1// Copyright 2012 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#include "ast.h"
31#include "deoptimizer.h"
32#include "frames-inl.h"
33#include "full-codegen.h"
34#include "lazy-instance.h"
35#include "mark-compact.h"
36#include "safepoint-table.h"
37#include "scopeinfo.h"
38#include "string-stream.h"
39#include "vm-state-inl.h"
40
41namespace v8 {
42namespace internal {
43
44
45ReturnAddressLocationResolver
46    StackFrame::return_address_location_resolver_ = NULL;
47
48
49// Iterator that supports traversing the stack handlers of a
50// particular frame. Needs to know the top of the handler chain.
51class StackHandlerIterator BASE_EMBEDDED {
52 public:
53  StackHandlerIterator(const StackFrame* frame, StackHandler* handler)
54      : limit_(frame->fp()), handler_(handler) {
55    // Make sure the handler has already been unwound to this frame.
56    ASSERT(frame->sp() <= handler->address());
57  }
58
59  StackHandler* handler() const { return handler_; }
60
61  bool done() {
62    return handler_ == NULL || handler_->address() > limit_;
63  }
64  void Advance() {
65    ASSERT(!done());
66    handler_ = handler_->next();
67  }
68
69 private:
70  const Address limit_;
71  StackHandler* handler_;
72};
73
74
75// -------------------------------------------------------------------------
76
77
78#define INITIALIZE_SINGLETON(type, field) field##_(this),
79StackFrameIteratorBase::StackFrameIteratorBase(Isolate* isolate,
80                                               bool can_access_heap_objects)
81    : isolate_(isolate),
82      STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON)
83      frame_(NULL), handler_(NULL),
84      can_access_heap_objects_(can_access_heap_objects) {
85}
86#undef INITIALIZE_SINGLETON
87
88
89StackFrameIterator::StackFrameIterator(Isolate* isolate)
90    : StackFrameIteratorBase(isolate, true) {
91  Reset(isolate->thread_local_top());
92}
93
94
95StackFrameIterator::StackFrameIterator(Isolate* isolate, ThreadLocalTop* t)
96    : StackFrameIteratorBase(isolate, true) {
97  Reset(t);
98}
99
100
101void StackFrameIterator::Advance() {
102  ASSERT(!done());
103  // Compute the state of the calling frame before restoring
104  // callee-saved registers and unwinding handlers. This allows the
105  // frame code that computes the caller state to access the top
106  // handler and the value of any callee-saved register if needed.
107  StackFrame::State state;
108  StackFrame::Type type = frame_->GetCallerState(&state);
109
110  // Unwind handlers corresponding to the current frame.
111  StackHandlerIterator it(frame_, handler_);
112  while (!it.done()) it.Advance();
113  handler_ = it.handler();
114
115  // Advance to the calling frame.
116  frame_ = SingletonFor(type, &state);
117
118  // When we're done iterating over the stack frames, the handler
119  // chain must have been completely unwound.
120  ASSERT(!done() || handler_ == NULL);
121}
122
123
124void StackFrameIterator::Reset(ThreadLocalTop* top) {
125  StackFrame::State state;
126  StackFrame::Type type = ExitFrame::GetStateForFramePointer(
127      Isolate::c_entry_fp(top), &state);
128  handler_ = StackHandler::FromAddress(Isolate::handler(top));
129  if (SingletonFor(type) == NULL) return;
130  frame_ = SingletonFor(type, &state);
131}
132
133
134StackFrame* StackFrameIteratorBase::SingletonFor(StackFrame::Type type,
135                                             StackFrame::State* state) {
136  if (type == StackFrame::NONE) return NULL;
137  StackFrame* result = SingletonFor(type);
138  ASSERT(result != NULL);
139  result->state_ = *state;
140  return result;
141}
142
143
144StackFrame* StackFrameIteratorBase::SingletonFor(StackFrame::Type type) {
145#define FRAME_TYPE_CASE(type, field) \
146  case StackFrame::type: result = &field##_; break;
147
148  StackFrame* result = NULL;
149  switch (type) {
150    case StackFrame::NONE: return NULL;
151    STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE)
152    default: break;
153  }
154  return result;
155
156#undef FRAME_TYPE_CASE
157}
158
159
160// -------------------------------------------------------------------------
161
162
163JavaScriptFrameIterator::JavaScriptFrameIterator(
164    Isolate* isolate, StackFrame::Id id)
165    : iterator_(isolate) {
166  while (!done()) {
167    Advance();
168    if (frame()->id() == id) return;
169  }
170}
171
172
173void JavaScriptFrameIterator::Advance() {
174  do {
175    iterator_.Advance();
176  } while (!iterator_.done() && !iterator_.frame()->is_java_script());
177}
178
179
180void JavaScriptFrameIterator::AdvanceToArgumentsFrame() {
181  if (!frame()->has_adapted_arguments()) return;
182  iterator_.Advance();
183  ASSERT(iterator_.frame()->is_arguments_adaptor());
184}
185
186
187// -------------------------------------------------------------------------
188
189
190StackTraceFrameIterator::StackTraceFrameIterator(Isolate* isolate)
191    : JavaScriptFrameIterator(isolate) {
192  if (!done() && !IsValidFrame()) Advance();
193}
194
195
196void StackTraceFrameIterator::Advance() {
197  while (true) {
198    JavaScriptFrameIterator::Advance();
199    if (done()) return;
200    if (IsValidFrame()) return;
201  }
202}
203
204
205bool StackTraceFrameIterator::IsValidFrame() {
206    if (!frame()->function()->IsJSFunction()) return false;
207    Object* script = frame()->function()->shared()->script();
208    // Don't show functions from native scripts to user.
209    return (script->IsScript() &&
210            Script::TYPE_NATIVE != Script::cast(script)->type()->value());
211}
212
213
214// -------------------------------------------------------------------------
215
216
217SafeStackFrameIterator::SafeStackFrameIterator(
218    Isolate* isolate,
219    Address fp, Address sp, Address js_entry_sp)
220    : StackFrameIteratorBase(isolate, false),
221      low_bound_(sp),
222      high_bound_(js_entry_sp),
223      top_frame_type_(StackFrame::NONE),
224      external_callback_scope_(isolate->external_callback_scope()) {
225  StackFrame::State state;
226  StackFrame::Type type;
227  ThreadLocalTop* top = isolate->thread_local_top();
228  if (IsValidTop(top)) {
229    type = ExitFrame::GetStateForFramePointer(Isolate::c_entry_fp(top), &state);
230    top_frame_type_ = type;
231  } else if (IsValidStackAddress(fp)) {
232    ASSERT(fp != NULL);
233    state.fp = fp;
234    state.sp = sp;
235    state.pc_address = StackFrame::ResolveReturnAddressLocation(
236        reinterpret_cast<Address*>(StandardFrame::ComputePCAddress(fp)));
237    // StackFrame::ComputeType will read both kContextOffset and kMarkerOffset,
238    // we check only that kMarkerOffset is within the stack bounds and do
239    // compile time check that kContextOffset slot is pushed on the stack before
240    // kMarkerOffset.
241    STATIC_ASSERT(StandardFrameConstants::kMarkerOffset <
242                  StandardFrameConstants::kContextOffset);
243    Address frame_marker = fp + StandardFrameConstants::kMarkerOffset;
244    if (IsValidStackAddress(frame_marker)) {
245      type = StackFrame::ComputeType(this, &state);
246      top_frame_type_ = type;
247    } else {
248      // Mark the frame as JAVA_SCRIPT if we cannot determine its type.
249      // The frame anyways will be skipped.
250      type = StackFrame::JAVA_SCRIPT;
251      // Top frame is incomplete so we cannot reliably determine its type.
252      top_frame_type_ = StackFrame::NONE;
253    }
254  } else {
255    return;
256  }
257  if (SingletonFor(type) == NULL) return;
258  frame_ = SingletonFor(type, &state);
259  if (frame_ == NULL) return;
260
261  Advance();
262
263  if (frame_ != NULL && !frame_->is_exit() &&
264      external_callback_scope_ != NULL &&
265      external_callback_scope_->scope_address() < frame_->fp()) {
266    // Skip top ExternalCallbackScope if we already advanced to a JS frame
267    // under it. Sampler will anyways take this top external callback.
268    external_callback_scope_ = external_callback_scope_->previous();
269  }
270}
271
272
273bool SafeStackFrameIterator::IsValidTop(ThreadLocalTop* top) const {
274  Address c_entry_fp = Isolate::c_entry_fp(top);
275  if (!IsValidExitFrame(c_entry_fp)) return false;
276  // There should be at least one JS_ENTRY stack handler.
277  Address handler = Isolate::handler(top);
278  if (handler == NULL) return false;
279  // Check that there are no js frames on top of the native frames.
280  return c_entry_fp < handler;
281}
282
283
284void SafeStackFrameIterator::AdvanceOneFrame() {
285  ASSERT(!done());
286  StackFrame* last_frame = frame_;
287  Address last_sp = last_frame->sp(), last_fp = last_frame->fp();
288  // Before advancing to the next stack frame, perform pointer validity tests.
289  if (!IsValidFrame(last_frame) || !IsValidCaller(last_frame)) {
290    frame_ = NULL;
291    return;
292  }
293
294  // Advance to the previous frame.
295  StackFrame::State state;
296  StackFrame::Type type = frame_->GetCallerState(&state);
297  frame_ = SingletonFor(type, &state);
298  if (frame_ == NULL) return;
299
300  // Check that we have actually moved to the previous frame in the stack.
301  if (frame_->sp() < last_sp || frame_->fp() < last_fp) {
302    frame_ = NULL;
303  }
304}
305
306
307bool SafeStackFrameIterator::IsValidFrame(StackFrame* frame) const {
308  return IsValidStackAddress(frame->sp()) && IsValidStackAddress(frame->fp());
309}
310
311
312bool SafeStackFrameIterator::IsValidCaller(StackFrame* frame) {
313  StackFrame::State state;
314  if (frame->is_entry() || frame->is_entry_construct()) {
315    // See EntryFrame::GetCallerState. It computes the caller FP address
316    // and calls ExitFrame::GetStateForFramePointer on it. We need to be
317    // sure that caller FP address is valid.
318    Address caller_fp = Memory::Address_at(
319        frame->fp() + EntryFrameConstants::kCallerFPOffset);
320    if (!IsValidExitFrame(caller_fp)) return false;
321  } else if (frame->is_arguments_adaptor()) {
322    // See ArgumentsAdaptorFrame::GetCallerStackPointer. It assumes that
323    // the number of arguments is stored on stack as Smi. We need to check
324    // that it really an Smi.
325    Object* number_of_args = reinterpret_cast<ArgumentsAdaptorFrame*>(frame)->
326        GetExpression(0);
327    if (!number_of_args->IsSmi()) {
328      return false;
329    }
330  }
331  frame->ComputeCallerState(&state);
332  return IsValidStackAddress(state.sp) && IsValidStackAddress(state.fp) &&
333      SingletonFor(frame->GetCallerState(&state)) != NULL;
334}
335
336
337bool SafeStackFrameIterator::IsValidExitFrame(Address fp) const {
338  if (!IsValidStackAddress(fp)) return false;
339  Address sp = ExitFrame::ComputeStackPointer(fp);
340  if (!IsValidStackAddress(sp)) return false;
341  StackFrame::State state;
342  ExitFrame::FillState(fp, sp, &state);
343  if (!IsValidStackAddress(reinterpret_cast<Address>(state.pc_address))) {
344    return false;
345  }
346  return *state.pc_address != NULL;
347}
348
349
350void SafeStackFrameIterator::Advance() {
351  while (true) {
352    AdvanceOneFrame();
353    if (done()) return;
354    if (frame_->is_java_script()) return;
355    if (frame_->is_exit() && external_callback_scope_) {
356      // Some of the EXIT frames may have ExternalCallbackScope allocated on
357      // top of them. In that case the scope corresponds to the first EXIT
358      // frame beneath it. There may be other EXIT frames on top of the
359      // ExternalCallbackScope, just skip them as we cannot collect any useful
360      // information about them.
361      if (external_callback_scope_->scope_address() < frame_->fp()) {
362        Address* callback_address =
363            external_callback_scope_->callback_address();
364        if (*callback_address != NULL) {
365          frame_->state_.pc_address = callback_address;
366        }
367        external_callback_scope_ = external_callback_scope_->previous();
368        ASSERT(external_callback_scope_ == NULL ||
369               external_callback_scope_->scope_address() > frame_->fp());
370        return;
371      }
372    }
373  }
374}
375
376
377// -------------------------------------------------------------------------
378
379
380Code* StackFrame::GetSafepointData(Isolate* isolate,
381                                   Address inner_pointer,
382                                   SafepointEntry* safepoint_entry,
383                                   unsigned* stack_slots) {
384  InnerPointerToCodeCache::InnerPointerToCodeCacheEntry* entry =
385      isolate->inner_pointer_to_code_cache()->GetCacheEntry(inner_pointer);
386  if (!entry->safepoint_entry.is_valid()) {
387    entry->safepoint_entry = entry->code->GetSafepointEntry(inner_pointer);
388    ASSERT(entry->safepoint_entry.is_valid());
389  } else {
390    ASSERT(entry->safepoint_entry.Equals(
391        entry->code->GetSafepointEntry(inner_pointer)));
392  }
393
394  // Fill in the results and return the code.
395  Code* code = entry->code;
396  *safepoint_entry = entry->safepoint_entry;
397  *stack_slots = code->stack_slots();
398  return code;
399}
400
401
402bool StackFrame::HasHandler() const {
403  StackHandlerIterator it(this, top_handler());
404  return !it.done();
405}
406
407
408#ifdef DEBUG
409static bool GcSafeCodeContains(HeapObject* object, Address addr);
410#endif
411
412
413void StackFrame::IteratePc(ObjectVisitor* v,
414                           Address* pc_address,
415                           Code* holder) {
416  Address pc = *pc_address;
417  ASSERT(GcSafeCodeContains(holder, pc));
418  unsigned pc_offset = static_cast<unsigned>(pc - holder->instruction_start());
419  Object* code = holder;
420  v->VisitPointer(&code);
421  if (code != holder) {
422    holder = reinterpret_cast<Code*>(code);
423    pc = holder->instruction_start() + pc_offset;
424    *pc_address = pc;
425  }
426}
427
428
429void StackFrame::SetReturnAddressLocationResolver(
430    ReturnAddressLocationResolver resolver) {
431  ASSERT(return_address_location_resolver_ == NULL);
432  return_address_location_resolver_ = resolver;
433}
434
435
436StackFrame::Type StackFrame::ComputeType(const StackFrameIteratorBase* iterator,
437                                         State* state) {
438  ASSERT(state->fp != NULL);
439  if (StandardFrame::IsArgumentsAdaptorFrame(state->fp)) {
440    return ARGUMENTS_ADAPTOR;
441  }
442  // The marker and function offsets overlap. If the marker isn't a
443  // smi then the frame is a JavaScript frame -- and the marker is
444  // really the function.
445  const int offset = StandardFrameConstants::kMarkerOffset;
446  Object* marker = Memory::Object_at(state->fp + offset);
447  if (!marker->IsSmi()) {
448    // If we're using a "safe" stack iterator, we treat optimized
449    // frames as normal JavaScript frames to avoid having to look
450    // into the heap to determine the state. This is safe as long
451    // as nobody tries to GC...
452    if (!iterator->can_access_heap_objects_) return JAVA_SCRIPT;
453    Code::Kind kind = GetContainingCode(iterator->isolate(),
454                                        *(state->pc_address))->kind();
455    ASSERT(kind == Code::FUNCTION || kind == Code::OPTIMIZED_FUNCTION);
456    return (kind == Code::OPTIMIZED_FUNCTION) ? OPTIMIZED : JAVA_SCRIPT;
457  }
458  return static_cast<StackFrame::Type>(Smi::cast(marker)->value());
459}
460
461
462#ifdef DEBUG
463bool StackFrame::can_access_heap_objects() const {
464  return iterator_->can_access_heap_objects_;
465}
466#endif
467
468
469StackFrame::Type StackFrame::GetCallerState(State* state) const {
470  ComputeCallerState(state);
471  return ComputeType(iterator_, state);
472}
473
474
475Address StackFrame::UnpaddedFP() const {
476#if V8_TARGET_ARCH_IA32
477  if (!is_optimized()) return fp();
478  int32_t alignment_state = Memory::int32_at(
479    fp() + JavaScriptFrameConstants::kDynamicAlignmentStateOffset);
480
481  return (alignment_state == kAlignmentPaddingPushed) ?
482    (fp() + kPointerSize) : fp();
483#else
484  return fp();
485#endif
486}
487
488
489Code* EntryFrame::unchecked_code() const {
490  return isolate()->heap()->js_entry_code();
491}
492
493
494void EntryFrame::ComputeCallerState(State* state) const {
495  GetCallerState(state);
496}
497
498
499void EntryFrame::SetCallerFp(Address caller_fp) {
500  const int offset = EntryFrameConstants::kCallerFPOffset;
501  Memory::Address_at(this->fp() + offset) = caller_fp;
502}
503
504
505StackFrame::Type EntryFrame::GetCallerState(State* state) const {
506  const int offset = EntryFrameConstants::kCallerFPOffset;
507  Address fp = Memory::Address_at(this->fp() + offset);
508  return ExitFrame::GetStateForFramePointer(fp, state);
509}
510
511
512Code* EntryConstructFrame::unchecked_code() const {
513  return isolate()->heap()->js_construct_entry_code();
514}
515
516
517Object*& ExitFrame::code_slot() const {
518  const int offset = ExitFrameConstants::kCodeOffset;
519  return Memory::Object_at(fp() + offset);
520}
521
522
523Code* ExitFrame::unchecked_code() const {
524  return reinterpret_cast<Code*>(code_slot());
525}
526
527
528void ExitFrame::ComputeCallerState(State* state) const {
529  // Set up the caller state.
530  state->sp = caller_sp();
531  state->fp = Memory::Address_at(fp() + ExitFrameConstants::kCallerFPOffset);
532  state->pc_address = ResolveReturnAddressLocation(
533      reinterpret_cast<Address*>(fp() + ExitFrameConstants::kCallerPCOffset));
534}
535
536
537void ExitFrame::SetCallerFp(Address caller_fp) {
538  Memory::Address_at(fp() + ExitFrameConstants::kCallerFPOffset) = caller_fp;
539}
540
541
542void ExitFrame::Iterate(ObjectVisitor* v) const {
543  // The arguments are traversed as part of the expression stack of
544  // the calling frame.
545  IteratePc(v, pc_address(), LookupCode());
546  v->VisitPointer(&code_slot());
547}
548
549
550Address ExitFrame::GetCallerStackPointer() const {
551  return fp() + ExitFrameConstants::kCallerSPDisplacement;
552}
553
554
555StackFrame::Type ExitFrame::GetStateForFramePointer(Address fp, State* state) {
556  if (fp == 0) return NONE;
557  Address sp = ComputeStackPointer(fp);
558  FillState(fp, sp, state);
559  ASSERT(*state->pc_address != NULL);
560  return EXIT;
561}
562
563
564Address ExitFrame::ComputeStackPointer(Address fp) {
565  return Memory::Address_at(fp + ExitFrameConstants::kSPOffset);
566}
567
568
569void ExitFrame::FillState(Address fp, Address sp, State* state) {
570  state->sp = sp;
571  state->fp = fp;
572  state->pc_address = ResolveReturnAddressLocation(
573      reinterpret_cast<Address*>(sp - 1 * kPCOnStackSize));
574}
575
576
577Address StandardFrame::GetExpressionAddress(int n) const {
578  const int offset = StandardFrameConstants::kExpressionsOffset;
579  return fp() + offset - n * kPointerSize;
580}
581
582
583Object* StandardFrame::GetExpression(Address fp, int index) {
584  return Memory::Object_at(GetExpressionAddress(fp, index));
585}
586
587
588Address StandardFrame::GetExpressionAddress(Address fp, int n) {
589  const int offset = StandardFrameConstants::kExpressionsOffset;
590  return fp + offset - n * kPointerSize;
591}
592
593
594int StandardFrame::ComputeExpressionsCount() const {
595  const int offset =
596      StandardFrameConstants::kExpressionsOffset + kPointerSize;
597  Address base = fp() + offset;
598  Address limit = sp();
599  ASSERT(base >= limit);  // stack grows downwards
600  // Include register-allocated locals in number of expressions.
601  return static_cast<int>((base - limit) / kPointerSize);
602}
603
604
605void StandardFrame::ComputeCallerState(State* state) const {
606  state->sp = caller_sp();
607  state->fp = caller_fp();
608  state->pc_address = ResolveReturnAddressLocation(
609      reinterpret_cast<Address*>(ComputePCAddress(fp())));
610}
611
612
613void StandardFrame::SetCallerFp(Address caller_fp) {
614  Memory::Address_at(fp() + StandardFrameConstants::kCallerFPOffset) =
615      caller_fp;
616}
617
618
619bool StandardFrame::IsExpressionInsideHandler(int n) const {
620  Address address = GetExpressionAddress(n);
621  for (StackHandlerIterator it(this, top_handler()); !it.done(); it.Advance()) {
622    if (it.handler()->includes(address)) return true;
623  }
624  return false;
625}
626
627
628void StandardFrame::IterateCompiledFrame(ObjectVisitor* v) const {
629  // Make sure that we're not doing "safe" stack frame iteration. We cannot
630  // possibly find pointers in optimized frames in that state.
631  ASSERT(can_access_heap_objects());
632
633  // Compute the safepoint information.
634  unsigned stack_slots = 0;
635  SafepointEntry safepoint_entry;
636  Code* code = StackFrame::GetSafepointData(
637      isolate(), pc(), &safepoint_entry, &stack_slots);
638  unsigned slot_space = stack_slots * kPointerSize;
639
640  // Visit the outgoing parameters.
641  Object** parameters_base = &Memory::Object_at(sp());
642  Object** parameters_limit = &Memory::Object_at(
643      fp() + JavaScriptFrameConstants::kFunctionOffset - slot_space);
644
645  // Visit the parameters that may be on top of the saved registers.
646  if (safepoint_entry.argument_count() > 0) {
647    v->VisitPointers(parameters_base,
648                     parameters_base + safepoint_entry.argument_count());
649    parameters_base += safepoint_entry.argument_count();
650  }
651
652  // Skip saved double registers.
653  if (safepoint_entry.has_doubles()) {
654    // Number of doubles not known at snapshot time.
655    ASSERT(!Serializer::enabled());
656    parameters_base += DoubleRegister::NumAllocatableRegisters() *
657        kDoubleSize / kPointerSize;
658  }
659
660  // Visit the registers that contain pointers if any.
661  if (safepoint_entry.HasRegisters()) {
662    for (int i = kNumSafepointRegisters - 1; i >=0; i--) {
663      if (safepoint_entry.HasRegisterAt(i)) {
664        int reg_stack_index = MacroAssembler::SafepointRegisterStackIndex(i);
665        v->VisitPointer(parameters_base + reg_stack_index);
666      }
667    }
668    // Skip the words containing the register values.
669    parameters_base += kNumSafepointRegisters;
670  }
671
672  // We're done dealing with the register bits.
673  uint8_t* safepoint_bits = safepoint_entry.bits();
674  safepoint_bits += kNumSafepointRegisters >> kBitsPerByteLog2;
675
676  // Visit the rest of the parameters.
677  v->VisitPointers(parameters_base, parameters_limit);
678
679  // Visit pointer spill slots and locals.
680  for (unsigned index = 0; index < stack_slots; index++) {
681    int byte_index = index >> kBitsPerByteLog2;
682    int bit_index = index & (kBitsPerByte - 1);
683    if ((safepoint_bits[byte_index] & (1U << bit_index)) != 0) {
684      v->VisitPointer(parameters_limit + index);
685    }
686  }
687
688  // Visit the return address in the callee and incoming arguments.
689  IteratePc(v, pc_address(), code);
690
691  // Visit the context in stub frame and JavaScript frame.
692  // Visit the function in JavaScript frame.
693  Object** fixed_base = &Memory::Object_at(
694      fp() + StandardFrameConstants::kMarkerOffset);
695  Object** fixed_limit = &Memory::Object_at(fp());
696  v->VisitPointers(fixed_base, fixed_limit);
697}
698
699
700void StubFrame::Iterate(ObjectVisitor* v) const {
701  IterateCompiledFrame(v);
702}
703
704
705Code* StubFrame::unchecked_code() const {
706  return static_cast<Code*>(isolate()->FindCodeObject(pc()));
707}
708
709
710Address StubFrame::GetCallerStackPointer() const {
711  return fp() + ExitFrameConstants::kCallerSPDisplacement;
712}
713
714
715int StubFrame::GetNumberOfIncomingArguments() const {
716  return 0;
717}
718
719
720void OptimizedFrame::Iterate(ObjectVisitor* v) const {
721#ifdef DEBUG
722  // Make sure that optimized frames do not contain any stack handlers.
723  StackHandlerIterator it(this, top_handler());
724  ASSERT(it.done());
725#endif
726
727  IterateCompiledFrame(v);
728}
729
730
731void JavaScriptFrame::SetParameterValue(int index, Object* value) const {
732  Memory::Object_at(GetParameterSlot(index)) = value;
733}
734
735
736bool JavaScriptFrame::IsConstructor() const {
737  Address fp = caller_fp();
738  if (has_adapted_arguments()) {
739    // Skip the arguments adaptor frame and look at the real caller.
740    fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset);
741  }
742  return IsConstructFrame(fp);
743}
744
745
746int JavaScriptFrame::GetArgumentsLength() const {
747  // If there is an arguments adaptor frame get the arguments length from it.
748  if (has_adapted_arguments()) {
749    return Smi::cast(GetExpression(caller_fp(), 0))->value();
750  } else {
751    return GetNumberOfIncomingArguments();
752  }
753}
754
755
756Code* JavaScriptFrame::unchecked_code() const {
757  return function()->code();
758}
759
760
761int JavaScriptFrame::GetNumberOfIncomingArguments() const {
762  ASSERT(can_access_heap_objects() &&
763         isolate()->heap()->gc_state() == Heap::NOT_IN_GC);
764
765  return function()->shared()->formal_parameter_count();
766}
767
768
769Address JavaScriptFrame::GetCallerStackPointer() const {
770  return fp() + StandardFrameConstants::kCallerSPOffset;
771}
772
773
774void JavaScriptFrame::GetFunctions(List<JSFunction*>* functions) {
775  ASSERT(functions->length() == 0);
776  functions->Add(function());
777}
778
779
780void JavaScriptFrame::Summarize(List<FrameSummary>* functions) {
781  ASSERT(functions->length() == 0);
782  Code* code_pointer = LookupCode();
783  int offset = static_cast<int>(pc() - code_pointer->address());
784  FrameSummary summary(receiver(),
785                       function(),
786                       code_pointer,
787                       offset,
788                       IsConstructor());
789  functions->Add(summary);
790}
791
792
793void JavaScriptFrame::PrintTop(Isolate* isolate,
794                               FILE* file,
795                               bool print_args,
796                               bool print_line_number) {
797  // constructor calls
798  HandleScope scope(isolate);
799  DisallowHeapAllocation no_allocation;
800  JavaScriptFrameIterator it(isolate);
801  while (!it.done()) {
802    if (it.frame()->is_java_script()) {
803      JavaScriptFrame* frame = it.frame();
804      if (frame->IsConstructor()) PrintF(file, "new ");
805      // function name
806      JSFunction* fun = frame->function();
807      fun->PrintName();
808      Code* js_code = frame->unchecked_code();
809      Address pc = frame->pc();
810      int code_offset =
811          static_cast<int>(pc - js_code->instruction_start());
812      PrintF("+%d", code_offset);
813      SharedFunctionInfo* shared = fun->shared();
814      if (print_line_number) {
815        Code* code = Code::cast(isolate->FindCodeObject(pc));
816        int source_pos = code->SourcePosition(pc);
817        Object* maybe_script = shared->script();
818        if (maybe_script->IsScript()) {
819          Handle<Script> script(Script::cast(maybe_script));
820          int line = GetScriptLineNumberSafe(script, source_pos) + 1;
821          Object* script_name_raw = script->name();
822          if (script_name_raw->IsString()) {
823            String* script_name = String::cast(script->name());
824            SmartArrayPointer<char> c_script_name =
825                script_name->ToCString(DISALLOW_NULLS,
826                                       ROBUST_STRING_TRAVERSAL);
827            PrintF(file, " at %s:%d", *c_script_name, line);
828          } else {
829            PrintF(file, " at <unknown>:%d", line);
830          }
831        } else {
832          PrintF(file, " at <unknown>:<unknown>");
833        }
834      }
835
836      if (print_args) {
837        // function arguments
838        // (we are intentionally only printing the actually
839        // supplied parameters, not all parameters required)
840        PrintF(file, "(this=");
841        frame->receiver()->ShortPrint(file);
842        const int length = frame->ComputeParametersCount();
843        for (int i = 0; i < length; i++) {
844          PrintF(file, ", ");
845          frame->GetParameter(i)->ShortPrint(file);
846        }
847        PrintF(file, ")");
848      }
849      break;
850    }
851    it.Advance();
852  }
853}
854
855
856void JavaScriptFrame::SaveOperandStack(FixedArray* store,
857                                       int* stack_handler_index) const {
858  int operands_count = store->length();
859  ASSERT_LE(operands_count, ComputeOperandsCount());
860
861  // Visit the stack in LIFO order, saving operands and stack handlers into the
862  // array.  The saved stack handlers store a link to the next stack handler,
863  // which will allow RestoreOperandStack to rewind the handlers.
864  StackHandlerIterator it(this, top_handler());
865  int i = operands_count - 1;
866  *stack_handler_index = -1;
867  for (; !it.done(); it.Advance()) {
868    StackHandler* handler = it.handler();
869    // Save operands pushed after the handler was pushed.
870    for (; GetOperandSlot(i) < handler->address(); i--) {
871      store->set(i, GetOperand(i));
872    }
873    ASSERT_GE(i + 1, StackHandlerConstants::kSlotCount);
874    ASSERT_EQ(handler->address(), GetOperandSlot(i));
875    int next_stack_handler_index = i + 1 - StackHandlerConstants::kSlotCount;
876    handler->Unwind(isolate(), store, next_stack_handler_index,
877                    *stack_handler_index);
878    *stack_handler_index = next_stack_handler_index;
879    i -= StackHandlerConstants::kSlotCount;
880  }
881
882  // Save any remaining operands.
883  for (; i >= 0; i--) {
884    store->set(i, GetOperand(i));
885  }
886}
887
888
889void JavaScriptFrame::RestoreOperandStack(FixedArray* store,
890                                          int stack_handler_index) {
891  int operands_count = store->length();
892  ASSERT_LE(operands_count, ComputeOperandsCount());
893  int i = 0;
894  while (i <= stack_handler_index) {
895    if (i < stack_handler_index) {
896      // An operand.
897      ASSERT_EQ(GetOperand(i), isolate()->heap()->the_hole_value());
898      Memory::Object_at(GetOperandSlot(i)) = store->get(i);
899      i++;
900    } else {
901      // A stack handler.
902      ASSERT_EQ(i, stack_handler_index);
903      // The FixedArray store grows up.  The stack grows down.  So the operand
904      // slot for i actually points to the bottom of the top word in the
905      // handler.  The base of the StackHandler* is the address of the bottom
906      // word, which will be the last slot that is in the handler.
907      int handler_slot_index = i + StackHandlerConstants::kSlotCount - 1;
908      StackHandler *handler =
909          StackHandler::FromAddress(GetOperandSlot(handler_slot_index));
910      stack_handler_index = handler->Rewind(isolate(), store, i, fp());
911      i += StackHandlerConstants::kSlotCount;
912    }
913  }
914
915  for (; i < operands_count; i++) {
916    ASSERT_EQ(GetOperand(i), isolate()->heap()->the_hole_value());
917    Memory::Object_at(GetOperandSlot(i)) = store->get(i);
918  }
919}
920
921
922void FrameSummary::Print() {
923  PrintF("receiver: ");
924  receiver_->ShortPrint();
925  PrintF("\nfunction: ");
926  function_->shared()->DebugName()->ShortPrint();
927  PrintF("\ncode: ");
928  code_->ShortPrint();
929  if (code_->kind() == Code::FUNCTION) PrintF(" NON-OPT");
930  if (code_->kind() == Code::OPTIMIZED_FUNCTION) PrintF(" OPT");
931  PrintF("\npc: %d\n", offset_);
932}
933
934
935JSFunction* OptimizedFrame::LiteralAt(FixedArray* literal_array,
936                                      int literal_id) {
937  if (literal_id == Translation::kSelfLiteralId) {
938    return function();
939  }
940
941  return JSFunction::cast(literal_array->get(literal_id));
942}
943
944
945void OptimizedFrame::Summarize(List<FrameSummary>* frames) {
946  ASSERT(frames->length() == 0);
947  ASSERT(is_optimized());
948
949  int deopt_index = Safepoint::kNoDeoptimizationIndex;
950  DeoptimizationInputData* data = GetDeoptimizationData(&deopt_index);
951  FixedArray* literal_array = data->LiteralArray();
952
953  // BUG(3243555): Since we don't have a lazy-deopt registered at
954  // throw-statements, we can't use the translation at the call-site of
955  // throw. An entry with no deoptimization index indicates a call-site
956  // without a lazy-deopt. As a consequence we are not allowed to inline
957  // functions containing throw.
958  if (deopt_index == Safepoint::kNoDeoptimizationIndex) {
959    JavaScriptFrame::Summarize(frames);
960    return;
961  }
962
963  TranslationIterator it(data->TranslationByteArray(),
964                         data->TranslationIndex(deopt_index)->value());
965  Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next());
966  ASSERT(opcode == Translation::BEGIN);
967  it.Next();  // Drop frame count.
968  int jsframe_count = it.Next();
969
970  // We create the summary in reverse order because the frames
971  // in the deoptimization translation are ordered bottom-to-top.
972  bool is_constructor = IsConstructor();
973  int i = jsframe_count;
974  while (i > 0) {
975    opcode = static_cast<Translation::Opcode>(it.Next());
976    if (opcode == Translation::JS_FRAME) {
977      i--;
978      BailoutId ast_id = BailoutId(it.Next());
979      JSFunction* function = LiteralAt(literal_array, it.Next());
980      it.Next();  // Skip height.
981
982      // The translation commands are ordered and the receiver is always
983      // at the first position. Since we are always at a call when we need
984      // to construct a stack trace, the receiver is always in a stack slot.
985      opcode = static_cast<Translation::Opcode>(it.Next());
986      ASSERT(opcode == Translation::STACK_SLOT ||
987             opcode == Translation::LITERAL ||
988             opcode == Translation::CAPTURED_OBJECT ||
989             opcode == Translation::DUPLICATED_OBJECT);
990      int index = it.Next();
991
992      // Get the correct receiver in the optimized frame.
993      Object* receiver = NULL;
994      if (opcode == Translation::LITERAL) {
995        receiver = data->LiteralArray()->get(index);
996      } else if (opcode == Translation::STACK_SLOT) {
997        // Positive index means the value is spilled to the locals
998        // area. Negative means it is stored in the incoming parameter
999        // area.
1000        if (index >= 0) {
1001          receiver = GetExpression(index);
1002        } else {
1003          // Index -1 overlaps with last parameter, -n with the first parameter,
1004          // (-n - 1) with the receiver with n being the number of parameters
1005          // of the outermost, optimized frame.
1006          int parameter_count = ComputeParametersCount();
1007          int parameter_index = index + parameter_count;
1008          receiver = (parameter_index == -1)
1009              ? this->receiver()
1010              : this->GetParameter(parameter_index);
1011        }
1012      } else {
1013        // TODO(3029): Materializing a captured object (or duplicated
1014        // object) is hard, we return undefined for now. This breaks the
1015        // produced stack trace, as constructor frames aren't marked as
1016        // such anymore.
1017        receiver = isolate()->heap()->undefined_value();
1018      }
1019
1020      Code* code = function->shared()->code();
1021      DeoptimizationOutputData* output_data =
1022          DeoptimizationOutputData::cast(code->deoptimization_data());
1023      unsigned entry = Deoptimizer::GetOutputInfo(output_data,
1024                                                  ast_id,
1025                                                  function->shared());
1026      unsigned pc_offset =
1027          FullCodeGenerator::PcField::decode(entry) + Code::kHeaderSize;
1028      ASSERT(pc_offset > 0);
1029
1030      FrameSummary summary(receiver, function, code, pc_offset, is_constructor);
1031      frames->Add(summary);
1032      is_constructor = false;
1033    } else if (opcode == Translation::CONSTRUCT_STUB_FRAME) {
1034      // The next encountered JS_FRAME will be marked as a constructor call.
1035      it.Skip(Translation::NumberOfOperandsFor(opcode));
1036      ASSERT(!is_constructor);
1037      is_constructor = true;
1038    } else {
1039      // Skip over operands to advance to the next opcode.
1040      it.Skip(Translation::NumberOfOperandsFor(opcode));
1041    }
1042  }
1043  ASSERT(!is_constructor);
1044}
1045
1046
1047DeoptimizationInputData* OptimizedFrame::GetDeoptimizationData(
1048    int* deopt_index) {
1049  ASSERT(is_optimized());
1050
1051  JSFunction* opt_function = function();
1052  Code* code = opt_function->code();
1053
1054  // The code object may have been replaced by lazy deoptimization. Fall
1055  // back to a slow search in this case to find the original optimized
1056  // code object.
1057  if (!code->contains(pc())) {
1058    code = isolate()->inner_pointer_to_code_cache()->
1059        GcSafeFindCodeForInnerPointer(pc());
1060  }
1061  ASSERT(code != NULL);
1062  ASSERT(code->kind() == Code::OPTIMIZED_FUNCTION);
1063
1064  SafepointEntry safepoint_entry = code->GetSafepointEntry(pc());
1065  *deopt_index = safepoint_entry.deoptimization_index();
1066  ASSERT(*deopt_index != Safepoint::kNoDeoptimizationIndex);
1067
1068  return DeoptimizationInputData::cast(code->deoptimization_data());
1069}
1070
1071
1072int OptimizedFrame::GetInlineCount() {
1073  ASSERT(is_optimized());
1074
1075  int deopt_index = Safepoint::kNoDeoptimizationIndex;
1076  DeoptimizationInputData* data = GetDeoptimizationData(&deopt_index);
1077
1078  TranslationIterator it(data->TranslationByteArray(),
1079                         data->TranslationIndex(deopt_index)->value());
1080  Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next());
1081  ASSERT(opcode == Translation::BEGIN);
1082  USE(opcode);
1083  it.Next();  // Drop frame count.
1084  int jsframe_count = it.Next();
1085  return jsframe_count;
1086}
1087
1088
1089void OptimizedFrame::GetFunctions(List<JSFunction*>* functions) {
1090  ASSERT(functions->length() == 0);
1091  ASSERT(is_optimized());
1092
1093  int deopt_index = Safepoint::kNoDeoptimizationIndex;
1094  DeoptimizationInputData* data = GetDeoptimizationData(&deopt_index);
1095  FixedArray* literal_array = data->LiteralArray();
1096
1097  TranslationIterator it(data->TranslationByteArray(),
1098                         data->TranslationIndex(deopt_index)->value());
1099  Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next());
1100  ASSERT(opcode == Translation::BEGIN);
1101  it.Next();  // Drop frame count.
1102  int jsframe_count = it.Next();
1103
1104  // We insert the frames in reverse order because the frames
1105  // in the deoptimization translation are ordered bottom-to-top.
1106  while (jsframe_count > 0) {
1107    opcode = static_cast<Translation::Opcode>(it.Next());
1108    if (opcode == Translation::JS_FRAME) {
1109      jsframe_count--;
1110      it.Next();  // Skip ast id.
1111      JSFunction* function = LiteralAt(literal_array, it.Next());
1112      it.Next();  // Skip height.
1113      functions->Add(function);
1114    } else {
1115      // Skip over operands to advance to the next opcode.
1116      it.Skip(Translation::NumberOfOperandsFor(opcode));
1117    }
1118  }
1119}
1120
1121
1122int ArgumentsAdaptorFrame::GetNumberOfIncomingArguments() const {
1123  return Smi::cast(GetExpression(0))->value();
1124}
1125
1126
1127Address ArgumentsAdaptorFrame::GetCallerStackPointer() const {
1128  return fp() + StandardFrameConstants::kCallerSPOffset;
1129}
1130
1131
1132Address InternalFrame::GetCallerStackPointer() const {
1133  // Internal frames have no arguments. The stack pointer of the
1134  // caller is at a fixed offset from the frame pointer.
1135  return fp() + StandardFrameConstants::kCallerSPOffset;
1136}
1137
1138
1139Code* ArgumentsAdaptorFrame::unchecked_code() const {
1140  return isolate()->builtins()->builtin(
1141      Builtins::kArgumentsAdaptorTrampoline);
1142}
1143
1144
1145Code* InternalFrame::unchecked_code() const {
1146  const int offset = InternalFrameConstants::kCodeOffset;
1147  Object* code = Memory::Object_at(fp() + offset);
1148  ASSERT(code != NULL);
1149  return reinterpret_cast<Code*>(code);
1150}
1151
1152
1153void StackFrame::PrintIndex(StringStream* accumulator,
1154                            PrintMode mode,
1155                            int index) {
1156  accumulator->Add((mode == OVERVIEW) ? "%5d: " : "[%d]: ", index);
1157}
1158
1159
1160void JavaScriptFrame::Print(StringStream* accumulator,
1161                            PrintMode mode,
1162                            int index) const {
1163  HandleScope scope(isolate());
1164  Object* receiver = this->receiver();
1165  JSFunction* function = this->function();
1166
1167  accumulator->PrintSecurityTokenIfChanged(function);
1168  PrintIndex(accumulator, mode, index);
1169  Code* code = NULL;
1170  if (IsConstructor()) accumulator->Add("new ");
1171  accumulator->PrintFunction(function, receiver, &code);
1172
1173  // Get scope information for nicer output, if possible. If code is NULL, or
1174  // doesn't contain scope info, scope_info will return 0 for the number of
1175  // parameters, stack local variables, context local variables, stack slots,
1176  // or context slots.
1177  Handle<ScopeInfo> scope_info(ScopeInfo::Empty(isolate()));
1178
1179  Handle<SharedFunctionInfo> shared(function->shared());
1180  scope_info = Handle<ScopeInfo>(shared->scope_info());
1181  Object* script_obj = shared->script();
1182  if (script_obj->IsScript()) {
1183    Handle<Script> script(Script::cast(script_obj));
1184    accumulator->Add(" [");
1185    accumulator->PrintName(script->name());
1186
1187    Address pc = this->pc();
1188    if (code != NULL && code->kind() == Code::FUNCTION &&
1189        pc >= code->instruction_start() && pc < code->instruction_end()) {
1190      int source_pos = code->SourcePosition(pc);
1191      int line = GetScriptLineNumberSafe(script, source_pos) + 1;
1192      accumulator->Add(":%d", line);
1193    } else {
1194      int function_start_pos = shared->start_position();
1195      int line = GetScriptLineNumberSafe(script, function_start_pos) + 1;
1196      accumulator->Add(":~%d", line);
1197    }
1198
1199    accumulator->Add("] ");
1200  }
1201
1202  accumulator->Add("(this=%o", receiver);
1203
1204  // Print the parameters.
1205  int parameters_count = ComputeParametersCount();
1206  for (int i = 0; i < parameters_count; i++) {
1207    accumulator->Add(",");
1208    // If we have a name for the parameter we print it. Nameless
1209    // parameters are either because we have more actual parameters
1210    // than formal parameters or because we have no scope information.
1211    if (i < scope_info->ParameterCount()) {
1212      accumulator->PrintName(scope_info->ParameterName(i));
1213      accumulator->Add("=");
1214    }
1215    accumulator->Add("%o", GetParameter(i));
1216  }
1217
1218  accumulator->Add(")");
1219  if (mode == OVERVIEW) {
1220    accumulator->Add("\n");
1221    return;
1222  }
1223  if (is_optimized()) {
1224    accumulator->Add(" {\n// optimized frame\n}\n");
1225    return;
1226  }
1227  accumulator->Add(" {\n");
1228
1229  // Compute the number of locals and expression stack elements.
1230  int stack_locals_count = scope_info->StackLocalCount();
1231  int heap_locals_count = scope_info->ContextLocalCount();
1232  int expressions_count = ComputeExpressionsCount();
1233
1234  // Print stack-allocated local variables.
1235  if (stack_locals_count > 0) {
1236    accumulator->Add("  // stack-allocated locals\n");
1237  }
1238  for (int i = 0; i < stack_locals_count; i++) {
1239    accumulator->Add("  var ");
1240    accumulator->PrintName(scope_info->StackLocalName(i));
1241    accumulator->Add(" = ");
1242    if (i < expressions_count) {
1243      accumulator->Add("%o", GetExpression(i));
1244    } else {
1245      accumulator->Add("// no expression found - inconsistent frame?");
1246    }
1247    accumulator->Add("\n");
1248  }
1249
1250  // Try to get hold of the context of this frame.
1251  Context* context = NULL;
1252  if (this->context() != NULL && this->context()->IsContext()) {
1253    context = Context::cast(this->context());
1254  }
1255
1256  // Print heap-allocated local variables.
1257  if (heap_locals_count > 0) {
1258    accumulator->Add("  // heap-allocated locals\n");
1259  }
1260  for (int i = 0; i < heap_locals_count; i++) {
1261    accumulator->Add("  var ");
1262    accumulator->PrintName(scope_info->ContextLocalName(i));
1263    accumulator->Add(" = ");
1264    if (context != NULL) {
1265      if (i < context->length()) {
1266        accumulator->Add("%o", context->get(Context::MIN_CONTEXT_SLOTS + i));
1267      } else {
1268        accumulator->Add(
1269            "// warning: missing context slot - inconsistent frame?");
1270      }
1271    } else {
1272      accumulator->Add("// warning: no context found - inconsistent frame?");
1273    }
1274    accumulator->Add("\n");
1275  }
1276
1277  // Print the expression stack.
1278  int expressions_start = stack_locals_count;
1279  if (expressions_start < expressions_count) {
1280    accumulator->Add("  // expression stack (top to bottom)\n");
1281  }
1282  for (int i = expressions_count - 1; i >= expressions_start; i--) {
1283    if (IsExpressionInsideHandler(i)) continue;
1284    accumulator->Add("  [%02d] : %o\n", i, GetExpression(i));
1285  }
1286
1287  // Print details about the function.
1288  if (FLAG_max_stack_trace_source_length != 0 && code != NULL) {
1289    SharedFunctionInfo* shared = function->shared();
1290    accumulator->Add("--------- s o u r c e   c o d e ---------\n");
1291    shared->SourceCodePrint(accumulator, FLAG_max_stack_trace_source_length);
1292    accumulator->Add("\n-----------------------------------------\n");
1293  }
1294
1295  accumulator->Add("}\n\n");
1296}
1297
1298
1299void ArgumentsAdaptorFrame::Print(StringStream* accumulator,
1300                                  PrintMode mode,
1301                                  int index) const {
1302  int actual = ComputeParametersCount();
1303  int expected = -1;
1304  JSFunction* function = this->function();
1305  expected = function->shared()->formal_parameter_count();
1306
1307  PrintIndex(accumulator, mode, index);
1308  accumulator->Add("arguments adaptor frame: %d->%d", actual, expected);
1309  if (mode == OVERVIEW) {
1310    accumulator->Add("\n");
1311    return;
1312  }
1313  accumulator->Add(" {\n");
1314
1315  // Print actual arguments.
1316  if (actual > 0) accumulator->Add("  // actual arguments\n");
1317  for (int i = 0; i < actual; i++) {
1318    accumulator->Add("  [%02d] : %o", i, GetParameter(i));
1319    if (expected != -1 && i >= expected) {
1320      accumulator->Add("  // not passed to callee");
1321    }
1322    accumulator->Add("\n");
1323  }
1324
1325  accumulator->Add("}\n\n");
1326}
1327
1328
1329void EntryFrame::Iterate(ObjectVisitor* v) const {
1330  StackHandlerIterator it(this, top_handler());
1331  ASSERT(!it.done());
1332  StackHandler* handler = it.handler();
1333  ASSERT(handler->is_js_entry());
1334  handler->Iterate(v, LookupCode());
1335#ifdef DEBUG
1336  // Make sure that the entry frame does not contain more than one
1337  // stack handler.
1338  it.Advance();
1339  ASSERT(it.done());
1340#endif
1341  IteratePc(v, pc_address(), LookupCode());
1342}
1343
1344
1345void StandardFrame::IterateExpressions(ObjectVisitor* v) const {
1346  const int offset = StandardFrameConstants::kContextOffset;
1347  Object** base = &Memory::Object_at(sp());
1348  Object** limit = &Memory::Object_at(fp() + offset) + 1;
1349  for (StackHandlerIterator it(this, top_handler()); !it.done(); it.Advance()) {
1350    StackHandler* handler = it.handler();
1351    // Traverse pointers down to - but not including - the next
1352    // handler in the handler chain. Update the base to skip the
1353    // handler and allow the handler to traverse its own pointers.
1354    const Address address = handler->address();
1355    v->VisitPointers(base, reinterpret_cast<Object**>(address));
1356    base = reinterpret_cast<Object**>(address + StackHandlerConstants::kSize);
1357    // Traverse the pointers in the handler itself.
1358    handler->Iterate(v, LookupCode());
1359  }
1360  v->VisitPointers(base, limit);
1361}
1362
1363
1364void JavaScriptFrame::Iterate(ObjectVisitor* v) const {
1365  IterateExpressions(v);
1366  IteratePc(v, pc_address(), LookupCode());
1367}
1368
1369
1370void InternalFrame::Iterate(ObjectVisitor* v) const {
1371  // Internal frames only have object pointers on the expression stack
1372  // as they never have any arguments.
1373  IterateExpressions(v);
1374  IteratePc(v, pc_address(), LookupCode());
1375}
1376
1377
1378void StubFailureTrampolineFrame::Iterate(ObjectVisitor* v) const {
1379  Object** base = &Memory::Object_at(sp());
1380  Object** limit = &Memory::Object_at(fp() +
1381                                      kFirstRegisterParameterFrameOffset);
1382  v->VisitPointers(base, limit);
1383  base = &Memory::Object_at(fp() + StandardFrameConstants::kMarkerOffset);
1384  const int offset = StandardFrameConstants::kContextOffset;
1385  limit = &Memory::Object_at(fp() + offset) + 1;
1386  v->VisitPointers(base, limit);
1387  IteratePc(v, pc_address(), LookupCode());
1388}
1389
1390
1391Address StubFailureTrampolineFrame::GetCallerStackPointer() const {
1392  return fp() + StandardFrameConstants::kCallerSPOffset;
1393}
1394
1395
1396Code* StubFailureTrampolineFrame::unchecked_code() const {
1397  Code* trampoline;
1398  StubFailureTrampolineStub(NOT_JS_FUNCTION_STUB_MODE).
1399      FindCodeInCache(&trampoline, isolate());
1400  if (trampoline->contains(pc())) {
1401    return trampoline;
1402  }
1403
1404  StubFailureTrampolineStub(JS_FUNCTION_STUB_MODE).
1405      FindCodeInCache(&trampoline, isolate());
1406  if (trampoline->contains(pc())) {
1407    return trampoline;
1408  }
1409
1410  StubFailureTailCallTrampolineStub().FindCodeInCache(&trampoline, isolate());
1411  if (trampoline->contains(pc())) {
1412    return trampoline;
1413  }
1414
1415  UNREACHABLE();
1416  return NULL;
1417}
1418
1419
1420// -------------------------------------------------------------------------
1421
1422
1423JavaScriptFrame* StackFrameLocator::FindJavaScriptFrame(int n) {
1424  ASSERT(n >= 0);
1425  for (int i = 0; i <= n; i++) {
1426    while (!iterator_.frame()->is_java_script()) iterator_.Advance();
1427    if (i == n) return JavaScriptFrame::cast(iterator_.frame());
1428    iterator_.Advance();
1429  }
1430  UNREACHABLE();
1431  return NULL;
1432}
1433
1434
1435// -------------------------------------------------------------------------
1436
1437
1438static Map* GcSafeMapOfCodeSpaceObject(HeapObject* object) {
1439  MapWord map_word = object->map_word();
1440  return map_word.IsForwardingAddress() ?
1441      map_word.ToForwardingAddress()->map() : map_word.ToMap();
1442}
1443
1444
1445static int GcSafeSizeOfCodeSpaceObject(HeapObject* object) {
1446  return object->SizeFromMap(GcSafeMapOfCodeSpaceObject(object));
1447}
1448
1449
1450#ifdef DEBUG
1451static bool GcSafeCodeContains(HeapObject* code, Address addr) {
1452  Map* map = GcSafeMapOfCodeSpaceObject(code);
1453  ASSERT(map == code->GetHeap()->code_map());
1454  Address start = code->address();
1455  Address end = code->address() + code->SizeFromMap(map);
1456  return start <= addr && addr < end;
1457}
1458#endif
1459
1460
1461Code* InnerPointerToCodeCache::GcSafeCastToCode(HeapObject* object,
1462                                                Address inner_pointer) {
1463  Code* code = reinterpret_cast<Code*>(object);
1464  ASSERT(code != NULL && GcSafeCodeContains(code, inner_pointer));
1465  return code;
1466}
1467
1468
1469Code* InnerPointerToCodeCache::GcSafeFindCodeForInnerPointer(
1470    Address inner_pointer) {
1471  Heap* heap = isolate_->heap();
1472  // Check if the inner pointer points into a large object chunk.
1473  LargePage* large_page = heap->lo_space()->FindPage(inner_pointer);
1474  if (large_page != NULL) {
1475    return GcSafeCastToCode(large_page->GetObject(), inner_pointer);
1476  }
1477
1478  // Iterate through the page until we reach the end or find an object starting
1479  // after the inner pointer.
1480  Page* page = Page::FromAddress(inner_pointer);
1481
1482  Address addr = page->skip_list()->StartFor(inner_pointer);
1483
1484  Address top = heap->code_space()->top();
1485  Address limit = heap->code_space()->limit();
1486
1487  while (true) {
1488    if (addr == top && addr != limit) {
1489      addr = limit;
1490      continue;
1491    }
1492
1493    HeapObject* obj = HeapObject::FromAddress(addr);
1494    int obj_size = GcSafeSizeOfCodeSpaceObject(obj);
1495    Address next_addr = addr + obj_size;
1496    if (next_addr > inner_pointer) return GcSafeCastToCode(obj, inner_pointer);
1497    addr = next_addr;
1498  }
1499}
1500
1501
1502InnerPointerToCodeCache::InnerPointerToCodeCacheEntry*
1503    InnerPointerToCodeCache::GetCacheEntry(Address inner_pointer) {
1504  isolate_->counters()->pc_to_code()->Increment();
1505  ASSERT(IsPowerOf2(kInnerPointerToCodeCacheSize));
1506  uint32_t hash = ComputeIntegerHash(
1507      static_cast<uint32_t>(reinterpret_cast<uintptr_t>(inner_pointer)),
1508      v8::internal::kZeroHashSeed);
1509  uint32_t index = hash & (kInnerPointerToCodeCacheSize - 1);
1510  InnerPointerToCodeCacheEntry* entry = cache(index);
1511  if (entry->inner_pointer == inner_pointer) {
1512    isolate_->counters()->pc_to_code_cached()->Increment();
1513    ASSERT(entry->code == GcSafeFindCodeForInnerPointer(inner_pointer));
1514  } else {
1515    // Because this code may be interrupted by a profiling signal that
1516    // also queries the cache, we cannot update inner_pointer before the code
1517    // has been set. Otherwise, we risk trying to use a cache entry before
1518    // the code has been computed.
1519    entry->code = GcSafeFindCodeForInnerPointer(inner_pointer);
1520    entry->safepoint_entry.Reset();
1521    entry->inner_pointer = inner_pointer;
1522  }
1523  return entry;
1524}
1525
1526
1527// -------------------------------------------------------------------------
1528
1529
1530void StackHandler::Unwind(Isolate* isolate,
1531                          FixedArray* array,
1532                          int offset,
1533                          int previous_handler_offset) const {
1534  STATIC_ASSERT(StackHandlerConstants::kSlotCount >= 5);
1535  ASSERT_LE(0, offset);
1536  ASSERT_GE(array->length(), offset + StackHandlerConstants::kSlotCount);
1537  // Unwinding a stack handler into an array chains it in the opposite
1538  // direction, re-using the "next" slot as a "previous" link, so that stack
1539  // handlers can be later re-wound in the correct order.  Decode the "state"
1540  // slot into "index" and "kind" and store them separately, using the fp slot.
1541  array->set(offset, Smi::FromInt(previous_handler_offset));        // next
1542  array->set(offset + 1, *code_address());                          // code
1543  array->set(offset + 2, Smi::FromInt(static_cast<int>(index())));  // state
1544  array->set(offset + 3, *context_address());                       // context
1545  array->set(offset + 4, Smi::FromInt(static_cast<int>(kind())));   // fp
1546
1547  *isolate->handler_address() = next()->address();
1548}
1549
1550
1551int StackHandler::Rewind(Isolate* isolate,
1552                         FixedArray* array,
1553                         int offset,
1554                         Address fp) {
1555  STATIC_ASSERT(StackHandlerConstants::kSlotCount >= 5);
1556  ASSERT_LE(0, offset);
1557  ASSERT_GE(array->length(), offset + StackHandlerConstants::kSlotCount);
1558  Smi* prev_handler_offset = Smi::cast(array->get(offset));
1559  Code* code = Code::cast(array->get(offset + 1));
1560  Smi* smi_index = Smi::cast(array->get(offset + 2));
1561  Object* context = array->get(offset + 3);
1562  Smi* smi_kind = Smi::cast(array->get(offset + 4));
1563
1564  unsigned state = KindField::encode(static_cast<Kind>(smi_kind->value())) |
1565      IndexField::encode(static_cast<unsigned>(smi_index->value()));
1566
1567  Memory::Address_at(address() + StackHandlerConstants::kNextOffset) =
1568      *isolate->handler_address();
1569  Memory::Object_at(address() + StackHandlerConstants::kCodeOffset) = code;
1570  Memory::uintptr_at(address() + StackHandlerConstants::kStateOffset) = state;
1571  Memory::Object_at(address() + StackHandlerConstants::kContextOffset) =
1572      context;
1573  SetFp(address() + StackHandlerConstants::kFPOffset, fp);
1574
1575  *isolate->handler_address() = address();
1576
1577  return prev_handler_offset->value();
1578}
1579
1580
1581// -------------------------------------------------------------------------
1582
1583int NumRegs(RegList reglist) {
1584  return CompilerIntrinsics::CountSetBits(reglist);
1585}
1586
1587
1588struct JSCallerSavedCodeData {
1589  int reg_code[kNumJSCallerSaved];
1590};
1591
1592JSCallerSavedCodeData caller_saved_code_data;
1593
1594void SetUpJSCallerSavedCodeData() {
1595  int i = 0;
1596  for (int r = 0; r < kNumRegs; r++)
1597    if ((kJSCallerSaved & (1 << r)) != 0)
1598      caller_saved_code_data.reg_code[i++] = r;
1599
1600  ASSERT(i == kNumJSCallerSaved);
1601}
1602
1603
1604int JSCallerSavedCode(int n) {
1605  ASSERT(0 <= n && n < kNumJSCallerSaved);
1606  return caller_saved_code_data.reg_code[n];
1607}
1608
1609
1610#define DEFINE_WRAPPER(type, field)                              \
1611class field##_Wrapper : public ZoneObject {                      \
1612 public:  /* NOLINT */                                           \
1613  field##_Wrapper(const field& original) : frame_(original) {    \
1614  }                                                              \
1615  field frame_;                                                  \
1616};
1617STACK_FRAME_TYPE_LIST(DEFINE_WRAPPER)
1618#undef DEFINE_WRAPPER
1619
1620static StackFrame* AllocateFrameCopy(StackFrame* frame, Zone* zone) {
1621#define FRAME_TYPE_CASE(type, field) \
1622  case StackFrame::type: { \
1623    field##_Wrapper* wrapper = \
1624        new(zone) field##_Wrapper(*(reinterpret_cast<field*>(frame))); \
1625    return &wrapper->frame_; \
1626  }
1627
1628  switch (frame->type()) {
1629    STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE)
1630    default: UNREACHABLE();
1631  }
1632#undef FRAME_TYPE_CASE
1633  return NULL;
1634}
1635
1636
1637Vector<StackFrame*> CreateStackMap(Isolate* isolate, Zone* zone) {
1638  ZoneList<StackFrame*> list(10, zone);
1639  for (StackFrameIterator it(isolate); !it.done(); it.Advance()) {
1640    StackFrame* frame = AllocateFrameCopy(it.frame(), zone);
1641    list.Add(frame, zone);
1642  }
1643  return list.ToVector();
1644}
1645
1646
1647} }  // namespace v8::internal
1648