CodeGenFunction.h revision 31a3702618ab49578542cffee20ba0c8859b9d1e
1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the internal per-function state used for llvm translation.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15#define CLANG_CODEGEN_CODEGENFUNCTION_H
16
17#include "clang/AST/Type.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/Frontend/CodeGenOptions.h"
22#include "clang/Basic/ABI.h"
23#include "clang/Basic/TargetInfo.h"
24#include "llvm/ADT/ArrayRef.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/Support/ValueHandle.h"
28#include "llvm/Support/Debug.h"
29#include "CodeGenModule.h"
30#include "CGBuilder.h"
31#include "CGDebugInfo.h"
32#include "CGValue.h"
33
34namespace llvm {
35  class BasicBlock;
36  class LLVMContext;
37  class MDNode;
38  class Module;
39  class SwitchInst;
40  class Twine;
41  class Value;
42  class CallSite;
43}
44
45namespace clang {
46  class ASTContext;
47  class BlockDecl;
48  class CXXDestructorDecl;
49  class CXXForRangeStmt;
50  class CXXTryStmt;
51  class Decl;
52  class LabelDecl;
53  class EnumConstantDecl;
54  class FunctionDecl;
55  class FunctionProtoType;
56  class LabelStmt;
57  class ObjCContainerDecl;
58  class ObjCInterfaceDecl;
59  class ObjCIvarDecl;
60  class ObjCMethodDecl;
61  class ObjCImplementationDecl;
62  class ObjCPropertyImplDecl;
63  class TargetInfo;
64  class TargetCodeGenInfo;
65  class VarDecl;
66  class ObjCForCollectionStmt;
67  class ObjCAtTryStmt;
68  class ObjCAtThrowStmt;
69  class ObjCAtSynchronizedStmt;
70  class ObjCAutoreleasePoolStmt;
71
72namespace CodeGen {
73  class CodeGenTypes;
74  class CGFunctionInfo;
75  class CGRecordLayout;
76  class CGBlockInfo;
77  class CGCXXABI;
78  class BlockFlags;
79  class BlockFieldFlags;
80
81/// A branch fixup.  These are required when emitting a goto to a
82/// label which hasn't been emitted yet.  The goto is optimistically
83/// emitted as a branch to the basic block for the label, and (if it
84/// occurs in a scope with non-trivial cleanups) a fixup is added to
85/// the innermost cleanup.  When a (normal) cleanup is popped, any
86/// unresolved fixups in that scope are threaded through the cleanup.
87struct BranchFixup {
88  /// The block containing the terminator which needs to be modified
89  /// into a switch if this fixup is resolved into the current scope.
90  /// If null, LatestBranch points directly to the destination.
91  llvm::BasicBlock *OptimisticBranchBlock;
92
93  /// The ultimate destination of the branch.
94  ///
95  /// This can be set to null to indicate that this fixup was
96  /// successfully resolved.
97  llvm::BasicBlock *Destination;
98
99  /// The destination index value.
100  unsigned DestinationIndex;
101
102  /// The initial branch of the fixup.
103  llvm::BranchInst *InitialBranch;
104};
105
106template <class T> struct InvariantValue {
107  typedef T type;
108  typedef T saved_type;
109  static bool needsSaving(type value) { return false; }
110  static saved_type save(CodeGenFunction &CGF, type value) { return value; }
111  static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
112};
113
114/// A metaprogramming class for ensuring that a value will dominate an
115/// arbitrary position in a function.
116template <class T> struct DominatingValue : InvariantValue<T> {};
117
118template <class T, bool mightBeInstruction =
119            llvm::is_base_of<llvm::Value, T>::value &&
120            !llvm::is_base_of<llvm::Constant, T>::value &&
121            !llvm::is_base_of<llvm::BasicBlock, T>::value>
122struct DominatingPointer;
123template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
124// template <class T> struct DominatingPointer<T,true> at end of file
125
126template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
127
128enum CleanupKind {
129  EHCleanup = 0x1,
130  NormalCleanup = 0x2,
131  NormalAndEHCleanup = EHCleanup | NormalCleanup,
132
133  InactiveCleanup = 0x4,
134  InactiveEHCleanup = EHCleanup | InactiveCleanup,
135  InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
136  InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
137};
138
139/// A stack of scopes which respond to exceptions, including cleanups
140/// and catch blocks.
141class EHScopeStack {
142public:
143  /// A saved depth on the scope stack.  This is necessary because
144  /// pushing scopes onto the stack invalidates iterators.
145  class stable_iterator {
146    friend class EHScopeStack;
147
148    /// Offset from StartOfData to EndOfBuffer.
149    ptrdiff_t Size;
150
151    stable_iterator(ptrdiff_t Size) : Size(Size) {}
152
153  public:
154    static stable_iterator invalid() { return stable_iterator(-1); }
155    stable_iterator() : Size(-1) {}
156
157    bool isValid() const { return Size >= 0; }
158
159    /// Returns true if this scope encloses I.
160    /// Returns false if I is invalid.
161    /// This scope must be valid.
162    bool encloses(stable_iterator I) const { return Size <= I.Size; }
163
164    /// Returns true if this scope strictly encloses I: that is,
165    /// if it encloses I and is not I.
166    /// Returns false is I is invalid.
167    /// This scope must be valid.
168    bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
169
170    friend bool operator==(stable_iterator A, stable_iterator B) {
171      return A.Size == B.Size;
172    }
173    friend bool operator!=(stable_iterator A, stable_iterator B) {
174      return A.Size != B.Size;
175    }
176  };
177
178  /// Information for lazily generating a cleanup.  Subclasses must be
179  /// POD-like: cleanups will not be destructed, and they will be
180  /// allocated on the cleanup stack and freely copied and moved
181  /// around.
182  ///
183  /// Cleanup implementations should generally be declared in an
184  /// anonymous namespace.
185  class Cleanup {
186    // Anchor the construction vtable.
187    virtual void anchor();
188  public:
189    /// Generation flags.
190    class Flags {
191      enum {
192        F_IsForEH             = 0x1,
193        F_IsNormalCleanupKind = 0x2,
194        F_IsEHCleanupKind     = 0x4
195      };
196      unsigned flags;
197
198    public:
199      Flags() : flags(0) {}
200
201      /// isForEH - true if the current emission is for an EH cleanup.
202      bool isForEHCleanup() const { return flags & F_IsForEH; }
203      bool isForNormalCleanup() const { return !isForEHCleanup(); }
204      void setIsForEHCleanup() { flags |= F_IsForEH; }
205
206      bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; }
207      void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; }
208
209      /// isEHCleanupKind - true if the cleanup was pushed as an EH
210      /// cleanup.
211      bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; }
212      void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; }
213    };
214
215    // Provide a virtual destructor to suppress a very common warning
216    // that unfortunately cannot be suppressed without this.  Cleanups
217    // should not rely on this destructor ever being called.
218    virtual ~Cleanup() {}
219
220    /// Emit the cleanup.  For normal cleanups, this is run in the
221    /// same EH context as when the cleanup was pushed, i.e. the
222    /// immediately-enclosing context of the cleanup scope.  For
223    /// EH cleanups, this is run in a terminate context.
224    ///
225    // \param IsForEHCleanup true if this is for an EH cleanup, false
226    ///  if for a normal cleanup.
227    virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0;
228  };
229
230  /// ConditionalCleanupN stores the saved form of its N parameters,
231  /// then restores them and performs the cleanup.
232  template <class T, class A0>
233  class ConditionalCleanup1 : public Cleanup {
234    typedef typename DominatingValue<A0>::saved_type A0_saved;
235    A0_saved a0_saved;
236
237    void Emit(CodeGenFunction &CGF, Flags flags) {
238      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
239      T(a0).Emit(CGF, flags);
240    }
241
242  public:
243    ConditionalCleanup1(A0_saved a0)
244      : a0_saved(a0) {}
245  };
246
247  template <class T, class A0, class A1>
248  class ConditionalCleanup2 : public Cleanup {
249    typedef typename DominatingValue<A0>::saved_type A0_saved;
250    typedef typename DominatingValue<A1>::saved_type A1_saved;
251    A0_saved a0_saved;
252    A1_saved a1_saved;
253
254    void Emit(CodeGenFunction &CGF, Flags flags) {
255      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
256      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
257      T(a0, a1).Emit(CGF, flags);
258    }
259
260  public:
261    ConditionalCleanup2(A0_saved a0, A1_saved a1)
262      : a0_saved(a0), a1_saved(a1) {}
263  };
264
265  template <class T, class A0, class A1, class A2>
266  class ConditionalCleanup3 : public Cleanup {
267    typedef typename DominatingValue<A0>::saved_type A0_saved;
268    typedef typename DominatingValue<A1>::saved_type A1_saved;
269    typedef typename DominatingValue<A2>::saved_type A2_saved;
270    A0_saved a0_saved;
271    A1_saved a1_saved;
272    A2_saved a2_saved;
273
274    void Emit(CodeGenFunction &CGF, Flags flags) {
275      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
276      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
277      A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
278      T(a0, a1, a2).Emit(CGF, flags);
279    }
280
281  public:
282    ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2)
283      : a0_saved(a0), a1_saved(a1), a2_saved(a2) {}
284  };
285
286  template <class T, class A0, class A1, class A2, class A3>
287  class ConditionalCleanup4 : public Cleanup {
288    typedef typename DominatingValue<A0>::saved_type A0_saved;
289    typedef typename DominatingValue<A1>::saved_type A1_saved;
290    typedef typename DominatingValue<A2>::saved_type A2_saved;
291    typedef typename DominatingValue<A3>::saved_type A3_saved;
292    A0_saved a0_saved;
293    A1_saved a1_saved;
294    A2_saved a2_saved;
295    A3_saved a3_saved;
296
297    void Emit(CodeGenFunction &CGF, Flags flags) {
298      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
299      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
300      A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
301      A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved);
302      T(a0, a1, a2, a3).Emit(CGF, flags);
303    }
304
305  public:
306    ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3)
307      : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {}
308  };
309
310private:
311  // The implementation for this class is in CGException.h and
312  // CGException.cpp; the definition is here because it's used as a
313  // member of CodeGenFunction.
314
315  /// The start of the scope-stack buffer, i.e. the allocated pointer
316  /// for the buffer.  All of these pointers are either simultaneously
317  /// null or simultaneously valid.
318  char *StartOfBuffer;
319
320  /// The end of the buffer.
321  char *EndOfBuffer;
322
323  /// The first valid entry in the buffer.
324  char *StartOfData;
325
326  /// The innermost normal cleanup on the stack.
327  stable_iterator InnermostNormalCleanup;
328
329  /// The innermost EH scope on the stack.
330  stable_iterator InnermostEHScope;
331
332  /// The current set of branch fixups.  A branch fixup is a jump to
333  /// an as-yet unemitted label, i.e. a label for which we don't yet
334  /// know the EH stack depth.  Whenever we pop a cleanup, we have
335  /// to thread all the current branch fixups through it.
336  ///
337  /// Fixups are recorded as the Use of the respective branch or
338  /// switch statement.  The use points to the final destination.
339  /// When popping out of a cleanup, these uses are threaded through
340  /// the cleanup and adjusted to point to the new cleanup.
341  ///
342  /// Note that branches are allowed to jump into protected scopes
343  /// in certain situations;  e.g. the following code is legal:
344  ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
345  ///     goto foo;
346  ///     A a;
347  ///    foo:
348  ///     bar();
349  SmallVector<BranchFixup, 8> BranchFixups;
350
351  char *allocate(size_t Size);
352
353  void *pushCleanup(CleanupKind K, size_t DataSize);
354
355public:
356  EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
357                   InnermostNormalCleanup(stable_end()),
358                   InnermostEHScope(stable_end()) {}
359  ~EHScopeStack() { delete[] StartOfBuffer; }
360
361  // Variadic templates would make this not terrible.
362
363  /// Push a lazily-created cleanup on the stack.
364  template <class T>
365  void pushCleanup(CleanupKind Kind) {
366    void *Buffer = pushCleanup(Kind, sizeof(T));
367    Cleanup *Obj = new(Buffer) T();
368    (void) Obj;
369  }
370
371  /// Push a lazily-created cleanup on the stack.
372  template <class T, class A0>
373  void pushCleanup(CleanupKind Kind, A0 a0) {
374    void *Buffer = pushCleanup(Kind, sizeof(T));
375    Cleanup *Obj = new(Buffer) T(a0);
376    (void) Obj;
377  }
378
379  /// Push a lazily-created cleanup on the stack.
380  template <class T, class A0, class A1>
381  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
382    void *Buffer = pushCleanup(Kind, sizeof(T));
383    Cleanup *Obj = new(Buffer) T(a0, a1);
384    (void) Obj;
385  }
386
387  /// Push a lazily-created cleanup on the stack.
388  template <class T, class A0, class A1, class A2>
389  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
390    void *Buffer = pushCleanup(Kind, sizeof(T));
391    Cleanup *Obj = new(Buffer) T(a0, a1, a2);
392    (void) Obj;
393  }
394
395  /// Push a lazily-created cleanup on the stack.
396  template <class T, class A0, class A1, class A2, class A3>
397  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
398    void *Buffer = pushCleanup(Kind, sizeof(T));
399    Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
400    (void) Obj;
401  }
402
403  /// Push a lazily-created cleanup on the stack.
404  template <class T, class A0, class A1, class A2, class A3, class A4>
405  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
406    void *Buffer = pushCleanup(Kind, sizeof(T));
407    Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
408    (void) Obj;
409  }
410
411  // Feel free to add more variants of the following:
412
413  /// Push a cleanup with non-constant storage requirements on the
414  /// stack.  The cleanup type must provide an additional static method:
415  ///   static size_t getExtraSize(size_t);
416  /// The argument to this method will be the value N, which will also
417  /// be passed as the first argument to the constructor.
418  ///
419  /// The data stored in the extra storage must obey the same
420  /// restrictions as normal cleanup member data.
421  ///
422  /// The pointer returned from this method is valid until the cleanup
423  /// stack is modified.
424  template <class T, class A0, class A1, class A2>
425  T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
426    void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
427    return new (Buffer) T(N, a0, a1, a2);
428  }
429
430  /// Pops a cleanup scope off the stack.  This is private to CGCleanup.cpp.
431  void popCleanup();
432
433  /// Push a set of catch handlers on the stack.  The catch is
434  /// uninitialized and will need to have the given number of handlers
435  /// set on it.
436  class EHCatchScope *pushCatch(unsigned NumHandlers);
437
438  /// Pops a catch scope off the stack.  This is private to CGException.cpp.
439  void popCatch();
440
441  /// Push an exceptions filter on the stack.
442  class EHFilterScope *pushFilter(unsigned NumFilters);
443
444  /// Pops an exceptions filter off the stack.
445  void popFilter();
446
447  /// Push a terminate handler on the stack.
448  void pushTerminate();
449
450  /// Pops a terminate handler off the stack.
451  void popTerminate();
452
453  /// Determines whether the exception-scopes stack is empty.
454  bool empty() const { return StartOfData == EndOfBuffer; }
455
456  bool requiresLandingPad() const {
457    return InnermostEHScope != stable_end();
458  }
459
460  /// Determines whether there are any normal cleanups on the stack.
461  bool hasNormalCleanups() const {
462    return InnermostNormalCleanup != stable_end();
463  }
464
465  /// Returns the innermost normal cleanup on the stack, or
466  /// stable_end() if there are no normal cleanups.
467  stable_iterator getInnermostNormalCleanup() const {
468    return InnermostNormalCleanup;
469  }
470  stable_iterator getInnermostActiveNormalCleanup() const;
471
472  stable_iterator getInnermostEHScope() const {
473    return InnermostEHScope;
474  }
475
476  stable_iterator getInnermostActiveEHScope() const;
477
478  /// An unstable reference to a scope-stack depth.  Invalidated by
479  /// pushes but not pops.
480  class iterator;
481
482  /// Returns an iterator pointing to the innermost EH scope.
483  iterator begin() const;
484
485  /// Returns an iterator pointing to the outermost EH scope.
486  iterator end() const;
487
488  /// Create a stable reference to the top of the EH stack.  The
489  /// returned reference is valid until that scope is popped off the
490  /// stack.
491  stable_iterator stable_begin() const {
492    return stable_iterator(EndOfBuffer - StartOfData);
493  }
494
495  /// Create a stable reference to the bottom of the EH stack.
496  static stable_iterator stable_end() {
497    return stable_iterator(0);
498  }
499
500  /// Translates an iterator into a stable_iterator.
501  stable_iterator stabilize(iterator it) const;
502
503  /// Turn a stable reference to a scope depth into a unstable pointer
504  /// to the EH stack.
505  iterator find(stable_iterator save) const;
506
507  /// Removes the cleanup pointed to by the given stable_iterator.
508  void removeCleanup(stable_iterator save);
509
510  /// Add a branch fixup to the current cleanup scope.
511  BranchFixup &addBranchFixup() {
512    assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
513    BranchFixups.push_back(BranchFixup());
514    return BranchFixups.back();
515  }
516
517  unsigned getNumBranchFixups() const { return BranchFixups.size(); }
518  BranchFixup &getBranchFixup(unsigned I) {
519    assert(I < getNumBranchFixups());
520    return BranchFixups[I];
521  }
522
523  /// Pops lazily-removed fixups from the end of the list.  This
524  /// should only be called by procedures which have just popped a
525  /// cleanup or resolved one or more fixups.
526  void popNullFixups();
527
528  /// Clears the branch-fixups list.  This should only be called by
529  /// ResolveAllBranchFixups.
530  void clearFixups() { BranchFixups.clear(); }
531};
532
533/// CodeGenFunction - This class organizes the per-function state that is used
534/// while generating LLVM code.
535class CodeGenFunction : public CodeGenTypeCache {
536  CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT
537  void operator=(const CodeGenFunction&);  // DO NOT IMPLEMENT
538
539  friend class CGCXXABI;
540public:
541  /// A jump destination is an abstract label, branching to which may
542  /// require a jump out through normal cleanups.
543  struct JumpDest {
544    JumpDest() : Block(0), ScopeDepth(), Index(0) {}
545    JumpDest(llvm::BasicBlock *Block,
546             EHScopeStack::stable_iterator Depth,
547             unsigned Index)
548      : Block(Block), ScopeDepth(Depth), Index(Index) {}
549
550    bool isValid() const { return Block != 0; }
551    llvm::BasicBlock *getBlock() const { return Block; }
552    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
553    unsigned getDestIndex() const { return Index; }
554
555  private:
556    llvm::BasicBlock *Block;
557    EHScopeStack::stable_iterator ScopeDepth;
558    unsigned Index;
559  };
560
561  CodeGenModule &CGM;  // Per-module state.
562  const TargetInfo &Target;
563
564  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
565  CGBuilderTy Builder;
566
567  /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
568  /// This excludes BlockDecls.
569  const Decl *CurFuncDecl;
570  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
571  const Decl *CurCodeDecl;
572  const CGFunctionInfo *CurFnInfo;
573  QualType FnRetTy;
574  llvm::Function *CurFn;
575
576  /// CurGD - The GlobalDecl for the current function being compiled.
577  GlobalDecl CurGD;
578
579  /// PrologueCleanupDepth - The cleanup depth enclosing all the
580  /// cleanups associated with the parameters.
581  EHScopeStack::stable_iterator PrologueCleanupDepth;
582
583  /// ReturnBlock - Unified return block.
584  JumpDest ReturnBlock;
585
586  /// ReturnValue - The temporary alloca to hold the return value. This is null
587  /// iff the function has no return value.
588  llvm::Value *ReturnValue;
589
590  /// AllocaInsertPoint - This is an instruction in the entry block before which
591  /// we prefer to insert allocas.
592  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
593
594  bool CatchUndefined;
595
596  /// In ARC, whether we should autorelease the return value.
597  bool AutoreleaseResult;
598
599  const CodeGen::CGBlockInfo *BlockInfo;
600  llvm::Value *BlockPointer;
601
602  /// \brief A mapping from NRVO variables to the flags used to indicate
603  /// when the NRVO has been applied to this variable.
604  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
605
606  EHScopeStack EHStack;
607
608  /// i32s containing the indexes of the cleanup destinations.
609  llvm::AllocaInst *NormalCleanupDest;
610
611  unsigned NextCleanupDestIndex;
612
613  /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
614  CGBlockInfo *FirstBlockInfo;
615
616  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
617  llvm::BasicBlock *EHResumeBlock;
618
619  /// The exception slot.  All landing pads write the current exception pointer
620  /// into this alloca.
621  llvm::Value *ExceptionSlot;
622
623  /// The selector slot.  Under the MandatoryCleanup model, all landing pads
624  /// write the current selector value into this alloca.
625  llvm::AllocaInst *EHSelectorSlot;
626
627  /// Emits a landing pad for the current EH stack.
628  llvm::BasicBlock *EmitLandingPad();
629
630  llvm::BasicBlock *getInvokeDestImpl();
631
632  template <class T>
633  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
634    return DominatingValue<T>::save(*this, value);
635  }
636
637public:
638  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
639  /// rethrows.
640  SmallVector<llvm::Value*, 8> ObjCEHValueStack;
641
642  /// A class controlling the emission of a finally block.
643  class FinallyInfo {
644    /// Where the catchall's edge through the cleanup should go.
645    JumpDest RethrowDest;
646
647    /// A function to call to enter the catch.
648    llvm::Constant *BeginCatchFn;
649
650    /// An i1 variable indicating whether or not the @finally is
651    /// running for an exception.
652    llvm::AllocaInst *ForEHVar;
653
654    /// An i8* variable into which the exception pointer to rethrow
655    /// has been saved.
656    llvm::AllocaInst *SavedExnVar;
657
658  public:
659    void enter(CodeGenFunction &CGF, const Stmt *Finally,
660               llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
661               llvm::Constant *rethrowFn);
662    void exit(CodeGenFunction &CGF);
663  };
664
665  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
666  /// current full-expression.  Safe against the possibility that
667  /// we're currently inside a conditionally-evaluated expression.
668  template <class T, class A0>
669  void pushFullExprCleanup(CleanupKind kind, A0 a0) {
670    // If we're not in a conditional branch, or if none of the
671    // arguments requires saving, then use the unconditional cleanup.
672    if (!isInConditionalBranch())
673      return EHStack.pushCleanup<T>(kind, a0);
674
675    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
676
677    typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
678    EHStack.pushCleanup<CleanupType>(kind, a0_saved);
679    initFullExprCleanup();
680  }
681
682  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
683  /// current full-expression.  Safe against the possibility that
684  /// we're currently inside a conditionally-evaluated expression.
685  template <class T, class A0, class A1>
686  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
687    // If we're not in a conditional branch, or if none of the
688    // arguments requires saving, then use the unconditional cleanup.
689    if (!isInConditionalBranch())
690      return EHStack.pushCleanup<T>(kind, a0, a1);
691
692    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
693    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
694
695    typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
696    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
697    initFullExprCleanup();
698  }
699
700  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
701  /// current full-expression.  Safe against the possibility that
702  /// we're currently inside a conditionally-evaluated expression.
703  template <class T, class A0, class A1, class A2>
704  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
705    // If we're not in a conditional branch, or if none of the
706    // arguments requires saving, then use the unconditional cleanup.
707    if (!isInConditionalBranch()) {
708      return EHStack.pushCleanup<T>(kind, a0, a1, a2);
709    }
710
711    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
712    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
713    typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
714
715    typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
716    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
717    initFullExprCleanup();
718  }
719
720  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
721  /// current full-expression.  Safe against the possibility that
722  /// we're currently inside a conditionally-evaluated expression.
723  template <class T, class A0, class A1, class A2, class A3>
724  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
725    // If we're not in a conditional branch, or if none of the
726    // arguments requires saving, then use the unconditional cleanup.
727    if (!isInConditionalBranch()) {
728      return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
729    }
730
731    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
732    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
733    typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
734    typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
735
736    typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
737    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
738                                     a2_saved, a3_saved);
739    initFullExprCleanup();
740  }
741
742  /// Set up the last cleaup that was pushed as a conditional
743  /// full-expression cleanup.
744  void initFullExprCleanup();
745
746  /// PushDestructorCleanup - Push a cleanup to call the
747  /// complete-object destructor of an object of the given type at the
748  /// given address.  Does nothing if T is not a C++ class type with a
749  /// non-trivial destructor.
750  void PushDestructorCleanup(QualType T, llvm::Value *Addr);
751
752  /// PushDestructorCleanup - Push a cleanup to call the
753  /// complete-object variant of the given destructor on the object at
754  /// the given address.
755  void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
756                             llvm::Value *Addr);
757
758  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
759  /// process all branch fixups.
760  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
761
762  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
763  /// The block cannot be reactivated.  Pops it if it's the top of the
764  /// stack.
765  ///
766  /// \param DominatingIP - An instruction which is known to
767  ///   dominate the current IP (if set) and which lies along
768  ///   all paths of execution between the current IP and the
769  ///   the point at which the cleanup comes into scope.
770  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
771                              llvm::Instruction *DominatingIP);
772
773  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
774  /// Cannot be used to resurrect a deactivated cleanup.
775  ///
776  /// \param DominatingIP - An instruction which is known to
777  ///   dominate the current IP (if set) and which lies along
778  ///   all paths of execution between the current IP and the
779  ///   the point at which the cleanup comes into scope.
780  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
781                            llvm::Instruction *DominatingIP);
782
783  /// \brief Enters a new scope for capturing cleanups, all of which
784  /// will be executed once the scope is exited.
785  class RunCleanupsScope {
786    EHScopeStack::stable_iterator CleanupStackDepth;
787    bool OldDidCallStackSave;
788    bool PerformCleanup;
789
790    RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT
791    RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT
792
793  protected:
794    CodeGenFunction& CGF;
795
796  public:
797    /// \brief Enter a new cleanup scope.
798    explicit RunCleanupsScope(CodeGenFunction &CGF)
799      : PerformCleanup(true), CGF(CGF)
800    {
801      CleanupStackDepth = CGF.EHStack.stable_begin();
802      OldDidCallStackSave = CGF.DidCallStackSave;
803      CGF.DidCallStackSave = false;
804    }
805
806    /// \brief Exit this cleanup scope, emitting any accumulated
807    /// cleanups.
808    ~RunCleanupsScope() {
809      if (PerformCleanup) {
810        CGF.DidCallStackSave = OldDidCallStackSave;
811        CGF.PopCleanupBlocks(CleanupStackDepth);
812      }
813    }
814
815    /// \brief Determine whether this scope requires any cleanups.
816    bool requiresCleanups() const {
817      return CGF.EHStack.stable_begin() != CleanupStackDepth;
818    }
819
820    /// \brief Force the emission of cleanups now, instead of waiting
821    /// until this object is destroyed.
822    void ForceCleanup() {
823      assert(PerformCleanup && "Already forced cleanup");
824      CGF.DidCallStackSave = OldDidCallStackSave;
825      CGF.PopCleanupBlocks(CleanupStackDepth);
826      PerformCleanup = false;
827    }
828  };
829
830  class LexicalScope: protected RunCleanupsScope {
831    SourceRange Range;
832    bool PopDebugStack;
833
834    LexicalScope(const LexicalScope &); // DO NOT IMPLEMENT THESE
835    LexicalScope &operator=(const LexicalScope &);
836
837  public:
838    /// \brief Enter a new cleanup scope.
839    explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
840      : RunCleanupsScope(CGF), Range(Range), PopDebugStack(true) {
841      if (CGDebugInfo *DI = CGF.getDebugInfo())
842        DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
843    }
844
845    /// \brief Exit this cleanup scope, emitting any accumulated
846    /// cleanups.
847    ~LexicalScope() {
848      if (PopDebugStack) {
849        CGDebugInfo *DI = CGF.getDebugInfo();
850        if (DI) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
851      }
852    }
853
854    /// \brief Force the emission of cleanups now, instead of waiting
855    /// until this object is destroyed.
856    void ForceCleanup() {
857      RunCleanupsScope::ForceCleanup();
858      if (CGDebugInfo *DI = CGF.getDebugInfo()) {
859        DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
860        PopDebugStack = false;
861      }
862    }
863  };
864
865
866  /// PopCleanupBlocks - Takes the old cleanup stack size and emits
867  /// the cleanup blocks that have been added.
868  void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
869
870  void ResolveBranchFixups(llvm::BasicBlock *Target);
871
872  /// The given basic block lies in the current EH scope, but may be a
873  /// target of a potentially scope-crossing jump; get a stable handle
874  /// to which we can perform this jump later.
875  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
876    return JumpDest(Target,
877                    EHStack.getInnermostNormalCleanup(),
878                    NextCleanupDestIndex++);
879  }
880
881  /// The given basic block lies in the current EH scope, but may be a
882  /// target of a potentially scope-crossing jump; get a stable handle
883  /// to which we can perform this jump later.
884  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
885    return getJumpDestInCurrentScope(createBasicBlock(Name));
886  }
887
888  /// EmitBranchThroughCleanup - Emit a branch from the current insert
889  /// block through the normal cleanup handling code (if any) and then
890  /// on to \arg Dest.
891  void EmitBranchThroughCleanup(JumpDest Dest);
892
893  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
894  /// specified destination obviously has no cleanups to run.  'false' is always
895  /// a conservatively correct answer for this method.
896  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
897
898  /// popCatchScope - Pops the catch scope at the top of the EHScope
899  /// stack, emitting any required code (other than the catch handlers
900  /// themselves).
901  void popCatchScope();
902
903  llvm::BasicBlock *getEHResumeBlock();
904  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
905
906  /// An object to manage conditionally-evaluated expressions.
907  class ConditionalEvaluation {
908    llvm::BasicBlock *StartBB;
909
910  public:
911    ConditionalEvaluation(CodeGenFunction &CGF)
912      : StartBB(CGF.Builder.GetInsertBlock()) {}
913
914    void begin(CodeGenFunction &CGF) {
915      assert(CGF.OutermostConditional != this);
916      if (!CGF.OutermostConditional)
917        CGF.OutermostConditional = this;
918    }
919
920    void end(CodeGenFunction &CGF) {
921      assert(CGF.OutermostConditional != 0);
922      if (CGF.OutermostConditional == this)
923        CGF.OutermostConditional = 0;
924    }
925
926    /// Returns a block which will be executed prior to each
927    /// evaluation of the conditional code.
928    llvm::BasicBlock *getStartingBlock() const {
929      return StartBB;
930    }
931  };
932
933  /// isInConditionalBranch - Return true if we're currently emitting
934  /// one branch or the other of a conditional expression.
935  bool isInConditionalBranch() const { return OutermostConditional != 0; }
936
937  void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
938    assert(isInConditionalBranch());
939    llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
940    new llvm::StoreInst(value, addr, &block->back());
941  }
942
943  /// An RAII object to record that we're evaluating a statement
944  /// expression.
945  class StmtExprEvaluation {
946    CodeGenFunction &CGF;
947
948    /// We have to save the outermost conditional: cleanups in a
949    /// statement expression aren't conditional just because the
950    /// StmtExpr is.
951    ConditionalEvaluation *SavedOutermostConditional;
952
953  public:
954    StmtExprEvaluation(CodeGenFunction &CGF)
955      : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
956      CGF.OutermostConditional = 0;
957    }
958
959    ~StmtExprEvaluation() {
960      CGF.OutermostConditional = SavedOutermostConditional;
961      CGF.EnsureInsertPoint();
962    }
963  };
964
965  /// An object which temporarily prevents a value from being
966  /// destroyed by aggressive peephole optimizations that assume that
967  /// all uses of a value have been realized in the IR.
968  class PeepholeProtection {
969    llvm::Instruction *Inst;
970    friend class CodeGenFunction;
971
972  public:
973    PeepholeProtection() : Inst(0) {}
974  };
975
976  /// A non-RAII class containing all the information about a bound
977  /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
978  /// this which makes individual mappings very simple; using this
979  /// class directly is useful when you have a variable number of
980  /// opaque values or don't want the RAII functionality for some
981  /// reason.
982  class OpaqueValueMappingData {
983    const OpaqueValueExpr *OpaqueValue;
984    bool BoundLValue;
985    CodeGenFunction::PeepholeProtection Protection;
986
987    OpaqueValueMappingData(const OpaqueValueExpr *ov,
988                           bool boundLValue)
989      : OpaqueValue(ov), BoundLValue(boundLValue) {}
990  public:
991    OpaqueValueMappingData() : OpaqueValue(0) {}
992
993    static bool shouldBindAsLValue(const Expr *expr) {
994      // gl-values should be bound as l-values for obvious reasons.
995      // Records should be bound as l-values because IR generation
996      // always keeps them in memory.  Expressions of function type
997      // act exactly like l-values but are formally required to be
998      // r-values in C.
999      return expr->isGLValue() ||
1000             expr->getType()->isRecordType() ||
1001             expr->getType()->isFunctionType();
1002    }
1003
1004    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1005                                       const OpaqueValueExpr *ov,
1006                                       const Expr *e) {
1007      if (shouldBindAsLValue(ov))
1008        return bind(CGF, ov, CGF.EmitLValue(e));
1009      return bind(CGF, ov, CGF.EmitAnyExpr(e));
1010    }
1011
1012    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1013                                       const OpaqueValueExpr *ov,
1014                                       const LValue &lv) {
1015      assert(shouldBindAsLValue(ov));
1016      CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1017      return OpaqueValueMappingData(ov, true);
1018    }
1019
1020    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1021                                       const OpaqueValueExpr *ov,
1022                                       const RValue &rv) {
1023      assert(!shouldBindAsLValue(ov));
1024      CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1025
1026      OpaqueValueMappingData data(ov, false);
1027
1028      // Work around an extremely aggressive peephole optimization in
1029      // EmitScalarConversion which assumes that all other uses of a
1030      // value are extant.
1031      data.Protection = CGF.protectFromPeepholes(rv);
1032
1033      return data;
1034    }
1035
1036    bool isValid() const { return OpaqueValue != 0; }
1037    void clear() { OpaqueValue = 0; }
1038
1039    void unbind(CodeGenFunction &CGF) {
1040      assert(OpaqueValue && "no data to unbind!");
1041
1042      if (BoundLValue) {
1043        CGF.OpaqueLValues.erase(OpaqueValue);
1044      } else {
1045        CGF.OpaqueRValues.erase(OpaqueValue);
1046        CGF.unprotectFromPeepholes(Protection);
1047      }
1048    }
1049  };
1050
1051  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1052  class OpaqueValueMapping {
1053    CodeGenFunction &CGF;
1054    OpaqueValueMappingData Data;
1055
1056  public:
1057    static bool shouldBindAsLValue(const Expr *expr) {
1058      return OpaqueValueMappingData::shouldBindAsLValue(expr);
1059    }
1060
1061    /// Build the opaque value mapping for the given conditional
1062    /// operator if it's the GNU ?: extension.  This is a common
1063    /// enough pattern that the convenience operator is really
1064    /// helpful.
1065    ///
1066    OpaqueValueMapping(CodeGenFunction &CGF,
1067                       const AbstractConditionalOperator *op) : CGF(CGF) {
1068      if (isa<ConditionalOperator>(op))
1069        // Leave Data empty.
1070        return;
1071
1072      const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1073      Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1074                                          e->getCommon());
1075    }
1076
1077    OpaqueValueMapping(CodeGenFunction &CGF,
1078                       const OpaqueValueExpr *opaqueValue,
1079                       LValue lvalue)
1080      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1081    }
1082
1083    OpaqueValueMapping(CodeGenFunction &CGF,
1084                       const OpaqueValueExpr *opaqueValue,
1085                       RValue rvalue)
1086      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1087    }
1088
1089    void pop() {
1090      Data.unbind(CGF);
1091      Data.clear();
1092    }
1093
1094    ~OpaqueValueMapping() {
1095      if (Data.isValid()) Data.unbind(CGF);
1096    }
1097  };
1098
1099  /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
1100  /// number that holds the value.
1101  unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
1102
1103  /// BuildBlockByrefAddress - Computes address location of the
1104  /// variable which is declared as __block.
1105  llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
1106                                      const VarDecl *V);
1107private:
1108  CGDebugInfo *DebugInfo;
1109  bool DisableDebugInfo;
1110
1111  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1112  /// calling llvm.stacksave for multiple VLAs in the same scope.
1113  bool DidCallStackSave;
1114
1115  /// IndirectBranch - The first time an indirect goto is seen we create a block
1116  /// with an indirect branch.  Every time we see the address of a label taken,
1117  /// we add the label to the indirect goto.  Every subsequent indirect goto is
1118  /// codegen'd as a jump to the IndirectBranch's basic block.
1119  llvm::IndirectBrInst *IndirectBranch;
1120
1121  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1122  /// decls.
1123  typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
1124  DeclMapTy LocalDeclMap;
1125
1126  /// LabelMap - This keeps track of the LLVM basic block for each C label.
1127  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1128
1129  // BreakContinueStack - This keeps track of where break and continue
1130  // statements should jump to.
1131  struct BreakContinue {
1132    BreakContinue(JumpDest Break, JumpDest Continue)
1133      : BreakBlock(Break), ContinueBlock(Continue) {}
1134
1135    JumpDest BreakBlock;
1136    JumpDest ContinueBlock;
1137  };
1138  SmallVector<BreakContinue, 8> BreakContinueStack;
1139
1140  /// SwitchInsn - This is nearest current switch instruction. It is null if
1141  /// current context is not in a switch.
1142  llvm::SwitchInst *SwitchInsn;
1143
1144  /// CaseRangeBlock - This block holds if condition check for last case
1145  /// statement range in current switch instruction.
1146  llvm::BasicBlock *CaseRangeBlock;
1147
1148  /// OpaqueLValues - Keeps track of the current set of opaque value
1149  /// expressions.
1150  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1151  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1152
1153  // VLASizeMap - This keeps track of the associated size for each VLA type.
1154  // We track this by the size expression rather than the type itself because
1155  // in certain situations, like a const qualifier applied to an VLA typedef,
1156  // multiple VLA types can share the same size expression.
1157  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1158  // enter/leave scopes.
1159  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1160
1161  /// A block containing a single 'unreachable' instruction.  Created
1162  /// lazily by getUnreachableBlock().
1163  llvm::BasicBlock *UnreachableBlock;
1164
1165  /// CXXThisDecl - When generating code for a C++ member function,
1166  /// this will hold the implicit 'this' declaration.
1167  ImplicitParamDecl *CXXThisDecl;
1168  llvm::Value *CXXThisValue;
1169
1170  /// CXXVTTDecl - When generating code for a base object constructor or
1171  /// base object destructor with virtual bases, this will hold the implicit
1172  /// VTT parameter.
1173  ImplicitParamDecl *CXXVTTDecl;
1174  llvm::Value *CXXVTTValue;
1175
1176  /// OutermostConditional - Points to the outermost active
1177  /// conditional control.  This is used so that we know if a
1178  /// temporary should be destroyed conditionally.
1179  ConditionalEvaluation *OutermostConditional;
1180
1181
1182  /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1183  /// type as well as the field number that contains the actual data.
1184  llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
1185                                              unsigned> > ByRefValueInfo;
1186
1187  llvm::BasicBlock *TerminateLandingPad;
1188  llvm::BasicBlock *TerminateHandler;
1189  llvm::BasicBlock *TrapBB;
1190
1191public:
1192  CodeGenFunction(CodeGenModule &cgm);
1193  ~CodeGenFunction();
1194
1195  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1196  ASTContext &getContext() const { return CGM.getContext(); }
1197  CGDebugInfo *getDebugInfo() {
1198    if (DisableDebugInfo)
1199      return NULL;
1200    return DebugInfo;
1201  }
1202  void disableDebugInfo() { DisableDebugInfo = true; }
1203  void enableDebugInfo() { DisableDebugInfo = false; }
1204
1205  bool shouldUseFusedARCCalls() {
1206    return CGM.getCodeGenOpts().OptimizationLevel == 0;
1207  }
1208
1209  const LangOptions &getLangOptions() const { return CGM.getLangOptions(); }
1210
1211  /// Returns a pointer to the function's exception object and selector slot,
1212  /// which is assigned in every landing pad.
1213  llvm::Value *getExceptionSlot();
1214  llvm::Value *getEHSelectorSlot();
1215
1216  /// Returns the contents of the function's exception object and selector
1217  /// slots.
1218  llvm::Value *getExceptionFromSlot();
1219  llvm::Value *getSelectorFromSlot();
1220
1221  llvm::Value *getNormalCleanupDestSlot();
1222
1223  llvm::BasicBlock *getUnreachableBlock() {
1224    if (!UnreachableBlock) {
1225      UnreachableBlock = createBasicBlock("unreachable");
1226      new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1227    }
1228    return UnreachableBlock;
1229  }
1230
1231  llvm::BasicBlock *getInvokeDest() {
1232    if (!EHStack.requiresLandingPad()) return 0;
1233    return getInvokeDestImpl();
1234  }
1235
1236  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1237
1238  //===--------------------------------------------------------------------===//
1239  //                                  Cleanups
1240  //===--------------------------------------------------------------------===//
1241
1242  typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1243
1244  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1245                                        llvm::Value *arrayEndPointer,
1246                                        QualType elementType,
1247                                        Destroyer *destroyer);
1248  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1249                                      llvm::Value *arrayEnd,
1250                                      QualType elementType,
1251                                      Destroyer *destroyer);
1252
1253  void pushDestroy(QualType::DestructionKind dtorKind,
1254                   llvm::Value *addr, QualType type);
1255  void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1256                   Destroyer *destroyer, bool useEHCleanupForArray);
1257  void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1258                   bool useEHCleanupForArray);
1259  llvm::Function *generateDestroyHelper(llvm::Constant *addr,
1260                                        QualType type,
1261                                        Destroyer *destroyer,
1262                                        bool useEHCleanupForArray);
1263  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1264                        QualType type, Destroyer *destroyer,
1265                        bool checkZeroLength, bool useEHCleanup);
1266
1267  Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1268
1269  /// Determines whether an EH cleanup is required to destroy a type
1270  /// with the given destruction kind.
1271  bool needsEHCleanup(QualType::DestructionKind kind) {
1272    switch (kind) {
1273    case QualType::DK_none:
1274      return false;
1275    case QualType::DK_cxx_destructor:
1276    case QualType::DK_objc_weak_lifetime:
1277      return getLangOptions().Exceptions;
1278    case QualType::DK_objc_strong_lifetime:
1279      return getLangOptions().Exceptions &&
1280             CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1281    }
1282    llvm_unreachable("bad destruction kind");
1283  }
1284
1285  CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1286    return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1287  }
1288
1289  //===--------------------------------------------------------------------===//
1290  //                                  Objective-C
1291  //===--------------------------------------------------------------------===//
1292
1293  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1294
1295  void StartObjCMethod(const ObjCMethodDecl *MD,
1296                       const ObjCContainerDecl *CD,
1297                       SourceLocation StartLoc);
1298
1299  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1300  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1301                          const ObjCPropertyImplDecl *PID);
1302  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1303                              const ObjCPropertyImplDecl *propImpl,
1304                              llvm::Constant *AtomicHelperFn);
1305
1306  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1307                                  ObjCMethodDecl *MD, bool ctor);
1308
1309  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1310  /// for the given property.
1311  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1312                          const ObjCPropertyImplDecl *PID);
1313  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1314                              const ObjCPropertyImplDecl *propImpl,
1315                              llvm::Constant *AtomicHelperFn);
1316  bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1317  bool IvarTypeWithAggrGCObjects(QualType Ty);
1318
1319  //===--------------------------------------------------------------------===//
1320  //                                  Block Bits
1321  //===--------------------------------------------------------------------===//
1322
1323  llvm::Value *EmitBlockLiteral(const BlockExpr *);
1324  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1325  static void destroyBlockInfos(CGBlockInfo *info);
1326  llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1327                                           const CGBlockInfo &Info,
1328                                           llvm::StructType *,
1329                                           llvm::Constant *BlockVarLayout);
1330
1331  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1332                                        const CGBlockInfo &Info,
1333                                        const Decl *OuterFuncDecl,
1334                                        const DeclMapTy &ldm);
1335
1336  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1337  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1338  llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1339                                             const ObjCPropertyImplDecl *PID);
1340  llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1341                                             const ObjCPropertyImplDecl *PID);
1342
1343  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1344
1345  class AutoVarEmission;
1346
1347  void emitByrefStructureInit(const AutoVarEmission &emission);
1348  void enterByrefCleanup(const AutoVarEmission &emission);
1349
1350  llvm::Value *LoadBlockStruct() {
1351    assert(BlockPointer && "no block pointer set!");
1352    return BlockPointer;
1353  }
1354
1355  void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1356  void AllocateBlockDecl(const BlockDeclRefExpr *E);
1357  llvm::Value *GetAddrOfBlockDecl(const BlockDeclRefExpr *E) {
1358    return GetAddrOfBlockDecl(E->getDecl(), E->isByRef());
1359  }
1360  llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1361  llvm::Type *BuildByRefType(const VarDecl *var);
1362
1363  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1364                    const CGFunctionInfo &FnInfo);
1365  void StartFunction(GlobalDecl GD, QualType RetTy,
1366                     llvm::Function *Fn,
1367                     const CGFunctionInfo &FnInfo,
1368                     const FunctionArgList &Args,
1369                     SourceLocation StartLoc);
1370
1371  void EmitConstructorBody(FunctionArgList &Args);
1372  void EmitDestructorBody(FunctionArgList &Args);
1373  void EmitFunctionBody(FunctionArgList &Args);
1374
1375  /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1376  /// emission when possible.
1377  void EmitReturnBlock();
1378
1379  /// FinishFunction - Complete IR generation of the current function. It is
1380  /// legal to call this function even if there is no current insertion point.
1381  void FinishFunction(SourceLocation EndLoc=SourceLocation());
1382
1383  /// GenerateThunk - Generate a thunk for the given method.
1384  void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1385                     GlobalDecl GD, const ThunkInfo &Thunk);
1386
1387  void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1388                            GlobalDecl GD, const ThunkInfo &Thunk);
1389
1390  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1391                        FunctionArgList &Args);
1392
1393  /// InitializeVTablePointer - Initialize the vtable pointer of the given
1394  /// subobject.
1395  ///
1396  void InitializeVTablePointer(BaseSubobject Base,
1397                               const CXXRecordDecl *NearestVBase,
1398                               CharUnits OffsetFromNearestVBase,
1399                               llvm::Constant *VTable,
1400                               const CXXRecordDecl *VTableClass);
1401
1402  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1403  void InitializeVTablePointers(BaseSubobject Base,
1404                                const CXXRecordDecl *NearestVBase,
1405                                CharUnits OffsetFromNearestVBase,
1406                                bool BaseIsNonVirtualPrimaryBase,
1407                                llvm::Constant *VTable,
1408                                const CXXRecordDecl *VTableClass,
1409                                VisitedVirtualBasesSetTy& VBases);
1410
1411  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1412
1413  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1414  /// to by This.
1415  llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1416
1417  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1418  /// given phase of destruction for a destructor.  The end result
1419  /// should call destructors on members and base classes in reverse
1420  /// order of their construction.
1421  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1422
1423  /// ShouldInstrumentFunction - Return true if the current function should be
1424  /// instrumented with __cyg_profile_func_* calls
1425  bool ShouldInstrumentFunction();
1426
1427  /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1428  /// instrumentation function with the current function and the call site, if
1429  /// function instrumentation is enabled.
1430  void EmitFunctionInstrumentation(const char *Fn);
1431
1432  /// EmitMCountInstrumentation - Emit call to .mcount.
1433  void EmitMCountInstrumentation();
1434
1435  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1436  /// arguments for the given function. This is also responsible for naming the
1437  /// LLVM function arguments.
1438  void EmitFunctionProlog(const CGFunctionInfo &FI,
1439                          llvm::Function *Fn,
1440                          const FunctionArgList &Args);
1441
1442  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1443  /// given temporary.
1444  void EmitFunctionEpilog(const CGFunctionInfo &FI);
1445
1446  /// EmitStartEHSpec - Emit the start of the exception spec.
1447  void EmitStartEHSpec(const Decl *D);
1448
1449  /// EmitEndEHSpec - Emit the end of the exception spec.
1450  void EmitEndEHSpec(const Decl *D);
1451
1452  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1453  llvm::BasicBlock *getTerminateLandingPad();
1454
1455  /// getTerminateHandler - Return a handler (not a landing pad, just
1456  /// a catch handler) that just calls terminate.  This is used when
1457  /// a terminate scope encloses a try.
1458  llvm::BasicBlock *getTerminateHandler();
1459
1460  llvm::Type *ConvertTypeForMem(QualType T);
1461  llvm::Type *ConvertType(QualType T);
1462  llvm::Type *ConvertType(const TypeDecl *T) {
1463    return ConvertType(getContext().getTypeDeclType(T));
1464  }
1465
1466  /// LoadObjCSelf - Load the value of self. This function is only valid while
1467  /// generating code for an Objective-C method.
1468  llvm::Value *LoadObjCSelf();
1469
1470  /// TypeOfSelfObject - Return type of object that this self represents.
1471  QualType TypeOfSelfObject();
1472
1473  /// hasAggregateLLVMType - Return true if the specified AST type will map into
1474  /// an aggregate LLVM type or is void.
1475  static bool hasAggregateLLVMType(QualType T);
1476
1477  /// createBasicBlock - Create an LLVM basic block.
1478  llvm::BasicBlock *createBasicBlock(StringRef name = "",
1479                                     llvm::Function *parent = 0,
1480                                     llvm::BasicBlock *before = 0) {
1481#ifdef NDEBUG
1482    return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1483#else
1484    return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1485#endif
1486  }
1487
1488  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1489  /// label maps to.
1490  JumpDest getJumpDestForLabel(const LabelDecl *S);
1491
1492  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1493  /// another basic block, simplify it. This assumes that no other code could
1494  /// potentially reference the basic block.
1495  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1496
1497  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1498  /// adding a fall-through branch from the current insert block if
1499  /// necessary. It is legal to call this function even if there is no current
1500  /// insertion point.
1501  ///
1502  /// IsFinished - If true, indicates that the caller has finished emitting
1503  /// branches to the given block and does not expect to emit code into it. This
1504  /// means the block can be ignored if it is unreachable.
1505  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1506
1507  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1508  /// near its uses, and leave the insertion point in it.
1509  void EmitBlockAfterUses(llvm::BasicBlock *BB);
1510
1511  /// EmitBranch - Emit a branch to the specified basic block from the current
1512  /// insert block, taking care to avoid creation of branches from dummy
1513  /// blocks. It is legal to call this function even if there is no current
1514  /// insertion point.
1515  ///
1516  /// This function clears the current insertion point. The caller should follow
1517  /// calls to this function with calls to Emit*Block prior to generation new
1518  /// code.
1519  void EmitBranch(llvm::BasicBlock *Block);
1520
1521  /// HaveInsertPoint - True if an insertion point is defined. If not, this
1522  /// indicates that the current code being emitted is unreachable.
1523  bool HaveInsertPoint() const {
1524    return Builder.GetInsertBlock() != 0;
1525  }
1526
1527  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1528  /// emitted IR has a place to go. Note that by definition, if this function
1529  /// creates a block then that block is unreachable; callers may do better to
1530  /// detect when no insertion point is defined and simply skip IR generation.
1531  void EnsureInsertPoint() {
1532    if (!HaveInsertPoint())
1533      EmitBlock(createBasicBlock());
1534  }
1535
1536  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1537  /// specified stmt yet.
1538  void ErrorUnsupported(const Stmt *S, const char *Type,
1539                        bool OmitOnError=false);
1540
1541  //===--------------------------------------------------------------------===//
1542  //                                  Helpers
1543  //===--------------------------------------------------------------------===//
1544
1545  LValue MakeAddrLValue(llvm::Value *V, QualType T,
1546                        CharUnits Alignment = CharUnits()) {
1547    return LValue::MakeAddr(V, T, Alignment, getContext(),
1548                            CGM.getTBAAInfo(T));
1549  }
1550  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
1551    CharUnits Alignment;
1552    if (!T->isIncompleteType())
1553      Alignment = getContext().getTypeAlignInChars(T);
1554    return LValue::MakeAddr(V, T, Alignment, getContext(),
1555                            CGM.getTBAAInfo(T));
1556  }
1557
1558  /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1559  /// block. The caller is responsible for setting an appropriate alignment on
1560  /// the alloca.
1561  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1562                                     const Twine &Name = "tmp");
1563
1564  /// InitTempAlloca - Provide an initial value for the given alloca.
1565  void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1566
1567  /// CreateIRTemp - Create a temporary IR object of the given type, with
1568  /// appropriate alignment. This routine should only be used when an temporary
1569  /// value needs to be stored into an alloca (for example, to avoid explicit
1570  /// PHI construction), but the type is the IR type, not the type appropriate
1571  /// for storing in memory.
1572  llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1573
1574  /// CreateMemTemp - Create a temporary memory object of the given type, with
1575  /// appropriate alignment.
1576  llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1577
1578  /// CreateAggTemp - Create a temporary memory object for the given
1579  /// aggregate type.
1580  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1581    CharUnits Alignment = getContext().getTypeAlignInChars(T);
1582    return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1583                                 T.getQualifiers(),
1584                                 AggValueSlot::IsNotDestructed,
1585                                 AggValueSlot::DoesNotNeedGCBarriers,
1586                                 AggValueSlot::IsNotAliased);
1587  }
1588
1589  /// Emit a cast to void* in the appropriate address space.
1590  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1591
1592  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1593  /// expression and compare the result against zero, returning an Int1Ty value.
1594  llvm::Value *EvaluateExprAsBool(const Expr *E);
1595
1596  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1597  void EmitIgnoredExpr(const Expr *E);
1598
1599  /// EmitAnyExpr - Emit code to compute the specified expression which can have
1600  /// any type.  The result is returned as an RValue struct.  If this is an
1601  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1602  /// the result should be returned.
1603  ///
1604  /// \param IgnoreResult - True if the resulting value isn't used.
1605  RValue EmitAnyExpr(const Expr *E,
1606                     AggValueSlot AggSlot = AggValueSlot::ignored(),
1607                     bool IgnoreResult = false);
1608
1609  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1610  // or the value of the expression, depending on how va_list is defined.
1611  llvm::Value *EmitVAListRef(const Expr *E);
1612
1613  /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1614  /// always be accessible even if no aggregate location is provided.
1615  RValue EmitAnyExprToTemp(const Expr *E);
1616
1617  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1618  /// arbitrary expression into the given memory location.
1619  void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1620                        Qualifiers Quals, bool IsInitializer);
1621
1622  /// EmitExprAsInit - Emits the code necessary to initialize a
1623  /// location in memory with the given initializer.
1624  void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1625                      LValue lvalue, bool capturedByInit);
1626
1627  /// EmitAggregateCopy - Emit an aggrate copy.
1628  ///
1629  /// \param isVolatile - True iff either the source or the destination is
1630  /// volatile.
1631  void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1632                         QualType EltTy, bool isVolatile=false,
1633                         unsigned Alignment = 0);
1634
1635  /// StartBlock - Start new block named N. If insert block is a dummy block
1636  /// then reuse it.
1637  void StartBlock(const char *N);
1638
1639  /// GetAddrOfStaticLocalVar - Return the address of a static local variable.
1640  llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) {
1641    return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
1642  }
1643
1644  /// GetAddrOfLocalVar - Return the address of a local variable.
1645  llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1646    llvm::Value *Res = LocalDeclMap[VD];
1647    assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1648    return Res;
1649  }
1650
1651  /// getOpaqueLValueMapping - Given an opaque value expression (which
1652  /// must be mapped to an l-value), return its mapping.
1653  const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1654    assert(OpaqueValueMapping::shouldBindAsLValue(e));
1655
1656    llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1657      it = OpaqueLValues.find(e);
1658    assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1659    return it->second;
1660  }
1661
1662  /// getOpaqueRValueMapping - Given an opaque value expression (which
1663  /// must be mapped to an r-value), return its mapping.
1664  const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1665    assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1666
1667    llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1668      it = OpaqueRValues.find(e);
1669    assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1670    return it->second;
1671  }
1672
1673  /// getAccessedFieldNo - Given an encoded value and a result number, return
1674  /// the input field number being accessed.
1675  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1676
1677  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1678  llvm::BasicBlock *GetIndirectGotoBlock();
1679
1680  /// EmitNullInitialization - Generate code to set a value of the given type to
1681  /// null, If the type contains data member pointers, they will be initialized
1682  /// to -1 in accordance with the Itanium C++ ABI.
1683  void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1684
1685  // EmitVAArg - Generate code to get an argument from the passed in pointer
1686  // and update it accordingly. The return value is a pointer to the argument.
1687  // FIXME: We should be able to get rid of this method and use the va_arg
1688  // instruction in LLVM instead once it works well enough.
1689  llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1690
1691  /// emitArrayLength - Compute the length of an array, even if it's a
1692  /// VLA, and drill down to the base element type.
1693  llvm::Value *emitArrayLength(const ArrayType *arrayType,
1694                               QualType &baseType,
1695                               llvm::Value *&addr);
1696
1697  /// EmitVLASize - Capture all the sizes for the VLA expressions in
1698  /// the given variably-modified type and store them in the VLASizeMap.
1699  ///
1700  /// This function can be called with a null (unreachable) insert point.
1701  void EmitVariablyModifiedType(QualType Ty);
1702
1703  /// getVLASize - Returns an LLVM value that corresponds to the size,
1704  /// in non-variably-sized elements, of a variable length array type,
1705  /// plus that largest non-variably-sized element type.  Assumes that
1706  /// the type has already been emitted with EmitVariablyModifiedType.
1707  std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1708  std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1709
1710  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1711  /// generating code for an C++ member function.
1712  llvm::Value *LoadCXXThis() {
1713    assert(CXXThisValue && "no 'this' value for this function");
1714    return CXXThisValue;
1715  }
1716
1717  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1718  /// virtual bases.
1719  llvm::Value *LoadCXXVTT() {
1720    assert(CXXVTTValue && "no VTT value for this function");
1721    return CXXVTTValue;
1722  }
1723
1724  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1725  /// complete class to the given direct base.
1726  llvm::Value *
1727  GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1728                                        const CXXRecordDecl *Derived,
1729                                        const CXXRecordDecl *Base,
1730                                        bool BaseIsVirtual);
1731
1732  /// GetAddressOfBaseClass - This function will add the necessary delta to the
1733  /// load of 'this' and returns address of the base class.
1734  llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1735                                     const CXXRecordDecl *Derived,
1736                                     CastExpr::path_const_iterator PathBegin,
1737                                     CastExpr::path_const_iterator PathEnd,
1738                                     bool NullCheckValue);
1739
1740  llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1741                                        const CXXRecordDecl *Derived,
1742                                        CastExpr::path_const_iterator PathBegin,
1743                                        CastExpr::path_const_iterator PathEnd,
1744                                        bool NullCheckValue);
1745
1746  llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
1747                                         const CXXRecordDecl *ClassDecl,
1748                                         const CXXRecordDecl *BaseClassDecl);
1749
1750  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1751                                      CXXCtorType CtorType,
1752                                      const FunctionArgList &Args);
1753  // It's important not to confuse this and the previous function. Delegating
1754  // constructors are the C++0x feature. The constructor delegate optimization
1755  // is used to reduce duplication in the base and complete consturctors where
1756  // they are substantially the same.
1757  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1758                                        const FunctionArgList &Args);
1759  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1760                              bool ForVirtualBase, llvm::Value *This,
1761                              CallExpr::const_arg_iterator ArgBeg,
1762                              CallExpr::const_arg_iterator ArgEnd);
1763
1764  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1765                              llvm::Value *This, llvm::Value *Src,
1766                              CallExpr::const_arg_iterator ArgBeg,
1767                              CallExpr::const_arg_iterator ArgEnd);
1768
1769  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1770                                  const ConstantArrayType *ArrayTy,
1771                                  llvm::Value *ArrayPtr,
1772                                  CallExpr::const_arg_iterator ArgBeg,
1773                                  CallExpr::const_arg_iterator ArgEnd,
1774                                  bool ZeroInitialization = false);
1775
1776  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1777                                  llvm::Value *NumElements,
1778                                  llvm::Value *ArrayPtr,
1779                                  CallExpr::const_arg_iterator ArgBeg,
1780                                  CallExpr::const_arg_iterator ArgEnd,
1781                                  bool ZeroInitialization = false);
1782
1783  static Destroyer destroyCXXObject;
1784
1785  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1786                             bool ForVirtualBase, llvm::Value *This);
1787
1788  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1789                               llvm::Value *NewPtr, llvm::Value *NumElements);
1790
1791  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1792                        llvm::Value *Ptr);
1793
1794  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1795  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1796
1797  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1798                      QualType DeleteTy);
1799
1800  llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1801  llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1802
1803  void EmitCheck(llvm::Value *, unsigned Size);
1804
1805  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1806                                       bool isInc, bool isPre);
1807  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1808                                         bool isInc, bool isPre);
1809  //===--------------------------------------------------------------------===//
1810  //                            Declaration Emission
1811  //===--------------------------------------------------------------------===//
1812
1813  /// EmitDecl - Emit a declaration.
1814  ///
1815  /// This function can be called with a null (unreachable) insert point.
1816  void EmitDecl(const Decl &D);
1817
1818  /// EmitVarDecl - Emit a local variable declaration.
1819  ///
1820  /// This function can be called with a null (unreachable) insert point.
1821  void EmitVarDecl(const VarDecl &D);
1822
1823  void EmitScalarInit(const Expr *init, const ValueDecl *D,
1824                      LValue lvalue, bool capturedByInit);
1825  void EmitScalarInit(llvm::Value *init, LValue lvalue);
1826
1827  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1828                             llvm::Value *Address);
1829
1830  /// EmitAutoVarDecl - Emit an auto variable declaration.
1831  ///
1832  /// This function can be called with a null (unreachable) insert point.
1833  void EmitAutoVarDecl(const VarDecl &D);
1834
1835  class AutoVarEmission {
1836    friend class CodeGenFunction;
1837
1838    const VarDecl *Variable;
1839
1840    /// The alignment of the variable.
1841    CharUnits Alignment;
1842
1843    /// The address of the alloca.  Null if the variable was emitted
1844    /// as a global constant.
1845    llvm::Value *Address;
1846
1847    llvm::Value *NRVOFlag;
1848
1849    /// True if the variable is a __block variable.
1850    bool IsByRef;
1851
1852    /// True if the variable is of aggregate type and has a constant
1853    /// initializer.
1854    bool IsConstantAggregate;
1855
1856    struct Invalid {};
1857    AutoVarEmission(Invalid) : Variable(0) {}
1858
1859    AutoVarEmission(const VarDecl &variable)
1860      : Variable(&variable), Address(0), NRVOFlag(0),
1861        IsByRef(false), IsConstantAggregate(false) {}
1862
1863    bool wasEmittedAsGlobal() const { return Address == 0; }
1864
1865  public:
1866    static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1867
1868    /// Returns the address of the object within this declaration.
1869    /// Note that this does not chase the forwarding pointer for
1870    /// __block decls.
1871    llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1872      if (!IsByRef) return Address;
1873
1874      return CGF.Builder.CreateStructGEP(Address,
1875                                         CGF.getByRefValueLLVMField(Variable),
1876                                         Variable->getNameAsString());
1877    }
1878  };
1879  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1880  void EmitAutoVarInit(const AutoVarEmission &emission);
1881  void EmitAutoVarCleanups(const AutoVarEmission &emission);
1882  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1883                              QualType::DestructionKind dtorKind);
1884
1885  void EmitStaticVarDecl(const VarDecl &D,
1886                         llvm::GlobalValue::LinkageTypes Linkage);
1887
1888  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1889  void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
1890
1891  /// protectFromPeepholes - Protect a value that we're intending to
1892  /// store to the side, but which will probably be used later, from
1893  /// aggressive peepholing optimizations that might delete it.
1894  ///
1895  /// Pass the result to unprotectFromPeepholes to declare that
1896  /// protection is no longer required.
1897  ///
1898  /// There's no particular reason why this shouldn't apply to
1899  /// l-values, it's just that no existing peepholes work on pointers.
1900  PeepholeProtection protectFromPeepholes(RValue rvalue);
1901  void unprotectFromPeepholes(PeepholeProtection protection);
1902
1903  //===--------------------------------------------------------------------===//
1904  //                             Statement Emission
1905  //===--------------------------------------------------------------------===//
1906
1907  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1908  void EmitStopPoint(const Stmt *S);
1909
1910  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1911  /// this function even if there is no current insertion point.
1912  ///
1913  /// This function may clear the current insertion point; callers should use
1914  /// EnsureInsertPoint if they wish to subsequently generate code without first
1915  /// calling EmitBlock, EmitBranch, or EmitStmt.
1916  void EmitStmt(const Stmt *S);
1917
1918  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1919  /// necessarily require an insertion point or debug information; typically
1920  /// because the statement amounts to a jump or a container of other
1921  /// statements.
1922  ///
1923  /// \return True if the statement was handled.
1924  bool EmitSimpleStmt(const Stmt *S);
1925
1926  RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1927                          AggValueSlot AVS = AggValueSlot::ignored());
1928
1929  /// EmitLabel - Emit the block for the given label. It is legal to call this
1930  /// function even if there is no current insertion point.
1931  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1932
1933  void EmitLabelStmt(const LabelStmt &S);
1934  void EmitGotoStmt(const GotoStmt &S);
1935  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1936  void EmitIfStmt(const IfStmt &S);
1937  void EmitWhileStmt(const WhileStmt &S);
1938  void EmitDoStmt(const DoStmt &S);
1939  void EmitForStmt(const ForStmt &S);
1940  void EmitReturnStmt(const ReturnStmt &S);
1941  void EmitDeclStmt(const DeclStmt &S);
1942  void EmitBreakStmt(const BreakStmt &S);
1943  void EmitContinueStmt(const ContinueStmt &S);
1944  void EmitSwitchStmt(const SwitchStmt &S);
1945  void EmitDefaultStmt(const DefaultStmt &S);
1946  void EmitCaseStmt(const CaseStmt &S);
1947  void EmitCaseStmtRange(const CaseStmt &S);
1948  void EmitAsmStmt(const AsmStmt &S);
1949
1950  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1951  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1952  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1953  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1954  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
1955
1956  llvm::Constant *getUnwindResumeFn();
1957  llvm::Constant *getUnwindResumeOrRethrowFn();
1958  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1959  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1960
1961  void EmitCXXTryStmt(const CXXTryStmt &S);
1962  void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
1963
1964  //===--------------------------------------------------------------------===//
1965  //                         LValue Expression Emission
1966  //===--------------------------------------------------------------------===//
1967
1968  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
1969  RValue GetUndefRValue(QualType Ty);
1970
1971  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
1972  /// and issue an ErrorUnsupported style diagnostic (using the
1973  /// provided Name).
1974  RValue EmitUnsupportedRValue(const Expr *E,
1975                               const char *Name);
1976
1977  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
1978  /// an ErrorUnsupported style diagnostic (using the provided Name).
1979  LValue EmitUnsupportedLValue(const Expr *E,
1980                               const char *Name);
1981
1982  /// EmitLValue - Emit code to compute a designator that specifies the location
1983  /// of the expression.
1984  ///
1985  /// This can return one of two things: a simple address or a bitfield
1986  /// reference.  In either case, the LLVM Value* in the LValue structure is
1987  /// guaranteed to be an LLVM pointer type.
1988  ///
1989  /// If this returns a bitfield reference, nothing about the pointee type of
1990  /// the LLVM value is known: For example, it may not be a pointer to an
1991  /// integer.
1992  ///
1993  /// If this returns a normal address, and if the lvalue's C type is fixed
1994  /// size, this method guarantees that the returned pointer type will point to
1995  /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
1996  /// variable length type, this is not possible.
1997  ///
1998  LValue EmitLValue(const Expr *E);
1999
2000  /// EmitCheckedLValue - Same as EmitLValue but additionally we generate
2001  /// checking code to guard against undefined behavior.  This is only
2002  /// suitable when we know that the address will be used to access the
2003  /// object.
2004  LValue EmitCheckedLValue(const Expr *E);
2005
2006  /// EmitToMemory - Change a scalar value from its value
2007  /// representation to its in-memory representation.
2008  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2009
2010  /// EmitFromMemory - Change a scalar value from its memory
2011  /// representation to its value representation.
2012  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2013
2014  /// EmitLoadOfScalar - Load a scalar value from an address, taking
2015  /// care to appropriately convert from the memory representation to
2016  /// the LLVM value representation.
2017  llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
2018                                unsigned Alignment, QualType Ty,
2019                                llvm::MDNode *TBAAInfo = 0);
2020
2021  /// EmitLoadOfScalar - Load a scalar value from an address, taking
2022  /// care to appropriately convert from the memory representation to
2023  /// the LLVM value representation.  The l-value must be a simple
2024  /// l-value.
2025  llvm::Value *EmitLoadOfScalar(LValue lvalue);
2026
2027  /// EmitStoreOfScalar - Store a scalar value to an address, taking
2028  /// care to appropriately convert from the memory representation to
2029  /// the LLVM value representation.
2030  void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
2031                         bool Volatile, unsigned Alignment, QualType Ty,
2032                         llvm::MDNode *TBAAInfo = 0, bool isInit=false);
2033
2034  /// EmitStoreOfScalar - Store a scalar value to an address, taking
2035  /// care to appropriately convert from the memory representation to
2036  /// the LLVM value representation.  The l-value must be a simple
2037  /// l-value.  The isInit flag indicates whether this is an initialization.
2038  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2039  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2040
2041  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2042  /// this method emits the address of the lvalue, then loads the result as an
2043  /// rvalue, returning the rvalue.
2044  RValue EmitLoadOfLValue(LValue V);
2045  RValue EmitLoadOfExtVectorElementLValue(LValue V);
2046  RValue EmitLoadOfBitfieldLValue(LValue LV);
2047
2048  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2049  /// lvalue, where both are guaranteed to the have the same type, and that type
2050  /// is 'Ty'.
2051  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false);
2052  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2053
2054  /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
2055  /// EmitStoreThroughLValue.
2056  ///
2057  /// \param Result [out] - If non-null, this will be set to a Value* for the
2058  /// bit-field contents after the store, appropriate for use as the result of
2059  /// an assignment to the bit-field.
2060  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2061                                      llvm::Value **Result=0);
2062
2063  /// Emit an l-value for an assignment (simple or compound) of complex type.
2064  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2065  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2066
2067  // Note: only available for agg return types
2068  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2069  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2070  // Note: only available for agg return types
2071  LValue EmitCallExprLValue(const CallExpr *E);
2072  // Note: only available for agg return types
2073  LValue EmitVAArgExprLValue(const VAArgExpr *E);
2074  LValue EmitDeclRefLValue(const DeclRefExpr *E);
2075  LValue EmitStringLiteralLValue(const StringLiteral *E);
2076  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2077  LValue EmitPredefinedLValue(const PredefinedExpr *E);
2078  LValue EmitUnaryOpLValue(const UnaryOperator *E);
2079  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
2080  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2081  LValue EmitMemberExpr(const MemberExpr *E);
2082  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2083  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2084  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2085  LValue EmitCastLValue(const CastExpr *E);
2086  LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
2087  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2088  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2089
2090  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2091                                AggValueSlot slot = AggValueSlot::ignored());
2092  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2093
2094  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2095                              const ObjCIvarDecl *Ivar);
2096  LValue EmitLValueForAnonRecordField(llvm::Value* Base,
2097                                      const IndirectFieldDecl* Field,
2098                                      unsigned CVRQualifiers);
2099  LValue EmitLValueForField(llvm::Value* Base, const FieldDecl* Field,
2100                            unsigned CVRQualifiers);
2101
2102  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2103  /// if the Field is a reference, this will return the address of the reference
2104  /// and not the address of the value stored in the reference.
2105  LValue EmitLValueForFieldInitialization(llvm::Value* Base,
2106                                          const FieldDecl* Field,
2107                                          unsigned CVRQualifiers);
2108
2109  LValue EmitLValueForIvar(QualType ObjectTy,
2110                           llvm::Value* Base, const ObjCIvarDecl *Ivar,
2111                           unsigned CVRQualifiers);
2112
2113  LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field,
2114                                unsigned CVRQualifiers);
2115
2116  LValue EmitBlockDeclRefLValue(const BlockDeclRefExpr *E);
2117
2118  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2119  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2120  LValue EmitLambdaLValue(const LambdaExpr *E);
2121  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2122
2123  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2124  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2125  LValue EmitStmtExprLValue(const StmtExpr *E);
2126  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2127  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2128  void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2129
2130  //===--------------------------------------------------------------------===//
2131  //                         Scalar Expression Emission
2132  //===--------------------------------------------------------------------===//
2133
2134  /// EmitCall - Generate a call of the given function, expecting the given
2135  /// result type, and using the given argument list which specifies both the
2136  /// LLVM arguments and the types they were derived from.
2137  ///
2138  /// \param TargetDecl - If given, the decl of the function in a direct call;
2139  /// used to set attributes on the call (noreturn, etc.).
2140  RValue EmitCall(const CGFunctionInfo &FnInfo,
2141                  llvm::Value *Callee,
2142                  ReturnValueSlot ReturnValue,
2143                  const CallArgList &Args,
2144                  const Decl *TargetDecl = 0,
2145                  llvm::Instruction **callOrInvoke = 0);
2146
2147  RValue EmitCall(QualType FnType, llvm::Value *Callee,
2148                  ReturnValueSlot ReturnValue,
2149                  CallExpr::const_arg_iterator ArgBeg,
2150                  CallExpr::const_arg_iterator ArgEnd,
2151                  const Decl *TargetDecl = 0);
2152  RValue EmitCallExpr(const CallExpr *E,
2153                      ReturnValueSlot ReturnValue = ReturnValueSlot());
2154
2155  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2156                                  ArrayRef<llvm::Value *> Args,
2157                                  const Twine &Name = "");
2158  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2159                                  const Twine &Name = "");
2160
2161  llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
2162                                llvm::Type *Ty);
2163  llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
2164                                llvm::Value *This, llvm::Type *Ty);
2165  llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2166                                         NestedNameSpecifier *Qual,
2167                                         llvm::Type *Ty);
2168
2169  llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2170                                                   CXXDtorType Type,
2171                                                   const CXXRecordDecl *RD);
2172
2173  RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2174                           llvm::Value *Callee,
2175                           ReturnValueSlot ReturnValue,
2176                           llvm::Value *This,
2177                           llvm::Value *VTT,
2178                           CallExpr::const_arg_iterator ArgBeg,
2179                           CallExpr::const_arg_iterator ArgEnd);
2180  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2181                               ReturnValueSlot ReturnValue);
2182  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2183                                      ReturnValueSlot ReturnValue);
2184
2185  llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2186                                           const CXXMethodDecl *MD,
2187                                           llvm::Value *This);
2188  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2189                                       const CXXMethodDecl *MD,
2190                                       ReturnValueSlot ReturnValue);
2191
2192  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2193                                ReturnValueSlot ReturnValue);
2194
2195
2196  RValue EmitBuiltinExpr(const FunctionDecl *FD,
2197                         unsigned BuiltinID, const CallExpr *E);
2198
2199  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2200
2201  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2202  /// is unhandled by the current target.
2203  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2204
2205  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2206  llvm::Value *EmitNeonCall(llvm::Function *F,
2207                            SmallVectorImpl<llvm::Value*> &O,
2208                            const char *name,
2209                            unsigned shift = 0, bool rightshift = false);
2210  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2211  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2212                                   bool negateForRightShift);
2213
2214  llvm::Value *BuildVector(const SmallVectorImpl<llvm::Value*> &Ops);
2215  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2216  llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2217  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2218
2219  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2220  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2221  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2222  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2223                             ReturnValueSlot Return = ReturnValueSlot());
2224
2225  /// Retrieves the default cleanup kind for an ARC cleanup.
2226  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2227  CleanupKind getARCCleanupKind() {
2228    return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2229             ? NormalAndEHCleanup : NormalCleanup;
2230  }
2231
2232  // ARC primitives.
2233  void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2234  void EmitARCDestroyWeak(llvm::Value *addr);
2235  llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2236  llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2237  llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2238                                bool ignored);
2239  void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2240  void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2241  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2242  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2243  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2244                                  bool ignored);
2245  llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2246                                      bool ignored);
2247  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2248  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2249  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2250  void EmitARCRelease(llvm::Value *value, bool precise);
2251  llvm::Value *EmitARCAutorelease(llvm::Value *value);
2252  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2253  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2254  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2255
2256  std::pair<LValue,llvm::Value*>
2257  EmitARCStoreAutoreleasing(const BinaryOperator *e);
2258  std::pair<LValue,llvm::Value*>
2259  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2260
2261  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2262
2263  llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2264  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2265  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2266
2267  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2268  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2269  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2270
2271  static Destroyer destroyARCStrongImprecise;
2272  static Destroyer destroyARCStrongPrecise;
2273  static Destroyer destroyARCWeak;
2274
2275  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2276  llvm::Value *EmitObjCAutoreleasePoolPush();
2277  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2278  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2279  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2280
2281  /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
2282  /// expression. Will emit a temporary variable if E is not an LValue.
2283  RValue EmitReferenceBindingToExpr(const Expr* E,
2284                                    const NamedDecl *InitializedDecl);
2285
2286  //===--------------------------------------------------------------------===//
2287  //                           Expression Emission
2288  //===--------------------------------------------------------------------===//
2289
2290  // Expressions are broken into three classes: scalar, complex, aggregate.
2291
2292  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2293  /// scalar type, returning the result.
2294  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2295
2296  /// EmitScalarConversion - Emit a conversion from the specified type to the
2297  /// specified destination type, both of which are LLVM scalar types.
2298  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2299                                    QualType DstTy);
2300
2301  /// EmitComplexToScalarConversion - Emit a conversion from the specified
2302  /// complex type to the specified destination type, where the destination type
2303  /// is an LLVM scalar type.
2304  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2305                                             QualType DstTy);
2306
2307
2308  /// EmitAggExpr - Emit the computation of the specified expression
2309  /// of aggregate type.  The result is computed into the given slot,
2310  /// which may be null to indicate that the value is not needed.
2311  void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false);
2312
2313  /// EmitAggExprToLValue - Emit the computation of the specified expression of
2314  /// aggregate type into a temporary LValue.
2315  LValue EmitAggExprToLValue(const Expr *E);
2316
2317  /// EmitGCMemmoveCollectable - Emit special API for structs with object
2318  /// pointers.
2319  void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2320                                QualType Ty);
2321
2322  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2323  /// make sure it survives garbage collection until this point.
2324  void EmitExtendGCLifetime(llvm::Value *object);
2325
2326  /// EmitComplexExpr - Emit the computation of the specified expression of
2327  /// complex type, returning the result.
2328  ComplexPairTy EmitComplexExpr(const Expr *E,
2329                                bool IgnoreReal = false,
2330                                bool IgnoreImag = false);
2331
2332  /// EmitComplexExprIntoAddr - Emit the computation of the specified expression
2333  /// of complex type, storing into the specified Value*.
2334  void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
2335                               bool DestIsVolatile);
2336
2337  /// StoreComplexToAddr - Store a complex number into the specified address.
2338  void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
2339                          bool DestIsVolatile);
2340  /// LoadComplexFromAddr - Load a complex number from the specified address.
2341  ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
2342
2343  /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2344  /// a static local variable.
2345  llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2346                                            const char *Separator,
2347                                       llvm::GlobalValue::LinkageTypes Linkage);
2348
2349  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2350  /// global variable that has already been created for it.  If the initializer
2351  /// has a different type than GV does, this may free GV and return a different
2352  /// one.  Otherwise it just returns GV.
2353  llvm::GlobalVariable *
2354  AddInitializerToStaticVarDecl(const VarDecl &D,
2355                                llvm::GlobalVariable *GV);
2356
2357
2358  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2359  /// variable with global storage.
2360  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr);
2361
2362  /// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr
2363  /// with the C++ runtime so that its destructor will be called at exit.
2364  void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn,
2365                                     llvm::Constant *DeclPtr);
2366
2367  /// Emit code in this function to perform a guarded variable
2368  /// initialization.  Guarded initializations are used when it's not
2369  /// possible to prove that an initialization will be done exactly
2370  /// once, e.g. with a static local variable or a static data member
2371  /// of a class template.
2372  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr);
2373
2374  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2375  /// variables.
2376  void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2377                                 llvm::Constant **Decls,
2378                                 unsigned NumDecls);
2379
2380  /// GenerateCXXGlobalDtorFunc - Generates code for destroying global
2381  /// variables.
2382  void GenerateCXXGlobalDtorFunc(llvm::Function *Fn,
2383                                 const std::vector<std::pair<llvm::WeakVH,
2384                                   llvm::Constant*> > &DtorsAndObjects);
2385
2386  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2387                                        const VarDecl *D,
2388                                        llvm::GlobalVariable *Addr);
2389
2390  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2391
2392  void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2393                                  const Expr *Exp);
2394
2395  void enterFullExpression(const ExprWithCleanups *E) {
2396    if (E->getNumObjects() == 0) return;
2397    enterNonTrivialFullExpression(E);
2398  }
2399  void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2400
2401  void EmitCXXThrowExpr(const CXXThrowExpr *E);
2402
2403  RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
2404
2405  //===--------------------------------------------------------------------===//
2406  //                         Annotations Emission
2407  //===--------------------------------------------------------------------===//
2408
2409  /// Emit an annotation call (intrinsic or builtin).
2410  llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2411                                  llvm::Value *AnnotatedVal,
2412                                  llvm::StringRef AnnotationStr,
2413                                  SourceLocation Location);
2414
2415  /// Emit local annotations for the local variable V, declared by D.
2416  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2417
2418  /// Emit field annotations for the given field & value. Returns the
2419  /// annotation result.
2420  llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2421
2422  //===--------------------------------------------------------------------===//
2423  //                             Internal Helpers
2424  //===--------------------------------------------------------------------===//
2425
2426  /// ContainsLabel - Return true if the statement contains a label in it.  If
2427  /// this statement is not executed normally, it not containing a label means
2428  /// that we can just remove the code.
2429  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2430
2431  /// containsBreak - Return true if the statement contains a break out of it.
2432  /// If the statement (recursively) contains a switch or loop with a break
2433  /// inside of it, this is fine.
2434  static bool containsBreak(const Stmt *S);
2435
2436  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2437  /// to a constant, or if it does but contains a label, return false.  If it
2438  /// constant folds return true and set the boolean result in Result.
2439  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2440
2441  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2442  /// to a constant, or if it does but contains a label, return false.  If it
2443  /// constant folds return true and set the folded value.
2444  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result);
2445
2446  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2447  /// if statement) to the specified blocks.  Based on the condition, this might
2448  /// try to simplify the codegen of the conditional based on the branch.
2449  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2450                            llvm::BasicBlock *FalseBlock);
2451
2452  /// getTrapBB - Create a basic block that will call the trap intrinsic.  We'll
2453  /// generate a branch around the created basic block as necessary.
2454  llvm::BasicBlock *getTrapBB();
2455
2456  /// EmitCallArg - Emit a single call argument.
2457  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2458
2459  /// EmitDelegateCallArg - We are performing a delegate call; that
2460  /// is, the current function is delegating to another one.  Produce
2461  /// a r-value suitable for passing the given parameter.
2462  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
2463
2464  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2465  /// point operation, expressed as the maximum relative error in ulp.
2466  void SetFPAccuracy(llvm::Value *Val, unsigned AccuracyN,
2467                     unsigned AccuracyD = 1);
2468
2469private:
2470  void EmitReturnOfRValue(RValue RV, QualType Ty);
2471
2472  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2473  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2474  ///
2475  /// \param AI - The first function argument of the expansion.
2476  /// \return The argument following the last expanded function
2477  /// argument.
2478  llvm::Function::arg_iterator
2479  ExpandTypeFromArgs(QualType Ty, LValue Dst,
2480                     llvm::Function::arg_iterator AI);
2481
2482  /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2483  /// Ty, into individual arguments on the provided vector \arg Args. See
2484  /// ABIArgInfo::Expand.
2485  void ExpandTypeToArgs(QualType Ty, RValue Src,
2486                        SmallVector<llvm::Value*, 16> &Args,
2487                        llvm::FunctionType *IRFuncTy);
2488
2489  llvm::Value* EmitAsmInput(const AsmStmt &S,
2490                            const TargetInfo::ConstraintInfo &Info,
2491                            const Expr *InputExpr, std::string &ConstraintStr);
2492
2493  llvm::Value* EmitAsmInputLValue(const AsmStmt &S,
2494                                  const TargetInfo::ConstraintInfo &Info,
2495                                  LValue InputValue, QualType InputType,
2496                                  std::string &ConstraintStr);
2497
2498  /// EmitCallArgs - Emit call arguments for a function.
2499  /// The CallArgTypeInfo parameter is used for iterating over the known
2500  /// argument types of the function being called.
2501  template<typename T>
2502  void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2503                    CallExpr::const_arg_iterator ArgBeg,
2504                    CallExpr::const_arg_iterator ArgEnd) {
2505      CallExpr::const_arg_iterator Arg = ArgBeg;
2506
2507    // First, use the argument types that the type info knows about
2508    if (CallArgTypeInfo) {
2509      for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2510           E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2511        assert(Arg != ArgEnd && "Running over edge of argument list!");
2512        QualType ArgType = *I;
2513#ifndef NDEBUG
2514        QualType ActualArgType = Arg->getType();
2515        if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2516          QualType ActualBaseType =
2517            ActualArgType->getAs<PointerType>()->getPointeeType();
2518          QualType ArgBaseType =
2519            ArgType->getAs<PointerType>()->getPointeeType();
2520          if (ArgBaseType->isVariableArrayType()) {
2521            if (const VariableArrayType *VAT =
2522                getContext().getAsVariableArrayType(ActualBaseType)) {
2523              if (!VAT->getSizeExpr())
2524                ActualArgType = ArgType;
2525            }
2526          }
2527        }
2528        assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2529               getTypePtr() ==
2530               getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2531               "type mismatch in call argument!");
2532#endif
2533        EmitCallArg(Args, *Arg, ArgType);
2534      }
2535
2536      // Either we've emitted all the call args, or we have a call to a
2537      // variadic function.
2538      assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2539             "Extra arguments in non-variadic function!");
2540
2541    }
2542
2543    // If we still have any arguments, emit them using the type of the argument.
2544    for (; Arg != ArgEnd; ++Arg)
2545      EmitCallArg(Args, *Arg, Arg->getType());
2546  }
2547
2548  const TargetCodeGenInfo &getTargetHooks() const {
2549    return CGM.getTargetCodeGenInfo();
2550  }
2551
2552  void EmitDeclMetadata();
2553
2554  CodeGenModule::ByrefHelpers *
2555  buildByrefHelpers(llvm::StructType &byrefType,
2556                    const AutoVarEmission &emission);
2557};
2558
2559/// Helper class with most of the code for saving a value for a
2560/// conditional expression cleanup.
2561struct DominatingLLVMValue {
2562  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2563
2564  /// Answer whether the given value needs extra work to be saved.
2565  static bool needsSaving(llvm::Value *value) {
2566    // If it's not an instruction, we don't need to save.
2567    if (!isa<llvm::Instruction>(value)) return false;
2568
2569    // If it's an instruction in the entry block, we don't need to save.
2570    llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2571    return (block != &block->getParent()->getEntryBlock());
2572  }
2573
2574  /// Try to save the given value.
2575  static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2576    if (!needsSaving(value)) return saved_type(value, false);
2577
2578    // Otherwise we need an alloca.
2579    llvm::Value *alloca =
2580      CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2581    CGF.Builder.CreateStore(value, alloca);
2582
2583    return saved_type(alloca, true);
2584  }
2585
2586  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2587    if (!value.getInt()) return value.getPointer();
2588    return CGF.Builder.CreateLoad(value.getPointer());
2589  }
2590};
2591
2592/// A partial specialization of DominatingValue for llvm::Values that
2593/// might be llvm::Instructions.
2594template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2595  typedef T *type;
2596  static type restore(CodeGenFunction &CGF, saved_type value) {
2597    return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2598  }
2599};
2600
2601/// A specialization of DominatingValue for RValue.
2602template <> struct DominatingValue<RValue> {
2603  typedef RValue type;
2604  class saved_type {
2605    enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2606                AggregateAddress, ComplexAddress };
2607
2608    llvm::Value *Value;
2609    Kind K;
2610    saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2611
2612  public:
2613    static bool needsSaving(RValue value);
2614    static saved_type save(CodeGenFunction &CGF, RValue value);
2615    RValue restore(CodeGenFunction &CGF);
2616
2617    // implementations in CGExprCXX.cpp
2618  };
2619
2620  static bool needsSaving(type value) {
2621    return saved_type::needsSaving(value);
2622  }
2623  static saved_type save(CodeGenFunction &CGF, type value) {
2624    return saved_type::save(CGF, value);
2625  }
2626  static type restore(CodeGenFunction &CGF, saved_type value) {
2627    return value.restore(CGF);
2628  }
2629};
2630
2631}  // end namespace CodeGen
2632}  // end namespace clang
2633
2634#endif
2635