1// Copyright 2012 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#include "accessors.h"
31#include "api.h"
32#include "arguments.h"
33#include "codegen.h"
34#include "execution.h"
35#include "ic-inl.h"
36#include "runtime.h"
37#include "stub-cache.h"
38
39namespace v8 {
40namespace internal {
41
42#ifdef DEBUG
43char IC::TransitionMarkFromState(IC::State state) {
44  switch (state) {
45    case UNINITIALIZED: return '0';
46    case PREMONOMORPHIC: return '.';
47    case MONOMORPHIC: return '1';
48    case MONOMORPHIC_PROTOTYPE_FAILURE: return '^';
49    case POLYMORPHIC: return 'P';
50    case MEGAMORPHIC: return 'N';
51    case GENERIC: return 'G';
52
53    // We never see the debugger states here, because the state is
54    // computed from the original code - not the patched code. Let
55    // these cases fall through to the unreachable code below.
56    case DEBUG_STUB: break;
57  }
58  UNREACHABLE();
59  return 0;
60}
61
62
63const char* GetTransitionMarkModifier(KeyedAccessStoreMode mode) {
64  if (mode == STORE_NO_TRANSITION_HANDLE_COW) return ".COW";
65  if (mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
66    return ".IGNORE_OOB";
67  }
68  if (IsGrowStoreMode(mode)) return ".GROW";
69  return "";
70}
71
72
73void IC::TraceIC(const char* type,
74                 Handle<Object> name) {
75  if (FLAG_trace_ic) {
76    Code* new_target = raw_target();
77    State new_state = new_target->ic_state();
78    PrintF("[%s%s in ", new_target->is_keyed_stub() ? "Keyed" : "", type);
79    StackFrameIterator it(isolate());
80    while (it.frame()->fp() != this->fp()) it.Advance();
81    StackFrame* raw_frame = it.frame();
82    if (raw_frame->is_internal()) {
83      Code* apply_builtin = isolate()->builtins()->builtin(
84          Builtins::kFunctionApply);
85      if (raw_frame->unchecked_code() == apply_builtin) {
86        PrintF("apply from ");
87        it.Advance();
88        raw_frame = it.frame();
89      }
90    }
91    JavaScriptFrame::PrintTop(isolate(), stdout, false, true);
92    ExtraICState extra_state = new_target->extra_ic_state();
93    const char* modifier =
94        GetTransitionMarkModifier(
95            KeyedStoreIC::GetKeyedAccessStoreMode(extra_state));
96    PrintF(" (%c->%c%s)",
97           TransitionMarkFromState(state()),
98           TransitionMarkFromState(new_state),
99           modifier);
100    name->Print();
101    PrintF("]\n");
102  }
103}
104
105#define TRACE_GENERIC_IC(isolate, type, reason)                 \
106  do {                                                          \
107    if (FLAG_trace_ic) {                                        \
108      PrintF("[%s patching generic stub in ", type);            \
109      JavaScriptFrame::PrintTop(isolate, stdout, false, true);  \
110      PrintF(" (%s)]\n", reason);                               \
111    }                                                           \
112  } while (false)
113
114#else
115#define TRACE_GENERIC_IC(isolate, type, reason)
116#endif  // DEBUG
117
118#define TRACE_IC(type, name)             \
119  ASSERT((TraceIC(type, name), true))
120
121IC::IC(FrameDepth depth, Isolate* isolate)
122    : isolate_(isolate),
123      target_set_(false) {
124  // To improve the performance of the (much used) IC code, we unfold a few
125  // levels of the stack frame iteration code. This yields a ~35% speedup when
126  // running DeltaBlue and a ~25% speedup of gbemu with the '--nouse-ic' flag.
127  const Address entry =
128      Isolate::c_entry_fp(isolate->thread_local_top());
129  Address* pc_address =
130      reinterpret_cast<Address*>(entry + ExitFrameConstants::kCallerPCOffset);
131  Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset);
132  // If there's another JavaScript frame on the stack or a
133  // StubFailureTrampoline, we need to look one frame further down the stack to
134  // find the frame pointer and the return address stack slot.
135  if (depth == EXTRA_CALL_FRAME) {
136    const int kCallerPCOffset = StandardFrameConstants::kCallerPCOffset;
137    pc_address = reinterpret_cast<Address*>(fp + kCallerPCOffset);
138    fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset);
139  }
140#ifdef DEBUG
141  StackFrameIterator it(isolate);
142  for (int i = 0; i < depth + 1; i++) it.Advance();
143  StackFrame* frame = it.frame();
144  ASSERT(fp == frame->fp() && pc_address == frame->pc_address());
145#endif
146  fp_ = fp;
147  pc_address_ = StackFrame::ResolveReturnAddressLocation(pc_address);
148  target_ = handle(raw_target(), isolate);
149  state_ = target_->ic_state();
150}
151
152
153#ifdef ENABLE_DEBUGGER_SUPPORT
154Address IC::OriginalCodeAddress() const {
155  HandleScope scope(isolate());
156  // Compute the JavaScript frame for the frame pointer of this IC
157  // structure. We need this to be able to find the function
158  // corresponding to the frame.
159  StackFrameIterator it(isolate());
160  while (it.frame()->fp() != this->fp()) it.Advance();
161  JavaScriptFrame* frame = JavaScriptFrame::cast(it.frame());
162  // Find the function on the stack and both the active code for the
163  // function and the original code.
164  JSFunction* function = frame->function();
165  Handle<SharedFunctionInfo> shared(function->shared(), isolate());
166  Code* code = shared->code();
167  ASSERT(Debug::HasDebugInfo(shared));
168  Code* original_code = Debug::GetDebugInfo(shared)->original_code();
169  ASSERT(original_code->IsCode());
170  // Get the address of the call site in the active code. This is the
171  // place where the call to DebugBreakXXX is and where the IC
172  // normally would be.
173  Address addr = Assembler::target_address_from_return_address(pc());
174  // Return the address in the original code. This is the place where
175  // the call which has been overwritten by the DebugBreakXXX resides
176  // and the place where the inline cache system should look.
177  intptr_t delta =
178      original_code->instruction_start() - code->instruction_start();
179  return addr + delta;
180}
181#endif
182
183
184static bool HasInterceptorGetter(JSObject* object) {
185  return !object->GetNamedInterceptor()->getter()->IsUndefined();
186}
187
188
189static bool HasInterceptorSetter(JSObject* object) {
190  return !object->GetNamedInterceptor()->setter()->IsUndefined();
191}
192
193
194static void LookupForRead(Handle<Object> object,
195                          Handle<String> name,
196                          LookupResult* lookup) {
197  // Skip all the objects with named interceptors, but
198  // without actual getter.
199  while (true) {
200    object->Lookup(*name, lookup);
201    // Besides normal conditions (property not found or it's not
202    // an interceptor), bail out if lookup is not cacheable: we won't
203    // be able to IC it anyway and regular lookup should work fine.
204    if (!lookup->IsInterceptor() || !lookup->IsCacheable()) {
205      return;
206    }
207
208    Handle<JSObject> holder(lookup->holder(), lookup->isolate());
209    if (HasInterceptorGetter(*holder)) {
210      return;
211    }
212
213    holder->LocalLookupRealNamedProperty(*name, lookup);
214    if (lookup->IsFound()) {
215      ASSERT(!lookup->IsInterceptor());
216      return;
217    }
218
219    Handle<Object> proto(holder->GetPrototype(), lookup->isolate());
220    if (proto->IsNull()) {
221      ASSERT(!lookup->IsFound());
222      return;
223    }
224
225    object = proto;
226  }
227}
228
229
230bool CallIC::TryUpdateExtraICState(LookupResult* lookup,
231                                   Handle<Object> object) {
232  if (!lookup->IsConstantFunction()) return false;
233  JSFunction* function = lookup->GetConstantFunction();
234  if (!function->shared()->HasBuiltinFunctionId()) return false;
235
236  // Fetch the arguments passed to the called function.
237  const int argc = target()->arguments_count();
238  Address entry = isolate()->c_entry_fp(isolate()->thread_local_top());
239  Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset);
240  Arguments args(argc + 1,
241                 &Memory::Object_at(fp +
242                                    StandardFrameConstants::kCallerSPOffset +
243                                    argc * kPointerSize));
244  switch (function->shared()->builtin_function_id()) {
245    case kStringCharCodeAt:
246    case kStringCharAt:
247      if (object->IsString()) {
248        String* string = String::cast(*object);
249        // Check there's the right string value or wrapper in the receiver slot.
250        ASSERT(string == args[0] || string == JSValue::cast(args[0])->value());
251        // If we're in the default (fastest) state and the index is
252        // out of bounds, update the state to record this fact.
253        if (StringStubState::decode(extra_ic_state()) == DEFAULT_STRING_STUB &&
254            argc >= 1 && args[1]->IsNumber()) {
255          double index = DoubleToInteger(args.number_at(1));
256          if (index < 0 || index >= string->length()) {
257            extra_ic_state_ =
258                StringStubState::update(extra_ic_state(),
259                                        STRING_INDEX_OUT_OF_BOUNDS);
260            return true;
261          }
262        }
263      }
264      break;
265    default:
266      return false;
267  }
268  return false;
269}
270
271
272bool IC::TryRemoveInvalidPrototypeDependentStub(Handle<Object> receiver,
273                                                Handle<String> name) {
274  if (target()->is_call_stub()) {
275    LookupResult lookup(isolate());
276    LookupForRead(receiver, name, &lookup);
277    if (static_cast<CallIC*>(this)->TryUpdateExtraICState(&lookup, receiver)) {
278      return true;
279    }
280  }
281
282  if (target()->is_keyed_stub()) {
283    // Determine whether the failure is due to a name failure.
284    if (!name->IsName()) return false;
285    Name* stub_name = target()->FindFirstName();
286    if (*name != stub_name) return false;
287  }
288
289  InlineCacheHolderFlag cache_holder =
290      Code::ExtractCacheHolderFromFlags(target()->flags());
291
292  switch (cache_holder) {
293    case OWN_MAP:
294      // The stub was generated for JSObject but called for non-JSObject.
295      // IC::GetCodeCacheHolder is not applicable.
296      if (!receiver->IsJSObject()) return false;
297      break;
298    case PROTOTYPE_MAP:
299      // IC::GetCodeCacheHolder is not applicable.
300      if (receiver->GetPrototype(isolate())->IsNull()) return false;
301      break;
302  }
303
304  Handle<Map> map(
305      IC::GetCodeCacheHolder(isolate(), *receiver, cache_holder)->map());
306
307  // Decide whether the inline cache failed because of changes to the
308  // receiver itself or changes to one of its prototypes.
309  //
310  // If there are changes to the receiver itself, the map of the
311  // receiver will have changed and the current target will not be in
312  // the receiver map's code cache.  Therefore, if the current target
313  // is in the receiver map's code cache, the inline cache failed due
314  // to prototype check failure.
315  int index = map->IndexInCodeCache(*name, *target());
316  if (index >= 0) {
317    map->RemoveFromCodeCache(*name, *target(), index);
318    // Handlers are stored in addition to the ICs on the map. Remove those, too.
319    TryRemoveInvalidHandlers(map, name);
320    return true;
321  }
322
323  // The stub is not in the cache. We've ruled out all other kinds of failure
324  // except for proptotype chain changes, a deprecated map, a map that's
325  // different from the one that the stub expects, elements kind changes, or a
326  // constant global property that will become mutable. Threat all those
327  // situations as prototype failures (stay monomorphic if possible).
328
329  // If the IC is shared between multiple receivers (slow dictionary mode), then
330  // the map cannot be deprecated and the stub invalidated.
331  if (cache_holder == OWN_MAP) {
332    Map* old_map = target()->FindFirstMap();
333    if (old_map == *map) return true;
334    if (old_map != NULL) {
335      if (old_map->is_deprecated()) return true;
336      if (IsMoreGeneralElementsKindTransition(old_map->elements_kind(),
337                                              map->elements_kind())) {
338        return true;
339      }
340    }
341  }
342
343  if (receiver->IsGlobalObject()) {
344    LookupResult lookup(isolate());
345    GlobalObject* global = GlobalObject::cast(*receiver);
346    global->LocalLookupRealNamedProperty(*name, &lookup);
347    if (!lookup.IsFound()) return false;
348    PropertyCell* cell = global->GetPropertyCell(&lookup);
349    return cell->type()->IsConstant();
350  }
351
352  return false;
353}
354
355
356void IC::TryRemoveInvalidHandlers(Handle<Map> map, Handle<String> name) {
357  CodeHandleList handlers;
358  target()->FindHandlers(&handlers);
359  for (int i = 0; i < handlers.length(); i++) {
360    Handle<Code> handler = handlers.at(i);
361    int index = map->IndexInCodeCache(*name, *handler);
362    if (index >= 0) {
363      map->RemoveFromCodeCache(*name, *handler, index);
364      return;
365    }
366  }
367}
368
369
370void IC::UpdateState(Handle<Object> receiver, Handle<Object> name) {
371  if (!name->IsString()) return;
372  if (state() != MONOMORPHIC) {
373    if (state() == POLYMORPHIC && receiver->IsHeapObject()) {
374      TryRemoveInvalidHandlers(
375          handle(Handle<HeapObject>::cast(receiver)->map()),
376          Handle<String>::cast(name));
377    }
378    return;
379  }
380  if (receiver->IsUndefined() || receiver->IsNull()) return;
381
382  // Remove the target from the code cache if it became invalid
383  // because of changes in the prototype chain to avoid hitting it
384  // again.
385  if (TryRemoveInvalidPrototypeDependentStub(
386          receiver, Handle<String>::cast(name))) {
387    return MarkMonomorphicPrototypeFailure();
388  }
389
390  // The builtins object is special.  It only changes when JavaScript
391  // builtins are loaded lazily.  It is important to keep inline
392  // caches for the builtins object monomorphic.  Therefore, if we get
393  // an inline cache miss for the builtins object after lazily loading
394  // JavaScript builtins, we return uninitialized as the state to
395  // force the inline cache back to monomorphic state.
396  if (receiver->IsJSBuiltinsObject()) state_ = UNINITIALIZED;
397}
398
399
400RelocInfo::Mode IC::ComputeMode() {
401  Address addr = address();
402  Code* code = Code::cast(isolate()->FindCodeObject(addr));
403  for (RelocIterator it(code, RelocInfo::kCodeTargetMask);
404       !it.done(); it.next()) {
405    RelocInfo* info = it.rinfo();
406    if (info->pc() == addr) return info->rmode();
407  }
408  UNREACHABLE();
409  return RelocInfo::NONE32;
410}
411
412
413Failure* IC::TypeError(const char* type,
414                       Handle<Object> object,
415                       Handle<Object> key) {
416  HandleScope scope(isolate());
417  Handle<Object> args[2] = { key, object };
418  Handle<Object> error = isolate()->factory()->NewTypeError(
419      type, HandleVector(args, 2));
420  return isolate()->Throw(*error);
421}
422
423
424Failure* IC::ReferenceError(const char* type, Handle<String> name) {
425  HandleScope scope(isolate());
426  Handle<Object> error = isolate()->factory()->NewReferenceError(
427      type, HandleVector(&name, 1));
428  return isolate()->Throw(*error);
429}
430
431
432static int ComputeTypeInfoCountDelta(IC::State old_state, IC::State new_state) {
433  bool was_uninitialized =
434      old_state == UNINITIALIZED || old_state == PREMONOMORPHIC;
435  bool is_uninitialized =
436      new_state == UNINITIALIZED || new_state == PREMONOMORPHIC;
437  return (was_uninitialized && !is_uninitialized) ?  1 :
438         (!was_uninitialized && is_uninitialized) ? -1 : 0;
439}
440
441
442void IC::PostPatching(Address address, Code* target, Code* old_target) {
443  if (FLAG_type_info_threshold == 0 && !FLAG_watch_ic_patching) {
444    return;
445  }
446  Isolate* isolate = target->GetHeap()->isolate();
447  Code* host = isolate->
448      inner_pointer_to_code_cache()->GetCacheEntry(address)->code;
449  if (host->kind() != Code::FUNCTION) return;
450
451  if (FLAG_type_info_threshold > 0 &&
452      old_target->is_inline_cache_stub() &&
453      target->is_inline_cache_stub()) {
454    int delta = ComputeTypeInfoCountDelta(old_target->ic_state(),
455                                          target->ic_state());
456    // Not all Code objects have TypeFeedbackInfo.
457    if (host->type_feedback_info()->IsTypeFeedbackInfo() && delta != 0) {
458      TypeFeedbackInfo* info =
459          TypeFeedbackInfo::cast(host->type_feedback_info());
460      info->change_ic_with_type_info_count(delta);
461    }
462  }
463  if (host->type_feedback_info()->IsTypeFeedbackInfo()) {
464    TypeFeedbackInfo* info =
465        TypeFeedbackInfo::cast(host->type_feedback_info());
466    info->change_own_type_change_checksum();
467  }
468  if (FLAG_watch_ic_patching) {
469    host->set_profiler_ticks(0);
470    isolate->runtime_profiler()->NotifyICChanged();
471  }
472  // TODO(2029): When an optimized function is patched, it would
473  // be nice to propagate the corresponding type information to its
474  // unoptimized version for the benefit of later inlining.
475}
476
477
478void IC::Clear(Isolate* isolate, Address address) {
479  Code* target = GetTargetAtAddress(address);
480
481  // Don't clear debug break inline cache as it will remove the break point.
482  if (target->is_debug_stub()) return;
483
484  switch (target->kind()) {
485    case Code::LOAD_IC: return LoadIC::Clear(isolate, address, target);
486    case Code::KEYED_LOAD_IC:
487      return KeyedLoadIC::Clear(isolate, address, target);
488    case Code::STORE_IC: return StoreIC::Clear(isolate, address, target);
489    case Code::KEYED_STORE_IC:
490      return KeyedStoreIC::Clear(isolate, address, target);
491    case Code::CALL_IC: return CallIC::Clear(address, target);
492    case Code::KEYED_CALL_IC:  return KeyedCallIC::Clear(address, target);
493    case Code::COMPARE_IC: return CompareIC::Clear(isolate, address, target);
494    case Code::COMPARE_NIL_IC: return CompareNilIC::Clear(address, target);
495    case Code::BINARY_OP_IC:
496    case Code::TO_BOOLEAN_IC:
497      // Clearing these is tricky and does not
498      // make any performance difference.
499      return;
500    default: UNREACHABLE();
501  }
502}
503
504
505void CallICBase::Clear(Address address, Code* target) {
506  if (IsCleared(target)) return;
507  bool contextual = CallICBase::Contextual::decode(target->extra_ic_state());
508  Code* code =
509      target->GetIsolate()->stub_cache()->FindCallInitialize(
510          target->arguments_count(),
511          contextual ? RelocInfo::CODE_TARGET_CONTEXT : RelocInfo::CODE_TARGET,
512          target->kind());
513  SetTargetAtAddress(address, code);
514}
515
516
517void KeyedLoadIC::Clear(Isolate* isolate, Address address, Code* target) {
518  if (IsCleared(target)) return;
519  // Make sure to also clear the map used in inline fast cases.  If we
520  // do not clear these maps, cached code can keep objects alive
521  // through the embedded maps.
522  SetTargetAtAddress(address, *pre_monomorphic_stub(isolate));
523}
524
525
526void LoadIC::Clear(Isolate* isolate, Address address, Code* target) {
527  if (IsCleared(target)) return;
528  SetTargetAtAddress(address, *pre_monomorphic_stub(isolate));
529}
530
531
532void StoreIC::Clear(Isolate* isolate, Address address, Code* target) {
533  if (IsCleared(target)) return;
534  SetTargetAtAddress(address,
535      *pre_monomorphic_stub(
536          isolate, StoreIC::GetStrictMode(target->extra_ic_state())));
537}
538
539
540void KeyedStoreIC::Clear(Isolate* isolate, Address address, Code* target) {
541  if (IsCleared(target)) return;
542  SetTargetAtAddress(address,
543      *pre_monomorphic_stub(
544          isolate, StoreIC::GetStrictMode(target->extra_ic_state())));
545}
546
547
548void CompareIC::Clear(Isolate* isolate, Address address, Code* target) {
549  ASSERT(target->major_key() == CodeStub::CompareIC);
550  CompareIC::State handler_state;
551  Token::Value op;
552  ICCompareStub::DecodeMinorKey(target->stub_info(), NULL, NULL,
553                                &handler_state, &op);
554  // Only clear CompareICs that can retain objects.
555  if (handler_state != KNOWN_OBJECT) return;
556  SetTargetAtAddress(address, GetRawUninitialized(isolate, op));
557  PatchInlinedSmiCode(address, DISABLE_INLINED_SMI_CHECK);
558}
559
560
561Handle<Object> CallICBase::TryCallAsFunction(Handle<Object> object) {
562  Handle<Object> delegate = Execution::GetFunctionDelegate(isolate(), object);
563
564  if (delegate->IsJSFunction() && !object->IsJSFunctionProxy()) {
565    // Patch the receiver and use the delegate as the function to
566    // invoke. This is used for invoking objects as if they were functions.
567    const int argc = target()->arguments_count();
568    StackFrameLocator locator(isolate());
569    JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
570    int index = frame->ComputeExpressionsCount() - (argc + 1);
571    frame->SetExpression(index, *object);
572  }
573
574  return delegate;
575}
576
577
578void CallICBase::ReceiverToObjectIfRequired(Handle<Object> callee,
579                                            Handle<Object> object) {
580  while (callee->IsJSFunctionProxy()) {
581    callee = Handle<Object>(JSFunctionProxy::cast(*callee)->call_trap(),
582                            isolate());
583  }
584
585  if (callee->IsJSFunction()) {
586    Handle<JSFunction> function = Handle<JSFunction>::cast(callee);
587    if (!function->shared()->is_classic_mode() || function->IsBuiltin()) {
588      // Do not wrap receiver for strict mode functions or for builtins.
589      return;
590    }
591  }
592
593  // And only wrap string, number or boolean.
594  if (object->IsString() || object->IsNumber() || object->IsBoolean()) {
595    // Change the receiver to the result of calling ToObject on it.
596    const int argc = this->target()->arguments_count();
597    StackFrameLocator locator(isolate());
598    JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
599    int index = frame->ComputeExpressionsCount() - (argc + 1);
600    frame->SetExpression(index, *isolate()->factory()->ToObject(object));
601  }
602}
603
604
605static bool MigrateDeprecated(Handle<Object> object) {
606  if (!object->IsJSObject()) return false;
607  Handle<JSObject> receiver = Handle<JSObject>::cast(object);
608  if (!receiver->map()->is_deprecated()) return false;
609  JSObject::MigrateInstance(Handle<JSObject>::cast(object));
610  return true;
611}
612
613
614MaybeObject* CallICBase::LoadFunction(Handle<Object> object,
615                                      Handle<String> name) {
616  bool use_ic = MigrateDeprecated(object) ? false : FLAG_use_ic;
617
618  // If the object is undefined or null it's illegal to try to get any
619  // of its properties; throw a TypeError in that case.
620  if (object->IsUndefined() || object->IsNull()) {
621    return TypeError("non_object_property_call", object, name);
622  }
623
624  // Check if the name is trivially convertible to an index and get
625  // the element if so.
626  uint32_t index;
627  if (name->AsArrayIndex(&index)) {
628    Handle<Object> result = Object::GetElement(isolate(), object, index);
629    RETURN_IF_EMPTY_HANDLE(isolate(), result);
630    if (result->IsJSFunction()) return *result;
631
632    // Try to find a suitable function delegate for the object at hand.
633    result = TryCallAsFunction(result);
634    if (result->IsJSFunction()) return *result;
635
636    // Otherwise, it will fail in the lookup step.
637  }
638
639  // Lookup the property in the object.
640  LookupResult lookup(isolate());
641  LookupForRead(object, name, &lookup);
642
643  if (!lookup.IsFound()) {
644    // If the object does not have the requested property, check which
645    // exception we need to throw.
646    return IsUndeclaredGlobal(object)
647        ? ReferenceError("not_defined", name)
648        : TypeError("undefined_method", object, name);
649  }
650
651  // Lookup is valid: Update inline cache and stub cache.
652  if (use_ic) UpdateCaches(&lookup, object, name);
653
654  // Get the property.
655  PropertyAttributes attr;
656  Handle<Object> result =
657      Object::GetProperty(object, object, &lookup, name, &attr);
658  RETURN_IF_EMPTY_HANDLE(isolate(), result);
659
660  if (lookup.IsInterceptor() && attr == ABSENT) {
661    // If the object does not have the requested property, check which
662    // exception we need to throw.
663    return IsUndeclaredGlobal(object)
664        ? ReferenceError("not_defined", name)
665        : TypeError("undefined_method", object, name);
666  }
667
668  ASSERT(!result->IsTheHole());
669
670  // Make receiver an object if the callee requires it. Strict mode or builtin
671  // functions do not wrap the receiver, non-strict functions and objects
672  // called as functions do.
673  ReceiverToObjectIfRequired(result, object);
674
675  if (result->IsJSFunction()) {
676    Handle<JSFunction> function = Handle<JSFunction>::cast(result);
677#ifdef ENABLE_DEBUGGER_SUPPORT
678    // Handle stepping into a function if step into is active.
679    Debug* debug = isolate()->debug();
680    if (debug->StepInActive()) {
681      // Protect the result in a handle as the debugger can allocate and might
682      // cause GC.
683      debug->HandleStepIn(function, object, fp(), false);
684    }
685#endif
686    return *function;
687  }
688
689  // Try to find a suitable function delegate for the object at hand.
690  result = TryCallAsFunction(result);
691  if (result->IsJSFunction()) return *result;
692
693  return TypeError("property_not_function", object, name);
694}
695
696
697Handle<Code> CallICBase::ComputeMonomorphicStub(LookupResult* lookup,
698                                                Handle<Object> object,
699                                                Handle<String> name) {
700  int argc = target()->arguments_count();
701  Handle<JSObject> holder(lookup->holder(), isolate());
702  switch (lookup->type()) {
703    case FIELD: {
704      PropertyIndex index = lookup->GetFieldIndex();
705      return isolate()->stub_cache()->ComputeCallField(
706          argc, kind_, extra_ic_state(), name, object, holder, index);
707    }
708    case CONSTANT: {
709      if (!lookup->IsConstantFunction()) return Handle<Code>::null();
710      // Get the constant function and compute the code stub for this
711      // call; used for rewriting to monomorphic state and making sure
712      // that the code stub is in the stub cache.
713      Handle<JSFunction> function(lookup->GetConstantFunction(), isolate());
714      return isolate()->stub_cache()->ComputeCallConstant(
715          argc, kind_, extra_ic_state(), name, object, holder, function);
716    }
717    case NORMAL: {
718      // If we return a null handle, the IC will not be patched.
719      if (!object->IsJSObject()) return Handle<Code>::null();
720      Handle<JSObject> receiver = Handle<JSObject>::cast(object);
721
722      if (holder->IsGlobalObject()) {
723        Handle<GlobalObject> global = Handle<GlobalObject>::cast(holder);
724        Handle<PropertyCell> cell(
725            global->GetPropertyCell(lookup), isolate());
726        if (!cell->value()->IsJSFunction()) return Handle<Code>::null();
727        Handle<JSFunction> function(JSFunction::cast(cell->value()));
728        return isolate()->stub_cache()->ComputeCallGlobal(
729            argc, kind_, extra_ic_state(), name,
730            receiver, global, cell, function);
731      } else {
732        // There is only one shared stub for calling normalized
733        // properties. It does not traverse the prototype chain, so the
734        // property must be found in the receiver for the stub to be
735        // applicable.
736        if (!holder.is_identical_to(receiver)) return Handle<Code>::null();
737        return isolate()->stub_cache()->ComputeCallNormal(
738            argc, kind_, extra_ic_state());
739      }
740      break;
741    }
742    case INTERCEPTOR:
743      ASSERT(HasInterceptorGetter(*holder));
744      return isolate()->stub_cache()->ComputeCallInterceptor(
745          argc, kind_, extra_ic_state(), name, object, holder);
746    default:
747      return Handle<Code>::null();
748  }
749}
750
751
752Handle<Code> CallICBase::megamorphic_stub() {
753  return isolate()->stub_cache()->ComputeCallMegamorphic(
754      target()->arguments_count(), kind_, extra_ic_state());
755}
756
757
758Handle<Code> CallICBase::pre_monomorphic_stub() {
759  return isolate()->stub_cache()->ComputeCallPreMonomorphic(
760      target()->arguments_count(), kind_, extra_ic_state());
761}
762
763
764void CallICBase::UpdateCaches(LookupResult* lookup,
765                              Handle<Object> object,
766                              Handle<String> name) {
767  // Bail out if we didn't find a result.
768  if (!lookup->IsProperty() || !lookup->IsCacheable()) return;
769
770  if (state() == UNINITIALIZED) {
771    set_target(*pre_monomorphic_stub());
772    TRACE_IC("CallIC", name);
773    return;
774  }
775
776  Handle<Code> code = ComputeMonomorphicStub(lookup, object, name);
777  // If there's no appropriate stub we simply avoid updating the caches.
778  // TODO(verwaest): Install a slow fallback in this case to avoid not learning,
779  // and deopting Crankshaft code.
780  if (code.is_null()) return;
781
782  Handle<JSObject> cache_object = object->IsJSObject()
783      ? Handle<JSObject>::cast(object)
784      : Handle<JSObject>(JSObject::cast(object->GetPrototype(isolate())),
785                         isolate());
786
787  PatchCache(CurrentTypeOf(cache_object, isolate()), name, code);
788  TRACE_IC("CallIC", name);
789}
790
791
792MaybeObject* KeyedCallIC::LoadFunction(Handle<Object> object,
793                                       Handle<Object> key) {
794  if (key->IsInternalizedString()) {
795    return CallICBase::LoadFunction(object, Handle<String>::cast(key));
796  }
797
798  if (object->IsUndefined() || object->IsNull()) {
799    return TypeError("non_object_property_call", object, key);
800  }
801
802  bool use_ic = MigrateDeprecated(object)
803      ? false : FLAG_use_ic && !object->IsAccessCheckNeeded();
804
805  if (use_ic && state() != MEGAMORPHIC) {
806    ASSERT(!object->IsJSGlobalProxy());
807    int argc = target()->arguments_count();
808    Handle<Code> stub;
809
810    // Use the KeyedArrayCallStub if the call is of the form array[smi](...),
811    // where array is an instance of one of the initial array maps (without
812    // extra named properties).
813    // TODO(verwaest): Also support keyed calls on instances of other maps.
814    if (object->IsJSArray() && key->IsSmi()) {
815      Handle<JSArray> array = Handle<JSArray>::cast(object);
816      ElementsKind kind = array->map()->elements_kind();
817      if (IsFastObjectElementsKind(kind) &&
818          array->map() == isolate()->get_initial_js_array_map(kind)) {
819        KeyedArrayCallStub stub_gen(IsHoleyElementsKind(kind), argc);
820        stub = stub_gen.GetCode(isolate());
821      }
822    }
823
824    if (stub.is_null()) {
825      stub = isolate()->stub_cache()->ComputeCallMegamorphic(
826          argc, Code::KEYED_CALL_IC, kNoExtraICState);
827      if (object->IsJSObject()) {
828        Handle<JSObject> receiver = Handle<JSObject>::cast(object);
829        if (receiver->elements()->map() ==
830            isolate()->heap()->non_strict_arguments_elements_map()) {
831          stub = isolate()->stub_cache()->ComputeCallArguments(argc);
832        }
833      }
834      ASSERT(!stub.is_null());
835    }
836    set_target(*stub);
837    TRACE_IC("CallIC", key);
838  }
839
840  Handle<Object> result = GetProperty(isolate(), object, key);
841  RETURN_IF_EMPTY_HANDLE(isolate(), result);
842
843  // Make receiver an object if the callee requires it. Strict mode or builtin
844  // functions do not wrap the receiver, non-strict functions and objects
845  // called as functions do.
846  ReceiverToObjectIfRequired(result, object);
847  if (result->IsJSFunction()) return *result;
848
849  result = TryCallAsFunction(result);
850  if (result->IsJSFunction()) return *result;
851
852  return TypeError("property_not_function", object, key);
853}
854
855
856MaybeObject* LoadIC::Load(Handle<Object> object,
857                          Handle<String> name) {
858  // If the object is undefined or null it's illegal to try to get any
859  // of its properties; throw a TypeError in that case.
860  if (object->IsUndefined() || object->IsNull()) {
861    return TypeError("non_object_property_load", object, name);
862  }
863
864  if (FLAG_use_ic) {
865    // Use specialized code for getting the length of strings and
866    // string wrapper objects.  The length property of string wrapper
867    // objects is read-only and therefore always returns the length of
868    // the underlying string value.  See ECMA-262 15.5.5.1.
869    if (object->IsStringWrapper() &&
870        name->Equals(isolate()->heap()->length_string())) {
871      Handle<Code> stub;
872      if (state() == UNINITIALIZED) {
873        stub = pre_monomorphic_stub();
874      } else if (state() == PREMONOMORPHIC || state() == MONOMORPHIC) {
875        StringLengthStub string_length_stub(kind());
876        stub = string_length_stub.GetCode(isolate());
877      } else if (state() != MEGAMORPHIC) {
878        ASSERT(state() != GENERIC);
879        stub = megamorphic_stub();
880      }
881      if (!stub.is_null()) {
882        set_target(*stub);
883        if (FLAG_trace_ic) PrintF("[LoadIC : +#length /stringwrapper]\n");
884      }
885      // Get the string if we have a string wrapper object.
886      String* string = String::cast(JSValue::cast(*object)->value());
887      return Smi::FromInt(string->length());
888    }
889
890    // Use specialized code for getting prototype of functions.
891    if (object->IsJSFunction() &&
892        name->Equals(isolate()->heap()->prototype_string()) &&
893        Handle<JSFunction>::cast(object)->should_have_prototype()) {
894      Handle<Code> stub;
895      if (state() == UNINITIALIZED) {
896        stub = pre_monomorphic_stub();
897      } else if (state() == PREMONOMORPHIC) {
898        FunctionPrototypeStub function_prototype_stub(kind());
899        stub = function_prototype_stub.GetCode(isolate());
900      } else if (state() != MEGAMORPHIC) {
901        ASSERT(state() != GENERIC);
902        stub = megamorphic_stub();
903      }
904      if (!stub.is_null()) {
905        set_target(*stub);
906        if (FLAG_trace_ic) PrintF("[LoadIC : +#prototype /function]\n");
907      }
908      return *Accessors::FunctionGetPrototype(Handle<JSFunction>::cast(object));
909    }
910  }
911
912  // Check if the name is trivially convertible to an index and get
913  // the element or char if so.
914  uint32_t index;
915  if (kind() == Code::KEYED_LOAD_IC && name->AsArrayIndex(&index)) {
916    // Rewrite to the generic keyed load stub.
917    if (FLAG_use_ic) set_target(*generic_stub());
918    return Runtime::GetElementOrCharAtOrFail(isolate(), object, index);
919  }
920
921  bool use_ic = MigrateDeprecated(object) ? false : FLAG_use_ic;
922
923  // Named lookup in the object.
924  LookupResult lookup(isolate());
925  LookupForRead(object, name, &lookup);
926
927  // If we did not find a property, check if we need to throw an exception.
928  if (!lookup.IsFound()) {
929    if (IsUndeclaredGlobal(object)) {
930      return ReferenceError("not_defined", name);
931    }
932    LOG(isolate(), SuspectReadEvent(*name, *object));
933  }
934
935  // Update inline cache and stub cache.
936  if (use_ic) UpdateCaches(&lookup, object, name);
937
938  PropertyAttributes attr;
939  // Get the property.
940  Handle<Object> result =
941      Object::GetProperty(object, object, &lookup, name, &attr);
942  RETURN_IF_EMPTY_HANDLE(isolate(), result);
943  // If the property is not present, check if we need to throw an
944  // exception.
945  if ((lookup.IsInterceptor() || lookup.IsHandler()) &&
946      attr == ABSENT && IsUndeclaredGlobal(object)) {
947    return ReferenceError("not_defined", name);
948  }
949  return *result;
950}
951
952
953static bool AddOneReceiverMapIfMissing(MapHandleList* receiver_maps,
954                                       Handle<Map> new_receiver_map) {
955  ASSERT(!new_receiver_map.is_null());
956  for (int current = 0; current < receiver_maps->length(); ++current) {
957    if (!receiver_maps->at(current).is_null() &&
958        receiver_maps->at(current).is_identical_to(new_receiver_map)) {
959      return false;
960    }
961  }
962  receiver_maps->Add(new_receiver_map);
963  return true;
964}
965
966
967bool IC::UpdatePolymorphicIC(Handle<Type> type,
968                             Handle<String> name,
969                             Handle<Code> code) {
970  if (!code->is_handler()) return false;
971  TypeHandleList types;
972  CodeHandleList handlers;
973
974  int number_of_valid_types;
975  int handler_to_overwrite = -1;
976
977  target()->FindAllTypes(&types);
978  int number_of_types = types.length();
979  number_of_valid_types = number_of_types;
980
981  for (int i = 0; i < number_of_types; i++) {
982    Handle<Type> current_type = types.at(i);
983    // Filter out deprecated maps to ensure their instances get migrated.
984    if (current_type->IsClass() && current_type->AsClass()->is_deprecated()) {
985      number_of_valid_types--;
986    // If the receiver type is already in the polymorphic IC, this indicates
987    // there was a prototoype chain failure. In that case, just overwrite the
988    // handler.
989    } else if (type->IsCurrently(current_type)) {
990      ASSERT(handler_to_overwrite == -1);
991      number_of_valid_types--;
992      handler_to_overwrite = i;
993    }
994  }
995
996  if (number_of_valid_types >= 4) return false;
997  if (number_of_types == 0) return false;
998  if (!target()->FindHandlers(&handlers, types.length())) return false;
999
1000  number_of_valid_types++;
1001  if (handler_to_overwrite >= 0) {
1002    handlers.Set(handler_to_overwrite, code);
1003  } else {
1004    types.Add(type);
1005    handlers.Add(code);
1006  }
1007
1008  Handle<Code> ic = isolate()->stub_cache()->ComputePolymorphicIC(
1009      &types, &handlers, number_of_valid_types, name, extra_ic_state());
1010  set_target(*ic);
1011  return true;
1012}
1013
1014
1015Handle<Type> IC::CurrentTypeOf(Handle<Object> object, Isolate* isolate) {
1016  Type* type = object->IsJSGlobalObject()
1017      ? Type::Constant(Handle<JSGlobalObject>::cast(object))
1018      : Type::OfCurrently(object);
1019  return handle(type, isolate);
1020}
1021
1022
1023Handle<Map> IC::TypeToMap(Type* type, Isolate* isolate) {
1024  if (type->Is(Type::Number())) return isolate->factory()->heap_number_map();
1025  if (type->Is(Type::Boolean())) return isolate->factory()->oddball_map();
1026  if (type->IsConstant()) {
1027    return handle(Handle<JSGlobalObject>::cast(type->AsConstant())->map());
1028  }
1029  ASSERT(type->IsClass());
1030  return type->AsClass();
1031}
1032
1033
1034Type* IC::MapToType(Handle<Map> map) {
1035  if (map->instance_type() == HEAP_NUMBER_TYPE) return Type::Number();
1036  // The only oddballs that can be recorded in ICs are booleans.
1037  if (map->instance_type() == ODDBALL_TYPE) return Type::Boolean();
1038  return Type::Class(map);
1039}
1040
1041
1042void IC::UpdateMonomorphicIC(Handle<Type> type,
1043                             Handle<Code> handler,
1044                             Handle<String> name) {
1045  if (!handler->is_handler()) return set_target(*handler);
1046  Handle<Code> ic = isolate()->stub_cache()->ComputeMonomorphicIC(
1047      name, type, handler, extra_ic_state());
1048  set_target(*ic);
1049}
1050
1051
1052void IC::CopyICToMegamorphicCache(Handle<String> name) {
1053  TypeHandleList types;
1054  CodeHandleList handlers;
1055  target()->FindAllTypes(&types);
1056  if (!target()->FindHandlers(&handlers, types.length())) return;
1057  for (int i = 0; i < types.length(); i++) {
1058    UpdateMegamorphicCache(*types.at(i), *name, *handlers.at(i));
1059  }
1060}
1061
1062
1063bool IC::IsTransitionOfMonomorphicTarget(Type* type) {
1064  if (!type->IsClass()) return false;
1065  Map* receiver_map = *type->AsClass();
1066  Map* current_map = target()->FindFirstMap();
1067  ElementsKind receiver_elements_kind = receiver_map->elements_kind();
1068  bool more_general_transition =
1069      IsMoreGeneralElementsKindTransition(
1070        current_map->elements_kind(), receiver_elements_kind);
1071  Map* transitioned_map = more_general_transition
1072      ? current_map->LookupElementsTransitionMap(receiver_elements_kind)
1073      : NULL;
1074
1075  return transitioned_map == receiver_map;
1076}
1077
1078
1079void IC::PatchCache(Handle<Type> type,
1080                    Handle<String> name,
1081                    Handle<Code> code) {
1082  switch (state()) {
1083    case UNINITIALIZED:
1084    case PREMONOMORPHIC:
1085    case MONOMORPHIC_PROTOTYPE_FAILURE:
1086      UpdateMonomorphicIC(type, code, name);
1087      break;
1088    case MONOMORPHIC: {
1089      // For now, call stubs are allowed to rewrite to the same stub. This
1090      // happens e.g., when the field does not contain a function.
1091      ASSERT(target()->is_call_stub() ||
1092             target()->is_keyed_call_stub() ||
1093             !target().is_identical_to(code));
1094      Code* old_handler = target()->FindFirstHandler();
1095      if (old_handler == *code && IsTransitionOfMonomorphicTarget(*type)) {
1096        UpdateMonomorphicIC(type, code, name);
1097        break;
1098      }
1099      // Fall through.
1100    }
1101    case POLYMORPHIC:
1102      if (!target()->is_keyed_stub()) {
1103        if (UpdatePolymorphicIC(type, name, code)) break;
1104        CopyICToMegamorphicCache(name);
1105      }
1106      set_target(*megamorphic_stub());
1107      // Fall through.
1108    case MEGAMORPHIC:
1109      UpdateMegamorphicCache(*type, *name, *code);
1110      break;
1111    case DEBUG_STUB:
1112      break;
1113    case GENERIC:
1114      UNREACHABLE();
1115      break;
1116  }
1117}
1118
1119
1120Handle<Code> LoadIC::SimpleFieldLoad(int offset,
1121                                     bool inobject,
1122                                     Representation representation) {
1123  if (kind() == Code::LOAD_IC) {
1124    LoadFieldStub stub(inobject, offset, representation);
1125    return stub.GetCode(isolate());
1126  } else {
1127    KeyedLoadFieldStub stub(inobject, offset, representation);
1128    return stub.GetCode(isolate());
1129  }
1130}
1131
1132
1133void LoadIC::UpdateCaches(LookupResult* lookup,
1134                          Handle<Object> object,
1135                          Handle<String> name) {
1136  if (state() == UNINITIALIZED) {
1137    // This is the first time we execute this inline cache.
1138    // Set the target to the pre monomorphic stub to delay
1139    // setting the monomorphic state.
1140    set_target(*pre_monomorphic_stub());
1141    TRACE_IC("LoadIC", name);
1142    return;
1143  }
1144
1145  Handle<Type> type = CurrentTypeOf(object, isolate());
1146  Handle<Code> code;
1147  if (!lookup->IsCacheable()) {
1148    // Bail out if the result is not cacheable.
1149    code = slow_stub();
1150  } else if (!lookup->IsProperty()) {
1151    if (kind() == Code::LOAD_IC) {
1152      code = isolate()->stub_cache()->ComputeLoadNonexistent(name, type);
1153    } else {
1154      code = slow_stub();
1155    }
1156  } else {
1157    code = ComputeHandler(lookup, object, name);
1158  }
1159
1160  PatchCache(type, name, code);
1161  TRACE_IC("LoadIC", name);
1162}
1163
1164
1165void IC::UpdateMegamorphicCache(Type* type, Name* name, Code* code) {
1166  // Cache code holding map should be consistent with
1167  // GenerateMonomorphicCacheProbe.
1168  Map* map = *TypeToMap(type, isolate());
1169  isolate()->stub_cache()->Set(name, map, code);
1170}
1171
1172
1173Handle<Code> IC::ComputeHandler(LookupResult* lookup,
1174                                Handle<Object> object,
1175                                Handle<String> name,
1176                                Handle<Object> value) {
1177  InlineCacheHolderFlag cache_holder = GetCodeCacheForObject(*object);
1178  Handle<HeapObject> stub_holder(GetCodeCacheHolder(
1179      isolate(), *object, cache_holder));
1180
1181  Handle<Code> code = isolate()->stub_cache()->FindHandler(
1182      name, handle(stub_holder->map()), kind(), cache_holder);
1183  if (!code.is_null()) return code;
1184
1185  code = CompileHandler(lookup, object, name, value, cache_holder);
1186  ASSERT(code->is_handler());
1187
1188  if (code->type() != Code::NORMAL) {
1189    HeapObject::UpdateMapCodeCache(stub_holder, name, code);
1190  }
1191
1192  return code;
1193}
1194
1195
1196Handle<Code> LoadIC::CompileHandler(LookupResult* lookup,
1197                                    Handle<Object> object,
1198                                    Handle<String> name,
1199                                    Handle<Object> unused,
1200                                    InlineCacheHolderFlag cache_holder) {
1201  if (object->IsString() && name->Equals(isolate()->heap()->length_string())) {
1202    int length_index = String::kLengthOffset / kPointerSize;
1203    return SimpleFieldLoad(length_index);
1204  }
1205
1206  Handle<Type> type = CurrentTypeOf(object, isolate());
1207  Handle<JSObject> holder(lookup->holder());
1208  LoadStubCompiler compiler(isolate(), kNoExtraICState, cache_holder, kind());
1209
1210  switch (lookup->type()) {
1211    case FIELD: {
1212      PropertyIndex field = lookup->GetFieldIndex();
1213      if (object.is_identical_to(holder)) {
1214        return SimpleFieldLoad(field.translate(holder),
1215                               field.is_inobject(holder),
1216                               lookup->representation());
1217      }
1218      return compiler.CompileLoadField(
1219          type, holder, name, field, lookup->representation());
1220    }
1221    case CONSTANT: {
1222      Handle<Object> constant(lookup->GetConstant(), isolate());
1223      // TODO(2803): Don't compute a stub for cons strings because they cannot
1224      // be embedded into code.
1225      if (constant->IsConsString()) break;
1226      return compiler.CompileLoadConstant(type, holder, name, constant);
1227    }
1228    case NORMAL:
1229      if (kind() != Code::LOAD_IC) break;
1230      if (holder->IsGlobalObject()) {
1231        Handle<GlobalObject> global = Handle<GlobalObject>::cast(holder);
1232        Handle<PropertyCell> cell(
1233            global->GetPropertyCell(lookup), isolate());
1234        Handle<Code> code = compiler.CompileLoadGlobal(
1235            type, global, cell, name, lookup->IsDontDelete());
1236        // TODO(verwaest): Move caching of these NORMAL stubs outside as well.
1237        Handle<HeapObject> stub_holder(GetCodeCacheHolder(
1238            isolate(), *object, cache_holder));
1239        HeapObject::UpdateMapCodeCache(stub_holder, name, code);
1240        return code;
1241      }
1242      // There is only one shared stub for loading normalized
1243      // properties. It does not traverse the prototype chain, so the
1244      // property must be found in the object for the stub to be
1245      // applicable.
1246      if (!object.is_identical_to(holder)) break;
1247      return isolate()->builtins()->LoadIC_Normal();
1248    case CALLBACKS: {
1249      // Use simple field loads for some well-known callback properties.
1250      if (object->IsJSObject()) {
1251        Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1252        Handle<Map> map(receiver->map());
1253        int object_offset;
1254        if (Accessors::IsJSObjectFieldAccessor(map, name, &object_offset)) {
1255          return SimpleFieldLoad(object_offset / kPointerSize);
1256        }
1257      }
1258
1259      Handle<Object> callback(lookup->GetCallbackObject(), isolate());
1260      if (callback->IsExecutableAccessorInfo()) {
1261        Handle<ExecutableAccessorInfo> info =
1262            Handle<ExecutableAccessorInfo>::cast(callback);
1263        if (v8::ToCData<Address>(info->getter()) == 0) break;
1264        if (!info->IsCompatibleReceiver(*object)) break;
1265        return compiler.CompileLoadCallback(type, holder, name, info);
1266      } else if (callback->IsAccessorPair()) {
1267        Handle<Object> getter(Handle<AccessorPair>::cast(callback)->getter(),
1268                              isolate());
1269        if (!getter->IsJSFunction()) break;
1270        if (holder->IsGlobalObject()) break;
1271        if (!holder->HasFastProperties()) break;
1272        Handle<JSFunction> function = Handle<JSFunction>::cast(getter);
1273        if (!object->IsJSObject() &&
1274            !function->IsBuiltin() &&
1275            function->shared()->is_classic_mode()) {
1276          // Calling non-strict non-builtins with a value as the receiver
1277          // requires boxing.
1278          break;
1279        }
1280        CallOptimization call_optimization(function);
1281        if (call_optimization.is_simple_api_call() &&
1282            call_optimization.IsCompatibleReceiver(*object)) {
1283          return compiler.CompileLoadCallback(
1284              type, holder, name, call_optimization);
1285        }
1286        return compiler.CompileLoadViaGetter(type, holder, name, function);
1287      }
1288      // TODO(dcarney): Handle correctly.
1289      if (callback->IsDeclaredAccessorInfo()) break;
1290      ASSERT(callback->IsForeign());
1291      // No IC support for old-style native accessors.
1292      break;
1293    }
1294    case INTERCEPTOR:
1295      ASSERT(HasInterceptorGetter(*holder));
1296      return compiler.CompileLoadInterceptor(type, holder, name);
1297    default:
1298      break;
1299  }
1300
1301  return slow_stub();
1302}
1303
1304
1305static Handle<Object> TryConvertKey(Handle<Object> key, Isolate* isolate) {
1306  // This helper implements a few common fast cases for converting
1307  // non-smi keys of keyed loads/stores to a smi or a string.
1308  if (key->IsHeapNumber()) {
1309    double value = Handle<HeapNumber>::cast(key)->value();
1310    if (std::isnan(value)) {
1311      key = isolate->factory()->nan_string();
1312    } else {
1313      int int_value = FastD2I(value);
1314      if (value == int_value && Smi::IsValid(int_value)) {
1315        key = Handle<Smi>(Smi::FromInt(int_value), isolate);
1316      }
1317    }
1318  } else if (key->IsUndefined()) {
1319    key = isolate->factory()->undefined_string();
1320  }
1321  return key;
1322}
1323
1324
1325Handle<Code> KeyedLoadIC::LoadElementStub(Handle<JSObject> receiver) {
1326  // Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS
1327  // via megamorphic stubs, since they don't have a map in their relocation info
1328  // and so the stubs can't be harvested for the object needed for a map check.
1329  if (target()->type() != Code::NORMAL) {
1330    TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type");
1331    return generic_stub();
1332  }
1333
1334  Handle<Map> receiver_map(receiver->map(), isolate());
1335  MapHandleList target_receiver_maps;
1336  if (state() == UNINITIALIZED || state() == PREMONOMORPHIC) {
1337    // Optimistically assume that ICs that haven't reached the MONOMORPHIC state
1338    // yet will do so and stay there.
1339    return isolate()->stub_cache()->ComputeKeyedLoadElement(receiver_map);
1340  }
1341
1342  if (target().is_identical_to(string_stub())) {
1343    target_receiver_maps.Add(isolate()->factory()->string_map());
1344  } else {
1345    target()->FindAllMaps(&target_receiver_maps);
1346    if (target_receiver_maps.length() == 0) {
1347      return isolate()->stub_cache()->ComputeKeyedLoadElement(receiver_map);
1348    }
1349  }
1350
1351  // The first time a receiver is seen that is a transitioned version of the
1352  // previous monomorphic receiver type, assume the new ElementsKind is the
1353  // monomorphic type. This benefits global arrays that only transition
1354  // once, and all call sites accessing them are faster if they remain
1355  // monomorphic. If this optimistic assumption is not true, the IC will
1356  // miss again and it will become polymorphic and support both the
1357  // untransitioned and transitioned maps.
1358  if (state() == MONOMORPHIC &&
1359      IsMoreGeneralElementsKindTransition(
1360          target_receiver_maps.at(0)->elements_kind(),
1361          receiver->GetElementsKind())) {
1362    return isolate()->stub_cache()->ComputeKeyedLoadElement(receiver_map);
1363  }
1364
1365  ASSERT(state() != GENERIC);
1366
1367  // Determine the list of receiver maps that this call site has seen,
1368  // adding the map that was just encountered.
1369  if (!AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map)) {
1370    // If the miss wasn't due to an unseen map, a polymorphic stub
1371    // won't help, use the generic stub.
1372    TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice");
1373    return generic_stub();
1374  }
1375
1376  // If the maximum number of receiver maps has been exceeded, use the generic
1377  // version of the IC.
1378  if (target_receiver_maps.length() > kMaxKeyedPolymorphism) {
1379    TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded");
1380    return generic_stub();
1381  }
1382
1383  return isolate()->stub_cache()->ComputeLoadElementPolymorphic(
1384      &target_receiver_maps);
1385}
1386
1387
1388MaybeObject* KeyedLoadIC::Load(Handle<Object> object, Handle<Object> key) {
1389  if (MigrateDeprecated(object)) {
1390    return Runtime::GetObjectPropertyOrFail(isolate(), object, key);
1391  }
1392
1393  MaybeObject* maybe_object = NULL;
1394  Handle<Code> stub = generic_stub();
1395
1396  // Check for values that can be converted into an internalized string directly
1397  // or is representable as a smi.
1398  key = TryConvertKey(key, isolate());
1399
1400  if (key->IsInternalizedString()) {
1401    maybe_object = LoadIC::Load(object, Handle<String>::cast(key));
1402    if (maybe_object->IsFailure()) return maybe_object;
1403  } else if (FLAG_use_ic && !object->IsAccessCheckNeeded()) {
1404    ASSERT(!object->IsJSGlobalProxy());
1405    if (object->IsString() && key->IsNumber()) {
1406      if (state() == UNINITIALIZED) stub = string_stub();
1407    } else if (object->IsJSObject()) {
1408      Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1409      if (receiver->elements()->map() ==
1410          isolate()->heap()->non_strict_arguments_elements_map()) {
1411        stub = non_strict_arguments_stub();
1412      } else if (receiver->HasIndexedInterceptor()) {
1413        stub = indexed_interceptor_stub();
1414      } else if (!key->ToSmi()->IsFailure() &&
1415                 (!target().is_identical_to(non_strict_arguments_stub()))) {
1416        stub = LoadElementStub(receiver);
1417      }
1418    }
1419  }
1420
1421  if (!is_target_set()) {
1422    if (*stub == *generic_stub()) {
1423      TRACE_GENERIC_IC(isolate(), "KeyedLoadIC", "set generic");
1424    }
1425    ASSERT(!stub.is_null());
1426    set_target(*stub);
1427    TRACE_IC("LoadIC", key);
1428  }
1429
1430  if (maybe_object != NULL) return maybe_object;
1431  return Runtime::GetObjectPropertyOrFail(isolate(), object, key);
1432}
1433
1434
1435static bool LookupForWrite(Handle<JSObject> receiver,
1436                           Handle<String> name,
1437                           Handle<Object> value,
1438                           LookupResult* lookup,
1439                           IC* ic) {
1440  Handle<JSObject> holder = receiver;
1441  receiver->Lookup(*name, lookup);
1442  if (lookup->IsFound()) {
1443    if (lookup->IsReadOnly() || !lookup->IsCacheable()) return false;
1444
1445    if (lookup->holder() == *receiver) {
1446      if (lookup->IsInterceptor() && !HasInterceptorSetter(*receiver)) {
1447        receiver->LocalLookupRealNamedProperty(*name, lookup);
1448        return lookup->IsFound() &&
1449            !lookup->IsReadOnly() &&
1450            lookup->CanHoldValue(value) &&
1451            lookup->IsCacheable();
1452      }
1453      return lookup->CanHoldValue(value);
1454    }
1455
1456    if (lookup->IsPropertyCallbacks()) return true;
1457    // JSGlobalProxy always goes via the runtime, so it's safe to cache.
1458    if (receiver->IsJSGlobalProxy()) return true;
1459    // Currently normal holders in the prototype chain are not supported. They
1460    // would require a runtime positive lookup and verification that the details
1461    // have not changed.
1462    if (lookup->IsInterceptor() || lookup->IsNormal()) return false;
1463    holder = Handle<JSObject>(lookup->holder(), lookup->isolate());
1464  }
1465
1466  // While normally LookupTransition gets passed the receiver, in this case we
1467  // pass the holder of the property that we overwrite. This keeps the holder in
1468  // the LookupResult intact so we can later use it to generate a prototype
1469  // chain check. This avoids a double lookup, but requires us to pass in the
1470  // receiver when trying to fetch extra information from the transition.
1471  receiver->map()->LookupTransition(*holder, *name, lookup);
1472  if (!lookup->IsTransition()) return false;
1473  PropertyDetails target_details = lookup->GetTransitionDetails();
1474  if (target_details.IsReadOnly()) return false;
1475
1476  // If the value that's being stored does not fit in the field that the
1477  // instance would transition to, create a new transition that fits the value.
1478  // This has to be done before generating the IC, since that IC will embed the
1479  // transition target.
1480  // Ensure the instance and its map were migrated before trying to update the
1481  // transition target.
1482  ASSERT(!receiver->map()->is_deprecated());
1483  if (!value->FitsRepresentation(target_details.representation())) {
1484    Handle<Map> target(lookup->GetTransitionTarget());
1485    Map::GeneralizeRepresentation(
1486        target, target->LastAdded(),
1487        value->OptimalRepresentation(), FORCE_FIELD);
1488    // Lookup the transition again since the transition tree may have changed
1489    // entirely by the migration above.
1490    receiver->map()->LookupTransition(*holder, *name, lookup);
1491    if (!lookup->IsTransition()) return false;
1492    ic->MarkMonomorphicPrototypeFailure();
1493  }
1494  return true;
1495}
1496
1497
1498MaybeObject* StoreIC::Store(Handle<Object> object,
1499                            Handle<String> name,
1500                            Handle<Object> value,
1501                            JSReceiver::StoreFromKeyed store_mode) {
1502  if (MigrateDeprecated(object) || object->IsJSProxy()) {
1503    Handle<Object> result = JSReceiver::SetProperty(
1504        Handle<JSReceiver>::cast(object), name, value, NONE, strict_mode());
1505    RETURN_IF_EMPTY_HANDLE(isolate(), result);
1506    return *result;
1507  }
1508
1509  // If the object is undefined or null it's illegal to try to set any
1510  // properties on it; throw a TypeError in that case.
1511  if (object->IsUndefined() || object->IsNull()) {
1512    return TypeError("non_object_property_store", object, name);
1513  }
1514
1515  // The length property of string values is read-only. Throw in strict mode.
1516  if (strict_mode() == kStrictMode && object->IsString() &&
1517      name->Equals(isolate()->heap()->length_string())) {
1518    return TypeError("strict_read_only_property", object, name);
1519  }
1520
1521  // Ignore other stores where the receiver is not a JSObject.
1522  // TODO(1475): Must check prototype chains of object wrappers.
1523  if (!object->IsJSObject()) return *value;
1524
1525  Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1526
1527  // Check if the given name is an array index.
1528  uint32_t index;
1529  if (name->AsArrayIndex(&index)) {
1530    Handle<Object> result =
1531        JSObject::SetElement(receiver, index, value, NONE, strict_mode());
1532    RETURN_IF_EMPTY_HANDLE(isolate(), result);
1533    return *value;
1534  }
1535
1536  // Observed objects are always modified through the runtime.
1537  if (FLAG_harmony_observation && receiver->map()->is_observed()) {
1538    Handle<Object> result = JSReceiver::SetProperty(
1539        receiver, name, value, NONE, strict_mode(), store_mode);
1540    RETURN_IF_EMPTY_HANDLE(isolate(), result);
1541    return *result;
1542  }
1543
1544  // Use specialized code for setting the length of arrays with fast
1545  // properties. Slow properties might indicate redefinition of the length
1546  // property. Note that when redefined using Object.freeze, it's possible
1547  // to have fast properties but a read-only length.
1548  if (FLAG_use_ic &&
1549      receiver->IsJSArray() &&
1550      name->Equals(isolate()->heap()->length_string()) &&
1551      Handle<JSArray>::cast(receiver)->AllowsSetElementsLength() &&
1552      receiver->HasFastProperties() &&
1553      !receiver->map()->is_frozen()) {
1554    Handle<Code> stub =
1555        StoreArrayLengthStub(kind(), strict_mode()).GetCode(isolate());
1556    set_target(*stub);
1557    TRACE_IC("StoreIC", name);
1558    Handle<Object> result = JSReceiver::SetProperty(
1559        receiver, name, value, NONE, strict_mode(), store_mode);
1560    RETURN_IF_EMPTY_HANDLE(isolate(), result);
1561    return *result;
1562  }
1563
1564  LookupResult lookup(isolate());
1565  bool can_store = LookupForWrite(receiver, name, value, &lookup, this);
1566  if (!can_store &&
1567      strict_mode() == kStrictMode &&
1568      !(lookup.IsProperty() && lookup.IsReadOnly()) &&
1569      IsUndeclaredGlobal(object)) {
1570    // Strict mode doesn't allow setting non-existent global property.
1571    return ReferenceError("not_defined", name);
1572  }
1573  if (FLAG_use_ic) {
1574    if (state() == UNINITIALIZED) {
1575      Handle<Code> stub = pre_monomorphic_stub();
1576      set_target(*stub);
1577      TRACE_IC("StoreIC", name);
1578    } else if (can_store) {
1579      UpdateCaches(&lookup, receiver, name, value);
1580    } else if (!name->IsCacheable(isolate()) ||
1581               lookup.IsNormal() ||
1582               (lookup.IsField() && lookup.CanHoldValue(value))) {
1583      Handle<Code> stub = generic_stub();
1584      set_target(*stub);
1585    }
1586  }
1587
1588  // Set the property.
1589  Handle<Object> result = JSReceiver::SetProperty(
1590      receiver, name, value, NONE, strict_mode(), store_mode);
1591  RETURN_IF_EMPTY_HANDLE(isolate(), result);
1592  return *result;
1593}
1594
1595
1596void StoreIC::UpdateCaches(LookupResult* lookup,
1597                           Handle<JSObject> receiver,
1598                           Handle<String> name,
1599                           Handle<Object> value) {
1600  ASSERT(lookup->IsFound());
1601
1602  // These are not cacheable, so we never see such LookupResults here.
1603  ASSERT(!lookup->IsHandler());
1604
1605  Handle<Code> code = ComputeHandler(lookup, receiver, name, value);
1606
1607  PatchCache(CurrentTypeOf(receiver, isolate()), name, code);
1608  TRACE_IC("StoreIC", name);
1609}
1610
1611
1612Handle<Code> StoreIC::CompileHandler(LookupResult* lookup,
1613                                     Handle<Object> object,
1614                                     Handle<String> name,
1615                                     Handle<Object> value,
1616                                     InlineCacheHolderFlag cache_holder) {
1617  if (object->IsJSGlobalProxy()) return slow_stub();
1618  ASSERT(cache_holder == OWN_MAP);
1619  // This is currently guaranteed by checks in StoreIC::Store.
1620  Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1621
1622  Handle<JSObject> holder(lookup->holder());
1623  // Handlers do not use strict mode.
1624  StoreStubCompiler compiler(isolate(), kNonStrictMode, kind());
1625  switch (lookup->type()) {
1626    case FIELD:
1627      return compiler.CompileStoreField(receiver, lookup, name);
1628    case TRANSITION: {
1629      // Explicitly pass in the receiver map since LookupForWrite may have
1630      // stored something else than the receiver in the holder.
1631      Handle<Map> transition(lookup->GetTransitionTarget());
1632      PropertyDetails details = transition->GetLastDescriptorDetails();
1633
1634      if (details.type() == CALLBACKS || details.attributes() != NONE) break;
1635
1636      return compiler.CompileStoreTransition(
1637          receiver, lookup, transition, name);
1638    }
1639    case NORMAL:
1640      if (kind() == Code::KEYED_STORE_IC) break;
1641      if (receiver->IsGlobalObject()) {
1642        // The stub generated for the global object picks the value directly
1643        // from the property cell. So the property must be directly on the
1644        // global object.
1645        Handle<GlobalObject> global = Handle<GlobalObject>::cast(receiver);
1646        Handle<PropertyCell> cell(global->GetPropertyCell(lookup), isolate());
1647        Handle<Type> union_type = PropertyCell::UpdatedType(cell, value);
1648        StoreGlobalStub stub(union_type->IsConstant());
1649
1650        Handle<Code> code = stub.GetCodeCopyFromTemplate(
1651            isolate(), receiver->map(), *cell);
1652        // TODO(verwaest): Move caching of these NORMAL stubs outside as well.
1653        HeapObject::UpdateMapCodeCache(receiver, name, code);
1654        return code;
1655      }
1656      ASSERT(holder.is_identical_to(receiver));
1657      return isolate()->builtins()->StoreIC_Normal();
1658    case CALLBACKS: {
1659      if (kind() == Code::KEYED_STORE_IC) break;
1660      Handle<Object> callback(lookup->GetCallbackObject(), isolate());
1661      if (callback->IsExecutableAccessorInfo()) {
1662        Handle<ExecutableAccessorInfo> info =
1663            Handle<ExecutableAccessorInfo>::cast(callback);
1664        if (v8::ToCData<Address>(info->setter()) == 0) break;
1665        if (!holder->HasFastProperties()) break;
1666        if (!info->IsCompatibleReceiver(*receiver)) break;
1667        return compiler.CompileStoreCallback(receiver, holder, name, info);
1668      } else if (callback->IsAccessorPair()) {
1669        Handle<Object> setter(
1670            Handle<AccessorPair>::cast(callback)->setter(), isolate());
1671        if (!setter->IsJSFunction()) break;
1672        if (holder->IsGlobalObject()) break;
1673        if (!holder->HasFastProperties()) break;
1674        Handle<JSFunction> function = Handle<JSFunction>::cast(setter);
1675        CallOptimization call_optimization(function);
1676        if (call_optimization.is_simple_api_call() &&
1677            call_optimization.IsCompatibleReceiver(*receiver)) {
1678          return compiler.CompileStoreCallback(
1679              receiver, holder, name, call_optimization);
1680        }
1681        return compiler.CompileStoreViaSetter(
1682            receiver, holder, name, Handle<JSFunction>::cast(setter));
1683      }
1684      // TODO(dcarney): Handle correctly.
1685      if (callback->IsDeclaredAccessorInfo()) break;
1686      ASSERT(callback->IsForeign());
1687      // No IC support for old-style native accessors.
1688      break;
1689    }
1690    case INTERCEPTOR:
1691      if (kind() == Code::KEYED_STORE_IC) break;
1692      ASSERT(HasInterceptorSetter(*receiver));
1693      return compiler.CompileStoreInterceptor(receiver, name);
1694    case CONSTANT:
1695      break;
1696    case NONEXISTENT:
1697    case HANDLER:
1698      UNREACHABLE();
1699      break;
1700  }
1701  return slow_stub();
1702}
1703
1704
1705Handle<Code> KeyedStoreIC::StoreElementStub(Handle<JSObject> receiver,
1706                                            KeyedAccessStoreMode store_mode) {
1707  // Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS
1708  // via megamorphic stubs, since they don't have a map in their relocation info
1709  // and so the stubs can't be harvested for the object needed for a map check.
1710  if (target()->type() != Code::NORMAL) {
1711    TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type");
1712    return generic_stub();
1713  }
1714
1715  Handle<Map> receiver_map(receiver->map(), isolate());
1716  if (state() == UNINITIALIZED || state() == PREMONOMORPHIC) {
1717    // Optimistically assume that ICs that haven't reached the MONOMORPHIC state
1718    // yet will do so and stay there.
1719    Handle<Map> monomorphic_map = ComputeTransitionedMap(receiver, store_mode);
1720    store_mode = GetNonTransitioningStoreMode(store_mode);
1721    return isolate()->stub_cache()->ComputeKeyedStoreElement(
1722        monomorphic_map, strict_mode(), store_mode);
1723  }
1724
1725  MapHandleList target_receiver_maps;
1726  target()->FindAllMaps(&target_receiver_maps);
1727  if (target_receiver_maps.length() == 0) {
1728    // In the case that there is a non-map-specific IC is installed (e.g. keyed
1729    // stores into properties in dictionary mode), then there will be not
1730    // receiver maps in the target.
1731    return generic_stub();
1732  }
1733
1734  // There are several special cases where an IC that is MONOMORPHIC can still
1735  // transition to a different GetNonTransitioningStoreMode IC that handles a
1736  // superset of the original IC. Handle those here if the receiver map hasn't
1737  // changed or it has transitioned to a more general kind.
1738  KeyedAccessStoreMode old_store_mode =
1739      KeyedStoreIC::GetKeyedAccessStoreMode(target()->extra_ic_state());
1740  Handle<Map> previous_receiver_map = target_receiver_maps.at(0);
1741  if (state() == MONOMORPHIC) {
1742      // If the "old" and "new" maps are in the same elements map family, stay
1743      // MONOMORPHIC and use the map for the most generic ElementsKind.
1744    Handle<Map> transitioned_receiver_map = receiver_map;
1745    if (IsTransitionStoreMode(store_mode)) {
1746      transitioned_receiver_map =
1747          ComputeTransitionedMap(receiver, store_mode);
1748    }
1749    if (IsTransitionOfMonomorphicTarget(MapToType(transitioned_receiver_map))) {
1750      // Element family is the same, use the "worst" case map.
1751      store_mode = GetNonTransitioningStoreMode(store_mode);
1752      return isolate()->stub_cache()->ComputeKeyedStoreElement(
1753          transitioned_receiver_map, strict_mode(), store_mode);
1754    } else if (*previous_receiver_map == receiver->map() &&
1755               old_store_mode == STANDARD_STORE &&
1756               (IsGrowStoreMode(store_mode) ||
1757                store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS ||
1758                store_mode == STORE_NO_TRANSITION_HANDLE_COW)) {
1759      // A "normal" IC that handles stores can switch to a version that can
1760      // grow at the end of the array, handle OOB accesses or copy COW arrays
1761      // and still stay MONOMORPHIC.
1762      return isolate()->stub_cache()->ComputeKeyedStoreElement(
1763          receiver_map, strict_mode(), store_mode);
1764    }
1765  }
1766
1767  ASSERT(state() != GENERIC);
1768
1769  bool map_added =
1770      AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map);
1771
1772  if (IsTransitionStoreMode(store_mode)) {
1773    Handle<Map> transitioned_receiver_map =
1774        ComputeTransitionedMap(receiver, store_mode);
1775    map_added |= AddOneReceiverMapIfMissing(&target_receiver_maps,
1776                                            transitioned_receiver_map);
1777  }
1778
1779  if (!map_added) {
1780    // If the miss wasn't due to an unseen map, a polymorphic stub
1781    // won't help, use the generic stub.
1782    TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice");
1783    return generic_stub();
1784  }
1785
1786  // If the maximum number of receiver maps has been exceeded, use the generic
1787  // version of the IC.
1788  if (target_receiver_maps.length() > kMaxKeyedPolymorphism) {
1789    TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded");
1790    return generic_stub();
1791  }
1792
1793  // Make sure all polymorphic handlers have the same store mode, otherwise the
1794  // generic stub must be used.
1795  store_mode = GetNonTransitioningStoreMode(store_mode);
1796  if (old_store_mode != STANDARD_STORE) {
1797    if (store_mode == STANDARD_STORE) {
1798      store_mode = old_store_mode;
1799    } else if (store_mode != old_store_mode) {
1800      TRACE_GENERIC_IC(isolate(), "KeyedIC", "store mode mismatch");
1801      return generic_stub();
1802    }
1803  }
1804
1805  // If the store mode isn't the standard mode, make sure that all polymorphic
1806  // receivers are either external arrays, or all "normal" arrays. Otherwise,
1807  // use the generic stub.
1808  if (store_mode != STANDARD_STORE) {
1809    int external_arrays = 0;
1810    for (int i = 0; i < target_receiver_maps.length(); ++i) {
1811      if (target_receiver_maps[i]->has_external_array_elements()) {
1812        external_arrays++;
1813      }
1814    }
1815    if (external_arrays != 0 &&
1816        external_arrays != target_receiver_maps.length()) {
1817      TRACE_GENERIC_IC(isolate(), "KeyedIC",
1818          "unsupported combination of external and normal arrays");
1819      return generic_stub();
1820    }
1821  }
1822
1823  return isolate()->stub_cache()->ComputeStoreElementPolymorphic(
1824      &target_receiver_maps, store_mode, strict_mode());
1825}
1826
1827
1828Handle<Map> KeyedStoreIC::ComputeTransitionedMap(
1829    Handle<JSObject> receiver,
1830    KeyedAccessStoreMode store_mode) {
1831  switch (store_mode) {
1832    case STORE_TRANSITION_SMI_TO_OBJECT:
1833    case STORE_TRANSITION_DOUBLE_TO_OBJECT:
1834    case STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT:
1835    case STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT:
1836      return JSObject::GetElementsTransitionMap(receiver, FAST_ELEMENTS);
1837    case STORE_TRANSITION_SMI_TO_DOUBLE:
1838    case STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE:
1839      return JSObject::GetElementsTransitionMap(receiver, FAST_DOUBLE_ELEMENTS);
1840    case STORE_TRANSITION_HOLEY_SMI_TO_OBJECT:
1841    case STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT:
1842    case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT:
1843    case STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT:
1844      return JSObject::GetElementsTransitionMap(receiver,
1845                                                FAST_HOLEY_ELEMENTS);
1846    case STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE:
1847    case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE:
1848      return JSObject::GetElementsTransitionMap(receiver,
1849                                                FAST_HOLEY_DOUBLE_ELEMENTS);
1850    case STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS:
1851      ASSERT(receiver->map()->has_external_array_elements());
1852      // Fall through
1853    case STORE_NO_TRANSITION_HANDLE_COW:
1854    case STANDARD_STORE:
1855    case STORE_AND_GROW_NO_TRANSITION:
1856      return Handle<Map>(receiver->map(), isolate());
1857  }
1858  return Handle<Map>::null();
1859}
1860
1861
1862bool IsOutOfBoundsAccess(Handle<JSObject> receiver,
1863                         int index) {
1864  if (receiver->IsJSArray()) {
1865    return JSArray::cast(*receiver)->length()->IsSmi() &&
1866        index >= Smi::cast(JSArray::cast(*receiver)->length())->value();
1867  }
1868  return index >= receiver->elements()->length();
1869}
1870
1871
1872KeyedAccessStoreMode KeyedStoreIC::GetStoreMode(Handle<JSObject> receiver,
1873                                                Handle<Object> key,
1874                                                Handle<Object> value) {
1875  ASSERT(!key->ToSmi()->IsFailure());
1876  Smi* smi_key = NULL;
1877  key->ToSmi()->To(&smi_key);
1878  int index = smi_key->value();
1879  bool oob_access = IsOutOfBoundsAccess(receiver, index);
1880  bool allow_growth = receiver->IsJSArray() && oob_access;
1881  if (allow_growth) {
1882    // Handle growing array in stub if necessary.
1883    if (receiver->HasFastSmiElements()) {
1884      if (value->IsHeapNumber()) {
1885        if (receiver->HasFastHoleyElements()) {
1886          return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE;
1887        } else {
1888          return STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE;
1889        }
1890      }
1891      if (value->IsHeapObject()) {
1892        if (receiver->HasFastHoleyElements()) {
1893          return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT;
1894        } else {
1895          return STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT;
1896        }
1897      }
1898    } else if (receiver->HasFastDoubleElements()) {
1899      if (!value->IsSmi() && !value->IsHeapNumber()) {
1900        if (receiver->HasFastHoleyElements()) {
1901          return STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
1902        } else {
1903          return STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT;
1904        }
1905      }
1906    }
1907    return STORE_AND_GROW_NO_TRANSITION;
1908  } else {
1909    // Handle only in-bounds elements accesses.
1910    if (receiver->HasFastSmiElements()) {
1911      if (value->IsHeapNumber()) {
1912        if (receiver->HasFastHoleyElements()) {
1913          return STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE;
1914        } else {
1915          return STORE_TRANSITION_SMI_TO_DOUBLE;
1916        }
1917      } else if (value->IsHeapObject()) {
1918        if (receiver->HasFastHoleyElements()) {
1919          return STORE_TRANSITION_HOLEY_SMI_TO_OBJECT;
1920        } else {
1921          return STORE_TRANSITION_SMI_TO_OBJECT;
1922        }
1923      }
1924    } else if (receiver->HasFastDoubleElements()) {
1925      if (!value->IsSmi() && !value->IsHeapNumber()) {
1926        if (receiver->HasFastHoleyElements()) {
1927          return STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
1928        } else {
1929          return STORE_TRANSITION_DOUBLE_TO_OBJECT;
1930        }
1931      }
1932    }
1933    if (!FLAG_trace_external_array_abuse &&
1934        receiver->map()->has_external_array_elements() && oob_access) {
1935      return STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS;
1936    }
1937    Heap* heap = receiver->GetHeap();
1938    if (receiver->elements()->map() == heap->fixed_cow_array_map()) {
1939      return STORE_NO_TRANSITION_HANDLE_COW;
1940    } else {
1941      return STANDARD_STORE;
1942    }
1943  }
1944}
1945
1946
1947MaybeObject* KeyedStoreIC::Store(Handle<Object> object,
1948                                 Handle<Object> key,
1949                                 Handle<Object> value) {
1950  if (MigrateDeprecated(object)) {
1951    Handle<Object> result = Runtime::SetObjectProperty(isolate(), object,
1952                                                       key,
1953                                                       value,
1954                                                       NONE,
1955                                                       strict_mode());
1956    RETURN_IF_EMPTY_HANDLE(isolate(), result);
1957    return *result;
1958  }
1959
1960  // Check for values that can be converted into an internalized string directly
1961  // or is representable as a smi.
1962  key = TryConvertKey(key, isolate());
1963
1964  MaybeObject* maybe_object = NULL;
1965  Handle<Code> stub = generic_stub();
1966
1967  if (key->IsInternalizedString()) {
1968    maybe_object = StoreIC::Store(object,
1969                                  Handle<String>::cast(key),
1970                                  value,
1971                                  JSReceiver::MAY_BE_STORE_FROM_KEYED);
1972    if (maybe_object->IsFailure()) return maybe_object;
1973  } else {
1974    bool use_ic = FLAG_use_ic && !object->IsAccessCheckNeeded() &&
1975        !(FLAG_harmony_observation && object->IsJSObject() &&
1976          JSObject::cast(*object)->map()->is_observed());
1977    if (use_ic && !object->IsSmi()) {
1978      // Don't use ICs for maps of the objects in Array's prototype chain. We
1979      // expect to be able to trap element sets to objects with those maps in
1980      // the runtime to enable optimization of element hole access.
1981      Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object);
1982      if (heap_object->map()->IsMapInArrayPrototypeChain()) use_ic = false;
1983    }
1984
1985    if (use_ic) {
1986      ASSERT(!object->IsJSGlobalProxy());
1987
1988      if (object->IsJSObject()) {
1989        Handle<JSObject> receiver = Handle<JSObject>::cast(object);
1990        bool key_is_smi_like = key->IsSmi() || !key->ToSmi()->IsFailure();
1991        if (receiver->elements()->map() ==
1992            isolate()->heap()->non_strict_arguments_elements_map()) {
1993          stub = non_strict_arguments_stub();
1994        } else if (key_is_smi_like &&
1995                   !(target().is_identical_to(non_strict_arguments_stub()))) {
1996          // We should go generic if receiver isn't a dictionary, but our
1997          // prototype chain does have dictionary elements. This ensures that
1998          // other non-dictionary receivers in the polymorphic case benefit
1999          // from fast path keyed stores.
2000          if (!(receiver->map()->DictionaryElementsInPrototypeChainOnly())) {
2001            KeyedAccessStoreMode store_mode =
2002                GetStoreMode(receiver, key, value);
2003            stub = StoreElementStub(receiver, store_mode);
2004          }
2005        }
2006      }
2007    }
2008  }
2009
2010  if (!is_target_set()) {
2011    if (*stub == *generic_stub()) {
2012      TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "set generic");
2013    }
2014    ASSERT(!stub.is_null());
2015    set_target(*stub);
2016    TRACE_IC("StoreIC", key);
2017  }
2018
2019  if (maybe_object) return maybe_object;
2020  Handle<Object> result = Runtime::SetObjectProperty(isolate(), object, key,
2021                                                     value,
2022                                                     NONE,
2023                                                     strict_mode());
2024  RETURN_IF_EMPTY_HANDLE(isolate(), result);
2025  return *result;
2026}
2027
2028
2029#undef TRACE_IC
2030
2031
2032// ----------------------------------------------------------------------------
2033// Static IC stub generators.
2034//
2035
2036// Used from ic-<arch>.cc.
2037RUNTIME_FUNCTION(MaybeObject*, CallIC_Miss) {
2038  HandleScope scope(isolate);
2039  ASSERT(args.length() == 2);
2040  CallIC ic(isolate);
2041  Handle<Object> receiver = args.at<Object>(0);
2042  Handle<String> key = args.at<String>(1);
2043  ic.UpdateState(receiver, key);
2044  MaybeObject* maybe_result = ic.LoadFunction(receiver, key);
2045  JSFunction* raw_function;
2046  if (!maybe_result->To(&raw_function)) return maybe_result;
2047
2048  // The first time the inline cache is updated may be the first time the
2049  // function it references gets called. If the function is lazily compiled
2050  // then the first call will trigger a compilation. We check for this case
2051  // and we do the compilation immediately, instead of waiting for the stub
2052  // currently attached to the JSFunction object to trigger compilation.
2053  if (raw_function->is_compiled()) return raw_function;
2054
2055  Handle<JSFunction> function(raw_function);
2056  JSFunction::CompileLazy(function, CLEAR_EXCEPTION);
2057  return *function;
2058}
2059
2060
2061// Used from ic-<arch>.cc.
2062RUNTIME_FUNCTION(MaybeObject*, KeyedCallIC_Miss) {
2063  HandleScope scope(isolate);
2064  ASSERT(args.length() == 2);
2065  KeyedCallIC ic(isolate);
2066  Handle<Object> receiver = args.at<Object>(0);
2067  Handle<Object> key = args.at<Object>(1);
2068  ic.UpdateState(receiver, key);
2069  MaybeObject* maybe_result = ic.LoadFunction(receiver, key);
2070  // Result could be a function or a failure.
2071  JSFunction* raw_function = NULL;
2072  if (!maybe_result->To(&raw_function)) return maybe_result;
2073
2074  if (raw_function->is_compiled()) return raw_function;
2075
2076  Handle<JSFunction> function(raw_function, isolate);
2077  JSFunction::CompileLazy(function, CLEAR_EXCEPTION);
2078  return *function;
2079}
2080
2081
2082// Used from ic-<arch>.cc.
2083RUNTIME_FUNCTION(MaybeObject*, LoadIC_Miss) {
2084  HandleScope scope(isolate);
2085  ASSERT(args.length() == 2);
2086  LoadIC ic(IC::NO_EXTRA_FRAME, isolate);
2087  Handle<Object> receiver = args.at<Object>(0);
2088  Handle<String> key = args.at<String>(1);
2089  ic.UpdateState(receiver, key);
2090  return ic.Load(receiver, key);
2091}
2092
2093
2094// Used from ic-<arch>.cc
2095RUNTIME_FUNCTION(MaybeObject*, KeyedLoadIC_Miss) {
2096  HandleScope scope(isolate);
2097  ASSERT(args.length() == 2);
2098  KeyedLoadIC ic(IC::NO_EXTRA_FRAME, isolate);
2099  Handle<Object> receiver = args.at<Object>(0);
2100  Handle<Object> key = args.at<Object>(1);
2101  ic.UpdateState(receiver, key);
2102  return ic.Load(receiver, key);
2103}
2104
2105
2106RUNTIME_FUNCTION(MaybeObject*, KeyedLoadIC_MissFromStubFailure) {
2107  HandleScope scope(isolate);
2108  ASSERT(args.length() == 2);
2109  KeyedLoadIC ic(IC::EXTRA_CALL_FRAME, isolate);
2110  Handle<Object> receiver = args.at<Object>(0);
2111  Handle<Object> key = args.at<Object>(1);
2112  ic.UpdateState(receiver, key);
2113  return ic.Load(receiver, key);
2114}
2115
2116
2117// Used from ic-<arch>.cc.
2118RUNTIME_FUNCTION(MaybeObject*, StoreIC_Miss) {
2119  HandleScope scope(isolate);
2120  ASSERT(args.length() == 3);
2121  StoreIC ic(IC::NO_EXTRA_FRAME, isolate);
2122  Handle<Object> receiver = args.at<Object>(0);
2123  Handle<String> key = args.at<String>(1);
2124  ic.UpdateState(receiver, key);
2125  return ic.Store(receiver, key, args.at<Object>(2));
2126}
2127
2128
2129RUNTIME_FUNCTION(MaybeObject*, StoreIC_MissFromStubFailure) {
2130  HandleScope scope(isolate);
2131  ASSERT(args.length() == 3);
2132  StoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
2133  Handle<Object> receiver = args.at<Object>(0);
2134  Handle<String> key = args.at<String>(1);
2135  ic.UpdateState(receiver, key);
2136  return ic.Store(receiver, key, args.at<Object>(2));
2137}
2138
2139
2140RUNTIME_FUNCTION(MaybeObject*, KeyedCallIC_MissFromStubFailure) {
2141  HandleScope scope(isolate);
2142  ASSERT(args.length() == 2);
2143  KeyedCallIC ic(isolate);
2144  Arguments* caller_args = reinterpret_cast<Arguments*>(args[0]);
2145  Handle<Object> key = args.at<Object>(1);
2146  Handle<Object> receiver((*caller_args)[0], isolate);
2147
2148  ic.UpdateState(receiver, key);
2149  MaybeObject* maybe_result = ic.LoadFunction(receiver, key);
2150  // Result could be a function or a failure.
2151  JSFunction* raw_function = NULL;
2152  if (!maybe_result->To(&raw_function)) return maybe_result;
2153
2154  if (raw_function->is_compiled()) return raw_function;
2155
2156  Handle<JSFunction> function(raw_function, isolate);
2157  JSFunction::CompileLazy(function, CLEAR_EXCEPTION);
2158  return *function;
2159}
2160
2161
2162RUNTIME_FUNCTION(MaybeObject*, StoreIC_ArrayLength) {
2163  SealHandleScope shs(isolate);
2164
2165  ASSERT(args.length() == 2);
2166  JSArray* receiver = JSArray::cast(args[0]);
2167  Object* len = args[1];
2168
2169  // The generated code should filter out non-Smis before we get here.
2170  ASSERT(len->IsSmi());
2171
2172#ifdef DEBUG
2173  // The length property has to be a writable callback property.
2174  LookupResult debug_lookup(isolate);
2175  receiver->LocalLookup(isolate->heap()->length_string(), &debug_lookup);
2176  ASSERT(debug_lookup.IsPropertyCallbacks() && !debug_lookup.IsReadOnly());
2177#endif
2178
2179  Object* result;
2180  MaybeObject* maybe_result = receiver->SetElementsLength(len);
2181  if (!maybe_result->To(&result)) return maybe_result;
2182
2183  return len;
2184}
2185
2186
2187// Extend storage is called in a store inline cache when
2188// it is necessary to extend the properties array of a
2189// JSObject.
2190RUNTIME_FUNCTION(MaybeObject*, SharedStoreIC_ExtendStorage) {
2191  SealHandleScope shs(isolate);
2192  ASSERT(args.length() == 3);
2193
2194  // Convert the parameters
2195  JSObject* object = JSObject::cast(args[0]);
2196  Map* transition = Map::cast(args[1]);
2197  Object* value = args[2];
2198
2199  // Check the object has run out out property space.
2200  ASSERT(object->HasFastProperties());
2201  ASSERT(object->map()->unused_property_fields() == 0);
2202
2203  // Expand the properties array.
2204  FixedArray* old_storage = object->properties();
2205  int new_unused = transition->unused_property_fields();
2206  int new_size = old_storage->length() + new_unused + 1;
2207  Object* result;
2208  MaybeObject* maybe_result = old_storage->CopySize(new_size);
2209  if (!maybe_result->ToObject(&result)) return maybe_result;
2210
2211  FixedArray* new_storage = FixedArray::cast(result);
2212
2213  Object* to_store = value;
2214
2215  if (FLAG_track_double_fields) {
2216    DescriptorArray* descriptors = transition->instance_descriptors();
2217    PropertyDetails details = descriptors->GetDetails(transition->LastAdded());
2218    if (details.representation().IsDouble()) {
2219      MaybeObject* maybe_storage =
2220          isolate->heap()->AllocateHeapNumber(value->Number());
2221      if (!maybe_storage->To(&to_store)) return maybe_storage;
2222    }
2223  }
2224
2225  new_storage->set(old_storage->length(), to_store);
2226
2227  // Set the new property value and do the map transition.
2228  object->set_properties(new_storage);
2229  object->set_map(transition);
2230
2231  // Return the stored value.
2232  return value;
2233}
2234
2235
2236// Used from ic-<arch>.cc.
2237RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_Miss) {
2238  HandleScope scope(isolate);
2239  ASSERT(args.length() == 3);
2240  KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate);
2241  Handle<Object> receiver = args.at<Object>(0);
2242  Handle<Object> key = args.at<Object>(1);
2243  ic.UpdateState(receiver, key);
2244  return ic.Store(receiver, key, args.at<Object>(2));
2245}
2246
2247
2248RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_MissFromStubFailure) {
2249  HandleScope scope(isolate);
2250  ASSERT(args.length() == 3);
2251  KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
2252  Handle<Object> receiver = args.at<Object>(0);
2253  Handle<Object> key = args.at<Object>(1);
2254  ic.UpdateState(receiver, key);
2255  return ic.Store(receiver, key, args.at<Object>(2));
2256}
2257
2258
2259RUNTIME_FUNCTION(MaybeObject*, StoreIC_Slow) {
2260  HandleScope scope(isolate);
2261  ASSERT(args.length() == 3);
2262  StoreIC ic(IC::NO_EXTRA_FRAME, isolate);
2263  Handle<Object> object = args.at<Object>(0);
2264  Handle<Object> key = args.at<Object>(1);
2265  Handle<Object> value = args.at<Object>(2);
2266  StrictModeFlag strict_mode = ic.strict_mode();
2267  Handle<Object> result = Runtime::SetObjectProperty(isolate, object, key,
2268                                                     value,
2269                                                     NONE,
2270                                                     strict_mode);
2271  RETURN_IF_EMPTY_HANDLE(isolate, result);
2272  return *result;
2273}
2274
2275
2276RUNTIME_FUNCTION(MaybeObject*, KeyedStoreIC_Slow) {
2277  HandleScope scope(isolate);
2278  ASSERT(args.length() == 3);
2279  KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate);
2280  Handle<Object> object = args.at<Object>(0);
2281  Handle<Object> key = args.at<Object>(1);
2282  Handle<Object> value = args.at<Object>(2);
2283  StrictModeFlag strict_mode = ic.strict_mode();
2284  Handle<Object> result = Runtime::SetObjectProperty(isolate, object, key,
2285                                                     value,
2286                                                     NONE,
2287                                                     strict_mode);
2288  RETURN_IF_EMPTY_HANDLE(isolate, result);
2289  return *result;
2290}
2291
2292
2293RUNTIME_FUNCTION(MaybeObject*, ElementsTransitionAndStoreIC_Miss) {
2294  HandleScope scope(isolate);
2295  ASSERT(args.length() == 4);
2296  KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
2297  Handle<Object> value = args.at<Object>(0);
2298  Handle<Map> map = args.at<Map>(1);
2299  Handle<Object> key = args.at<Object>(2);
2300  Handle<Object> object = args.at<Object>(3);
2301  StrictModeFlag strict_mode = ic.strict_mode();
2302  if (object->IsJSObject()) {
2303    JSObject::TransitionElementsKind(Handle<JSObject>::cast(object),
2304                                     map->elements_kind());
2305  }
2306  Handle<Object> result = Runtime::SetObjectProperty(isolate, object, key,
2307                                                     value,
2308                                                     NONE,
2309                                                     strict_mode);
2310  RETURN_IF_EMPTY_HANDLE(isolate, result);
2311  return *result;
2312}
2313
2314
2315BinaryOpIC::State::State(ExtraICState extra_ic_state) {
2316  // We don't deserialize the SSE2 Field, since this is only used to be able
2317  // to include SSE2 as well as non-SSE2 versions in the snapshot. For code
2318  // generation we always want it to reflect the current state.
2319  op_ = static_cast<Token::Value>(
2320      FIRST_TOKEN + OpField::decode(extra_ic_state));
2321  mode_ = OverwriteModeField::decode(extra_ic_state);
2322  fixed_right_arg_ = Maybe<int>(
2323      HasFixedRightArgField::decode(extra_ic_state),
2324      1 << FixedRightArgValueField::decode(extra_ic_state));
2325  left_kind_ = LeftKindField::decode(extra_ic_state);
2326  if (fixed_right_arg_.has_value) {
2327    right_kind_ = Smi::IsValid(fixed_right_arg_.value) ? SMI : INT32;
2328  } else {
2329    right_kind_ = RightKindField::decode(extra_ic_state);
2330  }
2331  result_kind_ = ResultKindField::decode(extra_ic_state);
2332  ASSERT_LE(FIRST_TOKEN, op_);
2333  ASSERT_LE(op_, LAST_TOKEN);
2334}
2335
2336
2337ExtraICState BinaryOpIC::State::GetExtraICState() const {
2338  bool sse2 = (Max(result_kind_, Max(left_kind_, right_kind_)) > SMI &&
2339               CpuFeatures::IsSafeForSnapshot(SSE2));
2340  ExtraICState extra_ic_state =
2341      SSE2Field::encode(sse2) |
2342      OpField::encode(op_ - FIRST_TOKEN) |
2343      OverwriteModeField::encode(mode_) |
2344      LeftKindField::encode(left_kind_) |
2345      ResultKindField::encode(result_kind_) |
2346      HasFixedRightArgField::encode(fixed_right_arg_.has_value);
2347  if (fixed_right_arg_.has_value) {
2348    extra_ic_state = FixedRightArgValueField::update(
2349        extra_ic_state, WhichPowerOf2(fixed_right_arg_.value));
2350  } else {
2351    extra_ic_state = RightKindField::update(extra_ic_state, right_kind_);
2352  }
2353  return extra_ic_state;
2354}
2355
2356
2357// static
2358void BinaryOpIC::State::GenerateAheadOfTime(
2359    Isolate* isolate, void (*Generate)(Isolate*, const State&)) {
2360  // TODO(olivf) We should investigate why adding stubs to the snapshot is so
2361  // expensive at runtime. When solved we should be able to add most binops to
2362  // the snapshot instead of hand-picking them.
2363  // Generated list of commonly used stubs
2364#define GENERATE(op, left_kind, right_kind, result_kind, mode)  \
2365  do {                                                          \
2366    State state(op, mode);                                      \
2367    state.left_kind_ = left_kind;                               \
2368    state.fixed_right_arg_.has_value = false;                   \
2369    state.right_kind_ = right_kind;                             \
2370    state.result_kind_ = result_kind;                           \
2371    Generate(isolate, state);                                   \
2372  } while (false)
2373  GENERATE(Token::ADD, INT32, INT32, INT32, NO_OVERWRITE);
2374  GENERATE(Token::ADD, INT32, INT32, INT32, OVERWRITE_LEFT);
2375  GENERATE(Token::ADD, INT32, INT32, NUMBER, NO_OVERWRITE);
2376  GENERATE(Token::ADD, INT32, INT32, NUMBER, OVERWRITE_LEFT);
2377  GENERATE(Token::ADD, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2378  GENERATE(Token::ADD, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
2379  GENERATE(Token::ADD, INT32, NUMBER, NUMBER, OVERWRITE_RIGHT);
2380  GENERATE(Token::ADD, INT32, SMI, INT32, NO_OVERWRITE);
2381  GENERATE(Token::ADD, INT32, SMI, INT32, OVERWRITE_LEFT);
2382  GENERATE(Token::ADD, INT32, SMI, INT32, OVERWRITE_RIGHT);
2383  GENERATE(Token::ADD, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2384  GENERATE(Token::ADD, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2385  GENERATE(Token::ADD, NUMBER, INT32, NUMBER, OVERWRITE_RIGHT);
2386  GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2387  GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2388  GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
2389  GENERATE(Token::ADD, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2390  GENERATE(Token::ADD, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2391  GENERATE(Token::ADD, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
2392  GENERATE(Token::ADD, SMI, INT32, INT32, NO_OVERWRITE);
2393  GENERATE(Token::ADD, SMI, INT32, INT32, OVERWRITE_LEFT);
2394  GENERATE(Token::ADD, SMI, INT32, NUMBER, NO_OVERWRITE);
2395  GENERATE(Token::ADD, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2396  GENERATE(Token::ADD, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2397  GENERATE(Token::ADD, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2398  GENERATE(Token::ADD, SMI, SMI, INT32, OVERWRITE_LEFT);
2399  GENERATE(Token::ADD, SMI, SMI, SMI, OVERWRITE_RIGHT);
2400  GENERATE(Token::BIT_AND, INT32, INT32, INT32, NO_OVERWRITE);
2401  GENERATE(Token::BIT_AND, INT32, INT32, INT32, OVERWRITE_LEFT);
2402  GENERATE(Token::BIT_AND, INT32, INT32, INT32, OVERWRITE_RIGHT);
2403  GENERATE(Token::BIT_AND, INT32, INT32, SMI, NO_OVERWRITE);
2404  GENERATE(Token::BIT_AND, INT32, INT32, SMI, OVERWRITE_RIGHT);
2405  GENERATE(Token::BIT_AND, INT32, SMI, INT32, NO_OVERWRITE);
2406  GENERATE(Token::BIT_AND, INT32, SMI, INT32, OVERWRITE_RIGHT);
2407  GENERATE(Token::BIT_AND, INT32, SMI, SMI, NO_OVERWRITE);
2408  GENERATE(Token::BIT_AND, INT32, SMI, SMI, OVERWRITE_LEFT);
2409  GENERATE(Token::BIT_AND, INT32, SMI, SMI, OVERWRITE_RIGHT);
2410  GENERATE(Token::BIT_AND, NUMBER, INT32, INT32, OVERWRITE_RIGHT);
2411  GENERATE(Token::BIT_AND, NUMBER, SMI, SMI, NO_OVERWRITE);
2412  GENERATE(Token::BIT_AND, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
2413  GENERATE(Token::BIT_AND, SMI, INT32, INT32, NO_OVERWRITE);
2414  GENERATE(Token::BIT_AND, SMI, INT32, SMI, OVERWRITE_RIGHT);
2415  GENERATE(Token::BIT_AND, SMI, NUMBER, SMI, OVERWRITE_RIGHT);
2416  GENERATE(Token::BIT_AND, SMI, SMI, SMI, NO_OVERWRITE);
2417  GENERATE(Token::BIT_AND, SMI, SMI, SMI, OVERWRITE_LEFT);
2418  GENERATE(Token::BIT_AND, SMI, SMI, SMI, OVERWRITE_RIGHT);
2419  GENERATE(Token::BIT_OR, INT32, INT32, INT32, OVERWRITE_LEFT);
2420  GENERATE(Token::BIT_OR, INT32, INT32, INT32, OVERWRITE_RIGHT);
2421  GENERATE(Token::BIT_OR, INT32, INT32, SMI, OVERWRITE_LEFT);
2422  GENERATE(Token::BIT_OR, INT32, SMI, INT32, NO_OVERWRITE);
2423  GENERATE(Token::BIT_OR, INT32, SMI, INT32, OVERWRITE_LEFT);
2424  GENERATE(Token::BIT_OR, INT32, SMI, INT32, OVERWRITE_RIGHT);
2425  GENERATE(Token::BIT_OR, INT32, SMI, SMI, NO_OVERWRITE);
2426  GENERATE(Token::BIT_OR, INT32, SMI, SMI, OVERWRITE_RIGHT);
2427  GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, NO_OVERWRITE);
2428  GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, OVERWRITE_LEFT);
2429  GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, OVERWRITE_RIGHT);
2430  GENERATE(Token::BIT_OR, NUMBER, SMI, SMI, NO_OVERWRITE);
2431  GENERATE(Token::BIT_OR, NUMBER, SMI, SMI, OVERWRITE_LEFT);
2432  GENERATE(Token::BIT_OR, SMI, INT32, INT32, OVERWRITE_LEFT);
2433  GENERATE(Token::BIT_OR, SMI, INT32, INT32, OVERWRITE_RIGHT);
2434  GENERATE(Token::BIT_OR, SMI, INT32, SMI, OVERWRITE_RIGHT);
2435  GENERATE(Token::BIT_OR, SMI, SMI, SMI, OVERWRITE_LEFT);
2436  GENERATE(Token::BIT_OR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2437  GENERATE(Token::BIT_XOR, INT32, INT32, INT32, NO_OVERWRITE);
2438  GENERATE(Token::BIT_XOR, INT32, INT32, INT32, OVERWRITE_LEFT);
2439  GENERATE(Token::BIT_XOR, INT32, INT32, INT32, OVERWRITE_RIGHT);
2440  GENERATE(Token::BIT_XOR, INT32, INT32, SMI, NO_OVERWRITE);
2441  GENERATE(Token::BIT_XOR, INT32, INT32, SMI, OVERWRITE_LEFT);
2442  GENERATE(Token::BIT_XOR, INT32, NUMBER, SMI, NO_OVERWRITE);
2443  GENERATE(Token::BIT_XOR, INT32, SMI, INT32, NO_OVERWRITE);
2444  GENERATE(Token::BIT_XOR, INT32, SMI, INT32, OVERWRITE_LEFT);
2445  GENERATE(Token::BIT_XOR, INT32, SMI, INT32, OVERWRITE_RIGHT);
2446  GENERATE(Token::BIT_XOR, NUMBER, INT32, INT32, NO_OVERWRITE);
2447  GENERATE(Token::BIT_XOR, NUMBER, SMI, INT32, NO_OVERWRITE);
2448  GENERATE(Token::BIT_XOR, NUMBER, SMI, SMI, NO_OVERWRITE);
2449  GENERATE(Token::BIT_XOR, SMI, INT32, INT32, NO_OVERWRITE);
2450  GENERATE(Token::BIT_XOR, SMI, INT32, INT32, OVERWRITE_LEFT);
2451  GENERATE(Token::BIT_XOR, SMI, INT32, SMI, OVERWRITE_LEFT);
2452  GENERATE(Token::BIT_XOR, SMI, SMI, SMI, NO_OVERWRITE);
2453  GENERATE(Token::BIT_XOR, SMI, SMI, SMI, OVERWRITE_LEFT);
2454  GENERATE(Token::BIT_XOR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2455  GENERATE(Token::DIV, INT32, INT32, INT32, NO_OVERWRITE);
2456  GENERATE(Token::DIV, INT32, INT32, NUMBER, NO_OVERWRITE);
2457  GENERATE(Token::DIV, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2458  GENERATE(Token::DIV, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
2459  GENERATE(Token::DIV, INT32, SMI, INT32, NO_OVERWRITE);
2460  GENERATE(Token::DIV, INT32, SMI, NUMBER, NO_OVERWRITE);
2461  GENERATE(Token::DIV, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2462  GENERATE(Token::DIV, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2463  GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2464  GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2465  GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
2466  GENERATE(Token::DIV, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2467  GENERATE(Token::DIV, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2468  GENERATE(Token::DIV, SMI, INT32, INT32, NO_OVERWRITE);
2469  GENERATE(Token::DIV, SMI, INT32, NUMBER, NO_OVERWRITE);
2470  GENERATE(Token::DIV, SMI, INT32, NUMBER, OVERWRITE_LEFT);
2471  GENERATE(Token::DIV, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2472  GENERATE(Token::DIV, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2473  GENERATE(Token::DIV, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2474  GENERATE(Token::DIV, SMI, SMI, NUMBER, NO_OVERWRITE);
2475  GENERATE(Token::DIV, SMI, SMI, NUMBER, OVERWRITE_LEFT);
2476  GENERATE(Token::DIV, SMI, SMI, NUMBER, OVERWRITE_RIGHT);
2477  GENERATE(Token::DIV, SMI, SMI, SMI, NO_OVERWRITE);
2478  GENERATE(Token::DIV, SMI, SMI, SMI, OVERWRITE_LEFT);
2479  GENERATE(Token::DIV, SMI, SMI, SMI, OVERWRITE_RIGHT);
2480  GENERATE(Token::MOD, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2481  GENERATE(Token::MOD, SMI, SMI, SMI, NO_OVERWRITE);
2482  GENERATE(Token::MOD, SMI, SMI, SMI, OVERWRITE_LEFT);
2483  GENERATE(Token::MUL, INT32, INT32, INT32, NO_OVERWRITE);
2484  GENERATE(Token::MUL, INT32, INT32, NUMBER, NO_OVERWRITE);
2485  GENERATE(Token::MUL, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2486  GENERATE(Token::MUL, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
2487  GENERATE(Token::MUL, INT32, SMI, INT32, NO_OVERWRITE);
2488  GENERATE(Token::MUL, INT32, SMI, INT32, OVERWRITE_LEFT);
2489  GENERATE(Token::MUL, INT32, SMI, NUMBER, NO_OVERWRITE);
2490  GENERATE(Token::MUL, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2491  GENERATE(Token::MUL, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2492  GENERATE(Token::MUL, NUMBER, INT32, NUMBER, OVERWRITE_RIGHT);
2493  GENERATE(Token::MUL, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2494  GENERATE(Token::MUL, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2495  GENERATE(Token::MUL, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2496  GENERATE(Token::MUL, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2497  GENERATE(Token::MUL, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
2498  GENERATE(Token::MUL, SMI, INT32, INT32, NO_OVERWRITE);
2499  GENERATE(Token::MUL, SMI, INT32, INT32, OVERWRITE_LEFT);
2500  GENERATE(Token::MUL, SMI, INT32, NUMBER, NO_OVERWRITE);
2501  GENERATE(Token::MUL, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2502  GENERATE(Token::MUL, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2503  GENERATE(Token::MUL, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2504  GENERATE(Token::MUL, SMI, SMI, INT32, NO_OVERWRITE);
2505  GENERATE(Token::MUL, SMI, SMI, NUMBER, NO_OVERWRITE);
2506  GENERATE(Token::MUL, SMI, SMI, NUMBER, OVERWRITE_LEFT);
2507  GENERATE(Token::MUL, SMI, SMI, SMI, NO_OVERWRITE);
2508  GENERATE(Token::MUL, SMI, SMI, SMI, OVERWRITE_LEFT);
2509  GENERATE(Token::MUL, SMI, SMI, SMI, OVERWRITE_RIGHT);
2510  GENERATE(Token::SAR, INT32, SMI, INT32, OVERWRITE_RIGHT);
2511  GENERATE(Token::SAR, INT32, SMI, SMI, NO_OVERWRITE);
2512  GENERATE(Token::SAR, INT32, SMI, SMI, OVERWRITE_RIGHT);
2513  GENERATE(Token::SAR, NUMBER, SMI, SMI, NO_OVERWRITE);
2514  GENERATE(Token::SAR, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
2515  GENERATE(Token::SAR, SMI, SMI, SMI, OVERWRITE_LEFT);
2516  GENERATE(Token::SAR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2517  GENERATE(Token::SHL, INT32, SMI, INT32, NO_OVERWRITE);
2518  GENERATE(Token::SHL, INT32, SMI, INT32, OVERWRITE_RIGHT);
2519  GENERATE(Token::SHL, INT32, SMI, SMI, NO_OVERWRITE);
2520  GENERATE(Token::SHL, INT32, SMI, SMI, OVERWRITE_RIGHT);
2521  GENERATE(Token::SHL, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
2522  GENERATE(Token::SHL, SMI, SMI, INT32, NO_OVERWRITE);
2523  GENERATE(Token::SHL, SMI, SMI, INT32, OVERWRITE_LEFT);
2524  GENERATE(Token::SHL, SMI, SMI, INT32, OVERWRITE_RIGHT);
2525  GENERATE(Token::SHL, SMI, SMI, SMI, NO_OVERWRITE);
2526  GENERATE(Token::SHL, SMI, SMI, SMI, OVERWRITE_LEFT);
2527  GENERATE(Token::SHL, SMI, SMI, SMI, OVERWRITE_RIGHT);
2528  GENERATE(Token::SHR, INT32, SMI, SMI, NO_OVERWRITE);
2529  GENERATE(Token::SHR, INT32, SMI, SMI, OVERWRITE_LEFT);
2530  GENERATE(Token::SHR, INT32, SMI, SMI, OVERWRITE_RIGHT);
2531  GENERATE(Token::SHR, NUMBER, SMI, SMI, NO_OVERWRITE);
2532  GENERATE(Token::SHR, NUMBER, SMI, SMI, OVERWRITE_LEFT);
2533  GENERATE(Token::SHR, NUMBER, SMI, INT32, OVERWRITE_RIGHT);
2534  GENERATE(Token::SHR, SMI, SMI, SMI, NO_OVERWRITE);
2535  GENERATE(Token::SHR, SMI, SMI, SMI, OVERWRITE_LEFT);
2536  GENERATE(Token::SHR, SMI, SMI, SMI, OVERWRITE_RIGHT);
2537  GENERATE(Token::SUB, INT32, INT32, INT32, NO_OVERWRITE);
2538  GENERATE(Token::SUB, INT32, INT32, INT32, OVERWRITE_LEFT);
2539  GENERATE(Token::SUB, INT32, NUMBER, NUMBER, NO_OVERWRITE);
2540  GENERATE(Token::SUB, INT32, NUMBER, NUMBER, OVERWRITE_RIGHT);
2541  GENERATE(Token::SUB, INT32, SMI, INT32, OVERWRITE_LEFT);
2542  GENERATE(Token::SUB, INT32, SMI, INT32, OVERWRITE_RIGHT);
2543  GENERATE(Token::SUB, NUMBER, INT32, NUMBER, NO_OVERWRITE);
2544  GENERATE(Token::SUB, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
2545  GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
2546  GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
2547  GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
2548  GENERATE(Token::SUB, NUMBER, SMI, NUMBER, NO_OVERWRITE);
2549  GENERATE(Token::SUB, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
2550  GENERATE(Token::SUB, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
2551  GENERATE(Token::SUB, SMI, INT32, INT32, NO_OVERWRITE);
2552  GENERATE(Token::SUB, SMI, NUMBER, NUMBER, NO_OVERWRITE);
2553  GENERATE(Token::SUB, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
2554  GENERATE(Token::SUB, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
2555  GENERATE(Token::SUB, SMI, SMI, SMI, NO_OVERWRITE);
2556  GENERATE(Token::SUB, SMI, SMI, SMI, OVERWRITE_LEFT);
2557  GENERATE(Token::SUB, SMI, SMI, SMI, OVERWRITE_RIGHT);
2558#undef GENERATE
2559#define GENERATE(op, left_kind, fixed_right_arg_value, result_kind, mode) \
2560  do {                                                                    \
2561    State state(op, mode);                                                \
2562    state.left_kind_ = left_kind;                                         \
2563    state.fixed_right_arg_.has_value = true;                              \
2564    state.fixed_right_arg_.value = fixed_right_arg_value;                 \
2565    state.right_kind_ = SMI;                                              \
2566    state.result_kind_ = result_kind;                                     \
2567    Generate(isolate, state);                                             \
2568  } while (false)
2569  GENERATE(Token::MOD, SMI, 2, SMI, NO_OVERWRITE);
2570  GENERATE(Token::MOD, SMI, 4, SMI, NO_OVERWRITE);
2571  GENERATE(Token::MOD, SMI, 4, SMI, OVERWRITE_LEFT);
2572  GENERATE(Token::MOD, SMI, 8, SMI, NO_OVERWRITE);
2573  GENERATE(Token::MOD, SMI, 16, SMI, OVERWRITE_LEFT);
2574  GENERATE(Token::MOD, SMI, 32, SMI, NO_OVERWRITE);
2575  GENERATE(Token::MOD, SMI, 2048, SMI, NO_OVERWRITE);
2576#undef GENERATE
2577}
2578
2579
2580Handle<Type> BinaryOpIC::State::GetResultType(Isolate* isolate) const {
2581  Kind result_kind = result_kind_;
2582  if (HasSideEffects()) {
2583    result_kind = NONE;
2584  } else if (result_kind == GENERIC && op_ == Token::ADD) {
2585    return handle(Type::Union(handle(Type::Number(), isolate),
2586                              handle(Type::String(), isolate)), isolate);
2587  } else if (result_kind == NUMBER && op_ == Token::SHR) {
2588    return handle(Type::Unsigned32(), isolate);
2589  }
2590  ASSERT_NE(GENERIC, result_kind);
2591  return KindToType(result_kind, isolate);
2592}
2593
2594
2595void BinaryOpIC::State::Print(StringStream* stream) const {
2596  stream->Add("(%s", Token::Name(op_));
2597  if (mode_ == OVERWRITE_LEFT) stream->Add("_ReuseLeft");
2598  else if (mode_ == OVERWRITE_RIGHT) stream->Add("_ReuseRight");
2599  stream->Add(":%s*", KindToString(left_kind_));
2600  if (fixed_right_arg_.has_value) {
2601    stream->Add("%d", fixed_right_arg_.value);
2602  } else {
2603    stream->Add("%s", KindToString(right_kind_));
2604  }
2605  stream->Add("->%s)", KindToString(result_kind_));
2606}
2607
2608
2609void BinaryOpIC::State::Update(Handle<Object> left,
2610                               Handle<Object> right,
2611                               Handle<Object> result) {
2612  ExtraICState old_extra_ic_state = GetExtraICState();
2613
2614  left_kind_ = UpdateKind(left, left_kind_);
2615  right_kind_ = UpdateKind(right, right_kind_);
2616
2617  int32_t fixed_right_arg_value = 0;
2618  bool has_fixed_right_arg =
2619      op_ == Token::MOD &&
2620      right->ToInt32(&fixed_right_arg_value) &&
2621      fixed_right_arg_value > 0 &&
2622      IsPowerOf2(fixed_right_arg_value) &&
2623      FixedRightArgValueField::is_valid(WhichPowerOf2(fixed_right_arg_value)) &&
2624      (left_kind_ == SMI || left_kind_ == INT32) &&
2625      (result_kind_ == NONE || !fixed_right_arg_.has_value);
2626  fixed_right_arg_ = Maybe<int32_t>(has_fixed_right_arg,
2627                                    fixed_right_arg_value);
2628
2629  result_kind_ = UpdateKind(result, result_kind_);
2630
2631  if (!Token::IsTruncatingBinaryOp(op_)) {
2632    Kind input_kind = Max(left_kind_, right_kind_);
2633    if (result_kind_ < input_kind && input_kind <= NUMBER) {
2634      result_kind_ = input_kind;
2635    }
2636  }
2637
2638  // Reset overwrite mode unless we can actually make use of it, or may be able
2639  // to make use of it at some point in the future.
2640  if ((mode_ == OVERWRITE_LEFT && left_kind_ > NUMBER) ||
2641      (mode_ == OVERWRITE_RIGHT && right_kind_ > NUMBER) ||
2642      result_kind_ > NUMBER) {
2643    mode_ = NO_OVERWRITE;
2644  }
2645
2646  if (old_extra_ic_state == GetExtraICState()) {
2647    // Tagged operations can lead to non-truncating HChanges
2648    if (left->IsUndefined() || left->IsBoolean()) {
2649      left_kind_ = GENERIC;
2650    } else if (right->IsUndefined() || right->IsBoolean()) {
2651      right_kind_ = GENERIC;
2652    } else {
2653      // Since the X87 is too precise, we might bail out on numbers which
2654      // actually would truncate with 64 bit precision.
2655      ASSERT(!CpuFeatures::IsSupported(SSE2));
2656      ASSERT(result_kind_ < NUMBER);
2657      result_kind_ = NUMBER;
2658    }
2659  }
2660}
2661
2662
2663BinaryOpIC::State::Kind BinaryOpIC::State::UpdateKind(Handle<Object> object,
2664                                                      Kind kind) const {
2665  Kind new_kind = GENERIC;
2666  bool is_truncating = Token::IsTruncatingBinaryOp(op());
2667  if (object->IsBoolean() && is_truncating) {
2668    // Booleans will be automatically truncated by HChange.
2669    new_kind = INT32;
2670  } else if (object->IsUndefined()) {
2671    // Undefined will be automatically truncated by HChange.
2672    new_kind = is_truncating ? INT32 : NUMBER;
2673  } else if (object->IsSmi()) {
2674    new_kind = SMI;
2675  } else if (object->IsHeapNumber()) {
2676    double value = Handle<HeapNumber>::cast(object)->value();
2677    new_kind = TypeInfo::IsInt32Double(value) ? INT32 : NUMBER;
2678  } else if (object->IsString() && op() == Token::ADD) {
2679    new_kind = STRING;
2680  }
2681  if (new_kind == INT32 && SmiValuesAre32Bits()) {
2682    new_kind = NUMBER;
2683  }
2684  if (kind != NONE &&
2685      ((new_kind <= NUMBER && kind > NUMBER) ||
2686       (new_kind > NUMBER && kind <= NUMBER))) {
2687    new_kind = GENERIC;
2688  }
2689  return Max(kind, new_kind);
2690}
2691
2692
2693// static
2694const char* BinaryOpIC::State::KindToString(Kind kind) {
2695  switch (kind) {
2696    case NONE: return "None";
2697    case SMI: return "Smi";
2698    case INT32: return "Int32";
2699    case NUMBER: return "Number";
2700    case STRING: return "String";
2701    case GENERIC: return "Generic";
2702  }
2703  UNREACHABLE();
2704  return NULL;
2705}
2706
2707
2708// static
2709Handle<Type> BinaryOpIC::State::KindToType(Kind kind, Isolate* isolate) {
2710  Type* type = NULL;
2711  switch (kind) {
2712    case NONE: type = Type::None(); break;
2713    case SMI: type = Type::Smi(); break;
2714    case INT32: type = Type::Signed32(); break;
2715    case NUMBER: type = Type::Number(); break;
2716    case STRING: type = Type::String(); break;
2717    case GENERIC: type = Type::Any(); break;
2718  }
2719  return handle(type, isolate);
2720}
2721
2722
2723MaybeObject* BinaryOpIC::Transition(Handle<Object> left, Handle<Object> right) {
2724  State state(target()->extended_extra_ic_state());
2725
2726  // Compute the actual result using the builtin for the binary operation.
2727  Object* builtin = isolate()->js_builtins_object()->javascript_builtin(
2728      TokenToJSBuiltin(state.op()));
2729  Handle<JSFunction> function = handle(JSFunction::cast(builtin), isolate());
2730  bool caught_exception;
2731  Handle<Object> result = Execution::Call(
2732      isolate(), function, left, 1, &right, &caught_exception);
2733  if (caught_exception) return Failure::Exception();
2734
2735  // Compute the new state.
2736  State old_state = state;
2737  state.Update(left, right, result);
2738
2739  // Install the new stub.
2740  BinaryOpICStub stub(state);
2741  set_target(*stub.GetCode(isolate()));
2742
2743  if (FLAG_trace_ic) {
2744    char buffer[150];
2745    NoAllocationStringAllocator allocator(
2746        buffer, static_cast<unsigned>(sizeof(buffer)));
2747    StringStream stream(&allocator);
2748    stream.Add("[BinaryOpIC");
2749    old_state.Print(&stream);
2750    stream.Add(" => ");
2751    state.Print(&stream);
2752    stream.Add(" @ %p <- ", static_cast<void*>(*target()));
2753    stream.OutputToStdOut();
2754    JavaScriptFrame::PrintTop(isolate(), stdout, false, true);
2755    PrintF("]\n");
2756  }
2757
2758  // Patch the inlined smi code as necessary.
2759  if (!old_state.UseInlinedSmiCode() && state.UseInlinedSmiCode()) {
2760    PatchInlinedSmiCode(address(), ENABLE_INLINED_SMI_CHECK);
2761  } else if (old_state.UseInlinedSmiCode() && !state.UseInlinedSmiCode()) {
2762    PatchInlinedSmiCode(address(), DISABLE_INLINED_SMI_CHECK);
2763  }
2764
2765  return *result;
2766}
2767
2768
2769RUNTIME_FUNCTION(MaybeObject*, BinaryOpIC_Miss) {
2770  HandleScope scope(isolate);
2771  Handle<Object> left = args.at<Object>(BinaryOpICStub::kLeft);
2772  Handle<Object> right = args.at<Object>(BinaryOpICStub::kRight);
2773  BinaryOpIC ic(isolate);
2774  return ic.Transition(left, right);
2775}
2776
2777
2778Code* CompareIC::GetRawUninitialized(Isolate* isolate, Token::Value op) {
2779  ICCompareStub stub(op, UNINITIALIZED, UNINITIALIZED, UNINITIALIZED);
2780  Code* code = NULL;
2781  CHECK(stub.FindCodeInCache(&code, isolate));
2782  return code;
2783}
2784
2785
2786Handle<Code> CompareIC::GetUninitialized(Isolate* isolate, Token::Value op) {
2787  ICCompareStub stub(op, UNINITIALIZED, UNINITIALIZED, UNINITIALIZED);
2788  return stub.GetCode(isolate);
2789}
2790
2791
2792const char* CompareIC::GetStateName(State state) {
2793  switch (state) {
2794    case UNINITIALIZED: return "UNINITIALIZED";
2795    case SMI: return "SMI";
2796    case NUMBER: return "NUMBER";
2797    case INTERNALIZED_STRING: return "INTERNALIZED_STRING";
2798    case STRING: return "STRING";
2799    case UNIQUE_NAME: return "UNIQUE_NAME";
2800    case OBJECT: return "OBJECT";
2801    case KNOWN_OBJECT: return "KNOWN_OBJECT";
2802    case GENERIC: return "GENERIC";
2803  }
2804  UNREACHABLE();
2805  return NULL;
2806}
2807
2808
2809Handle<Type> CompareIC::StateToType(
2810    Isolate* isolate,
2811    CompareIC::State state,
2812    Handle<Map> map) {
2813  switch (state) {
2814    case CompareIC::UNINITIALIZED:
2815      return handle(Type::None(), isolate);
2816    case CompareIC::SMI:
2817      return handle(Type::Smi(), isolate);
2818    case CompareIC::NUMBER:
2819      return handle(Type::Number(), isolate);
2820    case CompareIC::STRING:
2821      return handle(Type::String(), isolate);
2822    case CompareIC::INTERNALIZED_STRING:
2823      return handle(Type::InternalizedString(), isolate);
2824    case CompareIC::UNIQUE_NAME:
2825      return handle(Type::UniqueName(), isolate);
2826    case CompareIC::OBJECT:
2827      return handle(Type::Receiver(), isolate);
2828    case CompareIC::KNOWN_OBJECT:
2829      return handle(
2830          map.is_null() ? Type::Receiver() : Type::Class(map), isolate);
2831    case CompareIC::GENERIC:
2832      return handle(Type::Any(), isolate);
2833  }
2834  UNREACHABLE();
2835  return Handle<Type>();
2836}
2837
2838
2839void CompareIC::StubInfoToType(int stub_minor_key,
2840                               Handle<Type>* left_type,
2841                               Handle<Type>* right_type,
2842                               Handle<Type>* overall_type,
2843                               Handle<Map> map,
2844                               Isolate* isolate) {
2845  State left_state, right_state, handler_state;
2846  ICCompareStub::DecodeMinorKey(stub_minor_key, &left_state, &right_state,
2847                                &handler_state, NULL);
2848  *left_type = StateToType(isolate, left_state);
2849  *right_type = StateToType(isolate, right_state);
2850  *overall_type = StateToType(isolate, handler_state, map);
2851}
2852
2853
2854CompareIC::State CompareIC::NewInputState(State old_state,
2855                                          Handle<Object> value) {
2856  switch (old_state) {
2857    case UNINITIALIZED:
2858      if (value->IsSmi()) return SMI;
2859      if (value->IsHeapNumber()) return NUMBER;
2860      if (value->IsInternalizedString()) return INTERNALIZED_STRING;
2861      if (value->IsString()) return STRING;
2862      if (value->IsSymbol()) return UNIQUE_NAME;
2863      if (value->IsJSObject()) return OBJECT;
2864      break;
2865    case SMI:
2866      if (value->IsSmi()) return SMI;
2867      if (value->IsHeapNumber()) return NUMBER;
2868      break;
2869    case NUMBER:
2870      if (value->IsNumber()) return NUMBER;
2871      break;
2872    case INTERNALIZED_STRING:
2873      if (value->IsInternalizedString()) return INTERNALIZED_STRING;
2874      if (value->IsString()) return STRING;
2875      if (value->IsSymbol()) return UNIQUE_NAME;
2876      break;
2877    case STRING:
2878      if (value->IsString()) return STRING;
2879      break;
2880    case UNIQUE_NAME:
2881      if (value->IsUniqueName()) return UNIQUE_NAME;
2882      break;
2883    case OBJECT:
2884      if (value->IsJSObject()) return OBJECT;
2885      break;
2886    case GENERIC:
2887      break;
2888    case KNOWN_OBJECT:
2889      UNREACHABLE();
2890      break;
2891  }
2892  return GENERIC;
2893}
2894
2895
2896CompareIC::State CompareIC::TargetState(State old_state,
2897                                        State old_left,
2898                                        State old_right,
2899                                        bool has_inlined_smi_code,
2900                                        Handle<Object> x,
2901                                        Handle<Object> y) {
2902  switch (old_state) {
2903    case UNINITIALIZED:
2904      if (x->IsSmi() && y->IsSmi()) return SMI;
2905      if (x->IsNumber() && y->IsNumber()) return NUMBER;
2906      if (Token::IsOrderedRelationalCompareOp(op_)) {
2907        // Ordered comparisons treat undefined as NaN, so the
2908        // NUMBER stub will do the right thing.
2909        if ((x->IsNumber() && y->IsUndefined()) ||
2910            (y->IsNumber() && x->IsUndefined())) {
2911          return NUMBER;
2912        }
2913      }
2914      if (x->IsInternalizedString() && y->IsInternalizedString()) {
2915        // We compare internalized strings as plain ones if we need to determine
2916        // the order in a non-equality compare.
2917        return Token::IsEqualityOp(op_) ? INTERNALIZED_STRING : STRING;
2918      }
2919      if (x->IsString() && y->IsString()) return STRING;
2920      if (!Token::IsEqualityOp(op_)) return GENERIC;
2921      if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME;
2922      if (x->IsJSObject() && y->IsJSObject()) {
2923        if (Handle<JSObject>::cast(x)->map() ==
2924            Handle<JSObject>::cast(y)->map()) {
2925          return KNOWN_OBJECT;
2926        } else {
2927          return OBJECT;
2928        }
2929      }
2930      return GENERIC;
2931    case SMI:
2932      return x->IsNumber() && y->IsNumber() ? NUMBER : GENERIC;
2933    case INTERNALIZED_STRING:
2934      ASSERT(Token::IsEqualityOp(op_));
2935      if (x->IsString() && y->IsString()) return STRING;
2936      if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME;
2937      return GENERIC;
2938    case NUMBER:
2939      // If the failure was due to one side changing from smi to heap number,
2940      // then keep the state (if other changed at the same time, we will get
2941      // a second miss and then go to generic).
2942      if (old_left == SMI && x->IsHeapNumber()) return NUMBER;
2943      if (old_right == SMI && y->IsHeapNumber()) return NUMBER;
2944      return GENERIC;
2945    case KNOWN_OBJECT:
2946      ASSERT(Token::IsEqualityOp(op_));
2947      if (x->IsJSObject() && y->IsJSObject()) return OBJECT;
2948      return GENERIC;
2949    case STRING:
2950    case UNIQUE_NAME:
2951    case OBJECT:
2952    case GENERIC:
2953      return GENERIC;
2954  }
2955  UNREACHABLE();
2956  return GENERIC;  // Make the compiler happy.
2957}
2958
2959
2960Code* CompareIC::UpdateCaches(Handle<Object> x, Handle<Object> y) {
2961  HandleScope scope(isolate());
2962  State previous_left, previous_right, previous_state;
2963  ICCompareStub::DecodeMinorKey(target()->stub_info(), &previous_left,
2964                                &previous_right, &previous_state, NULL);
2965  State new_left = NewInputState(previous_left, x);
2966  State new_right = NewInputState(previous_right, y);
2967  State state = TargetState(previous_state, previous_left, previous_right,
2968                            HasInlinedSmiCode(address()), x, y);
2969  ICCompareStub stub(op_, new_left, new_right, state);
2970  if (state == KNOWN_OBJECT) {
2971    stub.set_known_map(
2972        Handle<Map>(Handle<JSObject>::cast(x)->map(), isolate()));
2973  }
2974  Handle<Code> new_target = stub.GetCode(isolate());
2975  set_target(*new_target);
2976
2977  if (FLAG_trace_ic) {
2978    PrintF("[CompareIC in ");
2979    JavaScriptFrame::PrintTop(isolate(), stdout, false, true);
2980    PrintF(" ((%s+%s=%s)->(%s+%s=%s))#%s @ %p]\n",
2981           GetStateName(previous_left),
2982           GetStateName(previous_right),
2983           GetStateName(previous_state),
2984           GetStateName(new_left),
2985           GetStateName(new_right),
2986           GetStateName(state),
2987           Token::Name(op_),
2988           static_cast<void*>(*stub.GetCode(isolate())));
2989  }
2990
2991  // Activate inlined smi code.
2992  if (previous_state == UNINITIALIZED) {
2993    PatchInlinedSmiCode(address(), ENABLE_INLINED_SMI_CHECK);
2994  }
2995
2996  return *new_target;
2997}
2998
2999
3000// Used from ICCompareStub::GenerateMiss in code-stubs-<arch>.cc.
3001RUNTIME_FUNCTION(Code*, CompareIC_Miss) {
3002  HandleScope scope(isolate);
3003  ASSERT(args.length() == 3);
3004  CompareIC ic(isolate, static_cast<Token::Value>(args.smi_at(2)));
3005  return ic.UpdateCaches(args.at<Object>(0), args.at<Object>(1));
3006}
3007
3008
3009void CompareNilIC::Clear(Address address, Code* target) {
3010  if (IsCleared(target)) return;
3011  ExtraICState state = target->extended_extra_ic_state();
3012
3013  CompareNilICStub stub(state, HydrogenCodeStub::UNINITIALIZED);
3014  stub.ClearState();
3015
3016  Code* code = NULL;
3017  CHECK(stub.FindCodeInCache(&code, target->GetIsolate()));
3018
3019  SetTargetAtAddress(address, code);
3020}
3021
3022
3023MaybeObject* CompareNilIC::DoCompareNilSlow(NilValue nil,
3024                                            Handle<Object> object) {
3025  if (object->IsNull() || object->IsUndefined()) {
3026    return Smi::FromInt(true);
3027  }
3028  return Smi::FromInt(object->IsUndetectableObject());
3029}
3030
3031
3032MaybeObject* CompareNilIC::CompareNil(Handle<Object> object) {
3033  ExtraICState extra_ic_state = target()->extended_extra_ic_state();
3034
3035  CompareNilICStub stub(extra_ic_state);
3036
3037  // Extract the current supported types from the patched IC and calculate what
3038  // types must be supported as a result of the miss.
3039  bool already_monomorphic = stub.IsMonomorphic();
3040
3041  stub.UpdateStatus(object);
3042
3043  NilValue nil = stub.GetNilValue();
3044
3045  // Find or create the specialized stub to support the new set of types.
3046  Handle<Code> code;
3047  if (stub.IsMonomorphic()) {
3048    Handle<Map> monomorphic_map(already_monomorphic
3049                                ? target()->FindFirstMap()
3050                                : HeapObject::cast(*object)->map());
3051    code = isolate()->stub_cache()->ComputeCompareNil(monomorphic_map, stub);
3052  } else {
3053    code = stub.GetCode(isolate());
3054  }
3055  set_target(*code);
3056  return DoCompareNilSlow(nil, object);
3057}
3058
3059
3060RUNTIME_FUNCTION(MaybeObject*, CompareNilIC_Miss) {
3061  HandleScope scope(isolate);
3062  Handle<Object> object = args.at<Object>(0);
3063  CompareNilIC ic(isolate);
3064  return ic.CompareNil(object);
3065}
3066
3067
3068RUNTIME_FUNCTION(MaybeObject*, Unreachable) {
3069  UNREACHABLE();
3070  CHECK(false);
3071  return isolate->heap()->undefined_value();
3072}
3073
3074
3075Builtins::JavaScript BinaryOpIC::TokenToJSBuiltin(Token::Value op) {
3076  switch (op) {
3077    default:
3078      UNREACHABLE();
3079    case Token::ADD:
3080      return Builtins::ADD;
3081      break;
3082    case Token::SUB:
3083      return Builtins::SUB;
3084      break;
3085    case Token::MUL:
3086      return Builtins::MUL;
3087      break;
3088    case Token::DIV:
3089      return Builtins::DIV;
3090      break;
3091    case Token::MOD:
3092      return Builtins::MOD;
3093      break;
3094    case Token::BIT_OR:
3095      return Builtins::BIT_OR;
3096      break;
3097    case Token::BIT_AND:
3098      return Builtins::BIT_AND;
3099      break;
3100    case Token::BIT_XOR:
3101      return Builtins::BIT_XOR;
3102      break;
3103    case Token::SAR:
3104      return Builtins::SAR;
3105      break;
3106    case Token::SHR:
3107      return Builtins::SHR;
3108      break;
3109    case Token::SHL:
3110      return Builtins::SHL;
3111      break;
3112  }
3113}
3114
3115
3116MaybeObject* ToBooleanIC::ToBoolean(Handle<Object> object) {
3117  ToBooleanStub stub(target()->extended_extra_ic_state());
3118  bool to_boolean_value = stub.UpdateStatus(object);
3119  Handle<Code> code = stub.GetCode(isolate());
3120  set_target(*code);
3121  return Smi::FromInt(to_boolean_value ? 1 : 0);
3122}
3123
3124
3125RUNTIME_FUNCTION(MaybeObject*, ToBooleanIC_Miss) {
3126  ASSERT(args.length() == 1);
3127  HandleScope scope(isolate);
3128  Handle<Object> object = args.at<Object>(0);
3129  ToBooleanIC ic(isolate);
3130  return ic.ToBoolean(object);
3131}
3132
3133
3134static const Address IC_utilities[] = {
3135#define ADDR(name) FUNCTION_ADDR(name),
3136    IC_UTIL_LIST(ADDR)
3137    NULL
3138#undef ADDR
3139};
3140
3141
3142Address IC::AddressFromUtilityId(IC::UtilityId id) {
3143  return IC_utilities[id];
3144}
3145
3146
3147} }  // namespace v8::internal
3148