1// Copyright 2012 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#if V8_TARGET_ARCH_IA32
31
32#include "bootstrapper.h"
33#include "codegen.h"
34#include "cpu-profiler.h"
35#include "debug.h"
36#include "isolate-inl.h"
37#include "runtime.h"
38#include "serialize.h"
39
40namespace v8 {
41namespace internal {
42
43// -------------------------------------------------------------------------
44// MacroAssembler implementation.
45
46MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
47    : Assembler(arg_isolate, buffer, size),
48      generating_stub_(false),
49      has_frame_(false) {
50  if (isolate() != NULL) {
51    // TODO(titzer): should we just use a null handle here instead?
52    code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
53                                  isolate());
54  }
55}
56
57
58void MacroAssembler::Load(Register dst, const Operand& src, Representation r) {
59  ASSERT(!r.IsDouble());
60  if (r.IsInteger8()) {
61    movsx_b(dst, src);
62  } else if (r.IsUInteger8()) {
63    movzx_b(dst, src);
64  } else if (r.IsInteger16()) {
65    movsx_w(dst, src);
66  } else if (r.IsUInteger16()) {
67    movzx_w(dst, src);
68  } else {
69    mov(dst, src);
70  }
71}
72
73
74void MacroAssembler::Store(Register src, const Operand& dst, Representation r) {
75  ASSERT(!r.IsDouble());
76  if (r.IsInteger8() || r.IsUInteger8()) {
77    mov_b(dst, src);
78  } else if (r.IsInteger16() || r.IsUInteger16()) {
79    mov_w(dst, src);
80  } else {
81    mov(dst, src);
82  }
83}
84
85
86void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) {
87  if (isolate()->heap()->RootCanBeTreatedAsConstant(index)) {
88    Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
89    mov(destination, value);
90    return;
91  }
92  ExternalReference roots_array_start =
93      ExternalReference::roots_array_start(isolate());
94  mov(destination, Immediate(index));
95  mov(destination, Operand::StaticArray(destination,
96                                        times_pointer_size,
97                                        roots_array_start));
98}
99
100
101void MacroAssembler::StoreRoot(Register source,
102                               Register scratch,
103                               Heap::RootListIndex index) {
104  ASSERT(Heap::RootCanBeWrittenAfterInitialization(index));
105  ExternalReference roots_array_start =
106      ExternalReference::roots_array_start(isolate());
107  mov(scratch, Immediate(index));
108  mov(Operand::StaticArray(scratch, times_pointer_size, roots_array_start),
109      source);
110}
111
112
113void MacroAssembler::CompareRoot(Register with,
114                                 Register scratch,
115                                 Heap::RootListIndex index) {
116  ExternalReference roots_array_start =
117      ExternalReference::roots_array_start(isolate());
118  mov(scratch, Immediate(index));
119  cmp(with, Operand::StaticArray(scratch,
120                                times_pointer_size,
121                                roots_array_start));
122}
123
124
125void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) {
126  ASSERT(isolate()->heap()->RootCanBeTreatedAsConstant(index));
127  Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
128  cmp(with, value);
129}
130
131
132void MacroAssembler::CompareRoot(const Operand& with,
133                                 Heap::RootListIndex index) {
134  ASSERT(isolate()->heap()->RootCanBeTreatedAsConstant(index));
135  Handle<Object> value(&isolate()->heap()->roots_array_start()[index]);
136  cmp(with, value);
137}
138
139
140void MacroAssembler::InNewSpace(
141    Register object,
142    Register scratch,
143    Condition cc,
144    Label* condition_met,
145    Label::Distance condition_met_distance) {
146  ASSERT(cc == equal || cc == not_equal);
147  if (scratch.is(object)) {
148    and_(scratch, Immediate(~Page::kPageAlignmentMask));
149  } else {
150    mov(scratch, Immediate(~Page::kPageAlignmentMask));
151    and_(scratch, object);
152  }
153  // Check that we can use a test_b.
154  ASSERT(MemoryChunk::IN_FROM_SPACE < 8);
155  ASSERT(MemoryChunk::IN_TO_SPACE < 8);
156  int mask = (1 << MemoryChunk::IN_FROM_SPACE)
157           | (1 << MemoryChunk::IN_TO_SPACE);
158  // If non-zero, the page belongs to new-space.
159  test_b(Operand(scratch, MemoryChunk::kFlagsOffset),
160         static_cast<uint8_t>(mask));
161  j(cc, condition_met, condition_met_distance);
162}
163
164
165void MacroAssembler::RememberedSetHelper(
166    Register object,  // Only used for debug checks.
167    Register addr,
168    Register scratch,
169    SaveFPRegsMode save_fp,
170    MacroAssembler::RememberedSetFinalAction and_then) {
171  Label done;
172  if (emit_debug_code()) {
173    Label ok;
174    JumpIfNotInNewSpace(object, scratch, &ok, Label::kNear);
175    int3();
176    bind(&ok);
177  }
178  // Load store buffer top.
179  ExternalReference store_buffer =
180      ExternalReference::store_buffer_top(isolate());
181  mov(scratch, Operand::StaticVariable(store_buffer));
182  // Store pointer to buffer.
183  mov(Operand(scratch, 0), addr);
184  // Increment buffer top.
185  add(scratch, Immediate(kPointerSize));
186  // Write back new top of buffer.
187  mov(Operand::StaticVariable(store_buffer), scratch);
188  // Call stub on end of buffer.
189  // Check for end of buffer.
190  test(scratch, Immediate(StoreBuffer::kStoreBufferOverflowBit));
191  if (and_then == kReturnAtEnd) {
192    Label buffer_overflowed;
193    j(not_equal, &buffer_overflowed, Label::kNear);
194    ret(0);
195    bind(&buffer_overflowed);
196  } else {
197    ASSERT(and_then == kFallThroughAtEnd);
198    j(equal, &done, Label::kNear);
199  }
200  StoreBufferOverflowStub store_buffer_overflow =
201      StoreBufferOverflowStub(save_fp);
202  CallStub(&store_buffer_overflow);
203  if (and_then == kReturnAtEnd) {
204    ret(0);
205  } else {
206    ASSERT(and_then == kFallThroughAtEnd);
207    bind(&done);
208  }
209}
210
211
212void MacroAssembler::ClampDoubleToUint8(XMMRegister input_reg,
213                                        XMMRegister scratch_reg,
214                                        Register result_reg) {
215  Label done;
216  Label conv_failure;
217  pxor(scratch_reg, scratch_reg);
218  cvtsd2si(result_reg, input_reg);
219  test(result_reg, Immediate(0xFFFFFF00));
220  j(zero, &done, Label::kNear);
221  cmp(result_reg, Immediate(0x80000000));
222  j(equal, &conv_failure, Label::kNear);
223  mov(result_reg, Immediate(0));
224  setcc(above, result_reg);
225  sub(result_reg, Immediate(1));
226  and_(result_reg, Immediate(255));
227  jmp(&done, Label::kNear);
228  bind(&conv_failure);
229  Set(result_reg, Immediate(0));
230  ucomisd(input_reg, scratch_reg);
231  j(below, &done, Label::kNear);
232  Set(result_reg, Immediate(255));
233  bind(&done);
234}
235
236
237void MacroAssembler::ClampUint8(Register reg) {
238  Label done;
239  test(reg, Immediate(0xFFFFFF00));
240  j(zero, &done, Label::kNear);
241  setcc(negative, reg);  // 1 if negative, 0 if positive.
242  dec_b(reg);  // 0 if negative, 255 if positive.
243  bind(&done);
244}
245
246
247void MacroAssembler::SlowTruncateToI(Register result_reg,
248                                     Register input_reg,
249                                     int offset) {
250  DoubleToIStub stub(input_reg, result_reg, offset, true);
251  call(stub.GetCode(isolate()), RelocInfo::CODE_TARGET);
252}
253
254
255void MacroAssembler::TruncateDoubleToI(Register result_reg,
256                                       XMMRegister input_reg) {
257  Label done;
258  cvttsd2si(result_reg, Operand(input_reg));
259  cmp(result_reg, 0x80000000u);
260  j(not_equal, &done, Label::kNear);
261
262  sub(esp, Immediate(kDoubleSize));
263  movsd(MemOperand(esp, 0), input_reg);
264  SlowTruncateToI(result_reg, esp, 0);
265  add(esp, Immediate(kDoubleSize));
266  bind(&done);
267}
268
269
270void MacroAssembler::TruncateX87TOSToI(Register result_reg) {
271  sub(esp, Immediate(kDoubleSize));
272  fst_d(MemOperand(esp, 0));
273  SlowTruncateToI(result_reg, esp, 0);
274  add(esp, Immediate(kDoubleSize));
275}
276
277
278void MacroAssembler::X87TOSToI(Register result_reg,
279                               MinusZeroMode minus_zero_mode,
280                               Label* conversion_failed,
281                               Label::Distance dst) {
282  Label done;
283  sub(esp, Immediate(kPointerSize));
284  fld(0);
285  fist_s(MemOperand(esp, 0));
286  fild_s(MemOperand(esp, 0));
287  pop(result_reg);
288  FCmp();
289  j(not_equal, conversion_failed, dst);
290  j(parity_even, conversion_failed, dst);
291  if (minus_zero_mode == FAIL_ON_MINUS_ZERO) {
292    test(result_reg, Operand(result_reg));
293    j(not_zero, &done, Label::kNear);
294    // To check for minus zero, we load the value again as float, and check
295    // if that is still 0.
296    sub(esp, Immediate(kPointerSize));
297    fst_s(MemOperand(esp, 0));
298    pop(result_reg);
299    test(result_reg, Operand(result_reg));
300    j(not_zero, conversion_failed, dst);
301  }
302  bind(&done);
303}
304
305
306void MacroAssembler::DoubleToI(Register result_reg,
307                               XMMRegister input_reg,
308                               XMMRegister scratch,
309                               MinusZeroMode minus_zero_mode,
310                               Label* conversion_failed,
311                               Label::Distance dst) {
312  ASSERT(!input_reg.is(scratch));
313  cvttsd2si(result_reg, Operand(input_reg));
314  Cvtsi2sd(scratch, Operand(result_reg));
315  ucomisd(scratch, input_reg);
316  j(not_equal, conversion_failed, dst);
317  j(parity_even, conversion_failed, dst);  // NaN.
318  if (minus_zero_mode == FAIL_ON_MINUS_ZERO) {
319    Label done;
320    // The integer converted back is equal to the original. We
321    // only have to test if we got -0 as an input.
322    test(result_reg, Operand(result_reg));
323    j(not_zero, &done, Label::kNear);
324    movmskpd(result_reg, input_reg);
325    // Bit 0 contains the sign of the double in input_reg.
326    // If input was positive, we are ok and return 0, otherwise
327    // jump to conversion_failed.
328    and_(result_reg, 1);
329    j(not_zero, conversion_failed, dst);
330    bind(&done);
331  }
332}
333
334
335void MacroAssembler::TruncateHeapNumberToI(Register result_reg,
336                                           Register input_reg) {
337  Label done, slow_case;
338
339  if (CpuFeatures::IsSupported(SSE3)) {
340    CpuFeatureScope scope(this, SSE3);
341    Label convert;
342    // Use more powerful conversion when sse3 is available.
343    // Load x87 register with heap number.
344    fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
345    // Get exponent alone and check for too-big exponent.
346    mov(result_reg, FieldOperand(input_reg, HeapNumber::kExponentOffset));
347    and_(result_reg, HeapNumber::kExponentMask);
348    const uint32_t kTooBigExponent =
349        (HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift;
350    cmp(Operand(result_reg), Immediate(kTooBigExponent));
351    j(greater_equal, &slow_case, Label::kNear);
352
353    // Reserve space for 64 bit answer.
354    sub(Operand(esp), Immediate(kDoubleSize));
355    // Do conversion, which cannot fail because we checked the exponent.
356    fisttp_d(Operand(esp, 0));
357    mov(result_reg, Operand(esp, 0));  // Low word of answer is the result.
358    add(Operand(esp), Immediate(kDoubleSize));
359    jmp(&done, Label::kNear);
360
361    // Slow case.
362    bind(&slow_case);
363    if (input_reg.is(result_reg)) {
364      // Input is clobbered. Restore number from fpu stack
365      sub(Operand(esp), Immediate(kDoubleSize));
366      fstp_d(Operand(esp, 0));
367      SlowTruncateToI(result_reg, esp, 0);
368      add(esp, Immediate(kDoubleSize));
369    } else {
370      fstp(0);
371      SlowTruncateToI(result_reg, input_reg);
372    }
373  } else if (CpuFeatures::IsSupported(SSE2)) {
374    CpuFeatureScope scope(this, SSE2);
375    movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
376    cvttsd2si(result_reg, Operand(xmm0));
377    cmp(result_reg, 0x80000000u);
378    j(not_equal, &done, Label::kNear);
379    // Check if the input was 0x8000000 (kMinInt).
380    // If no, then we got an overflow and we deoptimize.
381    ExternalReference min_int = ExternalReference::address_of_min_int();
382    ucomisd(xmm0, Operand::StaticVariable(min_int));
383    j(not_equal, &slow_case, Label::kNear);
384    j(parity_even, &slow_case, Label::kNear);  // NaN.
385    jmp(&done, Label::kNear);
386
387    // Slow case.
388    bind(&slow_case);
389    if (input_reg.is(result_reg)) {
390      // Input is clobbered. Restore number from double scratch.
391      sub(esp, Immediate(kDoubleSize));
392      movsd(MemOperand(esp, 0), xmm0);
393      SlowTruncateToI(result_reg, esp, 0);
394      add(esp, Immediate(kDoubleSize));
395    } else {
396      SlowTruncateToI(result_reg, input_reg);
397    }
398  } else {
399    SlowTruncateToI(result_reg, input_reg);
400  }
401  bind(&done);
402}
403
404
405void MacroAssembler::TaggedToI(Register result_reg,
406                               Register input_reg,
407                               XMMRegister temp,
408                               MinusZeroMode minus_zero_mode,
409                               Label* lost_precision) {
410  Label done;
411  ASSERT(!temp.is(xmm0));
412
413  cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
414      isolate()->factory()->heap_number_map());
415  j(not_equal, lost_precision, Label::kNear);
416
417  if (CpuFeatures::IsSafeForSnapshot(SSE2)) {
418    ASSERT(!temp.is(no_xmm_reg));
419    CpuFeatureScope scope(this, SSE2);
420
421    movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
422    cvttsd2si(result_reg, Operand(xmm0));
423    Cvtsi2sd(temp, Operand(result_reg));
424    ucomisd(xmm0, temp);
425    RecordComment("Deferred TaggedToI: lost precision");
426    j(not_equal, lost_precision, Label::kNear);
427    RecordComment("Deferred TaggedToI: NaN");
428    j(parity_even, lost_precision, Label::kNear);
429    if (minus_zero_mode == FAIL_ON_MINUS_ZERO) {
430      test(result_reg, Operand(result_reg));
431      j(not_zero, &done, Label::kNear);
432      movmskpd(result_reg, xmm0);
433      and_(result_reg, 1);
434      RecordComment("Deferred TaggedToI: minus zero");
435      j(not_zero, lost_precision, Label::kNear);
436    }
437  } else {
438    // TODO(olivf) Converting a number on the fpu is actually quite slow. We
439    // should first try a fast conversion and then bailout to this slow case.
440    Label lost_precision_pop, zero_check;
441    Label* lost_precision_int = (minus_zero_mode == FAIL_ON_MINUS_ZERO)
442        ? &lost_precision_pop : lost_precision;
443    sub(esp, Immediate(kPointerSize));
444    fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
445    if (minus_zero_mode == FAIL_ON_MINUS_ZERO) fld(0);
446    fist_s(MemOperand(esp, 0));
447    fild_s(MemOperand(esp, 0));
448    FCmp();
449    pop(result_reg);
450    j(not_equal, lost_precision_int, Label::kNear);
451    j(parity_even, lost_precision_int, Label::kNear);  // NaN.
452    if (minus_zero_mode == FAIL_ON_MINUS_ZERO) {
453      test(result_reg, Operand(result_reg));
454      j(zero, &zero_check, Label::kNear);
455      fstp(0);
456      jmp(&done, Label::kNear);
457      bind(&zero_check);
458      // To check for minus zero, we load the value again as float, and check
459      // if that is still 0.
460      sub(esp, Immediate(kPointerSize));
461      fstp_s(Operand(esp, 0));
462      pop(result_reg);
463      test(result_reg, Operand(result_reg));
464      j(zero, &done, Label::kNear);
465      jmp(lost_precision, Label::kNear);
466
467      bind(&lost_precision_pop);
468      fstp(0);
469      jmp(lost_precision, Label::kNear);
470    }
471  }
472  bind(&done);
473}
474
475
476void MacroAssembler::LoadUint32(XMMRegister dst,
477                                Register src,
478                                XMMRegister scratch) {
479  Label done;
480  cmp(src, Immediate(0));
481  ExternalReference uint32_bias =
482        ExternalReference::address_of_uint32_bias();
483  movsd(scratch, Operand::StaticVariable(uint32_bias));
484  Cvtsi2sd(dst, src);
485  j(not_sign, &done, Label::kNear);
486  addsd(dst, scratch);
487  bind(&done);
488}
489
490
491void MacroAssembler::LoadUint32NoSSE2(Register src) {
492  Label done;
493  push(src);
494  fild_s(Operand(esp, 0));
495  cmp(src, Immediate(0));
496  j(not_sign, &done, Label::kNear);
497  ExternalReference uint32_bias =
498        ExternalReference::address_of_uint32_bias();
499  fld_d(Operand::StaticVariable(uint32_bias));
500  faddp(1);
501  bind(&done);
502  add(esp, Immediate(kPointerSize));
503}
504
505
506void MacroAssembler::RecordWriteArray(Register object,
507                                      Register value,
508                                      Register index,
509                                      SaveFPRegsMode save_fp,
510                                      RememberedSetAction remembered_set_action,
511                                      SmiCheck smi_check) {
512  // First, check if a write barrier is even needed. The tests below
513  // catch stores of Smis.
514  Label done;
515
516  // Skip barrier if writing a smi.
517  if (smi_check == INLINE_SMI_CHECK) {
518    ASSERT_EQ(0, kSmiTag);
519    test(value, Immediate(kSmiTagMask));
520    j(zero, &done);
521  }
522
523  // Array access: calculate the destination address in the same manner as
524  // KeyedStoreIC::GenerateGeneric.  Multiply a smi by 2 to get an offset
525  // into an array of words.
526  Register dst = index;
527  lea(dst, Operand(object, index, times_half_pointer_size,
528                   FixedArray::kHeaderSize - kHeapObjectTag));
529
530  RecordWrite(
531      object, dst, value, save_fp, remembered_set_action, OMIT_SMI_CHECK);
532
533  bind(&done);
534
535  // Clobber clobbered input registers when running with the debug-code flag
536  // turned on to provoke errors.
537  if (emit_debug_code()) {
538    mov(value, Immediate(BitCast<int32_t>(kZapValue)));
539    mov(index, Immediate(BitCast<int32_t>(kZapValue)));
540  }
541}
542
543
544void MacroAssembler::RecordWriteField(
545    Register object,
546    int offset,
547    Register value,
548    Register dst,
549    SaveFPRegsMode save_fp,
550    RememberedSetAction remembered_set_action,
551    SmiCheck smi_check) {
552  // First, check if a write barrier is even needed. The tests below
553  // catch stores of Smis.
554  Label done;
555
556  // Skip barrier if writing a smi.
557  if (smi_check == INLINE_SMI_CHECK) {
558    JumpIfSmi(value, &done, Label::kNear);
559  }
560
561  // Although the object register is tagged, the offset is relative to the start
562  // of the object, so so offset must be a multiple of kPointerSize.
563  ASSERT(IsAligned(offset, kPointerSize));
564
565  lea(dst, FieldOperand(object, offset));
566  if (emit_debug_code()) {
567    Label ok;
568    test_b(dst, (1 << kPointerSizeLog2) - 1);
569    j(zero, &ok, Label::kNear);
570    int3();
571    bind(&ok);
572  }
573
574  RecordWrite(
575      object, dst, value, save_fp, remembered_set_action, OMIT_SMI_CHECK);
576
577  bind(&done);
578
579  // Clobber clobbered input registers when running with the debug-code flag
580  // turned on to provoke errors.
581  if (emit_debug_code()) {
582    mov(value, Immediate(BitCast<int32_t>(kZapValue)));
583    mov(dst, Immediate(BitCast<int32_t>(kZapValue)));
584  }
585}
586
587
588void MacroAssembler::RecordWriteForMap(
589    Register object,
590    Handle<Map> map,
591    Register scratch1,
592    Register scratch2,
593    SaveFPRegsMode save_fp) {
594  Label done;
595
596  Register address = scratch1;
597  Register value = scratch2;
598  if (emit_debug_code()) {
599    Label ok;
600    lea(address, FieldOperand(object, HeapObject::kMapOffset));
601    test_b(address, (1 << kPointerSizeLog2) - 1);
602    j(zero, &ok, Label::kNear);
603    int3();
604    bind(&ok);
605  }
606
607  ASSERT(!object.is(value));
608  ASSERT(!object.is(address));
609  ASSERT(!value.is(address));
610  AssertNotSmi(object);
611
612  if (!FLAG_incremental_marking) {
613    return;
614  }
615
616  // Count number of write barriers in generated code.
617  isolate()->counters()->write_barriers_static()->Increment();
618  IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);
619
620  // A single check of the map's pages interesting flag suffices, since it is
621  // only set during incremental collection, and then it's also guaranteed that
622  // the from object's page's interesting flag is also set.  This optimization
623  // relies on the fact that maps can never be in new space.
624  ASSERT(!isolate()->heap()->InNewSpace(*map));
625  CheckPageFlagForMap(map,
626                      MemoryChunk::kPointersToHereAreInterestingMask,
627                      zero,
628                      &done,
629                      Label::kNear);
630
631  // Delay the initialization of |address| and |value| for the stub until it's
632  // known that the will be needed. Up until this point their values are not
633  // needed since they are embedded in the operands of instructions that need
634  // them.
635  lea(address, FieldOperand(object, HeapObject::kMapOffset));
636  mov(value, Immediate(map));
637  RecordWriteStub stub(object, value, address, OMIT_REMEMBERED_SET, save_fp);
638  CallStub(&stub);
639
640  bind(&done);
641
642  // Clobber clobbered input registers when running with the debug-code flag
643  // turned on to provoke errors.
644  if (emit_debug_code()) {
645    mov(value, Immediate(BitCast<int32_t>(kZapValue)));
646    mov(scratch1, Immediate(BitCast<int32_t>(kZapValue)));
647    mov(scratch2, Immediate(BitCast<int32_t>(kZapValue)));
648  }
649}
650
651
652void MacroAssembler::RecordWrite(Register object,
653                                 Register address,
654                                 Register value,
655                                 SaveFPRegsMode fp_mode,
656                                 RememberedSetAction remembered_set_action,
657                                 SmiCheck smi_check) {
658  ASSERT(!object.is(value));
659  ASSERT(!object.is(address));
660  ASSERT(!value.is(address));
661  AssertNotSmi(object);
662
663  if (remembered_set_action == OMIT_REMEMBERED_SET &&
664      !FLAG_incremental_marking) {
665    return;
666  }
667
668  if (emit_debug_code()) {
669    Label ok;
670    cmp(value, Operand(address, 0));
671    j(equal, &ok, Label::kNear);
672    int3();
673    bind(&ok);
674  }
675
676  // Count number of write barriers in generated code.
677  isolate()->counters()->write_barriers_static()->Increment();
678  IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);
679
680  // First, check if a write barrier is even needed. The tests below
681  // catch stores of Smis and stores into young gen.
682  Label done;
683
684  if (smi_check == INLINE_SMI_CHECK) {
685    // Skip barrier if writing a smi.
686    JumpIfSmi(value, &done, Label::kNear);
687  }
688
689  CheckPageFlag(value,
690                value,  // Used as scratch.
691                MemoryChunk::kPointersToHereAreInterestingMask,
692                zero,
693                &done,
694                Label::kNear);
695  CheckPageFlag(object,
696                value,  // Used as scratch.
697                MemoryChunk::kPointersFromHereAreInterestingMask,
698                zero,
699                &done,
700                Label::kNear);
701
702  RecordWriteStub stub(object, value, address, remembered_set_action, fp_mode);
703  CallStub(&stub);
704
705  bind(&done);
706
707  // Clobber clobbered registers when running with the debug-code flag
708  // turned on to provoke errors.
709  if (emit_debug_code()) {
710    mov(address, Immediate(BitCast<int32_t>(kZapValue)));
711    mov(value, Immediate(BitCast<int32_t>(kZapValue)));
712  }
713}
714
715
716#ifdef ENABLE_DEBUGGER_SUPPORT
717void MacroAssembler::DebugBreak() {
718  Set(eax, Immediate(0));
719  mov(ebx, Immediate(ExternalReference(Runtime::kDebugBreak, isolate())));
720  CEntryStub ces(1);
721  call(ces.GetCode(isolate()), RelocInfo::DEBUG_BREAK);
722}
723#endif
724
725
726void MacroAssembler::Cvtsi2sd(XMMRegister dst, const Operand& src) {
727  xorps(dst, dst);
728  cvtsi2sd(dst, src);
729}
730
731
732void MacroAssembler::Set(Register dst, const Immediate& x) {
733  if (x.is_zero()) {
734    xor_(dst, dst);  // Shorter than mov.
735  } else {
736    mov(dst, x);
737  }
738}
739
740
741void MacroAssembler::Set(const Operand& dst, const Immediate& x) {
742  mov(dst, x);
743}
744
745
746bool MacroAssembler::IsUnsafeImmediate(const Immediate& x) {
747  static const int kMaxImmediateBits = 17;
748  if (!RelocInfo::IsNone(x.rmode_)) return false;
749  return !is_intn(x.x_, kMaxImmediateBits);
750}
751
752
753void MacroAssembler::SafeSet(Register dst, const Immediate& x) {
754  if (IsUnsafeImmediate(x) && jit_cookie() != 0) {
755    Set(dst, Immediate(x.x_ ^ jit_cookie()));
756    xor_(dst, jit_cookie());
757  } else {
758    Set(dst, x);
759  }
760}
761
762
763void MacroAssembler::SafePush(const Immediate& x) {
764  if (IsUnsafeImmediate(x) && jit_cookie() != 0) {
765    push(Immediate(x.x_ ^ jit_cookie()));
766    xor_(Operand(esp, 0), Immediate(jit_cookie()));
767  } else {
768    push(x);
769  }
770}
771
772
773void MacroAssembler::CmpObjectType(Register heap_object,
774                                   InstanceType type,
775                                   Register map) {
776  mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
777  CmpInstanceType(map, type);
778}
779
780
781void MacroAssembler::CmpInstanceType(Register map, InstanceType type) {
782  cmpb(FieldOperand(map, Map::kInstanceTypeOffset),
783       static_cast<int8_t>(type));
784}
785
786
787void MacroAssembler::CheckFastElements(Register map,
788                                       Label* fail,
789                                       Label::Distance distance) {
790  STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
791  STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
792  STATIC_ASSERT(FAST_ELEMENTS == 2);
793  STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
794  cmpb(FieldOperand(map, Map::kBitField2Offset),
795       Map::kMaximumBitField2FastHoleyElementValue);
796  j(above, fail, distance);
797}
798
799
800void MacroAssembler::CheckFastObjectElements(Register map,
801                                             Label* fail,
802                                             Label::Distance distance) {
803  STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
804  STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
805  STATIC_ASSERT(FAST_ELEMENTS == 2);
806  STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
807  cmpb(FieldOperand(map, Map::kBitField2Offset),
808       Map::kMaximumBitField2FastHoleySmiElementValue);
809  j(below_equal, fail, distance);
810  cmpb(FieldOperand(map, Map::kBitField2Offset),
811       Map::kMaximumBitField2FastHoleyElementValue);
812  j(above, fail, distance);
813}
814
815
816void MacroAssembler::CheckFastSmiElements(Register map,
817                                          Label* fail,
818                                          Label::Distance distance) {
819  STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
820  STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
821  cmpb(FieldOperand(map, Map::kBitField2Offset),
822       Map::kMaximumBitField2FastHoleySmiElementValue);
823  j(above, fail, distance);
824}
825
826
827void MacroAssembler::StoreNumberToDoubleElements(
828    Register maybe_number,
829    Register elements,
830    Register key,
831    Register scratch1,
832    XMMRegister scratch2,
833    Label* fail,
834    bool specialize_for_processor,
835    int elements_offset) {
836  Label smi_value, done, maybe_nan, not_nan, is_nan, have_double_value;
837  JumpIfSmi(maybe_number, &smi_value, Label::kNear);
838
839  CheckMap(maybe_number,
840           isolate()->factory()->heap_number_map(),
841           fail,
842           DONT_DO_SMI_CHECK);
843
844  // Double value, canonicalize NaN.
845  uint32_t offset = HeapNumber::kValueOffset + sizeof(kHoleNanLower32);
846  cmp(FieldOperand(maybe_number, offset),
847      Immediate(kNaNOrInfinityLowerBoundUpper32));
848  j(greater_equal, &maybe_nan, Label::kNear);
849
850  bind(&not_nan);
851  ExternalReference canonical_nan_reference =
852      ExternalReference::address_of_canonical_non_hole_nan();
853  if (CpuFeatures::IsSupported(SSE2) && specialize_for_processor) {
854    CpuFeatureScope use_sse2(this, SSE2);
855    movsd(scratch2, FieldOperand(maybe_number, HeapNumber::kValueOffset));
856    bind(&have_double_value);
857    movsd(FieldOperand(elements, key, times_4,
858                        FixedDoubleArray::kHeaderSize - elements_offset),
859           scratch2);
860  } else {
861    fld_d(FieldOperand(maybe_number, HeapNumber::kValueOffset));
862    bind(&have_double_value);
863    fstp_d(FieldOperand(elements, key, times_4,
864                        FixedDoubleArray::kHeaderSize - elements_offset));
865  }
866  jmp(&done);
867
868  bind(&maybe_nan);
869  // Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise
870  // it's an Infinity, and the non-NaN code path applies.
871  j(greater, &is_nan, Label::kNear);
872  cmp(FieldOperand(maybe_number, HeapNumber::kValueOffset), Immediate(0));
873  j(zero, &not_nan);
874  bind(&is_nan);
875  if (CpuFeatures::IsSupported(SSE2) && specialize_for_processor) {
876    CpuFeatureScope use_sse2(this, SSE2);
877    movsd(scratch2, Operand::StaticVariable(canonical_nan_reference));
878  } else {
879    fld_d(Operand::StaticVariable(canonical_nan_reference));
880  }
881  jmp(&have_double_value, Label::kNear);
882
883  bind(&smi_value);
884  // Value is a smi. Convert to a double and store.
885  // Preserve original value.
886  mov(scratch1, maybe_number);
887  SmiUntag(scratch1);
888  if (CpuFeatures::IsSupported(SSE2) && specialize_for_processor) {
889    CpuFeatureScope fscope(this, SSE2);
890    Cvtsi2sd(scratch2, scratch1);
891    movsd(FieldOperand(elements, key, times_4,
892                        FixedDoubleArray::kHeaderSize - elements_offset),
893           scratch2);
894  } else {
895    push(scratch1);
896    fild_s(Operand(esp, 0));
897    pop(scratch1);
898    fstp_d(FieldOperand(elements, key, times_4,
899                        FixedDoubleArray::kHeaderSize - elements_offset));
900  }
901  bind(&done);
902}
903
904
905void MacroAssembler::CompareMap(Register obj, Handle<Map> map) {
906  cmp(FieldOperand(obj, HeapObject::kMapOffset), map);
907}
908
909
910void MacroAssembler::CheckMap(Register obj,
911                              Handle<Map> map,
912                              Label* fail,
913                              SmiCheckType smi_check_type) {
914  if (smi_check_type == DO_SMI_CHECK) {
915    JumpIfSmi(obj, fail);
916  }
917
918  CompareMap(obj, map);
919  j(not_equal, fail);
920}
921
922
923void MacroAssembler::DispatchMap(Register obj,
924                                 Register unused,
925                                 Handle<Map> map,
926                                 Handle<Code> success,
927                                 SmiCheckType smi_check_type) {
928  Label fail;
929  if (smi_check_type == DO_SMI_CHECK) {
930    JumpIfSmi(obj, &fail);
931  }
932  cmp(FieldOperand(obj, HeapObject::kMapOffset), Immediate(map));
933  j(equal, success);
934
935  bind(&fail);
936}
937
938
939Condition MacroAssembler::IsObjectStringType(Register heap_object,
940                                             Register map,
941                                             Register instance_type) {
942  mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
943  movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
944  STATIC_ASSERT(kNotStringTag != 0);
945  test(instance_type, Immediate(kIsNotStringMask));
946  return zero;
947}
948
949
950Condition MacroAssembler::IsObjectNameType(Register heap_object,
951                                           Register map,
952                                           Register instance_type) {
953  mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
954  movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
955  cmpb(instance_type, static_cast<uint8_t>(LAST_NAME_TYPE));
956  return below_equal;
957}
958
959
960void MacroAssembler::IsObjectJSObjectType(Register heap_object,
961                                          Register map,
962                                          Register scratch,
963                                          Label* fail) {
964  mov(map, FieldOperand(heap_object, HeapObject::kMapOffset));
965  IsInstanceJSObjectType(map, scratch, fail);
966}
967
968
969void MacroAssembler::IsInstanceJSObjectType(Register map,
970                                            Register scratch,
971                                            Label* fail) {
972  movzx_b(scratch, FieldOperand(map, Map::kInstanceTypeOffset));
973  sub(scratch, Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
974  cmp(scratch,
975      LAST_NONCALLABLE_SPEC_OBJECT_TYPE - FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
976  j(above, fail);
977}
978
979
980void MacroAssembler::FCmp() {
981  if (CpuFeatures::IsSupported(CMOV)) {
982    fucomip();
983    fstp(0);
984  } else {
985    fucompp();
986    push(eax);
987    fnstsw_ax();
988    sahf();
989    pop(eax);
990  }
991}
992
993
994void MacroAssembler::AssertNumber(Register object) {
995  if (emit_debug_code()) {
996    Label ok;
997    JumpIfSmi(object, &ok);
998    cmp(FieldOperand(object, HeapObject::kMapOffset),
999        isolate()->factory()->heap_number_map());
1000    Check(equal, kOperandNotANumber);
1001    bind(&ok);
1002  }
1003}
1004
1005
1006void MacroAssembler::AssertSmi(Register object) {
1007  if (emit_debug_code()) {
1008    test(object, Immediate(kSmiTagMask));
1009    Check(equal, kOperandIsNotASmi);
1010  }
1011}
1012
1013
1014void MacroAssembler::AssertString(Register object) {
1015  if (emit_debug_code()) {
1016    test(object, Immediate(kSmiTagMask));
1017    Check(not_equal, kOperandIsASmiAndNotAString);
1018    push(object);
1019    mov(object, FieldOperand(object, HeapObject::kMapOffset));
1020    CmpInstanceType(object, FIRST_NONSTRING_TYPE);
1021    pop(object);
1022    Check(below, kOperandIsNotAString);
1023  }
1024}
1025
1026
1027void MacroAssembler::AssertName(Register object) {
1028  if (emit_debug_code()) {
1029    test(object, Immediate(kSmiTagMask));
1030    Check(not_equal, kOperandIsASmiAndNotAName);
1031    push(object);
1032    mov(object, FieldOperand(object, HeapObject::kMapOffset));
1033    CmpInstanceType(object, LAST_NAME_TYPE);
1034    pop(object);
1035    Check(below_equal, kOperandIsNotAName);
1036  }
1037}
1038
1039
1040void MacroAssembler::AssertNotSmi(Register object) {
1041  if (emit_debug_code()) {
1042    test(object, Immediate(kSmiTagMask));
1043    Check(not_equal, kOperandIsASmi);
1044  }
1045}
1046
1047
1048void MacroAssembler::Prologue(PrologueFrameMode frame_mode) {
1049  if (frame_mode == BUILD_STUB_FRAME) {
1050    push(ebp);  // Caller's frame pointer.
1051    mov(ebp, esp);
1052    push(esi);  // Callee's context.
1053    push(Immediate(Smi::FromInt(StackFrame::STUB)));
1054  } else {
1055    PredictableCodeSizeScope predictible_code_size_scope(this,
1056        kNoCodeAgeSequenceLength);
1057    if (isolate()->IsCodePreAgingActive()) {
1058        // Pre-age the code.
1059      call(isolate()->builtins()->MarkCodeAsExecutedOnce(),
1060          RelocInfo::CODE_AGE_SEQUENCE);
1061      Nop(kNoCodeAgeSequenceLength - Assembler::kCallInstructionLength);
1062    } else {
1063      push(ebp);  // Caller's frame pointer.
1064      mov(ebp, esp);
1065      push(esi);  // Callee's context.
1066      push(edi);  // Callee's JS function.
1067    }
1068  }
1069}
1070
1071
1072void MacroAssembler::EnterFrame(StackFrame::Type type) {
1073  push(ebp);
1074  mov(ebp, esp);
1075  push(esi);
1076  push(Immediate(Smi::FromInt(type)));
1077  push(Immediate(CodeObject()));
1078  if (emit_debug_code()) {
1079    cmp(Operand(esp, 0), Immediate(isolate()->factory()->undefined_value()));
1080    Check(not_equal, kCodeObjectNotProperlyPatched);
1081  }
1082}
1083
1084
1085void MacroAssembler::LeaveFrame(StackFrame::Type type) {
1086  if (emit_debug_code()) {
1087    cmp(Operand(ebp, StandardFrameConstants::kMarkerOffset),
1088        Immediate(Smi::FromInt(type)));
1089    Check(equal, kStackFrameTypesMustMatch);
1090  }
1091  leave();
1092}
1093
1094
1095void MacroAssembler::EnterExitFramePrologue() {
1096  // Set up the frame structure on the stack.
1097  ASSERT(ExitFrameConstants::kCallerSPDisplacement == +2 * kPointerSize);
1098  ASSERT(ExitFrameConstants::kCallerPCOffset == +1 * kPointerSize);
1099  ASSERT(ExitFrameConstants::kCallerFPOffset ==  0 * kPointerSize);
1100  push(ebp);
1101  mov(ebp, esp);
1102
1103  // Reserve room for entry stack pointer and push the code object.
1104  ASSERT(ExitFrameConstants::kSPOffset  == -1 * kPointerSize);
1105  push(Immediate(0));  // Saved entry sp, patched before call.
1106  push(Immediate(CodeObject()));  // Accessed from ExitFrame::code_slot.
1107
1108  // Save the frame pointer and the context in top.
1109  ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress, isolate());
1110  ExternalReference context_address(Isolate::kContextAddress, isolate());
1111  mov(Operand::StaticVariable(c_entry_fp_address), ebp);
1112  mov(Operand::StaticVariable(context_address), esi);
1113}
1114
1115
1116void MacroAssembler::EnterExitFrameEpilogue(int argc, bool save_doubles) {
1117  // Optionally save all XMM registers.
1118  if (save_doubles) {
1119    CpuFeatureScope scope(this, SSE2);
1120    int space = XMMRegister::kNumRegisters * kDoubleSize + argc * kPointerSize;
1121    sub(esp, Immediate(space));
1122    const int offset = -2 * kPointerSize;
1123    for (int i = 0; i < XMMRegister::kNumRegisters; i++) {
1124      XMMRegister reg = XMMRegister::from_code(i);
1125      movsd(Operand(ebp, offset - ((i + 1) * kDoubleSize)), reg);
1126    }
1127  } else {
1128    sub(esp, Immediate(argc * kPointerSize));
1129  }
1130
1131  // Get the required frame alignment for the OS.
1132  const int kFrameAlignment = OS::ActivationFrameAlignment();
1133  if (kFrameAlignment > 0) {
1134    ASSERT(IsPowerOf2(kFrameAlignment));
1135    and_(esp, -kFrameAlignment);
1136  }
1137
1138  // Patch the saved entry sp.
1139  mov(Operand(ebp, ExitFrameConstants::kSPOffset), esp);
1140}
1141
1142
1143void MacroAssembler::EnterExitFrame(bool save_doubles) {
1144  EnterExitFramePrologue();
1145
1146  // Set up argc and argv in callee-saved registers.
1147  int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize;
1148  mov(edi, eax);
1149  lea(esi, Operand(ebp, eax, times_4, offset));
1150
1151  // Reserve space for argc, argv and isolate.
1152  EnterExitFrameEpilogue(3, save_doubles);
1153}
1154
1155
1156void MacroAssembler::EnterApiExitFrame(int argc) {
1157  EnterExitFramePrologue();
1158  EnterExitFrameEpilogue(argc, false);
1159}
1160
1161
1162void MacroAssembler::LeaveExitFrame(bool save_doubles) {
1163  // Optionally restore all XMM registers.
1164  if (save_doubles) {
1165    CpuFeatureScope scope(this, SSE2);
1166    const int offset = -2 * kPointerSize;
1167    for (int i = 0; i < XMMRegister::kNumRegisters; i++) {
1168      XMMRegister reg = XMMRegister::from_code(i);
1169      movsd(reg, Operand(ebp, offset - ((i + 1) * kDoubleSize)));
1170    }
1171  }
1172
1173  // Get the return address from the stack and restore the frame pointer.
1174  mov(ecx, Operand(ebp, 1 * kPointerSize));
1175  mov(ebp, Operand(ebp, 0 * kPointerSize));
1176
1177  // Pop the arguments and the receiver from the caller stack.
1178  lea(esp, Operand(esi, 1 * kPointerSize));
1179
1180  // Push the return address to get ready to return.
1181  push(ecx);
1182
1183  LeaveExitFrameEpilogue(true);
1184}
1185
1186
1187void MacroAssembler::LeaveExitFrameEpilogue(bool restore_context) {
1188  // Restore current context from top and clear it in debug mode.
1189  ExternalReference context_address(Isolate::kContextAddress, isolate());
1190  if (restore_context) {
1191    mov(esi, Operand::StaticVariable(context_address));
1192  }
1193#ifdef DEBUG
1194  mov(Operand::StaticVariable(context_address), Immediate(0));
1195#endif
1196
1197  // Clear the top frame.
1198  ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress,
1199                                       isolate());
1200  mov(Operand::StaticVariable(c_entry_fp_address), Immediate(0));
1201}
1202
1203
1204void MacroAssembler::LeaveApiExitFrame(bool restore_context) {
1205  mov(esp, ebp);
1206  pop(ebp);
1207
1208  LeaveExitFrameEpilogue(restore_context);
1209}
1210
1211
1212void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
1213                                    int handler_index) {
1214  // Adjust this code if not the case.
1215  STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
1216  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1217  STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
1218  STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
1219  STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
1220  STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1221
1222  // We will build up the handler from the bottom by pushing on the stack.
1223  // First push the frame pointer and context.
1224  if (kind == StackHandler::JS_ENTRY) {
1225    // The frame pointer does not point to a JS frame so we save NULL for
1226    // ebp. We expect the code throwing an exception to check ebp before
1227    // dereferencing it to restore the context.
1228    push(Immediate(0));  // NULL frame pointer.
1229    push(Immediate(Smi::FromInt(0)));  // No context.
1230  } else {
1231    push(ebp);
1232    push(esi);
1233  }
1234  // Push the state and the code object.
1235  unsigned state =
1236      StackHandler::IndexField::encode(handler_index) |
1237      StackHandler::KindField::encode(kind);
1238  push(Immediate(state));
1239  Push(CodeObject());
1240
1241  // Link the current handler as the next handler.
1242  ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
1243  push(Operand::StaticVariable(handler_address));
1244  // Set this new handler as the current one.
1245  mov(Operand::StaticVariable(handler_address), esp);
1246}
1247
1248
1249void MacroAssembler::PopTryHandler() {
1250  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1251  ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
1252  pop(Operand::StaticVariable(handler_address));
1253  add(esp, Immediate(StackHandlerConstants::kSize - kPointerSize));
1254}
1255
1256
1257void MacroAssembler::JumpToHandlerEntry() {
1258  // Compute the handler entry address and jump to it.  The handler table is
1259  // a fixed array of (smi-tagged) code offsets.
1260  // eax = exception, edi = code object, edx = state.
1261  mov(ebx, FieldOperand(edi, Code::kHandlerTableOffset));
1262  shr(edx, StackHandler::kKindWidth);
1263  mov(edx, FieldOperand(ebx, edx, times_4, FixedArray::kHeaderSize));
1264  SmiUntag(edx);
1265  lea(edi, FieldOperand(edi, edx, times_1, Code::kHeaderSize));
1266  jmp(edi);
1267}
1268
1269
1270void MacroAssembler::Throw(Register value) {
1271  // Adjust this code if not the case.
1272  STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
1273  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1274  STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
1275  STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
1276  STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
1277  STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1278
1279  // The exception is expected in eax.
1280  if (!value.is(eax)) {
1281    mov(eax, value);
1282  }
1283  // Drop the stack pointer to the top of the top handler.
1284  ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
1285  mov(esp, Operand::StaticVariable(handler_address));
1286  // Restore the next handler.
1287  pop(Operand::StaticVariable(handler_address));
1288
1289  // Remove the code object and state, compute the handler address in edi.
1290  pop(edi);  // Code object.
1291  pop(edx);  // Index and state.
1292
1293  // Restore the context and frame pointer.
1294  pop(esi);  // Context.
1295  pop(ebp);  // Frame pointer.
1296
1297  // If the handler is a JS frame, restore the context to the frame.
1298  // (kind == ENTRY) == (ebp == 0) == (esi == 0), so we could test either
1299  // ebp or esi.
1300  Label skip;
1301  test(esi, esi);
1302  j(zero, &skip, Label::kNear);
1303  mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
1304  bind(&skip);
1305
1306  JumpToHandlerEntry();
1307}
1308
1309
1310void MacroAssembler::ThrowUncatchable(Register value) {
1311  // Adjust this code if not the case.
1312  STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
1313  STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1314  STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
1315  STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
1316  STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
1317  STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1318
1319  // The exception is expected in eax.
1320  if (!value.is(eax)) {
1321    mov(eax, value);
1322  }
1323  // Drop the stack pointer to the top of the top stack handler.
1324  ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
1325  mov(esp, Operand::StaticVariable(handler_address));
1326
1327  // Unwind the handlers until the top ENTRY handler is found.
1328  Label fetch_next, check_kind;
1329  jmp(&check_kind, Label::kNear);
1330  bind(&fetch_next);
1331  mov(esp, Operand(esp, StackHandlerConstants::kNextOffset));
1332
1333  bind(&check_kind);
1334  STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
1335  test(Operand(esp, StackHandlerConstants::kStateOffset),
1336       Immediate(StackHandler::KindField::kMask));
1337  j(not_zero, &fetch_next);
1338
1339  // Set the top handler address to next handler past the top ENTRY handler.
1340  pop(Operand::StaticVariable(handler_address));
1341
1342  // Remove the code object and state, compute the handler address in edi.
1343  pop(edi);  // Code object.
1344  pop(edx);  // Index and state.
1345
1346  // Clear the context pointer and frame pointer (0 was saved in the handler).
1347  pop(esi);
1348  pop(ebp);
1349
1350  JumpToHandlerEntry();
1351}
1352
1353
1354void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
1355                                            Register scratch1,
1356                                            Register scratch2,
1357                                            Label* miss) {
1358  Label same_contexts;
1359
1360  ASSERT(!holder_reg.is(scratch1));
1361  ASSERT(!holder_reg.is(scratch2));
1362  ASSERT(!scratch1.is(scratch2));
1363
1364  // Load current lexical context from the stack frame.
1365  mov(scratch1, Operand(ebp, StandardFrameConstants::kContextOffset));
1366
1367  // When generating debug code, make sure the lexical context is set.
1368  if (emit_debug_code()) {
1369    cmp(scratch1, Immediate(0));
1370    Check(not_equal, kWeShouldNotHaveAnEmptyLexicalContext);
1371  }
1372  // Load the native context of the current context.
1373  int offset =
1374      Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
1375  mov(scratch1, FieldOperand(scratch1, offset));
1376  mov(scratch1, FieldOperand(scratch1, GlobalObject::kNativeContextOffset));
1377
1378  // Check the context is a native context.
1379  if (emit_debug_code()) {
1380    // Read the first word and compare to native_context_map.
1381    cmp(FieldOperand(scratch1, HeapObject::kMapOffset),
1382        isolate()->factory()->native_context_map());
1383    Check(equal, kJSGlobalObjectNativeContextShouldBeANativeContext);
1384  }
1385
1386  // Check if both contexts are the same.
1387  cmp(scratch1, FieldOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
1388  j(equal, &same_contexts);
1389
1390  // Compare security tokens, save holder_reg on the stack so we can use it
1391  // as a temporary register.
1392  //
1393  // Check that the security token in the calling global object is
1394  // compatible with the security token in the receiving global
1395  // object.
1396  mov(scratch2,
1397      FieldOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
1398
1399  // Check the context is a native context.
1400  if (emit_debug_code()) {
1401    cmp(scratch2, isolate()->factory()->null_value());
1402    Check(not_equal, kJSGlobalProxyContextShouldNotBeNull);
1403
1404    // Read the first word and compare to native_context_map(),
1405    cmp(FieldOperand(scratch2, HeapObject::kMapOffset),
1406        isolate()->factory()->native_context_map());
1407    Check(equal, kJSGlobalObjectNativeContextShouldBeANativeContext);
1408  }
1409
1410  int token_offset = Context::kHeaderSize +
1411                     Context::SECURITY_TOKEN_INDEX * kPointerSize;
1412  mov(scratch1, FieldOperand(scratch1, token_offset));
1413  cmp(scratch1, FieldOperand(scratch2, token_offset));
1414  j(not_equal, miss);
1415
1416  bind(&same_contexts);
1417}
1418
1419
1420// Compute the hash code from the untagged key.  This must be kept in sync with
1421// ComputeIntegerHash in utils.h and KeyedLoadGenericElementStub in
1422// code-stub-hydrogen.cc
1423//
1424// Note: r0 will contain hash code
1425void MacroAssembler::GetNumberHash(Register r0, Register scratch) {
1426  // Xor original key with a seed.
1427  if (Serializer::enabled()) {
1428    ExternalReference roots_array_start =
1429        ExternalReference::roots_array_start(isolate());
1430    mov(scratch, Immediate(Heap::kHashSeedRootIndex));
1431    mov(scratch,
1432        Operand::StaticArray(scratch, times_pointer_size, roots_array_start));
1433    SmiUntag(scratch);
1434    xor_(r0, scratch);
1435  } else {
1436    int32_t seed = isolate()->heap()->HashSeed();
1437    xor_(r0, Immediate(seed));
1438  }
1439
1440  // hash = ~hash + (hash << 15);
1441  mov(scratch, r0);
1442  not_(r0);
1443  shl(scratch, 15);
1444  add(r0, scratch);
1445  // hash = hash ^ (hash >> 12);
1446  mov(scratch, r0);
1447  shr(scratch, 12);
1448  xor_(r0, scratch);
1449  // hash = hash + (hash << 2);
1450  lea(r0, Operand(r0, r0, times_4, 0));
1451  // hash = hash ^ (hash >> 4);
1452  mov(scratch, r0);
1453  shr(scratch, 4);
1454  xor_(r0, scratch);
1455  // hash = hash * 2057;
1456  imul(r0, r0, 2057);
1457  // hash = hash ^ (hash >> 16);
1458  mov(scratch, r0);
1459  shr(scratch, 16);
1460  xor_(r0, scratch);
1461}
1462
1463
1464
1465void MacroAssembler::LoadFromNumberDictionary(Label* miss,
1466                                              Register elements,
1467                                              Register key,
1468                                              Register r0,
1469                                              Register r1,
1470                                              Register r2,
1471                                              Register result) {
1472  // Register use:
1473  //
1474  // elements - holds the slow-case elements of the receiver and is unchanged.
1475  //
1476  // key      - holds the smi key on entry and is unchanged.
1477  //
1478  // Scratch registers:
1479  //
1480  // r0 - holds the untagged key on entry and holds the hash once computed.
1481  //
1482  // r1 - used to hold the capacity mask of the dictionary
1483  //
1484  // r2 - used for the index into the dictionary.
1485  //
1486  // result - holds the result on exit if the load succeeds and we fall through.
1487
1488  Label done;
1489
1490  GetNumberHash(r0, r1);
1491
1492  // Compute capacity mask.
1493  mov(r1, FieldOperand(elements, SeededNumberDictionary::kCapacityOffset));
1494  shr(r1, kSmiTagSize);  // convert smi to int
1495  dec(r1);
1496
1497  // Generate an unrolled loop that performs a few probes before giving up.
1498  for (int i = 0; i < kNumberDictionaryProbes; i++) {
1499    // Use r2 for index calculations and keep the hash intact in r0.
1500    mov(r2, r0);
1501    // Compute the masked index: (hash + i + i * i) & mask.
1502    if (i > 0) {
1503      add(r2, Immediate(SeededNumberDictionary::GetProbeOffset(i)));
1504    }
1505    and_(r2, r1);
1506
1507    // Scale the index by multiplying by the entry size.
1508    ASSERT(SeededNumberDictionary::kEntrySize == 3);
1509    lea(r2, Operand(r2, r2, times_2, 0));  // r2 = r2 * 3
1510
1511    // Check if the key matches.
1512    cmp(key, FieldOperand(elements,
1513                          r2,
1514                          times_pointer_size,
1515                          SeededNumberDictionary::kElementsStartOffset));
1516    if (i != (kNumberDictionaryProbes - 1)) {
1517      j(equal, &done);
1518    } else {
1519      j(not_equal, miss);
1520    }
1521  }
1522
1523  bind(&done);
1524  // Check that the value is a normal propety.
1525  const int kDetailsOffset =
1526      SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
1527  ASSERT_EQ(NORMAL, 0);
1528  test(FieldOperand(elements, r2, times_pointer_size, kDetailsOffset),
1529       Immediate(PropertyDetails::TypeField::kMask << kSmiTagSize));
1530  j(not_zero, miss);
1531
1532  // Get the value at the masked, scaled index.
1533  const int kValueOffset =
1534      SeededNumberDictionary::kElementsStartOffset + kPointerSize;
1535  mov(result, FieldOperand(elements, r2, times_pointer_size, kValueOffset));
1536}
1537
1538
1539void MacroAssembler::LoadAllocationTopHelper(Register result,
1540                                             Register scratch,
1541                                             AllocationFlags flags) {
1542  ExternalReference allocation_top =
1543      AllocationUtils::GetAllocationTopReference(isolate(), flags);
1544
1545  // Just return if allocation top is already known.
1546  if ((flags & RESULT_CONTAINS_TOP) != 0) {
1547    // No use of scratch if allocation top is provided.
1548    ASSERT(scratch.is(no_reg));
1549#ifdef DEBUG
1550    // Assert that result actually contains top on entry.
1551    cmp(result, Operand::StaticVariable(allocation_top));
1552    Check(equal, kUnexpectedAllocationTop);
1553#endif
1554    return;
1555  }
1556
1557  // Move address of new object to result. Use scratch register if available.
1558  if (scratch.is(no_reg)) {
1559    mov(result, Operand::StaticVariable(allocation_top));
1560  } else {
1561    mov(scratch, Immediate(allocation_top));
1562    mov(result, Operand(scratch, 0));
1563  }
1564}
1565
1566
1567void MacroAssembler::UpdateAllocationTopHelper(Register result_end,
1568                                               Register scratch,
1569                                               AllocationFlags flags) {
1570  if (emit_debug_code()) {
1571    test(result_end, Immediate(kObjectAlignmentMask));
1572    Check(zero, kUnalignedAllocationInNewSpace);
1573  }
1574
1575  ExternalReference allocation_top =
1576      AllocationUtils::GetAllocationTopReference(isolate(), flags);
1577
1578  // Update new top. Use scratch if available.
1579  if (scratch.is(no_reg)) {
1580    mov(Operand::StaticVariable(allocation_top), result_end);
1581  } else {
1582    mov(Operand(scratch, 0), result_end);
1583  }
1584}
1585
1586
1587void MacroAssembler::Allocate(int object_size,
1588                              Register result,
1589                              Register result_end,
1590                              Register scratch,
1591                              Label* gc_required,
1592                              AllocationFlags flags) {
1593  ASSERT((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0);
1594  ASSERT(object_size <= Page::kMaxNonCodeHeapObjectSize);
1595  if (!FLAG_inline_new) {
1596    if (emit_debug_code()) {
1597      // Trash the registers to simulate an allocation failure.
1598      mov(result, Immediate(0x7091));
1599      if (result_end.is_valid()) {
1600        mov(result_end, Immediate(0x7191));
1601      }
1602      if (scratch.is_valid()) {
1603        mov(scratch, Immediate(0x7291));
1604      }
1605    }
1606    jmp(gc_required);
1607    return;
1608  }
1609  ASSERT(!result.is(result_end));
1610
1611  // Load address of new object into result.
1612  LoadAllocationTopHelper(result, scratch, flags);
1613
1614  ExternalReference allocation_limit =
1615      AllocationUtils::GetAllocationLimitReference(isolate(), flags);
1616
1617  // Align the next allocation. Storing the filler map without checking top is
1618  // safe in new-space because the limit of the heap is aligned there.
1619  if ((flags & DOUBLE_ALIGNMENT) != 0) {
1620    ASSERT((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
1621    ASSERT(kPointerAlignment * 2 == kDoubleAlignment);
1622    Label aligned;
1623    test(result, Immediate(kDoubleAlignmentMask));
1624    j(zero, &aligned, Label::kNear);
1625    if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
1626      cmp(result, Operand::StaticVariable(allocation_limit));
1627      j(above_equal, gc_required);
1628    }
1629    mov(Operand(result, 0),
1630        Immediate(isolate()->factory()->one_pointer_filler_map()));
1631    add(result, Immediate(kDoubleSize / 2));
1632    bind(&aligned);
1633  }
1634
1635  // Calculate new top and bail out if space is exhausted.
1636  Register top_reg = result_end.is_valid() ? result_end : result;
1637  if (!top_reg.is(result)) {
1638    mov(top_reg, result);
1639  }
1640  add(top_reg, Immediate(object_size));
1641  j(carry, gc_required);
1642  cmp(top_reg, Operand::StaticVariable(allocation_limit));
1643  j(above, gc_required);
1644
1645  // Update allocation top.
1646  UpdateAllocationTopHelper(top_reg, scratch, flags);
1647
1648  // Tag result if requested.
1649  bool tag_result = (flags & TAG_OBJECT) != 0;
1650  if (top_reg.is(result)) {
1651    if (tag_result) {
1652      sub(result, Immediate(object_size - kHeapObjectTag));
1653    } else {
1654      sub(result, Immediate(object_size));
1655    }
1656  } else if (tag_result) {
1657    ASSERT(kHeapObjectTag == 1);
1658    inc(result);
1659  }
1660}
1661
1662
1663void MacroAssembler::Allocate(int header_size,
1664                              ScaleFactor element_size,
1665                              Register element_count,
1666                              RegisterValueType element_count_type,
1667                              Register result,
1668                              Register result_end,
1669                              Register scratch,
1670                              Label* gc_required,
1671                              AllocationFlags flags) {
1672  ASSERT((flags & SIZE_IN_WORDS) == 0);
1673  if (!FLAG_inline_new) {
1674    if (emit_debug_code()) {
1675      // Trash the registers to simulate an allocation failure.
1676      mov(result, Immediate(0x7091));
1677      mov(result_end, Immediate(0x7191));
1678      if (scratch.is_valid()) {
1679        mov(scratch, Immediate(0x7291));
1680      }
1681      // Register element_count is not modified by the function.
1682    }
1683    jmp(gc_required);
1684    return;
1685  }
1686  ASSERT(!result.is(result_end));
1687
1688  // Load address of new object into result.
1689  LoadAllocationTopHelper(result, scratch, flags);
1690
1691  ExternalReference allocation_limit =
1692      AllocationUtils::GetAllocationLimitReference(isolate(), flags);
1693
1694  // Align the next allocation. Storing the filler map without checking top is
1695  // safe in new-space because the limit of the heap is aligned there.
1696  if ((flags & DOUBLE_ALIGNMENT) != 0) {
1697    ASSERT((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
1698    ASSERT(kPointerAlignment * 2 == kDoubleAlignment);
1699    Label aligned;
1700    test(result, Immediate(kDoubleAlignmentMask));
1701    j(zero, &aligned, Label::kNear);
1702    if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
1703      cmp(result, Operand::StaticVariable(allocation_limit));
1704      j(above_equal, gc_required);
1705    }
1706    mov(Operand(result, 0),
1707        Immediate(isolate()->factory()->one_pointer_filler_map()));
1708    add(result, Immediate(kDoubleSize / 2));
1709    bind(&aligned);
1710  }
1711
1712  // Calculate new top and bail out if space is exhausted.
1713  // We assume that element_count*element_size + header_size does not
1714  // overflow.
1715  if (element_count_type == REGISTER_VALUE_IS_SMI) {
1716    STATIC_ASSERT(static_cast<ScaleFactor>(times_2 - 1) == times_1);
1717    STATIC_ASSERT(static_cast<ScaleFactor>(times_4 - 1) == times_2);
1718    STATIC_ASSERT(static_cast<ScaleFactor>(times_8 - 1) == times_4);
1719    ASSERT(element_size >= times_2);
1720    ASSERT(kSmiTagSize == 1);
1721    element_size = static_cast<ScaleFactor>(element_size - 1);
1722  } else {
1723    ASSERT(element_count_type == REGISTER_VALUE_IS_INT32);
1724  }
1725  lea(result_end, Operand(element_count, element_size, header_size));
1726  add(result_end, result);
1727  j(carry, gc_required);
1728  cmp(result_end, Operand::StaticVariable(allocation_limit));
1729  j(above, gc_required);
1730
1731  if ((flags & TAG_OBJECT) != 0) {
1732    ASSERT(kHeapObjectTag == 1);
1733    inc(result);
1734  }
1735
1736  // Update allocation top.
1737  UpdateAllocationTopHelper(result_end, scratch, flags);
1738}
1739
1740
1741void MacroAssembler::Allocate(Register object_size,
1742                              Register result,
1743                              Register result_end,
1744                              Register scratch,
1745                              Label* gc_required,
1746                              AllocationFlags flags) {
1747  ASSERT((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0);
1748  if (!FLAG_inline_new) {
1749    if (emit_debug_code()) {
1750      // Trash the registers to simulate an allocation failure.
1751      mov(result, Immediate(0x7091));
1752      mov(result_end, Immediate(0x7191));
1753      if (scratch.is_valid()) {
1754        mov(scratch, Immediate(0x7291));
1755      }
1756      // object_size is left unchanged by this function.
1757    }
1758    jmp(gc_required);
1759    return;
1760  }
1761  ASSERT(!result.is(result_end));
1762
1763  // Load address of new object into result.
1764  LoadAllocationTopHelper(result, scratch, flags);
1765
1766  ExternalReference allocation_limit =
1767      AllocationUtils::GetAllocationLimitReference(isolate(), flags);
1768
1769  // Align the next allocation. Storing the filler map without checking top is
1770  // safe in new-space because the limit of the heap is aligned there.
1771  if ((flags & DOUBLE_ALIGNMENT) != 0) {
1772    ASSERT((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
1773    ASSERT(kPointerAlignment * 2 == kDoubleAlignment);
1774    Label aligned;
1775    test(result, Immediate(kDoubleAlignmentMask));
1776    j(zero, &aligned, Label::kNear);
1777    if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
1778      cmp(result, Operand::StaticVariable(allocation_limit));
1779      j(above_equal, gc_required);
1780    }
1781    mov(Operand(result, 0),
1782        Immediate(isolate()->factory()->one_pointer_filler_map()));
1783    add(result, Immediate(kDoubleSize / 2));
1784    bind(&aligned);
1785  }
1786
1787  // Calculate new top and bail out if space is exhausted.
1788  if (!object_size.is(result_end)) {
1789    mov(result_end, object_size);
1790  }
1791  add(result_end, result);
1792  j(carry, gc_required);
1793  cmp(result_end, Operand::StaticVariable(allocation_limit));
1794  j(above, gc_required);
1795
1796  // Tag result if requested.
1797  if ((flags & TAG_OBJECT) != 0) {
1798    ASSERT(kHeapObjectTag == 1);
1799    inc(result);
1800  }
1801
1802  // Update allocation top.
1803  UpdateAllocationTopHelper(result_end, scratch, flags);
1804}
1805
1806
1807void MacroAssembler::UndoAllocationInNewSpace(Register object) {
1808  ExternalReference new_space_allocation_top =
1809      ExternalReference::new_space_allocation_top_address(isolate());
1810
1811  // Make sure the object has no tag before resetting top.
1812  and_(object, Immediate(~kHeapObjectTagMask));
1813#ifdef DEBUG
1814  cmp(object, Operand::StaticVariable(new_space_allocation_top));
1815  Check(below, kUndoAllocationOfNonAllocatedMemory);
1816#endif
1817  mov(Operand::StaticVariable(new_space_allocation_top), object);
1818}
1819
1820
1821void MacroAssembler::AllocateHeapNumber(Register result,
1822                                        Register scratch1,
1823                                        Register scratch2,
1824                                        Label* gc_required) {
1825  // Allocate heap number in new space.
1826  Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
1827           TAG_OBJECT);
1828
1829  // Set the map.
1830  mov(FieldOperand(result, HeapObject::kMapOffset),
1831      Immediate(isolate()->factory()->heap_number_map()));
1832}
1833
1834
1835void MacroAssembler::AllocateTwoByteString(Register result,
1836                                           Register length,
1837                                           Register scratch1,
1838                                           Register scratch2,
1839                                           Register scratch3,
1840                                           Label* gc_required) {
1841  // Calculate the number of bytes needed for the characters in the string while
1842  // observing object alignment.
1843  ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
1844  ASSERT(kShortSize == 2);
1845  // scratch1 = length * 2 + kObjectAlignmentMask.
1846  lea(scratch1, Operand(length, length, times_1, kObjectAlignmentMask));
1847  and_(scratch1, Immediate(~kObjectAlignmentMask));
1848
1849  // Allocate two byte string in new space.
1850  Allocate(SeqTwoByteString::kHeaderSize,
1851           times_1,
1852           scratch1,
1853           REGISTER_VALUE_IS_INT32,
1854           result,
1855           scratch2,
1856           scratch3,
1857           gc_required,
1858           TAG_OBJECT);
1859
1860  // Set the map, length and hash field.
1861  mov(FieldOperand(result, HeapObject::kMapOffset),
1862      Immediate(isolate()->factory()->string_map()));
1863  mov(scratch1, length);
1864  SmiTag(scratch1);
1865  mov(FieldOperand(result, String::kLengthOffset), scratch1);
1866  mov(FieldOperand(result, String::kHashFieldOffset),
1867      Immediate(String::kEmptyHashField));
1868}
1869
1870
1871void MacroAssembler::AllocateAsciiString(Register result,
1872                                         Register length,
1873                                         Register scratch1,
1874                                         Register scratch2,
1875                                         Register scratch3,
1876                                         Label* gc_required) {
1877  // Calculate the number of bytes needed for the characters in the string while
1878  // observing object alignment.
1879  ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
1880  mov(scratch1, length);
1881  ASSERT(kCharSize == 1);
1882  add(scratch1, Immediate(kObjectAlignmentMask));
1883  and_(scratch1, Immediate(~kObjectAlignmentMask));
1884
1885  // Allocate ASCII string in new space.
1886  Allocate(SeqOneByteString::kHeaderSize,
1887           times_1,
1888           scratch1,
1889           REGISTER_VALUE_IS_INT32,
1890           result,
1891           scratch2,
1892           scratch3,
1893           gc_required,
1894           TAG_OBJECT);
1895
1896  // Set the map, length and hash field.
1897  mov(FieldOperand(result, HeapObject::kMapOffset),
1898      Immediate(isolate()->factory()->ascii_string_map()));
1899  mov(scratch1, length);
1900  SmiTag(scratch1);
1901  mov(FieldOperand(result, String::kLengthOffset), scratch1);
1902  mov(FieldOperand(result, String::kHashFieldOffset),
1903      Immediate(String::kEmptyHashField));
1904}
1905
1906
1907void MacroAssembler::AllocateAsciiString(Register result,
1908                                         int length,
1909                                         Register scratch1,
1910                                         Register scratch2,
1911                                         Label* gc_required) {
1912  ASSERT(length > 0);
1913
1914  // Allocate ASCII string in new space.
1915  Allocate(SeqOneByteString::SizeFor(length), result, scratch1, scratch2,
1916           gc_required, TAG_OBJECT);
1917
1918  // Set the map, length and hash field.
1919  mov(FieldOperand(result, HeapObject::kMapOffset),
1920      Immediate(isolate()->factory()->ascii_string_map()));
1921  mov(FieldOperand(result, String::kLengthOffset),
1922      Immediate(Smi::FromInt(length)));
1923  mov(FieldOperand(result, String::kHashFieldOffset),
1924      Immediate(String::kEmptyHashField));
1925}
1926
1927
1928void MacroAssembler::AllocateTwoByteConsString(Register result,
1929                                        Register scratch1,
1930                                        Register scratch2,
1931                                        Label* gc_required) {
1932  // Allocate heap number in new space.
1933  Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
1934           TAG_OBJECT);
1935
1936  // Set the map. The other fields are left uninitialized.
1937  mov(FieldOperand(result, HeapObject::kMapOffset),
1938      Immediate(isolate()->factory()->cons_string_map()));
1939}
1940
1941
1942void MacroAssembler::AllocateAsciiConsString(Register result,
1943                                             Register scratch1,
1944                                             Register scratch2,
1945                                             Label* gc_required) {
1946  Label allocate_new_space, install_map;
1947  AllocationFlags flags = TAG_OBJECT;
1948
1949  ExternalReference high_promotion_mode = ExternalReference::
1950      new_space_high_promotion_mode_active_address(isolate());
1951
1952  test(Operand::StaticVariable(high_promotion_mode), Immediate(1));
1953  j(zero, &allocate_new_space);
1954
1955  Allocate(ConsString::kSize,
1956           result,
1957           scratch1,
1958           scratch2,
1959           gc_required,
1960           static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE));
1961  jmp(&install_map);
1962
1963  bind(&allocate_new_space);
1964  Allocate(ConsString::kSize,
1965           result,
1966           scratch1,
1967           scratch2,
1968           gc_required,
1969           flags);
1970
1971  bind(&install_map);
1972  // Set the map. The other fields are left uninitialized.
1973  mov(FieldOperand(result, HeapObject::kMapOffset),
1974      Immediate(isolate()->factory()->cons_ascii_string_map()));
1975}
1976
1977
1978void MacroAssembler::AllocateTwoByteSlicedString(Register result,
1979                                          Register scratch1,
1980                                          Register scratch2,
1981                                          Label* gc_required) {
1982  // Allocate heap number in new space.
1983  Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
1984           TAG_OBJECT);
1985
1986  // Set the map. The other fields are left uninitialized.
1987  mov(FieldOperand(result, HeapObject::kMapOffset),
1988      Immediate(isolate()->factory()->sliced_string_map()));
1989}
1990
1991
1992void MacroAssembler::AllocateAsciiSlicedString(Register result,
1993                                               Register scratch1,
1994                                               Register scratch2,
1995                                               Label* gc_required) {
1996  // Allocate heap number in new space.
1997  Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
1998           TAG_OBJECT);
1999
2000  // Set the map. The other fields are left uninitialized.
2001  mov(FieldOperand(result, HeapObject::kMapOffset),
2002      Immediate(isolate()->factory()->sliced_ascii_string_map()));
2003}
2004
2005
2006// Copy memory, byte-by-byte, from source to destination.  Not optimized for
2007// long or aligned copies.  The contents of scratch and length are destroyed.
2008// Source and destination are incremented by length.
2009// Many variants of movsb, loop unrolling, word moves, and indexed operands
2010// have been tried here already, and this is fastest.
2011// A simpler loop is faster on small copies, but 30% slower on large ones.
2012// The cld() instruction must have been emitted, to set the direction flag(),
2013// before calling this function.
2014void MacroAssembler::CopyBytes(Register source,
2015                               Register destination,
2016                               Register length,
2017                               Register scratch) {
2018  Label short_loop, len4, len8, len12, done, short_string;
2019  ASSERT(source.is(esi));
2020  ASSERT(destination.is(edi));
2021  ASSERT(length.is(ecx));
2022  cmp(length, Immediate(4));
2023  j(below, &short_string, Label::kNear);
2024
2025  // Because source is 4-byte aligned in our uses of this function,
2026  // we keep source aligned for the rep_movs call by copying the odd bytes
2027  // at the end of the ranges.
2028  mov(scratch, Operand(source, length, times_1, -4));
2029  mov(Operand(destination, length, times_1, -4), scratch);
2030
2031  cmp(length, Immediate(8));
2032  j(below_equal, &len4, Label::kNear);
2033  cmp(length, Immediate(12));
2034  j(below_equal, &len8, Label::kNear);
2035  cmp(length, Immediate(16));
2036  j(below_equal, &len12, Label::kNear);
2037
2038  mov(scratch, ecx);
2039  shr(ecx, 2);
2040  rep_movs();
2041  and_(scratch, Immediate(0x3));
2042  add(destination, scratch);
2043  jmp(&done, Label::kNear);
2044
2045  bind(&len12);
2046  mov(scratch, Operand(source, 8));
2047  mov(Operand(destination, 8), scratch);
2048  bind(&len8);
2049  mov(scratch, Operand(source, 4));
2050  mov(Operand(destination, 4), scratch);
2051  bind(&len4);
2052  mov(scratch, Operand(source, 0));
2053  mov(Operand(destination, 0), scratch);
2054  add(destination, length);
2055  jmp(&done, Label::kNear);
2056
2057  bind(&short_string);
2058  test(length, length);
2059  j(zero, &done, Label::kNear);
2060
2061  bind(&short_loop);
2062  mov_b(scratch, Operand(source, 0));
2063  mov_b(Operand(destination, 0), scratch);
2064  inc(source);
2065  inc(destination);
2066  dec(length);
2067  j(not_zero, &short_loop);
2068
2069  bind(&done);
2070}
2071
2072
2073void MacroAssembler::InitializeFieldsWithFiller(Register start_offset,
2074                                                Register end_offset,
2075                                                Register filler) {
2076  Label loop, entry;
2077  jmp(&entry);
2078  bind(&loop);
2079  mov(Operand(start_offset, 0), filler);
2080  add(start_offset, Immediate(kPointerSize));
2081  bind(&entry);
2082  cmp(start_offset, end_offset);
2083  j(less, &loop);
2084}
2085
2086
2087void MacroAssembler::BooleanBitTest(Register object,
2088                                    int field_offset,
2089                                    int bit_index) {
2090  bit_index += kSmiTagSize + kSmiShiftSize;
2091  ASSERT(IsPowerOf2(kBitsPerByte));
2092  int byte_index = bit_index / kBitsPerByte;
2093  int byte_bit_index = bit_index & (kBitsPerByte - 1);
2094  test_b(FieldOperand(object, field_offset + byte_index),
2095         static_cast<byte>(1 << byte_bit_index));
2096}
2097
2098
2099
2100void MacroAssembler::NegativeZeroTest(Register result,
2101                                      Register op,
2102                                      Label* then_label) {
2103  Label ok;
2104  test(result, result);
2105  j(not_zero, &ok);
2106  test(op, op);
2107  j(sign, then_label);
2108  bind(&ok);
2109}
2110
2111
2112void MacroAssembler::NegativeZeroTest(Register result,
2113                                      Register op1,
2114                                      Register op2,
2115                                      Register scratch,
2116                                      Label* then_label) {
2117  Label ok;
2118  test(result, result);
2119  j(not_zero, &ok);
2120  mov(scratch, op1);
2121  or_(scratch, op2);
2122  j(sign, then_label);
2123  bind(&ok);
2124}
2125
2126
2127void MacroAssembler::TryGetFunctionPrototype(Register function,
2128                                             Register result,
2129                                             Register scratch,
2130                                             Label* miss,
2131                                             bool miss_on_bound_function) {
2132  // Check that the receiver isn't a smi.
2133  JumpIfSmi(function, miss);
2134
2135  // Check that the function really is a function.
2136  CmpObjectType(function, JS_FUNCTION_TYPE, result);
2137  j(not_equal, miss);
2138
2139  if (miss_on_bound_function) {
2140    // If a bound function, go to miss label.
2141    mov(scratch,
2142        FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
2143    BooleanBitTest(scratch, SharedFunctionInfo::kCompilerHintsOffset,
2144                   SharedFunctionInfo::kBoundFunction);
2145    j(not_zero, miss);
2146  }
2147
2148  // Make sure that the function has an instance prototype.
2149  Label non_instance;
2150  movzx_b(scratch, FieldOperand(result, Map::kBitFieldOffset));
2151  test(scratch, Immediate(1 << Map::kHasNonInstancePrototype));
2152  j(not_zero, &non_instance);
2153
2154  // Get the prototype or initial map from the function.
2155  mov(result,
2156      FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2157
2158  // If the prototype or initial map is the hole, don't return it and
2159  // simply miss the cache instead. This will allow us to allocate a
2160  // prototype object on-demand in the runtime system.
2161  cmp(result, Immediate(isolate()->factory()->the_hole_value()));
2162  j(equal, miss);
2163
2164  // If the function does not have an initial map, we're done.
2165  Label done;
2166  CmpObjectType(result, MAP_TYPE, scratch);
2167  j(not_equal, &done);
2168
2169  // Get the prototype from the initial map.
2170  mov(result, FieldOperand(result, Map::kPrototypeOffset));
2171  jmp(&done);
2172
2173  // Non-instance prototype: Fetch prototype from constructor field
2174  // in initial map.
2175  bind(&non_instance);
2176  mov(result, FieldOperand(result, Map::kConstructorOffset));
2177
2178  // All done.
2179  bind(&done);
2180}
2181
2182
2183void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) {
2184  ASSERT(AllowThisStubCall(stub));  // Calls are not allowed in some stubs.
2185  call(stub->GetCode(isolate()), RelocInfo::CODE_TARGET, ast_id);
2186}
2187
2188
2189void MacroAssembler::TailCallStub(CodeStub* stub) {
2190  jmp(stub->GetCode(isolate()), RelocInfo::CODE_TARGET);
2191}
2192
2193
2194void MacroAssembler::StubReturn(int argc) {
2195  ASSERT(argc >= 1 && generating_stub());
2196  ret((argc - 1) * kPointerSize);
2197}
2198
2199
2200bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
2201  return has_frame_ || !stub->SometimesSetsUpAFrame();
2202}
2203
2204
2205void MacroAssembler::IllegalOperation(int num_arguments) {
2206  if (num_arguments > 0) {
2207    add(esp, Immediate(num_arguments * kPointerSize));
2208  }
2209  mov(eax, Immediate(isolate()->factory()->undefined_value()));
2210}
2211
2212
2213void MacroAssembler::IndexFromHash(Register hash, Register index) {
2214  // The assert checks that the constants for the maximum number of digits
2215  // for an array index cached in the hash field and the number of bits
2216  // reserved for it does not conflict.
2217  ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
2218         (1 << String::kArrayIndexValueBits));
2219  // We want the smi-tagged index in key.  kArrayIndexValueMask has zeros in
2220  // the low kHashShift bits.
2221  and_(hash, String::kArrayIndexValueMask);
2222  STATIC_ASSERT(String::kHashShift >= kSmiTagSize && kSmiTag == 0);
2223  if (String::kHashShift > kSmiTagSize) {
2224    shr(hash, String::kHashShift - kSmiTagSize);
2225  }
2226  if (!index.is(hash)) {
2227    mov(index, hash);
2228  }
2229}
2230
2231
2232void MacroAssembler::CallRuntime(const Runtime::Function* f,
2233                                 int num_arguments,
2234                                 SaveFPRegsMode save_doubles) {
2235  // If the expected number of arguments of the runtime function is
2236  // constant, we check that the actual number of arguments match the
2237  // expectation.
2238  if (f->nargs >= 0 && f->nargs != num_arguments) {
2239    IllegalOperation(num_arguments);
2240    return;
2241  }
2242
2243  // TODO(1236192): Most runtime routines don't need the number of
2244  // arguments passed in because it is constant. At some point we
2245  // should remove this need and make the runtime routine entry code
2246  // smarter.
2247  Set(eax, Immediate(num_arguments));
2248  mov(ebx, Immediate(ExternalReference(f, isolate())));
2249  CEntryStub ces(1, CpuFeatures::IsSupported(SSE2) ? save_doubles
2250                                                   : kDontSaveFPRegs);
2251  CallStub(&ces);
2252}
2253
2254
2255void MacroAssembler::CallExternalReference(ExternalReference ref,
2256                                           int num_arguments) {
2257  mov(eax, Immediate(num_arguments));
2258  mov(ebx, Immediate(ref));
2259
2260  CEntryStub stub(1);
2261  CallStub(&stub);
2262}
2263
2264
2265void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
2266                                               int num_arguments,
2267                                               int result_size) {
2268  // TODO(1236192): Most runtime routines don't need the number of
2269  // arguments passed in because it is constant. At some point we
2270  // should remove this need and make the runtime routine entry code
2271  // smarter.
2272  Set(eax, Immediate(num_arguments));
2273  JumpToExternalReference(ext);
2274}
2275
2276
2277void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
2278                                     int num_arguments,
2279                                     int result_size) {
2280  TailCallExternalReference(ExternalReference(fid, isolate()),
2281                            num_arguments,
2282                            result_size);
2283}
2284
2285
2286Operand ApiParameterOperand(int index) {
2287  return Operand(esp, index * kPointerSize);
2288}
2289
2290
2291void MacroAssembler::PrepareCallApiFunction(int argc) {
2292  EnterApiExitFrame(argc);
2293  if (emit_debug_code()) {
2294    mov(esi, Immediate(BitCast<int32_t>(kZapValue)));
2295  }
2296}
2297
2298
2299void MacroAssembler::CallApiFunctionAndReturn(
2300    Address function_address,
2301    Address thunk_address,
2302    Operand thunk_last_arg,
2303    int stack_space,
2304    Operand return_value_operand,
2305    Operand* context_restore_operand) {
2306  ExternalReference next_address =
2307      ExternalReference::handle_scope_next_address(isolate());
2308  ExternalReference limit_address =
2309      ExternalReference::handle_scope_limit_address(isolate());
2310  ExternalReference level_address =
2311      ExternalReference::handle_scope_level_address(isolate());
2312
2313  // Allocate HandleScope in callee-save registers.
2314  mov(ebx, Operand::StaticVariable(next_address));
2315  mov(edi, Operand::StaticVariable(limit_address));
2316  add(Operand::StaticVariable(level_address), Immediate(1));
2317
2318  if (FLAG_log_timer_events) {
2319    FrameScope frame(this, StackFrame::MANUAL);
2320    PushSafepointRegisters();
2321    PrepareCallCFunction(1, eax);
2322    mov(Operand(esp, 0),
2323        Immediate(ExternalReference::isolate_address(isolate())));
2324    CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1);
2325    PopSafepointRegisters();
2326  }
2327
2328
2329  Label profiler_disabled;
2330  Label end_profiler_check;
2331  bool* is_profiling_flag =
2332      isolate()->cpu_profiler()->is_profiling_address();
2333  STATIC_ASSERT(sizeof(*is_profiling_flag) == 1);
2334  mov(eax, Immediate(reinterpret_cast<Address>(is_profiling_flag)));
2335  cmpb(Operand(eax, 0), 0);
2336  j(zero, &profiler_disabled);
2337
2338  // Additional parameter is the address of the actual getter function.
2339  mov(thunk_last_arg, Immediate(function_address));
2340  // Call the api function.
2341  call(thunk_address, RelocInfo::RUNTIME_ENTRY);
2342  jmp(&end_profiler_check);
2343
2344  bind(&profiler_disabled);
2345  // Call the api function.
2346  call(function_address, RelocInfo::RUNTIME_ENTRY);
2347  bind(&end_profiler_check);
2348
2349  if (FLAG_log_timer_events) {
2350    FrameScope frame(this, StackFrame::MANUAL);
2351    PushSafepointRegisters();
2352    PrepareCallCFunction(1, eax);
2353    mov(Operand(esp, 0),
2354        Immediate(ExternalReference::isolate_address(isolate())));
2355    CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1);
2356    PopSafepointRegisters();
2357  }
2358
2359  Label prologue;
2360  // Load the value from ReturnValue
2361  mov(eax, return_value_operand);
2362
2363  Label promote_scheduled_exception;
2364  Label exception_handled;
2365  Label delete_allocated_handles;
2366  Label leave_exit_frame;
2367
2368  bind(&prologue);
2369  // No more valid handles (the result handle was the last one). Restore
2370  // previous handle scope.
2371  mov(Operand::StaticVariable(next_address), ebx);
2372  sub(Operand::StaticVariable(level_address), Immediate(1));
2373  Assert(above_equal, kInvalidHandleScopeLevel);
2374  cmp(edi, Operand::StaticVariable(limit_address));
2375  j(not_equal, &delete_allocated_handles);
2376  bind(&leave_exit_frame);
2377
2378  // Check if the function scheduled an exception.
2379  ExternalReference scheduled_exception_address =
2380      ExternalReference::scheduled_exception_address(isolate());
2381  cmp(Operand::StaticVariable(scheduled_exception_address),
2382      Immediate(isolate()->factory()->the_hole_value()));
2383  j(not_equal, &promote_scheduled_exception);
2384  bind(&exception_handled);
2385
2386#if ENABLE_EXTRA_CHECKS
2387  // Check if the function returned a valid JavaScript value.
2388  Label ok;
2389  Register return_value = eax;
2390  Register map = ecx;
2391
2392  JumpIfSmi(return_value, &ok, Label::kNear);
2393  mov(map, FieldOperand(return_value, HeapObject::kMapOffset));
2394
2395  CmpInstanceType(map, FIRST_NONSTRING_TYPE);
2396  j(below, &ok, Label::kNear);
2397
2398  CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
2399  j(above_equal, &ok, Label::kNear);
2400
2401  cmp(map, isolate()->factory()->heap_number_map());
2402  j(equal, &ok, Label::kNear);
2403
2404  cmp(return_value, isolate()->factory()->undefined_value());
2405  j(equal, &ok, Label::kNear);
2406
2407  cmp(return_value, isolate()->factory()->true_value());
2408  j(equal, &ok, Label::kNear);
2409
2410  cmp(return_value, isolate()->factory()->false_value());
2411  j(equal, &ok, Label::kNear);
2412
2413  cmp(return_value, isolate()->factory()->null_value());
2414  j(equal, &ok, Label::kNear);
2415
2416  Abort(kAPICallReturnedInvalidObject);
2417
2418  bind(&ok);
2419#endif
2420
2421  bool restore_context = context_restore_operand != NULL;
2422  if (restore_context) {
2423    mov(esi, *context_restore_operand);
2424  }
2425  LeaveApiExitFrame(!restore_context);
2426  ret(stack_space * kPointerSize);
2427
2428  bind(&promote_scheduled_exception);
2429  {
2430    FrameScope frame(this, StackFrame::INTERNAL);
2431    CallRuntime(Runtime::kPromoteScheduledException, 0);
2432  }
2433  jmp(&exception_handled);
2434
2435  // HandleScope limit has changed. Delete allocated extensions.
2436  ExternalReference delete_extensions =
2437      ExternalReference::delete_handle_scope_extensions(isolate());
2438  bind(&delete_allocated_handles);
2439  mov(Operand::StaticVariable(limit_address), edi);
2440  mov(edi, eax);
2441  mov(Operand(esp, 0),
2442      Immediate(ExternalReference::isolate_address(isolate())));
2443  mov(eax, Immediate(delete_extensions));
2444  call(eax);
2445  mov(eax, edi);
2446  jmp(&leave_exit_frame);
2447}
2448
2449
2450void MacroAssembler::JumpToExternalReference(const ExternalReference& ext) {
2451  // Set the entry point and jump to the C entry runtime stub.
2452  mov(ebx, Immediate(ext));
2453  CEntryStub ces(1);
2454  jmp(ces.GetCode(isolate()), RelocInfo::CODE_TARGET);
2455}
2456
2457
2458void MacroAssembler::SetCallKind(Register dst, CallKind call_kind) {
2459  // This macro takes the dst register to make the code more readable
2460  // at the call sites. However, the dst register has to be ecx to
2461  // follow the calling convention which requires the call type to be
2462  // in ecx.
2463  ASSERT(dst.is(ecx));
2464  if (call_kind == CALL_AS_FUNCTION) {
2465    // Set to some non-zero smi by updating the least significant
2466    // byte.
2467    mov_b(dst, 1 << kSmiTagSize);
2468  } else {
2469    // Set to smi zero by clearing the register.
2470    xor_(dst, dst);
2471  }
2472}
2473
2474
2475void MacroAssembler::InvokePrologue(const ParameterCount& expected,
2476                                    const ParameterCount& actual,
2477                                    Handle<Code> code_constant,
2478                                    const Operand& code_operand,
2479                                    Label* done,
2480                                    bool* definitely_mismatches,
2481                                    InvokeFlag flag,
2482                                    Label::Distance done_near,
2483                                    const CallWrapper& call_wrapper,
2484                                    CallKind call_kind) {
2485  bool definitely_matches = false;
2486  *definitely_mismatches = false;
2487  Label invoke;
2488  if (expected.is_immediate()) {
2489    ASSERT(actual.is_immediate());
2490    if (expected.immediate() == actual.immediate()) {
2491      definitely_matches = true;
2492    } else {
2493      mov(eax, actual.immediate());
2494      const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
2495      if (expected.immediate() == sentinel) {
2496        // Don't worry about adapting arguments for builtins that
2497        // don't want that done. Skip adaption code by making it look
2498        // like we have a match between expected and actual number of
2499        // arguments.
2500        definitely_matches = true;
2501      } else {
2502        *definitely_mismatches = true;
2503        mov(ebx, expected.immediate());
2504      }
2505    }
2506  } else {
2507    if (actual.is_immediate()) {
2508      // Expected is in register, actual is immediate. This is the
2509      // case when we invoke function values without going through the
2510      // IC mechanism.
2511      cmp(expected.reg(), actual.immediate());
2512      j(equal, &invoke);
2513      ASSERT(expected.reg().is(ebx));
2514      mov(eax, actual.immediate());
2515    } else if (!expected.reg().is(actual.reg())) {
2516      // Both expected and actual are in (different) registers. This
2517      // is the case when we invoke functions using call and apply.
2518      cmp(expected.reg(), actual.reg());
2519      j(equal, &invoke);
2520      ASSERT(actual.reg().is(eax));
2521      ASSERT(expected.reg().is(ebx));
2522    }
2523  }
2524
2525  if (!definitely_matches) {
2526    Handle<Code> adaptor =
2527        isolate()->builtins()->ArgumentsAdaptorTrampoline();
2528    if (!code_constant.is_null()) {
2529      mov(edx, Immediate(code_constant));
2530      add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
2531    } else if (!code_operand.is_reg(edx)) {
2532      mov(edx, code_operand);
2533    }
2534
2535    if (flag == CALL_FUNCTION) {
2536      call_wrapper.BeforeCall(CallSize(adaptor, RelocInfo::CODE_TARGET));
2537      SetCallKind(ecx, call_kind);
2538      call(adaptor, RelocInfo::CODE_TARGET);
2539      call_wrapper.AfterCall();
2540      if (!*definitely_mismatches) {
2541        jmp(done, done_near);
2542      }
2543    } else {
2544      SetCallKind(ecx, call_kind);
2545      jmp(adaptor, RelocInfo::CODE_TARGET);
2546    }
2547    bind(&invoke);
2548  }
2549}
2550
2551
2552void MacroAssembler::InvokeCode(const Operand& code,
2553                                const ParameterCount& expected,
2554                                const ParameterCount& actual,
2555                                InvokeFlag flag,
2556                                const CallWrapper& call_wrapper,
2557                                CallKind call_kind) {
2558  // You can't call a function without a valid frame.
2559  ASSERT(flag == JUMP_FUNCTION || has_frame());
2560
2561  Label done;
2562  bool definitely_mismatches = false;
2563  InvokePrologue(expected, actual, Handle<Code>::null(), code,
2564                 &done, &definitely_mismatches, flag, Label::kNear,
2565                 call_wrapper, call_kind);
2566  if (!definitely_mismatches) {
2567    if (flag == CALL_FUNCTION) {
2568      call_wrapper.BeforeCall(CallSize(code));
2569      SetCallKind(ecx, call_kind);
2570      call(code);
2571      call_wrapper.AfterCall();
2572    } else {
2573      ASSERT(flag == JUMP_FUNCTION);
2574      SetCallKind(ecx, call_kind);
2575      jmp(code);
2576    }
2577    bind(&done);
2578  }
2579}
2580
2581
2582void MacroAssembler::InvokeCode(Handle<Code> code,
2583                                const ParameterCount& expected,
2584                                const ParameterCount& actual,
2585                                RelocInfo::Mode rmode,
2586                                InvokeFlag flag,
2587                                const CallWrapper& call_wrapper,
2588                                CallKind call_kind) {
2589  // You can't call a function without a valid frame.
2590  ASSERT(flag == JUMP_FUNCTION || has_frame());
2591
2592  Label done;
2593  Operand dummy(eax, 0);
2594  bool definitely_mismatches = false;
2595  InvokePrologue(expected, actual, code, dummy, &done, &definitely_mismatches,
2596                 flag, Label::kNear, call_wrapper, call_kind);
2597  if (!definitely_mismatches) {
2598    if (flag == CALL_FUNCTION) {
2599      call_wrapper.BeforeCall(CallSize(code, rmode));
2600      SetCallKind(ecx, call_kind);
2601      call(code, rmode);
2602      call_wrapper.AfterCall();
2603    } else {
2604      ASSERT(flag == JUMP_FUNCTION);
2605      SetCallKind(ecx, call_kind);
2606      jmp(code, rmode);
2607    }
2608    bind(&done);
2609  }
2610}
2611
2612
2613void MacroAssembler::InvokeFunction(Register fun,
2614                                    const ParameterCount& actual,
2615                                    InvokeFlag flag,
2616                                    const CallWrapper& call_wrapper,
2617                                    CallKind call_kind) {
2618  // You can't call a function without a valid frame.
2619  ASSERT(flag == JUMP_FUNCTION || has_frame());
2620
2621  ASSERT(fun.is(edi));
2622  mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
2623  mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
2624  mov(ebx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
2625  SmiUntag(ebx);
2626
2627  ParameterCount expected(ebx);
2628  InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
2629             expected, actual, flag, call_wrapper, call_kind);
2630}
2631
2632
2633void MacroAssembler::InvokeFunction(Register fun,
2634                                    const ParameterCount& expected,
2635                                    const ParameterCount& actual,
2636                                    InvokeFlag flag,
2637                                    const CallWrapper& call_wrapper,
2638                                    CallKind call_kind) {
2639  // You can't call a function without a valid frame.
2640  ASSERT(flag == JUMP_FUNCTION || has_frame());
2641
2642  ASSERT(fun.is(edi));
2643  mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
2644
2645  InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
2646             expected, actual, flag, call_wrapper, call_kind);
2647}
2648
2649
2650void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
2651                                    const ParameterCount& expected,
2652                                    const ParameterCount& actual,
2653                                    InvokeFlag flag,
2654                                    const CallWrapper& call_wrapper,
2655                                    CallKind call_kind) {
2656  LoadHeapObject(edi, function);
2657  InvokeFunction(edi, expected, actual, flag, call_wrapper, call_kind);
2658}
2659
2660
2661void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
2662                                   InvokeFlag flag,
2663                                   const CallWrapper& call_wrapper) {
2664  // You can't call a builtin without a valid frame.
2665  ASSERT(flag == JUMP_FUNCTION || has_frame());
2666
2667  // Rely on the assertion to check that the number of provided
2668  // arguments match the expected number of arguments. Fake a
2669  // parameter count to avoid emitting code to do the check.
2670  ParameterCount expected(0);
2671  GetBuiltinFunction(edi, id);
2672  InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
2673             expected, expected, flag, call_wrapper, CALL_AS_METHOD);
2674}
2675
2676
2677void MacroAssembler::GetBuiltinFunction(Register target,
2678                                        Builtins::JavaScript id) {
2679  // Load the JavaScript builtin function from the builtins object.
2680  mov(target, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2681  mov(target, FieldOperand(target, GlobalObject::kBuiltinsOffset));
2682  mov(target, FieldOperand(target,
2683                           JSBuiltinsObject::OffsetOfFunctionWithId(id)));
2684}
2685
2686
2687void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
2688  ASSERT(!target.is(edi));
2689  // Load the JavaScript builtin function from the builtins object.
2690  GetBuiltinFunction(edi, id);
2691  // Load the code entry point from the function into the target register.
2692  mov(target, FieldOperand(edi, JSFunction::kCodeEntryOffset));
2693}
2694
2695
2696void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
2697  if (context_chain_length > 0) {
2698    // Move up the chain of contexts to the context containing the slot.
2699    mov(dst, Operand(esi, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2700    for (int i = 1; i < context_chain_length; i++) {
2701      mov(dst, Operand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
2702    }
2703  } else {
2704    // Slot is in the current function context.  Move it into the
2705    // destination register in case we store into it (the write barrier
2706    // cannot be allowed to destroy the context in esi).
2707    mov(dst, esi);
2708  }
2709
2710  // We should not have found a with context by walking the context chain
2711  // (i.e., the static scope chain and runtime context chain do not agree).
2712  // A variable occurring in such a scope should have slot type LOOKUP and
2713  // not CONTEXT.
2714  if (emit_debug_code()) {
2715    cmp(FieldOperand(dst, HeapObject::kMapOffset),
2716        isolate()->factory()->with_context_map());
2717    Check(not_equal, kVariableResolvedToWithContext);
2718  }
2719}
2720
2721
2722void MacroAssembler::LoadTransitionedArrayMapConditional(
2723    ElementsKind expected_kind,
2724    ElementsKind transitioned_kind,
2725    Register map_in_out,
2726    Register scratch,
2727    Label* no_map_match) {
2728  // Load the global or builtins object from the current context.
2729  mov(scratch, Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2730  mov(scratch, FieldOperand(scratch, GlobalObject::kNativeContextOffset));
2731
2732  // Check that the function's map is the same as the expected cached map.
2733  mov(scratch, Operand(scratch,
2734                       Context::SlotOffset(Context::JS_ARRAY_MAPS_INDEX)));
2735
2736  size_t offset = expected_kind * kPointerSize +
2737      FixedArrayBase::kHeaderSize;
2738  cmp(map_in_out, FieldOperand(scratch, offset));
2739  j(not_equal, no_map_match);
2740
2741  // Use the transitioned cached map.
2742  offset = transitioned_kind * kPointerSize +
2743      FixedArrayBase::kHeaderSize;
2744  mov(map_in_out, FieldOperand(scratch, offset));
2745}
2746
2747
2748void MacroAssembler::LoadInitialArrayMap(
2749    Register function_in, Register scratch,
2750    Register map_out, bool can_have_holes) {
2751  ASSERT(!function_in.is(map_out));
2752  Label done;
2753  mov(map_out, FieldOperand(function_in,
2754                            JSFunction::kPrototypeOrInitialMapOffset));
2755  if (!FLAG_smi_only_arrays) {
2756    ElementsKind kind = can_have_holes ? FAST_HOLEY_ELEMENTS : FAST_ELEMENTS;
2757    LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS,
2758                                        kind,
2759                                        map_out,
2760                                        scratch,
2761                                        &done);
2762  } else if (can_have_holes) {
2763    LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS,
2764                                        FAST_HOLEY_SMI_ELEMENTS,
2765                                        map_out,
2766                                        scratch,
2767                                        &done);
2768  }
2769  bind(&done);
2770}
2771
2772
2773void MacroAssembler::LoadGlobalContext(Register global_context) {
2774  // Load the global or builtins object from the current context.
2775  mov(global_context,
2776      Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2777  // Load the native context from the global or builtins object.
2778  mov(global_context,
2779      FieldOperand(global_context, GlobalObject::kNativeContextOffset));
2780}
2781
2782
2783void MacroAssembler::LoadGlobalFunction(int index, Register function) {
2784  // Load the global or builtins object from the current context.
2785  mov(function,
2786      Operand(esi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
2787  // Load the native context from the global or builtins object.
2788  mov(function,
2789      FieldOperand(function, GlobalObject::kNativeContextOffset));
2790  // Load the function from the native context.
2791  mov(function, Operand(function, Context::SlotOffset(index)));
2792}
2793
2794
2795void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
2796                                                  Register map) {
2797  // Load the initial map.  The global functions all have initial maps.
2798  mov(map, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2799  if (emit_debug_code()) {
2800    Label ok, fail;
2801    CheckMap(map, isolate()->factory()->meta_map(), &fail, DO_SMI_CHECK);
2802    jmp(&ok);
2803    bind(&fail);
2804    Abort(kGlobalFunctionsMustHaveInitialMap);
2805    bind(&ok);
2806  }
2807}
2808
2809
2810// Store the value in register src in the safepoint register stack
2811// slot for register dst.
2812void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Register src) {
2813  mov(SafepointRegisterSlot(dst), src);
2814}
2815
2816
2817void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Immediate src) {
2818  mov(SafepointRegisterSlot(dst), src);
2819}
2820
2821
2822void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
2823  mov(dst, SafepointRegisterSlot(src));
2824}
2825
2826
2827Operand MacroAssembler::SafepointRegisterSlot(Register reg) {
2828  return Operand(esp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
2829}
2830
2831
2832int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
2833  // The registers are pushed starting with the lowest encoding,
2834  // which means that lowest encodings are furthest away from
2835  // the stack pointer.
2836  ASSERT(reg_code >= 0 && reg_code < kNumSafepointRegisters);
2837  return kNumSafepointRegisters - reg_code - 1;
2838}
2839
2840
2841void MacroAssembler::LoadHeapObject(Register result,
2842                                    Handle<HeapObject> object) {
2843  AllowDeferredHandleDereference embedding_raw_address;
2844  if (isolate()->heap()->InNewSpace(*object)) {
2845    Handle<Cell> cell = isolate()->factory()->NewCell(object);
2846    mov(result, Operand::ForCell(cell));
2847  } else {
2848    mov(result, object);
2849  }
2850}
2851
2852
2853void MacroAssembler::CmpHeapObject(Register reg, Handle<HeapObject> object) {
2854  AllowDeferredHandleDereference using_raw_address;
2855  if (isolate()->heap()->InNewSpace(*object)) {
2856    Handle<Cell> cell = isolate()->factory()->NewCell(object);
2857    cmp(reg, Operand::ForCell(cell));
2858  } else {
2859    cmp(reg, object);
2860  }
2861}
2862
2863
2864void MacroAssembler::PushHeapObject(Handle<HeapObject> object) {
2865  AllowDeferredHandleDereference using_raw_address;
2866  if (isolate()->heap()->InNewSpace(*object)) {
2867    Handle<Cell> cell = isolate()->factory()->NewCell(object);
2868    push(Operand::ForCell(cell));
2869  } else {
2870    Push(object);
2871  }
2872}
2873
2874
2875void MacroAssembler::Ret() {
2876  ret(0);
2877}
2878
2879
2880void MacroAssembler::Ret(int bytes_dropped, Register scratch) {
2881  if (is_uint16(bytes_dropped)) {
2882    ret(bytes_dropped);
2883  } else {
2884    pop(scratch);
2885    add(esp, Immediate(bytes_dropped));
2886    push(scratch);
2887    ret(0);
2888  }
2889}
2890
2891
2892void MacroAssembler::VerifyX87StackDepth(uint32_t depth) {
2893  // Make sure the floating point stack is either empty or has depth items.
2894  ASSERT(depth <= 7);
2895  // This is very expensive.
2896  ASSERT(FLAG_debug_code && FLAG_enable_slow_asserts);
2897
2898  // The top-of-stack (tos) is 7 if there is one item pushed.
2899  int tos = (8 - depth) % 8;
2900  const int kTopMask = 0x3800;
2901  push(eax);
2902  fwait();
2903  fnstsw_ax();
2904  and_(eax, kTopMask);
2905  shr(eax, 11);
2906  cmp(eax, Immediate(tos));
2907  Check(equal, kUnexpectedFPUStackDepthAfterInstruction);
2908  fnclex();
2909  pop(eax);
2910}
2911
2912
2913void MacroAssembler::Drop(int stack_elements) {
2914  if (stack_elements > 0) {
2915    add(esp, Immediate(stack_elements * kPointerSize));
2916  }
2917}
2918
2919
2920void MacroAssembler::Move(Register dst, Register src) {
2921  if (!dst.is(src)) {
2922    mov(dst, src);
2923  }
2924}
2925
2926
2927void MacroAssembler::SetCounter(StatsCounter* counter, int value) {
2928  if (FLAG_native_code_counters && counter->Enabled()) {
2929    mov(Operand::StaticVariable(ExternalReference(counter)), Immediate(value));
2930  }
2931}
2932
2933
2934void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) {
2935  ASSERT(value > 0);
2936  if (FLAG_native_code_counters && counter->Enabled()) {
2937    Operand operand = Operand::StaticVariable(ExternalReference(counter));
2938    if (value == 1) {
2939      inc(operand);
2940    } else {
2941      add(operand, Immediate(value));
2942    }
2943  }
2944}
2945
2946
2947void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) {
2948  ASSERT(value > 0);
2949  if (FLAG_native_code_counters && counter->Enabled()) {
2950    Operand operand = Operand::StaticVariable(ExternalReference(counter));
2951    if (value == 1) {
2952      dec(operand);
2953    } else {
2954      sub(operand, Immediate(value));
2955    }
2956  }
2957}
2958
2959
2960void MacroAssembler::IncrementCounter(Condition cc,
2961                                      StatsCounter* counter,
2962                                      int value) {
2963  ASSERT(value > 0);
2964  if (FLAG_native_code_counters && counter->Enabled()) {
2965    Label skip;
2966    j(NegateCondition(cc), &skip);
2967    pushfd();
2968    IncrementCounter(counter, value);
2969    popfd();
2970    bind(&skip);
2971  }
2972}
2973
2974
2975void MacroAssembler::DecrementCounter(Condition cc,
2976                                      StatsCounter* counter,
2977                                      int value) {
2978  ASSERT(value > 0);
2979  if (FLAG_native_code_counters && counter->Enabled()) {
2980    Label skip;
2981    j(NegateCondition(cc), &skip);
2982    pushfd();
2983    DecrementCounter(counter, value);
2984    popfd();
2985    bind(&skip);
2986  }
2987}
2988
2989
2990void MacroAssembler::Assert(Condition cc, BailoutReason reason) {
2991  if (emit_debug_code()) Check(cc, reason);
2992}
2993
2994
2995void MacroAssembler::AssertFastElements(Register elements) {
2996  if (emit_debug_code()) {
2997    Factory* factory = isolate()->factory();
2998    Label ok;
2999    cmp(FieldOperand(elements, HeapObject::kMapOffset),
3000        Immediate(factory->fixed_array_map()));
3001    j(equal, &ok);
3002    cmp(FieldOperand(elements, HeapObject::kMapOffset),
3003        Immediate(factory->fixed_double_array_map()));
3004    j(equal, &ok);
3005    cmp(FieldOperand(elements, HeapObject::kMapOffset),
3006        Immediate(factory->fixed_cow_array_map()));
3007    j(equal, &ok);
3008    Abort(kJSObjectWithFastElementsMapHasSlowElements);
3009    bind(&ok);
3010  }
3011}
3012
3013
3014void MacroAssembler::Check(Condition cc, BailoutReason reason) {
3015  Label L;
3016  j(cc, &L);
3017  Abort(reason);
3018  // will not return here
3019  bind(&L);
3020}
3021
3022
3023void MacroAssembler::CheckStackAlignment() {
3024  int frame_alignment = OS::ActivationFrameAlignment();
3025  int frame_alignment_mask = frame_alignment - 1;
3026  if (frame_alignment > kPointerSize) {
3027    ASSERT(IsPowerOf2(frame_alignment));
3028    Label alignment_as_expected;
3029    test(esp, Immediate(frame_alignment_mask));
3030    j(zero, &alignment_as_expected);
3031    // Abort if stack is not aligned.
3032    int3();
3033    bind(&alignment_as_expected);
3034  }
3035}
3036
3037
3038void MacroAssembler::Abort(BailoutReason reason) {
3039  // We want to pass the msg string like a smi to avoid GC
3040  // problems, however msg is not guaranteed to be aligned
3041  // properly. Instead, we pass an aligned pointer that is
3042  // a proper v8 smi, but also pass the alignment difference
3043  // from the real pointer as a smi.
3044  const char* msg = GetBailoutReason(reason);
3045  intptr_t p1 = reinterpret_cast<intptr_t>(msg);
3046  intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag;
3047  ASSERT(reinterpret_cast<Object*>(p0)->IsSmi());
3048#ifdef DEBUG
3049  if (msg != NULL) {
3050    RecordComment("Abort message: ");
3051    RecordComment(msg);
3052  }
3053
3054  if (FLAG_trap_on_abort) {
3055    int3();
3056    return;
3057  }
3058#endif
3059
3060  push(eax);
3061  push(Immediate(p0));
3062  push(Immediate(reinterpret_cast<intptr_t>(Smi::FromInt(p1 - p0))));
3063  // Disable stub call restrictions to always allow calls to abort.
3064  if (!has_frame_) {
3065    // We don't actually want to generate a pile of code for this, so just
3066    // claim there is a stack frame, without generating one.
3067    FrameScope scope(this, StackFrame::NONE);
3068    CallRuntime(Runtime::kAbort, 2);
3069  } else {
3070    CallRuntime(Runtime::kAbort, 2);
3071  }
3072  // will not return here
3073  int3();
3074}
3075
3076
3077void MacroAssembler::Throw(BailoutReason reason) {
3078#ifdef DEBUG
3079  const char* msg = GetBailoutReason(reason);
3080  if (msg != NULL) {
3081    RecordComment("Throw message: ");
3082    RecordComment(msg);
3083  }
3084#endif
3085
3086  push(eax);
3087  push(Immediate(Smi::FromInt(reason)));
3088  // Disable stub call restrictions to always allow calls to throw.
3089  if (!has_frame_) {
3090    // We don't actually want to generate a pile of code for this, so just
3091    // claim there is a stack frame, without generating one.
3092    FrameScope scope(this, StackFrame::NONE);
3093    CallRuntime(Runtime::kThrowMessage, 1);
3094  } else {
3095    CallRuntime(Runtime::kThrowMessage, 1);
3096  }
3097  // will not return here
3098  int3();
3099}
3100
3101
3102void MacroAssembler::ThrowIf(Condition cc, BailoutReason reason) {
3103  Label L;
3104  j(NegateCondition(cc), &L);
3105  Throw(reason);
3106  // will not return here
3107  bind(&L);
3108}
3109
3110
3111void MacroAssembler::LoadInstanceDescriptors(Register map,
3112                                             Register descriptors) {
3113  mov(descriptors, FieldOperand(map, Map::kDescriptorsOffset));
3114}
3115
3116
3117void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
3118  mov(dst, FieldOperand(map, Map::kBitField3Offset));
3119  DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
3120}
3121
3122
3123void MacroAssembler::LoadPowerOf2(XMMRegister dst,
3124                                  Register scratch,
3125                                  int power) {
3126  ASSERT(is_uintn(power + HeapNumber::kExponentBias,
3127                  HeapNumber::kExponentBits));
3128  mov(scratch, Immediate(power + HeapNumber::kExponentBias));
3129  movd(dst, scratch);
3130  psllq(dst, HeapNumber::kMantissaBits);
3131}
3132
3133
3134void MacroAssembler::LookupNumberStringCache(Register object,
3135                                             Register result,
3136                                             Register scratch1,
3137                                             Register scratch2,
3138                                             Label* not_found) {
3139  // Use of registers. Register result is used as a temporary.
3140  Register number_string_cache = result;
3141  Register mask = scratch1;
3142  Register scratch = scratch2;
3143
3144  // Load the number string cache.
3145  LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
3146  // Make the hash mask from the length of the number string cache. It
3147  // contains two elements (number and string) for each cache entry.
3148  mov(mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset));
3149  shr(mask, kSmiTagSize + 1);  // Untag length and divide it by two.
3150  sub(mask, Immediate(1));  // Make mask.
3151
3152  // Calculate the entry in the number string cache. The hash value in the
3153  // number string cache for smis is just the smi value, and the hash for
3154  // doubles is the xor of the upper and lower words. See
3155  // Heap::GetNumberStringCache.
3156  Label smi_hash_calculated;
3157  Label load_result_from_cache;
3158  Label not_smi;
3159  STATIC_ASSERT(kSmiTag == 0);
3160  JumpIfNotSmi(object, &not_smi, Label::kNear);
3161  mov(scratch, object);
3162  SmiUntag(scratch);
3163  jmp(&smi_hash_calculated, Label::kNear);
3164  bind(&not_smi);
3165  cmp(FieldOperand(object, HeapObject::kMapOffset),
3166      isolate()->factory()->heap_number_map());
3167  j(not_equal, not_found);
3168  STATIC_ASSERT(8 == kDoubleSize);
3169  mov(scratch, FieldOperand(object, HeapNumber::kValueOffset));
3170  xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4));
3171  // Object is heap number and hash is now in scratch. Calculate cache index.
3172  and_(scratch, mask);
3173  Register index = scratch;
3174  Register probe = mask;
3175  mov(probe,
3176      FieldOperand(number_string_cache,
3177                   index,
3178                   times_twice_pointer_size,
3179                   FixedArray::kHeaderSize));
3180  JumpIfSmi(probe, not_found);
3181  if (CpuFeatures::IsSupported(SSE2)) {
3182    CpuFeatureScope fscope(this, SSE2);
3183    movsd(xmm0, FieldOperand(object, HeapNumber::kValueOffset));
3184    ucomisd(xmm0, FieldOperand(probe, HeapNumber::kValueOffset));
3185  } else {
3186    fld_d(FieldOperand(object, HeapNumber::kValueOffset));
3187    fld_d(FieldOperand(probe, HeapNumber::kValueOffset));
3188    FCmp();
3189  }
3190  j(parity_even, not_found);  // Bail out if NaN is involved.
3191  j(not_equal, not_found);  // The cache did not contain this value.
3192  jmp(&load_result_from_cache, Label::kNear);
3193
3194  bind(&smi_hash_calculated);
3195  // Object is smi and hash is now in scratch. Calculate cache index.
3196  and_(scratch, mask);
3197  // Check if the entry is the smi we are looking for.
3198  cmp(object,
3199      FieldOperand(number_string_cache,
3200                   index,
3201                   times_twice_pointer_size,
3202                   FixedArray::kHeaderSize));
3203  j(not_equal, not_found);
3204
3205  // Get the result from the cache.
3206  bind(&load_result_from_cache);
3207  mov(result,
3208      FieldOperand(number_string_cache,
3209                   index,
3210                   times_twice_pointer_size,
3211                   FixedArray::kHeaderSize + kPointerSize));
3212  IncrementCounter(isolate()->counters()->number_to_string_native(), 1);
3213}
3214
3215
3216void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(
3217    Register instance_type,
3218    Register scratch,
3219    Label* failure) {
3220  if (!scratch.is(instance_type)) {
3221    mov(scratch, instance_type);
3222  }
3223  and_(scratch,
3224       kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask);
3225  cmp(scratch, kStringTag | kSeqStringTag | kOneByteStringTag);
3226  j(not_equal, failure);
3227}
3228
3229
3230void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register object1,
3231                                                         Register object2,
3232                                                         Register scratch1,
3233                                                         Register scratch2,
3234                                                         Label* failure) {
3235  // Check that both objects are not smis.
3236  STATIC_ASSERT(kSmiTag == 0);
3237  mov(scratch1, object1);
3238  and_(scratch1, object2);
3239  JumpIfSmi(scratch1, failure);
3240
3241  // Load instance type for both strings.
3242  mov(scratch1, FieldOperand(object1, HeapObject::kMapOffset));
3243  mov(scratch2, FieldOperand(object2, HeapObject::kMapOffset));
3244  movzx_b(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset));
3245  movzx_b(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset));
3246
3247  // Check that both are flat ASCII strings.
3248  const int kFlatAsciiStringMask =
3249      kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
3250  const int kFlatAsciiStringTag =
3251      kStringTag | kOneByteStringTag | kSeqStringTag;
3252  // Interleave bits from both instance types and compare them in one check.
3253  ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3));
3254  and_(scratch1, kFlatAsciiStringMask);
3255  and_(scratch2, kFlatAsciiStringMask);
3256  lea(scratch1, Operand(scratch1, scratch2, times_8, 0));
3257  cmp(scratch1, kFlatAsciiStringTag | (kFlatAsciiStringTag << 3));
3258  j(not_equal, failure);
3259}
3260
3261
3262void MacroAssembler::JumpIfNotUniqueName(Operand operand,
3263                                         Label* not_unique_name,
3264                                         Label::Distance distance) {
3265  STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
3266  Label succeed;
3267  test(operand, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
3268  j(zero, &succeed);
3269  cmpb(operand, static_cast<uint8_t>(SYMBOL_TYPE));
3270  j(not_equal, not_unique_name, distance);
3271
3272  bind(&succeed);
3273}
3274
3275
3276void MacroAssembler::EmitSeqStringSetCharCheck(Register string,
3277                                               Register index,
3278                                               Register value,
3279                                               uint32_t encoding_mask) {
3280  Label is_object;
3281  JumpIfNotSmi(string, &is_object, Label::kNear);
3282  Throw(kNonObject);
3283  bind(&is_object);
3284
3285  push(value);
3286  mov(value, FieldOperand(string, HeapObject::kMapOffset));
3287  movzx_b(value, FieldOperand(value, Map::kInstanceTypeOffset));
3288
3289  and_(value, Immediate(kStringRepresentationMask | kStringEncodingMask));
3290  cmp(value, Immediate(encoding_mask));
3291  pop(value);
3292  ThrowIf(not_equal, kUnexpectedStringType);
3293
3294  // The index is assumed to be untagged coming in, tag it to compare with the
3295  // string length without using a temp register, it is restored at the end of
3296  // this function.
3297  SmiTag(index);
3298  // Can't use overflow here directly, compiler can't seem to disambiguate.
3299  ThrowIf(NegateCondition(no_overflow), kIndexIsTooLarge);
3300
3301  cmp(index, FieldOperand(string, String::kLengthOffset));
3302  ThrowIf(greater_equal, kIndexIsTooLarge);
3303
3304  cmp(index, Immediate(Smi::FromInt(0)));
3305  ThrowIf(less, kIndexIsNegative);
3306
3307  // Restore the index
3308  SmiUntag(index);
3309}
3310
3311
3312void MacroAssembler::PrepareCallCFunction(int num_arguments, Register scratch) {
3313  int frame_alignment = OS::ActivationFrameAlignment();
3314  if (frame_alignment != 0) {
3315    // Make stack end at alignment and make room for num_arguments words
3316    // and the original value of esp.
3317    mov(scratch, esp);
3318    sub(esp, Immediate((num_arguments + 1) * kPointerSize));
3319    ASSERT(IsPowerOf2(frame_alignment));
3320    and_(esp, -frame_alignment);
3321    mov(Operand(esp, num_arguments * kPointerSize), scratch);
3322  } else {
3323    sub(esp, Immediate(num_arguments * kPointerSize));
3324  }
3325}
3326
3327
3328void MacroAssembler::CallCFunction(ExternalReference function,
3329                                   int num_arguments) {
3330  // Trashing eax is ok as it will be the return value.
3331  mov(eax, Immediate(function));
3332  CallCFunction(eax, num_arguments);
3333}
3334
3335
3336void MacroAssembler::CallCFunction(Register function,
3337                                   int num_arguments) {
3338  ASSERT(has_frame());
3339  // Check stack alignment.
3340  if (emit_debug_code()) {
3341    CheckStackAlignment();
3342  }
3343
3344  call(function);
3345  if (OS::ActivationFrameAlignment() != 0) {
3346    mov(esp, Operand(esp, num_arguments * kPointerSize));
3347  } else {
3348    add(esp, Immediate(num_arguments * kPointerSize));
3349  }
3350}
3351
3352
3353bool AreAliased(Register r1, Register r2, Register r3, Register r4) {
3354  if (r1.is(r2)) return true;
3355  if (r1.is(r3)) return true;
3356  if (r1.is(r4)) return true;
3357  if (r2.is(r3)) return true;
3358  if (r2.is(r4)) return true;
3359  if (r3.is(r4)) return true;
3360  return false;
3361}
3362
3363
3364CodePatcher::CodePatcher(byte* address, int size)
3365    : address_(address),
3366      size_(size),
3367      masm_(NULL, address, size + Assembler::kGap) {
3368  // Create a new macro assembler pointing to the address of the code to patch.
3369  // The size is adjusted with kGap on order for the assembler to generate size
3370  // bytes of instructions without failing with buffer size constraints.
3371  ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
3372}
3373
3374
3375CodePatcher::~CodePatcher() {
3376  // Indicate that code has changed.
3377  CPU::FlushICache(address_, size_);
3378
3379  // Check that the code was patched as expected.
3380  ASSERT(masm_.pc_ == address_ + size_);
3381  ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
3382}
3383
3384
3385void MacroAssembler::CheckPageFlag(
3386    Register object,
3387    Register scratch,
3388    int mask,
3389    Condition cc,
3390    Label* condition_met,
3391    Label::Distance condition_met_distance) {
3392  ASSERT(cc == zero || cc == not_zero);
3393  if (scratch.is(object)) {
3394    and_(scratch, Immediate(~Page::kPageAlignmentMask));
3395  } else {
3396    mov(scratch, Immediate(~Page::kPageAlignmentMask));
3397    and_(scratch, object);
3398  }
3399  if (mask < (1 << kBitsPerByte)) {
3400    test_b(Operand(scratch, MemoryChunk::kFlagsOffset),
3401           static_cast<uint8_t>(mask));
3402  } else {
3403    test(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(mask));
3404  }
3405  j(cc, condition_met, condition_met_distance);
3406}
3407
3408
3409void MacroAssembler::CheckPageFlagForMap(
3410    Handle<Map> map,
3411    int mask,
3412    Condition cc,
3413    Label* condition_met,
3414    Label::Distance condition_met_distance) {
3415  ASSERT(cc == zero || cc == not_zero);
3416  Page* page = Page::FromAddress(map->address());
3417  ExternalReference reference(ExternalReference::page_flags(page));
3418  // The inlined static address check of the page's flags relies
3419  // on maps never being compacted.
3420  ASSERT(!isolate()->heap()->mark_compact_collector()->
3421         IsOnEvacuationCandidate(*map));
3422  if (mask < (1 << kBitsPerByte)) {
3423    test_b(Operand::StaticVariable(reference), static_cast<uint8_t>(mask));
3424  } else {
3425    test(Operand::StaticVariable(reference), Immediate(mask));
3426  }
3427  j(cc, condition_met, condition_met_distance);
3428}
3429
3430
3431void MacroAssembler::CheckMapDeprecated(Handle<Map> map,
3432                                        Register scratch,
3433                                        Label* if_deprecated) {
3434  if (map->CanBeDeprecated()) {
3435    mov(scratch, map);
3436    mov(scratch, FieldOperand(scratch, Map::kBitField3Offset));
3437    and_(scratch, Immediate(Smi::FromInt(Map::Deprecated::kMask)));
3438    j(not_zero, if_deprecated);
3439  }
3440}
3441
3442
3443void MacroAssembler::JumpIfBlack(Register object,
3444                                 Register scratch0,
3445                                 Register scratch1,
3446                                 Label* on_black,
3447                                 Label::Distance on_black_near) {
3448  HasColor(object, scratch0, scratch1,
3449           on_black, on_black_near,
3450           1, 0);  // kBlackBitPattern.
3451  ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
3452}
3453
3454
3455void MacroAssembler::HasColor(Register object,
3456                              Register bitmap_scratch,
3457                              Register mask_scratch,
3458                              Label* has_color,
3459                              Label::Distance has_color_distance,
3460                              int first_bit,
3461                              int second_bit) {
3462  ASSERT(!AreAliased(object, bitmap_scratch, mask_scratch, ecx));
3463
3464  GetMarkBits(object, bitmap_scratch, mask_scratch);
3465
3466  Label other_color, word_boundary;
3467  test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
3468  j(first_bit == 1 ? zero : not_zero, &other_color, Label::kNear);
3469  add(mask_scratch, mask_scratch);  // Shift left 1 by adding.
3470  j(zero, &word_boundary, Label::kNear);
3471  test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
3472  j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance);
3473  jmp(&other_color, Label::kNear);
3474
3475  bind(&word_boundary);
3476  test_b(Operand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize), 1);
3477
3478  j(second_bit == 1 ? not_zero : zero, has_color, has_color_distance);
3479  bind(&other_color);
3480}
3481
3482
3483void MacroAssembler::GetMarkBits(Register addr_reg,
3484                                 Register bitmap_reg,
3485                                 Register mask_reg) {
3486  ASSERT(!AreAliased(addr_reg, mask_reg, bitmap_reg, ecx));
3487  mov(bitmap_reg, Immediate(~Page::kPageAlignmentMask));
3488  and_(bitmap_reg, addr_reg);
3489  mov(ecx, addr_reg);
3490  int shift =
3491      Bitmap::kBitsPerCellLog2 + kPointerSizeLog2 - Bitmap::kBytesPerCellLog2;
3492  shr(ecx, shift);
3493  and_(ecx,
3494       (Page::kPageAlignmentMask >> shift) & ~(Bitmap::kBytesPerCell - 1));
3495
3496  add(bitmap_reg, ecx);
3497  mov(ecx, addr_reg);
3498  shr(ecx, kPointerSizeLog2);
3499  and_(ecx, (1 << Bitmap::kBitsPerCellLog2) - 1);
3500  mov(mask_reg, Immediate(1));
3501  shl_cl(mask_reg);
3502}
3503
3504
3505void MacroAssembler::EnsureNotWhite(
3506    Register value,
3507    Register bitmap_scratch,
3508    Register mask_scratch,
3509    Label* value_is_white_and_not_data,
3510    Label::Distance distance) {
3511  ASSERT(!AreAliased(value, bitmap_scratch, mask_scratch, ecx));
3512  GetMarkBits(value, bitmap_scratch, mask_scratch);
3513
3514  // If the value is black or grey we don't need to do anything.
3515  ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0);
3516  ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
3517  ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0);
3518  ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
3519
3520  Label done;
3521
3522  // Since both black and grey have a 1 in the first position and white does
3523  // not have a 1 there we only need to check one bit.
3524  test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
3525  j(not_zero, &done, Label::kNear);
3526
3527  if (emit_debug_code()) {
3528    // Check for impossible bit pattern.
3529    Label ok;
3530    push(mask_scratch);
3531    // shl.  May overflow making the check conservative.
3532    add(mask_scratch, mask_scratch);
3533    test(mask_scratch, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
3534    j(zero, &ok, Label::kNear);
3535    int3();
3536    bind(&ok);
3537    pop(mask_scratch);
3538  }
3539
3540  // Value is white.  We check whether it is data that doesn't need scanning.
3541  // Currently only checks for HeapNumber and non-cons strings.
3542  Register map = ecx;  // Holds map while checking type.
3543  Register length = ecx;  // Holds length of object after checking type.
3544  Label not_heap_number;
3545  Label is_data_object;
3546
3547  // Check for heap-number
3548  mov(map, FieldOperand(value, HeapObject::kMapOffset));
3549  cmp(map, isolate()->factory()->heap_number_map());
3550  j(not_equal, &not_heap_number, Label::kNear);
3551  mov(length, Immediate(HeapNumber::kSize));
3552  jmp(&is_data_object, Label::kNear);
3553
3554  bind(&not_heap_number);
3555  // Check for strings.
3556  ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
3557  ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
3558  // If it's a string and it's not a cons string then it's an object containing
3559  // no GC pointers.
3560  Register instance_type = ecx;
3561  movzx_b(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
3562  test_b(instance_type, kIsIndirectStringMask | kIsNotStringMask);
3563  j(not_zero, value_is_white_and_not_data);
3564  // It's a non-indirect (non-cons and non-slice) string.
3565  // If it's external, the length is just ExternalString::kSize.
3566  // Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
3567  Label not_external;
3568  // External strings are the only ones with the kExternalStringTag bit
3569  // set.
3570  ASSERT_EQ(0, kSeqStringTag & kExternalStringTag);
3571  ASSERT_EQ(0, kConsStringTag & kExternalStringTag);
3572  test_b(instance_type, kExternalStringTag);
3573  j(zero, &not_external, Label::kNear);
3574  mov(length, Immediate(ExternalString::kSize));
3575  jmp(&is_data_object, Label::kNear);
3576
3577  bind(&not_external);
3578  // Sequential string, either ASCII or UC16.
3579  ASSERT(kOneByteStringTag == 0x04);
3580  and_(length, Immediate(kStringEncodingMask));
3581  xor_(length, Immediate(kStringEncodingMask));
3582  add(length, Immediate(0x04));
3583  // Value now either 4 (if ASCII) or 8 (if UC16), i.e., char-size shifted
3584  // by 2. If we multiply the string length as smi by this, it still
3585  // won't overflow a 32-bit value.
3586  ASSERT_EQ(SeqOneByteString::kMaxSize, SeqTwoByteString::kMaxSize);
3587  ASSERT(SeqOneByteString::kMaxSize <=
3588         static_cast<int>(0xffffffffu >> (2 + kSmiTagSize)));
3589  imul(length, FieldOperand(value, String::kLengthOffset));
3590  shr(length, 2 + kSmiTagSize + kSmiShiftSize);
3591  add(length, Immediate(SeqString::kHeaderSize + kObjectAlignmentMask));
3592  and_(length, Immediate(~kObjectAlignmentMask));
3593
3594  bind(&is_data_object);
3595  // Value is a data object, and it is white.  Mark it black.  Since we know
3596  // that the object is white we can make it black by flipping one bit.
3597  or_(Operand(bitmap_scratch, MemoryChunk::kHeaderSize), mask_scratch);
3598
3599  and_(bitmap_scratch, Immediate(~Page::kPageAlignmentMask));
3600  add(Operand(bitmap_scratch, MemoryChunk::kLiveBytesOffset),
3601      length);
3602  if (emit_debug_code()) {
3603    mov(length, Operand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
3604    cmp(length, Operand(bitmap_scratch, MemoryChunk::kSizeOffset));
3605    Check(less_equal, kLiveBytesCountOverflowChunkSize);
3606  }
3607
3608  bind(&done);
3609}
3610
3611
3612void MacroAssembler::EnumLength(Register dst, Register map) {
3613  STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
3614  mov(dst, FieldOperand(map, Map::kBitField3Offset));
3615  and_(dst, Immediate(Smi::FromInt(Map::EnumLengthBits::kMask)));
3616}
3617
3618
3619void MacroAssembler::CheckEnumCache(Label* call_runtime) {
3620  Label next, start;
3621  mov(ecx, eax);
3622
3623  // Check if the enum length field is properly initialized, indicating that
3624  // there is an enum cache.
3625  mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset));
3626
3627  EnumLength(edx, ebx);
3628  cmp(edx, Immediate(Smi::FromInt(kInvalidEnumCacheSentinel)));
3629  j(equal, call_runtime);
3630
3631  jmp(&start);
3632
3633  bind(&next);
3634  mov(ebx, FieldOperand(ecx, HeapObject::kMapOffset));
3635
3636  // For all objects but the receiver, check that the cache is empty.
3637  EnumLength(edx, ebx);
3638  cmp(edx, Immediate(Smi::FromInt(0)));
3639  j(not_equal, call_runtime);
3640
3641  bind(&start);
3642
3643  // Check that there are no elements. Register rcx contains the current JS
3644  // object we've reached through the prototype chain.
3645  mov(ecx, FieldOperand(ecx, JSObject::kElementsOffset));
3646  cmp(ecx, isolate()->factory()->empty_fixed_array());
3647  j(not_equal, call_runtime);
3648
3649  mov(ecx, FieldOperand(ebx, Map::kPrototypeOffset));
3650  cmp(ecx, isolate()->factory()->null_value());
3651  j(not_equal, &next);
3652}
3653
3654
3655void MacroAssembler::TestJSArrayForAllocationMemento(
3656    Register receiver_reg,
3657    Register scratch_reg,
3658    Label* no_memento_found) {
3659  ExternalReference new_space_start =
3660      ExternalReference::new_space_start(isolate());
3661  ExternalReference new_space_allocation_top =
3662      ExternalReference::new_space_allocation_top_address(isolate());
3663
3664  lea(scratch_reg, Operand(receiver_reg,
3665      JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag));
3666  cmp(scratch_reg, Immediate(new_space_start));
3667  j(less, no_memento_found);
3668  cmp(scratch_reg, Operand::StaticVariable(new_space_allocation_top));
3669  j(greater, no_memento_found);
3670  cmp(MemOperand(scratch_reg, -AllocationMemento::kSize),
3671      Immediate(isolate()->factory()->allocation_memento_map()));
3672}
3673
3674
3675void MacroAssembler::JumpIfDictionaryInPrototypeChain(
3676    Register object,
3677    Register scratch0,
3678    Register scratch1,
3679    Label* found) {
3680  ASSERT(!scratch1.is(scratch0));
3681  Factory* factory = isolate()->factory();
3682  Register current = scratch0;
3683  Label loop_again;
3684
3685  // scratch contained elements pointer.
3686  mov(current, object);
3687
3688  // Loop based on the map going up the prototype chain.
3689  bind(&loop_again);
3690  mov(current, FieldOperand(current, HeapObject::kMapOffset));
3691  mov(scratch1, FieldOperand(current, Map::kBitField2Offset));
3692  and_(scratch1, Map::kElementsKindMask);
3693  shr(scratch1, Map::kElementsKindShift);
3694  cmp(scratch1, Immediate(DICTIONARY_ELEMENTS));
3695  j(equal, found);
3696  mov(current, FieldOperand(current, Map::kPrototypeOffset));
3697  cmp(current, Immediate(factory->null_value()));
3698  j(not_equal, &loop_again);
3699}
3700
3701} }  // namespace v8::internal
3702
3703#endif  // V8_TARGET_ARCH_IA32
3704