CodeGenFunction.h revision 2c9f87ca5cccbfdaad82762368af5b2323320653
1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This is the internal per-function state used for llvm translation. 11// 12//===----------------------------------------------------------------------===// 13 14#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H 15#define CLANG_CODEGEN_CODEGENFUNCTION_H 16 17#include "clang/AST/Type.h" 18#include "clang/AST/ExprCXX.h" 19#include "clang/AST/ExprObjC.h" 20#include "clang/AST/CharUnits.h" 21#include "clang/Frontend/CodeGenOptions.h" 22#include "clang/Basic/ABI.h" 23#include "clang/Basic/TargetInfo.h" 24#include "llvm/ADT/ArrayRef.h" 25#include "llvm/ADT/DenseMap.h" 26#include "llvm/ADT/SmallVector.h" 27#include "llvm/Support/ValueHandle.h" 28#include "llvm/Support/Debug.h" 29#include "CodeGenModule.h" 30#include "CGBuilder.h" 31#include "CGDebugInfo.h" 32#include "CGValue.h" 33 34namespace llvm { 35 class BasicBlock; 36 class LLVMContext; 37 class MDNode; 38 class Module; 39 class SwitchInst; 40 class Twine; 41 class Value; 42 class CallSite; 43} 44 45namespace clang { 46 class ASTContext; 47 class BlockDecl; 48 class CXXDestructorDecl; 49 class CXXForRangeStmt; 50 class CXXTryStmt; 51 class Decl; 52 class LabelDecl; 53 class EnumConstantDecl; 54 class FunctionDecl; 55 class FunctionProtoType; 56 class LabelStmt; 57 class ObjCContainerDecl; 58 class ObjCInterfaceDecl; 59 class ObjCIvarDecl; 60 class ObjCMethodDecl; 61 class ObjCImplementationDecl; 62 class ObjCPropertyImplDecl; 63 class TargetInfo; 64 class TargetCodeGenInfo; 65 class VarDecl; 66 class ObjCForCollectionStmt; 67 class ObjCAtTryStmt; 68 class ObjCAtThrowStmt; 69 class ObjCAtSynchronizedStmt; 70 class ObjCAutoreleasePoolStmt; 71 72namespace CodeGen { 73 class CodeGenTypes; 74 class CGFunctionInfo; 75 class CGRecordLayout; 76 class CGBlockInfo; 77 class CGCXXABI; 78 class BlockFlags; 79 class BlockFieldFlags; 80 81/// A branch fixup. These are required when emitting a goto to a 82/// label which hasn't been emitted yet. The goto is optimistically 83/// emitted as a branch to the basic block for the label, and (if it 84/// occurs in a scope with non-trivial cleanups) a fixup is added to 85/// the innermost cleanup. When a (normal) cleanup is popped, any 86/// unresolved fixups in that scope are threaded through the cleanup. 87struct BranchFixup { 88 /// The block containing the terminator which needs to be modified 89 /// into a switch if this fixup is resolved into the current scope. 90 /// If null, LatestBranch points directly to the destination. 91 llvm::BasicBlock *OptimisticBranchBlock; 92 93 /// The ultimate destination of the branch. 94 /// 95 /// This can be set to null to indicate that this fixup was 96 /// successfully resolved. 97 llvm::BasicBlock *Destination; 98 99 /// The destination index value. 100 unsigned DestinationIndex; 101 102 /// The initial branch of the fixup. 103 llvm::BranchInst *InitialBranch; 104}; 105 106template <class T> struct InvariantValue { 107 typedef T type; 108 typedef T saved_type; 109 static bool needsSaving(type value) { return false; } 110 static saved_type save(CodeGenFunction &CGF, type value) { return value; } 111 static type restore(CodeGenFunction &CGF, saved_type value) { return value; } 112}; 113 114/// A metaprogramming class for ensuring that a value will dominate an 115/// arbitrary position in a function. 116template <class T> struct DominatingValue : InvariantValue<T> {}; 117 118template <class T, bool mightBeInstruction = 119 llvm::is_base_of<llvm::Value, T>::value && 120 !llvm::is_base_of<llvm::Constant, T>::value && 121 !llvm::is_base_of<llvm::BasicBlock, T>::value> 122struct DominatingPointer; 123template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {}; 124// template <class T> struct DominatingPointer<T,true> at end of file 125 126template <class T> struct DominatingValue<T*> : DominatingPointer<T> {}; 127 128enum CleanupKind { 129 EHCleanup = 0x1, 130 NormalCleanup = 0x2, 131 NormalAndEHCleanup = EHCleanup | NormalCleanup, 132 133 InactiveCleanup = 0x4, 134 InactiveEHCleanup = EHCleanup | InactiveCleanup, 135 InactiveNormalCleanup = NormalCleanup | InactiveCleanup, 136 InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup 137}; 138 139/// A stack of scopes which respond to exceptions, including cleanups 140/// and catch blocks. 141class EHScopeStack { 142public: 143 /// A saved depth on the scope stack. This is necessary because 144 /// pushing scopes onto the stack invalidates iterators. 145 class stable_iterator { 146 friend class EHScopeStack; 147 148 /// Offset from StartOfData to EndOfBuffer. 149 ptrdiff_t Size; 150 151 stable_iterator(ptrdiff_t Size) : Size(Size) {} 152 153 public: 154 static stable_iterator invalid() { return stable_iterator(-1); } 155 stable_iterator() : Size(-1) {} 156 157 bool isValid() const { return Size >= 0; } 158 159 /// Returns true if this scope encloses I. 160 /// Returns false if I is invalid. 161 /// This scope must be valid. 162 bool encloses(stable_iterator I) const { return Size <= I.Size; } 163 164 /// Returns true if this scope strictly encloses I: that is, 165 /// if it encloses I and is not I. 166 /// Returns false is I is invalid. 167 /// This scope must be valid. 168 bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; } 169 170 friend bool operator==(stable_iterator A, stable_iterator B) { 171 return A.Size == B.Size; 172 } 173 friend bool operator!=(stable_iterator A, stable_iterator B) { 174 return A.Size != B.Size; 175 } 176 }; 177 178 /// Information for lazily generating a cleanup. Subclasses must be 179 /// POD-like: cleanups will not be destructed, and they will be 180 /// allocated on the cleanup stack and freely copied and moved 181 /// around. 182 /// 183 /// Cleanup implementations should generally be declared in an 184 /// anonymous namespace. 185 class Cleanup { 186 // Anchor the construction vtable. 187 virtual void anchor(); 188 public: 189 /// Generation flags. 190 class Flags { 191 enum { 192 F_IsForEH = 0x1, 193 F_IsNormalCleanupKind = 0x2, 194 F_IsEHCleanupKind = 0x4 195 }; 196 unsigned flags; 197 198 public: 199 Flags() : flags(0) {} 200 201 /// isForEH - true if the current emission is for an EH cleanup. 202 bool isForEHCleanup() const { return flags & F_IsForEH; } 203 bool isForNormalCleanup() const { return !isForEHCleanup(); } 204 void setIsForEHCleanup() { flags |= F_IsForEH; } 205 206 bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; } 207 void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; } 208 209 /// isEHCleanupKind - true if the cleanup was pushed as an EH 210 /// cleanup. 211 bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; } 212 void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; } 213 }; 214 215 // Provide a virtual destructor to suppress a very common warning 216 // that unfortunately cannot be suppressed without this. Cleanups 217 // should not rely on this destructor ever being called. 218 virtual ~Cleanup() {} 219 220 /// Emit the cleanup. For normal cleanups, this is run in the 221 /// same EH context as when the cleanup was pushed, i.e. the 222 /// immediately-enclosing context of the cleanup scope. For 223 /// EH cleanups, this is run in a terminate context. 224 /// 225 // \param flags cleanup kind. 226 virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0; 227 }; 228 229 /// ConditionalCleanupN stores the saved form of its N parameters, 230 /// then restores them and performs the cleanup. 231 template <class T, class A0> 232 class ConditionalCleanup1 : public Cleanup { 233 typedef typename DominatingValue<A0>::saved_type A0_saved; 234 A0_saved a0_saved; 235 236 void Emit(CodeGenFunction &CGF, Flags flags) { 237 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 238 T(a0).Emit(CGF, flags); 239 } 240 241 public: 242 ConditionalCleanup1(A0_saved a0) 243 : a0_saved(a0) {} 244 }; 245 246 template <class T, class A0, class A1> 247 class ConditionalCleanup2 : public Cleanup { 248 typedef typename DominatingValue<A0>::saved_type A0_saved; 249 typedef typename DominatingValue<A1>::saved_type A1_saved; 250 A0_saved a0_saved; 251 A1_saved a1_saved; 252 253 void Emit(CodeGenFunction &CGF, Flags flags) { 254 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 255 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 256 T(a0, a1).Emit(CGF, flags); 257 } 258 259 public: 260 ConditionalCleanup2(A0_saved a0, A1_saved a1) 261 : a0_saved(a0), a1_saved(a1) {} 262 }; 263 264 template <class T, class A0, class A1, class A2> 265 class ConditionalCleanup3 : public Cleanup { 266 typedef typename DominatingValue<A0>::saved_type A0_saved; 267 typedef typename DominatingValue<A1>::saved_type A1_saved; 268 typedef typename DominatingValue<A2>::saved_type A2_saved; 269 A0_saved a0_saved; 270 A1_saved a1_saved; 271 A2_saved a2_saved; 272 273 void Emit(CodeGenFunction &CGF, Flags flags) { 274 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 275 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 276 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 277 T(a0, a1, a2).Emit(CGF, flags); 278 } 279 280 public: 281 ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2) 282 : a0_saved(a0), a1_saved(a1), a2_saved(a2) {} 283 }; 284 285 template <class T, class A0, class A1, class A2, class A3> 286 class ConditionalCleanup4 : public Cleanup { 287 typedef typename DominatingValue<A0>::saved_type A0_saved; 288 typedef typename DominatingValue<A1>::saved_type A1_saved; 289 typedef typename DominatingValue<A2>::saved_type A2_saved; 290 typedef typename DominatingValue<A3>::saved_type A3_saved; 291 A0_saved a0_saved; 292 A1_saved a1_saved; 293 A2_saved a2_saved; 294 A3_saved a3_saved; 295 296 void Emit(CodeGenFunction &CGF, Flags flags) { 297 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 298 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 299 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 300 A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved); 301 T(a0, a1, a2, a3).Emit(CGF, flags); 302 } 303 304 public: 305 ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3) 306 : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {} 307 }; 308 309private: 310 // The implementation for this class is in CGException.h and 311 // CGException.cpp; the definition is here because it's used as a 312 // member of CodeGenFunction. 313 314 /// The start of the scope-stack buffer, i.e. the allocated pointer 315 /// for the buffer. All of these pointers are either simultaneously 316 /// null or simultaneously valid. 317 char *StartOfBuffer; 318 319 /// The end of the buffer. 320 char *EndOfBuffer; 321 322 /// The first valid entry in the buffer. 323 char *StartOfData; 324 325 /// The innermost normal cleanup on the stack. 326 stable_iterator InnermostNormalCleanup; 327 328 /// The innermost EH scope on the stack. 329 stable_iterator InnermostEHScope; 330 331 /// The current set of branch fixups. A branch fixup is a jump to 332 /// an as-yet unemitted label, i.e. a label for which we don't yet 333 /// know the EH stack depth. Whenever we pop a cleanup, we have 334 /// to thread all the current branch fixups through it. 335 /// 336 /// Fixups are recorded as the Use of the respective branch or 337 /// switch statement. The use points to the final destination. 338 /// When popping out of a cleanup, these uses are threaded through 339 /// the cleanup and adjusted to point to the new cleanup. 340 /// 341 /// Note that branches are allowed to jump into protected scopes 342 /// in certain situations; e.g. the following code is legal: 343 /// struct A { ~A(); }; // trivial ctor, non-trivial dtor 344 /// goto foo; 345 /// A a; 346 /// foo: 347 /// bar(); 348 SmallVector<BranchFixup, 8> BranchFixups; 349 350 char *allocate(size_t Size); 351 352 void *pushCleanup(CleanupKind K, size_t DataSize); 353 354public: 355 EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0), 356 InnermostNormalCleanup(stable_end()), 357 InnermostEHScope(stable_end()) {} 358 ~EHScopeStack() { delete[] StartOfBuffer; } 359 360 // Variadic templates would make this not terrible. 361 362 /// Push a lazily-created cleanup on the stack. 363 template <class T> 364 void pushCleanup(CleanupKind Kind) { 365 void *Buffer = pushCleanup(Kind, sizeof(T)); 366 Cleanup *Obj = new(Buffer) T(); 367 (void) Obj; 368 } 369 370 /// Push a lazily-created cleanup on the stack. 371 template <class T, class A0> 372 void pushCleanup(CleanupKind Kind, A0 a0) { 373 void *Buffer = pushCleanup(Kind, sizeof(T)); 374 Cleanup *Obj = new(Buffer) T(a0); 375 (void) Obj; 376 } 377 378 /// Push a lazily-created cleanup on the stack. 379 template <class T, class A0, class A1> 380 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) { 381 void *Buffer = pushCleanup(Kind, sizeof(T)); 382 Cleanup *Obj = new(Buffer) T(a0, a1); 383 (void) Obj; 384 } 385 386 /// Push a lazily-created cleanup on the stack. 387 template <class T, class A0, class A1, class A2> 388 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) { 389 void *Buffer = pushCleanup(Kind, sizeof(T)); 390 Cleanup *Obj = new(Buffer) T(a0, a1, a2); 391 (void) Obj; 392 } 393 394 /// Push a lazily-created cleanup on the stack. 395 template <class T, class A0, class A1, class A2, class A3> 396 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) { 397 void *Buffer = pushCleanup(Kind, sizeof(T)); 398 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3); 399 (void) Obj; 400 } 401 402 /// Push a lazily-created cleanup on the stack. 403 template <class T, class A0, class A1, class A2, class A3, class A4> 404 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) { 405 void *Buffer = pushCleanup(Kind, sizeof(T)); 406 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4); 407 (void) Obj; 408 } 409 410 // Feel free to add more variants of the following: 411 412 /// Push a cleanup with non-constant storage requirements on the 413 /// stack. The cleanup type must provide an additional static method: 414 /// static size_t getExtraSize(size_t); 415 /// The argument to this method will be the value N, which will also 416 /// be passed as the first argument to the constructor. 417 /// 418 /// The data stored in the extra storage must obey the same 419 /// restrictions as normal cleanup member data. 420 /// 421 /// The pointer returned from this method is valid until the cleanup 422 /// stack is modified. 423 template <class T, class A0, class A1, class A2> 424 T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) { 425 void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N)); 426 return new (Buffer) T(N, a0, a1, a2); 427 } 428 429 /// Pops a cleanup scope off the stack. This is private to CGCleanup.cpp. 430 void popCleanup(); 431 432 /// Push a set of catch handlers on the stack. The catch is 433 /// uninitialized and will need to have the given number of handlers 434 /// set on it. 435 class EHCatchScope *pushCatch(unsigned NumHandlers); 436 437 /// Pops a catch scope off the stack. This is private to CGException.cpp. 438 void popCatch(); 439 440 /// Push an exceptions filter on the stack. 441 class EHFilterScope *pushFilter(unsigned NumFilters); 442 443 /// Pops an exceptions filter off the stack. 444 void popFilter(); 445 446 /// Push a terminate handler on the stack. 447 void pushTerminate(); 448 449 /// Pops a terminate handler off the stack. 450 void popTerminate(); 451 452 /// Determines whether the exception-scopes stack is empty. 453 bool empty() const { return StartOfData == EndOfBuffer; } 454 455 bool requiresLandingPad() const { 456 return InnermostEHScope != stable_end(); 457 } 458 459 /// Determines whether there are any normal cleanups on the stack. 460 bool hasNormalCleanups() const { 461 return InnermostNormalCleanup != stable_end(); 462 } 463 464 /// Returns the innermost normal cleanup on the stack, or 465 /// stable_end() if there are no normal cleanups. 466 stable_iterator getInnermostNormalCleanup() const { 467 return InnermostNormalCleanup; 468 } 469 stable_iterator getInnermostActiveNormalCleanup() const; 470 471 stable_iterator getInnermostEHScope() const { 472 return InnermostEHScope; 473 } 474 475 stable_iterator getInnermostActiveEHScope() const; 476 477 /// An unstable reference to a scope-stack depth. Invalidated by 478 /// pushes but not pops. 479 class iterator; 480 481 /// Returns an iterator pointing to the innermost EH scope. 482 iterator begin() const; 483 484 /// Returns an iterator pointing to the outermost EH scope. 485 iterator end() const; 486 487 /// Create a stable reference to the top of the EH stack. The 488 /// returned reference is valid until that scope is popped off the 489 /// stack. 490 stable_iterator stable_begin() const { 491 return stable_iterator(EndOfBuffer - StartOfData); 492 } 493 494 /// Create a stable reference to the bottom of the EH stack. 495 static stable_iterator stable_end() { 496 return stable_iterator(0); 497 } 498 499 /// Translates an iterator into a stable_iterator. 500 stable_iterator stabilize(iterator it) const; 501 502 /// Turn a stable reference to a scope depth into a unstable pointer 503 /// to the EH stack. 504 iterator find(stable_iterator save) const; 505 506 /// Removes the cleanup pointed to by the given stable_iterator. 507 void removeCleanup(stable_iterator save); 508 509 /// Add a branch fixup to the current cleanup scope. 510 BranchFixup &addBranchFixup() { 511 assert(hasNormalCleanups() && "adding fixup in scope without cleanups"); 512 BranchFixups.push_back(BranchFixup()); 513 return BranchFixups.back(); 514 } 515 516 unsigned getNumBranchFixups() const { return BranchFixups.size(); } 517 BranchFixup &getBranchFixup(unsigned I) { 518 assert(I < getNumBranchFixups()); 519 return BranchFixups[I]; 520 } 521 522 /// Pops lazily-removed fixups from the end of the list. This 523 /// should only be called by procedures which have just popped a 524 /// cleanup or resolved one or more fixups. 525 void popNullFixups(); 526 527 /// Clears the branch-fixups list. This should only be called by 528 /// ResolveAllBranchFixups. 529 void clearFixups() { BranchFixups.clear(); } 530}; 531 532/// CodeGenFunction - This class organizes the per-function state that is used 533/// while generating LLVM code. 534class CodeGenFunction : public CodeGenTypeCache { 535 CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT 536 void operator=(const CodeGenFunction&); // DO NOT IMPLEMENT 537 538 friend class CGCXXABI; 539public: 540 /// A jump destination is an abstract label, branching to which may 541 /// require a jump out through normal cleanups. 542 struct JumpDest { 543 JumpDest() : Block(0), ScopeDepth(), Index(0) {} 544 JumpDest(llvm::BasicBlock *Block, 545 EHScopeStack::stable_iterator Depth, 546 unsigned Index) 547 : Block(Block), ScopeDepth(Depth), Index(Index) {} 548 549 bool isValid() const { return Block != 0; } 550 llvm::BasicBlock *getBlock() const { return Block; } 551 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 552 unsigned getDestIndex() const { return Index; } 553 554 private: 555 llvm::BasicBlock *Block; 556 EHScopeStack::stable_iterator ScopeDepth; 557 unsigned Index; 558 }; 559 560 CodeGenModule &CGM; // Per-module state. 561 const TargetInfo &Target; 562 563 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 564 CGBuilderTy Builder; 565 566 /// CurFuncDecl - Holds the Decl for the current function or ObjC method. 567 /// This excludes BlockDecls. 568 const Decl *CurFuncDecl; 569 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 570 const Decl *CurCodeDecl; 571 const CGFunctionInfo *CurFnInfo; 572 QualType FnRetTy; 573 llvm::Function *CurFn; 574 575 /// CurGD - The GlobalDecl for the current function being compiled. 576 GlobalDecl CurGD; 577 578 /// PrologueCleanupDepth - The cleanup depth enclosing all the 579 /// cleanups associated with the parameters. 580 EHScopeStack::stable_iterator PrologueCleanupDepth; 581 582 /// ReturnBlock - Unified return block. 583 JumpDest ReturnBlock; 584 585 /// ReturnValue - The temporary alloca to hold the return value. This is null 586 /// iff the function has no return value. 587 llvm::Value *ReturnValue; 588 589 /// AllocaInsertPoint - This is an instruction in the entry block before which 590 /// we prefer to insert allocas. 591 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 592 593 /// BoundsChecking - Emit run-time bounds checks. Higher values mean 594 /// potentially higher performance penalties. 595 unsigned char BoundsChecking; 596 597 /// CatchUndefined - Emit run-time checks to catch undefined behaviors. 598 bool CatchUndefined; 599 600 /// In ARC, whether we should autorelease the return value. 601 bool AutoreleaseResult; 602 603 const CodeGen::CGBlockInfo *BlockInfo; 604 llvm::Value *BlockPointer; 605 606 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 607 FieldDecl *LambdaThisCaptureField; 608 609 /// \brief A mapping from NRVO variables to the flags used to indicate 610 /// when the NRVO has been applied to this variable. 611 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 612 613 EHScopeStack EHStack; 614 615 /// i32s containing the indexes of the cleanup destinations. 616 llvm::AllocaInst *NormalCleanupDest; 617 618 unsigned NextCleanupDestIndex; 619 620 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 621 CGBlockInfo *FirstBlockInfo; 622 623 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 624 llvm::BasicBlock *EHResumeBlock; 625 626 /// The exception slot. All landing pads write the current exception pointer 627 /// into this alloca. 628 llvm::Value *ExceptionSlot; 629 630 /// The selector slot. Under the MandatoryCleanup model, all landing pads 631 /// write the current selector value into this alloca. 632 llvm::AllocaInst *EHSelectorSlot; 633 634 /// Emits a landing pad for the current EH stack. 635 llvm::BasicBlock *EmitLandingPad(); 636 637 llvm::BasicBlock *getInvokeDestImpl(); 638 639 template <class T> 640 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 641 return DominatingValue<T>::save(*this, value); 642 } 643 644public: 645 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 646 /// rethrows. 647 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 648 649 /// A class controlling the emission of a finally block. 650 class FinallyInfo { 651 /// Where the catchall's edge through the cleanup should go. 652 JumpDest RethrowDest; 653 654 /// A function to call to enter the catch. 655 llvm::Constant *BeginCatchFn; 656 657 /// An i1 variable indicating whether or not the @finally is 658 /// running for an exception. 659 llvm::AllocaInst *ForEHVar; 660 661 /// An i8* variable into which the exception pointer to rethrow 662 /// has been saved. 663 llvm::AllocaInst *SavedExnVar; 664 665 public: 666 void enter(CodeGenFunction &CGF, const Stmt *Finally, 667 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 668 llvm::Constant *rethrowFn); 669 void exit(CodeGenFunction &CGF); 670 }; 671 672 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 673 /// current full-expression. Safe against the possibility that 674 /// we're currently inside a conditionally-evaluated expression. 675 template <class T, class A0> 676 void pushFullExprCleanup(CleanupKind kind, A0 a0) { 677 // If we're not in a conditional branch, or if none of the 678 // arguments requires saving, then use the unconditional cleanup. 679 if (!isInConditionalBranch()) 680 return EHStack.pushCleanup<T>(kind, a0); 681 682 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 683 684 typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType; 685 EHStack.pushCleanup<CleanupType>(kind, a0_saved); 686 initFullExprCleanup(); 687 } 688 689 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 690 /// current full-expression. Safe against the possibility that 691 /// we're currently inside a conditionally-evaluated expression. 692 template <class T, class A0, class A1> 693 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) { 694 // If we're not in a conditional branch, or if none of the 695 // arguments requires saving, then use the unconditional cleanup. 696 if (!isInConditionalBranch()) 697 return EHStack.pushCleanup<T>(kind, a0, a1); 698 699 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 700 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 701 702 typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType; 703 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved); 704 initFullExprCleanup(); 705 } 706 707 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 708 /// current full-expression. Safe against the possibility that 709 /// we're currently inside a conditionally-evaluated expression. 710 template <class T, class A0, class A1, class A2> 711 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) { 712 // If we're not in a conditional branch, or if none of the 713 // arguments requires saving, then use the unconditional cleanup. 714 if (!isInConditionalBranch()) { 715 return EHStack.pushCleanup<T>(kind, a0, a1, a2); 716 } 717 718 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 719 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 720 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 721 722 typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType; 723 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved); 724 initFullExprCleanup(); 725 } 726 727 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 728 /// current full-expression. Safe against the possibility that 729 /// we're currently inside a conditionally-evaluated expression. 730 template <class T, class A0, class A1, class A2, class A3> 731 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) { 732 // If we're not in a conditional branch, or if none of the 733 // arguments requires saving, then use the unconditional cleanup. 734 if (!isInConditionalBranch()) { 735 return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3); 736 } 737 738 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 739 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 740 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 741 typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3); 742 743 typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType; 744 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, 745 a2_saved, a3_saved); 746 initFullExprCleanup(); 747 } 748 749 /// Set up the last cleaup that was pushed as a conditional 750 /// full-expression cleanup. 751 void initFullExprCleanup(); 752 753 /// PushDestructorCleanup - Push a cleanup to call the 754 /// complete-object destructor of an object of the given type at the 755 /// given address. Does nothing if T is not a C++ class type with a 756 /// non-trivial destructor. 757 void PushDestructorCleanup(QualType T, llvm::Value *Addr); 758 759 /// PushDestructorCleanup - Push a cleanup to call the 760 /// complete-object variant of the given destructor on the object at 761 /// the given address. 762 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, 763 llvm::Value *Addr); 764 765 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 766 /// process all branch fixups. 767 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 768 769 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 770 /// The block cannot be reactivated. Pops it if it's the top of the 771 /// stack. 772 /// 773 /// \param DominatingIP - An instruction which is known to 774 /// dominate the current IP (if set) and which lies along 775 /// all paths of execution between the current IP and the 776 /// the point at which the cleanup comes into scope. 777 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 778 llvm::Instruction *DominatingIP); 779 780 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 781 /// Cannot be used to resurrect a deactivated cleanup. 782 /// 783 /// \param DominatingIP - An instruction which is known to 784 /// dominate the current IP (if set) and which lies along 785 /// all paths of execution between the current IP and the 786 /// the point at which the cleanup comes into scope. 787 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 788 llvm::Instruction *DominatingIP); 789 790 /// \brief Enters a new scope for capturing cleanups, all of which 791 /// will be executed once the scope is exited. 792 class RunCleanupsScope { 793 EHScopeStack::stable_iterator CleanupStackDepth; 794 bool OldDidCallStackSave; 795 bool PerformCleanup; 796 797 RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT 798 RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT 799 800 protected: 801 CodeGenFunction& CGF; 802 803 public: 804 /// \brief Enter a new cleanup scope. 805 explicit RunCleanupsScope(CodeGenFunction &CGF) 806 : PerformCleanup(true), CGF(CGF) 807 { 808 CleanupStackDepth = CGF.EHStack.stable_begin(); 809 OldDidCallStackSave = CGF.DidCallStackSave; 810 CGF.DidCallStackSave = false; 811 } 812 813 /// \brief Exit this cleanup scope, emitting any accumulated 814 /// cleanups. 815 ~RunCleanupsScope() { 816 if (PerformCleanup) { 817 CGF.DidCallStackSave = OldDidCallStackSave; 818 CGF.PopCleanupBlocks(CleanupStackDepth); 819 } 820 } 821 822 /// \brief Determine whether this scope requires any cleanups. 823 bool requiresCleanups() const { 824 return CGF.EHStack.stable_begin() != CleanupStackDepth; 825 } 826 827 /// \brief Force the emission of cleanups now, instead of waiting 828 /// until this object is destroyed. 829 void ForceCleanup() { 830 assert(PerformCleanup && "Already forced cleanup"); 831 CGF.DidCallStackSave = OldDidCallStackSave; 832 CGF.PopCleanupBlocks(CleanupStackDepth); 833 PerformCleanup = false; 834 } 835 }; 836 837 class LexicalScope: protected RunCleanupsScope { 838 SourceRange Range; 839 bool PopDebugStack; 840 841 LexicalScope(const LexicalScope &); // DO NOT IMPLEMENT THESE 842 LexicalScope &operator=(const LexicalScope &); 843 844 public: 845 /// \brief Enter a new cleanup scope. 846 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 847 : RunCleanupsScope(CGF), Range(Range), PopDebugStack(true) { 848 if (CGDebugInfo *DI = CGF.getDebugInfo()) 849 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 850 } 851 852 /// \brief Exit this cleanup scope, emitting any accumulated 853 /// cleanups. 854 ~LexicalScope() { 855 if (PopDebugStack) { 856 CGDebugInfo *DI = CGF.getDebugInfo(); 857 if (DI) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 858 } 859 } 860 861 /// \brief Force the emission of cleanups now, instead of waiting 862 /// until this object is destroyed. 863 void ForceCleanup() { 864 RunCleanupsScope::ForceCleanup(); 865 if (CGDebugInfo *DI = CGF.getDebugInfo()) { 866 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 867 PopDebugStack = false; 868 } 869 } 870 }; 871 872 873 /// PopCleanupBlocks - Takes the old cleanup stack size and emits 874 /// the cleanup blocks that have been added. 875 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 876 877 void ResolveBranchFixups(llvm::BasicBlock *Target); 878 879 /// The given basic block lies in the current EH scope, but may be a 880 /// target of a potentially scope-crossing jump; get a stable handle 881 /// to which we can perform this jump later. 882 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 883 return JumpDest(Target, 884 EHStack.getInnermostNormalCleanup(), 885 NextCleanupDestIndex++); 886 } 887 888 /// The given basic block lies in the current EH scope, but may be a 889 /// target of a potentially scope-crossing jump; get a stable handle 890 /// to which we can perform this jump later. 891 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 892 return getJumpDestInCurrentScope(createBasicBlock(Name)); 893 } 894 895 /// EmitBranchThroughCleanup - Emit a branch from the current insert 896 /// block through the normal cleanup handling code (if any) and then 897 /// on to \arg Dest. 898 void EmitBranchThroughCleanup(JumpDest Dest); 899 900 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 901 /// specified destination obviously has no cleanups to run. 'false' is always 902 /// a conservatively correct answer for this method. 903 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 904 905 /// popCatchScope - Pops the catch scope at the top of the EHScope 906 /// stack, emitting any required code (other than the catch handlers 907 /// themselves). 908 void popCatchScope(); 909 910 llvm::BasicBlock *getEHResumeBlock(); 911 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 912 913 /// An object to manage conditionally-evaluated expressions. 914 class ConditionalEvaluation { 915 llvm::BasicBlock *StartBB; 916 917 public: 918 ConditionalEvaluation(CodeGenFunction &CGF) 919 : StartBB(CGF.Builder.GetInsertBlock()) {} 920 921 void begin(CodeGenFunction &CGF) { 922 assert(CGF.OutermostConditional != this); 923 if (!CGF.OutermostConditional) 924 CGF.OutermostConditional = this; 925 } 926 927 void end(CodeGenFunction &CGF) { 928 assert(CGF.OutermostConditional != 0); 929 if (CGF.OutermostConditional == this) 930 CGF.OutermostConditional = 0; 931 } 932 933 /// Returns a block which will be executed prior to each 934 /// evaluation of the conditional code. 935 llvm::BasicBlock *getStartingBlock() const { 936 return StartBB; 937 } 938 }; 939 940 /// isInConditionalBranch - Return true if we're currently emitting 941 /// one branch or the other of a conditional expression. 942 bool isInConditionalBranch() const { return OutermostConditional != 0; } 943 944 void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) { 945 assert(isInConditionalBranch()); 946 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 947 new llvm::StoreInst(value, addr, &block->back()); 948 } 949 950 /// An RAII object to record that we're evaluating a statement 951 /// expression. 952 class StmtExprEvaluation { 953 CodeGenFunction &CGF; 954 955 /// We have to save the outermost conditional: cleanups in a 956 /// statement expression aren't conditional just because the 957 /// StmtExpr is. 958 ConditionalEvaluation *SavedOutermostConditional; 959 960 public: 961 StmtExprEvaluation(CodeGenFunction &CGF) 962 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 963 CGF.OutermostConditional = 0; 964 } 965 966 ~StmtExprEvaluation() { 967 CGF.OutermostConditional = SavedOutermostConditional; 968 CGF.EnsureInsertPoint(); 969 } 970 }; 971 972 /// An object which temporarily prevents a value from being 973 /// destroyed by aggressive peephole optimizations that assume that 974 /// all uses of a value have been realized in the IR. 975 class PeepholeProtection { 976 llvm::Instruction *Inst; 977 friend class CodeGenFunction; 978 979 public: 980 PeepholeProtection() : Inst(0) {} 981 }; 982 983 /// A non-RAII class containing all the information about a bound 984 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 985 /// this which makes individual mappings very simple; using this 986 /// class directly is useful when you have a variable number of 987 /// opaque values or don't want the RAII functionality for some 988 /// reason. 989 class OpaqueValueMappingData { 990 const OpaqueValueExpr *OpaqueValue; 991 bool BoundLValue; 992 CodeGenFunction::PeepholeProtection Protection; 993 994 OpaqueValueMappingData(const OpaqueValueExpr *ov, 995 bool boundLValue) 996 : OpaqueValue(ov), BoundLValue(boundLValue) {} 997 public: 998 OpaqueValueMappingData() : OpaqueValue(0) {} 999 1000 static bool shouldBindAsLValue(const Expr *expr) { 1001 // gl-values should be bound as l-values for obvious reasons. 1002 // Records should be bound as l-values because IR generation 1003 // always keeps them in memory. Expressions of function type 1004 // act exactly like l-values but are formally required to be 1005 // r-values in C. 1006 return expr->isGLValue() || 1007 expr->getType()->isRecordType() || 1008 expr->getType()->isFunctionType(); 1009 } 1010 1011 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1012 const OpaqueValueExpr *ov, 1013 const Expr *e) { 1014 if (shouldBindAsLValue(ov)) 1015 return bind(CGF, ov, CGF.EmitLValue(e)); 1016 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1017 } 1018 1019 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1020 const OpaqueValueExpr *ov, 1021 const LValue &lv) { 1022 assert(shouldBindAsLValue(ov)); 1023 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1024 return OpaqueValueMappingData(ov, true); 1025 } 1026 1027 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1028 const OpaqueValueExpr *ov, 1029 const RValue &rv) { 1030 assert(!shouldBindAsLValue(ov)); 1031 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1032 1033 OpaqueValueMappingData data(ov, false); 1034 1035 // Work around an extremely aggressive peephole optimization in 1036 // EmitScalarConversion which assumes that all other uses of a 1037 // value are extant. 1038 data.Protection = CGF.protectFromPeepholes(rv); 1039 1040 return data; 1041 } 1042 1043 bool isValid() const { return OpaqueValue != 0; } 1044 void clear() { OpaqueValue = 0; } 1045 1046 void unbind(CodeGenFunction &CGF) { 1047 assert(OpaqueValue && "no data to unbind!"); 1048 1049 if (BoundLValue) { 1050 CGF.OpaqueLValues.erase(OpaqueValue); 1051 } else { 1052 CGF.OpaqueRValues.erase(OpaqueValue); 1053 CGF.unprotectFromPeepholes(Protection); 1054 } 1055 } 1056 }; 1057 1058 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1059 class OpaqueValueMapping { 1060 CodeGenFunction &CGF; 1061 OpaqueValueMappingData Data; 1062 1063 public: 1064 static bool shouldBindAsLValue(const Expr *expr) { 1065 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1066 } 1067 1068 /// Build the opaque value mapping for the given conditional 1069 /// operator if it's the GNU ?: extension. This is a common 1070 /// enough pattern that the convenience operator is really 1071 /// helpful. 1072 /// 1073 OpaqueValueMapping(CodeGenFunction &CGF, 1074 const AbstractConditionalOperator *op) : CGF(CGF) { 1075 if (isa<ConditionalOperator>(op)) 1076 // Leave Data empty. 1077 return; 1078 1079 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1080 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1081 e->getCommon()); 1082 } 1083 1084 OpaqueValueMapping(CodeGenFunction &CGF, 1085 const OpaqueValueExpr *opaqueValue, 1086 LValue lvalue) 1087 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1088 } 1089 1090 OpaqueValueMapping(CodeGenFunction &CGF, 1091 const OpaqueValueExpr *opaqueValue, 1092 RValue rvalue) 1093 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1094 } 1095 1096 void pop() { 1097 Data.unbind(CGF); 1098 Data.clear(); 1099 } 1100 1101 ~OpaqueValueMapping() { 1102 if (Data.isValid()) Data.unbind(CGF); 1103 } 1104 }; 1105 1106 /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field 1107 /// number that holds the value. 1108 unsigned getByRefValueLLVMField(const ValueDecl *VD) const; 1109 1110 /// BuildBlockByrefAddress - Computes address location of the 1111 /// variable which is declared as __block. 1112 llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr, 1113 const VarDecl *V); 1114private: 1115 CGDebugInfo *DebugInfo; 1116 bool DisableDebugInfo; 1117 1118 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1119 /// calling llvm.stacksave for multiple VLAs in the same scope. 1120 bool DidCallStackSave; 1121 1122 /// IndirectBranch - The first time an indirect goto is seen we create a block 1123 /// with an indirect branch. Every time we see the address of a label taken, 1124 /// we add the label to the indirect goto. Every subsequent indirect goto is 1125 /// codegen'd as a jump to the IndirectBranch's basic block. 1126 llvm::IndirectBrInst *IndirectBranch; 1127 1128 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1129 /// decls. 1130 typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy; 1131 DeclMapTy LocalDeclMap; 1132 1133 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1134 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1135 1136 // BreakContinueStack - This keeps track of where break and continue 1137 // statements should jump to. 1138 struct BreakContinue { 1139 BreakContinue(JumpDest Break, JumpDest Continue) 1140 : BreakBlock(Break), ContinueBlock(Continue) {} 1141 1142 JumpDest BreakBlock; 1143 JumpDest ContinueBlock; 1144 }; 1145 SmallVector<BreakContinue, 8> BreakContinueStack; 1146 1147 /// SwitchInsn - This is nearest current switch instruction. It is null if 1148 /// current context is not in a switch. 1149 llvm::SwitchInst *SwitchInsn; 1150 1151 /// CaseRangeBlock - This block holds if condition check for last case 1152 /// statement range in current switch instruction. 1153 llvm::BasicBlock *CaseRangeBlock; 1154 1155 /// OpaqueLValues - Keeps track of the current set of opaque value 1156 /// expressions. 1157 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1158 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1159 1160 // VLASizeMap - This keeps track of the associated size for each VLA type. 1161 // We track this by the size expression rather than the type itself because 1162 // in certain situations, like a const qualifier applied to an VLA typedef, 1163 // multiple VLA types can share the same size expression. 1164 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1165 // enter/leave scopes. 1166 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1167 1168 /// A block containing a single 'unreachable' instruction. Created 1169 /// lazily by getUnreachableBlock(). 1170 llvm::BasicBlock *UnreachableBlock; 1171 1172 /// CXXThisDecl - When generating code for a C++ member function, 1173 /// this will hold the implicit 'this' declaration. 1174 ImplicitParamDecl *CXXABIThisDecl; 1175 llvm::Value *CXXABIThisValue; 1176 llvm::Value *CXXThisValue; 1177 1178 /// CXXVTTDecl - When generating code for a base object constructor or 1179 /// base object destructor with virtual bases, this will hold the implicit 1180 /// VTT parameter. 1181 ImplicitParamDecl *CXXVTTDecl; 1182 llvm::Value *CXXVTTValue; 1183 1184 /// OutermostConditional - Points to the outermost active 1185 /// conditional control. This is used so that we know if a 1186 /// temporary should be destroyed conditionally. 1187 ConditionalEvaluation *OutermostConditional; 1188 1189 1190 /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM 1191 /// type as well as the field number that contains the actual data. 1192 llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *, 1193 unsigned> > ByRefValueInfo; 1194 1195 llvm::BasicBlock *TerminateLandingPad; 1196 llvm::BasicBlock *TerminateHandler; 1197 llvm::BasicBlock *TrapBB; 1198 1199 /// Add a kernel metadata node to the named metadata node 'opencl.kernels'. 1200 /// In the kernel metadata node, reference the kernel function and metadata 1201 /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2): 1202 /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string 1203 /// "work_group_size_hint", and three 32-bit integers X, Y and Z. 1204 /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string 1205 /// "reqd_work_group_size", and three 32-bit integers X, Y and Z. 1206 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1207 llvm::Function *Fn); 1208 1209public: 1210 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1211 ~CodeGenFunction(); 1212 1213 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1214 ASTContext &getContext() const { return CGM.getContext(); } 1215 CGDebugInfo *getDebugInfo() { 1216 if (DisableDebugInfo) 1217 return NULL; 1218 return DebugInfo; 1219 } 1220 void disableDebugInfo() { DisableDebugInfo = true; } 1221 void enableDebugInfo() { DisableDebugInfo = false; } 1222 1223 bool shouldUseFusedARCCalls() { 1224 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1225 } 1226 1227 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1228 1229 /// Returns a pointer to the function's exception object and selector slot, 1230 /// which is assigned in every landing pad. 1231 llvm::Value *getExceptionSlot(); 1232 llvm::Value *getEHSelectorSlot(); 1233 1234 /// Returns the contents of the function's exception object and selector 1235 /// slots. 1236 llvm::Value *getExceptionFromSlot(); 1237 llvm::Value *getSelectorFromSlot(); 1238 1239 llvm::Value *getNormalCleanupDestSlot(); 1240 1241 llvm::BasicBlock *getUnreachableBlock() { 1242 if (!UnreachableBlock) { 1243 UnreachableBlock = createBasicBlock("unreachable"); 1244 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1245 } 1246 return UnreachableBlock; 1247 } 1248 1249 llvm::BasicBlock *getInvokeDest() { 1250 if (!EHStack.requiresLandingPad()) return 0; 1251 return getInvokeDestImpl(); 1252 } 1253 1254 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1255 1256 //===--------------------------------------------------------------------===// 1257 // Cleanups 1258 //===--------------------------------------------------------------------===// 1259 1260 typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty); 1261 1262 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1263 llvm::Value *arrayEndPointer, 1264 QualType elementType, 1265 Destroyer *destroyer); 1266 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1267 llvm::Value *arrayEnd, 1268 QualType elementType, 1269 Destroyer *destroyer); 1270 1271 void pushDestroy(QualType::DestructionKind dtorKind, 1272 llvm::Value *addr, QualType type); 1273 void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type, 1274 Destroyer *destroyer, bool useEHCleanupForArray); 1275 void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer, 1276 bool useEHCleanupForArray); 1277 llvm::Function *generateDestroyHelper(llvm::Constant *addr, 1278 QualType type, 1279 Destroyer *destroyer, 1280 bool useEHCleanupForArray); 1281 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1282 QualType type, Destroyer *destroyer, 1283 bool checkZeroLength, bool useEHCleanup); 1284 1285 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1286 1287 /// Determines whether an EH cleanup is required to destroy a type 1288 /// with the given destruction kind. 1289 bool needsEHCleanup(QualType::DestructionKind kind) { 1290 switch (kind) { 1291 case QualType::DK_none: 1292 return false; 1293 case QualType::DK_cxx_destructor: 1294 case QualType::DK_objc_weak_lifetime: 1295 return getLangOpts().Exceptions; 1296 case QualType::DK_objc_strong_lifetime: 1297 return getLangOpts().Exceptions && 1298 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1299 } 1300 llvm_unreachable("bad destruction kind"); 1301 } 1302 1303 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1304 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1305 } 1306 1307 //===--------------------------------------------------------------------===// 1308 // Objective-C 1309 //===--------------------------------------------------------------------===// 1310 1311 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1312 1313 void StartObjCMethod(const ObjCMethodDecl *MD, 1314 const ObjCContainerDecl *CD, 1315 SourceLocation StartLoc); 1316 1317 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1318 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1319 const ObjCPropertyImplDecl *PID); 1320 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1321 const ObjCPropertyImplDecl *propImpl, 1322 const ObjCMethodDecl *GetterMothodDecl, 1323 llvm::Constant *AtomicHelperFn); 1324 1325 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1326 ObjCMethodDecl *MD, bool ctor); 1327 1328 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1329 /// for the given property. 1330 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1331 const ObjCPropertyImplDecl *PID); 1332 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1333 const ObjCPropertyImplDecl *propImpl, 1334 llvm::Constant *AtomicHelperFn); 1335 bool IndirectObjCSetterArg(const CGFunctionInfo &FI); 1336 bool IvarTypeWithAggrGCObjects(QualType Ty); 1337 1338 //===--------------------------------------------------------------------===// 1339 // Block Bits 1340 //===--------------------------------------------------------------------===// 1341 1342 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1343 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 1344 static void destroyBlockInfos(CGBlockInfo *info); 1345 llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *, 1346 const CGBlockInfo &Info, 1347 llvm::StructType *, 1348 llvm::Constant *BlockVarLayout); 1349 1350 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1351 const CGBlockInfo &Info, 1352 const Decl *OuterFuncDecl, 1353 const DeclMapTy &ldm, 1354 bool IsLambdaConversionToBlock); 1355 1356 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1357 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1358 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1359 const ObjCPropertyImplDecl *PID); 1360 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1361 const ObjCPropertyImplDecl *PID); 1362 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1363 1364 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1365 1366 class AutoVarEmission; 1367 1368 void emitByrefStructureInit(const AutoVarEmission &emission); 1369 void enterByrefCleanup(const AutoVarEmission &emission); 1370 1371 llvm::Value *LoadBlockStruct() { 1372 assert(BlockPointer && "no block pointer set!"); 1373 return BlockPointer; 1374 } 1375 1376 void AllocateBlockCXXThisPointer(const CXXThisExpr *E); 1377 void AllocateBlockDecl(const DeclRefExpr *E); 1378 llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1379 llvm::Type *BuildByRefType(const VarDecl *var); 1380 1381 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1382 const CGFunctionInfo &FnInfo); 1383 void StartFunction(GlobalDecl GD, QualType RetTy, 1384 llvm::Function *Fn, 1385 const CGFunctionInfo &FnInfo, 1386 const FunctionArgList &Args, 1387 SourceLocation StartLoc); 1388 1389 void EmitConstructorBody(FunctionArgList &Args); 1390 void EmitDestructorBody(FunctionArgList &Args); 1391 void EmitFunctionBody(FunctionArgList &Args); 1392 1393 void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda, 1394 CallArgList &CallArgs); 1395 void EmitLambdaToBlockPointerBody(FunctionArgList &Args); 1396 void EmitLambdaBlockInvokeBody(); 1397 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1398 void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); 1399 1400 /// EmitReturnBlock - Emit the unified return block, trying to avoid its 1401 /// emission when possible. 1402 void EmitReturnBlock(); 1403 1404 /// FinishFunction - Complete IR generation of the current function. It is 1405 /// legal to call this function even if there is no current insertion point. 1406 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1407 1408 /// GenerateThunk - Generate a thunk for the given method. 1409 void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1410 GlobalDecl GD, const ThunkInfo &Thunk); 1411 1412 void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1413 GlobalDecl GD, const ThunkInfo &Thunk); 1414 1415 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1416 FunctionArgList &Args); 1417 1418 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init, 1419 ArrayRef<VarDecl *> ArrayIndexes); 1420 1421 /// InitializeVTablePointer - Initialize the vtable pointer of the given 1422 /// subobject. 1423 /// 1424 void InitializeVTablePointer(BaseSubobject Base, 1425 const CXXRecordDecl *NearestVBase, 1426 CharUnits OffsetFromNearestVBase, 1427 llvm::Constant *VTable, 1428 const CXXRecordDecl *VTableClass); 1429 1430 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1431 void InitializeVTablePointers(BaseSubobject Base, 1432 const CXXRecordDecl *NearestVBase, 1433 CharUnits OffsetFromNearestVBase, 1434 bool BaseIsNonVirtualPrimaryBase, 1435 llvm::Constant *VTable, 1436 const CXXRecordDecl *VTableClass, 1437 VisitedVirtualBasesSetTy& VBases); 1438 1439 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1440 1441 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1442 /// to by This. 1443 llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty); 1444 1445 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1446 /// given phase of destruction for a destructor. The end result 1447 /// should call destructors on members and base classes in reverse 1448 /// order of their construction. 1449 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1450 1451 /// ShouldInstrumentFunction - Return true if the current function should be 1452 /// instrumented with __cyg_profile_func_* calls 1453 bool ShouldInstrumentFunction(); 1454 1455 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1456 /// instrumentation function with the current function and the call site, if 1457 /// function instrumentation is enabled. 1458 void EmitFunctionInstrumentation(const char *Fn); 1459 1460 /// EmitMCountInstrumentation - Emit call to .mcount. 1461 void EmitMCountInstrumentation(); 1462 1463 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1464 /// arguments for the given function. This is also responsible for naming the 1465 /// LLVM function arguments. 1466 void EmitFunctionProlog(const CGFunctionInfo &FI, 1467 llvm::Function *Fn, 1468 const FunctionArgList &Args); 1469 1470 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1471 /// given temporary. 1472 void EmitFunctionEpilog(const CGFunctionInfo &FI); 1473 1474 /// EmitStartEHSpec - Emit the start of the exception spec. 1475 void EmitStartEHSpec(const Decl *D); 1476 1477 /// EmitEndEHSpec - Emit the end of the exception spec. 1478 void EmitEndEHSpec(const Decl *D); 1479 1480 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1481 llvm::BasicBlock *getTerminateLandingPad(); 1482 1483 /// getTerminateHandler - Return a handler (not a landing pad, just 1484 /// a catch handler) that just calls terminate. This is used when 1485 /// a terminate scope encloses a try. 1486 llvm::BasicBlock *getTerminateHandler(); 1487 1488 llvm::Type *ConvertTypeForMem(QualType T); 1489 llvm::Type *ConvertType(QualType T); 1490 llvm::Type *ConvertType(const TypeDecl *T) { 1491 return ConvertType(getContext().getTypeDeclType(T)); 1492 } 1493 1494 /// LoadObjCSelf - Load the value of self. This function is only valid while 1495 /// generating code for an Objective-C method. 1496 llvm::Value *LoadObjCSelf(); 1497 1498 /// TypeOfSelfObject - Return type of object that this self represents. 1499 QualType TypeOfSelfObject(); 1500 1501 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1502 /// an aggregate LLVM type or is void. 1503 static bool hasAggregateLLVMType(QualType T); 1504 1505 /// createBasicBlock - Create an LLVM basic block. 1506 llvm::BasicBlock *createBasicBlock(StringRef name = "", 1507 llvm::Function *parent = 0, 1508 llvm::BasicBlock *before = 0) { 1509#ifdef NDEBUG 1510 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1511#else 1512 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1513#endif 1514 } 1515 1516 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1517 /// label maps to. 1518 JumpDest getJumpDestForLabel(const LabelDecl *S); 1519 1520 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1521 /// another basic block, simplify it. This assumes that no other code could 1522 /// potentially reference the basic block. 1523 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1524 1525 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1526 /// adding a fall-through branch from the current insert block if 1527 /// necessary. It is legal to call this function even if there is no current 1528 /// insertion point. 1529 /// 1530 /// IsFinished - If true, indicates that the caller has finished emitting 1531 /// branches to the given block and does not expect to emit code into it. This 1532 /// means the block can be ignored if it is unreachable. 1533 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1534 1535 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1536 /// near its uses, and leave the insertion point in it. 1537 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1538 1539 /// EmitBranch - Emit a branch to the specified basic block from the current 1540 /// insert block, taking care to avoid creation of branches from dummy 1541 /// blocks. It is legal to call this function even if there is no current 1542 /// insertion point. 1543 /// 1544 /// This function clears the current insertion point. The caller should follow 1545 /// calls to this function with calls to Emit*Block prior to generation new 1546 /// code. 1547 void EmitBranch(llvm::BasicBlock *Block); 1548 1549 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1550 /// indicates that the current code being emitted is unreachable. 1551 bool HaveInsertPoint() const { 1552 return Builder.GetInsertBlock() != 0; 1553 } 1554 1555 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1556 /// emitted IR has a place to go. Note that by definition, if this function 1557 /// creates a block then that block is unreachable; callers may do better to 1558 /// detect when no insertion point is defined and simply skip IR generation. 1559 void EnsureInsertPoint() { 1560 if (!HaveInsertPoint()) 1561 EmitBlock(createBasicBlock()); 1562 } 1563 1564 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1565 /// specified stmt yet. 1566 void ErrorUnsupported(const Stmt *S, const char *Type, 1567 bool OmitOnError=false); 1568 1569 //===--------------------------------------------------------------------===// 1570 // Helpers 1571 //===--------------------------------------------------------------------===// 1572 1573 LValue MakeAddrLValue(llvm::Value *V, QualType T, 1574 CharUnits Alignment = CharUnits()) { 1575 return LValue::MakeAddr(V, T, Alignment, getContext(), 1576 CGM.getTBAAInfo(T)); 1577 } 1578 1579 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 1580 CharUnits Alignment; 1581 if (!T->isIncompleteType()) 1582 Alignment = getContext().getTypeAlignInChars(T); 1583 return LValue::MakeAddr(V, T, Alignment, getContext(), 1584 CGM.getTBAAInfo(T)); 1585 } 1586 1587 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1588 /// block. The caller is responsible for setting an appropriate alignment on 1589 /// the alloca. 1590 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1591 const Twine &Name = "tmp"); 1592 1593 /// InitTempAlloca - Provide an initial value for the given alloca. 1594 void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value); 1595 1596 /// CreateIRTemp - Create a temporary IR object of the given type, with 1597 /// appropriate alignment. This routine should only be used when an temporary 1598 /// value needs to be stored into an alloca (for example, to avoid explicit 1599 /// PHI construction), but the type is the IR type, not the type appropriate 1600 /// for storing in memory. 1601 llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1602 1603 /// CreateMemTemp - Create a temporary memory object of the given type, with 1604 /// appropriate alignment. 1605 llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1606 1607 /// CreateAggTemp - Create a temporary memory object for the given 1608 /// aggregate type. 1609 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1610 CharUnits Alignment = getContext().getTypeAlignInChars(T); 1611 return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment, 1612 T.getQualifiers(), 1613 AggValueSlot::IsNotDestructed, 1614 AggValueSlot::DoesNotNeedGCBarriers, 1615 AggValueSlot::IsNotAliased); 1616 } 1617 1618 /// Emit a cast to void* in the appropriate address space. 1619 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1620 1621 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1622 /// expression and compare the result against zero, returning an Int1Ty value. 1623 llvm::Value *EvaluateExprAsBool(const Expr *E); 1624 1625 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1626 void EmitIgnoredExpr(const Expr *E); 1627 1628 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1629 /// any type. The result is returned as an RValue struct. If this is an 1630 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1631 /// the result should be returned. 1632 /// 1633 /// \param ignoreResult True if the resulting value isn't used. 1634 RValue EmitAnyExpr(const Expr *E, 1635 AggValueSlot aggSlot = AggValueSlot::ignored(), 1636 bool ignoreResult = false); 1637 1638 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1639 // or the value of the expression, depending on how va_list is defined. 1640 llvm::Value *EmitVAListRef(const Expr *E); 1641 1642 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1643 /// always be accessible even if no aggregate location is provided. 1644 RValue EmitAnyExprToTemp(const Expr *E); 1645 1646 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1647 /// arbitrary expression into the given memory location. 1648 void EmitAnyExprToMem(const Expr *E, llvm::Value *Location, 1649 Qualifiers Quals, bool IsInitializer); 1650 1651 /// EmitExprAsInit - Emits the code necessary to initialize a 1652 /// location in memory with the given initializer. 1653 void EmitExprAsInit(const Expr *init, const ValueDecl *D, 1654 LValue lvalue, bool capturedByInit); 1655 1656 /// EmitAggregateCopy - Emit an aggrate copy. 1657 /// 1658 /// \param isVolatile - True iff either the source or the destination is 1659 /// volatile. 1660 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1661 QualType EltTy, bool isVolatile=false, 1662 CharUnits Alignment = CharUnits::Zero()); 1663 1664 /// StartBlock - Start new block named N. If insert block is a dummy block 1665 /// then reuse it. 1666 void StartBlock(const char *N); 1667 1668 /// GetAddrOfStaticLocalVar - Return the address of a static local variable. 1669 llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) { 1670 return cast<llvm::Constant>(GetAddrOfLocalVar(BVD)); 1671 } 1672 1673 /// GetAddrOfLocalVar - Return the address of a local variable. 1674 llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) { 1675 llvm::Value *Res = LocalDeclMap[VD]; 1676 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1677 return Res; 1678 } 1679 1680 /// getOpaqueLValueMapping - Given an opaque value expression (which 1681 /// must be mapped to an l-value), return its mapping. 1682 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1683 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1684 1685 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1686 it = OpaqueLValues.find(e); 1687 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1688 return it->second; 1689 } 1690 1691 /// getOpaqueRValueMapping - Given an opaque value expression (which 1692 /// must be mapped to an r-value), return its mapping. 1693 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1694 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1695 1696 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1697 it = OpaqueRValues.find(e); 1698 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1699 return it->second; 1700 } 1701 1702 /// getAccessedFieldNo - Given an encoded value and a result number, return 1703 /// the input field number being accessed. 1704 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1705 1706 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1707 llvm::BasicBlock *GetIndirectGotoBlock(); 1708 1709 /// EmitNullInitialization - Generate code to set a value of the given type to 1710 /// null, If the type contains data member pointers, they will be initialized 1711 /// to -1 in accordance with the Itanium C++ ABI. 1712 void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty); 1713 1714 // EmitVAArg - Generate code to get an argument from the passed in pointer 1715 // and update it accordingly. The return value is a pointer to the argument. 1716 // FIXME: We should be able to get rid of this method and use the va_arg 1717 // instruction in LLVM instead once it works well enough. 1718 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty); 1719 1720 /// emitArrayLength - Compute the length of an array, even if it's a 1721 /// VLA, and drill down to the base element type. 1722 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1723 QualType &baseType, 1724 llvm::Value *&addr); 1725 1726 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1727 /// the given variably-modified type and store them in the VLASizeMap. 1728 /// 1729 /// This function can be called with a null (unreachable) insert point. 1730 void EmitVariablyModifiedType(QualType Ty); 1731 1732 /// getVLASize - Returns an LLVM value that corresponds to the size, 1733 /// in non-variably-sized elements, of a variable length array type, 1734 /// plus that largest non-variably-sized element type. Assumes that 1735 /// the type has already been emitted with EmitVariablyModifiedType. 1736 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1737 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1738 1739 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1740 /// generating code for an C++ member function. 1741 llvm::Value *LoadCXXThis() { 1742 assert(CXXThisValue && "no 'this' value for this function"); 1743 return CXXThisValue; 1744 } 1745 1746 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1747 /// virtual bases. 1748 llvm::Value *LoadCXXVTT() { 1749 assert(CXXVTTValue && "no VTT value for this function"); 1750 return CXXVTTValue; 1751 } 1752 1753 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1754 /// complete class to the given direct base. 1755 llvm::Value * 1756 GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value, 1757 const CXXRecordDecl *Derived, 1758 const CXXRecordDecl *Base, 1759 bool BaseIsVirtual); 1760 1761 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1762 /// load of 'this' and returns address of the base class. 1763 llvm::Value *GetAddressOfBaseClass(llvm::Value *Value, 1764 const CXXRecordDecl *Derived, 1765 CastExpr::path_const_iterator PathBegin, 1766 CastExpr::path_const_iterator PathEnd, 1767 bool NullCheckValue); 1768 1769 llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value, 1770 const CXXRecordDecl *Derived, 1771 CastExpr::path_const_iterator PathBegin, 1772 CastExpr::path_const_iterator PathEnd, 1773 bool NullCheckValue); 1774 1775 llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This, 1776 const CXXRecordDecl *ClassDecl, 1777 const CXXRecordDecl *BaseClassDecl); 1778 1779 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1780 CXXCtorType CtorType, 1781 const FunctionArgList &Args); 1782 // It's important not to confuse this and the previous function. Delegating 1783 // constructors are the C++0x feature. The constructor delegate optimization 1784 // is used to reduce duplication in the base and complete consturctors where 1785 // they are substantially the same. 1786 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1787 const FunctionArgList &Args); 1788 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1789 bool ForVirtualBase, llvm::Value *This, 1790 CallExpr::const_arg_iterator ArgBeg, 1791 CallExpr::const_arg_iterator ArgEnd); 1792 1793 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1794 llvm::Value *This, llvm::Value *Src, 1795 CallExpr::const_arg_iterator ArgBeg, 1796 CallExpr::const_arg_iterator ArgEnd); 1797 1798 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1799 const ConstantArrayType *ArrayTy, 1800 llvm::Value *ArrayPtr, 1801 CallExpr::const_arg_iterator ArgBeg, 1802 CallExpr::const_arg_iterator ArgEnd, 1803 bool ZeroInitialization = false); 1804 1805 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1806 llvm::Value *NumElements, 1807 llvm::Value *ArrayPtr, 1808 CallExpr::const_arg_iterator ArgBeg, 1809 CallExpr::const_arg_iterator ArgEnd, 1810 bool ZeroInitialization = false); 1811 1812 static Destroyer destroyCXXObject; 1813 1814 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1815 bool ForVirtualBase, llvm::Value *This); 1816 1817 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 1818 llvm::Value *NewPtr, llvm::Value *NumElements); 1819 1820 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 1821 llvm::Value *Ptr); 1822 1823 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1824 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1825 1826 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1827 QualType DeleteTy); 1828 1829 llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1830 llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE); 1831 1832 void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init); 1833 void EmitStdInitializerListCleanup(llvm::Value *loc, 1834 const InitListExpr *init); 1835 1836 /// \brief Situations in which we might emit a check for the suitability of a 1837 /// pointer or glvalue. 1838 enum CheckType { 1839 /// Checking the operand of a load. Must be suitably sized and aligned. 1840 CT_Load, 1841 /// Checking the destination of a store. Must be suitably sized and aligned. 1842 CT_Store, 1843 /// Checking the bound value in a reference binding. Must be suitably sized 1844 /// and aligned, but is not required to refer to an object (until the 1845 /// reference is used), per core issue 453. 1846 CT_ReferenceBinding, 1847 /// Checking the object expression in a non-static data member access. Must 1848 /// be an object within its lifetime. 1849 CT_MemberAccess, 1850 /// Checking the 'this' pointer for a call to a non-static member function. 1851 /// Must be an object within its lifetime. 1852 CT_MemberCall 1853 }; 1854 1855 /// EmitCheck - Emit a check that \p V is the address of storage of the 1856 /// appropriate size and alignment for an object of type \p Type. 1857 void EmitCheck(CheckType CT, llvm::Value *V, 1858 QualType Type, CharUnits Alignment = CharUnits::Zero()); 1859 1860 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1861 bool isInc, bool isPre); 1862 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1863 bool isInc, bool isPre); 1864 //===--------------------------------------------------------------------===// 1865 // Declaration Emission 1866 //===--------------------------------------------------------------------===// 1867 1868 /// EmitDecl - Emit a declaration. 1869 /// 1870 /// This function can be called with a null (unreachable) insert point. 1871 void EmitDecl(const Decl &D); 1872 1873 /// EmitVarDecl - Emit a local variable declaration. 1874 /// 1875 /// This function can be called with a null (unreachable) insert point. 1876 void EmitVarDecl(const VarDecl &D); 1877 1878 void EmitScalarInit(const Expr *init, const ValueDecl *D, 1879 LValue lvalue, bool capturedByInit); 1880 void EmitScalarInit(llvm::Value *init, LValue lvalue); 1881 1882 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1883 llvm::Value *Address); 1884 1885 /// EmitAutoVarDecl - Emit an auto variable declaration. 1886 /// 1887 /// This function can be called with a null (unreachable) insert point. 1888 void EmitAutoVarDecl(const VarDecl &D); 1889 1890 class AutoVarEmission { 1891 friend class CodeGenFunction; 1892 1893 const VarDecl *Variable; 1894 1895 /// The alignment of the variable. 1896 CharUnits Alignment; 1897 1898 /// The address of the alloca. Null if the variable was emitted 1899 /// as a global constant. 1900 llvm::Value *Address; 1901 1902 llvm::Value *NRVOFlag; 1903 1904 /// True if the variable is a __block variable. 1905 bool IsByRef; 1906 1907 /// True if the variable is of aggregate type and has a constant 1908 /// initializer. 1909 bool IsConstantAggregate; 1910 1911 struct Invalid {}; 1912 AutoVarEmission(Invalid) : Variable(0) {} 1913 1914 AutoVarEmission(const VarDecl &variable) 1915 : Variable(&variable), Address(0), NRVOFlag(0), 1916 IsByRef(false), IsConstantAggregate(false) {} 1917 1918 bool wasEmittedAsGlobal() const { return Address == 0; } 1919 1920 public: 1921 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 1922 1923 /// Returns the address of the object within this declaration. 1924 /// Note that this does not chase the forwarding pointer for 1925 /// __block decls. 1926 llvm::Value *getObjectAddress(CodeGenFunction &CGF) const { 1927 if (!IsByRef) return Address; 1928 1929 return CGF.Builder.CreateStructGEP(Address, 1930 CGF.getByRefValueLLVMField(Variable), 1931 Variable->getNameAsString()); 1932 } 1933 }; 1934 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 1935 void EmitAutoVarInit(const AutoVarEmission &emission); 1936 void EmitAutoVarCleanups(const AutoVarEmission &emission); 1937 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 1938 QualType::DestructionKind dtorKind); 1939 1940 void EmitStaticVarDecl(const VarDecl &D, 1941 llvm::GlobalValue::LinkageTypes Linkage); 1942 1943 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 1944 void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo); 1945 1946 /// protectFromPeepholes - Protect a value that we're intending to 1947 /// store to the side, but which will probably be used later, from 1948 /// aggressive peepholing optimizations that might delete it. 1949 /// 1950 /// Pass the result to unprotectFromPeepholes to declare that 1951 /// protection is no longer required. 1952 /// 1953 /// There's no particular reason why this shouldn't apply to 1954 /// l-values, it's just that no existing peepholes work on pointers. 1955 PeepholeProtection protectFromPeepholes(RValue rvalue); 1956 void unprotectFromPeepholes(PeepholeProtection protection); 1957 1958 //===--------------------------------------------------------------------===// 1959 // Statement Emission 1960 //===--------------------------------------------------------------------===// 1961 1962 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 1963 void EmitStopPoint(const Stmt *S); 1964 1965 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 1966 /// this function even if there is no current insertion point. 1967 /// 1968 /// This function may clear the current insertion point; callers should use 1969 /// EnsureInsertPoint if they wish to subsequently generate code without first 1970 /// calling EmitBlock, EmitBranch, or EmitStmt. 1971 void EmitStmt(const Stmt *S); 1972 1973 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 1974 /// necessarily require an insertion point or debug information; typically 1975 /// because the statement amounts to a jump or a container of other 1976 /// statements. 1977 /// 1978 /// \return True if the statement was handled. 1979 bool EmitSimpleStmt(const Stmt *S); 1980 1981 RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 1982 AggValueSlot AVS = AggValueSlot::ignored()); 1983 1984 /// EmitLabel - Emit the block for the given label. It is legal to call this 1985 /// function even if there is no current insertion point. 1986 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 1987 1988 void EmitLabelStmt(const LabelStmt &S); 1989 void EmitAttributedStmt(const AttributedStmt &S); 1990 void EmitGotoStmt(const GotoStmt &S); 1991 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 1992 void EmitIfStmt(const IfStmt &S); 1993 void EmitWhileStmt(const WhileStmt &S); 1994 void EmitDoStmt(const DoStmt &S); 1995 void EmitForStmt(const ForStmt &S); 1996 void EmitReturnStmt(const ReturnStmt &S); 1997 void EmitDeclStmt(const DeclStmt &S); 1998 void EmitBreakStmt(const BreakStmt &S); 1999 void EmitContinueStmt(const ContinueStmt &S); 2000 void EmitSwitchStmt(const SwitchStmt &S); 2001 void EmitDefaultStmt(const DefaultStmt &S); 2002 void EmitCaseStmt(const CaseStmt &S); 2003 void EmitCaseStmtRange(const CaseStmt &S); 2004 void EmitAsmStmt(const AsmStmt &S); 2005 void EmitMSAsmStmt(const MSAsmStmt &S); 2006 2007 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2008 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2009 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2010 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2011 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2012 2013 llvm::Constant *getUnwindResumeFn(); 2014 llvm::Constant *getUnwindResumeOrRethrowFn(); 2015 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2016 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2017 2018 void EmitCXXTryStmt(const CXXTryStmt &S); 2019 void EmitCXXForRangeStmt(const CXXForRangeStmt &S); 2020 2021 //===--------------------------------------------------------------------===// 2022 // LValue Expression Emission 2023 //===--------------------------------------------------------------------===// 2024 2025 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 2026 RValue GetUndefRValue(QualType Ty); 2027 2028 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 2029 /// and issue an ErrorUnsupported style diagnostic (using the 2030 /// provided Name). 2031 RValue EmitUnsupportedRValue(const Expr *E, 2032 const char *Name); 2033 2034 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 2035 /// an ErrorUnsupported style diagnostic (using the provided Name). 2036 LValue EmitUnsupportedLValue(const Expr *E, 2037 const char *Name); 2038 2039 /// EmitLValue - Emit code to compute a designator that specifies the location 2040 /// of the expression. 2041 /// 2042 /// This can return one of two things: a simple address or a bitfield 2043 /// reference. In either case, the LLVM Value* in the LValue structure is 2044 /// guaranteed to be an LLVM pointer type. 2045 /// 2046 /// If this returns a bitfield reference, nothing about the pointee type of 2047 /// the LLVM value is known: For example, it may not be a pointer to an 2048 /// integer. 2049 /// 2050 /// If this returns a normal address, and if the lvalue's C type is fixed 2051 /// size, this method guarantees that the returned pointer type will point to 2052 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 2053 /// variable length type, this is not possible. 2054 /// 2055 LValue EmitLValue(const Expr *E); 2056 2057 /// EmitCheckedLValue - Same as EmitLValue but additionally we generate 2058 /// checking code to guard against undefined behavior. This is only 2059 /// suitable when we know that the address will be used to access the 2060 /// object. 2061 LValue EmitCheckedLValue(const Expr *E, CheckType CT); 2062 2063 /// EmitToMemory - Change a scalar value from its value 2064 /// representation to its in-memory representation. 2065 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 2066 2067 /// EmitFromMemory - Change a scalar value from its memory 2068 /// representation to its value representation. 2069 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 2070 2071 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2072 /// care to appropriately convert from the memory representation to 2073 /// the LLVM value representation. 2074 llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 2075 unsigned Alignment, QualType Ty, 2076 llvm::MDNode *TBAAInfo = 0); 2077 2078 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2079 /// care to appropriately convert from the memory representation to 2080 /// the LLVM value representation. The l-value must be a simple 2081 /// l-value. 2082 llvm::Value *EmitLoadOfScalar(LValue lvalue); 2083 2084 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2085 /// care to appropriately convert from the memory representation to 2086 /// the LLVM value representation. 2087 void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 2088 bool Volatile, unsigned Alignment, QualType Ty, 2089 llvm::MDNode *TBAAInfo = 0, bool isInit=false); 2090 2091 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2092 /// care to appropriately convert from the memory representation to 2093 /// the LLVM value representation. The l-value must be a simple 2094 /// l-value. The isInit flag indicates whether this is an initialization. 2095 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 2096 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 2097 2098 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 2099 /// this method emits the address of the lvalue, then loads the result as an 2100 /// rvalue, returning the rvalue. 2101 RValue EmitLoadOfLValue(LValue V); 2102 RValue EmitLoadOfExtVectorElementLValue(LValue V); 2103 RValue EmitLoadOfBitfieldLValue(LValue LV); 2104 2105 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2106 /// lvalue, where both are guaranteed to the have the same type, and that type 2107 /// is 'Ty'. 2108 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false); 2109 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 2110 2111 /// EmitStoreThroughLValue - Store Src into Dst with same constraints as 2112 /// EmitStoreThroughLValue. 2113 /// 2114 /// \param Result [out] - If non-null, this will be set to a Value* for the 2115 /// bit-field contents after the store, appropriate for use as the result of 2116 /// an assignment to the bit-field. 2117 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2118 llvm::Value **Result=0); 2119 2120 /// Emit an l-value for an assignment (simple or compound) of complex type. 2121 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 2122 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 2123 2124 // Note: only available for agg return types 2125 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 2126 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 2127 // Note: only available for agg return types 2128 LValue EmitCallExprLValue(const CallExpr *E); 2129 // Note: only available for agg return types 2130 LValue EmitVAArgExprLValue(const VAArgExpr *E); 2131 LValue EmitDeclRefLValue(const DeclRefExpr *E); 2132 LValue EmitStringLiteralLValue(const StringLiteral *E); 2133 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 2134 LValue EmitPredefinedLValue(const PredefinedExpr *E); 2135 LValue EmitUnaryOpLValue(const UnaryOperator *E); 2136 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E); 2137 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 2138 LValue EmitMemberExpr(const MemberExpr *E); 2139 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 2140 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 2141 LValue EmitInitListLValue(const InitListExpr *E); 2142 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 2143 LValue EmitCastLValue(const CastExpr *E); 2144 LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E); 2145 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 2146 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 2147 2148 RValue EmitRValueForField(LValue LV, const FieldDecl *FD); 2149 2150 class ConstantEmission { 2151 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 2152 ConstantEmission(llvm::Constant *C, bool isReference) 2153 : ValueAndIsReference(C, isReference) {} 2154 public: 2155 ConstantEmission() {} 2156 static ConstantEmission forReference(llvm::Constant *C) { 2157 return ConstantEmission(C, true); 2158 } 2159 static ConstantEmission forValue(llvm::Constant *C) { 2160 return ConstantEmission(C, false); 2161 } 2162 2163 operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; } 2164 2165 bool isReference() const { return ValueAndIsReference.getInt(); } 2166 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 2167 assert(isReference()); 2168 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 2169 refExpr->getType()); 2170 } 2171 2172 llvm::Constant *getValue() const { 2173 assert(!isReference()); 2174 return ValueAndIsReference.getPointer(); 2175 } 2176 }; 2177 2178 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 2179 2180 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 2181 AggValueSlot slot = AggValueSlot::ignored()); 2182 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 2183 2184 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2185 const ObjCIvarDecl *Ivar); 2186 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 2187 2188 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 2189 /// if the Field is a reference, this will return the address of the reference 2190 /// and not the address of the value stored in the reference. 2191 LValue EmitLValueForFieldInitialization(LValue Base, 2192 const FieldDecl* Field); 2193 2194 LValue EmitLValueForIvar(QualType ObjectTy, 2195 llvm::Value* Base, const ObjCIvarDecl *Ivar, 2196 unsigned CVRQualifiers); 2197 2198 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 2199 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 2200 LValue EmitLambdaLValue(const LambdaExpr *E); 2201 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2202 2203 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2204 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2205 LValue EmitStmtExprLValue(const StmtExpr *E); 2206 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2207 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2208 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 2209 2210 //===--------------------------------------------------------------------===// 2211 // Scalar Expression Emission 2212 //===--------------------------------------------------------------------===// 2213 2214 /// EmitCall - Generate a call of the given function, expecting the given 2215 /// result type, and using the given argument list which specifies both the 2216 /// LLVM arguments and the types they were derived from. 2217 /// 2218 /// \param TargetDecl - If given, the decl of the function in a direct call; 2219 /// used to set attributes on the call (noreturn, etc.). 2220 RValue EmitCall(const CGFunctionInfo &FnInfo, 2221 llvm::Value *Callee, 2222 ReturnValueSlot ReturnValue, 2223 const CallArgList &Args, 2224 const Decl *TargetDecl = 0, 2225 llvm::Instruction **callOrInvoke = 0); 2226 2227 RValue EmitCall(QualType FnType, llvm::Value *Callee, 2228 ReturnValueSlot ReturnValue, 2229 CallExpr::const_arg_iterator ArgBeg, 2230 CallExpr::const_arg_iterator ArgEnd, 2231 const Decl *TargetDecl = 0); 2232 RValue EmitCallExpr(const CallExpr *E, 2233 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2234 2235 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2236 ArrayRef<llvm::Value *> Args, 2237 const Twine &Name = ""); 2238 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2239 const Twine &Name = ""); 2240 2241 llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This, 2242 llvm::Type *Ty); 2243 llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type, 2244 llvm::Value *This, llvm::Type *Ty); 2245 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2246 NestedNameSpecifier *Qual, 2247 llvm::Type *Ty); 2248 2249 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2250 CXXDtorType Type, 2251 const CXXRecordDecl *RD); 2252 2253 RValue EmitCXXMemberCall(const CXXMethodDecl *MD, 2254 llvm::Value *Callee, 2255 ReturnValueSlot ReturnValue, 2256 llvm::Value *This, 2257 llvm::Value *VTT, 2258 CallExpr::const_arg_iterator ArgBeg, 2259 CallExpr::const_arg_iterator ArgEnd); 2260 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2261 ReturnValueSlot ReturnValue); 2262 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2263 ReturnValueSlot ReturnValue); 2264 2265 llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E, 2266 const CXXMethodDecl *MD, 2267 llvm::Value *This); 2268 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2269 const CXXMethodDecl *MD, 2270 ReturnValueSlot ReturnValue); 2271 2272 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 2273 ReturnValueSlot ReturnValue); 2274 2275 2276 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2277 unsigned BuiltinID, const CallExpr *E); 2278 2279 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2280 2281 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2282 /// is unhandled by the current target. 2283 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2284 2285 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2286 llvm::Value *EmitNeonCall(llvm::Function *F, 2287 SmallVectorImpl<llvm::Value*> &O, 2288 const char *name, 2289 unsigned shift = 0, bool rightshift = false); 2290 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2291 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 2292 bool negateForRightShift); 2293 2294 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 2295 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2296 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2297 2298 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2299 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2300 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 2301 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 2302 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 2303 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 2304 const ObjCMethodDecl *MethodWithObjects); 2305 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2306 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2307 ReturnValueSlot Return = ReturnValueSlot()); 2308 2309 /// Retrieves the default cleanup kind for an ARC cleanup. 2310 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 2311 CleanupKind getARCCleanupKind() { 2312 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 2313 ? NormalAndEHCleanup : NormalCleanup; 2314 } 2315 2316 // ARC primitives. 2317 void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr); 2318 void EmitARCDestroyWeak(llvm::Value *addr); 2319 llvm::Value *EmitARCLoadWeak(llvm::Value *addr); 2320 llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr); 2321 llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr, 2322 bool ignored); 2323 void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src); 2324 void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src); 2325 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 2326 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 2327 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 2328 bool ignored); 2329 llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value, 2330 bool ignored); 2331 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 2332 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 2333 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 2334 void EmitARCRelease(llvm::Value *value, bool precise); 2335 llvm::Value *EmitARCAutorelease(llvm::Value *value); 2336 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 2337 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 2338 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 2339 2340 std::pair<LValue,llvm::Value*> 2341 EmitARCStoreAutoreleasing(const BinaryOperator *e); 2342 std::pair<LValue,llvm::Value*> 2343 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 2344 2345 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 2346 2347 llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr); 2348 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 2349 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 2350 2351 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 2352 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 2353 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 2354 2355 static Destroyer destroyARCStrongImprecise; 2356 static Destroyer destroyARCStrongPrecise; 2357 static Destroyer destroyARCWeak; 2358 2359 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 2360 llvm::Value *EmitObjCAutoreleasePoolPush(); 2361 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 2362 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 2363 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 2364 2365 /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in 2366 /// expression. Will emit a temporary variable if E is not an LValue. 2367 RValue EmitReferenceBindingToExpr(const Expr* E, 2368 const NamedDecl *InitializedDecl); 2369 2370 //===--------------------------------------------------------------------===// 2371 // Expression Emission 2372 //===--------------------------------------------------------------------===// 2373 2374 // Expressions are broken into three classes: scalar, complex, aggregate. 2375 2376 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 2377 /// scalar type, returning the result. 2378 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 2379 2380 /// EmitScalarConversion - Emit a conversion from the specified type to the 2381 /// specified destination type, both of which are LLVM scalar types. 2382 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 2383 QualType DstTy); 2384 2385 /// EmitComplexToScalarConversion - Emit a conversion from the specified 2386 /// complex type to the specified destination type, where the destination type 2387 /// is an LLVM scalar type. 2388 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 2389 QualType DstTy); 2390 2391 2392 /// EmitAggExpr - Emit the computation of the specified expression 2393 /// of aggregate type. The result is computed into the given slot, 2394 /// which may be null to indicate that the value is not needed. 2395 void EmitAggExpr(const Expr *E, AggValueSlot AS); 2396 2397 /// EmitAggExprToLValue - Emit the computation of the specified expression of 2398 /// aggregate type into a temporary LValue. 2399 LValue EmitAggExprToLValue(const Expr *E); 2400 2401 /// EmitGCMemmoveCollectable - Emit special API for structs with object 2402 /// pointers. 2403 void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr, 2404 QualType Ty); 2405 2406 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2407 /// make sure it survives garbage collection until this point. 2408 void EmitExtendGCLifetime(llvm::Value *object); 2409 2410 /// EmitComplexExpr - Emit the computation of the specified expression of 2411 /// complex type, returning the result. 2412 ComplexPairTy EmitComplexExpr(const Expr *E, 2413 bool IgnoreReal = false, 2414 bool IgnoreImag = false); 2415 2416 /// EmitComplexExprIntoAddr - Emit the computation of the specified expression 2417 /// of complex type, storing into the specified Value*. 2418 void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr, 2419 bool DestIsVolatile); 2420 2421 /// StoreComplexToAddr - Store a complex number into the specified address. 2422 void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr, 2423 bool DestIsVolatile); 2424 /// LoadComplexFromAddr - Load a complex number from the specified address. 2425 ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile); 2426 2427 /// CreateStaticVarDecl - Create a zero-initialized LLVM global for 2428 /// a static local variable. 2429 llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D, 2430 const char *Separator, 2431 llvm::GlobalValue::LinkageTypes Linkage); 2432 2433 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2434 /// global variable that has already been created for it. If the initializer 2435 /// has a different type than GV does, this may free GV and return a different 2436 /// one. Otherwise it just returns GV. 2437 llvm::GlobalVariable * 2438 AddInitializerToStaticVarDecl(const VarDecl &D, 2439 llvm::GlobalVariable *GV); 2440 2441 2442 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2443 /// variable with global storage. 2444 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 2445 bool PerformInit); 2446 2447 /// Call atexit() with a function that passes the given argument to 2448 /// the given function. 2449 void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr); 2450 2451 /// Emit code in this function to perform a guarded variable 2452 /// initialization. Guarded initializations are used when it's not 2453 /// possible to prove that an initialization will be done exactly 2454 /// once, e.g. with a static local variable or a static data member 2455 /// of a class template. 2456 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 2457 bool PerformInit); 2458 2459 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2460 /// variables. 2461 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2462 llvm::Constant **Decls, 2463 unsigned NumDecls); 2464 2465 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 2466 /// variables. 2467 void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn, 2468 const std::vector<std::pair<llvm::WeakVH, 2469 llvm::Constant*> > &DtorsAndObjects); 2470 2471 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2472 const VarDecl *D, 2473 llvm::GlobalVariable *Addr, 2474 bool PerformInit); 2475 2476 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2477 2478 void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, 2479 const Expr *Exp); 2480 2481 void enterFullExpression(const ExprWithCleanups *E) { 2482 if (E->getNumObjects() == 0) return; 2483 enterNonTrivialFullExpression(E); 2484 } 2485 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 2486 2487 void EmitCXXThrowExpr(const CXXThrowExpr *E); 2488 2489 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 2490 2491 RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0); 2492 2493 //===--------------------------------------------------------------------===// 2494 // Annotations Emission 2495 //===--------------------------------------------------------------------===// 2496 2497 /// Emit an annotation call (intrinsic or builtin). 2498 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 2499 llvm::Value *AnnotatedVal, 2500 llvm::StringRef AnnotationStr, 2501 SourceLocation Location); 2502 2503 /// Emit local annotations for the local variable V, declared by D. 2504 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 2505 2506 /// Emit field annotations for the given field & value. Returns the 2507 /// annotation result. 2508 llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V); 2509 2510 //===--------------------------------------------------------------------===// 2511 // Internal Helpers 2512 //===--------------------------------------------------------------------===// 2513 2514 /// ContainsLabel - Return true if the statement contains a label in it. If 2515 /// this statement is not executed normally, it not containing a label means 2516 /// that we can just remove the code. 2517 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 2518 2519 /// containsBreak - Return true if the statement contains a break out of it. 2520 /// If the statement (recursively) contains a switch or loop with a break 2521 /// inside of it, this is fine. 2522 static bool containsBreak(const Stmt *S); 2523 2524 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2525 /// to a constant, or if it does but contains a label, return false. If it 2526 /// constant folds return true and set the boolean result in Result. 2527 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 2528 2529 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2530 /// to a constant, or if it does but contains a label, return false. If it 2531 /// constant folds return true and set the folded value. 2532 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result); 2533 2534 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 2535 /// if statement) to the specified blocks. Based on the condition, this might 2536 /// try to simplify the codegen of the conditional based on the branch. 2537 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 2538 llvm::BasicBlock *FalseBlock); 2539 2540 /// getTrapBB - Create a basic block that will call the trap intrinsic. We'll 2541 /// generate a branch around the created basic block as necessary. 2542 llvm::BasicBlock *getTrapBB(); 2543 2544 /// EmitCallArg - Emit a single call argument. 2545 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 2546 2547 /// EmitDelegateCallArg - We are performing a delegate call; that 2548 /// is, the current function is delegating to another one. Produce 2549 /// a r-value suitable for passing the given parameter. 2550 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param); 2551 2552 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 2553 /// point operation, expressed as the maximum relative error in ulp. 2554 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 2555 2556private: 2557 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 2558 void EmitReturnOfRValue(RValue RV, QualType Ty); 2559 2560 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 2561 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 2562 /// 2563 /// \param AI - The first function argument of the expansion. 2564 /// \return The argument following the last expanded function 2565 /// argument. 2566 llvm::Function::arg_iterator 2567 ExpandTypeFromArgs(QualType Ty, LValue Dst, 2568 llvm::Function::arg_iterator AI); 2569 2570 /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg 2571 /// Ty, into individual arguments on the provided vector \arg Args. See 2572 /// ABIArgInfo::Expand. 2573 void ExpandTypeToArgs(QualType Ty, RValue Src, 2574 SmallVector<llvm::Value*, 16> &Args, 2575 llvm::FunctionType *IRFuncTy); 2576 2577 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 2578 const Expr *InputExpr, std::string &ConstraintStr); 2579 2580 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 2581 LValue InputValue, QualType InputType, 2582 std::string &ConstraintStr); 2583 2584 /// EmitCallArgs - Emit call arguments for a function. 2585 /// The CallArgTypeInfo parameter is used for iterating over the known 2586 /// argument types of the function being called. 2587 template<typename T> 2588 void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo, 2589 CallExpr::const_arg_iterator ArgBeg, 2590 CallExpr::const_arg_iterator ArgEnd) { 2591 CallExpr::const_arg_iterator Arg = ArgBeg; 2592 2593 // First, use the argument types that the type info knows about 2594 if (CallArgTypeInfo) { 2595 for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(), 2596 E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) { 2597 assert(Arg != ArgEnd && "Running over edge of argument list!"); 2598 QualType ArgType = *I; 2599#ifndef NDEBUG 2600 QualType ActualArgType = Arg->getType(); 2601 if (ArgType->isPointerType() && ActualArgType->isPointerType()) { 2602 QualType ActualBaseType = 2603 ActualArgType->getAs<PointerType>()->getPointeeType(); 2604 QualType ArgBaseType = 2605 ArgType->getAs<PointerType>()->getPointeeType(); 2606 if (ArgBaseType->isVariableArrayType()) { 2607 if (const VariableArrayType *VAT = 2608 getContext().getAsVariableArrayType(ActualBaseType)) { 2609 if (!VAT->getSizeExpr()) 2610 ActualArgType = ArgType; 2611 } 2612 } 2613 } 2614 assert(getContext().getCanonicalType(ArgType.getNonReferenceType()). 2615 getTypePtr() == 2616 getContext().getCanonicalType(ActualArgType).getTypePtr() && 2617 "type mismatch in call argument!"); 2618#endif 2619 EmitCallArg(Args, *Arg, ArgType); 2620 } 2621 2622 // Either we've emitted all the call args, or we have a call to a 2623 // variadic function. 2624 assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) && 2625 "Extra arguments in non-variadic function!"); 2626 2627 } 2628 2629 // If we still have any arguments, emit them using the type of the argument. 2630 for (; Arg != ArgEnd; ++Arg) 2631 EmitCallArg(Args, *Arg, Arg->getType()); 2632 } 2633 2634 const TargetCodeGenInfo &getTargetHooks() const { 2635 return CGM.getTargetCodeGenInfo(); 2636 } 2637 2638 void EmitDeclMetadata(); 2639 2640 CodeGenModule::ByrefHelpers * 2641 buildByrefHelpers(llvm::StructType &byrefType, 2642 const AutoVarEmission &emission); 2643 2644 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 2645 2646 /// GetPointeeAlignment - Given an expression with a pointer type, emit the 2647 /// value and compute our best estimate of the alignment of the pointee. 2648 std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr); 2649}; 2650 2651/// Helper class with most of the code for saving a value for a 2652/// conditional expression cleanup. 2653struct DominatingLLVMValue { 2654 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 2655 2656 /// Answer whether the given value needs extra work to be saved. 2657 static bool needsSaving(llvm::Value *value) { 2658 // If it's not an instruction, we don't need to save. 2659 if (!isa<llvm::Instruction>(value)) return false; 2660 2661 // If it's an instruction in the entry block, we don't need to save. 2662 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 2663 return (block != &block->getParent()->getEntryBlock()); 2664 } 2665 2666 /// Try to save the given value. 2667 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 2668 if (!needsSaving(value)) return saved_type(value, false); 2669 2670 // Otherwise we need an alloca. 2671 llvm::Value *alloca = 2672 CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save"); 2673 CGF.Builder.CreateStore(value, alloca); 2674 2675 return saved_type(alloca, true); 2676 } 2677 2678 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 2679 if (!value.getInt()) return value.getPointer(); 2680 return CGF.Builder.CreateLoad(value.getPointer()); 2681 } 2682}; 2683 2684/// A partial specialization of DominatingValue for llvm::Values that 2685/// might be llvm::Instructions. 2686template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 2687 typedef T *type; 2688 static type restore(CodeGenFunction &CGF, saved_type value) { 2689 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 2690 } 2691}; 2692 2693/// A specialization of DominatingValue for RValue. 2694template <> struct DominatingValue<RValue> { 2695 typedef RValue type; 2696 class saved_type { 2697 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 2698 AggregateAddress, ComplexAddress }; 2699 2700 llvm::Value *Value; 2701 Kind K; 2702 saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {} 2703 2704 public: 2705 static bool needsSaving(RValue value); 2706 static saved_type save(CodeGenFunction &CGF, RValue value); 2707 RValue restore(CodeGenFunction &CGF); 2708 2709 // implementations in CGExprCXX.cpp 2710 }; 2711 2712 static bool needsSaving(type value) { 2713 return saved_type::needsSaving(value); 2714 } 2715 static saved_type save(CodeGenFunction &CGF, type value) { 2716 return saved_type::save(CGF, value); 2717 } 2718 static type restore(CodeGenFunction &CGF, saved_type value) { 2719 return value.restore(CGF); 2720 } 2721}; 2722 2723} // end namespace CodeGen 2724} // end namespace clang 2725 2726#endif 2727