1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the internal per-function state used for llvm translation.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15#define CLANG_CODEGEN_CODEGENFUNCTION_H
16
17#include "CGBuilder.h"
18#include "CGDebugInfo.h"
19#include "CGValue.h"
20#include "EHScopeStack.h"
21#include "CodeGenModule.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/Type.h"
26#include "clang/Basic/ABI.h"
27#include "clang/Basic/CapturedStmt.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Frontend/CodeGenOptions.h"
30#include "llvm/ADT/ArrayRef.h"
31#include "llvm/ADT/DenseMap.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ValueHandle.h"
35
36namespace llvm {
37  class BasicBlock;
38  class LLVMContext;
39  class MDNode;
40  class Module;
41  class SwitchInst;
42  class Twine;
43  class Value;
44  class CallSite;
45}
46
47namespace clang {
48  class ASTContext;
49  class BlockDecl;
50  class CXXDestructorDecl;
51  class CXXForRangeStmt;
52  class CXXTryStmt;
53  class Decl;
54  class LabelDecl;
55  class EnumConstantDecl;
56  class FunctionDecl;
57  class FunctionProtoType;
58  class LabelStmt;
59  class ObjCContainerDecl;
60  class ObjCInterfaceDecl;
61  class ObjCIvarDecl;
62  class ObjCMethodDecl;
63  class ObjCImplementationDecl;
64  class ObjCPropertyImplDecl;
65  class TargetInfo;
66  class TargetCodeGenInfo;
67  class VarDecl;
68  class ObjCForCollectionStmt;
69  class ObjCAtTryStmt;
70  class ObjCAtThrowStmt;
71  class ObjCAtSynchronizedStmt;
72  class ObjCAutoreleasePoolStmt;
73
74namespace CodeGen {
75  class CodeGenTypes;
76  class CGFunctionInfo;
77  class CGRecordLayout;
78  class CGBlockInfo;
79  class CGCXXABI;
80  class BlockFlags;
81  class BlockFieldFlags;
82
83/// The kind of evaluation to perform on values of a particular
84/// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
85/// CGExprAgg?
86///
87/// TODO: should vectors maybe be split out into their own thing?
88enum TypeEvaluationKind {
89  TEK_Scalar,
90  TEK_Complex,
91  TEK_Aggregate
92};
93
94/// CodeGenFunction - This class organizes the per-function state that is used
95/// while generating LLVM code.
96class CodeGenFunction : public CodeGenTypeCache {
97  CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
98  void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
99
100  friend class CGCXXABI;
101public:
102  /// A jump destination is an abstract label, branching to which may
103  /// require a jump out through normal cleanups.
104  struct JumpDest {
105    JumpDest() : Block(0), ScopeDepth(), Index(0) {}
106    JumpDest(llvm::BasicBlock *Block,
107             EHScopeStack::stable_iterator Depth,
108             unsigned Index)
109      : Block(Block), ScopeDepth(Depth), Index(Index) {}
110
111    bool isValid() const { return Block != 0; }
112    llvm::BasicBlock *getBlock() const { return Block; }
113    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
114    unsigned getDestIndex() const { return Index; }
115
116    // This should be used cautiously.
117    void setScopeDepth(EHScopeStack::stable_iterator depth) {
118      ScopeDepth = depth;
119    }
120
121  private:
122    llvm::BasicBlock *Block;
123    EHScopeStack::stable_iterator ScopeDepth;
124    unsigned Index;
125  };
126
127  CodeGenModule &CGM;  // Per-module state.
128  const TargetInfo &Target;
129
130  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
131  CGBuilderTy Builder;
132
133  /// CurFuncDecl - Holds the Decl for the current outermost
134  /// non-closure context.
135  const Decl *CurFuncDecl;
136  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
137  const Decl *CurCodeDecl;
138  const CGFunctionInfo *CurFnInfo;
139  QualType FnRetTy;
140  llvm::Function *CurFn;
141
142  /// CurGD - The GlobalDecl for the current function being compiled.
143  GlobalDecl CurGD;
144
145  /// PrologueCleanupDepth - The cleanup depth enclosing all the
146  /// cleanups associated with the parameters.
147  EHScopeStack::stable_iterator PrologueCleanupDepth;
148
149  /// ReturnBlock - Unified return block.
150  JumpDest ReturnBlock;
151
152  /// ReturnValue - The temporary alloca to hold the return value. This is null
153  /// iff the function has no return value.
154  llvm::Value *ReturnValue;
155
156  /// AllocaInsertPoint - This is an instruction in the entry block before which
157  /// we prefer to insert allocas.
158  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
159
160  /// \brief API for captured statement code generation.
161  class CGCapturedStmtInfo {
162  public:
163    explicit CGCapturedStmtInfo(const CapturedStmt &S,
164                                CapturedRegionKind K = CR_Default)
165      : Kind(K), ThisValue(0), CXXThisFieldDecl(0) {
166
167      RecordDecl::field_iterator Field =
168        S.getCapturedRecordDecl()->field_begin();
169      for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
170                                                E = S.capture_end();
171           I != E; ++I, ++Field) {
172        if (I->capturesThis())
173          CXXThisFieldDecl = *Field;
174        else
175          CaptureFields[I->getCapturedVar()] = *Field;
176      }
177    }
178
179    virtual ~CGCapturedStmtInfo();
180
181    CapturedRegionKind getKind() const { return Kind; }
182
183    void setContextValue(llvm::Value *V) { ThisValue = V; }
184    // \brief Retrieve the value of the context parameter.
185    llvm::Value *getContextValue() const { return ThisValue; }
186
187    /// \brief Lookup the captured field decl for a variable.
188    const FieldDecl *lookup(const VarDecl *VD) const {
189      return CaptureFields.lookup(VD);
190    }
191
192    bool isCXXThisExprCaptured() const { return CXXThisFieldDecl != 0; }
193    FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
194
195    /// \brief Emit the captured statement body.
196    virtual void EmitBody(CodeGenFunction &CGF, Stmt *S) {
197      CGF.EmitStmt(S);
198    }
199
200    /// \brief Get the name of the capture helper.
201    virtual StringRef getHelperName() const { return "__captured_stmt"; }
202
203  private:
204    /// \brief The kind of captured statement being generated.
205    CapturedRegionKind Kind;
206
207    /// \brief Keep the map between VarDecl and FieldDecl.
208    llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
209
210    /// \brief The base address of the captured record, passed in as the first
211    /// argument of the parallel region function.
212    llvm::Value *ThisValue;
213
214    /// \brief Captured 'this' type.
215    FieldDecl *CXXThisFieldDecl;
216  };
217  CGCapturedStmtInfo *CapturedStmtInfo;
218
219  /// BoundsChecking - Emit run-time bounds checks. Higher values mean
220  /// potentially higher performance penalties.
221  unsigned char BoundsChecking;
222
223  /// \brief Whether any type-checking sanitizers are enabled. If \c false,
224  /// calls to EmitTypeCheck can be skipped.
225  bool SanitizePerformTypeCheck;
226
227  /// \brief Sanitizer options to use for this function.
228  const SanitizerOptions *SanOpts;
229
230  /// In ARC, whether we should autorelease the return value.
231  bool AutoreleaseResult;
232
233  const CodeGen::CGBlockInfo *BlockInfo;
234  llvm::Value *BlockPointer;
235
236  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
237  FieldDecl *LambdaThisCaptureField;
238
239  /// \brief A mapping from NRVO variables to the flags used to indicate
240  /// when the NRVO has been applied to this variable.
241  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
242
243  EHScopeStack EHStack;
244  llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
245
246  /// Header for data within LifetimeExtendedCleanupStack.
247  struct LifetimeExtendedCleanupHeader {
248    /// The size of the following cleanup object.
249    size_t Size : 29;
250    /// The kind of cleanup to push: a value from the CleanupKind enumeration.
251    unsigned Kind : 3;
252
253    size_t getSize() const { return Size; }
254    CleanupKind getKind() const { return static_cast<CleanupKind>(Kind); }
255  };
256
257  /// i32s containing the indexes of the cleanup destinations.
258  llvm::AllocaInst *NormalCleanupDest;
259
260  unsigned NextCleanupDestIndex;
261
262  /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
263  CGBlockInfo *FirstBlockInfo;
264
265  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
266  llvm::BasicBlock *EHResumeBlock;
267
268  /// The exception slot.  All landing pads write the current exception pointer
269  /// into this alloca.
270  llvm::Value *ExceptionSlot;
271
272  /// The selector slot.  Under the MandatoryCleanup model, all landing pads
273  /// write the current selector value into this alloca.
274  llvm::AllocaInst *EHSelectorSlot;
275
276  /// Emits a landing pad for the current EH stack.
277  llvm::BasicBlock *EmitLandingPad();
278
279  llvm::BasicBlock *getInvokeDestImpl();
280
281  template <class T>
282  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
283    return DominatingValue<T>::save(*this, value);
284  }
285
286public:
287  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
288  /// rethrows.
289  SmallVector<llvm::Value*, 8> ObjCEHValueStack;
290
291  /// A class controlling the emission of a finally block.
292  class FinallyInfo {
293    /// Where the catchall's edge through the cleanup should go.
294    JumpDest RethrowDest;
295
296    /// A function to call to enter the catch.
297    llvm::Constant *BeginCatchFn;
298
299    /// An i1 variable indicating whether or not the @finally is
300    /// running for an exception.
301    llvm::AllocaInst *ForEHVar;
302
303    /// An i8* variable into which the exception pointer to rethrow
304    /// has been saved.
305    llvm::AllocaInst *SavedExnVar;
306
307  public:
308    void enter(CodeGenFunction &CGF, const Stmt *Finally,
309               llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
310               llvm::Constant *rethrowFn);
311    void exit(CodeGenFunction &CGF);
312  };
313
314  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
315  /// current full-expression.  Safe against the possibility that
316  /// we're currently inside a conditionally-evaluated expression.
317  template <class T, class A0>
318  void pushFullExprCleanup(CleanupKind kind, A0 a0) {
319    // If we're not in a conditional branch, or if none of the
320    // arguments requires saving, then use the unconditional cleanup.
321    if (!isInConditionalBranch())
322      return EHStack.pushCleanup<T>(kind, a0);
323
324    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
325
326    typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
327    EHStack.pushCleanup<CleanupType>(kind, a0_saved);
328    initFullExprCleanup();
329  }
330
331  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
332  /// current full-expression.  Safe against the possibility that
333  /// we're currently inside a conditionally-evaluated expression.
334  template <class T, class A0, class A1>
335  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
336    // If we're not in a conditional branch, or if none of the
337    // arguments requires saving, then use the unconditional cleanup.
338    if (!isInConditionalBranch())
339      return EHStack.pushCleanup<T>(kind, a0, a1);
340
341    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
342    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
343
344    typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
345    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
346    initFullExprCleanup();
347  }
348
349  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
350  /// current full-expression.  Safe against the possibility that
351  /// we're currently inside a conditionally-evaluated expression.
352  template <class T, class A0, class A1, class A2>
353  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
354    // If we're not in a conditional branch, or if none of the
355    // arguments requires saving, then use the unconditional cleanup.
356    if (!isInConditionalBranch()) {
357      return EHStack.pushCleanup<T>(kind, a0, a1, a2);
358    }
359
360    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
361    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
362    typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
363
364    typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
365    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
366    initFullExprCleanup();
367  }
368
369  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
370  /// current full-expression.  Safe against the possibility that
371  /// we're currently inside a conditionally-evaluated expression.
372  template <class T, class A0, class A1, class A2, class A3>
373  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
374    // If we're not in a conditional branch, or if none of the
375    // arguments requires saving, then use the unconditional cleanup.
376    if (!isInConditionalBranch()) {
377      return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
378    }
379
380    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
381    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
382    typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
383    typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
384
385    typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
386    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
387                                     a2_saved, a3_saved);
388    initFullExprCleanup();
389  }
390
391  /// \brief Queue a cleanup to be pushed after finishing the current
392  /// full-expression.
393  template <class T, class A0, class A1, class A2, class A3>
394  void pushCleanupAfterFullExpr(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
395    assert(!isInConditionalBranch() && "can't defer conditional cleanup");
396
397    LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
398
399    size_t OldSize = LifetimeExtendedCleanupStack.size();
400    LifetimeExtendedCleanupStack.resize(
401        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
402
403    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
404    new (Buffer) LifetimeExtendedCleanupHeader(Header);
405    new (Buffer + sizeof(Header)) T(a0, a1, a2, a3);
406  }
407
408  /// Set up the last cleaup that was pushed as a conditional
409  /// full-expression cleanup.
410  void initFullExprCleanup();
411
412  /// PushDestructorCleanup - Push a cleanup to call the
413  /// complete-object destructor of an object of the given type at the
414  /// given address.  Does nothing if T is not a C++ class type with a
415  /// non-trivial destructor.
416  void PushDestructorCleanup(QualType T, llvm::Value *Addr);
417
418  /// PushDestructorCleanup - Push a cleanup to call the
419  /// complete-object variant of the given destructor on the object at
420  /// the given address.
421  void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
422                             llvm::Value *Addr);
423
424  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
425  /// process all branch fixups.
426  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
427
428  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
429  /// The block cannot be reactivated.  Pops it if it's the top of the
430  /// stack.
431  ///
432  /// \param DominatingIP - An instruction which is known to
433  ///   dominate the current IP (if set) and which lies along
434  ///   all paths of execution between the current IP and the
435  ///   the point at which the cleanup comes into scope.
436  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
437                              llvm::Instruction *DominatingIP);
438
439  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
440  /// Cannot be used to resurrect a deactivated cleanup.
441  ///
442  /// \param DominatingIP - An instruction which is known to
443  ///   dominate the current IP (if set) and which lies along
444  ///   all paths of execution between the current IP and the
445  ///   the point at which the cleanup comes into scope.
446  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
447                            llvm::Instruction *DominatingIP);
448
449  /// \brief Enters a new scope for capturing cleanups, all of which
450  /// will be executed once the scope is exited.
451  class RunCleanupsScope {
452    EHScopeStack::stable_iterator CleanupStackDepth;
453    size_t LifetimeExtendedCleanupStackSize;
454    bool OldDidCallStackSave;
455  protected:
456    bool PerformCleanup;
457  private:
458
459    RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
460    void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
461
462  protected:
463    CodeGenFunction& CGF;
464
465  public:
466    /// \brief Enter a new cleanup scope.
467    explicit RunCleanupsScope(CodeGenFunction &CGF)
468      : PerformCleanup(true), CGF(CGF)
469    {
470      CleanupStackDepth = CGF.EHStack.stable_begin();
471      LifetimeExtendedCleanupStackSize =
472          CGF.LifetimeExtendedCleanupStack.size();
473      OldDidCallStackSave = CGF.DidCallStackSave;
474      CGF.DidCallStackSave = false;
475    }
476
477    /// \brief Exit this cleanup scope, emitting any accumulated
478    /// cleanups.
479    ~RunCleanupsScope() {
480      if (PerformCleanup) {
481        CGF.DidCallStackSave = OldDidCallStackSave;
482        CGF.PopCleanupBlocks(CleanupStackDepth,
483                             LifetimeExtendedCleanupStackSize);
484      }
485    }
486
487    /// \brief Determine whether this scope requires any cleanups.
488    bool requiresCleanups() const {
489      return CGF.EHStack.stable_begin() != CleanupStackDepth;
490    }
491
492    /// \brief Force the emission of cleanups now, instead of waiting
493    /// until this object is destroyed.
494    void ForceCleanup() {
495      assert(PerformCleanup && "Already forced cleanup");
496      CGF.DidCallStackSave = OldDidCallStackSave;
497      CGF.PopCleanupBlocks(CleanupStackDepth,
498                           LifetimeExtendedCleanupStackSize);
499      PerformCleanup = false;
500    }
501  };
502
503  class LexicalScope: protected RunCleanupsScope {
504    SourceRange Range;
505    SmallVector<const LabelDecl*, 4> Labels;
506    LexicalScope *ParentScope;
507
508    LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION;
509    void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION;
510
511  public:
512    /// \brief Enter a new cleanup scope.
513    explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
514      : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
515      CGF.CurLexicalScope = this;
516      if (CGDebugInfo *DI = CGF.getDebugInfo())
517        DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
518    }
519
520    void addLabel(const LabelDecl *label) {
521      assert(PerformCleanup && "adding label to dead scope?");
522      Labels.push_back(label);
523    }
524
525    /// \brief Exit this cleanup scope, emitting any accumulated
526    /// cleanups.
527    ~LexicalScope() {
528      if (CGDebugInfo *DI = CGF.getDebugInfo())
529        DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
530
531      // If we should perform a cleanup, force them now.  Note that
532      // this ends the cleanup scope before rescoping any labels.
533      if (PerformCleanup) ForceCleanup();
534    }
535
536    /// \brief Force the emission of cleanups now, instead of waiting
537    /// until this object is destroyed.
538    void ForceCleanup() {
539      CGF.CurLexicalScope = ParentScope;
540      RunCleanupsScope::ForceCleanup();
541
542      if (!Labels.empty())
543        rescopeLabels();
544    }
545
546    void rescopeLabels();
547  };
548
549
550  /// \brief Takes the old cleanup stack size and emits the cleanup blocks
551  /// that have been added.
552  void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
553
554  /// \brief Takes the old cleanup stack size and emits the cleanup blocks
555  /// that have been added, then adds all lifetime-extended cleanups from
556  /// the given position to the stack.
557  void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
558                        size_t OldLifetimeExtendedStackSize);
559
560  void ResolveBranchFixups(llvm::BasicBlock *Target);
561
562  /// The given basic block lies in the current EH scope, but may be a
563  /// target of a potentially scope-crossing jump; get a stable handle
564  /// to which we can perform this jump later.
565  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
566    return JumpDest(Target,
567                    EHStack.getInnermostNormalCleanup(),
568                    NextCleanupDestIndex++);
569  }
570
571  /// The given basic block lies in the current EH scope, but may be a
572  /// target of a potentially scope-crossing jump; get a stable handle
573  /// to which we can perform this jump later.
574  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
575    return getJumpDestInCurrentScope(createBasicBlock(Name));
576  }
577
578  /// EmitBranchThroughCleanup - Emit a branch from the current insert
579  /// block through the normal cleanup handling code (if any) and then
580  /// on to \arg Dest.
581  void EmitBranchThroughCleanup(JumpDest Dest);
582
583  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
584  /// specified destination obviously has no cleanups to run.  'false' is always
585  /// a conservatively correct answer for this method.
586  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
587
588  /// popCatchScope - Pops the catch scope at the top of the EHScope
589  /// stack, emitting any required code (other than the catch handlers
590  /// themselves).
591  void popCatchScope();
592
593  llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
594  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
595
596  /// An object to manage conditionally-evaluated expressions.
597  class ConditionalEvaluation {
598    llvm::BasicBlock *StartBB;
599
600  public:
601    ConditionalEvaluation(CodeGenFunction &CGF)
602      : StartBB(CGF.Builder.GetInsertBlock()) {}
603
604    void begin(CodeGenFunction &CGF) {
605      assert(CGF.OutermostConditional != this);
606      if (!CGF.OutermostConditional)
607        CGF.OutermostConditional = this;
608    }
609
610    void end(CodeGenFunction &CGF) {
611      assert(CGF.OutermostConditional != 0);
612      if (CGF.OutermostConditional == this)
613        CGF.OutermostConditional = 0;
614    }
615
616    /// Returns a block which will be executed prior to each
617    /// evaluation of the conditional code.
618    llvm::BasicBlock *getStartingBlock() const {
619      return StartBB;
620    }
621  };
622
623  /// isInConditionalBranch - Return true if we're currently emitting
624  /// one branch or the other of a conditional expression.
625  bool isInConditionalBranch() const { return OutermostConditional != 0; }
626
627  void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
628    assert(isInConditionalBranch());
629    llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
630    new llvm::StoreInst(value, addr, &block->back());
631  }
632
633  /// An RAII object to record that we're evaluating a statement
634  /// expression.
635  class StmtExprEvaluation {
636    CodeGenFunction &CGF;
637
638    /// We have to save the outermost conditional: cleanups in a
639    /// statement expression aren't conditional just because the
640    /// StmtExpr is.
641    ConditionalEvaluation *SavedOutermostConditional;
642
643  public:
644    StmtExprEvaluation(CodeGenFunction &CGF)
645      : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
646      CGF.OutermostConditional = 0;
647    }
648
649    ~StmtExprEvaluation() {
650      CGF.OutermostConditional = SavedOutermostConditional;
651      CGF.EnsureInsertPoint();
652    }
653  };
654
655  /// An object which temporarily prevents a value from being
656  /// destroyed by aggressive peephole optimizations that assume that
657  /// all uses of a value have been realized in the IR.
658  class PeepholeProtection {
659    llvm::Instruction *Inst;
660    friend class CodeGenFunction;
661
662  public:
663    PeepholeProtection() : Inst(0) {}
664  };
665
666  /// A non-RAII class containing all the information about a bound
667  /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
668  /// this which makes individual mappings very simple; using this
669  /// class directly is useful when you have a variable number of
670  /// opaque values or don't want the RAII functionality for some
671  /// reason.
672  class OpaqueValueMappingData {
673    const OpaqueValueExpr *OpaqueValue;
674    bool BoundLValue;
675    CodeGenFunction::PeepholeProtection Protection;
676
677    OpaqueValueMappingData(const OpaqueValueExpr *ov,
678                           bool boundLValue)
679      : OpaqueValue(ov), BoundLValue(boundLValue) {}
680  public:
681    OpaqueValueMappingData() : OpaqueValue(0) {}
682
683    static bool shouldBindAsLValue(const Expr *expr) {
684      // gl-values should be bound as l-values for obvious reasons.
685      // Records should be bound as l-values because IR generation
686      // always keeps them in memory.  Expressions of function type
687      // act exactly like l-values but are formally required to be
688      // r-values in C.
689      return expr->isGLValue() ||
690             expr->getType()->isRecordType() ||
691             expr->getType()->isFunctionType();
692    }
693
694    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
695                                       const OpaqueValueExpr *ov,
696                                       const Expr *e) {
697      if (shouldBindAsLValue(ov))
698        return bind(CGF, ov, CGF.EmitLValue(e));
699      return bind(CGF, ov, CGF.EmitAnyExpr(e));
700    }
701
702    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
703                                       const OpaqueValueExpr *ov,
704                                       const LValue &lv) {
705      assert(shouldBindAsLValue(ov));
706      CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
707      return OpaqueValueMappingData(ov, true);
708    }
709
710    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
711                                       const OpaqueValueExpr *ov,
712                                       const RValue &rv) {
713      assert(!shouldBindAsLValue(ov));
714      CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
715
716      OpaqueValueMappingData data(ov, false);
717
718      // Work around an extremely aggressive peephole optimization in
719      // EmitScalarConversion which assumes that all other uses of a
720      // value are extant.
721      data.Protection = CGF.protectFromPeepholes(rv);
722
723      return data;
724    }
725
726    bool isValid() const { return OpaqueValue != 0; }
727    void clear() { OpaqueValue = 0; }
728
729    void unbind(CodeGenFunction &CGF) {
730      assert(OpaqueValue && "no data to unbind!");
731
732      if (BoundLValue) {
733        CGF.OpaqueLValues.erase(OpaqueValue);
734      } else {
735        CGF.OpaqueRValues.erase(OpaqueValue);
736        CGF.unprotectFromPeepholes(Protection);
737      }
738    }
739  };
740
741  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
742  class OpaqueValueMapping {
743    CodeGenFunction &CGF;
744    OpaqueValueMappingData Data;
745
746  public:
747    static bool shouldBindAsLValue(const Expr *expr) {
748      return OpaqueValueMappingData::shouldBindAsLValue(expr);
749    }
750
751    /// Build the opaque value mapping for the given conditional
752    /// operator if it's the GNU ?: extension.  This is a common
753    /// enough pattern that the convenience operator is really
754    /// helpful.
755    ///
756    OpaqueValueMapping(CodeGenFunction &CGF,
757                       const AbstractConditionalOperator *op) : CGF(CGF) {
758      if (isa<ConditionalOperator>(op))
759        // Leave Data empty.
760        return;
761
762      const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
763      Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
764                                          e->getCommon());
765    }
766
767    OpaqueValueMapping(CodeGenFunction &CGF,
768                       const OpaqueValueExpr *opaqueValue,
769                       LValue lvalue)
770      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
771    }
772
773    OpaqueValueMapping(CodeGenFunction &CGF,
774                       const OpaqueValueExpr *opaqueValue,
775                       RValue rvalue)
776      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
777    }
778
779    void pop() {
780      Data.unbind(CGF);
781      Data.clear();
782    }
783
784    ~OpaqueValueMapping() {
785      if (Data.isValid()) Data.unbind(CGF);
786    }
787  };
788
789  /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
790  /// number that holds the value.
791  unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
792
793  /// BuildBlockByrefAddress - Computes address location of the
794  /// variable which is declared as __block.
795  llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
796                                      const VarDecl *V);
797private:
798  CGDebugInfo *DebugInfo;
799  bool DisableDebugInfo;
800
801  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
802  /// calling llvm.stacksave for multiple VLAs in the same scope.
803  bool DidCallStackSave;
804
805  /// IndirectBranch - The first time an indirect goto is seen we create a block
806  /// with an indirect branch.  Every time we see the address of a label taken,
807  /// we add the label to the indirect goto.  Every subsequent indirect goto is
808  /// codegen'd as a jump to the IndirectBranch's basic block.
809  llvm::IndirectBrInst *IndirectBranch;
810
811  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
812  /// decls.
813  typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
814  DeclMapTy LocalDeclMap;
815
816  /// LabelMap - This keeps track of the LLVM basic block for each C label.
817  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
818
819  // BreakContinueStack - This keeps track of where break and continue
820  // statements should jump to.
821  struct BreakContinue {
822    BreakContinue(JumpDest Break, JumpDest Continue)
823      : BreakBlock(Break), ContinueBlock(Continue) {}
824
825    JumpDest BreakBlock;
826    JumpDest ContinueBlock;
827  };
828  SmallVector<BreakContinue, 8> BreakContinueStack;
829
830  /// SwitchInsn - This is nearest current switch instruction. It is null if
831  /// current context is not in a switch.
832  llvm::SwitchInst *SwitchInsn;
833
834  /// CaseRangeBlock - This block holds if condition check for last case
835  /// statement range in current switch instruction.
836  llvm::BasicBlock *CaseRangeBlock;
837
838  /// OpaqueLValues - Keeps track of the current set of opaque value
839  /// expressions.
840  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
841  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
842
843  // VLASizeMap - This keeps track of the associated size for each VLA type.
844  // We track this by the size expression rather than the type itself because
845  // in certain situations, like a const qualifier applied to an VLA typedef,
846  // multiple VLA types can share the same size expression.
847  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
848  // enter/leave scopes.
849  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
850
851  /// A block containing a single 'unreachable' instruction.  Created
852  /// lazily by getUnreachableBlock().
853  llvm::BasicBlock *UnreachableBlock;
854
855  /// Counts of the number return expressions in the function.
856  unsigned NumReturnExprs;
857
858  /// Count the number of simple (constant) return expressions in the function.
859  unsigned NumSimpleReturnExprs;
860
861  /// The last regular (non-return) debug location (breakpoint) in the function.
862  SourceLocation LastStopPoint;
863
864public:
865  /// A scope within which we are constructing the fields of an object which
866  /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
867  /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
868  class FieldConstructionScope {
869  public:
870    FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This)
871        : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
872      CGF.CXXDefaultInitExprThis = This;
873    }
874    ~FieldConstructionScope() {
875      CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
876    }
877
878  private:
879    CodeGenFunction &CGF;
880    llvm::Value *OldCXXDefaultInitExprThis;
881  };
882
883  /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
884  /// is overridden to be the object under construction.
885  class CXXDefaultInitExprScope {
886  public:
887    CXXDefaultInitExprScope(CodeGenFunction &CGF)
888        : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) {
889      CGF.CXXThisValue = CGF.CXXDefaultInitExprThis;
890    }
891    ~CXXDefaultInitExprScope() {
892      CGF.CXXThisValue = OldCXXThisValue;
893    }
894
895  public:
896    CodeGenFunction &CGF;
897    llvm::Value *OldCXXThisValue;
898  };
899
900private:
901  /// CXXThisDecl - When generating code for a C++ member function,
902  /// this will hold the implicit 'this' declaration.
903  ImplicitParamDecl *CXXABIThisDecl;
904  llvm::Value *CXXABIThisValue;
905  llvm::Value *CXXThisValue;
906
907  /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
908  /// this expression.
909  llvm::Value *CXXDefaultInitExprThis;
910
911  /// CXXStructorImplicitParamDecl - When generating code for a constructor or
912  /// destructor, this will hold the implicit argument (e.g. VTT).
913  ImplicitParamDecl *CXXStructorImplicitParamDecl;
914  llvm::Value *CXXStructorImplicitParamValue;
915
916  /// OutermostConditional - Points to the outermost active
917  /// conditional control.  This is used so that we know if a
918  /// temporary should be destroyed conditionally.
919  ConditionalEvaluation *OutermostConditional;
920
921  /// The current lexical scope.
922  LexicalScope *CurLexicalScope;
923
924  /// The current source location that should be used for exception
925  /// handling code.
926  SourceLocation CurEHLocation;
927
928  /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
929  /// type as well as the field number that contains the actual data.
930  llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
931                                              unsigned> > ByRefValueInfo;
932
933  llvm::BasicBlock *TerminateLandingPad;
934  llvm::BasicBlock *TerminateHandler;
935  llvm::BasicBlock *TrapBB;
936
937  /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
938  /// In the kernel metadata node, reference the kernel function and metadata
939  /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
940  /// - A node for the vec_type_hint(<type>) qualifier contains string
941  ///   "vec_type_hint", an undefined value of the <type> data type,
942  ///   and a Boolean that is true if the <type> is integer and signed.
943  /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
944  ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
945  /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
946  ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
947  void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
948                                llvm::Function *Fn);
949
950public:
951  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
952  ~CodeGenFunction();
953
954  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
955  ASTContext &getContext() const { return CGM.getContext(); }
956  /// Returns true if DebugInfo is actually initialized.
957  bool maybeInitializeDebugInfo() {
958    if (CGM.getModuleDebugInfo()) {
959      DebugInfo = CGM.getModuleDebugInfo();
960      return true;
961    }
962    return false;
963  }
964  CGDebugInfo *getDebugInfo() {
965    if (DisableDebugInfo)
966      return NULL;
967    return DebugInfo;
968  }
969  void disableDebugInfo() { DisableDebugInfo = true; }
970  void enableDebugInfo() { DisableDebugInfo = false; }
971
972  bool shouldUseFusedARCCalls() {
973    return CGM.getCodeGenOpts().OptimizationLevel == 0;
974  }
975
976  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
977
978  /// Returns a pointer to the function's exception object and selector slot,
979  /// which is assigned in every landing pad.
980  llvm::Value *getExceptionSlot();
981  llvm::Value *getEHSelectorSlot();
982
983  /// Returns the contents of the function's exception object and selector
984  /// slots.
985  llvm::Value *getExceptionFromSlot();
986  llvm::Value *getSelectorFromSlot();
987
988  llvm::Value *getNormalCleanupDestSlot();
989
990  llvm::BasicBlock *getUnreachableBlock() {
991    if (!UnreachableBlock) {
992      UnreachableBlock = createBasicBlock("unreachable");
993      new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
994    }
995    return UnreachableBlock;
996  }
997
998  llvm::BasicBlock *getInvokeDest() {
999    if (!EHStack.requiresLandingPad()) return 0;
1000    return getInvokeDestImpl();
1001  }
1002
1003  const TargetInfo &getTarget() const { return Target; }
1004  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1005
1006  //===--------------------------------------------------------------------===//
1007  //                                  Cleanups
1008  //===--------------------------------------------------------------------===//
1009
1010  typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1011
1012  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1013                                        llvm::Value *arrayEndPointer,
1014                                        QualType elementType,
1015                                        Destroyer *destroyer);
1016  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1017                                      llvm::Value *arrayEnd,
1018                                      QualType elementType,
1019                                      Destroyer *destroyer);
1020
1021  void pushDestroy(QualType::DestructionKind dtorKind,
1022                   llvm::Value *addr, QualType type);
1023  void pushEHDestroy(QualType::DestructionKind dtorKind,
1024                     llvm::Value *addr, QualType type);
1025  void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1026                   Destroyer *destroyer, bool useEHCleanupForArray);
1027  void pushLifetimeExtendedDestroy(CleanupKind kind, llvm::Value *addr,
1028                                   QualType type, Destroyer *destroyer,
1029                                   bool useEHCleanupForArray);
1030  void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1031                   bool useEHCleanupForArray);
1032  llvm::Function *generateDestroyHelper(llvm::Constant *addr,
1033                                        QualType type,
1034                                        Destroyer *destroyer,
1035                                        bool useEHCleanupForArray);
1036  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1037                        QualType type, Destroyer *destroyer,
1038                        bool checkZeroLength, bool useEHCleanup);
1039
1040  Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1041
1042  /// Determines whether an EH cleanup is required to destroy a type
1043  /// with the given destruction kind.
1044  bool needsEHCleanup(QualType::DestructionKind kind) {
1045    switch (kind) {
1046    case QualType::DK_none:
1047      return false;
1048    case QualType::DK_cxx_destructor:
1049    case QualType::DK_objc_weak_lifetime:
1050      return getLangOpts().Exceptions;
1051    case QualType::DK_objc_strong_lifetime:
1052      return getLangOpts().Exceptions &&
1053             CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1054    }
1055    llvm_unreachable("bad destruction kind");
1056  }
1057
1058  CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1059    return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1060  }
1061
1062  //===--------------------------------------------------------------------===//
1063  //                                  Objective-C
1064  //===--------------------------------------------------------------------===//
1065
1066  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1067
1068  void StartObjCMethod(const ObjCMethodDecl *MD,
1069                       const ObjCContainerDecl *CD,
1070                       SourceLocation StartLoc);
1071
1072  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1073  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1074                          const ObjCPropertyImplDecl *PID);
1075  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1076                              const ObjCPropertyImplDecl *propImpl,
1077                              const ObjCMethodDecl *GetterMothodDecl,
1078                              llvm::Constant *AtomicHelperFn);
1079
1080  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1081                                  ObjCMethodDecl *MD, bool ctor);
1082
1083  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1084  /// for the given property.
1085  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1086                          const ObjCPropertyImplDecl *PID);
1087  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1088                              const ObjCPropertyImplDecl *propImpl,
1089                              llvm::Constant *AtomicHelperFn);
1090  bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1091  bool IvarTypeWithAggrGCObjects(QualType Ty);
1092
1093  //===--------------------------------------------------------------------===//
1094  //                                  Block Bits
1095  //===--------------------------------------------------------------------===//
1096
1097  llvm::Value *EmitBlockLiteral(const BlockExpr *);
1098  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1099  static void destroyBlockInfos(CGBlockInfo *info);
1100  llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1101                                           const CGBlockInfo &Info,
1102                                           llvm::StructType *,
1103                                           llvm::Constant *BlockVarLayout);
1104
1105  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1106                                        const CGBlockInfo &Info,
1107                                        const DeclMapTy &ldm,
1108                                        bool IsLambdaConversionToBlock);
1109
1110  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1111  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1112  llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1113                                             const ObjCPropertyImplDecl *PID);
1114  llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1115                                             const ObjCPropertyImplDecl *PID);
1116  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1117
1118  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1119
1120  class AutoVarEmission;
1121
1122  void emitByrefStructureInit(const AutoVarEmission &emission);
1123  void enterByrefCleanup(const AutoVarEmission &emission);
1124
1125  llvm::Value *LoadBlockStruct() {
1126    assert(BlockPointer && "no block pointer set!");
1127    return BlockPointer;
1128  }
1129
1130  void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1131  void AllocateBlockDecl(const DeclRefExpr *E);
1132  llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1133  llvm::Type *BuildByRefType(const VarDecl *var);
1134
1135  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1136                    const CGFunctionInfo &FnInfo);
1137  void StartFunction(GlobalDecl GD,
1138                     QualType RetTy,
1139                     llvm::Function *Fn,
1140                     const CGFunctionInfo &FnInfo,
1141                     const FunctionArgList &Args,
1142                     SourceLocation StartLoc);
1143
1144  void EmitConstructorBody(FunctionArgList &Args);
1145  void EmitDestructorBody(FunctionArgList &Args);
1146  void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1147  void EmitFunctionBody(FunctionArgList &Args);
1148
1149  void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda,
1150                                  CallArgList &CallArgs);
1151  void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1152  void EmitLambdaBlockInvokeBody();
1153  void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1154  void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1155
1156  /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1157  /// emission when possible.
1158  void EmitReturnBlock();
1159
1160  /// FinishFunction - Complete IR generation of the current function. It is
1161  /// legal to call this function even if there is no current insertion point.
1162  void FinishFunction(SourceLocation EndLoc=SourceLocation());
1163
1164  /// GenerateThunk - Generate a thunk for the given method.
1165  void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1166                     GlobalDecl GD, const ThunkInfo &Thunk);
1167
1168  void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1169                            GlobalDecl GD, const ThunkInfo &Thunk);
1170
1171  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1172                        FunctionArgList &Args);
1173
1174  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1175                               ArrayRef<VarDecl *> ArrayIndexes);
1176
1177  /// InitializeVTablePointer - Initialize the vtable pointer of the given
1178  /// subobject.
1179  ///
1180  void InitializeVTablePointer(BaseSubobject Base,
1181                               const CXXRecordDecl *NearestVBase,
1182                               CharUnits OffsetFromNearestVBase,
1183                               llvm::Constant *VTable,
1184                               const CXXRecordDecl *VTableClass);
1185
1186  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1187  void InitializeVTablePointers(BaseSubobject Base,
1188                                const CXXRecordDecl *NearestVBase,
1189                                CharUnits OffsetFromNearestVBase,
1190                                bool BaseIsNonVirtualPrimaryBase,
1191                                llvm::Constant *VTable,
1192                                const CXXRecordDecl *VTableClass,
1193                                VisitedVirtualBasesSetTy& VBases);
1194
1195  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1196
1197  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1198  /// to by This.
1199  llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1200
1201  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1202  /// given phase of destruction for a destructor.  The end result
1203  /// should call destructors on members and base classes in reverse
1204  /// order of their construction.
1205  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1206
1207  /// ShouldInstrumentFunction - Return true if the current function should be
1208  /// instrumented with __cyg_profile_func_* calls
1209  bool ShouldInstrumentFunction();
1210
1211  /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1212  /// instrumentation function with the current function and the call site, if
1213  /// function instrumentation is enabled.
1214  void EmitFunctionInstrumentation(const char *Fn);
1215
1216  /// EmitMCountInstrumentation - Emit call to .mcount.
1217  void EmitMCountInstrumentation();
1218
1219  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1220  /// arguments for the given function. This is also responsible for naming the
1221  /// LLVM function arguments.
1222  void EmitFunctionProlog(const CGFunctionInfo &FI,
1223                          llvm::Function *Fn,
1224                          const FunctionArgList &Args);
1225
1226  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1227  /// given temporary.
1228  void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc);
1229
1230  /// EmitStartEHSpec - Emit the start of the exception spec.
1231  void EmitStartEHSpec(const Decl *D);
1232
1233  /// EmitEndEHSpec - Emit the end of the exception spec.
1234  void EmitEndEHSpec(const Decl *D);
1235
1236  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1237  llvm::BasicBlock *getTerminateLandingPad();
1238
1239  /// getTerminateHandler - Return a handler (not a landing pad, just
1240  /// a catch handler) that just calls terminate.  This is used when
1241  /// a terminate scope encloses a try.
1242  llvm::BasicBlock *getTerminateHandler();
1243
1244  llvm::Type *ConvertTypeForMem(QualType T);
1245  llvm::Type *ConvertType(QualType T);
1246  llvm::Type *ConvertType(const TypeDecl *T) {
1247    return ConvertType(getContext().getTypeDeclType(T));
1248  }
1249
1250  /// LoadObjCSelf - Load the value of self. This function is only valid while
1251  /// generating code for an Objective-C method.
1252  llvm::Value *LoadObjCSelf();
1253
1254  /// TypeOfSelfObject - Return type of object that this self represents.
1255  QualType TypeOfSelfObject();
1256
1257  /// hasAggregateLLVMType - Return true if the specified AST type will map into
1258  /// an aggregate LLVM type or is void.
1259  static TypeEvaluationKind getEvaluationKind(QualType T);
1260
1261  static bool hasScalarEvaluationKind(QualType T) {
1262    return getEvaluationKind(T) == TEK_Scalar;
1263  }
1264
1265  static bool hasAggregateEvaluationKind(QualType T) {
1266    return getEvaluationKind(T) == TEK_Aggregate;
1267  }
1268
1269  /// createBasicBlock - Create an LLVM basic block.
1270  llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1271                                     llvm::Function *parent = 0,
1272                                     llvm::BasicBlock *before = 0) {
1273#ifdef NDEBUG
1274    return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1275#else
1276    return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1277#endif
1278  }
1279
1280  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1281  /// label maps to.
1282  JumpDest getJumpDestForLabel(const LabelDecl *S);
1283
1284  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1285  /// another basic block, simplify it. This assumes that no other code could
1286  /// potentially reference the basic block.
1287  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1288
1289  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1290  /// adding a fall-through branch from the current insert block if
1291  /// necessary. It is legal to call this function even if there is no current
1292  /// insertion point.
1293  ///
1294  /// IsFinished - If true, indicates that the caller has finished emitting
1295  /// branches to the given block and does not expect to emit code into it. This
1296  /// means the block can be ignored if it is unreachable.
1297  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1298
1299  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1300  /// near its uses, and leave the insertion point in it.
1301  void EmitBlockAfterUses(llvm::BasicBlock *BB);
1302
1303  /// EmitBranch - Emit a branch to the specified basic block from the current
1304  /// insert block, taking care to avoid creation of branches from dummy
1305  /// blocks. It is legal to call this function even if there is no current
1306  /// insertion point.
1307  ///
1308  /// This function clears the current insertion point. The caller should follow
1309  /// calls to this function with calls to Emit*Block prior to generation new
1310  /// code.
1311  void EmitBranch(llvm::BasicBlock *Block);
1312
1313  /// HaveInsertPoint - True if an insertion point is defined. If not, this
1314  /// indicates that the current code being emitted is unreachable.
1315  bool HaveInsertPoint() const {
1316    return Builder.GetInsertBlock() != 0;
1317  }
1318
1319  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1320  /// emitted IR has a place to go. Note that by definition, if this function
1321  /// creates a block then that block is unreachable; callers may do better to
1322  /// detect when no insertion point is defined and simply skip IR generation.
1323  void EnsureInsertPoint() {
1324    if (!HaveInsertPoint())
1325      EmitBlock(createBasicBlock());
1326  }
1327
1328  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1329  /// specified stmt yet.
1330  void ErrorUnsupported(const Stmt *S, const char *Type,
1331                        bool OmitOnError=false);
1332
1333  //===--------------------------------------------------------------------===//
1334  //                                  Helpers
1335  //===--------------------------------------------------------------------===//
1336
1337  LValue MakeAddrLValue(llvm::Value *V, QualType T,
1338                        CharUnits Alignment = CharUnits()) {
1339    return LValue::MakeAddr(V, T, Alignment, getContext(),
1340                            CGM.getTBAAInfo(T));
1341  }
1342
1343  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
1344    CharUnits Alignment;
1345    if (!T->isIncompleteType())
1346      Alignment = getContext().getTypeAlignInChars(T);
1347    return LValue::MakeAddr(V, T, Alignment, getContext(),
1348                            CGM.getTBAAInfo(T));
1349  }
1350
1351  /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1352  /// block. The caller is responsible for setting an appropriate alignment on
1353  /// the alloca.
1354  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1355                                     const Twine &Name = "tmp");
1356
1357  /// InitTempAlloca - Provide an initial value for the given alloca.
1358  void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1359
1360  /// CreateIRTemp - Create a temporary IR object of the given type, with
1361  /// appropriate alignment. This routine should only be used when an temporary
1362  /// value needs to be stored into an alloca (for example, to avoid explicit
1363  /// PHI construction), but the type is the IR type, not the type appropriate
1364  /// for storing in memory.
1365  llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1366
1367  /// CreateMemTemp - Create a temporary memory object of the given type, with
1368  /// appropriate alignment.
1369  llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1370
1371  /// CreateAggTemp - Create a temporary memory object for the given
1372  /// aggregate type.
1373  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1374    CharUnits Alignment = getContext().getTypeAlignInChars(T);
1375    return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1376                                 T.getQualifiers(),
1377                                 AggValueSlot::IsNotDestructed,
1378                                 AggValueSlot::DoesNotNeedGCBarriers,
1379                                 AggValueSlot::IsNotAliased);
1380  }
1381
1382  /// Emit a cast to void* in the appropriate address space.
1383  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1384
1385  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1386  /// expression and compare the result against zero, returning an Int1Ty value.
1387  llvm::Value *EvaluateExprAsBool(const Expr *E);
1388
1389  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1390  void EmitIgnoredExpr(const Expr *E);
1391
1392  /// EmitAnyExpr - Emit code to compute the specified expression which can have
1393  /// any type.  The result is returned as an RValue struct.  If this is an
1394  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1395  /// the result should be returned.
1396  ///
1397  /// \param ignoreResult True if the resulting value isn't used.
1398  RValue EmitAnyExpr(const Expr *E,
1399                     AggValueSlot aggSlot = AggValueSlot::ignored(),
1400                     bool ignoreResult = false);
1401
1402  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1403  // or the value of the expression, depending on how va_list is defined.
1404  llvm::Value *EmitVAListRef(const Expr *E);
1405
1406  /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1407  /// always be accessible even if no aggregate location is provided.
1408  RValue EmitAnyExprToTemp(const Expr *E);
1409
1410  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1411  /// arbitrary expression into the given memory location.
1412  void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1413                        Qualifiers Quals, bool IsInitializer);
1414
1415  /// EmitExprAsInit - Emits the code necessary to initialize a
1416  /// location in memory with the given initializer.
1417  void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1418                      LValue lvalue, bool capturedByInit);
1419
1420  /// hasVolatileMember - returns true if aggregate type has a volatile
1421  /// member.
1422  bool hasVolatileMember(QualType T) {
1423    if (const RecordType *RT = T->getAs<RecordType>()) {
1424      const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1425      return RD->hasVolatileMember();
1426    }
1427    return false;
1428  }
1429  /// EmitAggregateCopy - Emit an aggregate assignment.
1430  ///
1431  /// The difference to EmitAggregateCopy is that tail padding is not copied.
1432  /// This is required for correctness when assigning non-POD structures in C++.
1433  void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1434                           QualType EltTy) {
1435    bool IsVolatile = hasVolatileMember(EltTy);
1436    EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(),
1437                      true);
1438  }
1439
1440  /// EmitAggregateCopy - Emit an aggregate copy.
1441  ///
1442  /// \param isVolatile - True iff either the source or the destination is
1443  /// volatile.
1444  /// \param isAssignment - If false, allow padding to be copied.  This often
1445  /// yields more efficient.
1446  void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1447                         QualType EltTy, bool isVolatile=false,
1448                         CharUnits Alignment = CharUnits::Zero(),
1449                         bool isAssignment = false);
1450
1451  /// StartBlock - Start new block named N. If insert block is a dummy block
1452  /// then reuse it.
1453  void StartBlock(const char *N);
1454
1455  /// GetAddrOfLocalVar - Return the address of a local variable.
1456  llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1457    llvm::Value *Res = LocalDeclMap[VD];
1458    assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1459    return Res;
1460  }
1461
1462  /// getOpaqueLValueMapping - Given an opaque value expression (which
1463  /// must be mapped to an l-value), return its mapping.
1464  const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1465    assert(OpaqueValueMapping::shouldBindAsLValue(e));
1466
1467    llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1468      it = OpaqueLValues.find(e);
1469    assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1470    return it->second;
1471  }
1472
1473  /// getOpaqueRValueMapping - Given an opaque value expression (which
1474  /// must be mapped to an r-value), return its mapping.
1475  const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1476    assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1477
1478    llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1479      it = OpaqueRValues.find(e);
1480    assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1481    return it->second;
1482  }
1483
1484  /// getAccessedFieldNo - Given an encoded value and a result number, return
1485  /// the input field number being accessed.
1486  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1487
1488  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1489  llvm::BasicBlock *GetIndirectGotoBlock();
1490
1491  /// EmitNullInitialization - Generate code to set a value of the given type to
1492  /// null, If the type contains data member pointers, they will be initialized
1493  /// to -1 in accordance with the Itanium C++ ABI.
1494  void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1495
1496  // EmitVAArg - Generate code to get an argument from the passed in pointer
1497  // and update it accordingly. The return value is a pointer to the argument.
1498  // FIXME: We should be able to get rid of this method and use the va_arg
1499  // instruction in LLVM instead once it works well enough.
1500  llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1501
1502  /// emitArrayLength - Compute the length of an array, even if it's a
1503  /// VLA, and drill down to the base element type.
1504  llvm::Value *emitArrayLength(const ArrayType *arrayType,
1505                               QualType &baseType,
1506                               llvm::Value *&addr);
1507
1508  /// EmitVLASize - Capture all the sizes for the VLA expressions in
1509  /// the given variably-modified type and store them in the VLASizeMap.
1510  ///
1511  /// This function can be called with a null (unreachable) insert point.
1512  void EmitVariablyModifiedType(QualType Ty);
1513
1514  /// getVLASize - Returns an LLVM value that corresponds to the size,
1515  /// in non-variably-sized elements, of a variable length array type,
1516  /// plus that largest non-variably-sized element type.  Assumes that
1517  /// the type has already been emitted with EmitVariablyModifiedType.
1518  std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1519  std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1520
1521  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1522  /// generating code for an C++ member function.
1523  llvm::Value *LoadCXXThis() {
1524    assert(CXXThisValue && "no 'this' value for this function");
1525    return CXXThisValue;
1526  }
1527
1528  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1529  /// virtual bases.
1530  // FIXME: Every place that calls LoadCXXVTT is something
1531  // that needs to be abstracted properly.
1532  llvm::Value *LoadCXXVTT() {
1533    assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1534    return CXXStructorImplicitParamValue;
1535  }
1536
1537  /// LoadCXXStructorImplicitParam - Load the implicit parameter
1538  /// for a constructor/destructor.
1539  llvm::Value *LoadCXXStructorImplicitParam() {
1540    assert(CXXStructorImplicitParamValue &&
1541           "no implicit argument value for this function");
1542    return CXXStructorImplicitParamValue;
1543  }
1544
1545  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1546  /// complete class to the given direct base.
1547  llvm::Value *
1548  GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1549                                        const CXXRecordDecl *Derived,
1550                                        const CXXRecordDecl *Base,
1551                                        bool BaseIsVirtual);
1552
1553  /// GetAddressOfBaseClass - This function will add the necessary delta to the
1554  /// load of 'this' and returns address of the base class.
1555  llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1556                                     const CXXRecordDecl *Derived,
1557                                     CastExpr::path_const_iterator PathBegin,
1558                                     CastExpr::path_const_iterator PathEnd,
1559                                     bool NullCheckValue);
1560
1561  llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1562                                        const CXXRecordDecl *Derived,
1563                                        CastExpr::path_const_iterator PathBegin,
1564                                        CastExpr::path_const_iterator PathEnd,
1565                                        bool NullCheckValue);
1566
1567  /// GetVTTParameter - Return the VTT parameter that should be passed to a
1568  /// base constructor/destructor with virtual bases.
1569  /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1570  /// to ItaniumCXXABI.cpp together with all the references to VTT.
1571  llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1572                               bool Delegating);
1573
1574  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1575                                      CXXCtorType CtorType,
1576                                      const FunctionArgList &Args);
1577  // It's important not to confuse this and the previous function. Delegating
1578  // constructors are the C++0x feature. The constructor delegate optimization
1579  // is used to reduce duplication in the base and complete consturctors where
1580  // they are substantially the same.
1581  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1582                                        const FunctionArgList &Args);
1583  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1584                              bool ForVirtualBase, bool Delegating,
1585                              llvm::Value *This,
1586                              CallExpr::const_arg_iterator ArgBeg,
1587                              CallExpr::const_arg_iterator ArgEnd);
1588
1589  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1590                              llvm::Value *This, llvm::Value *Src,
1591                              CallExpr::const_arg_iterator ArgBeg,
1592                              CallExpr::const_arg_iterator ArgEnd);
1593
1594  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1595                                  const ConstantArrayType *ArrayTy,
1596                                  llvm::Value *ArrayPtr,
1597                                  CallExpr::const_arg_iterator ArgBeg,
1598                                  CallExpr::const_arg_iterator ArgEnd,
1599                                  bool ZeroInitialization = false);
1600
1601  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1602                                  llvm::Value *NumElements,
1603                                  llvm::Value *ArrayPtr,
1604                                  CallExpr::const_arg_iterator ArgBeg,
1605                                  CallExpr::const_arg_iterator ArgEnd,
1606                                  bool ZeroInitialization = false);
1607
1608  static Destroyer destroyCXXObject;
1609
1610  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1611                             bool ForVirtualBase, bool Delegating,
1612                             llvm::Value *This);
1613
1614  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1615                               llvm::Value *NewPtr, llvm::Value *NumElements);
1616
1617  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1618                        llvm::Value *Ptr);
1619
1620  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1621  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1622
1623  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1624                      QualType DeleteTy);
1625
1626  llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1627  llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1628  llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1629
1630  /// \brief Situations in which we might emit a check for the suitability of a
1631  ///        pointer or glvalue.
1632  enum TypeCheckKind {
1633    /// Checking the operand of a load. Must be suitably sized and aligned.
1634    TCK_Load,
1635    /// Checking the destination of a store. Must be suitably sized and aligned.
1636    TCK_Store,
1637    /// Checking the bound value in a reference binding. Must be suitably sized
1638    /// and aligned, but is not required to refer to an object (until the
1639    /// reference is used), per core issue 453.
1640    TCK_ReferenceBinding,
1641    /// Checking the object expression in a non-static data member access. Must
1642    /// be an object within its lifetime.
1643    TCK_MemberAccess,
1644    /// Checking the 'this' pointer for a call to a non-static member function.
1645    /// Must be an object within its lifetime.
1646    TCK_MemberCall,
1647    /// Checking the 'this' pointer for a constructor call.
1648    TCK_ConstructorCall,
1649    /// Checking the operand of a static_cast to a derived pointer type. Must be
1650    /// null or an object within its lifetime.
1651    TCK_DowncastPointer,
1652    /// Checking the operand of a static_cast to a derived reference type. Must
1653    /// be an object within its lifetime.
1654    TCK_DowncastReference
1655  };
1656
1657  /// \brief Emit a check that \p V is the address of storage of the
1658  /// appropriate size and alignment for an object of type \p Type.
1659  void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1660                     QualType Type, CharUnits Alignment = CharUnits::Zero());
1661
1662  /// \brief Emit a check that \p Base points into an array object, which
1663  /// we can access at index \p Index. \p Accessed should be \c false if we
1664  /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
1665  void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
1666                       QualType IndexType, bool Accessed);
1667
1668  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1669                                       bool isInc, bool isPre);
1670  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1671                                         bool isInc, bool isPre);
1672  //===--------------------------------------------------------------------===//
1673  //                            Declaration Emission
1674  //===--------------------------------------------------------------------===//
1675
1676  /// EmitDecl - Emit a declaration.
1677  ///
1678  /// This function can be called with a null (unreachable) insert point.
1679  void EmitDecl(const Decl &D);
1680
1681  /// EmitVarDecl - Emit a local variable declaration.
1682  ///
1683  /// This function can be called with a null (unreachable) insert point.
1684  void EmitVarDecl(const VarDecl &D);
1685
1686  void EmitScalarInit(const Expr *init, const ValueDecl *D,
1687                      LValue lvalue, bool capturedByInit);
1688  void EmitScalarInit(llvm::Value *init, LValue lvalue);
1689
1690  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1691                             llvm::Value *Address);
1692
1693  /// EmitAutoVarDecl - Emit an auto variable declaration.
1694  ///
1695  /// This function can be called with a null (unreachable) insert point.
1696  void EmitAutoVarDecl(const VarDecl &D);
1697
1698  class AutoVarEmission {
1699    friend class CodeGenFunction;
1700
1701    const VarDecl *Variable;
1702
1703    /// The alignment of the variable.
1704    CharUnits Alignment;
1705
1706    /// The address of the alloca.  Null if the variable was emitted
1707    /// as a global constant.
1708    llvm::Value *Address;
1709
1710    llvm::Value *NRVOFlag;
1711
1712    /// True if the variable is a __block variable.
1713    bool IsByRef;
1714
1715    /// True if the variable is of aggregate type and has a constant
1716    /// initializer.
1717    bool IsConstantAggregate;
1718
1719    /// Non-null if we should use lifetime annotations.
1720    llvm::Value *SizeForLifetimeMarkers;
1721
1722    struct Invalid {};
1723    AutoVarEmission(Invalid) : Variable(0) {}
1724
1725    AutoVarEmission(const VarDecl &variable)
1726      : Variable(&variable), Address(0), NRVOFlag(0),
1727        IsByRef(false), IsConstantAggregate(false),
1728        SizeForLifetimeMarkers(0) {}
1729
1730    bool wasEmittedAsGlobal() const { return Address == 0; }
1731
1732  public:
1733    static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1734
1735    bool useLifetimeMarkers() const { return SizeForLifetimeMarkers != 0; }
1736    llvm::Value *getSizeForLifetimeMarkers() const {
1737      assert(useLifetimeMarkers());
1738      return SizeForLifetimeMarkers;
1739    }
1740
1741    /// Returns the raw, allocated address, which is not necessarily
1742    /// the address of the object itself.
1743    llvm::Value *getAllocatedAddress() const {
1744      return Address;
1745    }
1746
1747    /// Returns the address of the object within this declaration.
1748    /// Note that this does not chase the forwarding pointer for
1749    /// __block decls.
1750    llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1751      if (!IsByRef) return Address;
1752
1753      return CGF.Builder.CreateStructGEP(Address,
1754                                         CGF.getByRefValueLLVMField(Variable),
1755                                         Variable->getNameAsString());
1756    }
1757  };
1758  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1759  void EmitAutoVarInit(const AutoVarEmission &emission);
1760  void EmitAutoVarCleanups(const AutoVarEmission &emission);
1761  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1762                              QualType::DestructionKind dtorKind);
1763
1764  void EmitStaticVarDecl(const VarDecl &D,
1765                         llvm::GlobalValue::LinkageTypes Linkage);
1766
1767  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1768  void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
1769
1770  /// protectFromPeepholes - Protect a value that we're intending to
1771  /// store to the side, but which will probably be used later, from
1772  /// aggressive peepholing optimizations that might delete it.
1773  ///
1774  /// Pass the result to unprotectFromPeepholes to declare that
1775  /// protection is no longer required.
1776  ///
1777  /// There's no particular reason why this shouldn't apply to
1778  /// l-values, it's just that no existing peepholes work on pointers.
1779  PeepholeProtection protectFromPeepholes(RValue rvalue);
1780  void unprotectFromPeepholes(PeepholeProtection protection);
1781
1782  //===--------------------------------------------------------------------===//
1783  //                             Statement Emission
1784  //===--------------------------------------------------------------------===//
1785
1786  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1787  void EmitStopPoint(const Stmt *S);
1788
1789  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1790  /// this function even if there is no current insertion point.
1791  ///
1792  /// This function may clear the current insertion point; callers should use
1793  /// EnsureInsertPoint if they wish to subsequently generate code without first
1794  /// calling EmitBlock, EmitBranch, or EmitStmt.
1795  void EmitStmt(const Stmt *S);
1796
1797  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1798  /// necessarily require an insertion point or debug information; typically
1799  /// because the statement amounts to a jump or a container of other
1800  /// statements.
1801  ///
1802  /// \return True if the statement was handled.
1803  bool EmitSimpleStmt(const Stmt *S);
1804
1805  llvm::Value *EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1806                                AggValueSlot AVS = AggValueSlot::ignored());
1807  llvm::Value *EmitCompoundStmtWithoutScope(const CompoundStmt &S,
1808                                            bool GetLast = false,
1809                                            AggValueSlot AVS =
1810                                                AggValueSlot::ignored());
1811
1812  /// EmitLabel - Emit the block for the given label. It is legal to call this
1813  /// function even if there is no current insertion point.
1814  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1815
1816  void EmitLabelStmt(const LabelStmt &S);
1817  void EmitAttributedStmt(const AttributedStmt &S);
1818  void EmitGotoStmt(const GotoStmt &S);
1819  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1820  void EmitIfStmt(const IfStmt &S);
1821  void EmitWhileStmt(const WhileStmt &S);
1822  void EmitDoStmt(const DoStmt &S);
1823  void EmitForStmt(const ForStmt &S);
1824  void EmitReturnStmt(const ReturnStmt &S);
1825  void EmitDeclStmt(const DeclStmt &S);
1826  void EmitBreakStmt(const BreakStmt &S);
1827  void EmitContinueStmt(const ContinueStmt &S);
1828  void EmitSwitchStmt(const SwitchStmt &S);
1829  void EmitDefaultStmt(const DefaultStmt &S);
1830  void EmitCaseStmt(const CaseStmt &S);
1831  void EmitCaseStmtRange(const CaseStmt &S);
1832  void EmitAsmStmt(const AsmStmt &S);
1833
1834  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1835  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1836  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1837  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1838  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
1839
1840  llvm::Constant *getUnwindResumeFn();
1841  llvm::Constant *getUnwindResumeOrRethrowFn();
1842  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1843  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1844
1845  void EmitCXXTryStmt(const CXXTryStmt &S);
1846  void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
1847
1848  llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
1849  llvm::Function *GenerateCapturedStmtFunction(const CapturedDecl *CD,
1850                                               const RecordDecl *RD);
1851
1852  //===--------------------------------------------------------------------===//
1853  //                         LValue Expression Emission
1854  //===--------------------------------------------------------------------===//
1855
1856  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
1857  RValue GetUndefRValue(QualType Ty);
1858
1859  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
1860  /// and issue an ErrorUnsupported style diagnostic (using the
1861  /// provided Name).
1862  RValue EmitUnsupportedRValue(const Expr *E,
1863                               const char *Name);
1864
1865  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
1866  /// an ErrorUnsupported style diagnostic (using the provided Name).
1867  LValue EmitUnsupportedLValue(const Expr *E,
1868                               const char *Name);
1869
1870  /// EmitLValue - Emit code to compute a designator that specifies the location
1871  /// of the expression.
1872  ///
1873  /// This can return one of two things: a simple address or a bitfield
1874  /// reference.  In either case, the LLVM Value* in the LValue structure is
1875  /// guaranteed to be an LLVM pointer type.
1876  ///
1877  /// If this returns a bitfield reference, nothing about the pointee type of
1878  /// the LLVM value is known: For example, it may not be a pointer to an
1879  /// integer.
1880  ///
1881  /// If this returns a normal address, and if the lvalue's C type is fixed
1882  /// size, this method guarantees that the returned pointer type will point to
1883  /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
1884  /// variable length type, this is not possible.
1885  ///
1886  LValue EmitLValue(const Expr *E);
1887
1888  /// \brief Same as EmitLValue but additionally we generate checking code to
1889  /// guard against undefined behavior.  This is only suitable when we know
1890  /// that the address will be used to access the object.
1891  LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
1892
1893  RValue convertTempToRValue(llvm::Value *addr, QualType type);
1894
1895  void EmitAtomicInit(Expr *E, LValue lvalue);
1896
1897  RValue EmitAtomicLoad(LValue lvalue,
1898                        AggValueSlot slot = AggValueSlot::ignored());
1899
1900  void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
1901
1902  /// EmitToMemory - Change a scalar value from its value
1903  /// representation to its in-memory representation.
1904  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
1905
1906  /// EmitFromMemory - Change a scalar value from its memory
1907  /// representation to its value representation.
1908  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
1909
1910  /// EmitLoadOfScalar - Load a scalar value from an address, taking
1911  /// care to appropriately convert from the memory representation to
1912  /// the LLVM value representation.
1913  llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1914                                unsigned Alignment, QualType Ty,
1915                                llvm::MDNode *TBAAInfo = 0,
1916                                QualType TBAABaseTy = QualType(),
1917                                uint64_t TBAAOffset = 0);
1918
1919  /// EmitLoadOfScalar - Load a scalar value from an address, taking
1920  /// care to appropriately convert from the memory representation to
1921  /// the LLVM value representation.  The l-value must be a simple
1922  /// l-value.
1923  llvm::Value *EmitLoadOfScalar(LValue lvalue);
1924
1925  /// EmitStoreOfScalar - Store a scalar value to an address, taking
1926  /// care to appropriately convert from the memory representation to
1927  /// the LLVM value representation.
1928  void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1929                         bool Volatile, unsigned Alignment, QualType Ty,
1930                         llvm::MDNode *TBAAInfo = 0, bool isInit = false,
1931                         QualType TBAABaseTy = QualType(),
1932                         uint64_t TBAAOffset = 0);
1933
1934  /// EmitStoreOfScalar - Store a scalar value to an address, taking
1935  /// care to appropriately convert from the memory representation to
1936  /// the LLVM value representation.  The l-value must be a simple
1937  /// l-value.  The isInit flag indicates whether this is an initialization.
1938  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
1939  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
1940
1941  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
1942  /// this method emits the address of the lvalue, then loads the result as an
1943  /// rvalue, returning the rvalue.
1944  RValue EmitLoadOfLValue(LValue V);
1945  RValue EmitLoadOfExtVectorElementLValue(LValue V);
1946  RValue EmitLoadOfBitfieldLValue(LValue LV);
1947
1948  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1949  /// lvalue, where both are guaranteed to the have the same type, and that type
1950  /// is 'Ty'.
1951  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false);
1952  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
1953
1954  /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
1955  /// EmitStoreThroughLValue.
1956  ///
1957  /// \param Result [out] - If non-null, this will be set to a Value* for the
1958  /// bit-field contents after the store, appropriate for use as the result of
1959  /// an assignment to the bit-field.
1960  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1961                                      llvm::Value **Result=0);
1962
1963  /// Emit an l-value for an assignment (simple or compound) of complex type.
1964  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
1965  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
1966  LValue EmitScalarCompooundAssignWithComplex(const CompoundAssignOperator *E,
1967                                              llvm::Value *&Result);
1968
1969  // Note: only available for agg return types
1970  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
1971  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
1972  // Note: only available for agg return types
1973  LValue EmitCallExprLValue(const CallExpr *E);
1974  // Note: only available for agg return types
1975  LValue EmitVAArgExprLValue(const VAArgExpr *E);
1976  LValue EmitDeclRefLValue(const DeclRefExpr *E);
1977  LValue EmitStringLiteralLValue(const StringLiteral *E);
1978  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
1979  LValue EmitPredefinedLValue(const PredefinedExpr *E);
1980  LValue EmitUnaryOpLValue(const UnaryOperator *E);
1981  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
1982                                bool Accessed = false);
1983  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
1984  LValue EmitMemberExpr(const MemberExpr *E);
1985  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
1986  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
1987  LValue EmitInitListLValue(const InitListExpr *E);
1988  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
1989  LValue EmitCastLValue(const CastExpr *E);
1990  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
1991  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
1992
1993  RValue EmitRValueForField(LValue LV, const FieldDecl *FD);
1994
1995  class ConstantEmission {
1996    llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
1997    ConstantEmission(llvm::Constant *C, bool isReference)
1998      : ValueAndIsReference(C, isReference) {}
1999  public:
2000    ConstantEmission() {}
2001    static ConstantEmission forReference(llvm::Constant *C) {
2002      return ConstantEmission(C, true);
2003    }
2004    static ConstantEmission forValue(llvm::Constant *C) {
2005      return ConstantEmission(C, false);
2006    }
2007
2008    LLVM_EXPLICIT operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; }
2009
2010    bool isReference() const { return ValueAndIsReference.getInt(); }
2011    LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2012      assert(isReference());
2013      return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2014                                            refExpr->getType());
2015    }
2016
2017    llvm::Constant *getValue() const {
2018      assert(!isReference());
2019      return ValueAndIsReference.getPointer();
2020    }
2021  };
2022
2023  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2024
2025  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2026                                AggValueSlot slot = AggValueSlot::ignored());
2027  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2028
2029  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2030                              const ObjCIvarDecl *Ivar);
2031  LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2032  LValue EmitLValueForLambdaField(const FieldDecl *Field);
2033
2034  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2035  /// if the Field is a reference, this will return the address of the reference
2036  /// and not the address of the value stored in the reference.
2037  LValue EmitLValueForFieldInitialization(LValue Base,
2038                                          const FieldDecl* Field);
2039
2040  LValue EmitLValueForIvar(QualType ObjectTy,
2041                           llvm::Value* Base, const ObjCIvarDecl *Ivar,
2042                           unsigned CVRQualifiers);
2043
2044  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2045  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2046  LValue EmitLambdaLValue(const LambdaExpr *E);
2047  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2048  LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2049
2050  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2051  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2052  LValue EmitStmtExprLValue(const StmtExpr *E);
2053  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2054  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2055  void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2056
2057  //===--------------------------------------------------------------------===//
2058  //                         Scalar Expression Emission
2059  //===--------------------------------------------------------------------===//
2060
2061  /// EmitCall - Generate a call of the given function, expecting the given
2062  /// result type, and using the given argument list which specifies both the
2063  /// LLVM arguments and the types they were derived from.
2064  ///
2065  /// \param TargetDecl - If given, the decl of the function in a direct call;
2066  /// used to set attributes on the call (noreturn, etc.).
2067  RValue EmitCall(const CGFunctionInfo &FnInfo,
2068                  llvm::Value *Callee,
2069                  ReturnValueSlot ReturnValue,
2070                  const CallArgList &Args,
2071                  const Decl *TargetDecl = 0,
2072                  llvm::Instruction **callOrInvoke = 0);
2073
2074  RValue EmitCall(QualType FnType, llvm::Value *Callee,
2075                  ReturnValueSlot ReturnValue,
2076                  CallExpr::const_arg_iterator ArgBeg,
2077                  CallExpr::const_arg_iterator ArgEnd,
2078                  const Decl *TargetDecl = 0);
2079  RValue EmitCallExpr(const CallExpr *E,
2080                      ReturnValueSlot ReturnValue = ReturnValueSlot());
2081
2082  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2083                                  const Twine &name = "");
2084  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2085                                  ArrayRef<llvm::Value*> args,
2086                                  const Twine &name = "");
2087  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2088                                          const Twine &name = "");
2089  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2090                                          ArrayRef<llvm::Value*> args,
2091                                          const Twine &name = "");
2092
2093  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2094                                  ArrayRef<llvm::Value *> Args,
2095                                  const Twine &Name = "");
2096  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2097                                  const Twine &Name = "");
2098  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2099                                         ArrayRef<llvm::Value*> args,
2100                                         const Twine &name = "");
2101  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2102                                         const Twine &name = "");
2103  void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2104                                       ArrayRef<llvm::Value*> args);
2105
2106  llvm::Value *BuildVirtualCall(GlobalDecl GD, llvm::Value *This,
2107                                llvm::Type *Ty);
2108  llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2109                                         NestedNameSpecifier *Qual,
2110                                         llvm::Type *Ty);
2111
2112  llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2113                                                   CXXDtorType Type,
2114                                                   const CXXRecordDecl *RD);
2115
2116  RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2117                           SourceLocation CallLoc,
2118                           llvm::Value *Callee,
2119                           ReturnValueSlot ReturnValue,
2120                           llvm::Value *This,
2121                           llvm::Value *ImplicitParam,
2122                           QualType ImplicitParamTy,
2123                           CallExpr::const_arg_iterator ArgBeg,
2124                           CallExpr::const_arg_iterator ArgEnd);
2125  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2126                               ReturnValueSlot ReturnValue);
2127  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2128                                      ReturnValueSlot ReturnValue);
2129
2130  llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2131                                           const CXXMethodDecl *MD,
2132                                           llvm::Value *This);
2133  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2134                                       const CXXMethodDecl *MD,
2135                                       ReturnValueSlot ReturnValue);
2136
2137  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2138                                ReturnValueSlot ReturnValue);
2139
2140
2141  RValue EmitBuiltinExpr(const FunctionDecl *FD,
2142                         unsigned BuiltinID, const CallExpr *E);
2143
2144  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2145
2146  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2147  /// is unhandled by the current target.
2148  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2149
2150  llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2151  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2152  llvm::Value *EmitNeonCall(llvm::Function *F,
2153                            SmallVectorImpl<llvm::Value*> &O,
2154                            const char *name,
2155                            unsigned shift = 0, bool rightshift = false);
2156  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2157  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2158                                   bool negateForRightShift);
2159
2160  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2161  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2162  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2163
2164  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2165  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2166  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2167  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2168  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2169  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2170                                const ObjCMethodDecl *MethodWithObjects);
2171  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2172  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2173                             ReturnValueSlot Return = ReturnValueSlot());
2174
2175  /// Retrieves the default cleanup kind for an ARC cleanup.
2176  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2177  CleanupKind getARCCleanupKind() {
2178    return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2179             ? NormalAndEHCleanup : NormalCleanup;
2180  }
2181
2182  // ARC primitives.
2183  void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2184  void EmitARCDestroyWeak(llvm::Value *addr);
2185  llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2186  llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2187  llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2188                                bool ignored);
2189  void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2190  void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2191  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2192  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2193  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2194                                  bool resultIgnored);
2195  llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2196                                      bool resultIgnored);
2197  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2198  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2199  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2200  void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise);
2201  void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
2202  llvm::Value *EmitARCAutorelease(llvm::Value *value);
2203  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2204  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2205  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2206
2207  std::pair<LValue,llvm::Value*>
2208  EmitARCStoreAutoreleasing(const BinaryOperator *e);
2209  std::pair<LValue,llvm::Value*>
2210  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2211
2212  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2213
2214  llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2215  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2216  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2217
2218  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2219  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2220  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2221
2222  void EmitARCIntrinsicUse(llvm::ArrayRef<llvm::Value*> values);
2223
2224  static Destroyer destroyARCStrongImprecise;
2225  static Destroyer destroyARCStrongPrecise;
2226  static Destroyer destroyARCWeak;
2227
2228  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2229  llvm::Value *EmitObjCAutoreleasePoolPush();
2230  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2231  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2232  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2233
2234  /// \brief Emits a reference binding to the passed in expression.
2235  RValue EmitReferenceBindingToExpr(const Expr *E);
2236
2237  //===--------------------------------------------------------------------===//
2238  //                           Expression Emission
2239  //===--------------------------------------------------------------------===//
2240
2241  // Expressions are broken into three classes: scalar, complex, aggregate.
2242
2243  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2244  /// scalar type, returning the result.
2245  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2246
2247  /// EmitScalarConversion - Emit a conversion from the specified type to the
2248  /// specified destination type, both of which are LLVM scalar types.
2249  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2250                                    QualType DstTy);
2251
2252  /// EmitComplexToScalarConversion - Emit a conversion from the specified
2253  /// complex type to the specified destination type, where the destination type
2254  /// is an LLVM scalar type.
2255  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2256                                             QualType DstTy);
2257
2258
2259  /// EmitAggExpr - Emit the computation of the specified expression
2260  /// of aggregate type.  The result is computed into the given slot,
2261  /// which may be null to indicate that the value is not needed.
2262  void EmitAggExpr(const Expr *E, AggValueSlot AS);
2263
2264  /// EmitAggExprToLValue - Emit the computation of the specified expression of
2265  /// aggregate type into a temporary LValue.
2266  LValue EmitAggExprToLValue(const Expr *E);
2267
2268  /// EmitGCMemmoveCollectable - Emit special API for structs with object
2269  /// pointers.
2270  void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2271                                QualType Ty);
2272
2273  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2274  /// make sure it survives garbage collection until this point.
2275  void EmitExtendGCLifetime(llvm::Value *object);
2276
2277  /// EmitComplexExpr - Emit the computation of the specified expression of
2278  /// complex type, returning the result.
2279  ComplexPairTy EmitComplexExpr(const Expr *E,
2280                                bool IgnoreReal = false,
2281                                bool IgnoreImag = false);
2282
2283  /// EmitComplexExprIntoLValue - Emit the given expression of complex
2284  /// type and place its result into the specified l-value.
2285  void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
2286
2287  /// EmitStoreOfComplex - Store a complex number into the specified l-value.
2288  void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
2289
2290  /// EmitLoadOfComplex - Load a complex number from the specified l-value.
2291  ComplexPairTy EmitLoadOfComplex(LValue src);
2292
2293  /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2294  /// a static local variable.
2295  llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2296                                            const char *Separator,
2297                                       llvm::GlobalValue::LinkageTypes Linkage);
2298
2299  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2300  /// global variable that has already been created for it.  If the initializer
2301  /// has a different type than GV does, this may free GV and return a different
2302  /// one.  Otherwise it just returns GV.
2303  llvm::GlobalVariable *
2304  AddInitializerToStaticVarDecl(const VarDecl &D,
2305                                llvm::GlobalVariable *GV);
2306
2307
2308  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2309  /// variable with global storage.
2310  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2311                                bool PerformInit);
2312
2313  /// Call atexit() with a function that passes the given argument to
2314  /// the given function.
2315  void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr);
2316
2317  /// Emit code in this function to perform a guarded variable
2318  /// initialization.  Guarded initializations are used when it's not
2319  /// possible to prove that an initialization will be done exactly
2320  /// once, e.g. with a static local variable or a static data member
2321  /// of a class template.
2322  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2323                          bool PerformInit);
2324
2325  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2326  /// variables.
2327  void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2328                                 ArrayRef<llvm::Constant *> Decls,
2329                                 llvm::GlobalVariable *Guard = 0);
2330
2331  /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2332  /// variables.
2333  void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2334                                  const std::vector<std::pair<llvm::WeakVH,
2335                                  llvm::Constant*> > &DtorsAndObjects);
2336
2337  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2338                                        const VarDecl *D,
2339                                        llvm::GlobalVariable *Addr,
2340                                        bool PerformInit);
2341
2342  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2343
2344  void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2345                                  const Expr *Exp);
2346
2347  void enterFullExpression(const ExprWithCleanups *E) {
2348    if (E->getNumObjects() == 0) return;
2349    enterNonTrivialFullExpression(E);
2350  }
2351  void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2352
2353  void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
2354
2355  void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2356
2357  RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
2358
2359  //===--------------------------------------------------------------------===//
2360  //                         Annotations Emission
2361  //===--------------------------------------------------------------------===//
2362
2363  /// Emit an annotation call (intrinsic or builtin).
2364  llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2365                                  llvm::Value *AnnotatedVal,
2366                                  StringRef AnnotationStr,
2367                                  SourceLocation Location);
2368
2369  /// Emit local annotations for the local variable V, declared by D.
2370  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2371
2372  /// Emit field annotations for the given field & value. Returns the
2373  /// annotation result.
2374  llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2375
2376  //===--------------------------------------------------------------------===//
2377  //                             Internal Helpers
2378  //===--------------------------------------------------------------------===//
2379
2380  /// ContainsLabel - Return true if the statement contains a label in it.  If
2381  /// this statement is not executed normally, it not containing a label means
2382  /// that we can just remove the code.
2383  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2384
2385  /// containsBreak - Return true if the statement contains a break out of it.
2386  /// If the statement (recursively) contains a switch or loop with a break
2387  /// inside of it, this is fine.
2388  static bool containsBreak(const Stmt *S);
2389
2390  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2391  /// to a constant, or if it does but contains a label, return false.  If it
2392  /// constant folds return true and set the boolean result in Result.
2393  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2394
2395  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2396  /// to a constant, or if it does but contains a label, return false.  If it
2397  /// constant folds return true and set the folded value.
2398  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2399
2400  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2401  /// if statement) to the specified blocks.  Based on the condition, this might
2402  /// try to simplify the codegen of the conditional based on the branch.
2403  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2404                            llvm::BasicBlock *FalseBlock);
2405
2406  /// \brief Emit a description of a type in a format suitable for passing to
2407  /// a runtime sanitizer handler.
2408  llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2409
2410  /// \brief Convert a value into a format suitable for passing to a runtime
2411  /// sanitizer handler.
2412  llvm::Value *EmitCheckValue(llvm::Value *V);
2413
2414  /// \brief Emit a description of a source location in a format suitable for
2415  /// passing to a runtime sanitizer handler.
2416  llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
2417
2418  /// \brief Specify under what conditions this check can be recovered
2419  enum CheckRecoverableKind {
2420    /// Always terminate program execution if this check fails
2421    CRK_Unrecoverable,
2422    /// Check supports recovering, allows user to specify which
2423    CRK_Recoverable,
2424    /// Runtime conditionally aborts, always need to support recovery.
2425    CRK_AlwaysRecoverable
2426  };
2427
2428  /// \brief Create a basic block that will call a handler function in a
2429  /// sanitizer runtime with the provided arguments, and create a conditional
2430  /// branch to it.
2431  void EmitCheck(llvm::Value *Checked, StringRef CheckName,
2432                 ArrayRef<llvm::Constant *> StaticArgs,
2433                 ArrayRef<llvm::Value *> DynamicArgs,
2434                 CheckRecoverableKind Recoverable);
2435
2436  /// \brief Create a basic block that will call the trap intrinsic, and emit a
2437  /// conditional branch to it, for the -ftrapv checks.
2438  void EmitTrapCheck(llvm::Value *Checked);
2439
2440  /// EmitCallArg - Emit a single call argument.
2441  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2442
2443  /// EmitDelegateCallArg - We are performing a delegate call; that
2444  /// is, the current function is delegating to another one.  Produce
2445  /// a r-value suitable for passing the given parameter.
2446  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
2447
2448  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2449  /// point operation, expressed as the maximum relative error in ulp.
2450  void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2451
2452private:
2453  llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2454  void EmitReturnOfRValue(RValue RV, QualType Ty);
2455
2456  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2457  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2458  ///
2459  /// \param AI - The first function argument of the expansion.
2460  /// \return The argument following the last expanded function
2461  /// argument.
2462  llvm::Function::arg_iterator
2463  ExpandTypeFromArgs(QualType Ty, LValue Dst,
2464                     llvm::Function::arg_iterator AI);
2465
2466  /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2467  /// Ty, into individual arguments on the provided vector \arg Args. See
2468  /// ABIArgInfo::Expand.
2469  void ExpandTypeToArgs(QualType Ty, RValue Src,
2470                        SmallVectorImpl<llvm::Value *> &Args,
2471                        llvm::FunctionType *IRFuncTy);
2472
2473  llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2474                            const Expr *InputExpr, std::string &ConstraintStr);
2475
2476  llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2477                                  LValue InputValue, QualType InputType,
2478                                  std::string &ConstraintStr);
2479
2480  /// EmitCallArgs - Emit call arguments for a function.
2481  /// The CallArgTypeInfo parameter is used for iterating over the known
2482  /// argument types of the function being called.
2483  template<typename T>
2484  void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2485                    CallExpr::const_arg_iterator ArgBeg,
2486                    CallExpr::const_arg_iterator ArgEnd,
2487                    bool ForceColumnInfo = false) {
2488    CGDebugInfo *DI = getDebugInfo();
2489    SourceLocation CallLoc;
2490    if (DI) CallLoc = DI->getLocation();
2491
2492    CallExpr::const_arg_iterator Arg = ArgBeg;
2493
2494    // First, use the argument types that the type info knows about
2495    if (CallArgTypeInfo) {
2496      for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2497           E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2498        assert(Arg != ArgEnd && "Running over edge of argument list!");
2499        QualType ArgType = *I;
2500#ifndef NDEBUG
2501        QualType ActualArgType = Arg->getType();
2502        if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2503          QualType ActualBaseType =
2504            ActualArgType->getAs<PointerType>()->getPointeeType();
2505          QualType ArgBaseType =
2506            ArgType->getAs<PointerType>()->getPointeeType();
2507          if (ArgBaseType->isVariableArrayType()) {
2508            if (const VariableArrayType *VAT =
2509                getContext().getAsVariableArrayType(ActualBaseType)) {
2510              if (!VAT->getSizeExpr())
2511                ActualArgType = ArgType;
2512            }
2513          }
2514        }
2515        assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2516               getTypePtr() ==
2517               getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2518               "type mismatch in call argument!");
2519#endif
2520        EmitCallArg(Args, *Arg, ArgType);
2521
2522        // Each argument expression could modify the debug
2523        // location. Restore it.
2524        if (DI) DI->EmitLocation(Builder, CallLoc, ForceColumnInfo);
2525      }
2526
2527      // Either we've emitted all the call args, or we have a call to a
2528      // variadic function.
2529      assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2530             "Extra arguments in non-variadic function!");
2531
2532    }
2533
2534    // If we still have any arguments, emit them using the type of the argument.
2535    for (; Arg != ArgEnd; ++Arg) {
2536      EmitCallArg(Args, *Arg, Arg->getType());
2537
2538      // Restore the debug location.
2539      if (DI) DI->EmitLocation(Builder, CallLoc, ForceColumnInfo);
2540    }
2541  }
2542
2543  const TargetCodeGenInfo &getTargetHooks() const {
2544    return CGM.getTargetCodeGenInfo();
2545  }
2546
2547  void EmitDeclMetadata();
2548
2549  CodeGenModule::ByrefHelpers *
2550  buildByrefHelpers(llvm::StructType &byrefType,
2551                    const AutoVarEmission &emission);
2552
2553  void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
2554
2555  /// GetPointeeAlignment - Given an expression with a pointer type, emit the
2556  /// value and compute our best estimate of the alignment of the pointee.
2557  std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
2558};
2559
2560/// Helper class with most of the code for saving a value for a
2561/// conditional expression cleanup.
2562struct DominatingLLVMValue {
2563  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2564
2565  /// Answer whether the given value needs extra work to be saved.
2566  static bool needsSaving(llvm::Value *value) {
2567    // If it's not an instruction, we don't need to save.
2568    if (!isa<llvm::Instruction>(value)) return false;
2569
2570    // If it's an instruction in the entry block, we don't need to save.
2571    llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2572    return (block != &block->getParent()->getEntryBlock());
2573  }
2574
2575  /// Try to save the given value.
2576  static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2577    if (!needsSaving(value)) return saved_type(value, false);
2578
2579    // Otherwise we need an alloca.
2580    llvm::Value *alloca =
2581      CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2582    CGF.Builder.CreateStore(value, alloca);
2583
2584    return saved_type(alloca, true);
2585  }
2586
2587  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2588    if (!value.getInt()) return value.getPointer();
2589    return CGF.Builder.CreateLoad(value.getPointer());
2590  }
2591};
2592
2593/// A partial specialization of DominatingValue for llvm::Values that
2594/// might be llvm::Instructions.
2595template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2596  typedef T *type;
2597  static type restore(CodeGenFunction &CGF, saved_type value) {
2598    return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2599  }
2600};
2601
2602/// A specialization of DominatingValue for RValue.
2603template <> struct DominatingValue<RValue> {
2604  typedef RValue type;
2605  class saved_type {
2606    enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2607                AggregateAddress, ComplexAddress };
2608
2609    llvm::Value *Value;
2610    Kind K;
2611    saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2612
2613  public:
2614    static bool needsSaving(RValue value);
2615    static saved_type save(CodeGenFunction &CGF, RValue value);
2616    RValue restore(CodeGenFunction &CGF);
2617
2618    // implementations in CGExprCXX.cpp
2619  };
2620
2621  static bool needsSaving(type value) {
2622    return saved_type::needsSaving(value);
2623  }
2624  static saved_type save(CodeGenFunction &CGF, type value) {
2625    return saved_type::save(CGF, value);
2626  }
2627  static type restore(CodeGenFunction &CGF, saved_type value) {
2628    return value.restore(CGF);
2629  }
2630};
2631
2632}  // end namespace CodeGen
2633}  // end namespace clang
2634
2635#endif
2636