1//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Objective-C code as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CGDebugInfo.h"
15#include "CGObjCRuntime.h"
16#include "CodeGenFunction.h"
17#include "CodeGenModule.h"
18#include "TargetInfo.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/StmtObjC.h"
22#include "clang/Basic/Diagnostic.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/CallSite.h"
25#include "llvm/IR/DataLayout.h"
26#include "llvm/IR/InlineAsm.h"
27using namespace clang;
28using namespace CodeGen;
29
30typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
31static TryEmitResult
32tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
33static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
34                                      QualType ET,
35                                      const ObjCMethodDecl *Method,
36                                      RValue Result);
37
38/// Given the address of a variable of pointer type, find the correct
39/// null to store into it.
40static llvm::Constant *getNullForVariable(llvm::Value *addr) {
41  llvm::Type *type =
42    cast<llvm::PointerType>(addr->getType())->getElementType();
43  return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
44}
45
46/// Emits an instance of NSConstantString representing the object.
47llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
48{
49  llvm::Constant *C =
50      CGM.getObjCRuntime().GenerateConstantString(E->getString());
51  // FIXME: This bitcast should just be made an invariant on the Runtime.
52  return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
53}
54
55/// EmitObjCBoxedExpr - This routine generates code to call
56/// the appropriate expression boxing method. This will either be
57/// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:].
58///
59llvm::Value *
60CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
61  // Generate the correct selector for this literal's concrete type.
62  const Expr *SubExpr = E->getSubExpr();
63  // Get the method.
64  const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
65  assert(BoxingMethod && "BoxingMethod is null");
66  assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
67  Selector Sel = BoxingMethod->getSelector();
68
69  // Generate a reference to the class pointer, which will be the receiver.
70  // Assumes that the method was introduced in the class that should be
71  // messaged (avoids pulling it out of the result type).
72  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
73  const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
74  llvm::Value *Receiver = Runtime.GetClass(*this, ClassDecl);
75
76  const ParmVarDecl *argDecl = *BoxingMethod->param_begin();
77  QualType ArgQT = argDecl->getType().getUnqualifiedType();
78  RValue RV = EmitAnyExpr(SubExpr);
79  CallArgList Args;
80  Args.add(RV, ArgQT);
81
82  RValue result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
83                                              BoxingMethod->getResultType(), Sel, Receiver, Args,
84                                              ClassDecl, BoxingMethod);
85  return Builder.CreateBitCast(result.getScalarVal(),
86                               ConvertType(E->getType()));
87}
88
89llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
90                                    const ObjCMethodDecl *MethodWithObjects) {
91  ASTContext &Context = CGM.getContext();
92  const ObjCDictionaryLiteral *DLE = 0;
93  const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
94  if (!ALE)
95    DLE = cast<ObjCDictionaryLiteral>(E);
96
97  // Compute the type of the array we're initializing.
98  uint64_t NumElements =
99    ALE ? ALE->getNumElements() : DLE->getNumElements();
100  llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
101                            NumElements);
102  QualType ElementType = Context.getObjCIdType().withConst();
103  QualType ElementArrayType
104    = Context.getConstantArrayType(ElementType, APNumElements,
105                                   ArrayType::Normal, /*IndexTypeQuals=*/0);
106
107  // Allocate the temporary array(s).
108  llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects");
109  llvm::Value *Keys = 0;
110  if (DLE)
111    Keys = CreateMemTemp(ElementArrayType, "keys");
112
113  // In ARC, we may need to do extra work to keep all the keys and
114  // values alive until after the call.
115  SmallVector<llvm::Value *, 16> NeededObjects;
116  bool TrackNeededObjects =
117    (getLangOpts().ObjCAutoRefCount &&
118    CGM.getCodeGenOpts().OptimizationLevel != 0);
119
120  // Perform the actual initialialization of the array(s).
121  for (uint64_t i = 0; i < NumElements; i++) {
122    if (ALE) {
123      // Emit the element and store it to the appropriate array slot.
124      const Expr *Rhs = ALE->getElement(i);
125      LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
126                                   ElementType,
127                                   Context.getTypeAlignInChars(Rhs->getType()),
128                                   Context);
129
130      llvm::Value *value = EmitScalarExpr(Rhs);
131      EmitStoreThroughLValue(RValue::get(value), LV, true);
132      if (TrackNeededObjects) {
133        NeededObjects.push_back(value);
134      }
135    } else {
136      // Emit the key and store it to the appropriate array slot.
137      const Expr *Key = DLE->getKeyValueElement(i).Key;
138      LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i),
139                                      ElementType,
140                                    Context.getTypeAlignInChars(Key->getType()),
141                                      Context);
142      llvm::Value *keyValue = EmitScalarExpr(Key);
143      EmitStoreThroughLValue(RValue::get(keyValue), KeyLV, /*isInit=*/true);
144
145      // Emit the value and store it to the appropriate array slot.
146      const Expr *Value = DLE->getKeyValueElement(i).Value;
147      LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
148                                        ElementType,
149                                  Context.getTypeAlignInChars(Value->getType()),
150                                        Context);
151      llvm::Value *valueValue = EmitScalarExpr(Value);
152      EmitStoreThroughLValue(RValue::get(valueValue), ValueLV, /*isInit=*/true);
153      if (TrackNeededObjects) {
154        NeededObjects.push_back(keyValue);
155        NeededObjects.push_back(valueValue);
156      }
157    }
158  }
159
160  // Generate the argument list.
161  CallArgList Args;
162  ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
163  const ParmVarDecl *argDecl = *PI++;
164  QualType ArgQT = argDecl->getType().getUnqualifiedType();
165  Args.add(RValue::get(Objects), ArgQT);
166  if (DLE) {
167    argDecl = *PI++;
168    ArgQT = argDecl->getType().getUnqualifiedType();
169    Args.add(RValue::get(Keys), ArgQT);
170  }
171  argDecl = *PI;
172  ArgQT = argDecl->getType().getUnqualifiedType();
173  llvm::Value *Count =
174    llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
175  Args.add(RValue::get(Count), ArgQT);
176
177  // Generate a reference to the class pointer, which will be the receiver.
178  Selector Sel = MethodWithObjects->getSelector();
179  QualType ResultType = E->getType();
180  const ObjCObjectPointerType *InterfacePointerType
181    = ResultType->getAsObjCInterfacePointerType();
182  ObjCInterfaceDecl *Class
183    = InterfacePointerType->getObjectType()->getInterface();
184  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
185  llvm::Value *Receiver = Runtime.GetClass(*this, Class);
186
187  // Generate the message send.
188  RValue result
189    = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
190                                  MethodWithObjects->getResultType(),
191                                  Sel,
192                                  Receiver, Args, Class,
193                                  MethodWithObjects);
194
195  // The above message send needs these objects, but in ARC they are
196  // passed in a buffer that is essentially __unsafe_unretained.
197  // Therefore we must prevent the optimizer from releasing them until
198  // after the call.
199  if (TrackNeededObjects) {
200    EmitARCIntrinsicUse(NeededObjects);
201  }
202
203  return Builder.CreateBitCast(result.getScalarVal(),
204                               ConvertType(E->getType()));
205}
206
207llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
208  return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
209}
210
211llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
212                                            const ObjCDictionaryLiteral *E) {
213  return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
214}
215
216/// Emit a selector.
217llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
218  // Untyped selector.
219  // Note that this implementation allows for non-constant strings to be passed
220  // as arguments to @selector().  Currently, the only thing preventing this
221  // behaviour is the type checking in the front end.
222  return CGM.getObjCRuntime().GetSelector(*this, E->getSelector());
223}
224
225llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
226  // FIXME: This should pass the Decl not the name.
227  return CGM.getObjCRuntime().GenerateProtocolRef(*this, E->getProtocol());
228}
229
230/// \brief Adjust the type of the result of an Objective-C message send
231/// expression when the method has a related result type.
232static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
233                                      QualType ExpT,
234                                      const ObjCMethodDecl *Method,
235                                      RValue Result) {
236  if (!Method)
237    return Result;
238
239  if (!Method->hasRelatedResultType() ||
240      CGF.getContext().hasSameType(ExpT, Method->getResultType()) ||
241      !Result.isScalar())
242    return Result;
243
244  // We have applied a related result type. Cast the rvalue appropriately.
245  return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
246                                               CGF.ConvertType(ExpT)));
247}
248
249/// Decide whether to extend the lifetime of the receiver of a
250/// returns-inner-pointer message.
251static bool
252shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
253  switch (message->getReceiverKind()) {
254
255  // For a normal instance message, we should extend unless the
256  // receiver is loaded from a variable with precise lifetime.
257  case ObjCMessageExpr::Instance: {
258    const Expr *receiver = message->getInstanceReceiver();
259    const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
260    if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
261    receiver = ice->getSubExpr()->IgnoreParens();
262
263    // Only __strong variables.
264    if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
265      return true;
266
267    // All ivars and fields have precise lifetime.
268    if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
269      return false;
270
271    // Otherwise, check for variables.
272    const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
273    if (!declRef) return true;
274    const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
275    if (!var) return true;
276
277    // All variables have precise lifetime except local variables with
278    // automatic storage duration that aren't specially marked.
279    return (var->hasLocalStorage() &&
280            !var->hasAttr<ObjCPreciseLifetimeAttr>());
281  }
282
283  case ObjCMessageExpr::Class:
284  case ObjCMessageExpr::SuperClass:
285    // It's never necessary for class objects.
286    return false;
287
288  case ObjCMessageExpr::SuperInstance:
289    // We generally assume that 'self' lives throughout a method call.
290    return false;
291  }
292
293  llvm_unreachable("invalid receiver kind");
294}
295
296RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
297                                            ReturnValueSlot Return) {
298  // Only the lookup mechanism and first two arguments of the method
299  // implementation vary between runtimes.  We can get the receiver and
300  // arguments in generic code.
301
302  bool isDelegateInit = E->isDelegateInitCall();
303
304  const ObjCMethodDecl *method = E->getMethodDecl();
305
306  // We don't retain the receiver in delegate init calls, and this is
307  // safe because the receiver value is always loaded from 'self',
308  // which we zero out.  We don't want to Block_copy block receivers,
309  // though.
310  bool retainSelf =
311    (!isDelegateInit &&
312     CGM.getLangOpts().ObjCAutoRefCount &&
313     method &&
314     method->hasAttr<NSConsumesSelfAttr>());
315
316  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
317  bool isSuperMessage = false;
318  bool isClassMessage = false;
319  ObjCInterfaceDecl *OID = 0;
320  // Find the receiver
321  QualType ReceiverType;
322  llvm::Value *Receiver = 0;
323  switch (E->getReceiverKind()) {
324  case ObjCMessageExpr::Instance:
325    ReceiverType = E->getInstanceReceiver()->getType();
326    if (retainSelf) {
327      TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
328                                                   E->getInstanceReceiver());
329      Receiver = ter.getPointer();
330      if (ter.getInt()) retainSelf = false;
331    } else
332      Receiver = EmitScalarExpr(E->getInstanceReceiver());
333    break;
334
335  case ObjCMessageExpr::Class: {
336    ReceiverType = E->getClassReceiver();
337    const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
338    assert(ObjTy && "Invalid Objective-C class message send");
339    OID = ObjTy->getInterface();
340    assert(OID && "Invalid Objective-C class message send");
341    Receiver = Runtime.GetClass(*this, OID);
342    isClassMessage = true;
343    break;
344  }
345
346  case ObjCMessageExpr::SuperInstance:
347    ReceiverType = E->getSuperType();
348    Receiver = LoadObjCSelf();
349    isSuperMessage = true;
350    break;
351
352  case ObjCMessageExpr::SuperClass:
353    ReceiverType = E->getSuperType();
354    Receiver = LoadObjCSelf();
355    isSuperMessage = true;
356    isClassMessage = true;
357    break;
358  }
359
360  if (retainSelf)
361    Receiver = EmitARCRetainNonBlock(Receiver);
362
363  // In ARC, we sometimes want to "extend the lifetime"
364  // (i.e. retain+autorelease) of receivers of returns-inner-pointer
365  // messages.
366  if (getLangOpts().ObjCAutoRefCount && method &&
367      method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
368      shouldExtendReceiverForInnerPointerMessage(E))
369    Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
370
371  QualType ResultType =
372    method ? method->getResultType() : E->getType();
373
374  CallArgList Args;
375  EmitCallArgs(Args, method, E->arg_begin(), E->arg_end());
376
377  // For delegate init calls in ARC, do an unsafe store of null into
378  // self.  This represents the call taking direct ownership of that
379  // value.  We have to do this after emitting the other call
380  // arguments because they might also reference self, but we don't
381  // have to worry about any of them modifying self because that would
382  // be an undefined read and write of an object in unordered
383  // expressions.
384  if (isDelegateInit) {
385    assert(getLangOpts().ObjCAutoRefCount &&
386           "delegate init calls should only be marked in ARC");
387
388    // Do an unsafe store of null into self.
389    llvm::Value *selfAddr =
390      LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
391    assert(selfAddr && "no self entry for a delegate init call?");
392
393    Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
394  }
395
396  RValue result;
397  if (isSuperMessage) {
398    // super is only valid in an Objective-C method
399    const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
400    bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
401    result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
402                                              E->getSelector(),
403                                              OMD->getClassInterface(),
404                                              isCategoryImpl,
405                                              Receiver,
406                                              isClassMessage,
407                                              Args,
408                                              method);
409  } else {
410    result = Runtime.GenerateMessageSend(*this, Return, ResultType,
411                                         E->getSelector(),
412                                         Receiver, Args, OID,
413                                         method);
414  }
415
416  // For delegate init calls in ARC, implicitly store the result of
417  // the call back into self.  This takes ownership of the value.
418  if (isDelegateInit) {
419    llvm::Value *selfAddr =
420      LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
421    llvm::Value *newSelf = result.getScalarVal();
422
423    // The delegate return type isn't necessarily a matching type; in
424    // fact, it's quite likely to be 'id'.
425    llvm::Type *selfTy =
426      cast<llvm::PointerType>(selfAddr->getType())->getElementType();
427    newSelf = Builder.CreateBitCast(newSelf, selfTy);
428
429    Builder.CreateStore(newSelf, selfAddr);
430  }
431
432  return AdjustRelatedResultType(*this, E->getType(), method, result);
433}
434
435namespace {
436struct FinishARCDealloc : EHScopeStack::Cleanup {
437  void Emit(CodeGenFunction &CGF, Flags flags) {
438    const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
439
440    const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
441    const ObjCInterfaceDecl *iface = impl->getClassInterface();
442    if (!iface->getSuperClass()) return;
443
444    bool isCategory = isa<ObjCCategoryImplDecl>(impl);
445
446    // Call [super dealloc] if we have a superclass.
447    llvm::Value *self = CGF.LoadObjCSelf();
448
449    CallArgList args;
450    CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
451                                                      CGF.getContext().VoidTy,
452                                                      method->getSelector(),
453                                                      iface,
454                                                      isCategory,
455                                                      self,
456                                                      /*is class msg*/ false,
457                                                      args,
458                                                      method);
459  }
460};
461}
462
463/// StartObjCMethod - Begin emission of an ObjCMethod. This generates
464/// the LLVM function and sets the other context used by
465/// CodeGenFunction.
466void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
467                                      const ObjCContainerDecl *CD,
468                                      SourceLocation StartLoc) {
469  FunctionArgList args;
470  // Check if we should generate debug info for this method.
471  if (!OMD->hasAttr<NoDebugAttr>())
472    maybeInitializeDebugInfo();
473
474  llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
475
476  const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
477  CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
478
479  args.push_back(OMD->getSelfDecl());
480  args.push_back(OMD->getCmdDecl());
481
482  for (ObjCMethodDecl::param_const_iterator PI = OMD->param_begin(),
483         E = OMD->param_end(); PI != E; ++PI)
484    args.push_back(*PI);
485
486  CurGD = OMD;
487
488  StartFunction(OMD, OMD->getResultType(), Fn, FI, args, StartLoc);
489
490  // In ARC, certain methods get an extra cleanup.
491  if (CGM.getLangOpts().ObjCAutoRefCount &&
492      OMD->isInstanceMethod() &&
493      OMD->getSelector().isUnarySelector()) {
494    const IdentifierInfo *ident =
495      OMD->getSelector().getIdentifierInfoForSlot(0);
496    if (ident->isStr("dealloc"))
497      EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
498  }
499}
500
501static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
502                                              LValue lvalue, QualType type);
503
504/// Generate an Objective-C method.  An Objective-C method is a C function with
505/// its pointer, name, and types registered in the class struture.
506void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
507  StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart());
508  EmitStmt(OMD->getBody());
509  FinishFunction(OMD->getBodyRBrace());
510}
511
512/// emitStructGetterCall - Call the runtime function to load a property
513/// into the return value slot.
514static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
515                                 bool isAtomic, bool hasStrong) {
516  ASTContext &Context = CGF.getContext();
517
518  llvm::Value *src =
519    CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(),
520                          ivar, 0).getAddress();
521
522  // objc_copyStruct (ReturnValue, &structIvar,
523  //                  sizeof (Type of Ivar), isAtomic, false);
524  CallArgList args;
525
526  llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
527  args.add(RValue::get(dest), Context.VoidPtrTy);
528
529  src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
530  args.add(RValue::get(src), Context.VoidPtrTy);
531
532  CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
533  args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
534  args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
535  args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
536
537  llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
538  CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args,
539                                                      FunctionType::ExtInfo(),
540                                                      RequiredArgs::All),
541               fn, ReturnValueSlot(), args);
542}
543
544/// Determine whether the given architecture supports unaligned atomic
545/// accesses.  They don't have to be fast, just faster than a function
546/// call and a mutex.
547static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
548  // FIXME: Allow unaligned atomic load/store on x86.  (It is not
549  // currently supported by the backend.)
550  return 0;
551}
552
553/// Return the maximum size that permits atomic accesses for the given
554/// architecture.
555static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
556                                        llvm::Triple::ArchType arch) {
557  // ARM has 8-byte atomic accesses, but it's not clear whether we
558  // want to rely on them here.
559
560  // In the default case, just assume that any size up to a pointer is
561  // fine given adequate alignment.
562  return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
563}
564
565namespace {
566  class PropertyImplStrategy {
567  public:
568    enum StrategyKind {
569      /// The 'native' strategy is to use the architecture's provided
570      /// reads and writes.
571      Native,
572
573      /// Use objc_setProperty and objc_getProperty.
574      GetSetProperty,
575
576      /// Use objc_setProperty for the setter, but use expression
577      /// evaluation for the getter.
578      SetPropertyAndExpressionGet,
579
580      /// Use objc_copyStruct.
581      CopyStruct,
582
583      /// The 'expression' strategy is to emit normal assignment or
584      /// lvalue-to-rvalue expressions.
585      Expression
586    };
587
588    StrategyKind getKind() const { return StrategyKind(Kind); }
589
590    bool hasStrongMember() const { return HasStrong; }
591    bool isAtomic() const { return IsAtomic; }
592    bool isCopy() const { return IsCopy; }
593
594    CharUnits getIvarSize() const { return IvarSize; }
595    CharUnits getIvarAlignment() const { return IvarAlignment; }
596
597    PropertyImplStrategy(CodeGenModule &CGM,
598                         const ObjCPropertyImplDecl *propImpl);
599
600  private:
601    unsigned Kind : 8;
602    unsigned IsAtomic : 1;
603    unsigned IsCopy : 1;
604    unsigned HasStrong : 1;
605
606    CharUnits IvarSize;
607    CharUnits IvarAlignment;
608  };
609}
610
611/// Pick an implementation strategy for the given property synthesis.
612PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
613                                     const ObjCPropertyImplDecl *propImpl) {
614  const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
615  ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
616
617  IsCopy = (setterKind == ObjCPropertyDecl::Copy);
618  IsAtomic = prop->isAtomic();
619  HasStrong = false; // doesn't matter here.
620
621  // Evaluate the ivar's size and alignment.
622  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
623  QualType ivarType = ivar->getType();
624  llvm::tie(IvarSize, IvarAlignment)
625    = CGM.getContext().getTypeInfoInChars(ivarType);
626
627  // If we have a copy property, we always have to use getProperty/setProperty.
628  // TODO: we could actually use setProperty and an expression for non-atomics.
629  if (IsCopy) {
630    Kind = GetSetProperty;
631    return;
632  }
633
634  // Handle retain.
635  if (setterKind == ObjCPropertyDecl::Retain) {
636    // In GC-only, there's nothing special that needs to be done.
637    if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
638      // fallthrough
639
640    // In ARC, if the property is non-atomic, use expression emission,
641    // which translates to objc_storeStrong.  This isn't required, but
642    // it's slightly nicer.
643    } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
644      // Using standard expression emission for the setter is only
645      // acceptable if the ivar is __strong, which won't be true if
646      // the property is annotated with __attribute__((NSObject)).
647      // TODO: falling all the way back to objc_setProperty here is
648      // just laziness, though;  we could still use objc_storeStrong
649      // if we hacked it right.
650      if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
651        Kind = Expression;
652      else
653        Kind = SetPropertyAndExpressionGet;
654      return;
655
656    // Otherwise, we need to at least use setProperty.  However, if
657    // the property isn't atomic, we can use normal expression
658    // emission for the getter.
659    } else if (!IsAtomic) {
660      Kind = SetPropertyAndExpressionGet;
661      return;
662
663    // Otherwise, we have to use both setProperty and getProperty.
664    } else {
665      Kind = GetSetProperty;
666      return;
667    }
668  }
669
670  // If we're not atomic, just use expression accesses.
671  if (!IsAtomic) {
672    Kind = Expression;
673    return;
674  }
675
676  // Properties on bitfield ivars need to be emitted using expression
677  // accesses even if they're nominally atomic.
678  if (ivar->isBitField()) {
679    Kind = Expression;
680    return;
681  }
682
683  // GC-qualified or ARC-qualified ivars need to be emitted as
684  // expressions.  This actually works out to being atomic anyway,
685  // except for ARC __strong, but that should trigger the above code.
686  if (ivarType.hasNonTrivialObjCLifetime() ||
687      (CGM.getLangOpts().getGC() &&
688       CGM.getContext().getObjCGCAttrKind(ivarType))) {
689    Kind = Expression;
690    return;
691  }
692
693  // Compute whether the ivar has strong members.
694  if (CGM.getLangOpts().getGC())
695    if (const RecordType *recordType = ivarType->getAs<RecordType>())
696      HasStrong = recordType->getDecl()->hasObjectMember();
697
698  // We can never access structs with object members with a native
699  // access, because we need to use write barriers.  This is what
700  // objc_copyStruct is for.
701  if (HasStrong) {
702    Kind = CopyStruct;
703    return;
704  }
705
706  // Otherwise, this is target-dependent and based on the size and
707  // alignment of the ivar.
708
709  // If the size of the ivar is not a power of two, give up.  We don't
710  // want to get into the business of doing compare-and-swaps.
711  if (!IvarSize.isPowerOfTwo()) {
712    Kind = CopyStruct;
713    return;
714  }
715
716  llvm::Triple::ArchType arch =
717    CGM.getTarget().getTriple().getArch();
718
719  // Most architectures require memory to fit within a single cache
720  // line, so the alignment has to be at least the size of the access.
721  // Otherwise we have to grab a lock.
722  if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
723    Kind = CopyStruct;
724    return;
725  }
726
727  // If the ivar's size exceeds the architecture's maximum atomic
728  // access size, we have to use CopyStruct.
729  if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
730    Kind = CopyStruct;
731    return;
732  }
733
734  // Otherwise, we can use native loads and stores.
735  Kind = Native;
736}
737
738/// \brief Generate an Objective-C property getter function.
739///
740/// The given Decl must be an ObjCImplementationDecl. \@synthesize
741/// is illegal within a category.
742void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
743                                         const ObjCPropertyImplDecl *PID) {
744  llvm::Constant *AtomicHelperFn =
745    GenerateObjCAtomicGetterCopyHelperFunction(PID);
746  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
747  ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
748  assert(OMD && "Invalid call to generate getter (empty method)");
749  StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
750
751  generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
752
753  FinishFunction();
754}
755
756static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
757  const Expr *getter = propImpl->getGetterCXXConstructor();
758  if (!getter) return true;
759
760  // Sema only makes only of these when the ivar has a C++ class type,
761  // so the form is pretty constrained.
762
763  // If the property has a reference type, we might just be binding a
764  // reference, in which case the result will be a gl-value.  We should
765  // treat this as a non-trivial operation.
766  if (getter->isGLValue())
767    return false;
768
769  // If we selected a trivial copy-constructor, we're okay.
770  if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
771    return (construct->getConstructor()->isTrivial());
772
773  // The constructor might require cleanups (in which case it's never
774  // trivial).
775  assert(isa<ExprWithCleanups>(getter));
776  return false;
777}
778
779/// emitCPPObjectAtomicGetterCall - Call the runtime function to
780/// copy the ivar into the resturn slot.
781static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
782                                          llvm::Value *returnAddr,
783                                          ObjCIvarDecl *ivar,
784                                          llvm::Constant *AtomicHelperFn) {
785  // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
786  //                           AtomicHelperFn);
787  CallArgList args;
788
789  // The 1st argument is the return Slot.
790  args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
791
792  // The 2nd argument is the address of the ivar.
793  llvm::Value *ivarAddr =
794  CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
795                        CGF.LoadObjCSelf(), ivar, 0).getAddress();
796  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
797  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
798
799  // Third argument is the helper function.
800  args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
801
802  llvm::Value *copyCppAtomicObjectFn =
803    CGF.CGM.getObjCRuntime().GetCppAtomicObjectGetFunction();
804  CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
805                                                      args,
806                                                      FunctionType::ExtInfo(),
807                                                      RequiredArgs::All),
808               copyCppAtomicObjectFn, ReturnValueSlot(), args);
809}
810
811void
812CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
813                                        const ObjCPropertyImplDecl *propImpl,
814                                        const ObjCMethodDecl *GetterMethodDecl,
815                                        llvm::Constant *AtomicHelperFn) {
816  // If there's a non-trivial 'get' expression, we just have to emit that.
817  if (!hasTrivialGetExpr(propImpl)) {
818    if (!AtomicHelperFn) {
819      ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
820                     /*nrvo*/ 0);
821      EmitReturnStmt(ret);
822    }
823    else {
824      ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
825      emitCPPObjectAtomicGetterCall(*this, ReturnValue,
826                                    ivar, AtomicHelperFn);
827    }
828    return;
829  }
830
831  const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
832  QualType propType = prop->getType();
833  ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
834
835  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
836
837  // Pick an implementation strategy.
838  PropertyImplStrategy strategy(CGM, propImpl);
839  switch (strategy.getKind()) {
840  case PropertyImplStrategy::Native: {
841    // We don't need to do anything for a zero-size struct.
842    if (strategy.getIvarSize().isZero())
843      return;
844
845    LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
846
847    // Currently, all atomic accesses have to be through integer
848    // types, so there's no point in trying to pick a prettier type.
849    llvm::Type *bitcastType =
850      llvm::Type::getIntNTy(getLLVMContext(),
851                            getContext().toBits(strategy.getIvarSize()));
852    bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
853
854    // Perform an atomic load.  This does not impose ordering constraints.
855    llvm::Value *ivarAddr = LV.getAddress();
856    ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
857    llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
858    load->setAlignment(strategy.getIvarAlignment().getQuantity());
859    load->setAtomic(llvm::Unordered);
860
861    // Store that value into the return address.  Doing this with a
862    // bitcast is likely to produce some pretty ugly IR, but it's not
863    // the *most* terrible thing in the world.
864    Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
865
866    // Make sure we don't do an autorelease.
867    AutoreleaseResult = false;
868    return;
869  }
870
871  case PropertyImplStrategy::GetSetProperty: {
872    llvm::Value *getPropertyFn =
873      CGM.getObjCRuntime().GetPropertyGetFunction();
874    if (!getPropertyFn) {
875      CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
876      return;
877    }
878
879    // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
880    // FIXME: Can't this be simpler? This might even be worse than the
881    // corresponding gcc code.
882    llvm::Value *cmd =
883      Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd");
884    llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
885    llvm::Value *ivarOffset =
886      EmitIvarOffset(classImpl->getClassInterface(), ivar);
887
888    CallArgList args;
889    args.add(RValue::get(self), getContext().getObjCIdType());
890    args.add(RValue::get(cmd), getContext().getObjCSelType());
891    args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
892    args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
893             getContext().BoolTy);
894
895    // FIXME: We shouldn't need to get the function info here, the
896    // runtime already should have computed it to build the function.
897    RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args,
898                                                       FunctionType::ExtInfo(),
899                                                            RequiredArgs::All),
900                         getPropertyFn, ReturnValueSlot(), args);
901
902    // We need to fix the type here. Ivars with copy & retain are
903    // always objects so we don't need to worry about complex or
904    // aggregates.
905    RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(),
906           getTypes().ConvertType(getterMethod->getResultType())));
907
908    EmitReturnOfRValue(RV, propType);
909
910    // objc_getProperty does an autorelease, so we should suppress ours.
911    AutoreleaseResult = false;
912
913    return;
914  }
915
916  case PropertyImplStrategy::CopyStruct:
917    emitStructGetterCall(*this, ivar, strategy.isAtomic(),
918                         strategy.hasStrongMember());
919    return;
920
921  case PropertyImplStrategy::Expression:
922  case PropertyImplStrategy::SetPropertyAndExpressionGet: {
923    LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
924
925    QualType ivarType = ivar->getType();
926    switch (getEvaluationKind(ivarType)) {
927    case TEK_Complex: {
928      ComplexPairTy pair = EmitLoadOfComplex(LV);
929      EmitStoreOfComplex(pair,
930                         MakeNaturalAlignAddrLValue(ReturnValue, ivarType),
931                         /*init*/ true);
932      return;
933    }
934    case TEK_Aggregate:
935      // The return value slot is guaranteed to not be aliased, but
936      // that's not necessarily the same as "on the stack", so
937      // we still potentially need objc_memmove_collectable.
938      EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
939      return;
940    case TEK_Scalar: {
941      llvm::Value *value;
942      if (propType->isReferenceType()) {
943        value = LV.getAddress();
944      } else {
945        // We want to load and autoreleaseReturnValue ARC __weak ivars.
946        if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
947          value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
948
949        // Otherwise we want to do a simple load, suppressing the
950        // final autorelease.
951        } else {
952          value = EmitLoadOfLValue(LV).getScalarVal();
953          AutoreleaseResult = false;
954        }
955
956        value = Builder.CreateBitCast(value, ConvertType(propType));
957        value = Builder.CreateBitCast(value,
958                  ConvertType(GetterMethodDecl->getResultType()));
959      }
960
961      EmitReturnOfRValue(RValue::get(value), propType);
962      return;
963    }
964    }
965    llvm_unreachable("bad evaluation kind");
966  }
967
968  }
969  llvm_unreachable("bad @property implementation strategy!");
970}
971
972/// emitStructSetterCall - Call the runtime function to store the value
973/// from the first formal parameter into the given ivar.
974static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
975                                 ObjCIvarDecl *ivar) {
976  // objc_copyStruct (&structIvar, &Arg,
977  //                  sizeof (struct something), true, false);
978  CallArgList args;
979
980  // The first argument is the address of the ivar.
981  llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
982                                                CGF.LoadObjCSelf(), ivar, 0)
983    .getAddress();
984  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
985  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
986
987  // The second argument is the address of the parameter variable.
988  ParmVarDecl *argVar = *OMD->param_begin();
989  DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
990                     VK_LValue, SourceLocation());
991  llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
992  argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
993  args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
994
995  // The third argument is the sizeof the type.
996  llvm::Value *size =
997    CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
998  args.add(RValue::get(size), CGF.getContext().getSizeType());
999
1000  // The fourth argument is the 'isAtomic' flag.
1001  args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
1002
1003  // The fifth argument is the 'hasStrong' flag.
1004  // FIXME: should this really always be false?
1005  args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
1006
1007  llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
1008  CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1009                                                      args,
1010                                                      FunctionType::ExtInfo(),
1011                                                      RequiredArgs::All),
1012               copyStructFn, ReturnValueSlot(), args);
1013}
1014
1015/// emitCPPObjectAtomicSetterCall - Call the runtime function to store
1016/// the value from the first formal parameter into the given ivar, using
1017/// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
1018static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
1019                                          ObjCMethodDecl *OMD,
1020                                          ObjCIvarDecl *ivar,
1021                                          llvm::Constant *AtomicHelperFn) {
1022  // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
1023  //                           AtomicHelperFn);
1024  CallArgList args;
1025
1026  // The first argument is the address of the ivar.
1027  llvm::Value *ivarAddr =
1028    CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
1029                          CGF.LoadObjCSelf(), ivar, 0).getAddress();
1030  ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
1031  args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
1032
1033  // The second argument is the address of the parameter variable.
1034  ParmVarDecl *argVar = *OMD->param_begin();
1035  DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
1036                     VK_LValue, SourceLocation());
1037  llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
1038  argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
1039  args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
1040
1041  // Third argument is the helper function.
1042  args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
1043
1044  llvm::Value *copyCppAtomicObjectFn =
1045    CGF.CGM.getObjCRuntime().GetCppAtomicObjectSetFunction();
1046  CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
1047                                                      args,
1048                                                      FunctionType::ExtInfo(),
1049                                                      RequiredArgs::All),
1050               copyCppAtomicObjectFn, ReturnValueSlot(), args);
1051
1052
1053}
1054
1055
1056static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
1057  Expr *setter = PID->getSetterCXXAssignment();
1058  if (!setter) return true;
1059
1060  // Sema only makes only of these when the ivar has a C++ class type,
1061  // so the form is pretty constrained.
1062
1063  // An operator call is trivial if the function it calls is trivial.
1064  // This also implies that there's nothing non-trivial going on with
1065  // the arguments, because operator= can only be trivial if it's a
1066  // synthesized assignment operator and therefore both parameters are
1067  // references.
1068  if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
1069    if (const FunctionDecl *callee
1070          = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
1071      if (callee->isTrivial())
1072        return true;
1073    return false;
1074  }
1075
1076  assert(isa<ExprWithCleanups>(setter));
1077  return false;
1078}
1079
1080static bool UseOptimizedSetter(CodeGenModule &CGM) {
1081  if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
1082    return false;
1083  return CGM.getLangOpts().ObjCRuntime.hasOptimizedSetter();
1084}
1085
1086void
1087CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1088                                        const ObjCPropertyImplDecl *propImpl,
1089                                        llvm::Constant *AtomicHelperFn) {
1090  const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
1091  ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
1092  ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
1093
1094  // Just use the setter expression if Sema gave us one and it's
1095  // non-trivial.
1096  if (!hasTrivialSetExpr(propImpl)) {
1097    if (!AtomicHelperFn)
1098      // If non-atomic, assignment is called directly.
1099      EmitStmt(propImpl->getSetterCXXAssignment());
1100    else
1101      // If atomic, assignment is called via a locking api.
1102      emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
1103                                    AtomicHelperFn);
1104    return;
1105  }
1106
1107  PropertyImplStrategy strategy(CGM, propImpl);
1108  switch (strategy.getKind()) {
1109  case PropertyImplStrategy::Native: {
1110    // We don't need to do anything for a zero-size struct.
1111    if (strategy.getIvarSize().isZero())
1112      return;
1113
1114    llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()];
1115
1116    LValue ivarLValue =
1117      EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
1118    llvm::Value *ivarAddr = ivarLValue.getAddress();
1119
1120    // Currently, all atomic accesses have to be through integer
1121    // types, so there's no point in trying to pick a prettier type.
1122    llvm::Type *bitcastType =
1123      llvm::Type::getIntNTy(getLLVMContext(),
1124                            getContext().toBits(strategy.getIvarSize()));
1125    bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
1126
1127    // Cast both arguments to the chosen operation type.
1128    argAddr = Builder.CreateBitCast(argAddr, bitcastType);
1129    ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
1130
1131    // This bitcast load is likely to cause some nasty IR.
1132    llvm::Value *load = Builder.CreateLoad(argAddr);
1133
1134    // Perform an atomic store.  There are no memory ordering requirements.
1135    llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
1136    store->setAlignment(strategy.getIvarAlignment().getQuantity());
1137    store->setAtomic(llvm::Unordered);
1138    return;
1139  }
1140
1141  case PropertyImplStrategy::GetSetProperty:
1142  case PropertyImplStrategy::SetPropertyAndExpressionGet: {
1143
1144    llvm::Value *setOptimizedPropertyFn = 0;
1145    llvm::Value *setPropertyFn = 0;
1146    if (UseOptimizedSetter(CGM)) {
1147      // 10.8 and iOS 6.0 code and GC is off
1148      setOptimizedPropertyFn =
1149        CGM.getObjCRuntime()
1150           .GetOptimizedPropertySetFunction(strategy.isAtomic(),
1151                                            strategy.isCopy());
1152      if (!setOptimizedPropertyFn) {
1153        CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
1154        return;
1155      }
1156    }
1157    else {
1158      setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
1159      if (!setPropertyFn) {
1160        CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
1161        return;
1162      }
1163    }
1164
1165    // Emit objc_setProperty((id) self, _cmd, offset, arg,
1166    //                       <is-atomic>, <is-copy>).
1167    llvm::Value *cmd =
1168      Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]);
1169    llvm::Value *self =
1170      Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
1171    llvm::Value *ivarOffset =
1172      EmitIvarOffset(classImpl->getClassInterface(), ivar);
1173    llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()];
1174    arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy);
1175
1176    CallArgList args;
1177    args.add(RValue::get(self), getContext().getObjCIdType());
1178    args.add(RValue::get(cmd), getContext().getObjCSelType());
1179    if (setOptimizedPropertyFn) {
1180      args.add(RValue::get(arg), getContext().getObjCIdType());
1181      args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1182      EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1183                                                  FunctionType::ExtInfo(),
1184                                                  RequiredArgs::All),
1185               setOptimizedPropertyFn, ReturnValueSlot(), args);
1186    } else {
1187      args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
1188      args.add(RValue::get(arg), getContext().getObjCIdType());
1189      args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
1190               getContext().BoolTy);
1191      args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
1192               getContext().BoolTy);
1193      // FIXME: We shouldn't need to get the function info here, the runtime
1194      // already should have computed it to build the function.
1195      EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
1196                                                  FunctionType::ExtInfo(),
1197                                                  RequiredArgs::All),
1198               setPropertyFn, ReturnValueSlot(), args);
1199    }
1200
1201    return;
1202  }
1203
1204  case PropertyImplStrategy::CopyStruct:
1205    emitStructSetterCall(*this, setterMethod, ivar);
1206    return;
1207
1208  case PropertyImplStrategy::Expression:
1209    break;
1210  }
1211
1212  // Otherwise, fake up some ASTs and emit a normal assignment.
1213  ValueDecl *selfDecl = setterMethod->getSelfDecl();
1214  DeclRefExpr self(selfDecl, false, selfDecl->getType(),
1215                   VK_LValue, SourceLocation());
1216  ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
1217                            selfDecl->getType(), CK_LValueToRValue, &self,
1218                            VK_RValue);
1219  ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
1220                          SourceLocation(), SourceLocation(),
1221                          &selfLoad, true, true);
1222
1223  ParmVarDecl *argDecl = *setterMethod->param_begin();
1224  QualType argType = argDecl->getType().getNonReferenceType();
1225  DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
1226  ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
1227                           argType.getUnqualifiedType(), CK_LValueToRValue,
1228                           &arg, VK_RValue);
1229
1230  // The property type can differ from the ivar type in some situations with
1231  // Objective-C pointer types, we can always bit cast the RHS in these cases.
1232  // The following absurdity is just to ensure well-formed IR.
1233  CastKind argCK = CK_NoOp;
1234  if (ivarRef.getType()->isObjCObjectPointerType()) {
1235    if (argLoad.getType()->isObjCObjectPointerType())
1236      argCK = CK_BitCast;
1237    else if (argLoad.getType()->isBlockPointerType())
1238      argCK = CK_BlockPointerToObjCPointerCast;
1239    else
1240      argCK = CK_CPointerToObjCPointerCast;
1241  } else if (ivarRef.getType()->isBlockPointerType()) {
1242     if (argLoad.getType()->isBlockPointerType())
1243      argCK = CK_BitCast;
1244    else
1245      argCK = CK_AnyPointerToBlockPointerCast;
1246  } else if (ivarRef.getType()->isPointerType()) {
1247    argCK = CK_BitCast;
1248  }
1249  ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
1250                           ivarRef.getType(), argCK, &argLoad,
1251                           VK_RValue);
1252  Expr *finalArg = &argLoad;
1253  if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
1254                                           argLoad.getType()))
1255    finalArg = &argCast;
1256
1257
1258  BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
1259                        ivarRef.getType(), VK_RValue, OK_Ordinary,
1260                        SourceLocation(), false);
1261  EmitStmt(&assign);
1262}
1263
1264/// \brief Generate an Objective-C property setter function.
1265///
1266/// The given Decl must be an ObjCImplementationDecl. \@synthesize
1267/// is illegal within a category.
1268void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
1269                                         const ObjCPropertyImplDecl *PID) {
1270  llvm::Constant *AtomicHelperFn =
1271    GenerateObjCAtomicSetterCopyHelperFunction(PID);
1272  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
1273  ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
1274  assert(OMD && "Invalid call to generate setter (empty method)");
1275  StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
1276
1277  generateObjCSetterBody(IMP, PID, AtomicHelperFn);
1278
1279  FinishFunction();
1280}
1281
1282namespace {
1283  struct DestroyIvar : EHScopeStack::Cleanup {
1284  private:
1285    llvm::Value *addr;
1286    const ObjCIvarDecl *ivar;
1287    CodeGenFunction::Destroyer *destroyer;
1288    bool useEHCleanupForArray;
1289  public:
1290    DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
1291                CodeGenFunction::Destroyer *destroyer,
1292                bool useEHCleanupForArray)
1293      : addr(addr), ivar(ivar), destroyer(destroyer),
1294        useEHCleanupForArray(useEHCleanupForArray) {}
1295
1296    void Emit(CodeGenFunction &CGF, Flags flags) {
1297      LValue lvalue
1298        = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
1299      CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
1300                      flags.isForNormalCleanup() && useEHCleanupForArray);
1301    }
1302  };
1303}
1304
1305/// Like CodeGenFunction::destroyARCStrong, but do it with a call.
1306static void destroyARCStrongWithStore(CodeGenFunction &CGF,
1307                                      llvm::Value *addr,
1308                                      QualType type) {
1309  llvm::Value *null = getNullForVariable(addr);
1310  CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
1311}
1312
1313static void emitCXXDestructMethod(CodeGenFunction &CGF,
1314                                  ObjCImplementationDecl *impl) {
1315  CodeGenFunction::RunCleanupsScope scope(CGF);
1316
1317  llvm::Value *self = CGF.LoadObjCSelf();
1318
1319  const ObjCInterfaceDecl *iface = impl->getClassInterface();
1320  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1321       ivar; ivar = ivar->getNextIvar()) {
1322    QualType type = ivar->getType();
1323
1324    // Check whether the ivar is a destructible type.
1325    QualType::DestructionKind dtorKind = type.isDestructedType();
1326    if (!dtorKind) continue;
1327
1328    CodeGenFunction::Destroyer *destroyer = 0;
1329
1330    // Use a call to objc_storeStrong to destroy strong ivars, for the
1331    // general benefit of the tools.
1332    if (dtorKind == QualType::DK_objc_strong_lifetime) {
1333      destroyer = destroyARCStrongWithStore;
1334
1335    // Otherwise use the default for the destruction kind.
1336    } else {
1337      destroyer = CGF.getDestroyer(dtorKind);
1338    }
1339
1340    CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
1341
1342    CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
1343                                         cleanupKind & EHCleanup);
1344  }
1345
1346  assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
1347}
1348
1349void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1350                                                 ObjCMethodDecl *MD,
1351                                                 bool ctor) {
1352  MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
1353  StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart());
1354
1355  // Emit .cxx_construct.
1356  if (ctor) {
1357    // Suppress the final autorelease in ARC.
1358    AutoreleaseResult = false;
1359
1360    SmallVector<CXXCtorInitializer *, 8> IvarInitializers;
1361    for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(),
1362           E = IMP->init_end(); B != E; ++B) {
1363      CXXCtorInitializer *IvarInit = (*B);
1364      FieldDecl *Field = IvarInit->getAnyMember();
1365      ObjCIvarDecl  *Ivar = cast<ObjCIvarDecl>(Field);
1366      LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
1367                                    LoadObjCSelf(), Ivar, 0);
1368      EmitAggExpr(IvarInit->getInit(),
1369                  AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
1370                                          AggValueSlot::DoesNotNeedGCBarriers,
1371                                          AggValueSlot::IsNotAliased));
1372    }
1373    // constructor returns 'self'.
1374    CodeGenTypes &Types = CGM.getTypes();
1375    QualType IdTy(CGM.getContext().getObjCIdType());
1376    llvm::Value *SelfAsId =
1377      Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
1378    EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
1379
1380  // Emit .cxx_destruct.
1381  } else {
1382    emitCXXDestructMethod(*this, IMP);
1383  }
1384  FinishFunction();
1385}
1386
1387bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
1388  CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
1389  it++; it++;
1390  const ABIArgInfo &AI = it->info;
1391  // FIXME. Is this sufficient check?
1392  return (AI.getKind() == ABIArgInfo::Indirect);
1393}
1394
1395bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
1396  if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
1397    return false;
1398  if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
1399    return FDTTy->getDecl()->hasObjectMember();
1400  return false;
1401}
1402
1403llvm::Value *CodeGenFunction::LoadObjCSelf() {
1404  VarDecl *Self = cast<ObjCMethodDecl>(CurFuncDecl)->getSelfDecl();
1405  DeclRefExpr DRE(Self, /*is enclosing local*/ (CurFuncDecl != CurCodeDecl),
1406                  Self->getType(), VK_LValue, SourceLocation());
1407  return EmitLoadOfScalar(EmitDeclRefLValue(&DRE));
1408}
1409
1410QualType CodeGenFunction::TypeOfSelfObject() {
1411  const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
1412  ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
1413  const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
1414    getContext().getCanonicalType(selfDecl->getType()));
1415  return PTy->getPointeeType();
1416}
1417
1418void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
1419  llvm::Constant *EnumerationMutationFn =
1420    CGM.getObjCRuntime().EnumerationMutationFunction();
1421
1422  if (!EnumerationMutationFn) {
1423    CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
1424    return;
1425  }
1426
1427  CGDebugInfo *DI = getDebugInfo();
1428  if (DI)
1429    DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
1430
1431  // The local variable comes into scope immediately.
1432  AutoVarEmission variable = AutoVarEmission::invalid();
1433  if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
1434    variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
1435
1436  JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
1437
1438  // Fast enumeration state.
1439  QualType StateTy = CGM.getObjCFastEnumerationStateType();
1440  llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr");
1441  EmitNullInitialization(StatePtr, StateTy);
1442
1443  // Number of elements in the items array.
1444  static const unsigned NumItems = 16;
1445
1446  // Fetch the countByEnumeratingWithState:objects:count: selector.
1447  IdentifierInfo *II[] = {
1448    &CGM.getContext().Idents.get("countByEnumeratingWithState"),
1449    &CGM.getContext().Idents.get("objects"),
1450    &CGM.getContext().Idents.get("count")
1451  };
1452  Selector FastEnumSel =
1453    CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
1454
1455  QualType ItemsTy =
1456    getContext().getConstantArrayType(getContext().getObjCIdType(),
1457                                      llvm::APInt(32, NumItems),
1458                                      ArrayType::Normal, 0);
1459  llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
1460
1461  // Emit the collection pointer.  In ARC, we do a retain.
1462  llvm::Value *Collection;
1463  if (getLangOpts().ObjCAutoRefCount) {
1464    Collection = EmitARCRetainScalarExpr(S.getCollection());
1465
1466    // Enter a cleanup to do the release.
1467    EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
1468  } else {
1469    Collection = EmitScalarExpr(S.getCollection());
1470  }
1471
1472  // The 'continue' label needs to appear within the cleanup for the
1473  // collection object.
1474  JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
1475
1476  // Send it our message:
1477  CallArgList Args;
1478
1479  // The first argument is a temporary of the enumeration-state type.
1480  Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy));
1481
1482  // The second argument is a temporary array with space for NumItems
1483  // pointers.  We'll actually be loading elements from the array
1484  // pointer written into the control state; this buffer is so that
1485  // collections that *aren't* backed by arrays can still queue up
1486  // batches of elements.
1487  Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy));
1488
1489  // The third argument is the capacity of that temporary array.
1490  llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
1491  llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
1492  Args.add(RValue::get(Count), getContext().UnsignedLongTy);
1493
1494  // Start the enumeration.
1495  RValue CountRV =
1496    CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1497                                             getContext().UnsignedLongTy,
1498                                             FastEnumSel,
1499                                             Collection, Args);
1500
1501  // The initial number of objects that were returned in the buffer.
1502  llvm::Value *initialBufferLimit = CountRV.getScalarVal();
1503
1504  llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
1505  llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
1506
1507  llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
1508
1509  // If the limit pointer was zero to begin with, the collection is
1510  // empty; skip all this.
1511  Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"),
1512                       EmptyBB, LoopInitBB);
1513
1514  // Otherwise, initialize the loop.
1515  EmitBlock(LoopInitBB);
1516
1517  // Save the initial mutations value.  This is the value at an
1518  // address that was written into the state object by
1519  // countByEnumeratingWithState:objects:count:.
1520  llvm::Value *StateMutationsPtrPtr =
1521    Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
1522  llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
1523                                                      "mutationsptr");
1524
1525  llvm::Value *initialMutations =
1526    Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations");
1527
1528  // Start looping.  This is the point we return to whenever we have a
1529  // fresh, non-empty batch of objects.
1530  llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
1531  EmitBlock(LoopBodyBB);
1532
1533  // The current index into the buffer.
1534  llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
1535  index->addIncoming(zero, LoopInitBB);
1536
1537  // The current buffer size.
1538  llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
1539  count->addIncoming(initialBufferLimit, LoopInitBB);
1540
1541  // Check whether the mutations value has changed from where it was
1542  // at start.  StateMutationsPtr should actually be invariant between
1543  // refreshes.
1544  StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
1545  llvm::Value *currentMutations
1546    = Builder.CreateLoad(StateMutationsPtr, "statemutations");
1547
1548  llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
1549  llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
1550
1551  Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
1552                       WasNotMutatedBB, WasMutatedBB);
1553
1554  // If so, call the enumeration-mutation function.
1555  EmitBlock(WasMutatedBB);
1556  llvm::Value *V =
1557    Builder.CreateBitCast(Collection,
1558                          ConvertType(getContext().getObjCIdType()));
1559  CallArgList Args2;
1560  Args2.add(RValue::get(V), getContext().getObjCIdType());
1561  // FIXME: We shouldn't need to get the function info here, the runtime already
1562  // should have computed it to build the function.
1563  EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2,
1564                                                  FunctionType::ExtInfo(),
1565                                                  RequiredArgs::All),
1566           EnumerationMutationFn, ReturnValueSlot(), Args2);
1567
1568  // Otherwise, or if the mutation function returns, just continue.
1569  EmitBlock(WasNotMutatedBB);
1570
1571  // Initialize the element variable.
1572  RunCleanupsScope elementVariableScope(*this);
1573  bool elementIsVariable;
1574  LValue elementLValue;
1575  QualType elementType;
1576  if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
1577    // Initialize the variable, in case it's a __block variable or something.
1578    EmitAutoVarInit(variable);
1579
1580    const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
1581    DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
1582                        VK_LValue, SourceLocation());
1583    elementLValue = EmitLValue(&tempDRE);
1584    elementType = D->getType();
1585    elementIsVariable = true;
1586
1587    if (D->isARCPseudoStrong())
1588      elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
1589  } else {
1590    elementLValue = LValue(); // suppress warning
1591    elementType = cast<Expr>(S.getElement())->getType();
1592    elementIsVariable = false;
1593  }
1594  llvm::Type *convertedElementType = ConvertType(elementType);
1595
1596  // Fetch the buffer out of the enumeration state.
1597  // TODO: this pointer should actually be invariant between
1598  // refreshes, which would help us do certain loop optimizations.
1599  llvm::Value *StateItemsPtr =
1600    Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
1601  llvm::Value *EnumStateItems =
1602    Builder.CreateLoad(StateItemsPtr, "stateitems");
1603
1604  // Fetch the value at the current index from the buffer.
1605  llvm::Value *CurrentItemPtr =
1606    Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
1607  llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr);
1608
1609  // Cast that value to the right type.
1610  CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
1611                                      "currentitem");
1612
1613  // Make sure we have an l-value.  Yes, this gets evaluated every
1614  // time through the loop.
1615  if (!elementIsVariable) {
1616    elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1617    EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
1618  } else {
1619    EmitScalarInit(CurrentItem, elementLValue);
1620  }
1621
1622  // If we do have an element variable, this assignment is the end of
1623  // its initialization.
1624  if (elementIsVariable)
1625    EmitAutoVarCleanups(variable);
1626
1627  // Perform the loop body, setting up break and continue labels.
1628  BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
1629  {
1630    RunCleanupsScope Scope(*this);
1631    EmitStmt(S.getBody());
1632  }
1633  BreakContinueStack.pop_back();
1634
1635  // Destroy the element variable now.
1636  elementVariableScope.ForceCleanup();
1637
1638  // Check whether there are more elements.
1639  EmitBlock(AfterBody.getBlock());
1640
1641  llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
1642
1643  // First we check in the local buffer.
1644  llvm::Value *indexPlusOne
1645    = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
1646
1647  // If we haven't overrun the buffer yet, we can continue.
1648  Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count),
1649                       LoopBodyBB, FetchMoreBB);
1650
1651  index->addIncoming(indexPlusOne, AfterBody.getBlock());
1652  count->addIncoming(count, AfterBody.getBlock());
1653
1654  // Otherwise, we have to fetch more elements.
1655  EmitBlock(FetchMoreBB);
1656
1657  CountRV =
1658    CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
1659                                             getContext().UnsignedLongTy,
1660                                             FastEnumSel,
1661                                             Collection, Args);
1662
1663  // If we got a zero count, we're done.
1664  llvm::Value *refetchCount = CountRV.getScalarVal();
1665
1666  // (note that the message send might split FetchMoreBB)
1667  index->addIncoming(zero, Builder.GetInsertBlock());
1668  count->addIncoming(refetchCount, Builder.GetInsertBlock());
1669
1670  Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
1671                       EmptyBB, LoopBodyBB);
1672
1673  // No more elements.
1674  EmitBlock(EmptyBB);
1675
1676  if (!elementIsVariable) {
1677    // If the element was not a declaration, set it to be null.
1678
1679    llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
1680    elementLValue = EmitLValue(cast<Expr>(S.getElement()));
1681    EmitStoreThroughLValue(RValue::get(null), elementLValue);
1682  }
1683
1684  if (DI)
1685    DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
1686
1687  // Leave the cleanup we entered in ARC.
1688  if (getLangOpts().ObjCAutoRefCount)
1689    PopCleanupBlock();
1690
1691  EmitBlock(LoopEnd.getBlock());
1692}
1693
1694void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
1695  CGM.getObjCRuntime().EmitTryStmt(*this, S);
1696}
1697
1698void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
1699  CGM.getObjCRuntime().EmitThrowStmt(*this, S);
1700}
1701
1702void CodeGenFunction::EmitObjCAtSynchronizedStmt(
1703                                              const ObjCAtSynchronizedStmt &S) {
1704  CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
1705}
1706
1707/// Produce the code for a CK_ARCProduceObject.  Just does a
1708/// primitive retain.
1709llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type,
1710                                                    llvm::Value *value) {
1711  return EmitARCRetain(type, value);
1712}
1713
1714namespace {
1715  struct CallObjCRelease : EHScopeStack::Cleanup {
1716    CallObjCRelease(llvm::Value *object) : object(object) {}
1717    llvm::Value *object;
1718
1719    void Emit(CodeGenFunction &CGF, Flags flags) {
1720      // Releases at the end of the full-expression are imprecise.
1721      CGF.EmitARCRelease(object, ARCImpreciseLifetime);
1722    }
1723  };
1724}
1725
1726/// Produce the code for a CK_ARCConsumeObject.  Does a primitive
1727/// release at the end of the full-expression.
1728llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
1729                                                    llvm::Value *object) {
1730  // If we're in a conditional branch, we need to make the cleanup
1731  // conditional.
1732  pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
1733  return object;
1734}
1735
1736llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
1737                                                           llvm::Value *value) {
1738  return EmitARCRetainAutorelease(type, value);
1739}
1740
1741/// Given a number of pointers, inform the optimizer that they're
1742/// being intrinsically used up until this point in the program.
1743void CodeGenFunction::EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values) {
1744  llvm::Constant *&fn = CGM.getARCEntrypoints().clang_arc_use;
1745  if (!fn) {
1746    llvm::FunctionType *fnType =
1747      llvm::FunctionType::get(CGM.VoidTy, ArrayRef<llvm::Type*>(), true);
1748    fn = CGM.CreateRuntimeFunction(fnType, "clang.arc.use");
1749  }
1750
1751  // This isn't really a "runtime" function, but as an intrinsic it
1752  // doesn't really matter as long as we align things up.
1753  EmitNounwindRuntimeCall(fn, values);
1754}
1755
1756
1757static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
1758                                                llvm::FunctionType *type,
1759                                                StringRef fnName) {
1760  llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
1761
1762  if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) {
1763    // If the target runtime doesn't naturally support ARC, emit weak
1764    // references to the runtime support library.  We don't really
1765    // permit this to fail, but we need a particular relocation style.
1766    if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
1767      f->setLinkage(llvm::Function::ExternalWeakLinkage);
1768    } else if (fnName == "objc_retain" || fnName  == "objc_release") {
1769      // If we have Native ARC, set nonlazybind attribute for these APIs for
1770      // performance.
1771      f->addFnAttr(llvm::Attribute::NonLazyBind);
1772    }
1773  }
1774
1775  return fn;
1776}
1777
1778/// Perform an operation having the signature
1779///   i8* (i8*)
1780/// where a null input causes a no-op and returns null.
1781static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
1782                                          llvm::Value *value,
1783                                          llvm::Constant *&fn,
1784                                          StringRef fnName,
1785                                          bool isTailCall = false) {
1786  if (isa<llvm::ConstantPointerNull>(value)) return value;
1787
1788  if (!fn) {
1789    llvm::FunctionType *fnType =
1790      llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrTy, false);
1791    fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1792  }
1793
1794  // Cast the argument to 'id'.
1795  llvm::Type *origType = value->getType();
1796  value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
1797
1798  // Call the function.
1799  llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(fn, value);
1800  if (isTailCall)
1801    call->setTailCall();
1802
1803  // Cast the result back to the original type.
1804  return CGF.Builder.CreateBitCast(call, origType);
1805}
1806
1807/// Perform an operation having the following signature:
1808///   i8* (i8**)
1809static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
1810                                         llvm::Value *addr,
1811                                         llvm::Constant *&fn,
1812                                         StringRef fnName) {
1813  if (!fn) {
1814    llvm::FunctionType *fnType =
1815      llvm::FunctionType::get(CGF.Int8PtrTy, CGF.Int8PtrPtrTy, false);
1816    fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1817  }
1818
1819  // Cast the argument to 'id*'.
1820  llvm::Type *origType = addr->getType();
1821  addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
1822
1823  // Call the function.
1824  llvm::Value *result = CGF.EmitNounwindRuntimeCall(fn, addr);
1825
1826  // Cast the result back to a dereference of the original type.
1827  if (origType != CGF.Int8PtrPtrTy)
1828    result = CGF.Builder.CreateBitCast(result,
1829                        cast<llvm::PointerType>(origType)->getElementType());
1830
1831  return result;
1832}
1833
1834/// Perform an operation having the following signature:
1835///   i8* (i8**, i8*)
1836static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
1837                                          llvm::Value *addr,
1838                                          llvm::Value *value,
1839                                          llvm::Constant *&fn,
1840                                          StringRef fnName,
1841                                          bool ignored) {
1842  assert(cast<llvm::PointerType>(addr->getType())->getElementType()
1843           == value->getType());
1844
1845  if (!fn) {
1846    llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
1847
1848    llvm::FunctionType *fnType
1849      = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
1850    fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1851  }
1852
1853  llvm::Type *origType = value->getType();
1854
1855  llvm::Value *args[] = {
1856    CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy),
1857    CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy)
1858  };
1859  llvm::CallInst *result = CGF.EmitNounwindRuntimeCall(fn, args);
1860
1861  if (ignored) return 0;
1862
1863  return CGF.Builder.CreateBitCast(result, origType);
1864}
1865
1866/// Perform an operation having the following signature:
1867///   void (i8**, i8**)
1868static void emitARCCopyOperation(CodeGenFunction &CGF,
1869                                 llvm::Value *dst,
1870                                 llvm::Value *src,
1871                                 llvm::Constant *&fn,
1872                                 StringRef fnName) {
1873  assert(dst->getType() == src->getType());
1874
1875  if (!fn) {
1876    llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrPtrTy };
1877
1878    llvm::FunctionType *fnType
1879      = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
1880    fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
1881  }
1882
1883  llvm::Value *args[] = {
1884    CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy),
1885    CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy)
1886  };
1887  CGF.EmitNounwindRuntimeCall(fn, args);
1888}
1889
1890/// Produce the code to do a retain.  Based on the type, calls one of:
1891///   call i8* \@objc_retain(i8* %value)
1892///   call i8* \@objc_retainBlock(i8* %value)
1893llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
1894  if (type->isBlockPointerType())
1895    return EmitARCRetainBlock(value, /*mandatory*/ false);
1896  else
1897    return EmitARCRetainNonBlock(value);
1898}
1899
1900/// Retain the given object, with normal retain semantics.
1901///   call i8* \@objc_retain(i8* %value)
1902llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
1903  return emitARCValueOperation(*this, value,
1904                               CGM.getARCEntrypoints().objc_retain,
1905                               "objc_retain");
1906}
1907
1908/// Retain the given block, with _Block_copy semantics.
1909///   call i8* \@objc_retainBlock(i8* %value)
1910///
1911/// \param mandatory - If false, emit the call with metadata
1912/// indicating that it's okay for the optimizer to eliminate this call
1913/// if it can prove that the block never escapes except down the stack.
1914llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
1915                                                 bool mandatory) {
1916  llvm::Value *result
1917    = emitARCValueOperation(*this, value,
1918                            CGM.getARCEntrypoints().objc_retainBlock,
1919                            "objc_retainBlock");
1920
1921  // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
1922  // tell the optimizer that it doesn't need to do this copy if the
1923  // block doesn't escape, where being passed as an argument doesn't
1924  // count as escaping.
1925  if (!mandatory && isa<llvm::Instruction>(result)) {
1926    llvm::CallInst *call
1927      = cast<llvm::CallInst>(result->stripPointerCasts());
1928    assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock);
1929
1930    SmallVector<llvm::Value*,1> args;
1931    call->setMetadata("clang.arc.copy_on_escape",
1932                      llvm::MDNode::get(Builder.getContext(), args));
1933  }
1934
1935  return result;
1936}
1937
1938/// Retain the given object which is the result of a function call.
1939///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
1940///
1941/// Yes, this function name is one character away from a different
1942/// call with completely different semantics.
1943llvm::Value *
1944CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
1945  // Fetch the void(void) inline asm which marks that we're going to
1946  // retain the autoreleased return value.
1947  llvm::InlineAsm *&marker
1948    = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker;
1949  if (!marker) {
1950    StringRef assembly
1951      = CGM.getTargetCodeGenInfo()
1952           .getARCRetainAutoreleasedReturnValueMarker();
1953
1954    // If we have an empty assembly string, there's nothing to do.
1955    if (assembly.empty()) {
1956
1957    // Otherwise, at -O0, build an inline asm that we're going to call
1958    // in a moment.
1959    } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1960      llvm::FunctionType *type =
1961        llvm::FunctionType::get(VoidTy, /*variadic*/false);
1962
1963      marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
1964
1965    // If we're at -O1 and above, we don't want to litter the code
1966    // with this marker yet, so leave a breadcrumb for the ARC
1967    // optimizer to pick up.
1968    } else {
1969      llvm::NamedMDNode *metadata =
1970        CGM.getModule().getOrInsertNamedMetadata(
1971                            "clang.arc.retainAutoreleasedReturnValueMarker");
1972      assert(metadata->getNumOperands() <= 1);
1973      if (metadata->getNumOperands() == 0) {
1974        llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly);
1975        metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string));
1976      }
1977    }
1978  }
1979
1980  // Call the marker asm if we made one, which we do only at -O0.
1981  if (marker) Builder.CreateCall(marker);
1982
1983  return emitARCValueOperation(*this, value,
1984                     CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue,
1985                               "objc_retainAutoreleasedReturnValue");
1986}
1987
1988/// Release the given object.
1989///   call void \@objc_release(i8* %value)
1990void CodeGenFunction::EmitARCRelease(llvm::Value *value,
1991                                     ARCPreciseLifetime_t precise) {
1992  if (isa<llvm::ConstantPointerNull>(value)) return;
1993
1994  llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release;
1995  if (!fn) {
1996    llvm::FunctionType *fnType =
1997      llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
1998    fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
1999  }
2000
2001  // Cast the argument to 'id'.
2002  value = Builder.CreateBitCast(value, Int8PtrTy);
2003
2004  // Call objc_release.
2005  llvm::CallInst *call = EmitNounwindRuntimeCall(fn, value);
2006
2007  if (precise == ARCImpreciseLifetime) {
2008    SmallVector<llvm::Value*,1> args;
2009    call->setMetadata("clang.imprecise_release",
2010                      llvm::MDNode::get(Builder.getContext(), args));
2011  }
2012}
2013
2014/// Destroy a __strong variable.
2015///
2016/// At -O0, emit a call to store 'null' into the address;
2017/// instrumenting tools prefer this because the address is exposed,
2018/// but it's relatively cumbersome to optimize.
2019///
2020/// At -O1 and above, just load and call objc_release.
2021///
2022///   call void \@objc_storeStrong(i8** %addr, i8* null)
2023void CodeGenFunction::EmitARCDestroyStrong(llvm::Value *addr,
2024                                           ARCPreciseLifetime_t precise) {
2025  if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2026    llvm::PointerType *addrTy = cast<llvm::PointerType>(addr->getType());
2027    llvm::Value *null = llvm::ConstantPointerNull::get(
2028                          cast<llvm::PointerType>(addrTy->getElementType()));
2029    EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
2030    return;
2031  }
2032
2033  llvm::Value *value = Builder.CreateLoad(addr);
2034  EmitARCRelease(value, precise);
2035}
2036
2037/// Store into a strong object.  Always calls this:
2038///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2039llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr,
2040                                                     llvm::Value *value,
2041                                                     bool ignored) {
2042  assert(cast<llvm::PointerType>(addr->getType())->getElementType()
2043           == value->getType());
2044
2045  llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong;
2046  if (!fn) {
2047    llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
2048    llvm::FunctionType *fnType
2049      = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
2050    fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
2051  }
2052
2053  llvm::Value *args[] = {
2054    Builder.CreateBitCast(addr, Int8PtrPtrTy),
2055    Builder.CreateBitCast(value, Int8PtrTy)
2056  };
2057  EmitNounwindRuntimeCall(fn, args);
2058
2059  if (ignored) return 0;
2060  return value;
2061}
2062
2063/// Store into a strong object.  Sometimes calls this:
2064///   call void \@objc_storeStrong(i8** %addr, i8* %value)
2065/// Other times, breaks it down into components.
2066llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
2067                                                 llvm::Value *newValue,
2068                                                 bool ignored) {
2069  QualType type = dst.getType();
2070  bool isBlock = type->isBlockPointerType();
2071
2072  // Use a store barrier at -O0 unless this is a block type or the
2073  // lvalue is inadequately aligned.
2074  if (shouldUseFusedARCCalls() &&
2075      !isBlock &&
2076      (dst.getAlignment().isZero() ||
2077       dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
2078    return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
2079  }
2080
2081  // Otherwise, split it out.
2082
2083  // Retain the new value.
2084  newValue = EmitARCRetain(type, newValue);
2085
2086  // Read the old value.
2087  llvm::Value *oldValue = EmitLoadOfScalar(dst);
2088
2089  // Store.  We do this before the release so that any deallocs won't
2090  // see the old value.
2091  EmitStoreOfScalar(newValue, dst);
2092
2093  // Finally, release the old value.
2094  EmitARCRelease(oldValue, dst.isARCPreciseLifetime());
2095
2096  return newValue;
2097}
2098
2099/// Autorelease the given object.
2100///   call i8* \@objc_autorelease(i8* %value)
2101llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
2102  return emitARCValueOperation(*this, value,
2103                               CGM.getARCEntrypoints().objc_autorelease,
2104                               "objc_autorelease");
2105}
2106
2107/// Autorelease the given object.
2108///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
2109llvm::Value *
2110CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
2111  return emitARCValueOperation(*this, value,
2112                            CGM.getARCEntrypoints().objc_autoreleaseReturnValue,
2113                               "objc_autoreleaseReturnValue",
2114                               /*isTailCall*/ true);
2115}
2116
2117/// Do a fused retain/autorelease of the given object.
2118///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
2119llvm::Value *
2120CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
2121  return emitARCValueOperation(*this, value,
2122                     CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue,
2123                               "objc_retainAutoreleaseReturnValue",
2124                               /*isTailCall*/ true);
2125}
2126
2127/// Do a fused retain/autorelease of the given object.
2128///   call i8* \@objc_retainAutorelease(i8* %value)
2129/// or
2130///   %retain = call i8* \@objc_retainBlock(i8* %value)
2131///   call i8* \@objc_autorelease(i8* %retain)
2132llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
2133                                                       llvm::Value *value) {
2134  if (!type->isBlockPointerType())
2135    return EmitARCRetainAutoreleaseNonBlock(value);
2136
2137  if (isa<llvm::ConstantPointerNull>(value)) return value;
2138
2139  llvm::Type *origType = value->getType();
2140  value = Builder.CreateBitCast(value, Int8PtrTy);
2141  value = EmitARCRetainBlock(value, /*mandatory*/ true);
2142  value = EmitARCAutorelease(value);
2143  return Builder.CreateBitCast(value, origType);
2144}
2145
2146/// Do a fused retain/autorelease of the given object.
2147///   call i8* \@objc_retainAutorelease(i8* %value)
2148llvm::Value *
2149CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
2150  return emitARCValueOperation(*this, value,
2151                               CGM.getARCEntrypoints().objc_retainAutorelease,
2152                               "objc_retainAutorelease");
2153}
2154
2155/// i8* \@objc_loadWeak(i8** %addr)
2156/// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
2157llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) {
2158  return emitARCLoadOperation(*this, addr,
2159                              CGM.getARCEntrypoints().objc_loadWeak,
2160                              "objc_loadWeak");
2161}
2162
2163/// i8* \@objc_loadWeakRetained(i8** %addr)
2164llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) {
2165  return emitARCLoadOperation(*this, addr,
2166                              CGM.getARCEntrypoints().objc_loadWeakRetained,
2167                              "objc_loadWeakRetained");
2168}
2169
2170/// i8* \@objc_storeWeak(i8** %addr, i8* %value)
2171/// Returns %value.
2172llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr,
2173                                               llvm::Value *value,
2174                                               bool ignored) {
2175  return emitARCStoreOperation(*this, addr, value,
2176                               CGM.getARCEntrypoints().objc_storeWeak,
2177                               "objc_storeWeak", ignored);
2178}
2179
2180/// i8* \@objc_initWeak(i8** %addr, i8* %value)
2181/// Returns %value.  %addr is known to not have a current weak entry.
2182/// Essentially equivalent to:
2183///   *addr = nil; objc_storeWeak(addr, value);
2184void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) {
2185  // If we're initializing to null, just write null to memory; no need
2186  // to get the runtime involved.  But don't do this if optimization
2187  // is enabled, because accounting for this would make the optimizer
2188  // much more complicated.
2189  if (isa<llvm::ConstantPointerNull>(value) &&
2190      CGM.getCodeGenOpts().OptimizationLevel == 0) {
2191    Builder.CreateStore(value, addr);
2192    return;
2193  }
2194
2195  emitARCStoreOperation(*this, addr, value,
2196                        CGM.getARCEntrypoints().objc_initWeak,
2197                        "objc_initWeak", /*ignored*/ true);
2198}
2199
2200/// void \@objc_destroyWeak(i8** %addr)
2201/// Essentially objc_storeWeak(addr, nil).
2202void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) {
2203  llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak;
2204  if (!fn) {
2205    llvm::FunctionType *fnType =
2206      llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrPtrTy, false);
2207    fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
2208  }
2209
2210  // Cast the argument to 'id*'.
2211  addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
2212
2213  EmitNounwindRuntimeCall(fn, addr);
2214}
2215
2216/// void \@objc_moveWeak(i8** %dest, i8** %src)
2217/// Disregards the current value in %dest.  Leaves %src pointing to nothing.
2218/// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
2219void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) {
2220  emitARCCopyOperation(*this, dst, src,
2221                       CGM.getARCEntrypoints().objc_moveWeak,
2222                       "objc_moveWeak");
2223}
2224
2225/// void \@objc_copyWeak(i8** %dest, i8** %src)
2226/// Disregards the current value in %dest.  Essentially
2227///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
2228void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) {
2229  emitARCCopyOperation(*this, dst, src,
2230                       CGM.getARCEntrypoints().objc_copyWeak,
2231                       "objc_copyWeak");
2232}
2233
2234/// Produce the code to do a objc_autoreleasepool_push.
2235///   call i8* \@objc_autoreleasePoolPush(void)
2236llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
2237  llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush;
2238  if (!fn) {
2239    llvm::FunctionType *fnType =
2240      llvm::FunctionType::get(Int8PtrTy, false);
2241    fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
2242  }
2243
2244  return EmitNounwindRuntimeCall(fn);
2245}
2246
2247/// Produce the code to do a primitive release.
2248///   call void \@objc_autoreleasePoolPop(i8* %ptr)
2249void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
2250  assert(value->getType() == Int8PtrTy);
2251
2252  llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop;
2253  if (!fn) {
2254    llvm::FunctionType *fnType =
2255      llvm::FunctionType::get(Builder.getVoidTy(), Int8PtrTy, false);
2256
2257    // We don't want to use a weak import here; instead we should not
2258    // fall into this path.
2259    fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
2260  }
2261
2262  // objc_autoreleasePoolPop can throw.
2263  EmitRuntimeCallOrInvoke(fn, value);
2264}
2265
2266/// Produce the code to do an MRR version objc_autoreleasepool_push.
2267/// Which is: [[NSAutoreleasePool alloc] init];
2268/// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
2269/// init is declared as: - (id) init; in its NSObject super class.
2270///
2271llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
2272  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
2273  llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(*this);
2274  // [NSAutoreleasePool alloc]
2275  IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
2276  Selector AllocSel = getContext().Selectors.getSelector(0, &II);
2277  CallArgList Args;
2278  RValue AllocRV =
2279    Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2280                                getContext().getObjCIdType(),
2281                                AllocSel, Receiver, Args);
2282
2283  // [Receiver init]
2284  Receiver = AllocRV.getScalarVal();
2285  II = &CGM.getContext().Idents.get("init");
2286  Selector InitSel = getContext().Selectors.getSelector(0, &II);
2287  RValue InitRV =
2288    Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
2289                                getContext().getObjCIdType(),
2290                                InitSel, Receiver, Args);
2291  return InitRV.getScalarVal();
2292}
2293
2294/// Produce the code to do a primitive release.
2295/// [tmp drain];
2296void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
2297  IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
2298  Selector DrainSel = getContext().Selectors.getSelector(0, &II);
2299  CallArgList Args;
2300  CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
2301                              getContext().VoidTy, DrainSel, Arg, Args);
2302}
2303
2304void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
2305                                              llvm::Value *addr,
2306                                              QualType type) {
2307  CGF.EmitARCDestroyStrong(addr, ARCPreciseLifetime);
2308}
2309
2310void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
2311                                                llvm::Value *addr,
2312                                                QualType type) {
2313  CGF.EmitARCDestroyStrong(addr, ARCImpreciseLifetime);
2314}
2315
2316void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
2317                                     llvm::Value *addr,
2318                                     QualType type) {
2319  CGF.EmitARCDestroyWeak(addr);
2320}
2321
2322namespace {
2323  struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup {
2324    llvm::Value *Token;
2325
2326    CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2327
2328    void Emit(CodeGenFunction &CGF, Flags flags) {
2329      CGF.EmitObjCAutoreleasePoolPop(Token);
2330    }
2331  };
2332  struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup {
2333    llvm::Value *Token;
2334
2335    CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
2336
2337    void Emit(CodeGenFunction &CGF, Flags flags) {
2338      CGF.EmitObjCMRRAutoreleasePoolPop(Token);
2339    }
2340  };
2341}
2342
2343void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
2344  if (CGM.getLangOpts().ObjCAutoRefCount)
2345    EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
2346  else
2347    EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
2348}
2349
2350static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2351                                                  LValue lvalue,
2352                                                  QualType type) {
2353  switch (type.getObjCLifetime()) {
2354  case Qualifiers::OCL_None:
2355  case Qualifiers::OCL_ExplicitNone:
2356  case Qualifiers::OCL_Strong:
2357  case Qualifiers::OCL_Autoreleasing:
2358    return TryEmitResult(CGF.EmitLoadOfLValue(lvalue).getScalarVal(),
2359                         false);
2360
2361  case Qualifiers::OCL_Weak:
2362    return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
2363                         true);
2364  }
2365
2366  llvm_unreachable("impossible lifetime!");
2367}
2368
2369static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2370                                                  const Expr *e) {
2371  e = e->IgnoreParens();
2372  QualType type = e->getType();
2373
2374  // If we're loading retained from a __strong xvalue, we can avoid
2375  // an extra retain/release pair by zeroing out the source of this
2376  // "move" operation.
2377  if (e->isXValue() &&
2378      !type.isConstQualified() &&
2379      type.getObjCLifetime() == Qualifiers::OCL_Strong) {
2380    // Emit the lvalue.
2381    LValue lv = CGF.EmitLValue(e);
2382
2383    // Load the object pointer.
2384    llvm::Value *result = CGF.EmitLoadOfLValue(lv).getScalarVal();
2385
2386    // Set the source pointer to NULL.
2387    CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
2388
2389    return TryEmitResult(result, true);
2390  }
2391
2392  // As a very special optimization, in ARC++, if the l-value is the
2393  // result of a non-volatile assignment, do a simple retain of the
2394  // result of the call to objc_storeWeak instead of reloading.
2395  if (CGF.getLangOpts().CPlusPlus &&
2396      !type.isVolatileQualified() &&
2397      type.getObjCLifetime() == Qualifiers::OCL_Weak &&
2398      isa<BinaryOperator>(e) &&
2399      cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
2400    return TryEmitResult(CGF.EmitScalarExpr(e), false);
2401
2402  return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
2403}
2404
2405static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2406                                           llvm::Value *value);
2407
2408/// Given that the given expression is some sort of call (which does
2409/// not return retained), emit a retain following it.
2410static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
2411  llvm::Value *value = CGF.EmitScalarExpr(e);
2412  return emitARCRetainAfterCall(CGF, value);
2413}
2414
2415static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
2416                                           llvm::Value *value) {
2417  if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
2418    CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2419
2420    // Place the retain immediately following the call.
2421    CGF.Builder.SetInsertPoint(call->getParent(),
2422                               ++llvm::BasicBlock::iterator(call));
2423    value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2424
2425    CGF.Builder.restoreIP(ip);
2426    return value;
2427  } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
2428    CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
2429
2430    // Place the retain at the beginning of the normal destination block.
2431    llvm::BasicBlock *BB = invoke->getNormalDest();
2432    CGF.Builder.SetInsertPoint(BB, BB->begin());
2433    value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
2434
2435    CGF.Builder.restoreIP(ip);
2436    return value;
2437
2438  // Bitcasts can arise because of related-result returns.  Rewrite
2439  // the operand.
2440  } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
2441    llvm::Value *operand = bitcast->getOperand(0);
2442    operand = emitARCRetainAfterCall(CGF, operand);
2443    bitcast->setOperand(0, operand);
2444    return bitcast;
2445
2446  // Generic fall-back case.
2447  } else {
2448    // Retain using the non-block variant: we never need to do a copy
2449    // of a block that's been returned to us.
2450    return CGF.EmitARCRetainNonBlock(value);
2451  }
2452}
2453
2454/// Determine whether it might be important to emit a separate
2455/// objc_retain_block on the result of the given expression, or
2456/// whether it's okay to just emit it in a +1 context.
2457static bool shouldEmitSeparateBlockRetain(const Expr *e) {
2458  assert(e->getType()->isBlockPointerType());
2459  e = e->IgnoreParens();
2460
2461  // For future goodness, emit block expressions directly in +1
2462  // contexts if we can.
2463  if (isa<BlockExpr>(e))
2464    return false;
2465
2466  if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
2467    switch (cast->getCastKind()) {
2468    // Emitting these operations in +1 contexts is goodness.
2469    case CK_LValueToRValue:
2470    case CK_ARCReclaimReturnedObject:
2471    case CK_ARCConsumeObject:
2472    case CK_ARCProduceObject:
2473      return false;
2474
2475    // These operations preserve a block type.
2476    case CK_NoOp:
2477    case CK_BitCast:
2478      return shouldEmitSeparateBlockRetain(cast->getSubExpr());
2479
2480    // These operations are known to be bad (or haven't been considered).
2481    case CK_AnyPointerToBlockPointerCast:
2482    default:
2483      return true;
2484    }
2485  }
2486
2487  return true;
2488}
2489
2490/// Try to emit a PseudoObjectExpr at +1.
2491///
2492/// This massively duplicates emitPseudoObjectRValue.
2493static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
2494                                                  const PseudoObjectExpr *E) {
2495  SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
2496
2497  // Find the result expression.
2498  const Expr *resultExpr = E->getResultExpr();
2499  assert(resultExpr);
2500  TryEmitResult result;
2501
2502  for (PseudoObjectExpr::const_semantics_iterator
2503         i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
2504    const Expr *semantic = *i;
2505
2506    // If this semantic expression is an opaque value, bind it
2507    // to the result of its source expression.
2508    if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
2509      typedef CodeGenFunction::OpaqueValueMappingData OVMA;
2510      OVMA opaqueData;
2511
2512      // If this semantic is the result of the pseudo-object
2513      // expression, try to evaluate the source as +1.
2514      if (ov == resultExpr) {
2515        assert(!OVMA::shouldBindAsLValue(ov));
2516        result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
2517        opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
2518
2519      // Otherwise, just bind it.
2520      } else {
2521        opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
2522      }
2523      opaques.push_back(opaqueData);
2524
2525    // Otherwise, if the expression is the result, evaluate it
2526    // and remember the result.
2527    } else if (semantic == resultExpr) {
2528      result = tryEmitARCRetainScalarExpr(CGF, semantic);
2529
2530    // Otherwise, evaluate the expression in an ignored context.
2531    } else {
2532      CGF.EmitIgnoredExpr(semantic);
2533    }
2534  }
2535
2536  // Unbind all the opaques now.
2537  for (unsigned i = 0, e = opaques.size(); i != e; ++i)
2538    opaques[i].unbind(CGF);
2539
2540  return result;
2541}
2542
2543static TryEmitResult
2544tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
2545  // We should *never* see a nested full-expression here, because if
2546  // we fail to emit at +1, our caller must not retain after we close
2547  // out the full-expression.
2548  assert(!isa<ExprWithCleanups>(e));
2549
2550  // The desired result type, if it differs from the type of the
2551  // ultimate opaque expression.
2552  llvm::Type *resultType = 0;
2553
2554  while (true) {
2555    e = e->IgnoreParens();
2556
2557    // There's a break at the end of this if-chain;  anything
2558    // that wants to keep looping has to explicitly continue.
2559    if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
2560      switch (ce->getCastKind()) {
2561      // No-op casts don't change the type, so we just ignore them.
2562      case CK_NoOp:
2563        e = ce->getSubExpr();
2564        continue;
2565
2566      case CK_LValueToRValue: {
2567        TryEmitResult loadResult
2568          = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
2569        if (resultType) {
2570          llvm::Value *value = loadResult.getPointer();
2571          value = CGF.Builder.CreateBitCast(value, resultType);
2572          loadResult.setPointer(value);
2573        }
2574        return loadResult;
2575      }
2576
2577      // These casts can change the type, so remember that and
2578      // soldier on.  We only need to remember the outermost such
2579      // cast, though.
2580      case CK_CPointerToObjCPointerCast:
2581      case CK_BlockPointerToObjCPointerCast:
2582      case CK_AnyPointerToBlockPointerCast:
2583      case CK_BitCast:
2584        if (!resultType)
2585          resultType = CGF.ConvertType(ce->getType());
2586        e = ce->getSubExpr();
2587        assert(e->getType()->hasPointerRepresentation());
2588        continue;
2589
2590      // For consumptions, just emit the subexpression and thus elide
2591      // the retain/release pair.
2592      case CK_ARCConsumeObject: {
2593        llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
2594        if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2595        return TryEmitResult(result, true);
2596      }
2597
2598      // Block extends are net +0.  Naively, we could just recurse on
2599      // the subexpression, but actually we need to ensure that the
2600      // value is copied as a block, so there's a little filter here.
2601      case CK_ARCExtendBlockObject: {
2602        llvm::Value *result; // will be a +0 value
2603
2604        // If we can't safely assume the sub-expression will produce a
2605        // block-copied value, emit the sub-expression at +0.
2606        if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
2607          result = CGF.EmitScalarExpr(ce->getSubExpr());
2608
2609        // Otherwise, try to emit the sub-expression at +1 recursively.
2610        } else {
2611          TryEmitResult subresult
2612            = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
2613          result = subresult.getPointer();
2614
2615          // If that produced a retained value, just use that,
2616          // possibly casting down.
2617          if (subresult.getInt()) {
2618            if (resultType)
2619              result = CGF.Builder.CreateBitCast(result, resultType);
2620            return TryEmitResult(result, true);
2621          }
2622
2623          // Otherwise it's +0.
2624        }
2625
2626        // Retain the object as a block, then cast down.
2627        result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
2628        if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2629        return TryEmitResult(result, true);
2630      }
2631
2632      // For reclaims, emit the subexpression as a retained call and
2633      // skip the consumption.
2634      case CK_ARCReclaimReturnedObject: {
2635        llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
2636        if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2637        return TryEmitResult(result, true);
2638      }
2639
2640      default:
2641        break;
2642      }
2643
2644    // Skip __extension__.
2645    } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
2646      if (op->getOpcode() == UO_Extension) {
2647        e = op->getSubExpr();
2648        continue;
2649      }
2650
2651    // For calls and message sends, use the retained-call logic.
2652    // Delegate inits are a special case in that they're the only
2653    // returns-retained expression that *isn't* surrounded by
2654    // a consume.
2655    } else if (isa<CallExpr>(e) ||
2656               (isa<ObjCMessageExpr>(e) &&
2657                !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
2658      llvm::Value *result = emitARCRetainCall(CGF, e);
2659      if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2660      return TryEmitResult(result, true);
2661
2662    // Look through pseudo-object expressions.
2663    } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
2664      TryEmitResult result
2665        = tryEmitARCRetainPseudoObject(CGF, pseudo);
2666      if (resultType) {
2667        llvm::Value *value = result.getPointer();
2668        value = CGF.Builder.CreateBitCast(value, resultType);
2669        result.setPointer(value);
2670      }
2671      return result;
2672    }
2673
2674    // Conservatively halt the search at any other expression kind.
2675    break;
2676  }
2677
2678  // We didn't find an obvious production, so emit what we've got and
2679  // tell the caller that we didn't manage to retain.
2680  llvm::Value *result = CGF.EmitScalarExpr(e);
2681  if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
2682  return TryEmitResult(result, false);
2683}
2684
2685static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
2686                                                LValue lvalue,
2687                                                QualType type) {
2688  TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
2689  llvm::Value *value = result.getPointer();
2690  if (!result.getInt())
2691    value = CGF.EmitARCRetain(type, value);
2692  return value;
2693}
2694
2695/// EmitARCRetainScalarExpr - Semantically equivalent to
2696/// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
2697/// best-effort attempt to peephole expressions that naturally produce
2698/// retained objects.
2699llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
2700  // The retain needs to happen within the full-expression.
2701  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2702    enterFullExpression(cleanups);
2703    RunCleanupsScope scope(*this);
2704    return EmitARCRetainScalarExpr(cleanups->getSubExpr());
2705  }
2706
2707  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2708  llvm::Value *value = result.getPointer();
2709  if (!result.getInt())
2710    value = EmitARCRetain(e->getType(), value);
2711  return value;
2712}
2713
2714llvm::Value *
2715CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
2716  // The retain needs to happen within the full-expression.
2717  if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
2718    enterFullExpression(cleanups);
2719    RunCleanupsScope scope(*this);
2720    return EmitARCRetainAutoreleaseScalarExpr(cleanups->getSubExpr());
2721  }
2722
2723  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
2724  llvm::Value *value = result.getPointer();
2725  if (result.getInt())
2726    value = EmitARCAutorelease(value);
2727  else
2728    value = EmitARCRetainAutorelease(e->getType(), value);
2729  return value;
2730}
2731
2732llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
2733  llvm::Value *result;
2734  bool doRetain;
2735
2736  if (shouldEmitSeparateBlockRetain(e)) {
2737    result = EmitScalarExpr(e);
2738    doRetain = true;
2739  } else {
2740    TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
2741    result = subresult.getPointer();
2742    doRetain = !subresult.getInt();
2743  }
2744
2745  if (doRetain)
2746    result = EmitARCRetainBlock(result, /*mandatory*/ true);
2747  return EmitObjCConsumeObject(e->getType(), result);
2748}
2749
2750llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
2751  // In ARC, retain and autorelease the expression.
2752  if (getLangOpts().ObjCAutoRefCount) {
2753    // Do so before running any cleanups for the full-expression.
2754    // EmitARCRetainAutoreleaseScalarExpr does this for us.
2755    return EmitARCRetainAutoreleaseScalarExpr(expr);
2756  }
2757
2758  // Otherwise, use the normal scalar-expression emission.  The
2759  // exception machinery doesn't do anything special with the
2760  // exception like retaining it, so there's no safety associated with
2761  // only running cleanups after the throw has started, and when it
2762  // matters it tends to be substantially inferior code.
2763  return EmitScalarExpr(expr);
2764}
2765
2766std::pair<LValue,llvm::Value*>
2767CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
2768                                    bool ignored) {
2769  // Evaluate the RHS first.
2770  TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
2771  llvm::Value *value = result.getPointer();
2772
2773  bool hasImmediateRetain = result.getInt();
2774
2775  // If we didn't emit a retained object, and the l-value is of block
2776  // type, then we need to emit the block-retain immediately in case
2777  // it invalidates the l-value.
2778  if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
2779    value = EmitARCRetainBlock(value, /*mandatory*/ false);
2780    hasImmediateRetain = true;
2781  }
2782
2783  LValue lvalue = EmitLValue(e->getLHS());
2784
2785  // If the RHS was emitted retained, expand this.
2786  if (hasImmediateRetain) {
2787    llvm::Value *oldValue =
2788      EmitLoadOfScalar(lvalue);
2789    EmitStoreOfScalar(value, lvalue);
2790    EmitARCRelease(oldValue, lvalue.isARCPreciseLifetime());
2791  } else {
2792    value = EmitARCStoreStrong(lvalue, value, ignored);
2793  }
2794
2795  return std::pair<LValue,llvm::Value*>(lvalue, value);
2796}
2797
2798std::pair<LValue,llvm::Value*>
2799CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
2800  llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
2801  LValue lvalue = EmitLValue(e->getLHS());
2802
2803  EmitStoreOfScalar(value, lvalue);
2804
2805  return std::pair<LValue,llvm::Value*>(lvalue, value);
2806}
2807
2808void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
2809                                          const ObjCAutoreleasePoolStmt &ARPS) {
2810  const Stmt *subStmt = ARPS.getSubStmt();
2811  const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
2812
2813  CGDebugInfo *DI = getDebugInfo();
2814  if (DI)
2815    DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
2816
2817  // Keep track of the current cleanup stack depth.
2818  RunCleanupsScope Scope(*this);
2819  if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
2820    llvm::Value *token = EmitObjCAutoreleasePoolPush();
2821    EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
2822  } else {
2823    llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
2824    EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
2825  }
2826
2827  for (CompoundStmt::const_body_iterator I = S.body_begin(),
2828       E = S.body_end(); I != E; ++I)
2829    EmitStmt(*I);
2830
2831  if (DI)
2832    DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
2833}
2834
2835/// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2836/// make sure it survives garbage collection until this point.
2837void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
2838  // We just use an inline assembly.
2839  llvm::FunctionType *extenderType
2840    = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
2841  llvm::Value *extender
2842    = llvm::InlineAsm::get(extenderType,
2843                           /* assembly */ "",
2844                           /* constraints */ "r",
2845                           /* side effects */ true);
2846
2847  object = Builder.CreateBitCast(object, VoidPtrTy);
2848  EmitNounwindRuntimeCall(extender, object);
2849}
2850
2851/// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
2852/// non-trivial copy assignment function, produce following helper function.
2853/// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
2854///
2855llvm::Constant *
2856CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
2857                                        const ObjCPropertyImplDecl *PID) {
2858  if (!getLangOpts().CPlusPlus ||
2859      !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2860    return 0;
2861  QualType Ty = PID->getPropertyIvarDecl()->getType();
2862  if (!Ty->isRecordType())
2863    return 0;
2864  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2865  if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2866    return 0;
2867  llvm::Constant * HelperFn = 0;
2868  if (hasTrivialSetExpr(PID))
2869    return 0;
2870  assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
2871  if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
2872    return HelperFn;
2873
2874  ASTContext &C = getContext();
2875  IdentifierInfo *II
2876    = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
2877  FunctionDecl *FD = FunctionDecl::Create(C,
2878                                          C.getTranslationUnitDecl(),
2879                                          SourceLocation(),
2880                                          SourceLocation(), II, C.VoidTy, 0,
2881                                          SC_Static,
2882                                          false,
2883                                          false);
2884
2885  QualType DestTy = C.getPointerType(Ty);
2886  QualType SrcTy = Ty;
2887  SrcTy.addConst();
2888  SrcTy = C.getPointerType(SrcTy);
2889
2890  FunctionArgList args;
2891  ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2892  args.push_back(&dstDecl);
2893  ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2894  args.push_back(&srcDecl);
2895
2896  const CGFunctionInfo &FI =
2897    CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
2898                                              FunctionType::ExtInfo(),
2899                                              RequiredArgs::All);
2900
2901  llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2902
2903  llvm::Function *Fn =
2904    llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2905                           "__assign_helper_atomic_property_",
2906                           &CGM.getModule());
2907
2908  // Initialize debug info if needed.
2909  maybeInitializeDebugInfo();
2910
2911  StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2912
2913  DeclRefExpr DstExpr(&dstDecl, false, DestTy,
2914                      VK_RValue, SourceLocation());
2915  UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
2916                    VK_LValue, OK_Ordinary, SourceLocation());
2917
2918  DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2919                      VK_RValue, SourceLocation());
2920  UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
2921                    VK_LValue, OK_Ordinary, SourceLocation());
2922
2923  Expr *Args[2] = { &DST, &SRC };
2924  CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
2925  CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
2926                              Args, DestTy->getPointeeType(),
2927                              VK_LValue, SourceLocation(), false);
2928
2929  EmitStmt(&TheCall);
2930
2931  FinishFunction();
2932  HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2933  CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
2934  return HelperFn;
2935}
2936
2937llvm::Constant *
2938CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
2939                                            const ObjCPropertyImplDecl *PID) {
2940  if (!getLangOpts().CPlusPlus ||
2941      !getLangOpts().ObjCRuntime.hasAtomicCopyHelper())
2942    return 0;
2943  const ObjCPropertyDecl *PD = PID->getPropertyDecl();
2944  QualType Ty = PD->getType();
2945  if (!Ty->isRecordType())
2946    return 0;
2947  if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
2948    return 0;
2949  llvm::Constant * HelperFn = 0;
2950
2951  if (hasTrivialGetExpr(PID))
2952    return 0;
2953  assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
2954  if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
2955    return HelperFn;
2956
2957
2958  ASTContext &C = getContext();
2959  IdentifierInfo *II
2960  = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
2961  FunctionDecl *FD = FunctionDecl::Create(C,
2962                                          C.getTranslationUnitDecl(),
2963                                          SourceLocation(),
2964                                          SourceLocation(), II, C.VoidTy, 0,
2965                                          SC_Static,
2966                                          false,
2967                                          false);
2968
2969  QualType DestTy = C.getPointerType(Ty);
2970  QualType SrcTy = Ty;
2971  SrcTy.addConst();
2972  SrcTy = C.getPointerType(SrcTy);
2973
2974  FunctionArgList args;
2975  ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
2976  args.push_back(&dstDecl);
2977  ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
2978  args.push_back(&srcDecl);
2979
2980  const CGFunctionInfo &FI =
2981  CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
2982                                            FunctionType::ExtInfo(),
2983                                            RequiredArgs::All);
2984
2985  llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2986
2987  llvm::Function *Fn =
2988  llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2989                         "__copy_helper_atomic_property_", &CGM.getModule());
2990
2991  // Initialize debug info if needed.
2992  maybeInitializeDebugInfo();
2993
2994  StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
2995
2996  DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
2997                      VK_RValue, SourceLocation());
2998
2999  UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
3000                    VK_LValue, OK_Ordinary, SourceLocation());
3001
3002  CXXConstructExpr *CXXConstExpr =
3003    cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
3004
3005  SmallVector<Expr*, 4> ConstructorArgs;
3006  ConstructorArgs.push_back(&SRC);
3007  CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin();
3008  ++A;
3009
3010  for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end();
3011       A != AEnd; ++A)
3012    ConstructorArgs.push_back(*A);
3013
3014  CXXConstructExpr *TheCXXConstructExpr =
3015    CXXConstructExpr::Create(C, Ty, SourceLocation(),
3016                             CXXConstExpr->getConstructor(),
3017                             CXXConstExpr->isElidable(),
3018                             ConstructorArgs,
3019                             CXXConstExpr->hadMultipleCandidates(),
3020                             CXXConstExpr->isListInitialization(),
3021                             CXXConstExpr->requiresZeroInitialization(),
3022                             CXXConstExpr->getConstructionKind(),
3023                             SourceRange());
3024
3025  DeclRefExpr DstExpr(&dstDecl, false, DestTy,
3026                      VK_RValue, SourceLocation());
3027
3028  RValue DV = EmitAnyExpr(&DstExpr);
3029  CharUnits Alignment
3030    = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
3031  EmitAggExpr(TheCXXConstructExpr,
3032              AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(),
3033                                    AggValueSlot::IsDestructed,
3034                                    AggValueSlot::DoesNotNeedGCBarriers,
3035                                    AggValueSlot::IsNotAliased));
3036
3037  FinishFunction();
3038  HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
3039  CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
3040  return HelperFn;
3041}
3042
3043llvm::Value *
3044CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
3045  // Get selectors for retain/autorelease.
3046  IdentifierInfo *CopyID = &getContext().Idents.get("copy");
3047  Selector CopySelector =
3048      getContext().Selectors.getNullarySelector(CopyID);
3049  IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
3050  Selector AutoreleaseSelector =
3051      getContext().Selectors.getNullarySelector(AutoreleaseID);
3052
3053  // Emit calls to retain/autorelease.
3054  CGObjCRuntime &Runtime = CGM.getObjCRuntime();
3055  llvm::Value *Val = Block;
3056  RValue Result;
3057  Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3058                                       Ty, CopySelector,
3059                                       Val, CallArgList(), 0, 0);
3060  Val = Result.getScalarVal();
3061  Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
3062                                       Ty, AutoreleaseSelector,
3063                                       Val, CallArgList(), 0, 0);
3064  Val = Result.getScalarVal();
3065  return Val;
3066}
3067
3068
3069CGObjCRuntime::~CGObjCRuntime() {}
3070