is used in all isolates.
4614   */
4615  static void SetArrayBufferAllocator(ArrayBuffer::Allocator* allocator);
4616
4617  /**
4618   * Ignore out-of-memory exceptions.
4619   *
4620   * V8 running out of memory is treated as a fatal error by default.
4621   * This means that the fatal error handler is called and that V8 is
4622   * terminated.
4623   *
4624   * IgnoreOutOfMemoryException can be used to not treat an
4625   * out-of-memory situation as a fatal error.  This way, the contexts
4626   * that did not cause the out of memory problem might be able to
4627   * continue execution.
4628   */
4629  static void IgnoreOutOfMemoryException();
4630
4631  /**
4632   * Check if V8 is dead and therefore unusable.  This is the case after
4633   * fatal errors such as out-of-memory situations.
4634   */
4635  static bool IsDead();
4636
4637  /**
4638   * The following 4 functions are to be used when V8 is built with
4639   * the 'compress_startup_data' flag enabled. In this case, the
4640   * embedder must decompress startup data prior to initializing V8.
4641   *
4642   * This is how interaction with V8 should look like:
4643   *   int compressed_data_count = v8::V8::GetCompressedStartupDataCount();
4644   *   v8::StartupData* compressed_data =
4645   *     new v8::StartupData[compressed_data_count];
4646   *   v8::V8::GetCompressedStartupData(compressed_data);
4647   *   ... decompress data (compressed_data can be updated in-place) ...
4648   *   v8::V8::SetDecompressedStartupData(compressed_data);
4649   *   ... now V8 can be initialized
4650   *   ... make sure the decompressed data stays valid until V8 shutdown
4651   *
4652   * A helper class StartupDataDecompressor is provided. It implements
4653   * the protocol of the interaction described above, and can be used in
4654   * most cases instead of calling these API functions directly.
4655   */
4656  static StartupData::CompressionAlgorithm GetCompressedStartupDataAlgorithm();
4657  static int GetCompressedStartupDataCount();
4658  static void GetCompressedStartupData(StartupData* compressed_data);
4659  static void SetDecompressedStartupData(StartupData* decompressed_data);
4660
4661  /**
4662   * Adds a message listener.
4663   *
4664   * The same message listener can be added more than once and in that
4665   * case it will be called more than once for each message.
4666   *
4667   * If data is specified, it will be passed to the callback when it is called.
4668   * Otherwise, the exception object will be passed to the callback instead.
4669   */
4670  static bool AddMessageListener(MessageCallback that,
4671                                 Handle<Value> data = Handle<Value>());
4672
4673  /**
4674   * Remove all message listeners from the specified callback function.
4675   */
4676  static void RemoveMessageListeners(MessageCallback that);
4677
4678  /**
4679   * Tells V8 to capture current stack trace when uncaught exception occurs
4680   * and report it to the message listeners. The option is off by default.
4681   */
4682  static void SetCaptureStackTraceForUncaughtExceptions(
4683      bool capture,
4684      int frame_limit = 10,
4685      StackTrace::StackTraceOptions options = StackTrace::kOverview);
4686
4687  /**
4688   * Sets V8 flags from a string.
4689   */
4690  static void SetFlagsFromString(const char* str, int length);
4691
4692  /**
4693   * Sets V8 flags from the command line.
4694   */
4695  static void SetFlagsFromCommandLine(int* argc,
4696                                      char** argv,
4697                                      bool remove_flags);
4698
4699  /** Get the version string. */
4700  static const char* GetVersion();
4701
4702  /**
4703   * Enables the host application to provide a mechanism for recording
4704   * statistics counters.
4705   */
4706  static void SetCounterFunction(CounterLookupCallback);
4707
4708  /**
4709   * Enables the host application to provide a mechanism for recording
4710   * histograms. The CreateHistogram function returns a
4711   * histogram which will later be passed to the AddHistogramSample
4712   * function.
4713   */
4714  static void SetCreateHistogramFunction(CreateHistogramCallback);
4715  static void SetAddHistogramSampleFunction(AddHistogramSampleCallback);
4716
4717  /** Callback function for reporting failed access checks.*/
4718  static void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback);
4719
4720  /**
4721   * Enables the host application to receive a notification before a
4722   * garbage collection.  Allocations are not allowed in the
4723   * callback function, you therefore cannot manipulate objects (set
4724   * or delete properties for example) since it is possible such
4725   * operations will result in the allocation of objects. It is possible
4726   * to specify the GCType filter for your callback. But it is not possible to
4727   * register the same callback function two times with different
4728   * GCType filters.
4729   */
4730  static void AddGCPrologueCallback(
4731      GCPrologueCallback callback, GCType gc_type_filter = kGCTypeAll);
4732
4733  /**
4734   * This function removes callback which was installed by
4735   * AddGCPrologueCallback function.
4736   */
4737  static void RemoveGCPrologueCallback(GCPrologueCallback callback);
4738
4739  /**
4740   * Enables the host application to receive a notification after a
4741   * garbage collection.  Allocations are not allowed in the
4742   * callback function, you therefore cannot manipulate objects (set
4743   * or delete properties for example) since it is possible such
4744   * operations will result in the allocation of objects. It is possible
4745   * to specify the GCType filter for your callback. But it is not possible to
4746   * register the same callback function two times with different
4747   * GCType filters.
4748   */
4749  static void AddGCEpilogueCallback(
4750      GCEpilogueCallback callback, GCType gc_type_filter = kGCTypeAll);
4751
4752  /**
4753   * This function removes callback which was installed by
4754   * AddGCEpilogueCallback function.
4755   */
4756  static void RemoveGCEpilogueCallback(GCEpilogueCallback callback);
4757
4758  /**
4759   * Enables the host application to provide a mechanism to be notified
4760   * and perform custom logging when V8 Allocates Executable Memory.
4761   */
4762  static void AddMemoryAllocationCallback(MemoryAllocationCallback callback,
4763                                          ObjectSpace space,
4764                                          AllocationAction action);
4765
4766  /**
4767   * Removes callback that was installed by AddMemoryAllocationCallback.
4768   */
4769  static void RemoveMemoryAllocationCallback(MemoryAllocationCallback callback);
4770
4771  /**
4772   * Adds a callback to notify the host application when a script finished
4773   * running.  If a script re-enters the runtime during executing, the
4774   * CallCompletedCallback is only invoked when the outer-most script
4775   * execution ends.  Executing scripts inside the callback do not trigger
4776   * further callbacks.
4777   */
4778  static void AddCallCompletedCallback(CallCompletedCallback callback);
4779
4780  /**
4781   * Removes callback that was installed by AddCallCompletedCallback.
4782   */
4783  static void RemoveCallCompletedCallback(CallCompletedCallback callback);
4784
4785  /**
4786   * Initializes from snapshot if possible. Otherwise, attempts to
4787   * initialize from scratch.  This function is called implicitly if
4788   * you use the API without calling it first.
4789   */
4790  static bool Initialize();
4791
4792  /**
4793   * Allows the host application to provide a callback which can be used
4794   * as a source of entropy for random number generators.
4795   */
4796  static void SetEntropySource(EntropySource source);
4797
4798  /**
4799   * Allows the host application to provide a callback that allows v8 to
4800   * cooperate with a profiler that rewrites return addresses on stack.
4801   */
4802  static void SetReturnAddressLocationResolver(
4803      ReturnAddressLocationResolver return_address_resolver);
4804
4805  /**
4806   * Allows the host application to provide the address of a function that's
4807   * invoked on entry to every V8-generated function.
4808   * Note that \p entry_hook is invoked at the very start of each
4809   * generated function.
4810   *
4811   * \param isolate the isolate to operate on.
4812   * \param entry_hook a function that will be invoked on entry to every
4813   *   V8-generated function.
4814   * \returns true on success on supported platforms, false on failure.
4815   * \note Setting an entry hook can only be done very early in an isolates
4816   *   lifetime, and once set, the entry hook cannot be revoked.
4817   */
4818  static bool SetFunctionEntryHook(Isolate* isolate,
4819                                   FunctionEntryHook entry_hook);
4820
4821  /**
4822   * Allows the host application to provide the address of a function that is
4823   * notified each time code is added, moved or removed.
4824   *
4825   * \param options options for the JIT code event handler.
4826   * \param event_handler the JIT code event handler, which will be invoked
4827   *     each time code is added, moved or removed.
4828   * \note \p event_handler won't get notified of existent code.
4829   * \note since code removal notifications are not currently issued, the
4830   *     \p event_handler may get notifications of code that overlaps earlier
4831   *     code notifications. This happens when code areas are reused, and the
4832   *     earlier overlapping code areas should therefore be discarded.
4833   * \note the events passed to \p event_handler and the strings they point to
4834   *     are not guaranteed to live past each call. The \p event_handler must
4835   *     copy strings and other parameters it needs to keep around.
4836   * \note the set of events declared in JitCodeEvent::EventType is expected to
4837   *     grow over time, and the JitCodeEvent structure is expected to accrue
4838   *     new members. The \p event_handler function must ignore event codes
4839   *     it does not recognize to maintain future compatibility.
4840   */
4841  static void SetJitCodeEventHandler(JitCodeEventOptions options,
4842                                     JitCodeEventHandler event_handler);
4843
4844  V8_DEPRECATED(
4845      "Use Isolate::AdjustAmountOfExternalAllocatedMemory instead",
4846      static int64_t AdjustAmountOfExternalAllocatedMemory(
4847          int64_t change_in_bytes));
4848
4849  /**
4850   * Forcefully terminate the current thread of JavaScript execution
4851   * in the given isolate. If no isolate is provided, the default
4852   * isolate is used.
4853   *
4854   * This method can be used by any thread even if that thread has not
4855   * acquired the V8 lock with a Locker object.
4856   *
4857   * \param isolate The isolate in which to terminate the current JS execution.
4858   */
4859  static void TerminateExecution(Isolate* isolate = NULL);
4860
4861  /**
4862   * Is V8 terminating JavaScript execution.
4863   *
4864   * Returns true if JavaScript execution is currently terminating
4865   * because of a call to TerminateExecution.  In that case there are
4866   * still JavaScript frames on the stack and the termination
4867   * exception is still active.
4868   *
4869   * \param isolate The isolate in which to check.
4870   */
4871  static bool IsExecutionTerminating(Isolate* isolate = NULL);
4872
4873  /**
4874   * Resume execution capability in the given isolate, whose execution
4875   * was previously forcefully terminated using TerminateExecution().
4876   *
4877   * When execution is forcefully terminated using TerminateExecution(),
4878   * the isolate can not resume execution until all JavaScript frames
4879   * have propagated the uncatchable exception which is generated.  This
4880   * method allows the program embedding the engine to handle the
4881   * termination event and resume execution capability, even if
4882   * JavaScript frames remain on the stack.
4883   *
4884   * This method can be used by any thread even if that thread has not
4885   * acquired the V8 lock with a Locker object.
4886   *
4887   * \param isolate The isolate in which to resume execution capability.
4888   */
4889  static void CancelTerminateExecution(Isolate* isolate);
4890
4891  /**
4892   * Releases any resources used by v8 and stops any utility threads
4893   * that may be running.  Note that disposing v8 is permanent, it
4894   * cannot be reinitialized.
4895   *
4896   * It should generally not be necessary to dispose v8 before exiting
4897   * a process, this should happen automatically.  It is only necessary
4898   * to use if the process needs the resources taken up by v8.
4899   */
4900  static bool Dispose();
4901
4902  /**
4903   * Iterates through all external resources referenced from current isolate
4904   * heap.  GC is not invoked prior to iterating, therefore there is no
4905   * guarantee that visited objects are still alive.
4906   */
4907  static void VisitExternalResources(ExternalResourceVisitor* visitor);
4908
4909  /**
4910   * Iterates through all the persistent handles in the current isolate's heap
4911   * that have class_ids.
4912   */
4913  static void VisitHandlesWithClassIds(PersistentHandleVisitor* visitor);
4914
4915  /**
4916   * Iterates through all the persistent handles in the current isolate's heap
4917   * that have class_ids and are candidates to be marked as partially dependent
4918   * handles. This will visit handles to young objects created since the last
4919   * garbage collection but is free to visit an arbitrary superset of these
4920   * objects.
4921   */
4922  static void VisitHandlesForPartialDependence(
4923      Isolate* isolate, PersistentHandleVisitor* visitor);
4924
4925  /**
4926   * Optional notification that the embedder is idle.
4927   * V8 uses the notification to reduce memory footprint.
4928   * This call can be used repeatedly if the embedder remains idle.
4929   * Returns true if the embedder should stop calling IdleNotification
4930   * until real work has been done.  This indicates that V8 has done
4931   * as much cleanup as it will be able to do.
4932   *
4933   * The hint argument specifies the amount of work to be done in the function
4934   * on scale from 1 to 1000. There is no guarantee that the actual work will
4935   * match the hint.
4936   */
4937  static bool IdleNotification(int hint = 1000);
4938
4939  /**
4940   * Optional notification that the system is running low on memory.
4941   * V8 uses these notifications to attempt to free memory.
4942   */
4943  static void LowMemoryNotification();
4944
4945  /**
4946   * Optional notification that a context has been disposed. V8 uses
4947   * these notifications to guide the GC heuristic. Returns the number
4948   * of context disposals - including this one - since the last time
4949   * V8 had a chance to clean up.
4950   */
4951  static int ContextDisposedNotification();
4952
4953  /**
4954   * Initialize the ICU library bundled with V8. The embedder should only
4955   * invoke this method when using the bundled ICU. Returns true on success.
4956   */
4957  static bool InitializeICU();
4958
4959  /**
4960   * Sets the v8::Platform to use. This should be invoked before V8 is
4961   * initialized.
4962   */
4963  static void InitializePlatform(Platform* platform);
4964
4965  /**
4966   * Clears all references to the v8::Platform. This should be invoked after
4967   * V8 was disposed.
4968   */
4969  static void ShutdownPlatform();
4970
4971 private:
4972  V8();
4973
4974  static internal::Object** GlobalizeReference(internal::Isolate* isolate,
4975                                               internal::Object** handle);
4976  static internal::Object** CopyPersistent(internal::Object** handle);
4977  static void DisposeGlobal(internal::Object** global_handle);
4978  typedef WeakReferenceCallbacks<Value, void>::Revivable RevivableCallback;
4979  typedef WeakCallbackData<Value, void>::Callback WeakCallback;
4980  static void MakeWeak(internal::Object** global_handle,
4981                       void* data,
4982                       WeakCallback weak_callback,
4983                       RevivableCallback weak_reference_callback);
4984  static void ClearWeak(internal::Object** global_handle);
4985  static void Eternalize(Isolate* isolate,
4986                         Value* handle,
4987                         int* index);
4988  static Local<Value> GetEternal(Isolate* isolate, int index);
4989
4990  template <class T> friend class Handle;
4991  template <class T> friend class Local;
4992  template <class T> friend class Eternal;
4993  template <class T> friend class PersistentBase;
4994  template <class T, class M> friend class Persistent;
4995  friend class Context;
4996};
4997
4998
4999/**
5000 * An external exception handler.
5001 */
5002class V8_EXPORT TryCatch {
5003 public:
5004  /**
5005   * Creates a new try/catch block and registers it with v8.  Note that
5006   * all TryCatch blocks should be stack allocated because the memory
5007   * location itself is compared against JavaScript try/catch blocks.
5008   */
5009  TryCatch();
5010
5011  /**
5012   * Unregisters and deletes this try/catch block.
5013   */
5014  ~TryCatch();
5015
5016  /**
5017   * Returns true if an exception has been caught by this try/catch block.
5018   */
5019  bool HasCaught() const;
5020
5021  /**
5022   * For certain types of exceptions, it makes no sense to continue execution.
5023   *
5024   * If CanContinue returns false, the correct action is to perform any C++
5025   * cleanup needed and then return.  If CanContinue returns false and
5026   * HasTerminated returns true, it is possible to call
5027   * CancelTerminateExecution in order to continue calling into the engine.
5028   */
5029  bool CanContinue() const;
5030
5031  /**
5032   * Returns true if an exception has been caught due to script execution
5033   * being terminated.
5034   *
5035   * There is no JavaScript representation of an execution termination
5036   * exception.  Such exceptions are thrown when the TerminateExecution
5037   * methods are called to terminate a long-running script.
5038   *
5039   * If such an exception has been thrown, HasTerminated will return true,
5040   * indicating that it is possible to call CancelTerminateExecution in order
5041   * to continue calling into the engine.
5042   */
5043  bool HasTerminated() const;
5044
5045  /**
5046   * Throws the exception caught by this TryCatch in a way that avoids
5047   * it being caught again by this same TryCatch.  As with ThrowException
5048   * it is illegal to execute any JavaScript operations after calling
5049   * ReThrow; the caller must return immediately to where the exception
5050   * is caught.
5051   */
5052  Handle<Value> ReThrow();
5053
5054  /**
5055   * Returns the exception caught by this try/catch block.  If no exception has
5056   * been caught an empty handle is returned.
5057   *
5058   * The returned handle is valid until this TryCatch block has been destroyed.
5059   */
5060  Local<Value> Exception() const;
5061
5062  /**
5063   * Returns the .stack property of the thrown object.  If no .stack
5064   * property is present an empty handle is returned.
5065   */
5066  Local<Value> StackTrace() const;
5067
5068  /**
5069   * Returns the message associated with this exception.  If there is
5070   * no message associated an empty handle is returned.
5071   *
5072   * The returned handle is valid until this TryCatch block has been
5073   * destroyed.
5074   */
5075  Local<v8::Message> Message() const;
5076
5077  /**
5078   * Clears any exceptions that may have been caught by this try/catch block.
5079   * After this method has been called, HasCaught() will return false.
5080   *
5081   * It is not necessary to clear a try/catch block before using it again; if
5082   * another exception is thrown the previously caught exception will just be
5083   * overwritten.  However, it is often a good idea since it makes it easier
5084   * to determine which operation threw a given exception.
5085   */
5086  void Reset();
5087
5088  /**
5089   * Set verbosity of the external exception handler.
5090   *
5091   * By default, exceptions that are caught by an external exception
5092   * handler are not reported.  Call SetVerbose with true on an
5093   * external exception handler to have exceptions caught by the
5094   * handler reported as if they were not caught.
5095   */
5096  void SetVerbose(bool value);
5097
5098  /**
5099   * Set whether or not this TryCatch should capture a Message object
5100   * which holds source information about where the exception
5101   * occurred.  True by default.
5102   */
5103  void SetCaptureMessage(bool value);
5104
5105 private:
5106  // Make it hard to create heap-allocated TryCatch blocks.
5107  TryCatch(const TryCatch&);
5108  void operator=(const TryCatch&);
5109  void* operator new(size_t size);
5110  void operator delete(void*, size_t);
5111
5112  v8::internal::Isolate* isolate_;
5113  void* next_;
5114  void* exception_;
5115  void* message_obj_;
5116  void* message_script_;
5117  int message_start_pos_;
5118  int message_end_pos_;
5119  bool is_verbose_ : 1;
5120  bool can_continue_ : 1;
5121  bool capture_message_ : 1;
5122  bool rethrow_ : 1;
5123  bool has_terminated_ : 1;
5124
5125  friend class v8::internal::Isolate;
5126};
5127
5128
5129// --- Context ---
5130
5131
5132/**
5133 * Ignore
5134 */
5135class V8_EXPORT ExtensionConfiguration {
5136 public:
5137  ExtensionConfiguration(int name_count, const char* names[])
5138      : name_count_(name_count), names_(names) { }
5139 private:
5140  friend class ImplementationUtilities;
5141  int name_count_;
5142  const char** names_;
5143};
5144
5145
5146/**
5147 * A sandboxed execution context with its own set of built-in objects
5148 * and functions.
5149 */
5150class V8_EXPORT Context {
5151 public:
5152  /**
5153   * Returns the global proxy object.
5154   *
5155   * Global proxy object is a thin wrapper whose prototype points to actual
5156   * context's global object with the properties like Object, etc. This is done
5157   * that way for security reasons (for more details see
5158   * https://wiki.mozilla.org/Gecko:SplitWindow).
5159   *
5160   * Please note that changes to global proxy object prototype most probably
5161   * would break VM---v8 expects only global object as a prototype of global
5162   * proxy object.
5163   */
5164  Local<Object> Global();
5165
5166  /**
5167   * Detaches the global object from its context before
5168   * the global object can be reused to create a new context.
5169   */
5170  void DetachGlobal();
5171
5172  /**
5173   * Creates a new context and returns a handle to the newly allocated
5174   * context.
5175   *
5176   * \param isolate The isolate in which to create the context.
5177   *
5178   * \param extensions An optional extension configuration containing
5179   * the extensions to be installed in the newly created context.
5180   *
5181   * \param global_template An optional object template from which the
5182   * global object for the newly created context will be created.
5183   *
5184   * \param global_object An optional global object to be reused for
5185   * the newly created context. This global object must have been
5186   * created by a previous call to Context::New with the same global
5187   * template. The state of the global object will be completely reset
5188   * and only object identify will remain.
5189   */
5190  static Local<Context> New(
5191      Isolate* isolate,
5192      ExtensionConfiguration* extensions = NULL,
5193      Handle<ObjectTemplate> global_template = Handle<ObjectTemplate>(),
5194      Handle<Value> global_object = Handle<Value>());
5195
5196  V8_DEPRECATED("Use Isolate::GetEnteredContext instead",
5197                static Local<Context> GetEntered());
5198
5199  V8_DEPRECATED("Use Isolate::GetCurrentContext instead",
5200                static Local<Context> GetCurrent());
5201
5202  V8_DEPRECATED("Use Isolate::GetCallingContext instead",
5203                static Local<Context> GetCalling());
5204
5205  /**
5206   * Sets the security token for the context.  To access an object in
5207   * another context, the security tokens must match.
5208   */
5209  void SetSecurityToken(Handle<Value> token);
5210
5211  /** Restores the security token to the default value. */
5212  void UseDefaultSecurityToken();
5213
5214  /** Returns the security token of this context.*/
5215  Handle<Value> GetSecurityToken();
5216
5217  /**
5218   * Enter this context.  After entering a context, all code compiled
5219   * and run is compiled and run in this context.  If another context
5220   * is already entered, this old context is saved so it can be
5221   * restored when the new context is exited.
5222   */
5223  void Enter();
5224
5225  /**
5226   * Exit this context.  Exiting the current context restores the
5227   * context that was in place when entering the current context.
5228   */
5229  void Exit();
5230
5231  /** Returns true if the context has experienced an out of memory situation. */
5232  bool HasOutOfMemoryException();
5233
5234  V8_DEPRECATED("Use Isolate::InContext instead",
5235                static bool InContext());
5236
5237  /** Returns an isolate associated with a current context. */
5238  v8::Isolate* GetIsolate();
5239
5240  /**
5241   * Gets the embedder data with the given index, which must have been set by a
5242   * previous call to SetEmbedderData with the same index. Note that index 0
5243   * currently has a special meaning for Chrome's debugger.
5244   */
5245  V8_INLINE Local<Value> GetEmbedderData(int index);
5246
5247  /**
5248   * Sets the embedder data with the given index, growing the data as
5249   * needed. Note that index 0 currently has a special meaning for Chrome's
5250   * debugger.
5251   */
5252  void SetEmbedderData(int index, Handle<Value> value);
5253
5254  /**
5255   * Gets a 2-byte-aligned native pointer from the embedder data with the given
5256   * index, which must have bees set by a previous call to
5257   * SetAlignedPointerInEmbedderData with the same index. Note that index 0
5258   * currently has a special meaning for Chrome's debugger.
5259   */
5260  V8_INLINE void* GetAlignedPointerFromEmbedderData(int index);
5261
5262  /**
5263   * Sets a 2-byte-aligned native pointer in the embedder data with the given
5264   * index, growing the data as needed. Note that index 0 currently has a
5265   * special meaning for Chrome's debugger.
5266   */
5267  void SetAlignedPointerInEmbedderData(int index, void* value);
5268
5269  /**
5270   * Control whether code generation from strings is allowed. Calling
5271   * this method with false will disable 'eval' and the 'Function'
5272   * constructor for code running in this context. If 'eval' or the
5273   * 'Function' constructor are used an exception will be thrown.
5274   *
5275   * If code generation from strings is not allowed the
5276   * V8::AllowCodeGenerationFromStrings callback will be invoked if
5277   * set before blocking the call to 'eval' or the 'Function'
5278   * constructor. If that callback returns true, the call will be
5279   * allowed, otherwise an exception will be thrown. If no callback is
5280   * set an exception will be thrown.
5281   */
5282  void AllowCodeGenerationFromStrings(bool allow);
5283
5284  /**
5285   * Returns true if code generation from strings is allowed for the context.
5286   * For more details see AllowCodeGenerationFromStrings(bool) documentation.
5287   */
5288  bool IsCodeGenerationFromStringsAllowed();
5289
5290  /**
5291   * Sets the error description for the exception that is thrown when
5292   * code generation from strings is not allowed and 'eval' or the 'Function'
5293   * constructor are called.
5294   */
5295  void SetErrorMessageForCodeGenerationFromStrings(Handle<String> message);
5296
5297  /**
5298   * Stack-allocated class which sets the execution context for all
5299   * operations executed within a local scope.
5300   */
5301  class Scope {
5302   public:
5303    explicit V8_INLINE Scope(Handle<Context> context) : context_(context) {
5304      context_->Enter();
5305    }
5306    V8_DEPRECATED(
5307        "Use Handle version instead",
5308        V8_INLINE Scope(Isolate* isolate, Persistent<Context>& context)) // NOLINT
5309    : context_(Handle<Context>::New(isolate, context)) {
5310      context_->Enter();
5311    }
5312    V8_INLINE ~Scope() { context_->Exit(); }
5313
5314   private:
5315    Handle<Context> context_;
5316  };
5317
5318 private:
5319  friend class Value;
5320  friend class Script;
5321  friend class Object;
5322  friend class Function;
5323
5324  Local<Value> SlowGetEmbedderData(int index);
5325  void* SlowGetAlignedPointerFromEmbedderData(int index);
5326};
5327
5328
5329/**
5330 * Multiple threads in V8 are allowed, but only one thread at a time is allowed
5331 * to use any given V8 isolate, see the comments in the Isolate class. The
5332 * definition of 'using a V8 isolate' includes accessing handles or holding onto
5333 * object pointers obtained from V8 handles while in the particular V8 isolate.
5334 * It is up to the user of V8 to ensure, perhaps with locking, that this
5335 * constraint is not violated. In addition to any other synchronization
5336 * mechanism that may be used, the v8::Locker and v8::Unlocker classes must be
5337 * used to signal thead switches to V8.
5338 *
5339 * v8::Locker is a scoped lock object. While it's active, i.e. between its
5340 * construction and destruction, the current thread is allowed to use the locked
5341 * isolate. V8 guarantees that an isolate can be locked by at most one thread at
5342 * any time. In other words, the scope of a v8::Locker is a critical section.
5343 *
5344 * Sample usage:
5345* \code
5346 * ...
5347 * {
5348 *   v8::Locker locker(isolate);
5349 *   v8::Isolate::Scope isolate_scope(isolate);
5350 *   ...
5351 *   // Code using V8 and isolate goes here.
5352 *   ...
5353 * } // Destructor called here
5354 * \endcode
5355 *
5356 * If you wish to stop using V8 in a thread A you can do this either by
5357 * destroying the v8::Locker object as above or by constructing a v8::Unlocker
5358 * object:
5359 *
5360 * \code
5361 * {
5362 *   isolate->Exit();
5363 *   v8::Unlocker unlocker(isolate);
5364 *   ...
5365 *   // Code not using V8 goes here while V8 can run in another thread.
5366 *   ...
5367 * } // Destructor called here.
5368 * isolate->Enter();
5369 * \endcode
5370 *
5371 * The Unlocker object is intended for use in a long-running callback from V8,
5372 * where you want to release the V8 lock for other threads to use.
5373 *
5374 * The v8::Locker is a recursive lock, i.e. you can lock more than once in a
5375 * given thread. This can be useful if you have code that can be called either
5376 * from code that holds the lock or from code that does not. The Unlocker is
5377 * not recursive so you can not have several Unlockers on the stack at once, and
5378 * you can not use an Unlocker in a thread that is not inside a Locker's scope.
5379 *
5380 * An unlocker will unlock several lockers if it has to and reinstate the
5381 * correct depth of locking on its destruction, e.g.:
5382 *
5383 * \code
5384 * // V8 not locked.
5385 * {
5386 *   v8::Locker locker(isolate);
5387 *   Isolate::Scope isolate_scope(isolate);
5388 *   // V8 locked.
5389 *   {
5390 *     v8::Locker another_locker(isolate);
5391 *     // V8 still locked (2 levels).
5392 *     {
5393 *       isolate->Exit();
5394 *       v8::Unlocker unlocker(isolate);
5395 *       // V8 not locked.
5396 *     }
5397 *     isolate->Enter();
5398 *     // V8 locked again (2 levels).
5399 *   }
5400 *   // V8 still locked (1 level).
5401 * }
5402 * // V8 Now no longer locked.
5403 * \endcode
5404 */
5405class V8_EXPORT Unlocker {
5406 public:
5407  /**
5408   * Initialize Unlocker for a given Isolate.
5409   */
5410  V8_INLINE explicit Unlocker(Isolate* isolate) { Initialize(isolate); }
5411
5412  ~Unlocker();
5413 private:
5414  void Initialize(Isolate* isolate);
5415
5416  internal::Isolate* isolate_;
5417};
5418
5419
5420class V8_EXPORT Locker {
5421 public:
5422  /**
5423   * Initialize Locker for a given Isolate.
5424   */
5425  V8_INLINE explicit Locker(Isolate* isolate) { Initialize(isolate); }
5426
5427  ~Locker();
5428
5429  /**
5430   * Returns whether or not the locker for a given isolate, is locked by the
5431   * current thread.
5432   */
5433  static bool IsLocked(Isolate* isolate);
5434
5435  /**
5436   * Returns whether v8::Locker is being used by this V8 instance.
5437   */
5438  static bool IsActive();
5439
5440 private:
5441  void Initialize(Isolate* isolate);
5442
5443  bool has_lock_;
5444  bool top_level_;
5445  internal::Isolate* isolate_;
5446
5447  static bool active_;
5448
5449  // Disallow copying and assigning.
5450  Locker(const Locker&);
5451  void operator=(const Locker&);
5452};
5453
5454
5455/**
5456 * A struct for exporting HeapStats data from V8, using "push" model.
5457 */
5458struct HeapStatsUpdate;
5459
5460
5461/**
5462 * An interface for exporting data from V8, using "push" model.
5463 */
5464class V8_EXPORT OutputStream {  // NOLINT
5465 public:
5466  enum OutputEncoding {
5467    kAscii = 0  // 7-bit ASCII.
5468  };
5469  enum WriteResult {
5470    kContinue = 0,
5471    kAbort = 1
5472  };
5473  virtual ~OutputStream() {}
5474  /** Notify about the end of stream. */
5475  virtual void EndOfStream() = 0;
5476  /** Get preferred output chunk size. Called only once. */
5477  virtual int GetChunkSize() { return 1024; }
5478  /** Get preferred output encoding. Called only once. */
5479  virtual OutputEncoding GetOutputEncoding() { return kAscii; }
5480  /**
5481   * Writes the next chunk of snapshot data into the stream. Writing
5482   * can be stopped by returning kAbort as function result. EndOfStream
5483   * will not be called in case writing was aborted.
5484   */
5485  virtual WriteResult WriteAsciiChunk(char* data, int size) = 0;
5486  /**
5487   * Writes the next chunk of heap stats data into the stream. Writing
5488   * can be stopped by returning kAbort as function result. EndOfStream
5489   * will not be called in case writing was aborted.
5490   */
5491  virtual WriteResult WriteHeapStatsChunk(HeapStatsUpdate* data, int count) {
5492    return kAbort;
5493  };
5494};
5495
5496
5497/**
5498 * An interface for reporting progress and controlling long-running
5499 * activities.
5500 */
5501class V8_EXPORT ActivityControl {  // NOLINT
5502 public:
5503  enum ControlOption {
5504    kContinue = 0,
5505    kAbort = 1
5506  };
5507  virtual ~ActivityControl() {}
5508  /**
5509   * Notify about current progress. The activity can be stopped by
5510   * returning kAbort as the callback result.
5511   */
5512  virtual ControlOption ReportProgressValue(int done, int total) = 0;
5513};
5514
5515
5516// --- Implementation ---
5517
5518
5519namespace internal {
5520
5521const int kApiPointerSize = sizeof(void*);  // NOLINT
5522const int kApiIntSize = sizeof(int);  // NOLINT
5523
5524// Tag information for HeapObject.
5525const int kHeapObjectTag = 1;
5526const int kHeapObjectTagSize = 2;
5527const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1;
5528
5529// Tag information for Smi.
5530const int kSmiTag = 0;
5531const int kSmiTagSize = 1;
5532const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1;
5533
5534template <size_t ptr_size> struct SmiTagging;
5535
5536template<int kSmiShiftSize>
5537V8_INLINE internal::Object* IntToSmi(int value) {
5538  int smi_shift_bits = kSmiTagSize + kSmiShiftSize;
5539  intptr_t tagged_value =
5540      (static_cast<intptr_t>(value) << smi_shift_bits) | kSmiTag;
5541  return reinterpret_cast<internal::Object*>(tagged_value);
5542}
5543
5544// Smi constants for 32-bit systems.
5545template <> struct SmiTagging<4> {
5546  static const int kSmiShiftSize = 0;
5547  static const int kSmiValueSize = 31;
5548  V8_INLINE static int SmiToInt(internal::Object* value) {
5549    int shift_bits = kSmiTagSize + kSmiShiftSize;
5550    // Throw away top 32 bits and shift down (requires >> to be sign extending).
5551    return static_cast<int>(reinterpret_cast<intptr_t>(value)) >> shift_bits;
5552  }
5553  V8_INLINE static internal::Object* IntToSmi(int value) {
5554    return internal::IntToSmi<kSmiShiftSize>(value);
5555  }
5556  V8_INLINE static bool IsValidSmi(intptr_t value) {
5557    // To be representable as an tagged small integer, the two
5558    // most-significant bits of 'value' must be either 00 or 11 due to
5559    // sign-extension. To check this we add 01 to the two
5560    // most-significant bits, and check if the most-significant bit is 0
5561    //
5562    // CAUTION: The original code below:
5563    // bool result = ((value + 0x40000000) & 0x80000000) == 0;
5564    // may lead to incorrect results according to the C language spec, and
5565    // in fact doesn't work correctly with gcc4.1.1 in some cases: The
5566    // compiler may produce undefined results in case of signed integer
5567    // overflow. The computation must be done w/ unsigned ints.
5568    return static_cast<uintptr_t>(value + 0x40000000U) < 0x80000000U;
5569  }
5570};
5571
5572// Smi constants for 64-bit systems.
5573template <> struct SmiTagging<8> {
5574  static const int kSmiShiftSize = 31;
5575  static const int kSmiValueSize = 32;
5576  V8_INLINE static int SmiToInt(internal::Object* value) {
5577    int shift_bits = kSmiTagSize + kSmiShiftSize;
5578    // Shift down and throw away top 32 bits.
5579    return static_cast<int>(reinterpret_cast<intptr_t>(value) >> shift_bits);
5580  }
5581  V8_INLINE static internal::Object* IntToSmi(int value) {
5582    return internal::IntToSmi<kSmiShiftSize>(value);
5583  }
5584  V8_INLINE static bool IsValidSmi(intptr_t value) {
5585    // To be representable as a long smi, the value must be a 32-bit integer.
5586    return (value == static_cast<int32_t>(value));
5587  }
5588};
5589
5590typedef SmiTagging<kApiPointerSize> PlatformSmiTagging;
5591const int kSmiShiftSize = PlatformSmiTagging::kSmiShiftSize;
5592const int kSmiValueSize = PlatformSmiTagging::kSmiValueSize;
5593V8_INLINE static bool SmiValuesAre31Bits() { return kSmiValueSize == 31; }
5594V8_INLINE static bool SmiValuesAre32Bits() { return kSmiValueSize == 32; }
5595
5596/**
5597 * This class exports constants and functionality from within v8 that
5598 * is necessary to implement inline functions in the v8 api.  Don't
5599 * depend on functions and constants defined here.
5600 */
5601class Internals {
5602 public:
5603  // These values match non-compiler-dependent values defined within
5604  // the implementation of v8.
5605  static const int kHeapObjectMapOffset = 0;
5606  static const int kMapInstanceTypeOffset = 1 * kApiPointerSize + kApiIntSize;
5607  static const int kStringResourceOffset = 3 * kApiPointerSize;
5608
5609  static const int kOddballKindOffset = 3 * kApiPointerSize;
5610  static const int kForeignAddressOffset = kApiPointerSize;
5611  static const int kJSObjectHeaderSize = 3 * kApiPointerSize;
5612  static const int kFixedArrayHeaderSize = 2 * kApiPointerSize;
5613  static const int kContextHeaderSize = 2 * kApiPointerSize;
5614  static const int kContextEmbedderDataIndex = 65;
5615  static const int kFullStringRepresentationMask = 0x07;
5616  static const int kStringEncodingMask = 0x4;
5617  static const int kExternalTwoByteRepresentationTag = 0x02;
5618  static const int kExternalAsciiRepresentationTag = 0x06;
5619
5620  static const int kIsolateEmbedderDataOffset = 0 * kApiPointerSize;
5621  static const int kIsolateRootsOffset = 5 * kApiPointerSize;
5622  static const int kUndefinedValueRootIndex = 5;
5623  static const int kNullValueRootIndex = 7;
5624  static const int kTrueValueRootIndex = 8;
5625  static const int kFalseValueRootIndex = 9;
5626  static const int kEmptyStringRootIndex = 134;
5627
5628  static const int kNodeClassIdOffset = 1 * kApiPointerSize;
5629  static const int kNodeFlagsOffset = 1 * kApiPointerSize + 3;
5630  static const int kNodeStateMask = 0xf;
5631  static const int kNodeStateIsWeakValue = 2;
5632  static const int kNodeStateIsPendingValue = 3;
5633  static const int kNodeStateIsNearDeathValue = 4;
5634  static const int kNodeIsIndependentShift = 4;
5635  static const int kNodeIsPartiallyDependentShift = 5;
5636
5637  static const int kJSObjectType = 0xb2;
5638  static const int kFirstNonstringType = 0x80;
5639  static const int kOddballType = 0x83;
5640  static const int kForeignType = 0x87;
5641
5642  static const int kUndefinedOddballKind = 5;
5643  static const int kNullOddballKind = 3;
5644
5645  static const uint32_t kNumIsolateDataSlots = 4;
5646
5647  V8_EXPORT static void CheckInitializedImpl(v8::Isolate* isolate);
5648  V8_INLINE static void CheckInitialized(v8::Isolate* isolate) {
5649#ifdef V8_ENABLE_CHECKS
5650    CheckInitializedImpl(isolate);
5651#endif
5652  }
5653
5654  V8_INLINE static bool HasHeapObjectTag(internal::Object* value) {
5655    return ((reinterpret_cast<intptr_t>(value) & kHeapObjectTagMask) ==
5656            kHeapObjectTag);
5657  }
5658
5659  V8_INLINE static int SmiValue(internal::Object* value) {
5660    return PlatformSmiTagging::SmiToInt(value);
5661  }
5662
5663  V8_INLINE static internal::Object* IntToSmi(int value) {
5664    return PlatformSmiTagging::IntToSmi(value);
5665  }
5666
5667  V8_INLINE static bool IsValidSmi(intptr_t value) {
5668    return PlatformSmiTagging::IsValidSmi(value);
5669  }
5670
5671  V8_INLINE static int GetInstanceType(internal::Object* obj) {
5672    typedef internal::Object O;
5673    O* map = ReadField<O*>(obj, kHeapObjectMapOffset);
5674    return ReadField<uint8_t>(map, kMapInstanceTypeOffset);
5675  }
5676
5677  V8_INLINE static int GetOddballKind(internal::Object* obj) {
5678    typedef internal::Object O;
5679    return SmiValue(ReadField<O*>(obj, kOddballKindOffset));
5680  }
5681
5682  V8_INLINE static bool IsExternalTwoByteString(int instance_type) {
5683    int representation = (instance_type & kFullStringRepresentationMask);
5684    return representation == kExternalTwoByteRepresentationTag;
5685  }
5686
5687  V8_INLINE static uint8_t GetNodeFlag(internal::Object** obj, int shift) {
5688      uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
5689      return *addr & static_cast<uint8_t>(1U << shift);
5690  }
5691
5692  V8_INLINE static void UpdateNodeFlag(internal::Object** obj,
5693                                       bool value, int shift) {
5694      uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
5695      uint8_t mask = static_cast<uint8_t>(1 << shift);
5696      *addr = static_cast<uint8_t>((*addr & ~mask) | (value << shift));
5697  }
5698
5699  V8_INLINE static uint8_t GetNodeState(internal::Object** obj) {
5700    uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
5701    return *addr & kNodeStateMask;
5702  }
5703
5704  V8_INLINE static void UpdateNodeState(internal::Object** obj,
5705                                        uint8_t value) {
5706    uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
5707    *addr = static_cast<uint8_t>((*addr & ~kNodeStateMask) | value);
5708  }
5709
5710  V8_INLINE static void SetEmbedderData(v8::Isolate *isolate,
5711                                        uint32_t slot,
5712                                        void *data) {
5713    uint8_t *addr = reinterpret_cast<uint8_t *>(isolate) +
5714                    kIsolateEmbedderDataOffset + slot * kApiPointerSize;
5715    *reinterpret_cast<void**>(addr) = data;
5716  }
5717
5718  V8_INLINE static void* GetEmbedderData(v8::Isolate* isolate, uint32_t slot) {
5719    uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) +
5720        kIsolateEmbedderDataOffset + slot * kApiPointerSize;
5721    return *reinterpret_cast<void**>(addr);
5722  }
5723
5724  V8_INLINE static internal::Object** GetRoot(v8::Isolate* isolate,
5725                                              int index) {
5726    uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) + kIsolateRootsOffset;
5727    return reinterpret_cast<internal::Object**>(addr + index * kApiPointerSize);
5728  }
5729
5730  template <typename T> V8_INLINE static T ReadField(Object* ptr, int offset) {
5731    uint8_t* addr = reinterpret_cast<uint8_t*>(ptr) + offset - kHeapObjectTag;
5732    return *reinterpret_cast<T*>(addr);
5733  }
5734
5735  template <typename T>
5736  V8_INLINE static T ReadEmbedderData(Context* context, int index) {
5737    typedef internal::Object O;
5738    typedef internal::Internals I;
5739    O* ctx = *reinterpret_cast<O**>(context);
5740    int embedder_data_offset = I::kContextHeaderSize +
5741        (internal::kApiPointerSize * I::kContextEmbedderDataIndex);
5742    O* embedder_data = I::ReadField<O*>(ctx, embedder_data_offset);
5743    int value_offset =
5744        I::kFixedArrayHeaderSize + (internal::kApiPointerSize * index);
5745    return I::ReadField<T>(embedder_data, value_offset);
5746  }
5747
5748  V8_INLINE static bool CanCastToHeapObject(void* o) { return false; }
5749  V8_INLINE static bool CanCastToHeapObject(Context* o) { return true; }
5750  V8_INLINE static bool CanCastToHeapObject(String* o) { return true; }
5751  V8_INLINE static bool CanCastToHeapObject(Object* o) { return true; }
5752  V8_INLINE static bool CanCastToHeapObject(Message* o) { return true; }
5753  V8_INLINE static bool CanCastToHeapObject(StackTrace* o) { return true; }
5754  V8_INLINE static bool CanCastToHeapObject(StackFrame* o) { return true; }
5755};
5756
5757}  // namespace internal
5758
5759
5760template <class T>
5761Local<T>::Local() : Handle<T>() { }
5762
5763
5764template <class T>
5765Local<T> Local<T>::New(Isolate* isolate, Handle<T> that) {
5766  return New(isolate, that.val_);
5767}
5768
5769template <class T>
5770Local<T> Local<T>::New(Isolate* isolate, const PersistentBase<T>& that) {
5771  return New(isolate, that.val_);
5772}
5773
5774template <class T>
5775Handle<T> Handle<T>::New(Isolate* isolate, T* that) {
5776  if (that == NULL) return Handle<T>();
5777  T* that_ptr = that;
5778  internal::Object** p = reinterpret_cast<internal::Object**>(that_ptr);
5779  return Handle<T>(reinterpret_cast<T*>(HandleScope::CreateHandle(
5780      reinterpret_cast<internal::Isolate*>(isolate), *p)));
5781}
5782
5783
5784template <class T>
5785Local<T> Local<T>::New(Isolate* isolate, T* that) {
5786  if (that == NULL) return Local<T>();
5787  T* that_ptr = that;
5788  internal::Object** p = reinterpret_cast<internal::Object**>(that_ptr);
5789  return Local<T>(reinterpret_cast<T*>(HandleScope::CreateHandle(
5790      reinterpret_cast<internal::Isolate*>(isolate), *p)));
5791}
5792
5793
5794template<class T>
5795template<class S>
5796void Eternal<T>::Set(Isolate* isolate, Local<S> handle) {
5797  TYPE_CHECK(T, S);
5798  V8::Eternalize(isolate, reinterpret_cast<Value*>(*handle), &this->index_);
5799}
5800
5801
5802template<class T>
5803Local<T> Eternal<T>::Get(Isolate* isolate) {
5804  return Local<T>(reinterpret_cast<T*>(*V8::GetEternal(isolate, index_)));
5805}
5806
5807
5808template <class T>
5809T* PersistentBase<T>::New(Isolate* isolate, T* that) {
5810  if (that == NULL) return NULL;
5811  internal::Object** p = reinterpret_cast<internal::Object**>(that);
5812  return reinterpret_cast<T*>(
5813      V8::GlobalizeReference(reinterpret_cast<internal::Isolate*>(isolate),
5814                             p));
5815}
5816
5817
5818template <class T, class M>
5819template <class S, class M2>
5820void Persistent<T, M>::Copy(const Persistent<S, M2>& that) {
5821  TYPE_CHECK(T, S);
5822  this->Reset();
5823  if (that.IsEmpty()) return;
5824  internal::Object** p = reinterpret_cast<internal::Object**>(that.val_);
5825  this->val_ = reinterpret_cast<T*>(V8::CopyPersistent(p));
5826  M::Copy(that, this);
5827}
5828
5829
5830template <class T>
5831bool PersistentBase<T>::IsIndependent() const {
5832  typedef internal::Internals I;
5833  if (this->IsEmpty()) return false;
5834  return I::GetNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
5835                        I::kNodeIsIndependentShift);
5836}
5837
5838
5839template <class T>
5840bool PersistentBase<T>::IsNearDeath() const {
5841  typedef internal::Internals I;
5842  if (this->IsEmpty()) return false;
5843  uint8_t node_state =
5844      I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_));
5845  return node_state == I::kNodeStateIsNearDeathValue ||
5846      node_state == I::kNodeStateIsPendingValue;
5847}
5848
5849
5850template <class T>
5851bool PersistentBase<T>::IsWeak() const {
5852  typedef internal::Internals I;
5853  if (this->IsEmpty()) return false;
5854  return I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_)) ==
5855      I::kNodeStateIsWeakValue;
5856}
5857
5858
5859template <class T>
5860void PersistentBase<T>::Reset() {
5861  if (this->IsEmpty()) return;
5862  V8::DisposeGlobal(reinterpret_cast<internal::Object**>(this->val_));
5863  val_ = 0;
5864}
5865
5866
5867template <class T>
5868template <class S>
5869void PersistentBase<T>::Reset(Isolate* isolate, const Handle<S>& other) {
5870  TYPE_CHECK(T, S);
5871  Reset();
5872  if (other.IsEmpty()) return;
5873  this->val_ = New(isolate, other.val_);
5874}
5875
5876
5877template <class T>
5878template <class S>
5879void PersistentBase<T>::Reset(Isolate* isolate,
5880                              const PersistentBase<S>& other) {
5881  TYPE_CHECK(T, S);
5882  Reset();
5883  if (other.IsEmpty()) return;
5884  this->val_ = New(isolate, other.val_);
5885}
5886
5887
5888template <class T>
5889template <typename S, typename P>
5890void PersistentBase<T>::SetWeak(
5891    P* parameter,
5892    typename WeakCallbackData<S, P>::Callback callback) {
5893  TYPE_CHECK(S, T);
5894  typedef typename WeakCallbackData<Value, void>::Callback Callback;
5895  V8::MakeWeak(reinterpret_cast<internal::Object**>(this->val_),
5896               parameter,
5897               reinterpret_cast<Callback>(callback),
5898               NULL);
5899}
5900
5901
5902template <class T>
5903template <typename P>
5904void PersistentBase<T>::SetWeak(
5905    P* parameter,
5906    typename WeakCallbackData<T, P>::Callback callback) {
5907  SetWeak<T, P>(parameter, callback);
5908}
5909
5910
5911template <class T, class M>
5912template <typename S, typename P>
5913void Persistent<T, M>::MakeWeak(
5914    P* parameters,
5915    typename WeakReferenceCallbacks<S, P>::Revivable callback) {
5916  TYPE_CHECK(S, T);
5917  typedef typename WeakReferenceCallbacks<Value, void>::Revivable Revivable;
5918  V8::MakeWeak(reinterpret_cast<internal::Object**>(this->val_),
5919               parameters,
5920               NULL,
5921               reinterpret_cast<Revivable>(callback));
5922}
5923
5924
5925template <class T, class M>
5926template <typename P>
5927void Persistent<T, M>::MakeWeak(
5928    P* parameters,
5929    typename WeakReferenceCallbacks<T, P>::Revivable callback) {
5930  MakeWeak<T, P>(parameters, callback);
5931}
5932
5933
5934template <class T>
5935void PersistentBase<T>::ClearWeak() {
5936  V8::ClearWeak(reinterpret_cast<internal::Object**>(this->val_));
5937}
5938
5939
5940template <class T>
5941void PersistentBase<T>::MarkIndependent() {
5942  typedef internal::Internals I;
5943  if (this->IsEmpty()) return;
5944  I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
5945                    true,
5946                    I::kNodeIsIndependentShift);
5947}
5948
5949
5950template <class T>
5951void PersistentBase<T>::MarkPartiallyDependent() {
5952  typedef internal::Internals I;
5953  if (this->IsEmpty()) return;
5954  I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
5955                    true,
5956                    I::kNodeIsPartiallyDependentShift);
5957}
5958
5959
5960template <class T, class M>
5961T* Persistent<T, M>::ClearAndLeak() {
5962  T* old;
5963  old = this->val_;
5964  this->val_ = NULL;
5965  return old;
5966}
5967
5968
5969template <class T>
5970void PersistentBase<T>::SetWrapperClassId(uint16_t class_id) {
5971  typedef internal::Internals I;
5972  if (this->IsEmpty()) return;
5973  internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_);
5974  uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset;
5975  *reinterpret_cast<uint16_t*>(addr) = class_id;
5976}
5977
5978
5979template <class T>
5980uint16_t PersistentBase<T>::WrapperClassId() const {
5981  typedef internal::Internals I;
5982  if (this->IsEmpty()) return 0;
5983  internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_);
5984  uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset;
5985  return *reinterpret_cast<uint16_t*>(addr);
5986}
5987
5988
5989template<typename T>
5990ReturnValue<T>::ReturnValue(internal::Object** slot) : value_(slot) {}
5991
5992template<typename T>
5993template<typename S>
5994void ReturnValue<T>::Set(const Persistent<S>& handle) {
5995  TYPE_CHECK(T, S);
5996  if (V8_UNLIKELY(handle.IsEmpty())) {
5997    *value_ = GetDefaultValue();
5998  } else {
5999    *value_ = *reinterpret_cast<internal::Object**>(*handle);
6000  }
6001}
6002
6003template<typename T>
6004template<typename S>
6005void ReturnValue<T>::Set(const Handle<S> handle) {
6006  TYPE_CHECK(T, S);
6007  if (V8_UNLIKELY(handle.IsEmpty())) {
6008    *value_ = GetDefaultValue();
6009  } else {
6010    *value_ = *reinterpret_cast<internal::Object**>(*handle);
6011  }
6012}
6013
6014template<typename T>
6015void ReturnValue<T>::Set(double i) {
6016  TYPE_CHECK(T, Number);
6017  Set(Number::New(GetIsolate(), i));
6018}
6019
6020template<typename T>
6021void ReturnValue<T>::Set(int32_t i) {
6022  TYPE_CHECK(T, Integer);
6023  typedef internal::Internals I;
6024  if (V8_LIKELY(I::IsValidSmi(i))) {
6025    *value_ = I::IntToSmi(i);
6026    return;
6027  }
6028  Set(Integer::New(i, GetIsolate()));
6029}
6030
6031template<typename T>
6032void ReturnValue<T>::Set(uint32_t i) {
6033  TYPE_CHECK(T, Integer);
6034  // Can't simply use INT32_MAX here for whatever reason.
6035  bool fits_into_int32_t = (i & (1U << 31)) == 0;
6036  if (V8_LIKELY(fits_into_int32_t)) {
6037    Set(static_cast<int32_t>(i));
6038    return;
6039  }
6040  Set(Integer::NewFromUnsigned(i, GetIsolate()));
6041}
6042
6043template<typename T>
6044void ReturnValue<T>::Set(bool value) {
6045  TYPE_CHECK(T, Boolean);
6046  typedef internal::Internals I;
6047  int root_index;
6048  if (value) {
6049    root_index = I::kTrueValueRootIndex;
6050  } else {
6051    root_index = I::kFalseValueRootIndex;
6052  }
6053  *value_ = *I::GetRoot(GetIsolate(), root_index);
6054}
6055
6056template<typename T>
6057void ReturnValue<T>::SetNull() {
6058  TYPE_CHECK(T, Primitive);
6059  typedef internal::Internals I;
6060  *value_ = *I::GetRoot(GetIsolate(), I::kNullValueRootIndex);
6061}
6062
6063template<typename T>
6064void ReturnValue<T>::SetUndefined() {
6065  TYPE_CHECK(T, Primitive);
6066  typedef internal::Internals I;
6067  *value_ = *I::GetRoot(GetIsolate(), I::kUndefinedValueRootIndex);
6068}
6069
6070template<typename T>
6071void ReturnValue<T>::SetEmptyString() {
6072  TYPE_CHECK(T, String);
6073  typedef internal::Internals I;
6074  *value_ = *I::GetRoot(GetIsolate(), I::kEmptyStringRootIndex);
6075}
6076
6077template<typename T>
6078Isolate* ReturnValue<T>::GetIsolate() {
6079  // Isolate is always the pointer below the default value on the stack.
6080  return *reinterpret_cast<Isolate**>(&value_[-2]);
6081}
6082
6083template<typename T>
6084internal::Object* ReturnValue<T>::GetDefaultValue() {
6085  // Default value is always the pointer below value_ on the stack.
6086  return value_[-1];
6087}
6088
6089
6090template<typename T>
6091FunctionCallbackInfo<T>::FunctionCallbackInfo(internal::Object** implicit_args,
6092                                              internal::Object** values,
6093                                              int length,
6094                                              bool is_construct_call)
6095    : implicit_args_(implicit_args),
6096      values_(values),
6097      length_(length),
6098      is_construct_call_(is_construct_call) { }
6099
6100
6101template<typename T>
6102Local<Value> FunctionCallbackInfo<T>::operator[](int i) const {
6103  if (i < 0 || length_ <= i) return Local<Value>(*Undefined(GetIsolate()));
6104  return Local<Value>(reinterpret_cast<Value*>(values_ - i));
6105}
6106
6107
6108template<typename T>
6109Local<Function> FunctionCallbackInfo<T>::Callee() const {
6110  return Local<Function>(reinterpret_cast<Function*>(
6111      &implicit_args_[kCalleeIndex]));
6112}
6113
6114
6115template<typename T>
6116Local<Object> FunctionCallbackInfo<T>::This() const {
6117  return Local<Object>(reinterpret_cast<Object*>(values_ + 1));
6118}
6119
6120
6121template<typename T>
6122Local<Object> FunctionCallbackInfo<T>::Holder() const {
6123  return Local<Object>(reinterpret_cast<Object*>(
6124      &implicit_args_[kHolderIndex]));
6125}
6126
6127
6128template<typename T>
6129Local<Value> FunctionCallbackInfo<T>::Data() const {
6130  return Local<Value>(reinterpret_cast<Value*>(&implicit_args_[kDataIndex]));
6131}
6132
6133
6134template<typename T>
6135Isolate* FunctionCallbackInfo<T>::GetIsolate() const {
6136  return *reinterpret_cast<Isolate**>(&implicit_args_[kIsolateIndex]);
6137}
6138
6139
6140template<typename T>
6141ReturnValue<T> FunctionCallbackInfo<T>::GetReturnValue() const {
6142  return ReturnValue<T>(&implicit_args_[kReturnValueIndex]);
6143}
6144
6145
6146template<typename T>
6147bool FunctionCallbackInfo<T>::IsConstructCall() const {
6148  return is_construct_call_;
6149}
6150
6151
6152template<typename T>
6153int FunctionCallbackInfo<T>::Length() const {
6154  return length_;
6155}
6156
6157
6158template <class T>
6159Local<T> HandleScope::Close(Handle<T> value) {
6160  internal::Object** before = reinterpret_cast<internal::Object**>(*value);
6161  internal::Object** after = RawClose(before);
6162  return Local<T>(reinterpret_cast<T*>(after));
6163}
6164
6165Handle<Value> ScriptOrigin::ResourceName() const {
6166  return resource_name_;
6167}
6168
6169
6170Handle<Integer> ScriptOrigin::ResourceLineOffset() const {
6171  return resource_line_offset_;
6172}
6173
6174
6175Handle<Integer> ScriptOrigin::ResourceColumnOffset() const {
6176  return resource_column_offset_;
6177}
6178
6179Handle<Boolean> ScriptOrigin::ResourceIsSharedCrossOrigin() const {
6180  return resource_is_shared_cross_origin_;
6181}
6182
6183
6184Handle<Boolean> Boolean::New(Isolate* isolate, bool value) {
6185  return value ? True(isolate) : False(isolate);
6186}
6187
6188
6189Handle<Boolean> Boolean::New(bool value) {
6190  return Boolean::New(Isolate::GetCurrent(), value);
6191}
6192
6193
6194void Template::Set(Isolate* isolate, const char* name, v8::Handle<Data> value) {
6195  Set(v8::String::NewFromUtf8(isolate, name), value);
6196}
6197
6198
6199void Template::Set(const char* name, v8::Handle<Data> value) {
6200  Set(Isolate::GetCurrent(), name, value);
6201}
6202
6203
6204Local<Value> Object::GetInternalField(int index) {
6205#ifndef V8_ENABLE_CHECKS
6206  typedef internal::Object O;
6207  typedef internal::HeapObject HO;
6208  typedef internal::Internals I;
6209  O* obj = *reinterpret_cast<O**>(this);
6210  // Fast path: If the object is a plain JSObject, which is the common case, we
6211  // know where to find the internal fields and can return the value directly.
6212  if (I::GetInstanceType(obj) == I::kJSObjectType) {
6213    int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index);
6214    O* value = I::ReadField<O*>(obj, offset);
6215    O** result = HandleScope::CreateHandle(reinterpret_cast<HO*>(obj), value);
6216    return Local<Value>(reinterpret_cast<Value*>(result));
6217  }
6218#endif
6219  return SlowGetInternalField(index);
6220}
6221
6222
6223void* Object::GetAlignedPointerFromInternalField(int index) {
6224#ifndef V8_ENABLE_CHECKS
6225  typedef internal::Object O;
6226  typedef internal::Internals I;
6227  O* obj = *reinterpret_cast<O**>(this);
6228  // Fast path: If the object is a plain JSObject, which is the common case, we
6229  // know where to find the internal fields and can return the value directly.
6230  if (V8_LIKELY(I::GetInstanceType(obj) == I::kJSObjectType)) {
6231    int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index);
6232    return I::ReadField<void*>(obj, offset);
6233  }
6234#endif
6235  return SlowGetAlignedPointerFromInternalField(index);
6236}
6237
6238
6239String* String::Cast(v8::Value* value) {
6240#ifdef V8_ENABLE_CHECKS
6241  CheckCast(value);
6242#endif
6243  return static_cast<String*>(value);
6244}
6245
6246
6247Local<String> String::Empty(Isolate* isolate) {
6248  typedef internal::Object* S;
6249  typedef internal::Internals I;
6250  I::CheckInitialized(isolate);
6251  S* slot = I::GetRoot(isolate, I::kEmptyStringRootIndex);
6252  return Local<String>(reinterpret_cast<String*>(slot));
6253}
6254
6255
6256Local<String> String::New(const char* data, int length) {
6257  return NewFromUtf8(Isolate::GetCurrent(), data, kNormalString, length);
6258}
6259
6260
6261Local<String> String::New(const uint16_t* data, int length) {
6262  return NewFromTwoByte(Isolate::GetCurrent(), data, kNormalString, length);
6263}
6264
6265
6266Local<String> String::NewSymbol(const char* data, int length) {
6267  return NewFromUtf8(Isolate::GetCurrent(), data, kInternalizedString, length);
6268}
6269
6270
6271Local<String> String::NewUndetectable(const char* data, int length) {
6272  return NewFromUtf8(Isolate::GetCurrent(), data, kUndetectableString, length);
6273}
6274
6275
6276Local<String> String::NewUndetectable(const uint16_t* data, int length) {
6277  return NewFromTwoByte(
6278      Isolate::GetCurrent(), data, kUndetectableString, length);
6279}
6280
6281
6282String::ExternalStringResource* String::GetExternalStringResource() const {
6283  typedef internal::Object O;
6284  typedef internal::Internals I;
6285  O* obj = *reinterpret_cast<O**>(const_cast<String*>(this));
6286  String::ExternalStringResource* result;
6287  if (I::IsExternalTwoByteString(I::GetInstanceType(obj))) {
6288    void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
6289    result = reinterpret_cast<String::ExternalStringResource*>(value);
6290  } else {
6291    result = NULL;
6292  }
6293#ifdef V8_ENABLE_CHECKS
6294  VerifyExternalStringResource(result);
6295#endif
6296  return result;
6297}
6298
6299
6300String::ExternalStringResourceBase* String::GetExternalStringResourceBase(
6301    String::Encoding* encoding_out) const {
6302  typedef internal::Object O;
6303  typedef internal::Internals I;
6304  O* obj = *reinterpret_cast<O**>(const_cast<String*>(this));
6305  int type = I::GetInstanceType(obj) & I::kFullStringRepresentationMask;
6306  *encoding_out = static_cast<Encoding>(type & I::kStringEncodingMask);
6307  ExternalStringResourceBase* resource = NULL;
6308  if (type == I::kExternalAsciiRepresentationTag ||
6309      type == I::kExternalTwoByteRepresentationTag) {
6310    void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
6311    resource = static_cast<ExternalStringResourceBase*>(value);
6312  }
6313#ifdef V8_ENABLE_CHECKS
6314    VerifyExternalStringResourceBase(resource, *encoding_out);
6315#endif
6316  return resource;
6317}
6318
6319
6320bool Value::IsUndefined() const {
6321#ifdef V8_ENABLE_CHECKS
6322  return FullIsUndefined();
6323#else
6324  return QuickIsUndefined();
6325#endif
6326}
6327
6328bool Value::QuickIsUndefined() const {
6329  typedef internal::Object O;
6330  typedef internal::Internals I;
6331  O* obj = *reinterpret_cast<O**>(const_cast<Value*>(this));
6332  if (!I::HasHeapObjectTag(obj)) return false;
6333  if (I::GetInstanceType(obj) != I::kOddballType) return false;
6334  return (I::GetOddballKind(obj) == I::kUndefinedOddballKind);
6335}
6336
6337
6338bool Value::IsNull() const {
6339#ifdef V8_ENABLE_CHECKS
6340  return FullIsNull();
6341#else
6342  return QuickIsNull();
6343#endif
6344}
6345
6346bool Value::QuickIsNull() const {
6347  typedef internal::Object O;
6348  typedef internal::Internals I;
6349  O* obj = *reinterpret_cast<O**>(const_cast<Value*>(this));
6350  if (!I::HasHeapObjectTag(obj)) return false;
6351  if (I::GetInstanceType(obj) != I::kOddballType) return false;
6352  return (I::GetOddballKind(obj) == I::kNullOddballKind);
6353}
6354
6355
6356bool Value::IsString() const {
6357#ifdef V8_ENABLE_CHECKS
6358  return FullIsString();
6359#else
6360  return QuickIsString();
6361#endif
6362}
6363
6364bool Value::QuickIsString() const {
6365  typedef internal::Object O;
6366  typedef internal::Internals I;
6367  O* obj = *reinterpret_cast<O**>(const_cast<Value*>(this));
6368  if (!I::HasHeapObjectTag(obj)) return false;
6369  return (I::GetInstanceType(obj) < I::kFirstNonstringType);
6370}
6371
6372
6373template <class T> Value* Value::Cast(T* value) {
6374  return static_cast<Value*>(value);
6375}
6376
6377
6378Symbol* Symbol::Cast(v8::Value* value) {
6379#ifdef V8_ENABLE_CHECKS
6380  CheckCast(value);
6381#endif
6382  return static_cast<Symbol*>(value);
6383}
6384
6385
6386Number* Number::Cast(v8::Value* value) {
6387#ifdef V8_ENABLE_CHECKS
6388  CheckCast(value);
6389#endif
6390  return static_cast<Number*>(value);
6391}
6392
6393
6394Integer* Integer::Cast(v8::Value* value) {
6395#ifdef V8_ENABLE_CHECKS
6396  CheckCast(value);
6397#endif
6398  return static_cast<Integer*>(value);
6399}
6400
6401
6402Date* Date::Cast(v8::Value* value) {
6403#ifdef V8_ENABLE_CHECKS
6404  CheckCast(value);
6405#endif
6406  return static_cast<Date*>(value);
6407}
6408
6409
6410StringObject* StringObject::Cast(v8::Value* value) {
6411#ifdef V8_ENABLE_CHECKS
6412  CheckCast(value);
6413#endif
6414  return static_cast<StringObject*>(value);
6415}
6416
6417
6418SymbolObject* SymbolObject::Cast(v8::Value* value) {
6419#ifdef V8_ENABLE_CHECKS
6420  CheckCast(value);
6421#endif
6422  return static_cast<SymbolObject*>(value);
6423}
6424
6425
6426NumberObject* NumberObject::Cast(v8::Value* value) {
6427#ifdef V8_ENABLE_CHECKS
6428  CheckCast(value);
6429#endif
6430  return static_cast<NumberObject*>(value);
6431}
6432
6433
6434BooleanObject* BooleanObject::Cast(v8::Value* value) {
6435#ifdef V8_ENABLE_CHECKS
6436  CheckCast(value);
6437#endif
6438  return static_cast<BooleanObject*>(value);
6439}
6440
6441
6442RegExp* RegExp::Cast(v8::Value* value) {
6443#ifdef V8_ENABLE_CHECKS
6444  CheckCast(value);
6445#endif
6446  return static_cast<RegExp*>(value);
6447}
6448
6449
6450Object* Object::Cast(v8::Value* value) {
6451#ifdef V8_ENABLE_CHECKS
6452  CheckCast(value);
6453#endif
6454  return static_cast<Object*>(value);
6455}
6456
6457
6458Array* Array::Cast(v8::Value* value) {
6459#ifdef V8_ENABLE_CHECKS
6460  CheckCast(value);
6461#endif
6462  return static_cast<Array*>(value);
6463}
6464
6465
6466ArrayBuffer* ArrayBuffer::Cast(v8::Value* value) {
6467#ifdef V8_ENABLE_CHECKS
6468  CheckCast(value);
6469#endif
6470  return static_cast<ArrayBuffer*>(value);
6471}
6472
6473
6474ArrayBufferView* ArrayBufferView::Cast(v8::Value* value) {
6475#ifdef V8_ENABLE_CHECKS
6476  CheckCast(value);
6477#endif
6478  return static_cast<ArrayBufferView*>(value);
6479}
6480
6481
6482TypedArray* TypedArray::Cast(v8::Value* value) {
6483#ifdef V8_ENABLE_CHECKS
6484  CheckCast(value);
6485#endif
6486  return static_cast<TypedArray*>(value);
6487}
6488
6489
6490Uint8Array* Uint8Array::Cast(v8::Value* value) {
6491#ifdef V8_ENABLE_CHECKS
6492  CheckCast(value);
6493#endif
6494  return static_cast<Uint8Array*>(value);
6495}
6496
6497
6498Int8Array* Int8Array::Cast(v8::Value* value) {
6499#ifdef V8_ENABLE_CHECKS
6500  CheckCast(value);
6501#endif
6502  return static_cast<Int8Array*>(value);
6503}
6504
6505
6506Uint16Array* Uint16Array::Cast(v8::Value* value) {
6507#ifdef V8_ENABLE_CHECKS
6508  CheckCast(value);
6509#endif
6510  return static_cast<Uint16Array*>(value);
6511}
6512
6513
6514Int16Array* Int16Array::Cast(v8::Value* value) {
6515#ifdef V8_ENABLE_CHECKS
6516  CheckCast(value);
6517#endif
6518  return static_cast<Int16Array*>(value);
6519}
6520
6521
6522Uint32Array* Uint32Array::Cast(v8::Value* value) {
6523#ifdef V8_ENABLE_CHECKS
6524  CheckCast(value);
6525#endif
6526  return static_cast<Uint32Array*>(value);
6527}
6528
6529
6530Int32Array* Int32Array::Cast(v8::Value* value) {
6531#ifdef V8_ENABLE_CHECKS
6532  CheckCast(value);
6533#endif
6534  return static_cast<Int32Array*>(value);
6535}
6536
6537
6538Float32Array* Float32Array::Cast(v8::Value* value) {
6539#ifdef V8_ENABLE_CHECKS
6540  CheckCast(value);
6541#endif
6542  return static_cast<Float32Array*>(value);
6543}
6544
6545
6546Float64Array* Float64Array::Cast(v8::Value* value) {
6547#ifdef V8_ENABLE_CHECKS
6548  CheckCast(value);
6549#endif
6550  return static_cast<Float64Array*>(value);
6551}
6552
6553
6554Uint8ClampedArray* Uint8ClampedArray::Cast(v8::Value* value) {
6555#ifdef V8_ENABLE_CHECKS
6556  CheckCast(value);
6557#endif
6558  return static_cast<Uint8ClampedArray*>(value);
6559}
6560
6561
6562DataView* DataView::Cast(v8::Value* value) {
6563#ifdef V8_ENABLE_CHECKS
6564  CheckCast(value);
6565#endif
6566  return static_cast<DataView*>(value);
6567}
6568
6569
6570Function* Function::Cast(v8::Value* value) {
6571#ifdef V8_ENABLE_CHECKS
6572  CheckCast(value);
6573#endif
6574  return static_cast<Function*>(value);
6575}
6576
6577
6578External* External::Cast(v8::Value* value) {
6579#ifdef V8_ENABLE_CHECKS
6580  CheckCast(value);
6581#endif
6582  return static_cast<External*>(value);
6583}
6584
6585
6586template<typename T>
6587Isolate* PropertyCallbackInfo<T>::GetIsolate() const {
6588  return *reinterpret_cast<Isolate**>(&args_[kIsolateIndex]);
6589}
6590
6591
6592template<typename T>
6593Local<Value> PropertyCallbackInfo<T>::Data() const {
6594  return Local<Value>(reinterpret_cast<Value*>(&args_[kDataIndex]));
6595}
6596
6597
6598template<typename T>
6599Local<Object> PropertyCallbackInfo<T>::This() const {
6600  return Local<Object>(reinterpret_cast<Object*>(&args_[kThisIndex]));
6601}
6602
6603
6604template<typename T>
6605Local<Object> PropertyCallbackInfo<T>::Holder() const {
6606  return Local<Object>(reinterpret_cast<Object*>(&args_[kHolderIndex]));
6607}
6608
6609
6610template<typename T>
6611ReturnValue<T> PropertyCallbackInfo<T>::GetReturnValue() const {
6612  return ReturnValue<T>(&args_[kReturnValueIndex]);
6613}
6614
6615
6616Handle<Primitive> Undefined(Isolate* isolate) {
6617  typedef internal::Object* S;
6618  typedef internal::Internals I;
6619  I::CheckInitialized(isolate);
6620  S* slot = I::GetRoot(isolate, I::kUndefinedValueRootIndex);
6621  return Handle<Primitive>(reinterpret_cast<Primitive*>(slot));
6622}
6623
6624
6625Handle<Primitive> Null(Isolate* isolate) {
6626  typedef internal::Object* S;
6627  typedef internal::Internals I;
6628  I::CheckInitialized(isolate);
6629  S* slot = I::GetRoot(isolate, I::kNullValueRootIndex);
6630  return Handle<Primitive>(reinterpret_cast<Primitive*>(slot));
6631}
6632
6633
6634Handle<Boolean> True(Isolate* isolate) {
6635  typedef internal::Object* S;
6636  typedef internal::Internals I;
6637  I::CheckInitialized(isolate);
6638  S* slot = I::GetRoot(isolate, I::kTrueValueRootIndex);
6639  return Handle<Boolean>(reinterpret_cast<Boolean*>(slot));
6640}
6641
6642
6643Handle<Boolean> False(Isolate* isolate) {
6644  typedef internal::Object* S;
6645  typedef internal::Internals I;
6646  I::CheckInitialized(isolate);
6647  S* slot = I::GetRoot(isolate, I::kFalseValueRootIndex);
6648  return Handle<Boolean>(reinterpret_cast<Boolean*>(slot));
6649}
6650
6651
6652void Isolate::SetData(void* data) {
6653  typedef internal::Internals I;
6654  I::SetEmbedderData(this, 0, data);
6655}
6656
6657
6658void* Isolate::GetData() {
6659  typedef internal::Internals I;
6660  return I::GetEmbedderData(this, 0);
6661}
6662
6663
6664void Isolate::SetData(uint32_t slot, void* data) {
6665  typedef internal::Internals I;
6666  I::SetEmbedderData(this, slot, data);
6667}
6668
6669
6670void* Isolate::GetData(uint32_t slot) {
6671  typedef internal::Internals I;
6672  return I::GetEmbedderData(this, slot);
6673}
6674
6675
6676uint32_t Isolate::GetNumberOfDataSlots() {
6677  typedef internal::Internals I;
6678  return I::kNumIsolateDataSlots;
6679}
6680
6681
6682template<typename T>
6683void Isolate::SetObjectGroupId(const Persistent<T>& object,
6684                               UniqueId id) {
6685  TYPE_CHECK(Value, T);
6686  SetObjectGroupId(reinterpret_cast<v8::internal::Object**>(object.val_), id);
6687}
6688
6689
6690template<typename T>
6691void Isolate::SetReferenceFromGroup(UniqueId id,
6692                                    const Persistent<T>& object) {
6693  TYPE_CHECK(Value, T);
6694  SetReferenceFromGroup(id,
6695                        reinterpret_cast<v8::internal::Object**>(object.val_));
6696}
6697
6698
6699template<typename T, typename S>
6700void Isolate::SetReference(const Persistent<T>& parent,
6701                           const Persistent<S>& child) {
6702  TYPE_CHECK(Object, T);
6703  TYPE_CHECK(Value, S);
6704  SetReference(reinterpret_cast<v8::internal::Object**>(parent.val_),
6705               reinterpret_cast<v8::internal::Object**>(child.val_));
6706}
6707
6708
6709Local<Value> Context::GetEmbedderData(int index) {
6710#ifndef V8_ENABLE_CHECKS
6711  typedef internal::Object O;
6712  typedef internal::HeapObject HO;
6713  typedef internal::Internals I;
6714  HO* context = *reinterpret_cast<HO**>(this);
6715  O** result =
6716      HandleScope::CreateHandle(context, I::ReadEmbedderData<O*>(this, index));
6717  return Local<Value>(reinterpret_cast<Value*>(result));
6718#else
6719  return SlowGetEmbedderData(index);
6720#endif
6721}
6722
6723
6724void* Context::GetAlignedPointerFromEmbedderData(int index) {
6725#ifndef V8_ENABLE_CHECKS
6726  typedef internal::Internals I;
6727  return I::ReadEmbedderData<void*>(this, index);
6728#else
6729  return SlowGetAlignedPointerFromEmbedderData(index);
6730#endif
6731}
6732
6733
6734/**
6735 * \example shell.cc
6736 * A simple shell that takes a list of expressions on the
6737 * command-line and executes them.
6738 */
6739
6740
6741/**
6742 * \example process.cc
6743 */
6744
6745
6746}  // namespace v8
6747
6748
6749#undef TYPE_CHECK
6750
6751
6752#endif  // V8_H_
6753