1// Copyright 2012 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#include "scopes.h"
31
32#include "accessors.h"
33#include "bootstrapper.h"
34#include "compiler.h"
35#include "messages.h"
36#include "scopeinfo.h"
37
38namespace v8 {
39namespace internal {
40
41// ----------------------------------------------------------------------------
42// Implementation of LocalsMap
43//
44// Note: We are storing the handle locations as key values in the hash map.
45//       When inserting a new variable via Declare(), we rely on the fact that
46//       the handle location remains alive for the duration of that variable
47//       use. Because a Variable holding a handle with the same location exists
48//       this is ensured.
49
50static bool Match(void* key1, void* key2) {
51  String* name1 = *reinterpret_cast<String**>(key1);
52  String* name2 = *reinterpret_cast<String**>(key2);
53  ASSERT(name1->IsInternalizedString());
54  ASSERT(name2->IsInternalizedString());
55  return name1 == name2;
56}
57
58
59VariableMap::VariableMap(Zone* zone)
60    : ZoneHashMap(Match, 8, ZoneAllocationPolicy(zone)),
61      zone_(zone) {}
62VariableMap::~VariableMap() {}
63
64
65Variable* VariableMap::Declare(
66    Scope* scope,
67    Handle<String> name,
68    VariableMode mode,
69    bool is_valid_lhs,
70    Variable::Kind kind,
71    InitializationFlag initialization_flag,
72    Interface* interface) {
73  Entry* p = ZoneHashMap::Lookup(name.location(), name->Hash(), true,
74                                 ZoneAllocationPolicy(zone()));
75  if (p->value == NULL) {
76    // The variable has not been declared yet -> insert it.
77    ASSERT(p->key == name.location());
78    p->value = new(zone()) Variable(scope,
79                                    name,
80                                    mode,
81                                    is_valid_lhs,
82                                    kind,
83                                    initialization_flag,
84                                    interface);
85  }
86  return reinterpret_cast<Variable*>(p->value);
87}
88
89
90Variable* VariableMap::Lookup(Handle<String> name) {
91  Entry* p = ZoneHashMap::Lookup(name.location(), name->Hash(), false,
92                                 ZoneAllocationPolicy(NULL));
93  if (p != NULL) {
94    ASSERT(*reinterpret_cast<String**>(p->key) == *name);
95    ASSERT(p->value != NULL);
96    return reinterpret_cast<Variable*>(p->value);
97  }
98  return NULL;
99}
100
101
102// ----------------------------------------------------------------------------
103// Implementation of Scope
104
105Scope::Scope(Scope* outer_scope, ScopeType scope_type, Zone* zone)
106    : isolate_(zone->isolate()),
107      inner_scopes_(4, zone),
108      variables_(zone),
109      internals_(4, zone),
110      temps_(4, zone),
111      params_(4, zone),
112      unresolved_(16, zone),
113      decls_(4, zone),
114      interface_(FLAG_harmony_modules &&
115                 (scope_type == MODULE_SCOPE || scope_type == GLOBAL_SCOPE)
116                     ? Interface::NewModule(zone) : NULL),
117      already_resolved_(false),
118      zone_(zone) {
119  SetDefaults(scope_type, outer_scope, Handle<ScopeInfo>::null());
120  // The outermost scope must be a global scope.
121  ASSERT(scope_type == GLOBAL_SCOPE || outer_scope != NULL);
122  ASSERT(!HasIllegalRedeclaration());
123}
124
125
126Scope::Scope(Scope* inner_scope,
127             ScopeType scope_type,
128             Handle<ScopeInfo> scope_info,
129             Zone* zone)
130    : isolate_(zone->isolate()),
131      inner_scopes_(4, zone),
132      variables_(zone),
133      internals_(4, zone),
134      temps_(4, zone),
135      params_(4, zone),
136      unresolved_(16, zone),
137      decls_(4, zone),
138      interface_(NULL),
139      already_resolved_(true),
140      zone_(zone) {
141  SetDefaults(scope_type, NULL, scope_info);
142  if (!scope_info.is_null()) {
143    num_heap_slots_ = scope_info_->ContextLength();
144  }
145  // Ensure at least MIN_CONTEXT_SLOTS to indicate a materialized context.
146  num_heap_slots_ = Max(num_heap_slots_,
147                        static_cast<int>(Context::MIN_CONTEXT_SLOTS));
148  AddInnerScope(inner_scope);
149}
150
151
152Scope::Scope(Scope* inner_scope, Handle<String> catch_variable_name, Zone* zone)
153    : isolate_(zone->isolate()),
154      inner_scopes_(1, zone),
155      variables_(zone),
156      internals_(0, zone),
157      temps_(0, zone),
158      params_(0, zone),
159      unresolved_(0, zone),
160      decls_(0, zone),
161      interface_(NULL),
162      already_resolved_(true),
163      zone_(zone) {
164  SetDefaults(CATCH_SCOPE, NULL, Handle<ScopeInfo>::null());
165  AddInnerScope(inner_scope);
166  ++num_var_or_const_;
167  num_heap_slots_ = Context::MIN_CONTEXT_SLOTS;
168  Variable* variable = variables_.Declare(this,
169                                          catch_variable_name,
170                                          VAR,
171                                          true,  // Valid left-hand side.
172                                          Variable::NORMAL,
173                                          kCreatedInitialized);
174  AllocateHeapSlot(variable);
175}
176
177
178void Scope::SetDefaults(ScopeType scope_type,
179                        Scope* outer_scope,
180                        Handle<ScopeInfo> scope_info) {
181  outer_scope_ = outer_scope;
182  scope_type_ = scope_type;
183  scope_name_ = isolate_->factory()->empty_string();
184  dynamics_ = NULL;
185  receiver_ = NULL;
186  function_ = NULL;
187  arguments_ = NULL;
188  illegal_redecl_ = NULL;
189  scope_inside_with_ = false;
190  scope_contains_with_ = false;
191  scope_calls_eval_ = false;
192  // Inherit the strict mode from the parent scope.
193  language_mode_ = (outer_scope != NULL)
194      ? outer_scope->language_mode_ : CLASSIC_MODE;
195  outer_scope_calls_non_strict_eval_ = false;
196  inner_scope_calls_eval_ = false;
197  force_eager_compilation_ = false;
198  force_context_allocation_ = (outer_scope != NULL && !is_function_scope())
199      ? outer_scope->has_forced_context_allocation() : false;
200  num_var_or_const_ = 0;
201  num_stack_slots_ = 0;
202  num_heap_slots_ = 0;
203  num_modules_ = 0;
204  module_var_ = NULL,
205  scope_info_ = scope_info;
206  start_position_ = RelocInfo::kNoPosition;
207  end_position_ = RelocInfo::kNoPosition;
208  if (!scope_info.is_null()) {
209    scope_calls_eval_ = scope_info->CallsEval();
210    language_mode_ = scope_info->language_mode();
211  }
212}
213
214
215Scope* Scope::DeserializeScopeChain(Context* context, Scope* global_scope,
216                                    Zone* zone) {
217  // Reconstruct the outer scope chain from a closure's context chain.
218  Scope* current_scope = NULL;
219  Scope* innermost_scope = NULL;
220  bool contains_with = false;
221  while (!context->IsNativeContext()) {
222    if (context->IsWithContext()) {
223      Scope* with_scope = new(zone) Scope(current_scope,
224                                          WITH_SCOPE,
225                                          Handle<ScopeInfo>::null(),
226                                          zone);
227      current_scope = with_scope;
228      // All the inner scopes are inside a with.
229      contains_with = true;
230      for (Scope* s = innermost_scope; s != NULL; s = s->outer_scope()) {
231        s->scope_inside_with_ = true;
232      }
233    } else if (context->IsGlobalContext()) {
234      ScopeInfo* scope_info = ScopeInfo::cast(context->extension());
235      current_scope = new(zone) Scope(current_scope,
236                                      GLOBAL_SCOPE,
237                                      Handle<ScopeInfo>(scope_info),
238                                      zone);
239    } else if (context->IsModuleContext()) {
240      ScopeInfo* scope_info = ScopeInfo::cast(context->module()->scope_info());
241      current_scope = new(zone) Scope(current_scope,
242                                      MODULE_SCOPE,
243                                      Handle<ScopeInfo>(scope_info),
244                                      zone);
245    } else if (context->IsFunctionContext()) {
246      ScopeInfo* scope_info = context->closure()->shared()->scope_info();
247      current_scope = new(zone) Scope(current_scope,
248                                      FUNCTION_SCOPE,
249                                      Handle<ScopeInfo>(scope_info),
250                                      zone);
251    } else if (context->IsBlockContext()) {
252      ScopeInfo* scope_info = ScopeInfo::cast(context->extension());
253      current_scope = new(zone) Scope(current_scope,
254                                      BLOCK_SCOPE,
255                                      Handle<ScopeInfo>(scope_info),
256                                      zone);
257    } else {
258      ASSERT(context->IsCatchContext());
259      String* name = String::cast(context->extension());
260      current_scope = new(zone) Scope(
261          current_scope, Handle<String>(name), zone);
262    }
263    if (contains_with) current_scope->RecordWithStatement();
264    if (innermost_scope == NULL) innermost_scope = current_scope;
265
266    // Forget about a with when we move to a context for a different function.
267    if (context->previous()->closure() != context->closure()) {
268      contains_with = false;
269    }
270    context = context->previous();
271  }
272
273  global_scope->AddInnerScope(current_scope);
274  global_scope->PropagateScopeInfo(false);
275  return (innermost_scope == NULL) ? global_scope : innermost_scope;
276}
277
278
279bool Scope::Analyze(CompilationInfo* info) {
280  ASSERT(info->function() != NULL);
281  Scope* scope = info->function()->scope();
282  Scope* top = scope;
283
284  // Traverse the scope tree up to the first unresolved scope or the global
285  // scope and start scope resolution and variable allocation from that scope.
286  while (!top->is_global_scope() &&
287         !top->outer_scope()->already_resolved()) {
288    top = top->outer_scope();
289  }
290
291  // Allocate the variables.
292  {
293    AstNodeFactory<AstNullVisitor> ast_node_factory(info->isolate(),
294                                                    info->zone());
295    if (!top->AllocateVariables(info, &ast_node_factory)) return false;
296  }
297
298#ifdef DEBUG
299  if (info->isolate()->bootstrapper()->IsActive()
300          ? FLAG_print_builtin_scopes
301          : FLAG_print_scopes) {
302    scope->Print();
303  }
304
305  if (FLAG_harmony_modules && FLAG_print_interfaces && top->is_global_scope()) {
306    PrintF("global : ");
307    top->interface()->Print();
308  }
309#endif
310
311  info->SetScope(scope);
312  return true;
313}
314
315
316void Scope::Initialize() {
317  ASSERT(!already_resolved());
318
319  // Add this scope as a new inner scope of the outer scope.
320  if (outer_scope_ != NULL) {
321    outer_scope_->inner_scopes_.Add(this, zone());
322    scope_inside_with_ = outer_scope_->scope_inside_with_ || is_with_scope();
323  } else {
324    scope_inside_with_ = is_with_scope();
325  }
326
327  // Declare convenience variables.
328  // Declare and allocate receiver (even for the global scope, and even
329  // if naccesses_ == 0).
330  // NOTE: When loading parameters in the global scope, we must take
331  // care not to access them as properties of the global object, but
332  // instead load them directly from the stack. Currently, the only
333  // such parameter is 'this' which is passed on the stack when
334  // invoking scripts
335  if (is_declaration_scope()) {
336    Variable* var =
337        variables_.Declare(this,
338                           isolate_->factory()->this_string(),
339                           VAR,
340                           false,
341                           Variable::THIS,
342                           kCreatedInitialized);
343    var->AllocateTo(Variable::PARAMETER, -1);
344    receiver_ = var;
345  } else {
346    ASSERT(outer_scope() != NULL);
347    receiver_ = outer_scope()->receiver();
348  }
349
350  if (is_function_scope()) {
351    // Declare 'arguments' variable which exists in all functions.
352    // Note that it might never be accessed, in which case it won't be
353    // allocated during variable allocation.
354    variables_.Declare(this,
355                       isolate_->factory()->arguments_string(),
356                       VAR,
357                       true,
358                       Variable::ARGUMENTS,
359                       kCreatedInitialized);
360  }
361}
362
363
364Scope* Scope::FinalizeBlockScope() {
365  ASSERT(is_block_scope());
366  ASSERT(internals_.is_empty());
367  ASSERT(temps_.is_empty());
368  ASSERT(params_.is_empty());
369
370  if (num_var_or_const() > 0) return this;
371
372  // Remove this scope from outer scope.
373  for (int i = 0; i < outer_scope_->inner_scopes_.length(); i++) {
374    if (outer_scope_->inner_scopes_[i] == this) {
375      outer_scope_->inner_scopes_.Remove(i);
376      break;
377    }
378  }
379
380  // Reparent inner scopes.
381  for (int i = 0; i < inner_scopes_.length(); i++) {
382    outer_scope()->AddInnerScope(inner_scopes_[i]);
383  }
384
385  // Move unresolved variables
386  for (int i = 0; i < unresolved_.length(); i++) {
387    outer_scope()->unresolved_.Add(unresolved_[i], zone());
388  }
389
390  return NULL;
391}
392
393
394Variable* Scope::LocalLookup(Handle<String> name) {
395  Variable* result = variables_.Lookup(name);
396  if (result != NULL || scope_info_.is_null()) {
397    return result;
398  }
399  // If we have a serialized scope info, we might find the variable there.
400  // There should be no local slot with the given name.
401  ASSERT(scope_info_->StackSlotIndex(*name) < 0);
402
403  // Check context slot lookup.
404  VariableMode mode;
405  Variable::Location location = Variable::CONTEXT;
406  InitializationFlag init_flag;
407  int index = scope_info_->ContextSlotIndex(*name, &mode, &init_flag);
408  if (index < 0) {
409    // Check parameters.
410    index = scope_info_->ParameterIndex(*name);
411    if (index < 0) return NULL;
412
413    mode = DYNAMIC;
414    location = Variable::LOOKUP;
415    init_flag = kCreatedInitialized;
416  }
417
418  Variable* var = variables_.Declare(this, name, mode, true, Variable::NORMAL,
419                                     init_flag);
420  var->AllocateTo(location, index);
421  return var;
422}
423
424
425Variable* Scope::LookupFunctionVar(Handle<String> name,
426                                   AstNodeFactory<AstNullVisitor>* factory) {
427  if (function_ != NULL && function_->proxy()->name().is_identical_to(name)) {
428    return function_->proxy()->var();
429  } else if (!scope_info_.is_null()) {
430    // If we are backed by a scope info, try to lookup the variable there.
431    VariableMode mode;
432    int index = scope_info_->FunctionContextSlotIndex(*name, &mode);
433    if (index < 0) return NULL;
434    Variable* var = new(zone()) Variable(
435        this, name, mode, true /* is valid LHS */,
436        Variable::NORMAL, kCreatedInitialized);
437    VariableProxy* proxy = factory->NewVariableProxy(var);
438    VariableDeclaration* declaration = factory->NewVariableDeclaration(
439        proxy, mode, this, RelocInfo::kNoPosition);
440    DeclareFunctionVar(declaration);
441    var->AllocateTo(Variable::CONTEXT, index);
442    return var;
443  } else {
444    return NULL;
445  }
446}
447
448
449Variable* Scope::Lookup(Handle<String> name) {
450  for (Scope* scope = this;
451       scope != NULL;
452       scope = scope->outer_scope()) {
453    Variable* var = scope->LocalLookup(name);
454    if (var != NULL) return var;
455  }
456  return NULL;
457}
458
459
460void Scope::DeclareParameter(Handle<String> name, VariableMode mode) {
461  ASSERT(!already_resolved());
462  ASSERT(is_function_scope());
463  Variable* var = variables_.Declare(this, name, mode, true, Variable::NORMAL,
464                                     kCreatedInitialized);
465  params_.Add(var, zone());
466}
467
468
469Variable* Scope::DeclareLocal(Handle<String> name,
470                              VariableMode mode,
471                              InitializationFlag init_flag,
472                              Interface* interface) {
473  ASSERT(!already_resolved());
474  // This function handles VAR and CONST modes.  DYNAMIC variables are
475  // introduces during variable allocation, INTERNAL variables are allocated
476  // explicitly, and TEMPORARY variables are allocated via NewTemporary().
477  ASSERT(IsDeclaredVariableMode(mode));
478  ++num_var_or_const_;
479  return variables_.Declare(
480      this, name, mode, true, Variable::NORMAL, init_flag, interface);
481}
482
483
484Variable* Scope::DeclareDynamicGlobal(Handle<String> name) {
485  ASSERT(is_global_scope());
486  return variables_.Declare(this,
487                            name,
488                            DYNAMIC_GLOBAL,
489                            true,
490                            Variable::NORMAL,
491                            kCreatedInitialized);
492}
493
494
495void Scope::RemoveUnresolved(VariableProxy* var) {
496  // Most likely (always?) any variable we want to remove
497  // was just added before, so we search backwards.
498  for (int i = unresolved_.length(); i-- > 0;) {
499    if (unresolved_[i] == var) {
500      unresolved_.Remove(i);
501      return;
502    }
503  }
504}
505
506
507Variable* Scope::NewInternal(Handle<String> name) {
508  ASSERT(!already_resolved());
509  Variable* var = new(zone()) Variable(this,
510                                       name,
511                                       INTERNAL,
512                                       false,
513                                       Variable::NORMAL,
514                                       kCreatedInitialized);
515  internals_.Add(var, zone());
516  return var;
517}
518
519
520Variable* Scope::NewTemporary(Handle<String> name) {
521  ASSERT(!already_resolved());
522  Variable* var = new(zone()) Variable(this,
523                                       name,
524                                       TEMPORARY,
525                                       true,
526                                       Variable::NORMAL,
527                                       kCreatedInitialized);
528  temps_.Add(var, zone());
529  return var;
530}
531
532
533void Scope::AddDeclaration(Declaration* declaration) {
534  decls_.Add(declaration, zone());
535}
536
537
538void Scope::SetIllegalRedeclaration(Expression* expression) {
539  // Record only the first illegal redeclaration.
540  if (!HasIllegalRedeclaration()) {
541    illegal_redecl_ = expression;
542  }
543  ASSERT(HasIllegalRedeclaration());
544}
545
546
547void Scope::VisitIllegalRedeclaration(AstVisitor* visitor) {
548  ASSERT(HasIllegalRedeclaration());
549  illegal_redecl_->Accept(visitor);
550}
551
552
553Declaration* Scope::CheckConflictingVarDeclarations() {
554  int length = decls_.length();
555  for (int i = 0; i < length; i++) {
556    Declaration* decl = decls_[i];
557    if (decl->mode() != VAR) continue;
558    Handle<String> name = decl->proxy()->name();
559
560    // Iterate through all scopes until and including the declaration scope.
561    Scope* previous = NULL;
562    Scope* current = decl->scope();
563    do {
564      // There is a conflict if there exists a non-VAR binding.
565      Variable* other_var = current->variables_.Lookup(name);
566      if (other_var != NULL && other_var->mode() != VAR) {
567        return decl;
568      }
569      previous = current;
570      current = current->outer_scope_;
571    } while (!previous->is_declaration_scope());
572  }
573  return NULL;
574}
575
576
577class VarAndOrder {
578 public:
579  VarAndOrder(Variable* var, int order) : var_(var), order_(order) { }
580  Variable* var() const { return var_; }
581  int order() const { return order_; }
582  static int Compare(const VarAndOrder* a, const VarAndOrder* b) {
583    return a->order_ - b->order_;
584  }
585
586 private:
587  Variable* var_;
588  int order_;
589};
590
591
592void Scope::CollectStackAndContextLocals(ZoneList<Variable*>* stack_locals,
593                                         ZoneList<Variable*>* context_locals) {
594  ASSERT(stack_locals != NULL);
595  ASSERT(context_locals != NULL);
596
597  // Collect internals which are always allocated on the heap.
598  for (int i = 0; i < internals_.length(); i++) {
599    Variable* var = internals_[i];
600    if (var->is_used()) {
601      ASSERT(var->IsContextSlot());
602      context_locals->Add(var, zone());
603    }
604  }
605
606  // Collect temporaries which are always allocated on the stack, unless the
607  // context as a whole has forced context allocation.
608  for (int i = 0; i < temps_.length(); i++) {
609    Variable* var = temps_[i];
610    if (var->is_used()) {
611      if (var->IsContextSlot()) {
612        ASSERT(has_forced_context_allocation());
613        context_locals->Add(var, zone());
614      } else {
615        ASSERT(var->IsStackLocal());
616        stack_locals->Add(var, zone());
617      }
618    }
619  }
620
621  // Collect declared local variables.
622  ZoneList<VarAndOrder> vars(variables_.occupancy(), zone());
623  for (VariableMap::Entry* p = variables_.Start();
624       p != NULL;
625       p = variables_.Next(p)) {
626    Variable* var = reinterpret_cast<Variable*>(p->value);
627    if (var->is_used()) {
628      vars.Add(VarAndOrder(var, p->order), zone());
629    }
630  }
631  vars.Sort(VarAndOrder::Compare);
632  int var_count = vars.length();
633  for (int i = 0; i < var_count; i++) {
634    Variable* var = vars[i].var();
635    if (var->IsStackLocal()) {
636      stack_locals->Add(var, zone());
637    } else if (var->IsContextSlot()) {
638      context_locals->Add(var, zone());
639    }
640  }
641}
642
643
644bool Scope::AllocateVariables(CompilationInfo* info,
645                              AstNodeFactory<AstNullVisitor>* factory) {
646  // 1) Propagate scope information.
647  bool outer_scope_calls_non_strict_eval = false;
648  if (outer_scope_ != NULL) {
649    outer_scope_calls_non_strict_eval =
650        outer_scope_->outer_scope_calls_non_strict_eval() |
651        outer_scope_->calls_non_strict_eval();
652  }
653  PropagateScopeInfo(outer_scope_calls_non_strict_eval);
654
655  // 2) Allocate module instances.
656  if (FLAG_harmony_modules && (is_global_scope() || is_module_scope())) {
657    ASSERT(num_modules_ == 0);
658    AllocateModulesRecursively(this);
659  }
660
661  // 3) Resolve variables.
662  if (!ResolveVariablesRecursively(info, factory)) return false;
663
664  // 4) Allocate variables.
665  AllocateVariablesRecursively();
666
667  return true;
668}
669
670
671bool Scope::HasTrivialContext() const {
672  // A function scope has a trivial context if it always is the global
673  // context. We iteratively scan out the context chain to see if
674  // there is anything that makes this scope non-trivial; otherwise we
675  // return true.
676  for (const Scope* scope = this; scope != NULL; scope = scope->outer_scope_) {
677    if (scope->is_eval_scope()) return false;
678    if (scope->scope_inside_with_) return false;
679    if (scope->num_heap_slots_ > 0) return false;
680  }
681  return true;
682}
683
684
685bool Scope::HasTrivialOuterContext() const {
686  Scope* outer = outer_scope_;
687  if (outer == NULL) return true;
688  // Note that the outer context may be trivial in general, but the current
689  // scope may be inside a 'with' statement in which case the outer context
690  // for this scope is not trivial.
691  return !scope_inside_with_ && outer->HasTrivialContext();
692}
693
694
695bool Scope::HasLazyCompilableOuterContext() const {
696  Scope* outer = outer_scope_;
697  if (outer == NULL) return true;
698  // We have to prevent lazy compilation if this scope is inside a with scope
699  // and all declaration scopes between them have empty contexts. Such
700  // declaration scopes may become invisible during scope info deserialization.
701  outer = outer->DeclarationScope();
702  bool found_non_trivial_declarations = false;
703  for (const Scope* scope = outer; scope != NULL; scope = scope->outer_scope_) {
704    if (scope->is_with_scope() && !found_non_trivial_declarations) return false;
705    if (scope->is_declaration_scope() && scope->num_heap_slots() > 0) {
706      found_non_trivial_declarations = true;
707    }
708  }
709  return true;
710}
711
712
713bool Scope::AllowsLazyCompilation() const {
714  return !force_eager_compilation_ && HasLazyCompilableOuterContext();
715}
716
717
718bool Scope::AllowsLazyCompilationWithoutContext() const {
719  return !force_eager_compilation_ && HasTrivialOuterContext();
720}
721
722
723int Scope::ContextChainLength(Scope* scope) {
724  int n = 0;
725  for (Scope* s = this; s != scope; s = s->outer_scope_) {
726    ASSERT(s != NULL);  // scope must be in the scope chain
727    if (s->is_with_scope() || s->num_heap_slots() > 0) n++;
728    // Catch and module scopes always have heap slots.
729    ASSERT(!s->is_catch_scope() || s->num_heap_slots() > 0);
730    ASSERT(!s->is_module_scope() || s->num_heap_slots() > 0);
731  }
732  return n;
733}
734
735
736Scope* Scope::GlobalScope() {
737  Scope* scope = this;
738  while (!scope->is_global_scope()) {
739    scope = scope->outer_scope();
740  }
741  return scope;
742}
743
744
745Scope* Scope::DeclarationScope() {
746  Scope* scope = this;
747  while (!scope->is_declaration_scope()) {
748    scope = scope->outer_scope();
749  }
750  return scope;
751}
752
753
754Handle<ScopeInfo> Scope::GetScopeInfo() {
755  if (scope_info_.is_null()) {
756    scope_info_ = ScopeInfo::Create(this, zone());
757  }
758  return scope_info_;
759}
760
761
762void Scope::GetNestedScopeChain(
763    List<Handle<ScopeInfo> >* chain,
764    int position) {
765  if (!is_eval_scope()) chain->Add(Handle<ScopeInfo>(GetScopeInfo()));
766
767  for (int i = 0; i < inner_scopes_.length(); i++) {
768    Scope* scope = inner_scopes_[i];
769    int beg_pos = scope->start_position();
770    int end_pos = scope->end_position();
771    ASSERT(beg_pos >= 0 && end_pos >= 0);
772    if (beg_pos <= position && position < end_pos) {
773      scope->GetNestedScopeChain(chain, position);
774      return;
775    }
776  }
777}
778
779
780#ifdef DEBUG
781static const char* Header(ScopeType scope_type) {
782  switch (scope_type) {
783    case EVAL_SCOPE: return "eval";
784    case FUNCTION_SCOPE: return "function";
785    case MODULE_SCOPE: return "module";
786    case GLOBAL_SCOPE: return "global";
787    case CATCH_SCOPE: return "catch";
788    case BLOCK_SCOPE: return "block";
789    case WITH_SCOPE: return "with";
790  }
791  UNREACHABLE();
792  return NULL;
793}
794
795
796static void Indent(int n, const char* str) {
797  PrintF("%*s%s", n, "", str);
798}
799
800
801static void PrintName(Handle<String> name) {
802  SmartArrayPointer<char> s = name->ToCString(DISALLOW_NULLS);
803  PrintF("%s", *s);
804}
805
806
807static void PrintLocation(Variable* var) {
808  switch (var->location()) {
809    case Variable::UNALLOCATED:
810      break;
811    case Variable::PARAMETER:
812      PrintF("parameter[%d]", var->index());
813      break;
814    case Variable::LOCAL:
815      PrintF("local[%d]", var->index());
816      break;
817    case Variable::CONTEXT:
818      PrintF("context[%d]", var->index());
819      break;
820    case Variable::LOOKUP:
821      PrintF("lookup");
822      break;
823  }
824}
825
826
827static void PrintVar(int indent, Variable* var) {
828  if (var->is_used() || !var->IsUnallocated()) {
829    Indent(indent, Variable::Mode2String(var->mode()));
830    PrintF(" ");
831    PrintName(var->name());
832    PrintF(";  // ");
833    PrintLocation(var);
834    if (var->has_forced_context_allocation()) {
835      if (!var->IsUnallocated()) PrintF(", ");
836      PrintF("forced context allocation");
837    }
838    PrintF("\n");
839  }
840}
841
842
843static void PrintMap(int indent, VariableMap* map) {
844  for (VariableMap::Entry* p = map->Start(); p != NULL; p = map->Next(p)) {
845    Variable* var = reinterpret_cast<Variable*>(p->value);
846    PrintVar(indent, var);
847  }
848}
849
850
851void Scope::Print(int n) {
852  int n0 = (n > 0 ? n : 0);
853  int n1 = n0 + 2;  // indentation
854
855  // Print header.
856  Indent(n0, Header(scope_type_));
857  if (scope_name_->length() > 0) {
858    PrintF(" ");
859    PrintName(scope_name_);
860  }
861
862  // Print parameters, if any.
863  if (is_function_scope()) {
864    PrintF(" (");
865    for (int i = 0; i < params_.length(); i++) {
866      if (i > 0) PrintF(", ");
867      PrintName(params_[i]->name());
868    }
869    PrintF(")");
870  }
871
872  PrintF(" { // (%d, %d)\n", start_position(), end_position());
873
874  // Function name, if any (named function literals, only).
875  if (function_ != NULL) {
876    Indent(n1, "// (local) function name: ");
877    PrintName(function_->proxy()->name());
878    PrintF("\n");
879  }
880
881  // Scope info.
882  if (HasTrivialOuterContext()) {
883    Indent(n1, "// scope has trivial outer context\n");
884  }
885  switch (language_mode()) {
886    case CLASSIC_MODE:
887      break;
888    case STRICT_MODE:
889      Indent(n1, "// strict mode scope\n");
890      break;
891    case EXTENDED_MODE:
892      Indent(n1, "// extended mode scope\n");
893      break;
894  }
895  if (scope_inside_with_) Indent(n1, "// scope inside 'with'\n");
896  if (scope_contains_with_) Indent(n1, "// scope contains 'with'\n");
897  if (scope_calls_eval_) Indent(n1, "// scope calls 'eval'\n");
898  if (outer_scope_calls_non_strict_eval_) {
899    Indent(n1, "// outer scope calls 'eval' in non-strict context\n");
900  }
901  if (inner_scope_calls_eval_) Indent(n1, "// inner scope calls 'eval'\n");
902  if (num_stack_slots_ > 0) { Indent(n1, "// ");
903  PrintF("%d stack slots\n", num_stack_slots_); }
904  if (num_heap_slots_ > 0) { Indent(n1, "// ");
905  PrintF("%d heap slots\n", num_heap_slots_); }
906
907  // Print locals.
908  if (function_ != NULL) {
909    Indent(n1, "// function var:\n");
910    PrintVar(n1, function_->proxy()->var());
911  }
912
913  if (temps_.length() > 0) {
914    Indent(n1, "// temporary vars:\n");
915    for (int i = 0; i < temps_.length(); i++) {
916      PrintVar(n1, temps_[i]);
917    }
918  }
919
920  if (internals_.length() > 0) {
921    Indent(n1, "// internal vars:\n");
922    for (int i = 0; i < internals_.length(); i++) {
923      PrintVar(n1, internals_[i]);
924    }
925  }
926
927  if (variables_.Start() != NULL) {
928    Indent(n1, "// local vars:\n");
929    PrintMap(n1, &variables_);
930  }
931
932  if (dynamics_ != NULL) {
933    Indent(n1, "// dynamic vars:\n");
934    PrintMap(n1, dynamics_->GetMap(DYNAMIC));
935    PrintMap(n1, dynamics_->GetMap(DYNAMIC_LOCAL));
936    PrintMap(n1, dynamics_->GetMap(DYNAMIC_GLOBAL));
937  }
938
939  // Print inner scopes (disable by providing negative n).
940  if (n >= 0) {
941    for (int i = 0; i < inner_scopes_.length(); i++) {
942      PrintF("\n");
943      inner_scopes_[i]->Print(n1);
944    }
945  }
946
947  Indent(n0, "}\n");
948}
949#endif  // DEBUG
950
951
952Variable* Scope::NonLocal(Handle<String> name, VariableMode mode) {
953  if (dynamics_ == NULL) dynamics_ = new(zone()) DynamicScopePart(zone());
954  VariableMap* map = dynamics_->GetMap(mode);
955  Variable* var = map->Lookup(name);
956  if (var == NULL) {
957    // Declare a new non-local.
958    InitializationFlag init_flag = (mode == VAR)
959        ? kCreatedInitialized : kNeedsInitialization;
960    var = map->Declare(NULL,
961                       name,
962                       mode,
963                       true,
964                       Variable::NORMAL,
965                       init_flag);
966    // Allocate it by giving it a dynamic lookup.
967    var->AllocateTo(Variable::LOOKUP, -1);
968  }
969  return var;
970}
971
972
973Variable* Scope::LookupRecursive(Handle<String> name,
974                                 BindingKind* binding_kind,
975                                 AstNodeFactory<AstNullVisitor>* factory) {
976  ASSERT(binding_kind != NULL);
977  if (already_resolved() && is_with_scope()) {
978    // Short-cut: if the scope is deserialized from a scope info, variable
979    // allocation is already fixed.  We can simply return with dynamic lookup.
980    *binding_kind = DYNAMIC_LOOKUP;
981    return NULL;
982  }
983
984  // Try to find the variable in this scope.
985  Variable* var = LocalLookup(name);
986
987  // We found a variable and we are done. (Even if there is an 'eval' in
988  // this scope which introduces the same variable again, the resulting
989  // variable remains the same.)
990  if (var != NULL) {
991    *binding_kind = BOUND;
992    return var;
993  }
994
995  // We did not find a variable locally. Check against the function variable,
996  // if any. We can do this for all scopes, since the function variable is
997  // only present - if at all - for function scopes.
998  *binding_kind = UNBOUND;
999  var = LookupFunctionVar(name, factory);
1000  if (var != NULL) {
1001    *binding_kind = BOUND;
1002  } else if (outer_scope_ != NULL) {
1003    var = outer_scope_->LookupRecursive(name, binding_kind, factory);
1004    if (*binding_kind == BOUND && (is_function_scope() || is_with_scope())) {
1005      var->ForceContextAllocation();
1006    }
1007  } else {
1008    ASSERT(is_global_scope());
1009  }
1010
1011  if (is_with_scope()) {
1012    ASSERT(!already_resolved());
1013    // The current scope is a with scope, so the variable binding can not be
1014    // statically resolved. However, note that it was necessary to do a lookup
1015    // in the outer scope anyway, because if a binding exists in an outer scope,
1016    // the associated variable has to be marked as potentially being accessed
1017    // from inside of an inner with scope (the property may not be in the 'with'
1018    // object).
1019    *binding_kind = DYNAMIC_LOOKUP;
1020    return NULL;
1021  } else if (calls_non_strict_eval()) {
1022    // A variable binding may have been found in an outer scope, but the current
1023    // scope makes a non-strict 'eval' call, so the found variable may not be
1024    // the correct one (the 'eval' may introduce a binding with the same name).
1025    // In that case, change the lookup result to reflect this situation.
1026    if (*binding_kind == BOUND) {
1027      *binding_kind = BOUND_EVAL_SHADOWED;
1028    } else if (*binding_kind == UNBOUND) {
1029      *binding_kind = UNBOUND_EVAL_SHADOWED;
1030    }
1031  }
1032  return var;
1033}
1034
1035
1036bool Scope::ResolveVariable(CompilationInfo* info,
1037                            VariableProxy* proxy,
1038                            AstNodeFactory<AstNullVisitor>* factory) {
1039  ASSERT(info->global_scope()->is_global_scope());
1040
1041  // If the proxy is already resolved there's nothing to do
1042  // (functions and consts may be resolved by the parser).
1043  if (proxy->var() != NULL) return true;
1044
1045  // Otherwise, try to resolve the variable.
1046  BindingKind binding_kind;
1047  Variable* var = LookupRecursive(proxy->name(), &binding_kind, factory);
1048  switch (binding_kind) {
1049    case BOUND:
1050      // We found a variable binding.
1051      break;
1052
1053    case BOUND_EVAL_SHADOWED:
1054      // We either found a variable binding that might be shadowed by eval  or
1055      // gave up on it (e.g. by encountering a local with the same in the outer
1056      // scope which was not promoted to a context, this can happen if we use
1057      // debugger to evaluate arbitrary expressions at a break point).
1058      if (var->IsGlobalObjectProperty()) {
1059        var = NonLocal(proxy->name(), DYNAMIC_GLOBAL);
1060      } else if (var->is_dynamic()) {
1061        var = NonLocal(proxy->name(), DYNAMIC);
1062      } else {
1063        Variable* invalidated = var;
1064        var = NonLocal(proxy->name(), DYNAMIC_LOCAL);
1065        var->set_local_if_not_shadowed(invalidated);
1066      }
1067      break;
1068
1069    case UNBOUND:
1070      // No binding has been found. Declare a variable on the global object.
1071      var = info->global_scope()->DeclareDynamicGlobal(proxy->name());
1072      break;
1073
1074    case UNBOUND_EVAL_SHADOWED:
1075      // No binding has been found. But some scope makes a
1076      // non-strict 'eval' call.
1077      var = NonLocal(proxy->name(), DYNAMIC_GLOBAL);
1078      break;
1079
1080    case DYNAMIC_LOOKUP:
1081      // The variable could not be resolved statically.
1082      var = NonLocal(proxy->name(), DYNAMIC);
1083      break;
1084  }
1085
1086  ASSERT(var != NULL);
1087
1088  if (FLAG_harmony_scoping && is_extended_mode() &&
1089      var->is_const_mode() && proxy->IsLValue()) {
1090    // Assignment to const. Throw a syntax error.
1091    MessageLocation location(
1092        info->script(), proxy->position(), proxy->position());
1093    Isolate* isolate = info->isolate();
1094    Factory* factory = isolate->factory();
1095    Handle<JSArray> array = factory->NewJSArray(0);
1096    Handle<Object> result =
1097        factory->NewSyntaxError("harmony_const_assign", array);
1098    isolate->Throw(*result, &location);
1099    return false;
1100  }
1101
1102  if (FLAG_harmony_modules) {
1103    bool ok;
1104#ifdef DEBUG
1105    if (FLAG_print_interface_details)
1106      PrintF("# Resolve %s:\n", var->name()->ToAsciiArray());
1107#endif
1108    proxy->interface()->Unify(var->interface(), zone(), &ok);
1109    if (!ok) {
1110#ifdef DEBUG
1111      if (FLAG_print_interfaces) {
1112        PrintF("SCOPES TYPE ERROR\n");
1113        PrintF("proxy: ");
1114        proxy->interface()->Print();
1115        PrintF("var: ");
1116        var->interface()->Print();
1117      }
1118#endif
1119
1120      // Inconsistent use of module. Throw a syntax error.
1121      // TODO(rossberg): generate more helpful error message.
1122      MessageLocation location(
1123          info->script(), proxy->position(), proxy->position());
1124      Isolate* isolate = info->isolate();
1125      Factory* factory = isolate->factory();
1126      Handle<JSArray> array = factory->NewJSArray(1);
1127      USE(JSObject::SetElement(array, 0, var->name(), NONE, kStrictMode));
1128      Handle<Object> result =
1129          factory->NewSyntaxError("module_type_error", array);
1130      isolate->Throw(*result, &location);
1131      return false;
1132    }
1133  }
1134
1135  proxy->BindTo(var);
1136
1137  return true;
1138}
1139
1140
1141bool Scope::ResolveVariablesRecursively(
1142    CompilationInfo* info,
1143    AstNodeFactory<AstNullVisitor>* factory) {
1144  ASSERT(info->global_scope()->is_global_scope());
1145
1146  // Resolve unresolved variables for this scope.
1147  for (int i = 0; i < unresolved_.length(); i++) {
1148    if (!ResolveVariable(info, unresolved_[i], factory)) return false;
1149  }
1150
1151  // Resolve unresolved variables for inner scopes.
1152  for (int i = 0; i < inner_scopes_.length(); i++) {
1153    if (!inner_scopes_[i]->ResolveVariablesRecursively(info, factory))
1154      return false;
1155  }
1156
1157  return true;
1158}
1159
1160
1161bool Scope::PropagateScopeInfo(bool outer_scope_calls_non_strict_eval ) {
1162  if (outer_scope_calls_non_strict_eval) {
1163    outer_scope_calls_non_strict_eval_ = true;
1164  }
1165
1166  bool calls_non_strict_eval =
1167      this->calls_non_strict_eval() || outer_scope_calls_non_strict_eval_;
1168  for (int i = 0; i < inner_scopes_.length(); i++) {
1169    Scope* inner_scope = inner_scopes_[i];
1170    if (inner_scope->PropagateScopeInfo(calls_non_strict_eval)) {
1171      inner_scope_calls_eval_ = true;
1172    }
1173    if (inner_scope->force_eager_compilation_) {
1174      force_eager_compilation_ = true;
1175    }
1176  }
1177
1178  return scope_calls_eval_ || inner_scope_calls_eval_;
1179}
1180
1181
1182bool Scope::MustAllocate(Variable* var) {
1183  // Give var a read/write use if there is a chance it might be accessed
1184  // via an eval() call.  This is only possible if the variable has a
1185  // visible name.
1186  if ((var->is_this() || var->name()->length() > 0) &&
1187      (var->has_forced_context_allocation() ||
1188       scope_calls_eval_ ||
1189       inner_scope_calls_eval_ ||
1190       scope_contains_with_ ||
1191       is_catch_scope() ||
1192       is_block_scope() ||
1193       is_module_scope() ||
1194       is_global_scope())) {
1195    var->set_is_used(true);
1196  }
1197  // Global variables do not need to be allocated.
1198  return !var->IsGlobalObjectProperty() && var->is_used();
1199}
1200
1201
1202bool Scope::MustAllocateInContext(Variable* var) {
1203  // If var is accessed from an inner scope, or if there is a possibility
1204  // that it might be accessed from the current or an inner scope (through
1205  // an eval() call or a runtime with lookup), it must be allocated in the
1206  // context.
1207  //
1208  // Exceptions: If the scope as a whole has forced context allocation, all
1209  // variables will have context allocation, even temporaries.  Otherwise
1210  // temporary variables are always stack-allocated.  Catch-bound variables are
1211  // always context-allocated.
1212  if (has_forced_context_allocation()) return true;
1213  if (var->mode() == TEMPORARY) return false;
1214  if (var->mode() == INTERNAL) return true;
1215  if (is_catch_scope() || is_block_scope() || is_module_scope()) return true;
1216  if (is_global_scope() && IsLexicalVariableMode(var->mode())) return true;
1217  return var->has_forced_context_allocation() ||
1218      scope_calls_eval_ ||
1219      inner_scope_calls_eval_ ||
1220      scope_contains_with_;
1221}
1222
1223
1224bool Scope::HasArgumentsParameter() {
1225  for (int i = 0; i < params_.length(); i++) {
1226    if (params_[i]->name().is_identical_to(
1227            isolate_->factory()->arguments_string())) {
1228      return true;
1229    }
1230  }
1231  return false;
1232}
1233
1234
1235void Scope::AllocateStackSlot(Variable* var) {
1236  var->AllocateTo(Variable::LOCAL, num_stack_slots_++);
1237}
1238
1239
1240void Scope::AllocateHeapSlot(Variable* var) {
1241  var->AllocateTo(Variable::CONTEXT, num_heap_slots_++);
1242}
1243
1244
1245void Scope::AllocateParameterLocals() {
1246  ASSERT(is_function_scope());
1247  Variable* arguments = LocalLookup(isolate_->factory()->arguments_string());
1248  ASSERT(arguments != NULL);  // functions have 'arguments' declared implicitly
1249
1250  bool uses_nonstrict_arguments = false;
1251
1252  if (MustAllocate(arguments) && !HasArgumentsParameter()) {
1253    // 'arguments' is used. Unless there is also a parameter called
1254    // 'arguments', we must be conservative and allocate all parameters to
1255    // the context assuming they will be captured by the arguments object.
1256    // If we have a parameter named 'arguments', a (new) value is always
1257    // assigned to it via the function invocation. Then 'arguments' denotes
1258    // that specific parameter value and cannot be used to access the
1259    // parameters, which is why we don't need to allocate an arguments
1260    // object in that case.
1261
1262    // We are using 'arguments'. Tell the code generator that is needs to
1263    // allocate the arguments object by setting 'arguments_'.
1264    arguments_ = arguments;
1265
1266    // In strict mode 'arguments' does not alias formal parameters.
1267    // Therefore in strict mode we allocate parameters as if 'arguments'
1268    // were not used.
1269    uses_nonstrict_arguments = is_classic_mode();
1270  }
1271
1272  // The same parameter may occur multiple times in the parameters_ list.
1273  // If it does, and if it is not copied into the context object, it must
1274  // receive the highest parameter index for that parameter; thus iteration
1275  // order is relevant!
1276  for (int i = params_.length() - 1; i >= 0; --i) {
1277    Variable* var = params_[i];
1278    ASSERT(var->scope() == this);
1279    if (uses_nonstrict_arguments) {
1280      // Force context allocation of the parameter.
1281      var->ForceContextAllocation();
1282    }
1283
1284    if (MustAllocate(var)) {
1285      if (MustAllocateInContext(var)) {
1286        ASSERT(var->IsUnallocated() || var->IsContextSlot());
1287        if (var->IsUnallocated()) {
1288          AllocateHeapSlot(var);
1289        }
1290      } else {
1291        ASSERT(var->IsUnallocated() || var->IsParameter());
1292        if (var->IsUnallocated()) {
1293          var->AllocateTo(Variable::PARAMETER, i);
1294        }
1295      }
1296    }
1297  }
1298}
1299
1300
1301void Scope::AllocateNonParameterLocal(Variable* var) {
1302  ASSERT(var->scope() == this);
1303  ASSERT(!var->IsVariable(isolate_->factory()->dot_result_string()) ||
1304         !var->IsStackLocal());
1305  if (var->IsUnallocated() && MustAllocate(var)) {
1306    if (MustAllocateInContext(var)) {
1307      AllocateHeapSlot(var);
1308    } else {
1309      AllocateStackSlot(var);
1310    }
1311  }
1312}
1313
1314
1315void Scope::AllocateNonParameterLocals() {
1316  // All variables that have no rewrite yet are non-parameter locals.
1317  for (int i = 0; i < temps_.length(); i++) {
1318    AllocateNonParameterLocal(temps_[i]);
1319  }
1320
1321  for (int i = 0; i < internals_.length(); i++) {
1322    AllocateNonParameterLocal(internals_[i]);
1323  }
1324
1325  ZoneList<VarAndOrder> vars(variables_.occupancy(), zone());
1326  for (VariableMap::Entry* p = variables_.Start();
1327       p != NULL;
1328       p = variables_.Next(p)) {
1329    Variable* var = reinterpret_cast<Variable*>(p->value);
1330    vars.Add(VarAndOrder(var, p->order), zone());
1331  }
1332  vars.Sort(VarAndOrder::Compare);
1333  int var_count = vars.length();
1334  for (int i = 0; i < var_count; i++) {
1335    AllocateNonParameterLocal(vars[i].var());
1336  }
1337
1338  // For now, function_ must be allocated at the very end.  If it gets
1339  // allocated in the context, it must be the last slot in the context,
1340  // because of the current ScopeInfo implementation (see
1341  // ScopeInfo::ScopeInfo(FunctionScope* scope) constructor).
1342  if (function_ != NULL) {
1343    AllocateNonParameterLocal(function_->proxy()->var());
1344  }
1345}
1346
1347
1348void Scope::AllocateVariablesRecursively() {
1349  // Allocate variables for inner scopes.
1350  for (int i = 0; i < inner_scopes_.length(); i++) {
1351    inner_scopes_[i]->AllocateVariablesRecursively();
1352  }
1353
1354  // If scope is already resolved, we still need to allocate
1355  // variables in inner scopes which might not had been resolved yet.
1356  if (already_resolved()) return;
1357  // The number of slots required for variables.
1358  num_stack_slots_ = 0;
1359  num_heap_slots_ = Context::MIN_CONTEXT_SLOTS;
1360
1361  // Allocate variables for this scope.
1362  // Parameters must be allocated first, if any.
1363  if (is_function_scope()) AllocateParameterLocals();
1364  AllocateNonParameterLocals();
1365
1366  // Force allocation of a context for this scope if necessary. For a 'with'
1367  // scope and for a function scope that makes an 'eval' call we need a context,
1368  // even if no local variables were statically allocated in the scope.
1369  // Likewise for modules.
1370  bool must_have_context = is_with_scope() || is_module_scope() ||
1371      (is_function_scope() && calls_eval());
1372
1373  // If we didn't allocate any locals in the local context, then we only
1374  // need the minimal number of slots if we must have a context.
1375  if (num_heap_slots_ == Context::MIN_CONTEXT_SLOTS && !must_have_context) {
1376    num_heap_slots_ = 0;
1377  }
1378
1379  // Allocation done.
1380  ASSERT(num_heap_slots_ == 0 || num_heap_slots_ >= Context::MIN_CONTEXT_SLOTS);
1381}
1382
1383
1384void Scope::AllocateModulesRecursively(Scope* host_scope) {
1385  if (already_resolved()) return;
1386  if (is_module_scope()) {
1387    ASSERT(interface_->IsFrozen());
1388    Handle<String> name = isolate_->factory()->InternalizeOneByteString(
1389        STATIC_ASCII_VECTOR(".module"));
1390    ASSERT(module_var_ == NULL);
1391    module_var_ = host_scope->NewInternal(name);
1392    ++host_scope->num_modules_;
1393  }
1394
1395  for (int i = 0; i < inner_scopes_.length(); i++) {
1396    Scope* inner_scope = inner_scopes_.at(i);
1397    inner_scope->AllocateModulesRecursively(host_scope);
1398  }
1399}
1400
1401
1402int Scope::StackLocalCount() const {
1403  return num_stack_slots() -
1404      (function_ != NULL && function_->proxy()->var()->IsStackLocal() ? 1 : 0);
1405}
1406
1407
1408int Scope::ContextLocalCount() const {
1409  if (num_heap_slots() == 0) return 0;
1410  return num_heap_slots() - Context::MIN_CONTEXT_SLOTS -
1411      (function_ != NULL && function_->proxy()->var()->IsContextSlot() ? 1 : 0);
1412}
1413
1414} }  // namespace v8::internal
1415