1// Copyright 2012 the V8 project authors. All rights reserved. 2// Redistribution and use in source and binary forms, with or without 3// modification, are permitted provided that the following conditions are 4// met: 5// 6// * Redistributions of source code must retain the above copyright 7// notice, this list of conditions and the following disclaimer. 8// * Redistributions in binary form must reproduce the above 9// copyright notice, this list of conditions and the following 10// disclaimer in the documentation and/or other materials provided 11// with the distribution. 12// * Neither the name of Google Inc. nor the names of its 13// contributors may be used to endorse or promote products derived 14// from this software without specific prior written permission. 15// 16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28#include <stdlib.h> 29#include <cmath> 30#include <cstdarg> 31#include "v8.h" 32 33#if V8_TARGET_ARCH_ARM 34 35#include "disasm.h" 36#include "assembler.h" 37#include "codegen.h" 38#include "arm/constants-arm.h" 39#include "arm/simulator-arm.h" 40 41#if defined(USE_SIMULATOR) 42 43// Only build the simulator if not compiling for real ARM hardware. 44namespace v8 { 45namespace internal { 46 47// This macro provides a platform independent use of sscanf. The reason for 48// SScanF not being implemented in a platform independent way through 49// ::v8::internal::OS in the same way as SNPrintF is that the 50// Windows C Run-Time Library does not provide vsscanf. 51#define SScanF sscanf // NOLINT 52 53// The ArmDebugger class is used by the simulator while debugging simulated ARM 54// code. 55class ArmDebugger { 56 public: 57 explicit ArmDebugger(Simulator* sim) : sim_(sim) { } 58 ~ArmDebugger(); 59 60 void Stop(Instruction* instr); 61 void Debug(); 62 63 private: 64 static const Instr kBreakpointInstr = 65 (al | (7*B25) | (1*B24) | kBreakpoint); 66 static const Instr kNopInstr = (al | (13*B21)); 67 68 Simulator* sim_; 69 70 int32_t GetRegisterValue(int regnum); 71 double GetRegisterPairDoubleValue(int regnum); 72 double GetVFPDoubleRegisterValue(int regnum); 73 bool GetValue(const char* desc, int32_t* value); 74 bool GetVFPSingleValue(const char* desc, float* value); 75 bool GetVFPDoubleValue(const char* desc, double* value); 76 77 // Set or delete a breakpoint. Returns true if successful. 78 bool SetBreakpoint(Instruction* breakpc); 79 bool DeleteBreakpoint(Instruction* breakpc); 80 81 // Undo and redo all breakpoints. This is needed to bracket disassembly and 82 // execution to skip past breakpoints when run from the debugger. 83 void UndoBreakpoints(); 84 void RedoBreakpoints(); 85}; 86 87 88ArmDebugger::~ArmDebugger() { 89} 90 91 92 93#ifdef GENERATED_CODE_COVERAGE 94static FILE* coverage_log = NULL; 95 96 97static void InitializeCoverage() { 98 char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG"); 99 if (file_name != NULL) { 100 coverage_log = fopen(file_name, "aw+"); 101 } 102} 103 104 105void ArmDebugger::Stop(Instruction* instr) { 106 // Get the stop code. 107 uint32_t code = instr->SvcValue() & kStopCodeMask; 108 // Retrieve the encoded address, which comes just after this stop. 109 char** msg_address = 110 reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize); 111 char* msg = *msg_address; 112 ASSERT(msg != NULL); 113 114 // Update this stop description. 115 if (isWatchedStop(code) && !watched_stops_[code].desc) { 116 watched_stops_[code].desc = msg; 117 } 118 119 if (strlen(msg) > 0) { 120 if (coverage_log != NULL) { 121 fprintf(coverage_log, "%s\n", msg); 122 fflush(coverage_log); 123 } 124 // Overwrite the instruction and address with nops. 125 instr->SetInstructionBits(kNopInstr); 126 reinterpret_cast<Instruction*>(msg_address)->SetInstructionBits(kNopInstr); 127 } 128 sim_->set_pc(sim_->get_pc() + 2 * Instruction::kInstrSize); 129} 130 131#else // ndef GENERATED_CODE_COVERAGE 132 133static void InitializeCoverage() { 134} 135 136 137void ArmDebugger::Stop(Instruction* instr) { 138 // Get the stop code. 139 uint32_t code = instr->SvcValue() & kStopCodeMask; 140 // Retrieve the encoded address, which comes just after this stop. 141 char* msg = *reinterpret_cast<char**>(sim_->get_pc() 142 + Instruction::kInstrSize); 143 // Update this stop description. 144 if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) { 145 sim_->watched_stops_[code].desc = msg; 146 } 147 // Print the stop message and code if it is not the default code. 148 if (code != kMaxStopCode) { 149 PrintF("Simulator hit stop %u: %s\n", code, msg); 150 } else { 151 PrintF("Simulator hit %s\n", msg); 152 } 153 sim_->set_pc(sim_->get_pc() + 2 * Instruction::kInstrSize); 154 Debug(); 155} 156#endif 157 158 159int32_t ArmDebugger::GetRegisterValue(int regnum) { 160 if (regnum == kPCRegister) { 161 return sim_->get_pc(); 162 } else { 163 return sim_->get_register(regnum); 164 } 165} 166 167 168double ArmDebugger::GetRegisterPairDoubleValue(int regnum) { 169 return sim_->get_double_from_register_pair(regnum); 170} 171 172 173double ArmDebugger::GetVFPDoubleRegisterValue(int regnum) { 174 return sim_->get_double_from_d_register(regnum); 175} 176 177 178bool ArmDebugger::GetValue(const char* desc, int32_t* value) { 179 int regnum = Registers::Number(desc); 180 if (regnum != kNoRegister) { 181 *value = GetRegisterValue(regnum); 182 return true; 183 } else { 184 if (strncmp(desc, "0x", 2) == 0) { 185 return SScanF(desc + 2, "%x", reinterpret_cast<uint32_t*>(value)) == 1; 186 } else { 187 return SScanF(desc, "%u", reinterpret_cast<uint32_t*>(value)) == 1; 188 } 189 } 190 return false; 191} 192 193 194bool ArmDebugger::GetVFPSingleValue(const char* desc, float* value) { 195 bool is_double; 196 int regnum = VFPRegisters::Number(desc, &is_double); 197 if (regnum != kNoRegister && !is_double) { 198 *value = sim_->get_float_from_s_register(regnum); 199 return true; 200 } 201 return false; 202} 203 204 205bool ArmDebugger::GetVFPDoubleValue(const char* desc, double* value) { 206 bool is_double; 207 int regnum = VFPRegisters::Number(desc, &is_double); 208 if (regnum != kNoRegister && is_double) { 209 *value = sim_->get_double_from_d_register(regnum); 210 return true; 211 } 212 return false; 213} 214 215 216bool ArmDebugger::SetBreakpoint(Instruction* breakpc) { 217 // Check if a breakpoint can be set. If not return without any side-effects. 218 if (sim_->break_pc_ != NULL) { 219 return false; 220 } 221 222 // Set the breakpoint. 223 sim_->break_pc_ = breakpc; 224 sim_->break_instr_ = breakpc->InstructionBits(); 225 // Not setting the breakpoint instruction in the code itself. It will be set 226 // when the debugger shell continues. 227 return true; 228} 229 230 231bool ArmDebugger::DeleteBreakpoint(Instruction* breakpc) { 232 if (sim_->break_pc_ != NULL) { 233 sim_->break_pc_->SetInstructionBits(sim_->break_instr_); 234 } 235 236 sim_->break_pc_ = NULL; 237 sim_->break_instr_ = 0; 238 return true; 239} 240 241 242void ArmDebugger::UndoBreakpoints() { 243 if (sim_->break_pc_ != NULL) { 244 sim_->break_pc_->SetInstructionBits(sim_->break_instr_); 245 } 246} 247 248 249void ArmDebugger::RedoBreakpoints() { 250 if (sim_->break_pc_ != NULL) { 251 sim_->break_pc_->SetInstructionBits(kBreakpointInstr); 252 } 253} 254 255 256void ArmDebugger::Debug() { 257 intptr_t last_pc = -1; 258 bool done = false; 259 260#define COMMAND_SIZE 63 261#define ARG_SIZE 255 262 263#define STR(a) #a 264#define XSTR(a) STR(a) 265 266 char cmd[COMMAND_SIZE + 1]; 267 char arg1[ARG_SIZE + 1]; 268 char arg2[ARG_SIZE + 1]; 269 char* argv[3] = { cmd, arg1, arg2 }; 270 271 // make sure to have a proper terminating character if reaching the limit 272 cmd[COMMAND_SIZE] = 0; 273 arg1[ARG_SIZE] = 0; 274 arg2[ARG_SIZE] = 0; 275 276 // Undo all set breakpoints while running in the debugger shell. This will 277 // make them invisible to all commands. 278 UndoBreakpoints(); 279 280 while (!done && !sim_->has_bad_pc()) { 281 if (last_pc != sim_->get_pc()) { 282 disasm::NameConverter converter; 283 disasm::Disassembler dasm(converter); 284 // use a reasonably large buffer 285 v8::internal::EmbeddedVector<char, 256> buffer; 286 dasm.InstructionDecode(buffer, 287 reinterpret_cast<byte*>(sim_->get_pc())); 288 PrintF(" 0x%08x %s\n", sim_->get_pc(), buffer.start()); 289 last_pc = sim_->get_pc(); 290 } 291 char* line = ReadLine("sim> "); 292 if (line == NULL) { 293 break; 294 } else { 295 char* last_input = sim_->last_debugger_input(); 296 if (strcmp(line, "\n") == 0 && last_input != NULL) { 297 line = last_input; 298 } else { 299 // Ownership is transferred to sim_; 300 sim_->set_last_debugger_input(line); 301 } 302 // Use sscanf to parse the individual parts of the command line. At the 303 // moment no command expects more than two parameters. 304 int argc = SScanF(line, 305 "%" XSTR(COMMAND_SIZE) "s " 306 "%" XSTR(ARG_SIZE) "s " 307 "%" XSTR(ARG_SIZE) "s", 308 cmd, arg1, arg2); 309 if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { 310 sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc())); 311 } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { 312 // Execute the one instruction we broke at with breakpoints disabled. 313 sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc())); 314 // Leave the debugger shell. 315 done = true; 316 } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { 317 if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) { 318 int32_t value; 319 float svalue; 320 double dvalue; 321 if (strcmp(arg1, "all") == 0) { 322 for (int i = 0; i < kNumRegisters; i++) { 323 value = GetRegisterValue(i); 324 PrintF("%3s: 0x%08x %10d", Registers::Name(i), value, value); 325 if ((argc == 3 && strcmp(arg2, "fp") == 0) && 326 i < 8 && 327 (i % 2) == 0) { 328 dvalue = GetRegisterPairDoubleValue(i); 329 PrintF(" (%f)\n", dvalue); 330 } else { 331 PrintF("\n"); 332 } 333 } 334 for (int i = 0; i < DwVfpRegister::NumRegisters(); i++) { 335 dvalue = GetVFPDoubleRegisterValue(i); 336 uint64_t as_words = BitCast<uint64_t>(dvalue); 337 PrintF("%3s: %f 0x%08x %08x\n", 338 VFPRegisters::Name(i, true), 339 dvalue, 340 static_cast<uint32_t>(as_words >> 32), 341 static_cast<uint32_t>(as_words & 0xffffffff)); 342 } 343 } else { 344 if (GetValue(arg1, &value)) { 345 PrintF("%s: 0x%08x %d \n", arg1, value, value); 346 } else if (GetVFPSingleValue(arg1, &svalue)) { 347 uint32_t as_word = BitCast<uint32_t>(svalue); 348 PrintF("%s: %f 0x%08x\n", arg1, svalue, as_word); 349 } else if (GetVFPDoubleValue(arg1, &dvalue)) { 350 uint64_t as_words = BitCast<uint64_t>(dvalue); 351 PrintF("%s: %f 0x%08x %08x\n", 352 arg1, 353 dvalue, 354 static_cast<uint32_t>(as_words >> 32), 355 static_cast<uint32_t>(as_words & 0xffffffff)); 356 } else { 357 PrintF("%s unrecognized\n", arg1); 358 } 359 } 360 } else { 361 PrintF("print <register>\n"); 362 } 363 } else if ((strcmp(cmd, "po") == 0) 364 || (strcmp(cmd, "printobject") == 0)) { 365 if (argc == 2) { 366 int32_t value; 367 if (GetValue(arg1, &value)) { 368 Object* obj = reinterpret_cast<Object*>(value); 369 PrintF("%s: \n", arg1); 370#ifdef DEBUG 371 obj->PrintLn(); 372#else 373 obj->ShortPrint(); 374 PrintF("\n"); 375#endif 376 } else { 377 PrintF("%s unrecognized\n", arg1); 378 } 379 } else { 380 PrintF("printobject <value>\n"); 381 } 382 } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) { 383 int32_t* cur = NULL; 384 int32_t* end = NULL; 385 int next_arg = 1; 386 387 if (strcmp(cmd, "stack") == 0) { 388 cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp)); 389 } else { // "mem" 390 int32_t value; 391 if (!GetValue(arg1, &value)) { 392 PrintF("%s unrecognized\n", arg1); 393 continue; 394 } 395 cur = reinterpret_cast<int32_t*>(value); 396 next_arg++; 397 } 398 399 int32_t words; 400 if (argc == next_arg) { 401 words = 10; 402 } else { 403 if (!GetValue(argv[next_arg], &words)) { 404 words = 10; 405 } 406 } 407 end = cur + words; 408 409 while (cur < end) { 410 PrintF(" 0x%08x: 0x%08x %10d", 411 reinterpret_cast<intptr_t>(cur), *cur, *cur); 412 HeapObject* obj = reinterpret_cast<HeapObject*>(*cur); 413 int value = *cur; 414 Heap* current_heap = v8::internal::Isolate::Current()->heap(); 415 if (((value & 1) == 0) || current_heap->Contains(obj)) { 416 PrintF(" ("); 417 if ((value & 1) == 0) { 418 PrintF("smi %d", value / 2); 419 } else { 420 obj->ShortPrint(); 421 } 422 PrintF(")"); 423 } 424 PrintF("\n"); 425 cur++; 426 } 427 } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) { 428 disasm::NameConverter converter; 429 disasm::Disassembler dasm(converter); 430 // use a reasonably large buffer 431 v8::internal::EmbeddedVector<char, 256> buffer; 432 433 byte* prev = NULL; 434 byte* cur = NULL; 435 byte* end = NULL; 436 437 if (argc == 1) { 438 cur = reinterpret_cast<byte*>(sim_->get_pc()); 439 end = cur + (10 * Instruction::kInstrSize); 440 } else if (argc == 2) { 441 int regnum = Registers::Number(arg1); 442 if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) { 443 // The argument is an address or a register name. 444 int32_t value; 445 if (GetValue(arg1, &value)) { 446 cur = reinterpret_cast<byte*>(value); 447 // Disassemble 10 instructions at <arg1>. 448 end = cur + (10 * Instruction::kInstrSize); 449 } 450 } else { 451 // The argument is the number of instructions. 452 int32_t value; 453 if (GetValue(arg1, &value)) { 454 cur = reinterpret_cast<byte*>(sim_->get_pc()); 455 // Disassemble <arg1> instructions. 456 end = cur + (value * Instruction::kInstrSize); 457 } 458 } 459 } else { 460 int32_t value1; 461 int32_t value2; 462 if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { 463 cur = reinterpret_cast<byte*>(value1); 464 end = cur + (value2 * Instruction::kInstrSize); 465 } 466 } 467 468 while (cur < end) { 469 prev = cur; 470 cur += dasm.InstructionDecode(buffer, cur); 471 PrintF(" 0x%08x %s\n", 472 reinterpret_cast<intptr_t>(prev), buffer.start()); 473 } 474 } else if (strcmp(cmd, "gdb") == 0) { 475 PrintF("relinquishing control to gdb\n"); 476 v8::internal::OS::DebugBreak(); 477 PrintF("regaining control from gdb\n"); 478 } else if (strcmp(cmd, "break") == 0) { 479 if (argc == 2) { 480 int32_t value; 481 if (GetValue(arg1, &value)) { 482 if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) { 483 PrintF("setting breakpoint failed\n"); 484 } 485 } else { 486 PrintF("%s unrecognized\n", arg1); 487 } 488 } else { 489 PrintF("break <address>\n"); 490 } 491 } else if (strcmp(cmd, "del") == 0) { 492 if (!DeleteBreakpoint(NULL)) { 493 PrintF("deleting breakpoint failed\n"); 494 } 495 } else if (strcmp(cmd, "flags") == 0) { 496 PrintF("N flag: %d; ", sim_->n_flag_); 497 PrintF("Z flag: %d; ", sim_->z_flag_); 498 PrintF("C flag: %d; ", sim_->c_flag_); 499 PrintF("V flag: %d\n", sim_->v_flag_); 500 PrintF("INVALID OP flag: %d; ", sim_->inv_op_vfp_flag_); 501 PrintF("DIV BY ZERO flag: %d; ", sim_->div_zero_vfp_flag_); 502 PrintF("OVERFLOW flag: %d; ", sim_->overflow_vfp_flag_); 503 PrintF("UNDERFLOW flag: %d; ", sim_->underflow_vfp_flag_); 504 PrintF("INEXACT flag: %d;\n", sim_->inexact_vfp_flag_); 505 } else if (strcmp(cmd, "stop") == 0) { 506 int32_t value; 507 intptr_t stop_pc = sim_->get_pc() - 2 * Instruction::kInstrSize; 508 Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc); 509 Instruction* msg_address = 510 reinterpret_cast<Instruction*>(stop_pc + Instruction::kInstrSize); 511 if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) { 512 // Remove the current stop. 513 if (sim_->isStopInstruction(stop_instr)) { 514 stop_instr->SetInstructionBits(kNopInstr); 515 msg_address->SetInstructionBits(kNopInstr); 516 } else { 517 PrintF("Not at debugger stop.\n"); 518 } 519 } else if (argc == 3) { 520 // Print information about all/the specified breakpoint(s). 521 if (strcmp(arg1, "info") == 0) { 522 if (strcmp(arg2, "all") == 0) { 523 PrintF("Stop information:\n"); 524 for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { 525 sim_->PrintStopInfo(i); 526 } 527 } else if (GetValue(arg2, &value)) { 528 sim_->PrintStopInfo(value); 529 } else { 530 PrintF("Unrecognized argument.\n"); 531 } 532 } else if (strcmp(arg1, "enable") == 0) { 533 // Enable all/the specified breakpoint(s). 534 if (strcmp(arg2, "all") == 0) { 535 for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { 536 sim_->EnableStop(i); 537 } 538 } else if (GetValue(arg2, &value)) { 539 sim_->EnableStop(value); 540 } else { 541 PrintF("Unrecognized argument.\n"); 542 } 543 } else if (strcmp(arg1, "disable") == 0) { 544 // Disable all/the specified breakpoint(s). 545 if (strcmp(arg2, "all") == 0) { 546 for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { 547 sim_->DisableStop(i); 548 } 549 } else if (GetValue(arg2, &value)) { 550 sim_->DisableStop(value); 551 } else { 552 PrintF("Unrecognized argument.\n"); 553 } 554 } 555 } else { 556 PrintF("Wrong usage. Use help command for more information.\n"); 557 } 558 } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) { 559 ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim; 560 PrintF("Trace of executed instructions is %s\n", 561 ::v8::internal::FLAG_trace_sim ? "on" : "off"); 562 } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { 563 PrintF("cont\n"); 564 PrintF(" continue execution (alias 'c')\n"); 565 PrintF("stepi\n"); 566 PrintF(" step one instruction (alias 'si')\n"); 567 PrintF("print <register>\n"); 568 PrintF(" print register content (alias 'p')\n"); 569 PrintF(" use register name 'all' to print all registers\n"); 570 PrintF(" add argument 'fp' to print register pair double values\n"); 571 PrintF("printobject <register>\n"); 572 PrintF(" print an object from a register (alias 'po')\n"); 573 PrintF("flags\n"); 574 PrintF(" print flags\n"); 575 PrintF("stack [<words>]\n"); 576 PrintF(" dump stack content, default dump 10 words)\n"); 577 PrintF("mem <address> [<words>]\n"); 578 PrintF(" dump memory content, default dump 10 words)\n"); 579 PrintF("disasm [<instructions>]\n"); 580 PrintF("disasm [<address/register>]\n"); 581 PrintF("disasm [[<address/register>] <instructions>]\n"); 582 PrintF(" disassemble code, default is 10 instructions\n"); 583 PrintF(" from pc (alias 'di')\n"); 584 PrintF("gdb\n"); 585 PrintF(" enter gdb\n"); 586 PrintF("break <address>\n"); 587 PrintF(" set a break point on the address\n"); 588 PrintF("del\n"); 589 PrintF(" delete the breakpoint\n"); 590 PrintF("trace (alias 't')\n"); 591 PrintF(" toogle the tracing of all executed statements\n"); 592 PrintF("stop feature:\n"); 593 PrintF(" Description:\n"); 594 PrintF(" Stops are debug instructions inserted by\n"); 595 PrintF(" the Assembler::stop() function.\n"); 596 PrintF(" When hitting a stop, the Simulator will\n"); 597 PrintF(" stop and and give control to the ArmDebugger.\n"); 598 PrintF(" The first %d stop codes are watched:\n", 599 Simulator::kNumOfWatchedStops); 600 PrintF(" - They can be enabled / disabled: the Simulator\n"); 601 PrintF(" will / won't stop when hitting them.\n"); 602 PrintF(" - The Simulator keeps track of how many times they \n"); 603 PrintF(" are met. (See the info command.) Going over a\n"); 604 PrintF(" disabled stop still increases its counter. \n"); 605 PrintF(" Commands:\n"); 606 PrintF(" stop info all/<code> : print infos about number <code>\n"); 607 PrintF(" or all stop(s).\n"); 608 PrintF(" stop enable/disable all/<code> : enables / disables\n"); 609 PrintF(" all or number <code> stop(s)\n"); 610 PrintF(" stop unstop\n"); 611 PrintF(" ignore the stop instruction at the current location\n"); 612 PrintF(" from now on\n"); 613 } else { 614 PrintF("Unknown command: %s\n", cmd); 615 } 616 } 617 } 618 619 // Add all the breakpoints back to stop execution and enter the debugger 620 // shell when hit. 621 RedoBreakpoints(); 622 623#undef COMMAND_SIZE 624#undef ARG_SIZE 625 626#undef STR 627#undef XSTR 628} 629 630 631static bool ICacheMatch(void* one, void* two) { 632 ASSERT((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0); 633 ASSERT((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0); 634 return one == two; 635} 636 637 638static uint32_t ICacheHash(void* key) { 639 return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2; 640} 641 642 643static bool AllOnOnePage(uintptr_t start, int size) { 644 intptr_t start_page = (start & ~CachePage::kPageMask); 645 intptr_t end_page = ((start + size) & ~CachePage::kPageMask); 646 return start_page == end_page; 647} 648 649 650void Simulator::set_last_debugger_input(char* input) { 651 DeleteArray(last_debugger_input_); 652 last_debugger_input_ = input; 653} 654 655 656void Simulator::FlushICache(v8::internal::HashMap* i_cache, 657 void* start_addr, 658 size_t size) { 659 intptr_t start = reinterpret_cast<intptr_t>(start_addr); 660 int intra_line = (start & CachePage::kLineMask); 661 start -= intra_line; 662 size += intra_line; 663 size = ((size - 1) | CachePage::kLineMask) + 1; 664 int offset = (start & CachePage::kPageMask); 665 while (!AllOnOnePage(start, size - 1)) { 666 int bytes_to_flush = CachePage::kPageSize - offset; 667 FlushOnePage(i_cache, start, bytes_to_flush); 668 start += bytes_to_flush; 669 size -= bytes_to_flush; 670 ASSERT_EQ(0, start & CachePage::kPageMask); 671 offset = 0; 672 } 673 if (size != 0) { 674 FlushOnePage(i_cache, start, size); 675 } 676} 677 678 679CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) { 680 v8::internal::HashMap::Entry* entry = i_cache->Lookup(page, 681 ICacheHash(page), 682 true); 683 if (entry->value == NULL) { 684 CachePage* new_page = new CachePage(); 685 entry->value = new_page; 686 } 687 return reinterpret_cast<CachePage*>(entry->value); 688} 689 690 691// Flush from start up to and not including start + size. 692void Simulator::FlushOnePage(v8::internal::HashMap* i_cache, 693 intptr_t start, 694 int size) { 695 ASSERT(size <= CachePage::kPageSize); 696 ASSERT(AllOnOnePage(start, size - 1)); 697 ASSERT((start & CachePage::kLineMask) == 0); 698 ASSERT((size & CachePage::kLineMask) == 0); 699 void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask)); 700 int offset = (start & CachePage::kPageMask); 701 CachePage* cache_page = GetCachePage(i_cache, page); 702 char* valid_bytemap = cache_page->ValidityByte(offset); 703 memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift); 704} 705 706 707void Simulator::CheckICache(v8::internal::HashMap* i_cache, 708 Instruction* instr) { 709 intptr_t address = reinterpret_cast<intptr_t>(instr); 710 void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask)); 711 void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask)); 712 int offset = (address & CachePage::kPageMask); 713 CachePage* cache_page = GetCachePage(i_cache, page); 714 char* cache_valid_byte = cache_page->ValidityByte(offset); 715 bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID); 716 char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask); 717 if (cache_hit) { 718 // Check that the data in memory matches the contents of the I-cache. 719 CHECK(memcmp(reinterpret_cast<void*>(instr), 720 cache_page->CachedData(offset), 721 Instruction::kInstrSize) == 0); 722 } else { 723 // Cache miss. Load memory into the cache. 724 OS::MemCopy(cached_line, line, CachePage::kLineLength); 725 *cache_valid_byte = CachePage::LINE_VALID; 726 } 727} 728 729 730void Simulator::Initialize(Isolate* isolate) { 731 if (isolate->simulator_initialized()) return; 732 isolate->set_simulator_initialized(true); 733 ::v8::internal::ExternalReference::set_redirector(isolate, 734 &RedirectExternalReference); 735} 736 737 738Simulator::Simulator(Isolate* isolate) : isolate_(isolate) { 739 i_cache_ = isolate_->simulator_i_cache(); 740 if (i_cache_ == NULL) { 741 i_cache_ = new v8::internal::HashMap(&ICacheMatch); 742 isolate_->set_simulator_i_cache(i_cache_); 743 } 744 Initialize(isolate); 745 // Set up simulator support first. Some of this information is needed to 746 // setup the architecture state. 747 size_t stack_size = 1 * 1024*1024; // allocate 1MB for stack 748 stack_ = reinterpret_cast<char*>(malloc(stack_size)); 749 pc_modified_ = false; 750 icount_ = 0; 751 break_pc_ = NULL; 752 break_instr_ = 0; 753 754 // Set up architecture state. 755 // All registers are initialized to zero to start with. 756 for (int i = 0; i < num_registers; i++) { 757 registers_[i] = 0; 758 } 759 n_flag_ = false; 760 z_flag_ = false; 761 c_flag_ = false; 762 v_flag_ = false; 763 764 // Initializing VFP registers. 765 // All registers are initialized to zero to start with 766 // even though s_registers_ & d_registers_ share the same 767 // physical registers in the target. 768 for (int i = 0; i < num_d_registers * 2; i++) { 769 vfp_registers_[i] = 0; 770 } 771 n_flag_FPSCR_ = false; 772 z_flag_FPSCR_ = false; 773 c_flag_FPSCR_ = false; 774 v_flag_FPSCR_ = false; 775 FPSCR_rounding_mode_ = RZ; 776 FPSCR_default_NaN_mode_ = true; 777 778 inv_op_vfp_flag_ = false; 779 div_zero_vfp_flag_ = false; 780 overflow_vfp_flag_ = false; 781 underflow_vfp_flag_ = false; 782 inexact_vfp_flag_ = false; 783 784 // The sp is initialized to point to the bottom (high address) of the 785 // allocated stack area. To be safe in potential stack underflows we leave 786 // some buffer below. 787 registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size - 64; 788 // The lr and pc are initialized to a known bad value that will cause an 789 // access violation if the simulator ever tries to execute it. 790 registers_[pc] = bad_lr; 791 registers_[lr] = bad_lr; 792 InitializeCoverage(); 793 794 last_debugger_input_ = NULL; 795} 796 797 798// When the generated code calls an external reference we need to catch that in 799// the simulator. The external reference will be a function compiled for the 800// host architecture. We need to call that function instead of trying to 801// execute it with the simulator. We do that by redirecting the external 802// reference to a svc (Supervisor Call) instruction that is handled by 803// the simulator. We write the original destination of the jump just at a known 804// offset from the svc instruction so the simulator knows what to call. 805class Redirection { 806 public: 807 Redirection(void* external_function, ExternalReference::Type type) 808 : external_function_(external_function), 809 swi_instruction_(al | (0xf*B24) | kCallRtRedirected), 810 type_(type), 811 next_(NULL) { 812 Isolate* isolate = Isolate::Current(); 813 next_ = isolate->simulator_redirection(); 814 Simulator::current(isolate)-> 815 FlushICache(isolate->simulator_i_cache(), 816 reinterpret_cast<void*>(&swi_instruction_), 817 Instruction::kInstrSize); 818 isolate->set_simulator_redirection(this); 819 } 820 821 void* address_of_swi_instruction() { 822 return reinterpret_cast<void*>(&swi_instruction_); 823 } 824 825 void* external_function() { return external_function_; } 826 ExternalReference::Type type() { return type_; } 827 828 static Redirection* Get(void* external_function, 829 ExternalReference::Type type) { 830 Isolate* isolate = Isolate::Current(); 831 Redirection* current = isolate->simulator_redirection(); 832 for (; current != NULL; current = current->next_) { 833 if (current->external_function_ == external_function) { 834 ASSERT_EQ(current->type(), type); 835 return current; 836 } 837 } 838 return new Redirection(external_function, type); 839 } 840 841 static Redirection* FromSwiInstruction(Instruction* swi_instruction) { 842 char* addr_of_swi = reinterpret_cast<char*>(swi_instruction); 843 char* addr_of_redirection = 844 addr_of_swi - OFFSET_OF(Redirection, swi_instruction_); 845 return reinterpret_cast<Redirection*>(addr_of_redirection); 846 } 847 848 private: 849 void* external_function_; 850 uint32_t swi_instruction_; 851 ExternalReference::Type type_; 852 Redirection* next_; 853}; 854 855 856void* Simulator::RedirectExternalReference(void* external_function, 857 ExternalReference::Type type) { 858 Redirection* redirection = Redirection::Get(external_function, type); 859 return redirection->address_of_swi_instruction(); 860} 861 862 863// Get the active Simulator for the current thread. 864Simulator* Simulator::current(Isolate* isolate) { 865 v8::internal::Isolate::PerIsolateThreadData* isolate_data = 866 isolate->FindOrAllocatePerThreadDataForThisThread(); 867 ASSERT(isolate_data != NULL); 868 869 Simulator* sim = isolate_data->simulator(); 870 if (sim == NULL) { 871 // TODO(146): delete the simulator object when a thread/isolate goes away. 872 sim = new Simulator(isolate); 873 isolate_data->set_simulator(sim); 874 } 875 return sim; 876} 877 878 879// Sets the register in the architecture state. It will also deal with updating 880// Simulator internal state for special registers such as PC. 881void Simulator::set_register(int reg, int32_t value) { 882 ASSERT((reg >= 0) && (reg < num_registers)); 883 if (reg == pc) { 884 pc_modified_ = true; 885 } 886 registers_[reg] = value; 887} 888 889 890// Get the register from the architecture state. This function does handle 891// the special case of accessing the PC register. 892int32_t Simulator::get_register(int reg) const { 893 ASSERT((reg >= 0) && (reg < num_registers)); 894 // Stupid code added to avoid bug in GCC. 895 // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949 896 if (reg >= num_registers) return 0; 897 // End stupid code. 898 return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0); 899} 900 901 902double Simulator::get_double_from_register_pair(int reg) { 903 ASSERT((reg >= 0) && (reg < num_registers) && ((reg % 2) == 0)); 904 905 double dm_val = 0.0; 906 // Read the bits from the unsigned integer register_[] array 907 // into the double precision floating point value and return it. 908 char buffer[2 * sizeof(vfp_registers_[0])]; 909 OS::MemCopy(buffer, ®isters_[reg], 2 * sizeof(registers_[0])); 910 OS::MemCopy(&dm_val, buffer, 2 * sizeof(registers_[0])); 911 return(dm_val); 912} 913 914 915void Simulator::set_register_pair_from_double(int reg, double* value) { 916 ASSERT((reg >= 0) && (reg < num_registers) && ((reg % 2) == 0)); 917 memcpy(registers_ + reg, value, sizeof(*value)); 918} 919 920 921void Simulator::set_dw_register(int dreg, const int* dbl) { 922 ASSERT((dreg >= 0) && (dreg < num_d_registers)); 923 registers_[dreg] = dbl[0]; 924 registers_[dreg + 1] = dbl[1]; 925} 926 927 928void Simulator::get_d_register(int dreg, uint64_t* value) { 929 ASSERT((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters())); 930 memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value)); 931} 932 933 934void Simulator::set_d_register(int dreg, const uint64_t* value) { 935 ASSERT((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters())); 936 memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value)); 937} 938 939 940void Simulator::get_d_register(int dreg, uint32_t* value) { 941 ASSERT((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters())); 942 memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value) * 2); 943} 944 945 946void Simulator::set_d_register(int dreg, const uint32_t* value) { 947 ASSERT((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters())); 948 memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value) * 2); 949} 950 951 952void Simulator::get_q_register(int qreg, uint64_t* value) { 953 ASSERT((qreg >= 0) && (qreg < num_q_registers)); 954 memcpy(value, vfp_registers_ + qreg * 4, sizeof(*value) * 2); 955} 956 957 958void Simulator::set_q_register(int qreg, const uint64_t* value) { 959 ASSERT((qreg >= 0) && (qreg < num_q_registers)); 960 memcpy(vfp_registers_ + qreg * 4, value, sizeof(*value) * 2); 961} 962 963 964void Simulator::get_q_register(int qreg, uint32_t* value) { 965 ASSERT((qreg >= 0) && (qreg < num_q_registers)); 966 memcpy(value, vfp_registers_ + qreg * 4, sizeof(*value) * 4); 967} 968 969 970void Simulator::set_q_register(int qreg, const uint32_t* value) { 971 ASSERT((qreg >= 0) && (qreg < num_q_registers)); 972 memcpy(vfp_registers_ + qreg * 4, value, sizeof(*value) * 4); 973} 974 975 976// Raw access to the PC register. 977void Simulator::set_pc(int32_t value) { 978 pc_modified_ = true; 979 registers_[pc] = value; 980} 981 982 983bool Simulator::has_bad_pc() const { 984 return ((registers_[pc] == bad_lr) || (registers_[pc] == end_sim_pc)); 985} 986 987 988// Raw access to the PC register without the special adjustment when reading. 989int32_t Simulator::get_pc() const { 990 return registers_[pc]; 991} 992 993 994// Getting from and setting into VFP registers. 995void Simulator::set_s_register(int sreg, unsigned int value) { 996 ASSERT((sreg >= 0) && (sreg < num_s_registers)); 997 vfp_registers_[sreg] = value; 998} 999 1000 1001unsigned int Simulator::get_s_register(int sreg) const { 1002 ASSERT((sreg >= 0) && (sreg < num_s_registers)); 1003 return vfp_registers_[sreg]; 1004} 1005 1006 1007template<class InputType, int register_size> 1008void Simulator::SetVFPRegister(int reg_index, const InputType& value) { 1009 ASSERT(reg_index >= 0); 1010 if (register_size == 1) ASSERT(reg_index < num_s_registers); 1011 if (register_size == 2) ASSERT(reg_index < DwVfpRegister::NumRegisters()); 1012 1013 char buffer[register_size * sizeof(vfp_registers_[0])]; 1014 OS::MemCopy(buffer, &value, register_size * sizeof(vfp_registers_[0])); 1015 OS::MemCopy(&vfp_registers_[reg_index * register_size], buffer, 1016 register_size * sizeof(vfp_registers_[0])); 1017} 1018 1019 1020template<class ReturnType, int register_size> 1021ReturnType Simulator::GetFromVFPRegister(int reg_index) { 1022 ASSERT(reg_index >= 0); 1023 if (register_size == 1) ASSERT(reg_index < num_s_registers); 1024 if (register_size == 2) ASSERT(reg_index < DwVfpRegister::NumRegisters()); 1025 1026 ReturnType value = 0; 1027 char buffer[register_size * sizeof(vfp_registers_[0])]; 1028 OS::MemCopy(buffer, &vfp_registers_[register_size * reg_index], 1029 register_size * sizeof(vfp_registers_[0])); 1030 OS::MemCopy(&value, buffer, register_size * sizeof(vfp_registers_[0])); 1031 return value; 1032} 1033 1034 1035// Runtime FP routines take: 1036// - two double arguments 1037// - one double argument and zero or one integer arguments. 1038// All are consructed here from r0-r3 or d0, d1 and r0. 1039void Simulator::GetFpArgs(double* x, double* y, int32_t* z) { 1040 if (use_eabi_hardfloat()) { 1041 *x = get_double_from_d_register(0); 1042 *y = get_double_from_d_register(1); 1043 *z = get_register(0); 1044 } else { 1045 // Registers 0 and 1 -> x. 1046 *x = get_double_from_register_pair(0); 1047 // Register 2 and 3 -> y. 1048 *y = get_double_from_register_pair(2); 1049 // Register 2 -> z 1050 *z = get_register(2); 1051 } 1052} 1053 1054 1055// The return value is either in r0/r1 or d0. 1056void Simulator::SetFpResult(const double& result) { 1057 if (use_eabi_hardfloat()) { 1058 char buffer[2 * sizeof(vfp_registers_[0])]; 1059 OS::MemCopy(buffer, &result, sizeof(buffer)); 1060 // Copy result to d0. 1061 OS::MemCopy(vfp_registers_, buffer, sizeof(buffer)); 1062 } else { 1063 char buffer[2 * sizeof(registers_[0])]; 1064 OS::MemCopy(buffer, &result, sizeof(buffer)); 1065 // Copy result to r0 and r1. 1066 OS::MemCopy(registers_, buffer, sizeof(buffer)); 1067 } 1068} 1069 1070 1071void Simulator::TrashCallerSaveRegisters() { 1072 // We don't trash the registers with the return value. 1073 registers_[2] = 0x50Bad4U; 1074 registers_[3] = 0x50Bad4U; 1075 registers_[12] = 0x50Bad4U; 1076} 1077 1078 1079// Some Operating Systems allow unaligned access on ARMv7 targets. We 1080// assume that unaligned accesses are not allowed unless the v8 build system 1081// defines the CAN_USE_UNALIGNED_ACCESSES macro to be non-zero. 1082// The following statements below describes the behavior of the ARM CPUs 1083// that don't support unaligned access. 1084// Some ARM platforms raise an interrupt on detecting unaligned access. 1085// On others it does a funky rotation thing. For now we 1086// simply disallow unaligned reads. Note that simulator runs have the runtime 1087// system running directly on the host system and only generated code is 1088// executed in the simulator. Since the host is typically IA32 we will not 1089// get the correct ARM-like behaviour on unaligned accesses for those ARM 1090// targets that don't support unaligned loads and stores. 1091 1092 1093int Simulator::ReadW(int32_t addr, Instruction* instr) { 1094 if (FLAG_enable_unaligned_accesses || (addr & 3) == 0) { 1095 intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); 1096 return *ptr; 1097 } else { 1098 PrintF("Unaligned read at 0x%08x, pc=0x%08" V8PRIxPTR "\n", 1099 addr, 1100 reinterpret_cast<intptr_t>(instr)); 1101 UNIMPLEMENTED(); 1102 return 0; 1103 } 1104} 1105 1106 1107void Simulator::WriteW(int32_t addr, int value, Instruction* instr) { 1108 if (FLAG_enable_unaligned_accesses || (addr & 3) == 0) { 1109 intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); 1110 *ptr = value; 1111 } else { 1112 PrintF("Unaligned write at 0x%08x, pc=0x%08" V8PRIxPTR "\n", 1113 addr, 1114 reinterpret_cast<intptr_t>(instr)); 1115 UNIMPLEMENTED(); 1116 } 1117} 1118 1119 1120uint16_t Simulator::ReadHU(int32_t addr, Instruction* instr) { 1121 if (FLAG_enable_unaligned_accesses || (addr & 1) == 0) { 1122 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); 1123 return *ptr; 1124 } else { 1125 PrintF("Unaligned unsigned halfword read at 0x%08x, pc=0x%08" 1126 V8PRIxPTR "\n", 1127 addr, 1128 reinterpret_cast<intptr_t>(instr)); 1129 UNIMPLEMENTED(); 1130 return 0; 1131 } 1132} 1133 1134 1135int16_t Simulator::ReadH(int32_t addr, Instruction* instr) { 1136 if (FLAG_enable_unaligned_accesses || (addr & 1) == 0) { 1137 int16_t* ptr = reinterpret_cast<int16_t*>(addr); 1138 return *ptr; 1139 } else { 1140 PrintF("Unaligned signed halfword read at 0x%08x\n", addr); 1141 UNIMPLEMENTED(); 1142 return 0; 1143 } 1144} 1145 1146 1147void Simulator::WriteH(int32_t addr, uint16_t value, Instruction* instr) { 1148 if (FLAG_enable_unaligned_accesses || (addr & 1) == 0) { 1149 uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); 1150 *ptr = value; 1151 } else { 1152 PrintF("Unaligned unsigned halfword write at 0x%08x, pc=0x%08" 1153 V8PRIxPTR "\n", 1154 addr, 1155 reinterpret_cast<intptr_t>(instr)); 1156 UNIMPLEMENTED(); 1157 } 1158} 1159 1160 1161void Simulator::WriteH(int32_t addr, int16_t value, Instruction* instr) { 1162 if (FLAG_enable_unaligned_accesses || (addr & 1) == 0) { 1163 int16_t* ptr = reinterpret_cast<int16_t*>(addr); 1164 *ptr = value; 1165 } else { 1166 PrintF("Unaligned halfword write at 0x%08x, pc=0x%08" V8PRIxPTR "\n", 1167 addr, 1168 reinterpret_cast<intptr_t>(instr)); 1169 UNIMPLEMENTED(); 1170 } 1171} 1172 1173 1174uint8_t Simulator::ReadBU(int32_t addr) { 1175 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); 1176 return *ptr; 1177} 1178 1179 1180int8_t Simulator::ReadB(int32_t addr) { 1181 int8_t* ptr = reinterpret_cast<int8_t*>(addr); 1182 return *ptr; 1183} 1184 1185 1186void Simulator::WriteB(int32_t addr, uint8_t value) { 1187 uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); 1188 *ptr = value; 1189} 1190 1191 1192void Simulator::WriteB(int32_t addr, int8_t value) { 1193 int8_t* ptr = reinterpret_cast<int8_t*>(addr); 1194 *ptr = value; 1195} 1196 1197 1198int32_t* Simulator::ReadDW(int32_t addr) { 1199 if (FLAG_enable_unaligned_accesses || (addr & 3) == 0) { 1200 int32_t* ptr = reinterpret_cast<int32_t*>(addr); 1201 return ptr; 1202 } else { 1203 PrintF("Unaligned read at 0x%08x\n", addr); 1204 UNIMPLEMENTED(); 1205 return 0; 1206 } 1207} 1208 1209 1210void Simulator::WriteDW(int32_t addr, int32_t value1, int32_t value2) { 1211 if (FLAG_enable_unaligned_accesses || (addr & 3) == 0) { 1212 int32_t* ptr = reinterpret_cast<int32_t*>(addr); 1213 *ptr++ = value1; 1214 *ptr = value2; 1215 } else { 1216 PrintF("Unaligned write at 0x%08x\n", addr); 1217 UNIMPLEMENTED(); 1218 } 1219} 1220 1221 1222// Returns the limit of the stack area to enable checking for stack overflows. 1223uintptr_t Simulator::StackLimit() const { 1224 // Leave a safety margin of 1024 bytes to prevent overrunning the stack when 1225 // pushing values. 1226 return reinterpret_cast<uintptr_t>(stack_) + 1024; 1227} 1228 1229 1230// Unsupported instructions use Format to print an error and stop execution. 1231void Simulator::Format(Instruction* instr, const char* format) { 1232 PrintF("Simulator found unsupported instruction:\n 0x%08x: %s\n", 1233 reinterpret_cast<intptr_t>(instr), format); 1234 UNIMPLEMENTED(); 1235} 1236 1237 1238// Checks if the current instruction should be executed based on its 1239// condition bits. 1240bool Simulator::ConditionallyExecute(Instruction* instr) { 1241 switch (instr->ConditionField()) { 1242 case eq: return z_flag_; 1243 case ne: return !z_flag_; 1244 case cs: return c_flag_; 1245 case cc: return !c_flag_; 1246 case mi: return n_flag_; 1247 case pl: return !n_flag_; 1248 case vs: return v_flag_; 1249 case vc: return !v_flag_; 1250 case hi: return c_flag_ && !z_flag_; 1251 case ls: return !c_flag_ || z_flag_; 1252 case ge: return n_flag_ == v_flag_; 1253 case lt: return n_flag_ != v_flag_; 1254 case gt: return !z_flag_ && (n_flag_ == v_flag_); 1255 case le: return z_flag_ || (n_flag_ != v_flag_); 1256 case al: return true; 1257 default: UNREACHABLE(); 1258 } 1259 return false; 1260} 1261 1262 1263// Calculate and set the Negative and Zero flags. 1264void Simulator::SetNZFlags(int32_t val) { 1265 n_flag_ = (val < 0); 1266 z_flag_ = (val == 0); 1267} 1268 1269 1270// Set the Carry flag. 1271void Simulator::SetCFlag(bool val) { 1272 c_flag_ = val; 1273} 1274 1275 1276// Set the oVerflow flag. 1277void Simulator::SetVFlag(bool val) { 1278 v_flag_ = val; 1279} 1280 1281 1282// Calculate C flag value for additions. 1283bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) { 1284 uint32_t uleft = static_cast<uint32_t>(left); 1285 uint32_t uright = static_cast<uint32_t>(right); 1286 uint32_t urest = 0xffffffffU - uleft; 1287 1288 return (uright > urest) || 1289 (carry && (((uright + 1) > urest) || (uright > (urest - 1)))); 1290} 1291 1292 1293// Calculate C flag value for subtractions. 1294bool Simulator::BorrowFrom(int32_t left, int32_t right) { 1295 uint32_t uleft = static_cast<uint32_t>(left); 1296 uint32_t uright = static_cast<uint32_t>(right); 1297 1298 return (uright > uleft); 1299} 1300 1301 1302// Calculate V flag value for additions and subtractions. 1303bool Simulator::OverflowFrom(int32_t alu_out, 1304 int32_t left, int32_t right, bool addition) { 1305 bool overflow; 1306 if (addition) { 1307 // operands have the same sign 1308 overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0)) 1309 // and operands and result have different sign 1310 && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); 1311 } else { 1312 // operands have different signs 1313 overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0)) 1314 // and first operand and result have different signs 1315 && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); 1316 } 1317 return overflow; 1318} 1319 1320 1321// Support for VFP comparisons. 1322void Simulator::Compute_FPSCR_Flags(double val1, double val2) { 1323 if (std::isnan(val1) || std::isnan(val2)) { 1324 n_flag_FPSCR_ = false; 1325 z_flag_FPSCR_ = false; 1326 c_flag_FPSCR_ = true; 1327 v_flag_FPSCR_ = true; 1328 // All non-NaN cases. 1329 } else if (val1 == val2) { 1330 n_flag_FPSCR_ = false; 1331 z_flag_FPSCR_ = true; 1332 c_flag_FPSCR_ = true; 1333 v_flag_FPSCR_ = false; 1334 } else if (val1 < val2) { 1335 n_flag_FPSCR_ = true; 1336 z_flag_FPSCR_ = false; 1337 c_flag_FPSCR_ = false; 1338 v_flag_FPSCR_ = false; 1339 } else { 1340 // Case when (val1 > val2). 1341 n_flag_FPSCR_ = false; 1342 z_flag_FPSCR_ = false; 1343 c_flag_FPSCR_ = true; 1344 v_flag_FPSCR_ = false; 1345 } 1346} 1347 1348 1349void Simulator::Copy_FPSCR_to_APSR() { 1350 n_flag_ = n_flag_FPSCR_; 1351 z_flag_ = z_flag_FPSCR_; 1352 c_flag_ = c_flag_FPSCR_; 1353 v_flag_ = v_flag_FPSCR_; 1354} 1355 1356 1357// Addressing Mode 1 - Data-processing operands: 1358// Get the value based on the shifter_operand with register. 1359int32_t Simulator::GetShiftRm(Instruction* instr, bool* carry_out) { 1360 ShiftOp shift = instr->ShiftField(); 1361 int shift_amount = instr->ShiftAmountValue(); 1362 int32_t result = get_register(instr->RmValue()); 1363 if (instr->Bit(4) == 0) { 1364 // by immediate 1365 if ((shift == ROR) && (shift_amount == 0)) { 1366 UNIMPLEMENTED(); 1367 return result; 1368 } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) { 1369 shift_amount = 32; 1370 } 1371 switch (shift) { 1372 case ASR: { 1373 if (shift_amount == 0) { 1374 if (result < 0) { 1375 result = 0xffffffff; 1376 *carry_out = true; 1377 } else { 1378 result = 0; 1379 *carry_out = false; 1380 } 1381 } else { 1382 result >>= (shift_amount - 1); 1383 *carry_out = (result & 1) == 1; 1384 result >>= 1; 1385 } 1386 break; 1387 } 1388 1389 case LSL: { 1390 if (shift_amount == 0) { 1391 *carry_out = c_flag_; 1392 } else { 1393 result <<= (shift_amount - 1); 1394 *carry_out = (result < 0); 1395 result <<= 1; 1396 } 1397 break; 1398 } 1399 1400 case LSR: { 1401 if (shift_amount == 0) { 1402 result = 0; 1403 *carry_out = c_flag_; 1404 } else { 1405 uint32_t uresult = static_cast<uint32_t>(result); 1406 uresult >>= (shift_amount - 1); 1407 *carry_out = (uresult & 1) == 1; 1408 uresult >>= 1; 1409 result = static_cast<int32_t>(uresult); 1410 } 1411 break; 1412 } 1413 1414 case ROR: { 1415 if (shift_amount == 0) { 1416 *carry_out = c_flag_; 1417 } else { 1418 uint32_t left = static_cast<uint32_t>(result) >> shift_amount; 1419 uint32_t right = static_cast<uint32_t>(result) << (32 - shift_amount); 1420 result = right | left; 1421 *carry_out = (static_cast<uint32_t>(result) >> 31) != 0; 1422 } 1423 break; 1424 } 1425 1426 default: { 1427 UNREACHABLE(); 1428 break; 1429 } 1430 } 1431 } else { 1432 // by register 1433 int rs = instr->RsValue(); 1434 shift_amount = get_register(rs) &0xff; 1435 switch (shift) { 1436 case ASR: { 1437 if (shift_amount == 0) { 1438 *carry_out = c_flag_; 1439 } else if (shift_amount < 32) { 1440 result >>= (shift_amount - 1); 1441 *carry_out = (result & 1) == 1; 1442 result >>= 1; 1443 } else { 1444 ASSERT(shift_amount >= 32); 1445 if (result < 0) { 1446 *carry_out = true; 1447 result = 0xffffffff; 1448 } else { 1449 *carry_out = false; 1450 result = 0; 1451 } 1452 } 1453 break; 1454 } 1455 1456 case LSL: { 1457 if (shift_amount == 0) { 1458 *carry_out = c_flag_; 1459 } else if (shift_amount < 32) { 1460 result <<= (shift_amount - 1); 1461 *carry_out = (result < 0); 1462 result <<= 1; 1463 } else if (shift_amount == 32) { 1464 *carry_out = (result & 1) == 1; 1465 result = 0; 1466 } else { 1467 ASSERT(shift_amount > 32); 1468 *carry_out = false; 1469 result = 0; 1470 } 1471 break; 1472 } 1473 1474 case LSR: { 1475 if (shift_amount == 0) { 1476 *carry_out = c_flag_; 1477 } else if (shift_amount < 32) { 1478 uint32_t uresult = static_cast<uint32_t>(result); 1479 uresult >>= (shift_amount - 1); 1480 *carry_out = (uresult & 1) == 1; 1481 uresult >>= 1; 1482 result = static_cast<int32_t>(uresult); 1483 } else if (shift_amount == 32) { 1484 *carry_out = (result < 0); 1485 result = 0; 1486 } else { 1487 *carry_out = false; 1488 result = 0; 1489 } 1490 break; 1491 } 1492 1493 case ROR: { 1494 if (shift_amount == 0) { 1495 *carry_out = c_flag_; 1496 } else { 1497 uint32_t left = static_cast<uint32_t>(result) >> shift_amount; 1498 uint32_t right = static_cast<uint32_t>(result) << (32 - shift_amount); 1499 result = right | left; 1500 *carry_out = (static_cast<uint32_t>(result) >> 31) != 0; 1501 } 1502 break; 1503 } 1504 1505 default: { 1506 UNREACHABLE(); 1507 break; 1508 } 1509 } 1510 } 1511 return result; 1512} 1513 1514 1515// Addressing Mode 1 - Data-processing operands: 1516// Get the value based on the shifter_operand with immediate. 1517int32_t Simulator::GetImm(Instruction* instr, bool* carry_out) { 1518 int rotate = instr->RotateValue() * 2; 1519 int immed8 = instr->Immed8Value(); 1520 int imm = (immed8 >> rotate) | (immed8 << (32 - rotate)); 1521 *carry_out = (rotate == 0) ? c_flag_ : (imm < 0); 1522 return imm; 1523} 1524 1525 1526static int count_bits(int bit_vector) { 1527 int count = 0; 1528 while (bit_vector != 0) { 1529 if ((bit_vector & 1) != 0) { 1530 count++; 1531 } 1532 bit_vector >>= 1; 1533 } 1534 return count; 1535} 1536 1537 1538int32_t Simulator::ProcessPU(Instruction* instr, 1539 int num_regs, 1540 int reg_size, 1541 intptr_t* start_address, 1542 intptr_t* end_address) { 1543 int rn = instr->RnValue(); 1544 int32_t rn_val = get_register(rn); 1545 switch (instr->PUField()) { 1546 case da_x: { 1547 UNIMPLEMENTED(); 1548 break; 1549 } 1550 case ia_x: { 1551 *start_address = rn_val; 1552 *end_address = rn_val + (num_regs * reg_size) - reg_size; 1553 rn_val = rn_val + (num_regs * reg_size); 1554 break; 1555 } 1556 case db_x: { 1557 *start_address = rn_val - (num_regs * reg_size); 1558 *end_address = rn_val - reg_size; 1559 rn_val = *start_address; 1560 break; 1561 } 1562 case ib_x: { 1563 *start_address = rn_val + reg_size; 1564 *end_address = rn_val + (num_regs * reg_size); 1565 rn_val = *end_address; 1566 break; 1567 } 1568 default: { 1569 UNREACHABLE(); 1570 break; 1571 } 1572 } 1573 return rn_val; 1574} 1575 1576 1577// Addressing Mode 4 - Load and Store Multiple 1578void Simulator::HandleRList(Instruction* instr, bool load) { 1579 int rlist = instr->RlistValue(); 1580 int num_regs = count_bits(rlist); 1581 1582 intptr_t start_address = 0; 1583 intptr_t end_address = 0; 1584 int32_t rn_val = 1585 ProcessPU(instr, num_regs, kPointerSize, &start_address, &end_address); 1586 1587 intptr_t* address = reinterpret_cast<intptr_t*>(start_address); 1588 // Catch null pointers a little earlier. 1589 ASSERT(start_address > 8191 || start_address < 0); 1590 int reg = 0; 1591 while (rlist != 0) { 1592 if ((rlist & 1) != 0) { 1593 if (load) { 1594 set_register(reg, *address); 1595 } else { 1596 *address = get_register(reg); 1597 } 1598 address += 1; 1599 } 1600 reg++; 1601 rlist >>= 1; 1602 } 1603 ASSERT(end_address == ((intptr_t)address) - 4); 1604 if (instr->HasW()) { 1605 set_register(instr->RnValue(), rn_val); 1606 } 1607} 1608 1609 1610// Addressing Mode 6 - Load and Store Multiple Coprocessor registers. 1611void Simulator::HandleVList(Instruction* instr) { 1612 VFPRegPrecision precision = 1613 (instr->SzValue() == 0) ? kSinglePrecision : kDoublePrecision; 1614 int operand_size = (precision == kSinglePrecision) ? 4 : 8; 1615 1616 bool load = (instr->VLValue() == 0x1); 1617 1618 int vd; 1619 int num_regs; 1620 vd = instr->VFPDRegValue(precision); 1621 if (precision == kSinglePrecision) { 1622 num_regs = instr->Immed8Value(); 1623 } else { 1624 num_regs = instr->Immed8Value() / 2; 1625 } 1626 1627 intptr_t start_address = 0; 1628 intptr_t end_address = 0; 1629 int32_t rn_val = 1630 ProcessPU(instr, num_regs, operand_size, &start_address, &end_address); 1631 1632 intptr_t* address = reinterpret_cast<intptr_t*>(start_address); 1633 for (int reg = vd; reg < vd + num_regs; reg++) { 1634 if (precision == kSinglePrecision) { 1635 if (load) { 1636 set_s_register_from_sinteger( 1637 reg, ReadW(reinterpret_cast<int32_t>(address), instr)); 1638 } else { 1639 WriteW(reinterpret_cast<int32_t>(address), 1640 get_sinteger_from_s_register(reg), instr); 1641 } 1642 address += 1; 1643 } else { 1644 if (load) { 1645 int32_t data[] = { 1646 ReadW(reinterpret_cast<int32_t>(address), instr), 1647 ReadW(reinterpret_cast<int32_t>(address + 1), instr) 1648 }; 1649 double d; 1650 OS::MemCopy(&d, data, 8); 1651 set_d_register_from_double(reg, d); 1652 } else { 1653 int32_t data[2]; 1654 double d = get_double_from_d_register(reg); 1655 OS::MemCopy(data, &d, 8); 1656 WriteW(reinterpret_cast<int32_t>(address), data[0], instr); 1657 WriteW(reinterpret_cast<int32_t>(address + 1), data[1], instr); 1658 } 1659 address += 2; 1660 } 1661 } 1662 ASSERT(reinterpret_cast<intptr_t>(address) - operand_size == end_address); 1663 if (instr->HasW()) { 1664 set_register(instr->RnValue(), rn_val); 1665 } 1666} 1667 1668 1669// Calls into the V8 runtime are based on this very simple interface. 1670// Note: To be able to return two values from some calls the code in runtime.cc 1671// uses the ObjectPair which is essentially two 32-bit values stuffed into a 1672// 64-bit value. With the code below we assume that all runtime calls return 1673// 64 bits of result. If they don't, the r1 result register contains a bogus 1674// value, which is fine because it is caller-saved. 1675typedef int64_t (*SimulatorRuntimeCall)(int32_t arg0, 1676 int32_t arg1, 1677 int32_t arg2, 1678 int32_t arg3, 1679 int32_t arg4, 1680 int32_t arg5); 1681 1682// These prototypes handle the four types of FP calls. 1683typedef int64_t (*SimulatorRuntimeCompareCall)(double darg0, double darg1); 1684typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1); 1685typedef double (*SimulatorRuntimeFPCall)(double darg0); 1686typedef double (*SimulatorRuntimeFPIntCall)(double darg0, int32_t arg0); 1687 1688// This signature supports direct call in to API function native callback 1689// (refer to InvocationCallback in v8.h). 1690typedef void (*SimulatorRuntimeDirectApiCall)(int32_t arg0); 1691typedef void (*SimulatorRuntimeProfilingApiCall)(int32_t arg0, int32_t arg1); 1692 1693// This signature supports direct call to accessor getter callback. 1694typedef void (*SimulatorRuntimeDirectGetterCall)(int32_t arg0, int32_t arg1); 1695typedef void (*SimulatorRuntimeProfilingGetterCall)( 1696 int32_t arg0, int32_t arg1, int32_t arg2); 1697 1698// Software interrupt instructions are used by the simulator to call into the 1699// C-based V8 runtime. 1700void Simulator::SoftwareInterrupt(Instruction* instr) { 1701 int svc = instr->SvcValue(); 1702 switch (svc) { 1703 case kCallRtRedirected: { 1704 // Check if stack is aligned. Error if not aligned is reported below to 1705 // include information on the function called. 1706 bool stack_aligned = 1707 (get_register(sp) 1708 & (::v8::internal::FLAG_sim_stack_alignment - 1)) == 0; 1709 Redirection* redirection = Redirection::FromSwiInstruction(instr); 1710 int32_t arg0 = get_register(r0); 1711 int32_t arg1 = get_register(r1); 1712 int32_t arg2 = get_register(r2); 1713 int32_t arg3 = get_register(r3); 1714 int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp)); 1715 int32_t arg4 = stack_pointer[0]; 1716 int32_t arg5 = stack_pointer[1]; 1717 bool fp_call = 1718 (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) || 1719 (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) || 1720 (redirection->type() == ExternalReference::BUILTIN_FP_CALL) || 1721 (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL); 1722 // This is dodgy but it works because the C entry stubs are never moved. 1723 // See comment in codegen-arm.cc and bug 1242173. 1724 int32_t saved_lr = get_register(lr); 1725 intptr_t external = 1726 reinterpret_cast<intptr_t>(redirection->external_function()); 1727 if (fp_call) { 1728 double dval0, dval1; // one or two double parameters 1729 int32_t ival; // zero or one integer parameters 1730 int64_t iresult = 0; // integer return value 1731 double dresult = 0; // double return value 1732 GetFpArgs(&dval0, &dval1, &ival); 1733 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1734 SimulatorRuntimeCall generic_target = 1735 reinterpret_cast<SimulatorRuntimeCall>(external); 1736 switch (redirection->type()) { 1737 case ExternalReference::BUILTIN_FP_FP_CALL: 1738 case ExternalReference::BUILTIN_COMPARE_CALL: 1739 PrintF("Call to host function at %p with args %f, %f", 1740 FUNCTION_ADDR(generic_target), dval0, dval1); 1741 break; 1742 case ExternalReference::BUILTIN_FP_CALL: 1743 PrintF("Call to host function at %p with arg %f", 1744 FUNCTION_ADDR(generic_target), dval0); 1745 break; 1746 case ExternalReference::BUILTIN_FP_INT_CALL: 1747 PrintF("Call to host function at %p with args %f, %d", 1748 FUNCTION_ADDR(generic_target), dval0, ival); 1749 break; 1750 default: 1751 UNREACHABLE(); 1752 break; 1753 } 1754 if (!stack_aligned) { 1755 PrintF(" with unaligned stack %08x\n", get_register(sp)); 1756 } 1757 PrintF("\n"); 1758 } 1759 CHECK(stack_aligned); 1760 switch (redirection->type()) { 1761 case ExternalReference::BUILTIN_COMPARE_CALL: { 1762 SimulatorRuntimeCompareCall target = 1763 reinterpret_cast<SimulatorRuntimeCompareCall>(external); 1764 iresult = target(dval0, dval1); 1765 set_register(r0, static_cast<int32_t>(iresult)); 1766 set_register(r1, static_cast<int32_t>(iresult >> 32)); 1767 break; 1768 } 1769 case ExternalReference::BUILTIN_FP_FP_CALL: { 1770 SimulatorRuntimeFPFPCall target = 1771 reinterpret_cast<SimulatorRuntimeFPFPCall>(external); 1772 dresult = target(dval0, dval1); 1773 SetFpResult(dresult); 1774 break; 1775 } 1776 case ExternalReference::BUILTIN_FP_CALL: { 1777 SimulatorRuntimeFPCall target = 1778 reinterpret_cast<SimulatorRuntimeFPCall>(external); 1779 dresult = target(dval0); 1780 SetFpResult(dresult); 1781 break; 1782 } 1783 case ExternalReference::BUILTIN_FP_INT_CALL: { 1784 SimulatorRuntimeFPIntCall target = 1785 reinterpret_cast<SimulatorRuntimeFPIntCall>(external); 1786 dresult = target(dval0, ival); 1787 SetFpResult(dresult); 1788 break; 1789 } 1790 default: 1791 UNREACHABLE(); 1792 break; 1793 } 1794 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1795 switch (redirection->type()) { 1796 case ExternalReference::BUILTIN_COMPARE_CALL: 1797 PrintF("Returned %08x\n", static_cast<int32_t>(iresult)); 1798 break; 1799 case ExternalReference::BUILTIN_FP_FP_CALL: 1800 case ExternalReference::BUILTIN_FP_CALL: 1801 case ExternalReference::BUILTIN_FP_INT_CALL: 1802 PrintF("Returned %f\n", dresult); 1803 break; 1804 default: 1805 UNREACHABLE(); 1806 break; 1807 } 1808 } 1809 } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) { 1810 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1811 PrintF("Call to host function at %p args %08x", 1812 reinterpret_cast<void*>(external), arg0); 1813 if (!stack_aligned) { 1814 PrintF(" with unaligned stack %08x\n", get_register(sp)); 1815 } 1816 PrintF("\n"); 1817 } 1818 CHECK(stack_aligned); 1819 SimulatorRuntimeDirectApiCall target = 1820 reinterpret_cast<SimulatorRuntimeDirectApiCall>(external); 1821 target(arg0); 1822 } else if ( 1823 redirection->type() == ExternalReference::PROFILING_API_CALL) { 1824 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1825 PrintF("Call to host function at %p args %08x %08x", 1826 reinterpret_cast<void*>(external), arg0, arg1); 1827 if (!stack_aligned) { 1828 PrintF(" with unaligned stack %08x\n", get_register(sp)); 1829 } 1830 PrintF("\n"); 1831 } 1832 CHECK(stack_aligned); 1833 SimulatorRuntimeProfilingApiCall target = 1834 reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external); 1835 target(arg0, arg1); 1836 } else if ( 1837 redirection->type() == ExternalReference::DIRECT_GETTER_CALL) { 1838 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1839 PrintF("Call to host function at %p args %08x %08x", 1840 reinterpret_cast<void*>(external), arg0, arg1); 1841 if (!stack_aligned) { 1842 PrintF(" with unaligned stack %08x\n", get_register(sp)); 1843 } 1844 PrintF("\n"); 1845 } 1846 CHECK(stack_aligned); 1847 SimulatorRuntimeDirectGetterCall target = 1848 reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external); 1849 target(arg0, arg1); 1850 } else if ( 1851 redirection->type() == ExternalReference::PROFILING_GETTER_CALL) { 1852 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1853 PrintF("Call to host function at %p args %08x %08x %08x", 1854 reinterpret_cast<void*>(external), arg0, arg1, arg2); 1855 if (!stack_aligned) { 1856 PrintF(" with unaligned stack %08x\n", get_register(sp)); 1857 } 1858 PrintF("\n"); 1859 } 1860 CHECK(stack_aligned); 1861 SimulatorRuntimeProfilingGetterCall target = 1862 reinterpret_cast<SimulatorRuntimeProfilingGetterCall>( 1863 external); 1864 target(arg0, arg1, arg2); 1865 } else { 1866 // builtin call. 1867 ASSERT(redirection->type() == ExternalReference::BUILTIN_CALL); 1868 SimulatorRuntimeCall target = 1869 reinterpret_cast<SimulatorRuntimeCall>(external); 1870 if (::v8::internal::FLAG_trace_sim || !stack_aligned) { 1871 PrintF( 1872 "Call to host function at %p " 1873 "args %08x, %08x, %08x, %08x, %08x, %08x", 1874 FUNCTION_ADDR(target), 1875 arg0, 1876 arg1, 1877 arg2, 1878 arg3, 1879 arg4, 1880 arg5); 1881 if (!stack_aligned) { 1882 PrintF(" with unaligned stack %08x\n", get_register(sp)); 1883 } 1884 PrintF("\n"); 1885 } 1886 CHECK(stack_aligned); 1887 int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5); 1888 int32_t lo_res = static_cast<int32_t>(result); 1889 int32_t hi_res = static_cast<int32_t>(result >> 32); 1890 if (::v8::internal::FLAG_trace_sim) { 1891 PrintF("Returned %08x\n", lo_res); 1892 } 1893 set_register(r0, lo_res); 1894 set_register(r1, hi_res); 1895 } 1896 set_register(lr, saved_lr); 1897 set_pc(get_register(lr)); 1898 break; 1899 } 1900 case kBreakpoint: { 1901 ArmDebugger dbg(this); 1902 dbg.Debug(); 1903 break; 1904 } 1905 // stop uses all codes greater than 1 << 23. 1906 default: { 1907 if (svc >= (1 << 23)) { 1908 uint32_t code = svc & kStopCodeMask; 1909 if (isWatchedStop(code)) { 1910 IncreaseStopCounter(code); 1911 } 1912 // Stop if it is enabled, otherwise go on jumping over the stop 1913 // and the message address. 1914 if (isEnabledStop(code)) { 1915 ArmDebugger dbg(this); 1916 dbg.Stop(instr); 1917 } else { 1918 set_pc(get_pc() + 2 * Instruction::kInstrSize); 1919 } 1920 } else { 1921 // This is not a valid svc code. 1922 UNREACHABLE(); 1923 break; 1924 } 1925 } 1926 } 1927} 1928 1929 1930double Simulator::canonicalizeNaN(double value) { 1931 return (FPSCR_default_NaN_mode_ && std::isnan(value)) ? 1932 FixedDoubleArray::canonical_not_the_hole_nan_as_double() : value; 1933} 1934 1935 1936// Stop helper functions. 1937bool Simulator::isStopInstruction(Instruction* instr) { 1938 return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode); 1939} 1940 1941 1942bool Simulator::isWatchedStop(uint32_t code) { 1943 ASSERT(code <= kMaxStopCode); 1944 return code < kNumOfWatchedStops; 1945} 1946 1947 1948bool Simulator::isEnabledStop(uint32_t code) { 1949 ASSERT(code <= kMaxStopCode); 1950 // Unwatched stops are always enabled. 1951 return !isWatchedStop(code) || 1952 !(watched_stops_[code].count & kStopDisabledBit); 1953} 1954 1955 1956void Simulator::EnableStop(uint32_t code) { 1957 ASSERT(isWatchedStop(code)); 1958 if (!isEnabledStop(code)) { 1959 watched_stops_[code].count &= ~kStopDisabledBit; 1960 } 1961} 1962 1963 1964void Simulator::DisableStop(uint32_t code) { 1965 ASSERT(isWatchedStop(code)); 1966 if (isEnabledStop(code)) { 1967 watched_stops_[code].count |= kStopDisabledBit; 1968 } 1969} 1970 1971 1972void Simulator::IncreaseStopCounter(uint32_t code) { 1973 ASSERT(code <= kMaxStopCode); 1974 ASSERT(isWatchedStop(code)); 1975 if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) { 1976 PrintF("Stop counter for code %i has overflowed.\n" 1977 "Enabling this code and reseting the counter to 0.\n", code); 1978 watched_stops_[code].count = 0; 1979 EnableStop(code); 1980 } else { 1981 watched_stops_[code].count++; 1982 } 1983} 1984 1985 1986// Print a stop status. 1987void Simulator::PrintStopInfo(uint32_t code) { 1988 ASSERT(code <= kMaxStopCode); 1989 if (!isWatchedStop(code)) { 1990 PrintF("Stop not watched."); 1991 } else { 1992 const char* state = isEnabledStop(code) ? "Enabled" : "Disabled"; 1993 int32_t count = watched_stops_[code].count & ~kStopDisabledBit; 1994 // Don't print the state of unused breakpoints. 1995 if (count != 0) { 1996 if (watched_stops_[code].desc) { 1997 PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", 1998 code, code, state, count, watched_stops_[code].desc); 1999 } else { 2000 PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", 2001 code, code, state, count); 2002 } 2003 } 2004 } 2005} 2006 2007 2008// Handle execution based on instruction types. 2009 2010// Instruction types 0 and 1 are both rolled into one function because they 2011// only differ in the handling of the shifter_operand. 2012void Simulator::DecodeType01(Instruction* instr) { 2013 int type = instr->TypeValue(); 2014 if ((type == 0) && instr->IsSpecialType0()) { 2015 // multiply instruction or extra loads and stores 2016 if (instr->Bits(7, 4) == 9) { 2017 if (instr->Bit(24) == 0) { 2018 // Raw field decoding here. Multiply instructions have their Rd in 2019 // funny places. 2020 int rn = instr->RnValue(); 2021 int rm = instr->RmValue(); 2022 int rs = instr->RsValue(); 2023 int32_t rs_val = get_register(rs); 2024 int32_t rm_val = get_register(rm); 2025 if (instr->Bit(23) == 0) { 2026 if (instr->Bit(21) == 0) { 2027 // The MUL instruction description (A 4.1.33) refers to Rd as being 2028 // the destination for the operation, but it confusingly uses the 2029 // Rn field to encode it. 2030 // Format(instr, "mul'cond's 'rn, 'rm, 'rs"); 2031 int rd = rn; // Remap the rn field to the Rd register. 2032 int32_t alu_out = rm_val * rs_val; 2033 set_register(rd, alu_out); 2034 if (instr->HasS()) { 2035 SetNZFlags(alu_out); 2036 } 2037 } else { 2038 int rd = instr->RdValue(); 2039 int32_t acc_value = get_register(rd); 2040 if (instr->Bit(22) == 0) { 2041 // The MLA instruction description (A 4.1.28) refers to the order 2042 // of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the 2043 // Rn field to encode the Rd register and the Rd field to encode 2044 // the Rn register. 2045 // Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd"); 2046 int32_t mul_out = rm_val * rs_val; 2047 int32_t result = acc_value + mul_out; 2048 set_register(rn, result); 2049 } else { 2050 // Format(instr, "mls'cond's 'rn, 'rm, 'rs, 'rd"); 2051 int32_t mul_out = rm_val * rs_val; 2052 int32_t result = acc_value - mul_out; 2053 set_register(rn, result); 2054 } 2055 } 2056 } else { 2057 // The signed/long multiply instructions use the terms RdHi and RdLo 2058 // when referring to the target registers. They are mapped to the Rn 2059 // and Rd fields as follows: 2060 // RdLo == Rd 2061 // RdHi == Rn (This is confusingly stored in variable rd here 2062 // because the mul instruction from above uses the 2063 // Rn field to encode the Rd register. Good luck figuring 2064 // this out without reading the ARM instruction manual 2065 // at a very detailed level.) 2066 // Format(instr, "'um'al'cond's 'rd, 'rn, 'rs, 'rm"); 2067 int rd_hi = rn; // Remap the rn field to the RdHi register. 2068 int rd_lo = instr->RdValue(); 2069 int32_t hi_res = 0; 2070 int32_t lo_res = 0; 2071 if (instr->Bit(22) == 1) { 2072 int64_t left_op = static_cast<int32_t>(rm_val); 2073 int64_t right_op = static_cast<int32_t>(rs_val); 2074 uint64_t result = left_op * right_op; 2075 hi_res = static_cast<int32_t>(result >> 32); 2076 lo_res = static_cast<int32_t>(result & 0xffffffff); 2077 } else { 2078 // unsigned multiply 2079 uint64_t left_op = static_cast<uint32_t>(rm_val); 2080 uint64_t right_op = static_cast<uint32_t>(rs_val); 2081 uint64_t result = left_op * right_op; 2082 hi_res = static_cast<int32_t>(result >> 32); 2083 lo_res = static_cast<int32_t>(result & 0xffffffff); 2084 } 2085 set_register(rd_lo, lo_res); 2086 set_register(rd_hi, hi_res); 2087 if (instr->HasS()) { 2088 UNIMPLEMENTED(); 2089 } 2090 } 2091 } else { 2092 UNIMPLEMENTED(); // Not used by V8. 2093 } 2094 } else { 2095 // extra load/store instructions 2096 int rd = instr->RdValue(); 2097 int rn = instr->RnValue(); 2098 int32_t rn_val = get_register(rn); 2099 int32_t addr = 0; 2100 if (instr->Bit(22) == 0) { 2101 int rm = instr->RmValue(); 2102 int32_t rm_val = get_register(rm); 2103 switch (instr->PUField()) { 2104 case da_x: { 2105 // Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm"); 2106 ASSERT(!instr->HasW()); 2107 addr = rn_val; 2108 rn_val -= rm_val; 2109 set_register(rn, rn_val); 2110 break; 2111 } 2112 case ia_x: { 2113 // Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm"); 2114 ASSERT(!instr->HasW()); 2115 addr = rn_val; 2116 rn_val += rm_val; 2117 set_register(rn, rn_val); 2118 break; 2119 } 2120 case db_x: { 2121 // Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w"); 2122 rn_val -= rm_val; 2123 addr = rn_val; 2124 if (instr->HasW()) { 2125 set_register(rn, rn_val); 2126 } 2127 break; 2128 } 2129 case ib_x: { 2130 // Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w"); 2131 rn_val += rm_val; 2132 addr = rn_val; 2133 if (instr->HasW()) { 2134 set_register(rn, rn_val); 2135 } 2136 break; 2137 } 2138 default: { 2139 // The PU field is a 2-bit field. 2140 UNREACHABLE(); 2141 break; 2142 } 2143 } 2144 } else { 2145 int32_t imm_val = (instr->ImmedHValue() << 4) | instr->ImmedLValue(); 2146 switch (instr->PUField()) { 2147 case da_x: { 2148 // Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8"); 2149 ASSERT(!instr->HasW()); 2150 addr = rn_val; 2151 rn_val -= imm_val; 2152 set_register(rn, rn_val); 2153 break; 2154 } 2155 case ia_x: { 2156 // Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8"); 2157 ASSERT(!instr->HasW()); 2158 addr = rn_val; 2159 rn_val += imm_val; 2160 set_register(rn, rn_val); 2161 break; 2162 } 2163 case db_x: { 2164 // Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w"); 2165 rn_val -= imm_val; 2166 addr = rn_val; 2167 if (instr->HasW()) { 2168 set_register(rn, rn_val); 2169 } 2170 break; 2171 } 2172 case ib_x: { 2173 // Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w"); 2174 rn_val += imm_val; 2175 addr = rn_val; 2176 if (instr->HasW()) { 2177 set_register(rn, rn_val); 2178 } 2179 break; 2180 } 2181 default: { 2182 // The PU field is a 2-bit field. 2183 UNREACHABLE(); 2184 break; 2185 } 2186 } 2187 } 2188 if (((instr->Bits(7, 4) & 0xd) == 0xd) && (instr->Bit(20) == 0)) { 2189 ASSERT((rd % 2) == 0); 2190 if (instr->HasH()) { 2191 // The strd instruction. 2192 int32_t value1 = get_register(rd); 2193 int32_t value2 = get_register(rd+1); 2194 WriteDW(addr, value1, value2); 2195 } else { 2196 // The ldrd instruction. 2197 int* rn_data = ReadDW(addr); 2198 set_dw_register(rd, rn_data); 2199 } 2200 } else if (instr->HasH()) { 2201 if (instr->HasSign()) { 2202 if (instr->HasL()) { 2203 int16_t val = ReadH(addr, instr); 2204 set_register(rd, val); 2205 } else { 2206 int16_t val = get_register(rd); 2207 WriteH(addr, val, instr); 2208 } 2209 } else { 2210 if (instr->HasL()) { 2211 uint16_t val = ReadHU(addr, instr); 2212 set_register(rd, val); 2213 } else { 2214 uint16_t val = get_register(rd); 2215 WriteH(addr, val, instr); 2216 } 2217 } 2218 } else { 2219 // signed byte loads 2220 ASSERT(instr->HasSign()); 2221 ASSERT(instr->HasL()); 2222 int8_t val = ReadB(addr); 2223 set_register(rd, val); 2224 } 2225 return; 2226 } 2227 } else if ((type == 0) && instr->IsMiscType0()) { 2228 if (instr->Bits(22, 21) == 1) { 2229 int rm = instr->RmValue(); 2230 switch (instr->BitField(7, 4)) { 2231 case BX: 2232 set_pc(get_register(rm)); 2233 break; 2234 case BLX: { 2235 uint32_t old_pc = get_pc(); 2236 set_pc(get_register(rm)); 2237 set_register(lr, old_pc + Instruction::kInstrSize); 2238 break; 2239 } 2240 case BKPT: { 2241 ArmDebugger dbg(this); 2242 PrintF("Simulator hit BKPT.\n"); 2243 dbg.Debug(); 2244 break; 2245 } 2246 default: 2247 UNIMPLEMENTED(); 2248 } 2249 } else if (instr->Bits(22, 21) == 3) { 2250 int rm = instr->RmValue(); 2251 int rd = instr->RdValue(); 2252 switch (instr->BitField(7, 4)) { 2253 case CLZ: { 2254 uint32_t bits = get_register(rm); 2255 int leading_zeros = 0; 2256 if (bits == 0) { 2257 leading_zeros = 32; 2258 } else { 2259 while ((bits & 0x80000000u) == 0) { 2260 bits <<= 1; 2261 leading_zeros++; 2262 } 2263 } 2264 set_register(rd, leading_zeros); 2265 break; 2266 } 2267 default: 2268 UNIMPLEMENTED(); 2269 } 2270 } else { 2271 PrintF("%08x\n", instr->InstructionBits()); 2272 UNIMPLEMENTED(); 2273 } 2274 } else if ((type == 1) && instr->IsNopType1()) { 2275 // NOP. 2276 } else { 2277 int rd = instr->RdValue(); 2278 int rn = instr->RnValue(); 2279 int32_t rn_val = get_register(rn); 2280 int32_t shifter_operand = 0; 2281 bool shifter_carry_out = 0; 2282 if (type == 0) { 2283 shifter_operand = GetShiftRm(instr, &shifter_carry_out); 2284 } else { 2285 ASSERT(instr->TypeValue() == 1); 2286 shifter_operand = GetImm(instr, &shifter_carry_out); 2287 } 2288 int32_t alu_out; 2289 2290 switch (instr->OpcodeField()) { 2291 case AND: { 2292 // Format(instr, "and'cond's 'rd, 'rn, 'shift_rm"); 2293 // Format(instr, "and'cond's 'rd, 'rn, 'imm"); 2294 alu_out = rn_val & shifter_operand; 2295 set_register(rd, alu_out); 2296 if (instr->HasS()) { 2297 SetNZFlags(alu_out); 2298 SetCFlag(shifter_carry_out); 2299 } 2300 break; 2301 } 2302 2303 case EOR: { 2304 // Format(instr, "eor'cond's 'rd, 'rn, 'shift_rm"); 2305 // Format(instr, "eor'cond's 'rd, 'rn, 'imm"); 2306 alu_out = rn_val ^ shifter_operand; 2307 set_register(rd, alu_out); 2308 if (instr->HasS()) { 2309 SetNZFlags(alu_out); 2310 SetCFlag(shifter_carry_out); 2311 } 2312 break; 2313 } 2314 2315 case SUB: { 2316 // Format(instr, "sub'cond's 'rd, 'rn, 'shift_rm"); 2317 // Format(instr, "sub'cond's 'rd, 'rn, 'imm"); 2318 alu_out = rn_val - shifter_operand; 2319 set_register(rd, alu_out); 2320 if (instr->HasS()) { 2321 SetNZFlags(alu_out); 2322 SetCFlag(!BorrowFrom(rn_val, shifter_operand)); 2323 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false)); 2324 } 2325 break; 2326 } 2327 2328 case RSB: { 2329 // Format(instr, "rsb'cond's 'rd, 'rn, 'shift_rm"); 2330 // Format(instr, "rsb'cond's 'rd, 'rn, 'imm"); 2331 alu_out = shifter_operand - rn_val; 2332 set_register(rd, alu_out); 2333 if (instr->HasS()) { 2334 SetNZFlags(alu_out); 2335 SetCFlag(!BorrowFrom(shifter_operand, rn_val)); 2336 SetVFlag(OverflowFrom(alu_out, shifter_operand, rn_val, false)); 2337 } 2338 break; 2339 } 2340 2341 case ADD: { 2342 // Format(instr, "add'cond's 'rd, 'rn, 'shift_rm"); 2343 // Format(instr, "add'cond's 'rd, 'rn, 'imm"); 2344 alu_out = rn_val + shifter_operand; 2345 set_register(rd, alu_out); 2346 if (instr->HasS()) { 2347 SetNZFlags(alu_out); 2348 SetCFlag(CarryFrom(rn_val, shifter_operand)); 2349 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true)); 2350 } 2351 break; 2352 } 2353 2354 case ADC: { 2355 // Format(instr, "adc'cond's 'rd, 'rn, 'shift_rm"); 2356 // Format(instr, "adc'cond's 'rd, 'rn, 'imm"); 2357 alu_out = rn_val + shifter_operand + GetCarry(); 2358 set_register(rd, alu_out); 2359 if (instr->HasS()) { 2360 SetNZFlags(alu_out); 2361 SetCFlag(CarryFrom(rn_val, shifter_operand, GetCarry())); 2362 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true)); 2363 } 2364 break; 2365 } 2366 2367 case SBC: { 2368 Format(instr, "sbc'cond's 'rd, 'rn, 'shift_rm"); 2369 Format(instr, "sbc'cond's 'rd, 'rn, 'imm"); 2370 break; 2371 } 2372 2373 case RSC: { 2374 Format(instr, "rsc'cond's 'rd, 'rn, 'shift_rm"); 2375 Format(instr, "rsc'cond's 'rd, 'rn, 'imm"); 2376 break; 2377 } 2378 2379 case TST: { 2380 if (instr->HasS()) { 2381 // Format(instr, "tst'cond 'rn, 'shift_rm"); 2382 // Format(instr, "tst'cond 'rn, 'imm"); 2383 alu_out = rn_val & shifter_operand; 2384 SetNZFlags(alu_out); 2385 SetCFlag(shifter_carry_out); 2386 } else { 2387 // Format(instr, "movw'cond 'rd, 'imm"). 2388 alu_out = instr->ImmedMovwMovtValue(); 2389 set_register(rd, alu_out); 2390 } 2391 break; 2392 } 2393 2394 case TEQ: { 2395 if (instr->HasS()) { 2396 // Format(instr, "teq'cond 'rn, 'shift_rm"); 2397 // Format(instr, "teq'cond 'rn, 'imm"); 2398 alu_out = rn_val ^ shifter_operand; 2399 SetNZFlags(alu_out); 2400 SetCFlag(shifter_carry_out); 2401 } else { 2402 // Other instructions matching this pattern are handled in the 2403 // miscellaneous instructions part above. 2404 UNREACHABLE(); 2405 } 2406 break; 2407 } 2408 2409 case CMP: { 2410 if (instr->HasS()) { 2411 // Format(instr, "cmp'cond 'rn, 'shift_rm"); 2412 // Format(instr, "cmp'cond 'rn, 'imm"); 2413 alu_out = rn_val - shifter_operand; 2414 SetNZFlags(alu_out); 2415 SetCFlag(!BorrowFrom(rn_val, shifter_operand)); 2416 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false)); 2417 } else { 2418 // Format(instr, "movt'cond 'rd, 'imm"). 2419 alu_out = (get_register(rd) & 0xffff) | 2420 (instr->ImmedMovwMovtValue() << 16); 2421 set_register(rd, alu_out); 2422 } 2423 break; 2424 } 2425 2426 case CMN: { 2427 if (instr->HasS()) { 2428 // Format(instr, "cmn'cond 'rn, 'shift_rm"); 2429 // Format(instr, "cmn'cond 'rn, 'imm"); 2430 alu_out = rn_val + shifter_operand; 2431 SetNZFlags(alu_out); 2432 SetCFlag(CarryFrom(rn_val, shifter_operand)); 2433 SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true)); 2434 } else { 2435 // Other instructions matching this pattern are handled in the 2436 // miscellaneous instructions part above. 2437 UNREACHABLE(); 2438 } 2439 break; 2440 } 2441 2442 case ORR: { 2443 // Format(instr, "orr'cond's 'rd, 'rn, 'shift_rm"); 2444 // Format(instr, "orr'cond's 'rd, 'rn, 'imm"); 2445 alu_out = rn_val | shifter_operand; 2446 set_register(rd, alu_out); 2447 if (instr->HasS()) { 2448 SetNZFlags(alu_out); 2449 SetCFlag(shifter_carry_out); 2450 } 2451 break; 2452 } 2453 2454 case MOV: { 2455 // Format(instr, "mov'cond's 'rd, 'shift_rm"); 2456 // Format(instr, "mov'cond's 'rd, 'imm"); 2457 alu_out = shifter_operand; 2458 set_register(rd, alu_out); 2459 if (instr->HasS()) { 2460 SetNZFlags(alu_out); 2461 SetCFlag(shifter_carry_out); 2462 } 2463 break; 2464 } 2465 2466 case BIC: { 2467 // Format(instr, "bic'cond's 'rd, 'rn, 'shift_rm"); 2468 // Format(instr, "bic'cond's 'rd, 'rn, 'imm"); 2469 alu_out = rn_val & ~shifter_operand; 2470 set_register(rd, alu_out); 2471 if (instr->HasS()) { 2472 SetNZFlags(alu_out); 2473 SetCFlag(shifter_carry_out); 2474 } 2475 break; 2476 } 2477 2478 case MVN: { 2479 // Format(instr, "mvn'cond's 'rd, 'shift_rm"); 2480 // Format(instr, "mvn'cond's 'rd, 'imm"); 2481 alu_out = ~shifter_operand; 2482 set_register(rd, alu_out); 2483 if (instr->HasS()) { 2484 SetNZFlags(alu_out); 2485 SetCFlag(shifter_carry_out); 2486 } 2487 break; 2488 } 2489 2490 default: { 2491 UNREACHABLE(); 2492 break; 2493 } 2494 } 2495 } 2496} 2497 2498 2499void Simulator::DecodeType2(Instruction* instr) { 2500 int rd = instr->RdValue(); 2501 int rn = instr->RnValue(); 2502 int32_t rn_val = get_register(rn); 2503 int32_t im_val = instr->Offset12Value(); 2504 int32_t addr = 0; 2505 switch (instr->PUField()) { 2506 case da_x: { 2507 // Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12"); 2508 ASSERT(!instr->HasW()); 2509 addr = rn_val; 2510 rn_val -= im_val; 2511 set_register(rn, rn_val); 2512 break; 2513 } 2514 case ia_x: { 2515 // Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12"); 2516 ASSERT(!instr->HasW()); 2517 addr = rn_val; 2518 rn_val += im_val; 2519 set_register(rn, rn_val); 2520 break; 2521 } 2522 case db_x: { 2523 // Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w"); 2524 rn_val -= im_val; 2525 addr = rn_val; 2526 if (instr->HasW()) { 2527 set_register(rn, rn_val); 2528 } 2529 break; 2530 } 2531 case ib_x: { 2532 // Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w"); 2533 rn_val += im_val; 2534 addr = rn_val; 2535 if (instr->HasW()) { 2536 set_register(rn, rn_val); 2537 } 2538 break; 2539 } 2540 default: { 2541 UNREACHABLE(); 2542 break; 2543 } 2544 } 2545 if (instr->HasB()) { 2546 if (instr->HasL()) { 2547 byte val = ReadBU(addr); 2548 set_register(rd, val); 2549 } else { 2550 byte val = get_register(rd); 2551 WriteB(addr, val); 2552 } 2553 } else { 2554 if (instr->HasL()) { 2555 set_register(rd, ReadW(addr, instr)); 2556 } else { 2557 WriteW(addr, get_register(rd), instr); 2558 } 2559 } 2560} 2561 2562 2563void Simulator::DecodeType3(Instruction* instr) { 2564 int rd = instr->RdValue(); 2565 int rn = instr->RnValue(); 2566 int32_t rn_val = get_register(rn); 2567 bool shifter_carry_out = 0; 2568 int32_t shifter_operand = GetShiftRm(instr, &shifter_carry_out); 2569 int32_t addr = 0; 2570 switch (instr->PUField()) { 2571 case da_x: { 2572 ASSERT(!instr->HasW()); 2573 Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm"); 2574 UNIMPLEMENTED(); 2575 break; 2576 } 2577 case ia_x: { 2578 if (instr->Bit(4) == 0) { 2579 // Memop. 2580 } else { 2581 if (instr->Bit(5) == 0) { 2582 switch (instr->Bits(22, 21)) { 2583 case 0: 2584 if (instr->Bit(20) == 0) { 2585 if (instr->Bit(6) == 0) { 2586 // Pkhbt. 2587 uint32_t rn_val = get_register(rn); 2588 uint32_t rm_val = get_register(instr->RmValue()); 2589 int32_t shift = instr->Bits(11, 7); 2590 rm_val <<= shift; 2591 set_register(rd, (rn_val & 0xFFFF) | (rm_val & 0xFFFF0000U)); 2592 } else { 2593 // Pkhtb. 2594 uint32_t rn_val = get_register(rn); 2595 int32_t rm_val = get_register(instr->RmValue()); 2596 int32_t shift = instr->Bits(11, 7); 2597 if (shift == 0) { 2598 shift = 32; 2599 } 2600 rm_val >>= shift; 2601 set_register(rd, (rn_val & 0xFFFF0000U) | (rm_val & 0xFFFF)); 2602 } 2603 } else { 2604 UNIMPLEMENTED(); 2605 } 2606 break; 2607 case 1: 2608 UNIMPLEMENTED(); 2609 break; 2610 case 2: 2611 UNIMPLEMENTED(); 2612 break; 2613 case 3: { 2614 // Usat. 2615 int32_t sat_pos = instr->Bits(20, 16); 2616 int32_t sat_val = (1 << sat_pos) - 1; 2617 int32_t shift = instr->Bits(11, 7); 2618 int32_t shift_type = instr->Bit(6); 2619 int32_t rm_val = get_register(instr->RmValue()); 2620 if (shift_type == 0) { // LSL 2621 rm_val <<= shift; 2622 } else { // ASR 2623 rm_val >>= shift; 2624 } 2625 // If saturation occurs, the Q flag should be set in the CPSR. 2626 // There is no Q flag yet, and no instruction (MRS) to read the 2627 // CPSR directly. 2628 if (rm_val > sat_val) { 2629 rm_val = sat_val; 2630 } else if (rm_val < 0) { 2631 rm_val = 0; 2632 } 2633 set_register(rd, rm_val); 2634 break; 2635 } 2636 } 2637 } else { 2638 switch (instr->Bits(22, 21)) { 2639 case 0: 2640 UNIMPLEMENTED(); 2641 break; 2642 case 1: 2643 UNIMPLEMENTED(); 2644 break; 2645 case 2: 2646 if ((instr->Bit(20) == 0) && (instr->Bits(9, 6) == 1)) { 2647 if (instr->Bits(19, 16) == 0xF) { 2648 // Uxtb16. 2649 uint32_t rm_val = get_register(instr->RmValue()); 2650 int32_t rotate = instr->Bits(11, 10); 2651 switch (rotate) { 2652 case 0: 2653 break; 2654 case 1: 2655 rm_val = (rm_val >> 8) | (rm_val << 24); 2656 break; 2657 case 2: 2658 rm_val = (rm_val >> 16) | (rm_val << 16); 2659 break; 2660 case 3: 2661 rm_val = (rm_val >> 24) | (rm_val << 8); 2662 break; 2663 } 2664 set_register(rd, 2665 (rm_val & 0xFF) | (rm_val & 0xFF0000)); 2666 } else { 2667 UNIMPLEMENTED(); 2668 } 2669 } else { 2670 UNIMPLEMENTED(); 2671 } 2672 break; 2673 case 3: 2674 if ((instr->Bit(20) == 0) && (instr->Bits(9, 6) == 1)) { 2675 if (instr->Bits(19, 16) == 0xF) { 2676 // Uxtb. 2677 uint32_t rm_val = get_register(instr->RmValue()); 2678 int32_t rotate = instr->Bits(11, 10); 2679 switch (rotate) { 2680 case 0: 2681 break; 2682 case 1: 2683 rm_val = (rm_val >> 8) | (rm_val << 24); 2684 break; 2685 case 2: 2686 rm_val = (rm_val >> 16) | (rm_val << 16); 2687 break; 2688 case 3: 2689 rm_val = (rm_val >> 24) | (rm_val << 8); 2690 break; 2691 } 2692 set_register(rd, (rm_val & 0xFF)); 2693 } else { 2694 // Uxtab. 2695 uint32_t rn_val = get_register(rn); 2696 uint32_t rm_val = get_register(instr->RmValue()); 2697 int32_t rotate = instr->Bits(11, 10); 2698 switch (rotate) { 2699 case 0: 2700 break; 2701 case 1: 2702 rm_val = (rm_val >> 8) | (rm_val << 24); 2703 break; 2704 case 2: 2705 rm_val = (rm_val >> 16) | (rm_val << 16); 2706 break; 2707 case 3: 2708 rm_val = (rm_val >> 24) | (rm_val << 8); 2709 break; 2710 } 2711 set_register(rd, rn_val + (rm_val & 0xFF)); 2712 } 2713 } else { 2714 UNIMPLEMENTED(); 2715 } 2716 break; 2717 } 2718 } 2719 return; 2720 } 2721 break; 2722 } 2723 case db_x: { 2724 if (FLAG_enable_sudiv) { 2725 if (!instr->HasW()) { 2726 if (instr->Bits(5, 4) == 0x1) { 2727 if ((instr->Bit(22) == 0x0) && (instr->Bit(20) == 0x1)) { 2728 // sdiv (in V8 notation matching ARM ISA format) rn = rm/rs 2729 // Format(instr, "'sdiv'cond'b 'rn, 'rm, 'rs); 2730 int rm = instr->RmValue(); 2731 int32_t rm_val = get_register(rm); 2732 int rs = instr->RsValue(); 2733 int32_t rs_val = get_register(rs); 2734 int32_t ret_val = 0; 2735 ASSERT(rs_val != 0); 2736 ret_val = rm_val/rs_val; 2737 set_register(rn, ret_val); 2738 return; 2739 } 2740 } 2741 } 2742 } 2743 // Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w"); 2744 addr = rn_val - shifter_operand; 2745 if (instr->HasW()) { 2746 set_register(rn, addr); 2747 } 2748 break; 2749 } 2750 case ib_x: { 2751 if (instr->HasW() && (instr->Bits(6, 4) == 0x5)) { 2752 uint32_t widthminus1 = static_cast<uint32_t>(instr->Bits(20, 16)); 2753 uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7)); 2754 uint32_t msbit = widthminus1 + lsbit; 2755 if (msbit <= 31) { 2756 if (instr->Bit(22)) { 2757 // ubfx - unsigned bitfield extract. 2758 uint32_t rm_val = 2759 static_cast<uint32_t>(get_register(instr->RmValue())); 2760 uint32_t extr_val = rm_val << (31 - msbit); 2761 extr_val = extr_val >> (31 - widthminus1); 2762 set_register(instr->RdValue(), extr_val); 2763 } else { 2764 // sbfx - signed bitfield extract. 2765 int32_t rm_val = get_register(instr->RmValue()); 2766 int32_t extr_val = rm_val << (31 - msbit); 2767 extr_val = extr_val >> (31 - widthminus1); 2768 set_register(instr->RdValue(), extr_val); 2769 } 2770 } else { 2771 UNREACHABLE(); 2772 } 2773 return; 2774 } else if (!instr->HasW() && (instr->Bits(6, 4) == 0x1)) { 2775 uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7)); 2776 uint32_t msbit = static_cast<uint32_t>(instr->Bits(20, 16)); 2777 if (msbit >= lsbit) { 2778 // bfc or bfi - bitfield clear/insert. 2779 uint32_t rd_val = 2780 static_cast<uint32_t>(get_register(instr->RdValue())); 2781 uint32_t bitcount = msbit - lsbit + 1; 2782 uint32_t mask = (1 << bitcount) - 1; 2783 rd_val &= ~(mask << lsbit); 2784 if (instr->RmValue() != 15) { 2785 // bfi - bitfield insert. 2786 uint32_t rm_val = 2787 static_cast<uint32_t>(get_register(instr->RmValue())); 2788 rm_val &= mask; 2789 rd_val |= rm_val << lsbit; 2790 } 2791 set_register(instr->RdValue(), rd_val); 2792 } else { 2793 UNREACHABLE(); 2794 } 2795 return; 2796 } else { 2797 // Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w"); 2798 addr = rn_val + shifter_operand; 2799 if (instr->HasW()) { 2800 set_register(rn, addr); 2801 } 2802 } 2803 break; 2804 } 2805 default: { 2806 UNREACHABLE(); 2807 break; 2808 } 2809 } 2810 if (instr->HasB()) { 2811 if (instr->HasL()) { 2812 uint8_t byte = ReadB(addr); 2813 set_register(rd, byte); 2814 } else { 2815 uint8_t byte = get_register(rd); 2816 WriteB(addr, byte); 2817 } 2818 } else { 2819 if (instr->HasL()) { 2820 set_register(rd, ReadW(addr, instr)); 2821 } else { 2822 WriteW(addr, get_register(rd), instr); 2823 } 2824 } 2825} 2826 2827 2828void Simulator::DecodeType4(Instruction* instr) { 2829 ASSERT(instr->Bit(22) == 0); // only allowed to be set in privileged mode 2830 if (instr->HasL()) { 2831 // Format(instr, "ldm'cond'pu 'rn'w, 'rlist"); 2832 HandleRList(instr, true); 2833 } else { 2834 // Format(instr, "stm'cond'pu 'rn'w, 'rlist"); 2835 HandleRList(instr, false); 2836 } 2837} 2838 2839 2840void Simulator::DecodeType5(Instruction* instr) { 2841 // Format(instr, "b'l'cond 'target"); 2842 int off = (instr->SImmed24Value() << 2); 2843 intptr_t pc_address = get_pc(); 2844 if (instr->HasLink()) { 2845 set_register(lr, pc_address + Instruction::kInstrSize); 2846 } 2847 int pc_reg = get_register(pc); 2848 set_pc(pc_reg + off); 2849} 2850 2851 2852void Simulator::DecodeType6(Instruction* instr) { 2853 DecodeType6CoprocessorIns(instr); 2854} 2855 2856 2857void Simulator::DecodeType7(Instruction* instr) { 2858 if (instr->Bit(24) == 1) { 2859 SoftwareInterrupt(instr); 2860 } else { 2861 DecodeTypeVFP(instr); 2862 } 2863} 2864 2865 2866// void Simulator::DecodeTypeVFP(Instruction* instr) 2867// The Following ARMv7 VFPv instructions are currently supported. 2868// vmov :Sn = Rt 2869// vmov :Rt = Sn 2870// vcvt: Dd = Sm 2871// vcvt: Sd = Dm 2872// vcvt.f64.s32 Dd, Dd, #<fbits> 2873// Dd = vabs(Dm) 2874// Dd = vneg(Dm) 2875// Dd = vadd(Dn, Dm) 2876// Dd = vsub(Dn, Dm) 2877// Dd = vmul(Dn, Dm) 2878// Dd = vdiv(Dn, Dm) 2879// vcmp(Dd, Dm) 2880// vmrs 2881// Dd = vsqrt(Dm) 2882void Simulator::DecodeTypeVFP(Instruction* instr) { 2883 ASSERT((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0) ); 2884 ASSERT(instr->Bits(11, 9) == 0x5); 2885 2886 // Obtain double precision register codes. 2887 int vm = instr->VFPMRegValue(kDoublePrecision); 2888 int vd = instr->VFPDRegValue(kDoublePrecision); 2889 int vn = instr->VFPNRegValue(kDoublePrecision); 2890 2891 if (instr->Bit(4) == 0) { 2892 if (instr->Opc1Value() == 0x7) { 2893 // Other data processing instructions 2894 if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x1)) { 2895 // vmov register to register. 2896 if (instr->SzValue() == 0x1) { 2897 int m = instr->VFPMRegValue(kDoublePrecision); 2898 int d = instr->VFPDRegValue(kDoublePrecision); 2899 set_d_register_from_double(d, get_double_from_d_register(m)); 2900 } else { 2901 int m = instr->VFPMRegValue(kSinglePrecision); 2902 int d = instr->VFPDRegValue(kSinglePrecision); 2903 set_s_register_from_float(d, get_float_from_s_register(m)); 2904 } 2905 } else if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x3)) { 2906 // vabs 2907 double dm_value = get_double_from_d_register(vm); 2908 double dd_value = fabs(dm_value); 2909 dd_value = canonicalizeNaN(dd_value); 2910 set_d_register_from_double(vd, dd_value); 2911 } else if ((instr->Opc2Value() == 0x1) && (instr->Opc3Value() == 0x1)) { 2912 // vneg 2913 double dm_value = get_double_from_d_register(vm); 2914 double dd_value = -dm_value; 2915 dd_value = canonicalizeNaN(dd_value); 2916 set_d_register_from_double(vd, dd_value); 2917 } else if ((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)) { 2918 DecodeVCVTBetweenDoubleAndSingle(instr); 2919 } else if ((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) { 2920 DecodeVCVTBetweenFloatingPointAndInteger(instr); 2921 } else if ((instr->Opc2Value() == 0xA) && (instr->Opc3Value() == 0x3) && 2922 (instr->Bit(8) == 1)) { 2923 // vcvt.f64.s32 Dd, Dd, #<fbits> 2924 int fraction_bits = 32 - ((instr->Bit(5) << 4) | instr->Bits(3, 0)); 2925 int fixed_value = get_sinteger_from_s_register(vd * 2); 2926 double divide = 1 << fraction_bits; 2927 set_d_register_from_double(vd, fixed_value / divide); 2928 } else if (((instr->Opc2Value() >> 1) == 0x6) && 2929 (instr->Opc3Value() & 0x1)) { 2930 DecodeVCVTBetweenFloatingPointAndInteger(instr); 2931 } else if (((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) && 2932 (instr->Opc3Value() & 0x1)) { 2933 DecodeVCMP(instr); 2934 } else if (((instr->Opc2Value() == 0x1)) && (instr->Opc3Value() == 0x3)) { 2935 // vsqrt 2936 double dm_value = get_double_from_d_register(vm); 2937 double dd_value = sqrt(dm_value); 2938 dd_value = canonicalizeNaN(dd_value); 2939 set_d_register_from_double(vd, dd_value); 2940 } else if (instr->Opc3Value() == 0x0) { 2941 // vmov immediate. 2942 if (instr->SzValue() == 0x1) { 2943 set_d_register_from_double(vd, instr->DoubleImmedVmov()); 2944 } else { 2945 UNREACHABLE(); // Not used by v8. 2946 } 2947 } else { 2948 UNREACHABLE(); // Not used by V8. 2949 } 2950 } else if (instr->Opc1Value() == 0x3) { 2951 if (instr->SzValue() != 0x1) { 2952 UNREACHABLE(); // Not used by V8. 2953 } 2954 2955 if (instr->Opc3Value() & 0x1) { 2956 // vsub 2957 double dn_value = get_double_from_d_register(vn); 2958 double dm_value = get_double_from_d_register(vm); 2959 double dd_value = dn_value - dm_value; 2960 dd_value = canonicalizeNaN(dd_value); 2961 set_d_register_from_double(vd, dd_value); 2962 } else { 2963 // vadd 2964 double dn_value = get_double_from_d_register(vn); 2965 double dm_value = get_double_from_d_register(vm); 2966 double dd_value = dn_value + dm_value; 2967 dd_value = canonicalizeNaN(dd_value); 2968 set_d_register_from_double(vd, dd_value); 2969 } 2970 } else if ((instr->Opc1Value() == 0x2) && !(instr->Opc3Value() & 0x1)) { 2971 // vmul 2972 if (instr->SzValue() != 0x1) { 2973 UNREACHABLE(); // Not used by V8. 2974 } 2975 2976 double dn_value = get_double_from_d_register(vn); 2977 double dm_value = get_double_from_d_register(vm); 2978 double dd_value = dn_value * dm_value; 2979 dd_value = canonicalizeNaN(dd_value); 2980 set_d_register_from_double(vd, dd_value); 2981 } else if ((instr->Opc1Value() == 0x0)) { 2982 // vmla, vmls 2983 const bool is_vmls = (instr->Opc3Value() & 0x1); 2984 2985 if (instr->SzValue() != 0x1) { 2986 UNREACHABLE(); // Not used by V8. 2987 } 2988 2989 const double dd_val = get_double_from_d_register(vd); 2990 const double dn_val = get_double_from_d_register(vn); 2991 const double dm_val = get_double_from_d_register(vm); 2992 2993 // Note: we do the mul and add/sub in separate steps to avoid getting a 2994 // result with too high precision. 2995 set_d_register_from_double(vd, dn_val * dm_val); 2996 if (is_vmls) { 2997 set_d_register_from_double( 2998 vd, 2999 canonicalizeNaN(dd_val - get_double_from_d_register(vd))); 3000 } else { 3001 set_d_register_from_double( 3002 vd, 3003 canonicalizeNaN(dd_val + get_double_from_d_register(vd))); 3004 } 3005 } else if ((instr->Opc1Value() == 0x4) && !(instr->Opc3Value() & 0x1)) { 3006 // vdiv 3007 if (instr->SzValue() != 0x1) { 3008 UNREACHABLE(); // Not used by V8. 3009 } 3010 3011 double dn_value = get_double_from_d_register(vn); 3012 double dm_value = get_double_from_d_register(vm); 3013 double dd_value = dn_value / dm_value; 3014 div_zero_vfp_flag_ = (dm_value == 0); 3015 dd_value = canonicalizeNaN(dd_value); 3016 set_d_register_from_double(vd, dd_value); 3017 } else { 3018 UNIMPLEMENTED(); // Not used by V8. 3019 } 3020 } else { 3021 if ((instr->VCValue() == 0x0) && 3022 (instr->VAValue() == 0x0)) { 3023 DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(instr); 3024 } else if ((instr->VLValue() == 0x0) && 3025 (instr->VCValue() == 0x1) && 3026 (instr->Bit(23) == 0x0)) { 3027 // vmov (ARM core register to scalar) 3028 int vd = instr->Bits(19, 16) | (instr->Bit(7) << 4); 3029 double dd_value = get_double_from_d_register(vd); 3030 int32_t data[2]; 3031 OS::MemCopy(data, &dd_value, 8); 3032 data[instr->Bit(21)] = get_register(instr->RtValue()); 3033 OS::MemCopy(&dd_value, data, 8); 3034 set_d_register_from_double(vd, dd_value); 3035 } else if ((instr->VLValue() == 0x1) && 3036 (instr->VCValue() == 0x1) && 3037 (instr->Bit(23) == 0x0)) { 3038 // vmov (scalar to ARM core register) 3039 int vn = instr->Bits(19, 16) | (instr->Bit(7) << 4); 3040 double dn_value = get_double_from_d_register(vn); 3041 int32_t data[2]; 3042 OS::MemCopy(data, &dn_value, 8); 3043 set_register(instr->RtValue(), data[instr->Bit(21)]); 3044 } else if ((instr->VLValue() == 0x1) && 3045 (instr->VCValue() == 0x0) && 3046 (instr->VAValue() == 0x7) && 3047 (instr->Bits(19, 16) == 0x1)) { 3048 // vmrs 3049 uint32_t rt = instr->RtValue(); 3050 if (rt == 0xF) { 3051 Copy_FPSCR_to_APSR(); 3052 } else { 3053 // Emulate FPSCR from the Simulator flags. 3054 uint32_t fpscr = (n_flag_FPSCR_ << 31) | 3055 (z_flag_FPSCR_ << 30) | 3056 (c_flag_FPSCR_ << 29) | 3057 (v_flag_FPSCR_ << 28) | 3058 (FPSCR_default_NaN_mode_ << 25) | 3059 (inexact_vfp_flag_ << 4) | 3060 (underflow_vfp_flag_ << 3) | 3061 (overflow_vfp_flag_ << 2) | 3062 (div_zero_vfp_flag_ << 1) | 3063 (inv_op_vfp_flag_ << 0) | 3064 (FPSCR_rounding_mode_); 3065 set_register(rt, fpscr); 3066 } 3067 } else if ((instr->VLValue() == 0x0) && 3068 (instr->VCValue() == 0x0) && 3069 (instr->VAValue() == 0x7) && 3070 (instr->Bits(19, 16) == 0x1)) { 3071 // vmsr 3072 uint32_t rt = instr->RtValue(); 3073 if (rt == pc) { 3074 UNREACHABLE(); 3075 } else { 3076 uint32_t rt_value = get_register(rt); 3077 n_flag_FPSCR_ = (rt_value >> 31) & 1; 3078 z_flag_FPSCR_ = (rt_value >> 30) & 1; 3079 c_flag_FPSCR_ = (rt_value >> 29) & 1; 3080 v_flag_FPSCR_ = (rt_value >> 28) & 1; 3081 FPSCR_default_NaN_mode_ = (rt_value >> 25) & 1; 3082 inexact_vfp_flag_ = (rt_value >> 4) & 1; 3083 underflow_vfp_flag_ = (rt_value >> 3) & 1; 3084 overflow_vfp_flag_ = (rt_value >> 2) & 1; 3085 div_zero_vfp_flag_ = (rt_value >> 1) & 1; 3086 inv_op_vfp_flag_ = (rt_value >> 0) & 1; 3087 FPSCR_rounding_mode_ = 3088 static_cast<VFPRoundingMode>((rt_value) & kVFPRoundingModeMask); 3089 } 3090 } else { 3091 UNIMPLEMENTED(); // Not used by V8. 3092 } 3093 } 3094} 3095 3096 3097void Simulator::DecodeVMOVBetweenCoreAndSinglePrecisionRegisters( 3098 Instruction* instr) { 3099 ASSERT((instr->Bit(4) == 1) && (instr->VCValue() == 0x0) && 3100 (instr->VAValue() == 0x0)); 3101 3102 int t = instr->RtValue(); 3103 int n = instr->VFPNRegValue(kSinglePrecision); 3104 bool to_arm_register = (instr->VLValue() == 0x1); 3105 3106 if (to_arm_register) { 3107 int32_t int_value = get_sinteger_from_s_register(n); 3108 set_register(t, int_value); 3109 } else { 3110 int32_t rs_val = get_register(t); 3111 set_s_register_from_sinteger(n, rs_val); 3112 } 3113} 3114 3115 3116void Simulator::DecodeVCMP(Instruction* instr) { 3117 ASSERT((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7)); 3118 ASSERT(((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) && 3119 (instr->Opc3Value() & 0x1)); 3120 // Comparison. 3121 3122 VFPRegPrecision precision = kSinglePrecision; 3123 if (instr->SzValue() == 1) { 3124 precision = kDoublePrecision; 3125 } 3126 3127 int d = instr->VFPDRegValue(precision); 3128 int m = 0; 3129 if (instr->Opc2Value() == 0x4) { 3130 m = instr->VFPMRegValue(precision); 3131 } 3132 3133 if (precision == kDoublePrecision) { 3134 double dd_value = get_double_from_d_register(d); 3135 double dm_value = 0.0; 3136 if (instr->Opc2Value() == 0x4) { 3137 dm_value = get_double_from_d_register(m); 3138 } 3139 3140 // Raise exceptions for quiet NaNs if necessary. 3141 if (instr->Bit(7) == 1) { 3142 if (std::isnan(dd_value)) { 3143 inv_op_vfp_flag_ = true; 3144 } 3145 } 3146 3147 Compute_FPSCR_Flags(dd_value, dm_value); 3148 } else { 3149 UNIMPLEMENTED(); // Not used by V8. 3150 } 3151} 3152 3153 3154void Simulator::DecodeVCVTBetweenDoubleAndSingle(Instruction* instr) { 3155 ASSERT((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7)); 3156 ASSERT((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)); 3157 3158 VFPRegPrecision dst_precision = kDoublePrecision; 3159 VFPRegPrecision src_precision = kSinglePrecision; 3160 if (instr->SzValue() == 1) { 3161 dst_precision = kSinglePrecision; 3162 src_precision = kDoublePrecision; 3163 } 3164 3165 int dst = instr->VFPDRegValue(dst_precision); 3166 int src = instr->VFPMRegValue(src_precision); 3167 3168 if (dst_precision == kSinglePrecision) { 3169 double val = get_double_from_d_register(src); 3170 set_s_register_from_float(dst, static_cast<float>(val)); 3171 } else { 3172 float val = get_float_from_s_register(src); 3173 set_d_register_from_double(dst, static_cast<double>(val)); 3174 } 3175} 3176 3177bool get_inv_op_vfp_flag(VFPRoundingMode mode, 3178 double val, 3179 bool unsigned_) { 3180 ASSERT((mode == RN) || (mode == RM) || (mode == RZ)); 3181 double max_uint = static_cast<double>(0xffffffffu); 3182 double max_int = static_cast<double>(kMaxInt); 3183 double min_int = static_cast<double>(kMinInt); 3184 3185 // Check for NaN. 3186 if (val != val) { 3187 return true; 3188 } 3189 3190 // Check for overflow. This code works because 32bit integers can be 3191 // exactly represented by ieee-754 64bit floating-point values. 3192 switch (mode) { 3193 case RN: 3194 return unsigned_ ? (val >= (max_uint + 0.5)) || 3195 (val < -0.5) 3196 : (val >= (max_int + 0.5)) || 3197 (val < (min_int - 0.5)); 3198 3199 case RM: 3200 return unsigned_ ? (val >= (max_uint + 1.0)) || 3201 (val < 0) 3202 : (val >= (max_int + 1.0)) || 3203 (val < min_int); 3204 3205 case RZ: 3206 return unsigned_ ? (val >= (max_uint + 1.0)) || 3207 (val <= -1) 3208 : (val >= (max_int + 1.0)) || 3209 (val <= (min_int - 1.0)); 3210 default: 3211 UNREACHABLE(); 3212 return true; 3213 } 3214} 3215 3216 3217// We call this function only if we had a vfp invalid exception. 3218// It returns the correct saturated value. 3219int VFPConversionSaturate(double val, bool unsigned_res) { 3220 if (val != val) { 3221 return 0; 3222 } else { 3223 if (unsigned_res) { 3224 return (val < 0) ? 0 : 0xffffffffu; 3225 } else { 3226 return (val < 0) ? kMinInt : kMaxInt; 3227 } 3228 } 3229} 3230 3231 3232void Simulator::DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr) { 3233 ASSERT((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7) && 3234 (instr->Bits(27, 23) == 0x1D)); 3235 ASSERT(((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) || 3236 (((instr->Opc2Value() >> 1) == 0x6) && (instr->Opc3Value() & 0x1))); 3237 3238 // Conversion between floating-point and integer. 3239 bool to_integer = (instr->Bit(18) == 1); 3240 3241 VFPRegPrecision src_precision = (instr->SzValue() == 1) ? kDoublePrecision 3242 : kSinglePrecision; 3243 3244 if (to_integer) { 3245 // We are playing with code close to the C++ standard's limits below, 3246 // hence the very simple code and heavy checks. 3247 // 3248 // Note: 3249 // C++ defines default type casting from floating point to integer as 3250 // (close to) rounding toward zero ("fractional part discarded"). 3251 3252 int dst = instr->VFPDRegValue(kSinglePrecision); 3253 int src = instr->VFPMRegValue(src_precision); 3254 3255 // Bit 7 in vcvt instructions indicates if we should use the FPSCR rounding 3256 // mode or the default Round to Zero mode. 3257 VFPRoundingMode mode = (instr->Bit(7) != 1) ? FPSCR_rounding_mode_ 3258 : RZ; 3259 ASSERT((mode == RM) || (mode == RZ) || (mode == RN)); 3260 3261 bool unsigned_integer = (instr->Bit(16) == 0); 3262 bool double_precision = (src_precision == kDoublePrecision); 3263 3264 double val = double_precision ? get_double_from_d_register(src) 3265 : get_float_from_s_register(src); 3266 3267 int temp = unsigned_integer ? static_cast<uint32_t>(val) 3268 : static_cast<int32_t>(val); 3269 3270 inv_op_vfp_flag_ = get_inv_op_vfp_flag(mode, val, unsigned_integer); 3271 3272 double abs_diff = 3273 unsigned_integer ? fabs(val - static_cast<uint32_t>(temp)) 3274 : fabs(val - temp); 3275 3276 inexact_vfp_flag_ = (abs_diff != 0); 3277 3278 if (inv_op_vfp_flag_) { 3279 temp = VFPConversionSaturate(val, unsigned_integer); 3280 } else { 3281 switch (mode) { 3282 case RN: { 3283 int val_sign = (val > 0) ? 1 : -1; 3284 if (abs_diff > 0.5) { 3285 temp += val_sign; 3286 } else if (abs_diff == 0.5) { 3287 // Round to even if exactly halfway. 3288 temp = ((temp % 2) == 0) ? temp : temp + val_sign; 3289 } 3290 break; 3291 } 3292 3293 case RM: 3294 temp = temp > val ? temp - 1 : temp; 3295 break; 3296 3297 case RZ: 3298 // Nothing to do. 3299 break; 3300 3301 default: 3302 UNREACHABLE(); 3303 } 3304 } 3305 3306 // Update the destination register. 3307 set_s_register_from_sinteger(dst, temp); 3308 3309 } else { 3310 bool unsigned_integer = (instr->Bit(7) == 0); 3311 3312 int dst = instr->VFPDRegValue(src_precision); 3313 int src = instr->VFPMRegValue(kSinglePrecision); 3314 3315 int val = get_sinteger_from_s_register(src); 3316 3317 if (src_precision == kDoublePrecision) { 3318 if (unsigned_integer) { 3319 set_d_register_from_double( 3320 dst, static_cast<double>(static_cast<uint32_t>(val))); 3321 } else { 3322 set_d_register_from_double(dst, static_cast<double>(val)); 3323 } 3324 } else { 3325 if (unsigned_integer) { 3326 set_s_register_from_float( 3327 dst, static_cast<float>(static_cast<uint32_t>(val))); 3328 } else { 3329 set_s_register_from_float(dst, static_cast<float>(val)); 3330 } 3331 } 3332 } 3333} 3334 3335 3336// void Simulator::DecodeType6CoprocessorIns(Instruction* instr) 3337// Decode Type 6 coprocessor instructions. 3338// Dm = vmov(Rt, Rt2) 3339// <Rt, Rt2> = vmov(Dm) 3340// Ddst = MEM(Rbase + 4*offset). 3341// MEM(Rbase + 4*offset) = Dsrc. 3342void Simulator::DecodeType6CoprocessorIns(Instruction* instr) { 3343 ASSERT((instr->TypeValue() == 6)); 3344 3345 if (instr->CoprocessorValue() == 0xA) { 3346 switch (instr->OpcodeValue()) { 3347 case 0x8: 3348 case 0xA: 3349 case 0xC: 3350 case 0xE: { // Load and store single precision float to memory. 3351 int rn = instr->RnValue(); 3352 int vd = instr->VFPDRegValue(kSinglePrecision); 3353 int offset = instr->Immed8Value(); 3354 if (!instr->HasU()) { 3355 offset = -offset; 3356 } 3357 3358 int32_t address = get_register(rn) + 4 * offset; 3359 if (instr->HasL()) { 3360 // Load double from memory: vldr. 3361 set_s_register_from_sinteger(vd, ReadW(address, instr)); 3362 } else { 3363 // Store double to memory: vstr. 3364 WriteW(address, get_sinteger_from_s_register(vd), instr); 3365 } 3366 break; 3367 } 3368 case 0x4: 3369 case 0x5: 3370 case 0x6: 3371 case 0x7: 3372 case 0x9: 3373 case 0xB: 3374 // Load/store multiple single from memory: vldm/vstm. 3375 HandleVList(instr); 3376 break; 3377 default: 3378 UNIMPLEMENTED(); // Not used by V8. 3379 } 3380 } else if (instr->CoprocessorValue() == 0xB) { 3381 switch (instr->OpcodeValue()) { 3382 case 0x2: 3383 // Load and store double to two GP registers 3384 if (instr->Bits(7, 6) != 0 || instr->Bit(4) != 1) { 3385 UNIMPLEMENTED(); // Not used by V8. 3386 } else { 3387 int rt = instr->RtValue(); 3388 int rn = instr->RnValue(); 3389 int vm = instr->VFPMRegValue(kDoublePrecision); 3390 if (instr->HasL()) { 3391 int32_t data[2]; 3392 double d = get_double_from_d_register(vm); 3393 OS::MemCopy(data, &d, 8); 3394 set_register(rt, data[0]); 3395 set_register(rn, data[1]); 3396 } else { 3397 int32_t data[] = { get_register(rt), get_register(rn) }; 3398 double d; 3399 OS::MemCopy(&d, data, 8); 3400 set_d_register_from_double(vm, d); 3401 } 3402 } 3403 break; 3404 case 0x8: 3405 case 0xA: 3406 case 0xC: 3407 case 0xE: { // Load and store double to memory. 3408 int rn = instr->RnValue(); 3409 int vd = instr->VFPDRegValue(kDoublePrecision); 3410 int offset = instr->Immed8Value(); 3411 if (!instr->HasU()) { 3412 offset = -offset; 3413 } 3414 int32_t address = get_register(rn) + 4 * offset; 3415 if (instr->HasL()) { 3416 // Load double from memory: vldr. 3417 int32_t data[] = { 3418 ReadW(address, instr), 3419 ReadW(address + 4, instr) 3420 }; 3421 double val; 3422 OS::MemCopy(&val, data, 8); 3423 set_d_register_from_double(vd, val); 3424 } else { 3425 // Store double to memory: vstr. 3426 int32_t data[2]; 3427 double val = get_double_from_d_register(vd); 3428 OS::MemCopy(data, &val, 8); 3429 WriteW(address, data[0], instr); 3430 WriteW(address + 4, data[1], instr); 3431 } 3432 break; 3433 } 3434 case 0x4: 3435 case 0x5: 3436 case 0x6: 3437 case 0x7: 3438 case 0x9: 3439 case 0xB: 3440 // Load/store multiple double from memory: vldm/vstm. 3441 HandleVList(instr); 3442 break; 3443 default: 3444 UNIMPLEMENTED(); // Not used by V8. 3445 } 3446 } else { 3447 UNIMPLEMENTED(); // Not used by V8. 3448 } 3449} 3450 3451 3452void Simulator::DecodeSpecialCondition(Instruction* instr) { 3453 switch (instr->SpecialValue()) { 3454 case 5: 3455 if ((instr->Bits(18, 16) == 0) && (instr->Bits(11, 6) == 0x28) && 3456 (instr->Bit(4) == 1)) { 3457 // vmovl signed 3458 int Vd = (instr->Bit(22) << 4) | instr->VdValue(); 3459 int Vm = (instr->Bit(5) << 4) | instr->VmValue(); 3460 int imm3 = instr->Bits(21, 19); 3461 if ((imm3 != 1) && (imm3 != 2) && (imm3 != 4)) UNIMPLEMENTED(); 3462 int esize = 8 * imm3; 3463 int elements = 64 / esize; 3464 int8_t from[8]; 3465 get_d_register(Vm, reinterpret_cast<uint64_t*>(from)); 3466 int16_t to[8]; 3467 int e = 0; 3468 while (e < elements) { 3469 to[e] = from[e]; 3470 e++; 3471 } 3472 set_q_register(Vd, reinterpret_cast<uint64_t*>(to)); 3473 } else { 3474 UNIMPLEMENTED(); 3475 } 3476 break; 3477 case 7: 3478 if ((instr->Bits(18, 16) == 0) && (instr->Bits(11, 6) == 0x28) && 3479 (instr->Bit(4) == 1)) { 3480 // vmovl unsigned 3481 int Vd = (instr->Bit(22) << 4) | instr->VdValue(); 3482 int Vm = (instr->Bit(5) << 4) | instr->VmValue(); 3483 int imm3 = instr->Bits(21, 19); 3484 if ((imm3 != 1) && (imm3 != 2) && (imm3 != 4)) UNIMPLEMENTED(); 3485 int esize = 8 * imm3; 3486 int elements = 64 / esize; 3487 uint8_t from[8]; 3488 get_d_register(Vm, reinterpret_cast<uint64_t*>(from)); 3489 uint16_t to[8]; 3490 int e = 0; 3491 while (e < elements) { 3492 to[e] = from[e]; 3493 e++; 3494 } 3495 set_q_register(Vd, reinterpret_cast<uint64_t*>(to)); 3496 } else { 3497 UNIMPLEMENTED(); 3498 } 3499 break; 3500 case 8: 3501 if (instr->Bits(21, 20) == 0) { 3502 // vst1 3503 int Vd = (instr->Bit(22) << 4) | instr->VdValue(); 3504 int Rn = instr->VnValue(); 3505 int type = instr->Bits(11, 8); 3506 int Rm = instr->VmValue(); 3507 int32_t address = get_register(Rn); 3508 int regs = 0; 3509 switch (type) { 3510 case nlt_1: 3511 regs = 1; 3512 break; 3513 case nlt_2: 3514 regs = 2; 3515 break; 3516 case nlt_3: 3517 regs = 3; 3518 break; 3519 case nlt_4: 3520 regs = 4; 3521 break; 3522 default: 3523 UNIMPLEMENTED(); 3524 break; 3525 } 3526 int r = 0; 3527 while (r < regs) { 3528 uint32_t data[2]; 3529 get_d_register(Vd + r, data); 3530 WriteW(address, data[0], instr); 3531 WriteW(address + 4, data[1], instr); 3532 address += 8; 3533 r++; 3534 } 3535 if (Rm != 15) { 3536 if (Rm == 13) { 3537 set_register(Rn, address); 3538 } else { 3539 set_register(Rn, get_register(Rn) + get_register(Rm)); 3540 } 3541 } 3542 } else if (instr->Bits(21, 20) == 2) { 3543 // vld1 3544 int Vd = (instr->Bit(22) << 4) | instr->VdValue(); 3545 int Rn = instr->VnValue(); 3546 int type = instr->Bits(11, 8); 3547 int Rm = instr->VmValue(); 3548 int32_t address = get_register(Rn); 3549 int regs = 0; 3550 switch (type) { 3551 case nlt_1: 3552 regs = 1; 3553 break; 3554 case nlt_2: 3555 regs = 2; 3556 break; 3557 case nlt_3: 3558 regs = 3; 3559 break; 3560 case nlt_4: 3561 regs = 4; 3562 break; 3563 default: 3564 UNIMPLEMENTED(); 3565 break; 3566 } 3567 int r = 0; 3568 while (r < regs) { 3569 uint32_t data[2]; 3570 data[0] = ReadW(address, instr); 3571 data[1] = ReadW(address + 4, instr); 3572 set_d_register(Vd + r, data); 3573 address += 8; 3574 r++; 3575 } 3576 if (Rm != 15) { 3577 if (Rm == 13) { 3578 set_register(Rn, address); 3579 } else { 3580 set_register(Rn, get_register(Rn) + get_register(Rm)); 3581 } 3582 } 3583 } else { 3584 UNIMPLEMENTED(); 3585 } 3586 break; 3587 case 0xA: 3588 case 0xB: 3589 if ((instr->Bits(22, 20) == 5) && (instr->Bits(15, 12) == 0xf)) { 3590 // pld: ignore instruction. 3591 } else { 3592 UNIMPLEMENTED(); 3593 } 3594 break; 3595 default: 3596 UNIMPLEMENTED(); 3597 break; 3598 } 3599} 3600 3601 3602// Executes the current instruction. 3603void Simulator::InstructionDecode(Instruction* instr) { 3604 if (v8::internal::FLAG_check_icache) { 3605 CheckICache(isolate_->simulator_i_cache(), instr); 3606 } 3607 pc_modified_ = false; 3608 if (::v8::internal::FLAG_trace_sim) { 3609 disasm::NameConverter converter; 3610 disasm::Disassembler dasm(converter); 3611 // use a reasonably large buffer 3612 v8::internal::EmbeddedVector<char, 256> buffer; 3613 dasm.InstructionDecode(buffer, 3614 reinterpret_cast<byte*>(instr)); 3615 PrintF(" 0x%08x %s\n", reinterpret_cast<intptr_t>(instr), buffer.start()); 3616 } 3617 if (instr->ConditionField() == kSpecialCondition) { 3618 DecodeSpecialCondition(instr); 3619 } else if (ConditionallyExecute(instr)) { 3620 switch (instr->TypeValue()) { 3621 case 0: 3622 case 1: { 3623 DecodeType01(instr); 3624 break; 3625 } 3626 case 2: { 3627 DecodeType2(instr); 3628 break; 3629 } 3630 case 3: { 3631 DecodeType3(instr); 3632 break; 3633 } 3634 case 4: { 3635 DecodeType4(instr); 3636 break; 3637 } 3638 case 5: { 3639 DecodeType5(instr); 3640 break; 3641 } 3642 case 6: { 3643 DecodeType6(instr); 3644 break; 3645 } 3646 case 7: { 3647 DecodeType7(instr); 3648 break; 3649 } 3650 default: { 3651 UNIMPLEMENTED(); 3652 break; 3653 } 3654 } 3655 // If the instruction is a non taken conditional stop, we need to skip the 3656 // inlined message address. 3657 } else if (instr->IsStop()) { 3658 set_pc(get_pc() + 2 * Instruction::kInstrSize); 3659 } 3660 if (!pc_modified_) { 3661 set_register(pc, reinterpret_cast<int32_t>(instr) 3662 + Instruction::kInstrSize); 3663 } 3664} 3665 3666 3667void Simulator::Execute() { 3668 // Get the PC to simulate. Cannot use the accessor here as we need the 3669 // raw PC value and not the one used as input to arithmetic instructions. 3670 int program_counter = get_pc(); 3671 3672 if (::v8::internal::FLAG_stop_sim_at == 0) { 3673 // Fast version of the dispatch loop without checking whether the simulator 3674 // should be stopping at a particular executed instruction. 3675 while (program_counter != end_sim_pc) { 3676 Instruction* instr = reinterpret_cast<Instruction*>(program_counter); 3677 icount_++; 3678 InstructionDecode(instr); 3679 program_counter = get_pc(); 3680 } 3681 } else { 3682 // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when 3683 // we reach the particular instuction count. 3684 while (program_counter != end_sim_pc) { 3685 Instruction* instr = reinterpret_cast<Instruction*>(program_counter); 3686 icount_++; 3687 if (icount_ == ::v8::internal::FLAG_stop_sim_at) { 3688 ArmDebugger dbg(this); 3689 dbg.Debug(); 3690 } else { 3691 InstructionDecode(instr); 3692 } 3693 program_counter = get_pc(); 3694 } 3695 } 3696} 3697 3698 3699void Simulator::CallInternal(byte* entry) { 3700 // Prepare to execute the code at entry 3701 set_register(pc, reinterpret_cast<int32_t>(entry)); 3702 // Put down marker for end of simulation. The simulator will stop simulation 3703 // when the PC reaches this value. By saving the "end simulation" value into 3704 // the LR the simulation stops when returning to this call point. 3705 set_register(lr, end_sim_pc); 3706 3707 // Remember the values of callee-saved registers. 3708 // The code below assumes that r9 is not used as sb (static base) in 3709 // simulator code and therefore is regarded as a callee-saved register. 3710 int32_t r4_val = get_register(r4); 3711 int32_t r5_val = get_register(r5); 3712 int32_t r6_val = get_register(r6); 3713 int32_t r7_val = get_register(r7); 3714 int32_t r8_val = get_register(r8); 3715 int32_t r9_val = get_register(r9); 3716 int32_t r10_val = get_register(r10); 3717 int32_t r11_val = get_register(r11); 3718 3719 // Set up the callee-saved registers with a known value. To be able to check 3720 // that they are preserved properly across JS execution. 3721 int32_t callee_saved_value = icount_; 3722 set_register(r4, callee_saved_value); 3723 set_register(r5, callee_saved_value); 3724 set_register(r6, callee_saved_value); 3725 set_register(r7, callee_saved_value); 3726 set_register(r8, callee_saved_value); 3727 set_register(r9, callee_saved_value); 3728 set_register(r10, callee_saved_value); 3729 set_register(r11, callee_saved_value); 3730 3731 // Start the simulation 3732 Execute(); 3733 3734 // Check that the callee-saved registers have been preserved. 3735 CHECK_EQ(callee_saved_value, get_register(r4)); 3736 CHECK_EQ(callee_saved_value, get_register(r5)); 3737 CHECK_EQ(callee_saved_value, get_register(r6)); 3738 CHECK_EQ(callee_saved_value, get_register(r7)); 3739 CHECK_EQ(callee_saved_value, get_register(r8)); 3740 CHECK_EQ(callee_saved_value, get_register(r9)); 3741 CHECK_EQ(callee_saved_value, get_register(r10)); 3742 CHECK_EQ(callee_saved_value, get_register(r11)); 3743 3744 // Restore callee-saved registers with the original value. 3745 set_register(r4, r4_val); 3746 set_register(r5, r5_val); 3747 set_register(r6, r6_val); 3748 set_register(r7, r7_val); 3749 set_register(r8, r8_val); 3750 set_register(r9, r9_val); 3751 set_register(r10, r10_val); 3752 set_register(r11, r11_val); 3753} 3754 3755 3756int32_t Simulator::Call(byte* entry, int argument_count, ...) { 3757 va_list parameters; 3758 va_start(parameters, argument_count); 3759 // Set up arguments 3760 3761 // First four arguments passed in registers. 3762 ASSERT(argument_count >= 4); 3763 set_register(r0, va_arg(parameters, int32_t)); 3764 set_register(r1, va_arg(parameters, int32_t)); 3765 set_register(r2, va_arg(parameters, int32_t)); 3766 set_register(r3, va_arg(parameters, int32_t)); 3767 3768 // Remaining arguments passed on stack. 3769 int original_stack = get_register(sp); 3770 // Compute position of stack on entry to generated code. 3771 int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t)); 3772 if (OS::ActivationFrameAlignment() != 0) { 3773 entry_stack &= -OS::ActivationFrameAlignment(); 3774 } 3775 // Store remaining arguments on stack, from low to high memory. 3776 intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack); 3777 for (int i = 4; i < argument_count; i++) { 3778 stack_argument[i - 4] = va_arg(parameters, int32_t); 3779 } 3780 va_end(parameters); 3781 set_register(sp, entry_stack); 3782 3783 CallInternal(entry); 3784 3785 // Pop stack passed arguments. 3786 CHECK_EQ(entry_stack, get_register(sp)); 3787 set_register(sp, original_stack); 3788 3789 int32_t result = get_register(r0); 3790 return result; 3791} 3792 3793 3794void Simulator::CallFP(byte* entry, double d0, double d1) { 3795 if (use_eabi_hardfloat()) { 3796 set_d_register_from_double(0, d0); 3797 set_d_register_from_double(1, d1); 3798 } else { 3799 set_register_pair_from_double(0, &d0); 3800 set_register_pair_from_double(2, &d1); 3801 } 3802 CallInternal(entry); 3803} 3804 3805 3806int32_t Simulator::CallFPReturnsInt(byte* entry, double d0, double d1) { 3807 CallFP(entry, d0, d1); 3808 int32_t result = get_register(r0); 3809 return result; 3810} 3811 3812 3813double Simulator::CallFPReturnsDouble(byte* entry, double d0, double d1) { 3814 CallFP(entry, d0, d1); 3815 if (use_eabi_hardfloat()) { 3816 return get_double_from_d_register(0); 3817 } else { 3818 return get_double_from_register_pair(0); 3819 } 3820} 3821 3822 3823uintptr_t Simulator::PushAddress(uintptr_t address) { 3824 int new_sp = get_register(sp) - sizeof(uintptr_t); 3825 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp); 3826 *stack_slot = address; 3827 set_register(sp, new_sp); 3828 return new_sp; 3829} 3830 3831 3832uintptr_t Simulator::PopAddress() { 3833 int current_sp = get_register(sp); 3834 uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp); 3835 uintptr_t address = *stack_slot; 3836 set_register(sp, current_sp + sizeof(uintptr_t)); 3837 return address; 3838} 3839 3840} } // namespace v8::internal 3841 3842#endif // USE_SIMULATOR 3843 3844#endif // V8_TARGET_ARCH_ARM 3845