CodeGenFunction.h revision 3ac83d69c61238cd0d38e90fcdd03390530ab2fb
1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This is the internal per-function state used for llvm translation. 11// 12//===----------------------------------------------------------------------===// 13 14#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H 15#define CLANG_CODEGEN_CODEGENFUNCTION_H 16 17#include "CGBuilder.h" 18#include "CGDebugInfo.h" 19#include "CGValue.h" 20#include "CodeGenModule.h" 21#include "clang/AST/CharUnits.h" 22#include "clang/AST/ExprCXX.h" 23#include "clang/AST/ExprObjC.h" 24#include "clang/AST/Type.h" 25#include "clang/Basic/ABI.h" 26#include "clang/Basic/TargetInfo.h" 27#include "clang/Frontend/CodeGenOptions.h" 28#include "llvm/ADT/ArrayRef.h" 29#include "llvm/ADT/DenseMap.h" 30#include "llvm/ADT/SmallVector.h" 31#include "llvm/Support/Debug.h" 32#include "llvm/Support/ValueHandle.h" 33 34namespace llvm { 35 class BasicBlock; 36 class LLVMContext; 37 class MDNode; 38 class Module; 39 class SwitchInst; 40 class Twine; 41 class Value; 42 class CallSite; 43} 44 45namespace clang { 46 class ASTContext; 47 class BlockDecl; 48 class CXXDestructorDecl; 49 class CXXForRangeStmt; 50 class CXXTryStmt; 51 class Decl; 52 class LabelDecl; 53 class EnumConstantDecl; 54 class FunctionDecl; 55 class FunctionProtoType; 56 class LabelStmt; 57 class ObjCContainerDecl; 58 class ObjCInterfaceDecl; 59 class ObjCIvarDecl; 60 class ObjCMethodDecl; 61 class ObjCImplementationDecl; 62 class ObjCPropertyImplDecl; 63 class TargetInfo; 64 class TargetCodeGenInfo; 65 class VarDecl; 66 class ObjCForCollectionStmt; 67 class ObjCAtTryStmt; 68 class ObjCAtThrowStmt; 69 class ObjCAtSynchronizedStmt; 70 class ObjCAutoreleasePoolStmt; 71 72namespace CodeGen { 73 class CodeGenTypes; 74 class CGFunctionInfo; 75 class CGRecordLayout; 76 class CGBlockInfo; 77 class CGCXXABI; 78 class BlockFlags; 79 class BlockFieldFlags; 80 81/// A branch fixup. These are required when emitting a goto to a 82/// label which hasn't been emitted yet. The goto is optimistically 83/// emitted as a branch to the basic block for the label, and (if it 84/// occurs in a scope with non-trivial cleanups) a fixup is added to 85/// the innermost cleanup. When a (normal) cleanup is popped, any 86/// unresolved fixups in that scope are threaded through the cleanup. 87struct BranchFixup { 88 /// The block containing the terminator which needs to be modified 89 /// into a switch if this fixup is resolved into the current scope. 90 /// If null, LatestBranch points directly to the destination. 91 llvm::BasicBlock *OptimisticBranchBlock; 92 93 /// The ultimate destination of the branch. 94 /// 95 /// This can be set to null to indicate that this fixup was 96 /// successfully resolved. 97 llvm::BasicBlock *Destination; 98 99 /// The destination index value. 100 unsigned DestinationIndex; 101 102 /// The initial branch of the fixup. 103 llvm::BranchInst *InitialBranch; 104}; 105 106template <class T> struct InvariantValue { 107 typedef T type; 108 typedef T saved_type; 109 static bool needsSaving(type value) { return false; } 110 static saved_type save(CodeGenFunction &CGF, type value) { return value; } 111 static type restore(CodeGenFunction &CGF, saved_type value) { return value; } 112}; 113 114/// A metaprogramming class for ensuring that a value will dominate an 115/// arbitrary position in a function. 116template <class T> struct DominatingValue : InvariantValue<T> {}; 117 118template <class T, bool mightBeInstruction = 119 llvm::is_base_of<llvm::Value, T>::value && 120 !llvm::is_base_of<llvm::Constant, T>::value && 121 !llvm::is_base_of<llvm::BasicBlock, T>::value> 122struct DominatingPointer; 123template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {}; 124// template <class T> struct DominatingPointer<T,true> at end of file 125 126template <class T> struct DominatingValue<T*> : DominatingPointer<T> {}; 127 128enum CleanupKind { 129 EHCleanup = 0x1, 130 NormalCleanup = 0x2, 131 NormalAndEHCleanup = EHCleanup | NormalCleanup, 132 133 InactiveCleanup = 0x4, 134 InactiveEHCleanup = EHCleanup | InactiveCleanup, 135 InactiveNormalCleanup = NormalCleanup | InactiveCleanup, 136 InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup 137}; 138 139/// A stack of scopes which respond to exceptions, including cleanups 140/// and catch blocks. 141class EHScopeStack { 142public: 143 /// A saved depth on the scope stack. This is necessary because 144 /// pushing scopes onto the stack invalidates iterators. 145 class stable_iterator { 146 friend class EHScopeStack; 147 148 /// Offset from StartOfData to EndOfBuffer. 149 ptrdiff_t Size; 150 151 stable_iterator(ptrdiff_t Size) : Size(Size) {} 152 153 public: 154 static stable_iterator invalid() { return stable_iterator(-1); } 155 stable_iterator() : Size(-1) {} 156 157 bool isValid() const { return Size >= 0; } 158 159 /// Returns true if this scope encloses I. 160 /// Returns false if I is invalid. 161 /// This scope must be valid. 162 bool encloses(stable_iterator I) const { return Size <= I.Size; } 163 164 /// Returns true if this scope strictly encloses I: that is, 165 /// if it encloses I and is not I. 166 /// Returns false is I is invalid. 167 /// This scope must be valid. 168 bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; } 169 170 friend bool operator==(stable_iterator A, stable_iterator B) { 171 return A.Size == B.Size; 172 } 173 friend bool operator!=(stable_iterator A, stable_iterator B) { 174 return A.Size != B.Size; 175 } 176 }; 177 178 /// Information for lazily generating a cleanup. Subclasses must be 179 /// POD-like: cleanups will not be destructed, and they will be 180 /// allocated on the cleanup stack and freely copied and moved 181 /// around. 182 /// 183 /// Cleanup implementations should generally be declared in an 184 /// anonymous namespace. 185 class Cleanup { 186 // Anchor the construction vtable. 187 virtual void anchor(); 188 public: 189 /// Generation flags. 190 class Flags { 191 enum { 192 F_IsForEH = 0x1, 193 F_IsNormalCleanupKind = 0x2, 194 F_IsEHCleanupKind = 0x4 195 }; 196 unsigned flags; 197 198 public: 199 Flags() : flags(0) {} 200 201 /// isForEH - true if the current emission is for an EH cleanup. 202 bool isForEHCleanup() const { return flags & F_IsForEH; } 203 bool isForNormalCleanup() const { return !isForEHCleanup(); } 204 void setIsForEHCleanup() { flags |= F_IsForEH; } 205 206 bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; } 207 void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; } 208 209 /// isEHCleanupKind - true if the cleanup was pushed as an EH 210 /// cleanup. 211 bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; } 212 void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; } 213 }; 214 215 // Provide a virtual destructor to suppress a very common warning 216 // that unfortunately cannot be suppressed without this. Cleanups 217 // should not rely on this destructor ever being called. 218 virtual ~Cleanup() {} 219 220 /// Emit the cleanup. For normal cleanups, this is run in the 221 /// same EH context as when the cleanup was pushed, i.e. the 222 /// immediately-enclosing context of the cleanup scope. For 223 /// EH cleanups, this is run in a terminate context. 224 /// 225 // \param flags cleanup kind. 226 virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0; 227 }; 228 229 /// ConditionalCleanupN stores the saved form of its N parameters, 230 /// then restores them and performs the cleanup. 231 template <class T, class A0> 232 class ConditionalCleanup1 : public Cleanup { 233 typedef typename DominatingValue<A0>::saved_type A0_saved; 234 A0_saved a0_saved; 235 236 void Emit(CodeGenFunction &CGF, Flags flags) { 237 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 238 T(a0).Emit(CGF, flags); 239 } 240 241 public: 242 ConditionalCleanup1(A0_saved a0) 243 : a0_saved(a0) {} 244 }; 245 246 template <class T, class A0, class A1> 247 class ConditionalCleanup2 : public Cleanup { 248 typedef typename DominatingValue<A0>::saved_type A0_saved; 249 typedef typename DominatingValue<A1>::saved_type A1_saved; 250 A0_saved a0_saved; 251 A1_saved a1_saved; 252 253 void Emit(CodeGenFunction &CGF, Flags flags) { 254 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 255 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 256 T(a0, a1).Emit(CGF, flags); 257 } 258 259 public: 260 ConditionalCleanup2(A0_saved a0, A1_saved a1) 261 : a0_saved(a0), a1_saved(a1) {} 262 }; 263 264 template <class T, class A0, class A1, class A2> 265 class ConditionalCleanup3 : public Cleanup { 266 typedef typename DominatingValue<A0>::saved_type A0_saved; 267 typedef typename DominatingValue<A1>::saved_type A1_saved; 268 typedef typename DominatingValue<A2>::saved_type A2_saved; 269 A0_saved a0_saved; 270 A1_saved a1_saved; 271 A2_saved a2_saved; 272 273 void Emit(CodeGenFunction &CGF, Flags flags) { 274 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 275 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 276 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 277 T(a0, a1, a2).Emit(CGF, flags); 278 } 279 280 public: 281 ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2) 282 : a0_saved(a0), a1_saved(a1), a2_saved(a2) {} 283 }; 284 285 template <class T, class A0, class A1, class A2, class A3> 286 class ConditionalCleanup4 : public Cleanup { 287 typedef typename DominatingValue<A0>::saved_type A0_saved; 288 typedef typename DominatingValue<A1>::saved_type A1_saved; 289 typedef typename DominatingValue<A2>::saved_type A2_saved; 290 typedef typename DominatingValue<A3>::saved_type A3_saved; 291 A0_saved a0_saved; 292 A1_saved a1_saved; 293 A2_saved a2_saved; 294 A3_saved a3_saved; 295 296 void Emit(CodeGenFunction &CGF, Flags flags) { 297 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 298 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 299 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 300 A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved); 301 T(a0, a1, a2, a3).Emit(CGF, flags); 302 } 303 304 public: 305 ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3) 306 : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {} 307 }; 308 309private: 310 // The implementation for this class is in CGException.h and 311 // CGException.cpp; the definition is here because it's used as a 312 // member of CodeGenFunction. 313 314 /// The start of the scope-stack buffer, i.e. the allocated pointer 315 /// for the buffer. All of these pointers are either simultaneously 316 /// null or simultaneously valid. 317 char *StartOfBuffer; 318 319 /// The end of the buffer. 320 char *EndOfBuffer; 321 322 /// The first valid entry in the buffer. 323 char *StartOfData; 324 325 /// The innermost normal cleanup on the stack. 326 stable_iterator InnermostNormalCleanup; 327 328 /// The innermost EH scope on the stack. 329 stable_iterator InnermostEHScope; 330 331 /// The current set of branch fixups. A branch fixup is a jump to 332 /// an as-yet unemitted label, i.e. a label for which we don't yet 333 /// know the EH stack depth. Whenever we pop a cleanup, we have 334 /// to thread all the current branch fixups through it. 335 /// 336 /// Fixups are recorded as the Use of the respective branch or 337 /// switch statement. The use points to the final destination. 338 /// When popping out of a cleanup, these uses are threaded through 339 /// the cleanup and adjusted to point to the new cleanup. 340 /// 341 /// Note that branches are allowed to jump into protected scopes 342 /// in certain situations; e.g. the following code is legal: 343 /// struct A { ~A(); }; // trivial ctor, non-trivial dtor 344 /// goto foo; 345 /// A a; 346 /// foo: 347 /// bar(); 348 SmallVector<BranchFixup, 8> BranchFixups; 349 350 char *allocate(size_t Size); 351 352 void *pushCleanup(CleanupKind K, size_t DataSize); 353 354public: 355 EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0), 356 InnermostNormalCleanup(stable_end()), 357 InnermostEHScope(stable_end()) {} 358 ~EHScopeStack() { delete[] StartOfBuffer; } 359 360 // Variadic templates would make this not terrible. 361 362 /// Push a lazily-created cleanup on the stack. 363 template <class T> 364 void pushCleanup(CleanupKind Kind) { 365 void *Buffer = pushCleanup(Kind, sizeof(T)); 366 Cleanup *Obj = new(Buffer) T(); 367 (void) Obj; 368 } 369 370 /// Push a lazily-created cleanup on the stack. 371 template <class T, class A0> 372 void pushCleanup(CleanupKind Kind, A0 a0) { 373 void *Buffer = pushCleanup(Kind, sizeof(T)); 374 Cleanup *Obj = new(Buffer) T(a0); 375 (void) Obj; 376 } 377 378 /// Push a lazily-created cleanup on the stack. 379 template <class T, class A0, class A1> 380 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) { 381 void *Buffer = pushCleanup(Kind, sizeof(T)); 382 Cleanup *Obj = new(Buffer) T(a0, a1); 383 (void) Obj; 384 } 385 386 /// Push a lazily-created cleanup on the stack. 387 template <class T, class A0, class A1, class A2> 388 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) { 389 void *Buffer = pushCleanup(Kind, sizeof(T)); 390 Cleanup *Obj = new(Buffer) T(a0, a1, a2); 391 (void) Obj; 392 } 393 394 /// Push a lazily-created cleanup on the stack. 395 template <class T, class A0, class A1, class A2, class A3> 396 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) { 397 void *Buffer = pushCleanup(Kind, sizeof(T)); 398 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3); 399 (void) Obj; 400 } 401 402 /// Push a lazily-created cleanup on the stack. 403 template <class T, class A0, class A1, class A2, class A3, class A4> 404 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) { 405 void *Buffer = pushCleanup(Kind, sizeof(T)); 406 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4); 407 (void) Obj; 408 } 409 410 // Feel free to add more variants of the following: 411 412 /// Push a cleanup with non-constant storage requirements on the 413 /// stack. The cleanup type must provide an additional static method: 414 /// static size_t getExtraSize(size_t); 415 /// The argument to this method will be the value N, which will also 416 /// be passed as the first argument to the constructor. 417 /// 418 /// The data stored in the extra storage must obey the same 419 /// restrictions as normal cleanup member data. 420 /// 421 /// The pointer returned from this method is valid until the cleanup 422 /// stack is modified. 423 template <class T, class A0, class A1, class A2> 424 T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) { 425 void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N)); 426 return new (Buffer) T(N, a0, a1, a2); 427 } 428 429 /// Pops a cleanup scope off the stack. This is private to CGCleanup.cpp. 430 void popCleanup(); 431 432 /// Push a set of catch handlers on the stack. The catch is 433 /// uninitialized and will need to have the given number of handlers 434 /// set on it. 435 class EHCatchScope *pushCatch(unsigned NumHandlers); 436 437 /// Pops a catch scope off the stack. This is private to CGException.cpp. 438 void popCatch(); 439 440 /// Push an exceptions filter on the stack. 441 class EHFilterScope *pushFilter(unsigned NumFilters); 442 443 /// Pops an exceptions filter off the stack. 444 void popFilter(); 445 446 /// Push a terminate handler on the stack. 447 void pushTerminate(); 448 449 /// Pops a terminate handler off the stack. 450 void popTerminate(); 451 452 /// Determines whether the exception-scopes stack is empty. 453 bool empty() const { return StartOfData == EndOfBuffer; } 454 455 bool requiresLandingPad() const { 456 return InnermostEHScope != stable_end(); 457 } 458 459 /// Determines whether there are any normal cleanups on the stack. 460 bool hasNormalCleanups() const { 461 return InnermostNormalCleanup != stable_end(); 462 } 463 464 /// Returns the innermost normal cleanup on the stack, or 465 /// stable_end() if there are no normal cleanups. 466 stable_iterator getInnermostNormalCleanup() const { 467 return InnermostNormalCleanup; 468 } 469 stable_iterator getInnermostActiveNormalCleanup() const; 470 471 stable_iterator getInnermostEHScope() const { 472 return InnermostEHScope; 473 } 474 475 stable_iterator getInnermostActiveEHScope() const; 476 477 /// An unstable reference to a scope-stack depth. Invalidated by 478 /// pushes but not pops. 479 class iterator; 480 481 /// Returns an iterator pointing to the innermost EH scope. 482 iterator begin() const; 483 484 /// Returns an iterator pointing to the outermost EH scope. 485 iterator end() const; 486 487 /// Create a stable reference to the top of the EH stack. The 488 /// returned reference is valid until that scope is popped off the 489 /// stack. 490 stable_iterator stable_begin() const { 491 return stable_iterator(EndOfBuffer - StartOfData); 492 } 493 494 /// Create a stable reference to the bottom of the EH stack. 495 static stable_iterator stable_end() { 496 return stable_iterator(0); 497 } 498 499 /// Translates an iterator into a stable_iterator. 500 stable_iterator stabilize(iterator it) const; 501 502 /// Turn a stable reference to a scope depth into a unstable pointer 503 /// to the EH stack. 504 iterator find(stable_iterator save) const; 505 506 /// Removes the cleanup pointed to by the given stable_iterator. 507 void removeCleanup(stable_iterator save); 508 509 /// Add a branch fixup to the current cleanup scope. 510 BranchFixup &addBranchFixup() { 511 assert(hasNormalCleanups() && "adding fixup in scope without cleanups"); 512 BranchFixups.push_back(BranchFixup()); 513 return BranchFixups.back(); 514 } 515 516 unsigned getNumBranchFixups() const { return BranchFixups.size(); } 517 BranchFixup &getBranchFixup(unsigned I) { 518 assert(I < getNumBranchFixups()); 519 return BranchFixups[I]; 520 } 521 522 /// Pops lazily-removed fixups from the end of the list. This 523 /// should only be called by procedures which have just popped a 524 /// cleanup or resolved one or more fixups. 525 void popNullFixups(); 526 527 /// Clears the branch-fixups list. This should only be called by 528 /// ResolveAllBranchFixups. 529 void clearFixups() { BranchFixups.clear(); } 530}; 531 532/// CodeGenFunction - This class organizes the per-function state that is used 533/// while generating LLVM code. 534class CodeGenFunction : public CodeGenTypeCache { 535 CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION; 536 void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION; 537 538 friend class CGCXXABI; 539public: 540 /// A jump destination is an abstract label, branching to which may 541 /// require a jump out through normal cleanups. 542 struct JumpDest { 543 JumpDest() : Block(0), ScopeDepth(), Index(0) {} 544 JumpDest(llvm::BasicBlock *Block, 545 EHScopeStack::stable_iterator Depth, 546 unsigned Index) 547 : Block(Block), ScopeDepth(Depth), Index(Index) {} 548 549 bool isValid() const { return Block != 0; } 550 llvm::BasicBlock *getBlock() const { return Block; } 551 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 552 unsigned getDestIndex() const { return Index; } 553 554 private: 555 llvm::BasicBlock *Block; 556 EHScopeStack::stable_iterator ScopeDepth; 557 unsigned Index; 558 }; 559 560 CodeGenModule &CGM; // Per-module state. 561 const TargetInfo &Target; 562 563 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 564 CGBuilderTy Builder; 565 566 /// CurFuncDecl - Holds the Decl for the current function or ObjC method. 567 /// This excludes BlockDecls. 568 const Decl *CurFuncDecl; 569 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 570 const Decl *CurCodeDecl; 571 const CGFunctionInfo *CurFnInfo; 572 QualType FnRetTy; 573 llvm::Function *CurFn; 574 575 /// CurGD - The GlobalDecl for the current function being compiled. 576 GlobalDecl CurGD; 577 578 /// PrologueCleanupDepth - The cleanup depth enclosing all the 579 /// cleanups associated with the parameters. 580 EHScopeStack::stable_iterator PrologueCleanupDepth; 581 582 /// ReturnBlock - Unified return block. 583 JumpDest ReturnBlock; 584 585 /// ReturnValue - The temporary alloca to hold the return value. This is null 586 /// iff the function has no return value. 587 llvm::Value *ReturnValue; 588 589 /// AllocaInsertPoint - This is an instruction in the entry block before which 590 /// we prefer to insert allocas. 591 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 592 593 /// BoundsChecking - Emit run-time bounds checks. Higher values mean 594 /// potentially higher performance penalties. 595 unsigned char BoundsChecking; 596 597 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 598 /// calls to EmitTypeCheck can be skipped. 599 bool SanitizePerformTypeCheck; 600 601 /// \brief Sanitizer options to use for this function. 602 const SanitizerOptions *SanOpts; 603 604 /// In ARC, whether we should autorelease the return value. 605 bool AutoreleaseResult; 606 607 const CodeGen::CGBlockInfo *BlockInfo; 608 llvm::Value *BlockPointer; 609 610 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 611 FieldDecl *LambdaThisCaptureField; 612 613 /// \brief A mapping from NRVO variables to the flags used to indicate 614 /// when the NRVO has been applied to this variable. 615 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 616 617 EHScopeStack EHStack; 618 619 /// i32s containing the indexes of the cleanup destinations. 620 llvm::AllocaInst *NormalCleanupDest; 621 622 unsigned NextCleanupDestIndex; 623 624 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 625 CGBlockInfo *FirstBlockInfo; 626 627 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 628 llvm::BasicBlock *EHResumeBlock; 629 630 /// The exception slot. All landing pads write the current exception pointer 631 /// into this alloca. 632 llvm::Value *ExceptionSlot; 633 634 /// The selector slot. Under the MandatoryCleanup model, all landing pads 635 /// write the current selector value into this alloca. 636 llvm::AllocaInst *EHSelectorSlot; 637 638 /// Emits a landing pad for the current EH stack. 639 llvm::BasicBlock *EmitLandingPad(); 640 641 llvm::BasicBlock *getInvokeDestImpl(); 642 643 template <class T> 644 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 645 return DominatingValue<T>::save(*this, value); 646 } 647 648public: 649 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 650 /// rethrows. 651 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 652 653 /// A class controlling the emission of a finally block. 654 class FinallyInfo { 655 /// Where the catchall's edge through the cleanup should go. 656 JumpDest RethrowDest; 657 658 /// A function to call to enter the catch. 659 llvm::Constant *BeginCatchFn; 660 661 /// An i1 variable indicating whether or not the @finally is 662 /// running for an exception. 663 llvm::AllocaInst *ForEHVar; 664 665 /// An i8* variable into which the exception pointer to rethrow 666 /// has been saved. 667 llvm::AllocaInst *SavedExnVar; 668 669 public: 670 void enter(CodeGenFunction &CGF, const Stmt *Finally, 671 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 672 llvm::Constant *rethrowFn); 673 void exit(CodeGenFunction &CGF); 674 }; 675 676 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 677 /// current full-expression. Safe against the possibility that 678 /// we're currently inside a conditionally-evaluated expression. 679 template <class T, class A0> 680 void pushFullExprCleanup(CleanupKind kind, A0 a0) { 681 // If we're not in a conditional branch, or if none of the 682 // arguments requires saving, then use the unconditional cleanup. 683 if (!isInConditionalBranch()) 684 return EHStack.pushCleanup<T>(kind, a0); 685 686 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 687 688 typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType; 689 EHStack.pushCleanup<CleanupType>(kind, a0_saved); 690 initFullExprCleanup(); 691 } 692 693 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 694 /// current full-expression. Safe against the possibility that 695 /// we're currently inside a conditionally-evaluated expression. 696 template <class T, class A0, class A1> 697 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) { 698 // If we're not in a conditional branch, or if none of the 699 // arguments requires saving, then use the unconditional cleanup. 700 if (!isInConditionalBranch()) 701 return EHStack.pushCleanup<T>(kind, a0, a1); 702 703 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 704 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 705 706 typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType; 707 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved); 708 initFullExprCleanup(); 709 } 710 711 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 712 /// current full-expression. Safe against the possibility that 713 /// we're currently inside a conditionally-evaluated expression. 714 template <class T, class A0, class A1, class A2> 715 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) { 716 // If we're not in a conditional branch, or if none of the 717 // arguments requires saving, then use the unconditional cleanup. 718 if (!isInConditionalBranch()) { 719 return EHStack.pushCleanup<T>(kind, a0, a1, a2); 720 } 721 722 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 723 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 724 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 725 726 typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType; 727 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved); 728 initFullExprCleanup(); 729 } 730 731 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 732 /// current full-expression. Safe against the possibility that 733 /// we're currently inside a conditionally-evaluated expression. 734 template <class T, class A0, class A1, class A2, class A3> 735 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) { 736 // If we're not in a conditional branch, or if none of the 737 // arguments requires saving, then use the unconditional cleanup. 738 if (!isInConditionalBranch()) { 739 return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3); 740 } 741 742 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 743 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 744 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 745 typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3); 746 747 typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType; 748 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, 749 a2_saved, a3_saved); 750 initFullExprCleanup(); 751 } 752 753 /// Set up the last cleaup that was pushed as a conditional 754 /// full-expression cleanup. 755 void initFullExprCleanup(); 756 757 /// PushDestructorCleanup - Push a cleanup to call the 758 /// complete-object destructor of an object of the given type at the 759 /// given address. Does nothing if T is not a C++ class type with a 760 /// non-trivial destructor. 761 void PushDestructorCleanup(QualType T, llvm::Value *Addr); 762 763 /// PushDestructorCleanup - Push a cleanup to call the 764 /// complete-object variant of the given destructor on the object at 765 /// the given address. 766 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, 767 llvm::Value *Addr); 768 769 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 770 /// process all branch fixups. 771 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 772 773 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 774 /// The block cannot be reactivated. Pops it if it's the top of the 775 /// stack. 776 /// 777 /// \param DominatingIP - An instruction which is known to 778 /// dominate the current IP (if set) and which lies along 779 /// all paths of execution between the current IP and the 780 /// the point at which the cleanup comes into scope. 781 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 782 llvm::Instruction *DominatingIP); 783 784 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 785 /// Cannot be used to resurrect a deactivated cleanup. 786 /// 787 /// \param DominatingIP - An instruction which is known to 788 /// dominate the current IP (if set) and which lies along 789 /// all paths of execution between the current IP and the 790 /// the point at which the cleanup comes into scope. 791 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 792 llvm::Instruction *DominatingIP); 793 794 /// \brief Enters a new scope for capturing cleanups, all of which 795 /// will be executed once the scope is exited. 796 class RunCleanupsScope { 797 EHScopeStack::stable_iterator CleanupStackDepth; 798 bool OldDidCallStackSave; 799 bool PerformCleanup; 800 801 RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION; 802 void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION; 803 804 protected: 805 CodeGenFunction& CGF; 806 807 public: 808 /// \brief Enter a new cleanup scope. 809 explicit RunCleanupsScope(CodeGenFunction &CGF) 810 : PerformCleanup(true), CGF(CGF) 811 { 812 CleanupStackDepth = CGF.EHStack.stable_begin(); 813 OldDidCallStackSave = CGF.DidCallStackSave; 814 CGF.DidCallStackSave = false; 815 } 816 817 /// \brief Exit this cleanup scope, emitting any accumulated 818 /// cleanups. 819 ~RunCleanupsScope() { 820 if (PerformCleanup) { 821 CGF.DidCallStackSave = OldDidCallStackSave; 822 CGF.PopCleanupBlocks(CleanupStackDepth); 823 } 824 } 825 826 /// \brief Determine whether this scope requires any cleanups. 827 bool requiresCleanups() const { 828 return CGF.EHStack.stable_begin() != CleanupStackDepth; 829 } 830 831 /// \brief Force the emission of cleanups now, instead of waiting 832 /// until this object is destroyed. 833 void ForceCleanup() { 834 assert(PerformCleanup && "Already forced cleanup"); 835 CGF.DidCallStackSave = OldDidCallStackSave; 836 CGF.PopCleanupBlocks(CleanupStackDepth); 837 PerformCleanup = false; 838 } 839 }; 840 841 class LexicalScope: protected RunCleanupsScope { 842 SourceRange Range; 843 bool PopDebugStack; 844 845 LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION; 846 void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION; 847 848 public: 849 /// \brief Enter a new cleanup scope. 850 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 851 : RunCleanupsScope(CGF), Range(Range), PopDebugStack(true) { 852 if (CGDebugInfo *DI = CGF.getDebugInfo()) 853 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 854 } 855 856 /// \brief Exit this cleanup scope, emitting any accumulated 857 /// cleanups. 858 ~LexicalScope() { 859 if (PopDebugStack) { 860 CGDebugInfo *DI = CGF.getDebugInfo(); 861 if (DI) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 862 } 863 } 864 865 /// \brief Force the emission of cleanups now, instead of waiting 866 /// until this object is destroyed. 867 void ForceCleanup() { 868 RunCleanupsScope::ForceCleanup(); 869 if (CGDebugInfo *DI = CGF.getDebugInfo()) { 870 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 871 PopDebugStack = false; 872 } 873 } 874 }; 875 876 877 /// PopCleanupBlocks - Takes the old cleanup stack size and emits 878 /// the cleanup blocks that have been added. 879 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 880 881 void ResolveBranchFixups(llvm::BasicBlock *Target); 882 883 /// The given basic block lies in the current EH scope, but may be a 884 /// target of a potentially scope-crossing jump; get a stable handle 885 /// to which we can perform this jump later. 886 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 887 return JumpDest(Target, 888 EHStack.getInnermostNormalCleanup(), 889 NextCleanupDestIndex++); 890 } 891 892 /// The given basic block lies in the current EH scope, but may be a 893 /// target of a potentially scope-crossing jump; get a stable handle 894 /// to which we can perform this jump later. 895 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 896 return getJumpDestInCurrentScope(createBasicBlock(Name)); 897 } 898 899 /// EmitBranchThroughCleanup - Emit a branch from the current insert 900 /// block through the normal cleanup handling code (if any) and then 901 /// on to \arg Dest. 902 void EmitBranchThroughCleanup(JumpDest Dest); 903 904 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 905 /// specified destination obviously has no cleanups to run. 'false' is always 906 /// a conservatively correct answer for this method. 907 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 908 909 /// popCatchScope - Pops the catch scope at the top of the EHScope 910 /// stack, emitting any required code (other than the catch handlers 911 /// themselves). 912 void popCatchScope(); 913 914 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 915 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 916 917 /// An object to manage conditionally-evaluated expressions. 918 class ConditionalEvaluation { 919 llvm::BasicBlock *StartBB; 920 921 public: 922 ConditionalEvaluation(CodeGenFunction &CGF) 923 : StartBB(CGF.Builder.GetInsertBlock()) {} 924 925 void begin(CodeGenFunction &CGF) { 926 assert(CGF.OutermostConditional != this); 927 if (!CGF.OutermostConditional) 928 CGF.OutermostConditional = this; 929 } 930 931 void end(CodeGenFunction &CGF) { 932 assert(CGF.OutermostConditional != 0); 933 if (CGF.OutermostConditional == this) 934 CGF.OutermostConditional = 0; 935 } 936 937 /// Returns a block which will be executed prior to each 938 /// evaluation of the conditional code. 939 llvm::BasicBlock *getStartingBlock() const { 940 return StartBB; 941 } 942 }; 943 944 /// isInConditionalBranch - Return true if we're currently emitting 945 /// one branch or the other of a conditional expression. 946 bool isInConditionalBranch() const { return OutermostConditional != 0; } 947 948 void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) { 949 assert(isInConditionalBranch()); 950 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 951 new llvm::StoreInst(value, addr, &block->back()); 952 } 953 954 /// An RAII object to record that we're evaluating a statement 955 /// expression. 956 class StmtExprEvaluation { 957 CodeGenFunction &CGF; 958 959 /// We have to save the outermost conditional: cleanups in a 960 /// statement expression aren't conditional just because the 961 /// StmtExpr is. 962 ConditionalEvaluation *SavedOutermostConditional; 963 964 public: 965 StmtExprEvaluation(CodeGenFunction &CGF) 966 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 967 CGF.OutermostConditional = 0; 968 } 969 970 ~StmtExprEvaluation() { 971 CGF.OutermostConditional = SavedOutermostConditional; 972 CGF.EnsureInsertPoint(); 973 } 974 }; 975 976 /// An object which temporarily prevents a value from being 977 /// destroyed by aggressive peephole optimizations that assume that 978 /// all uses of a value have been realized in the IR. 979 class PeepholeProtection { 980 llvm::Instruction *Inst; 981 friend class CodeGenFunction; 982 983 public: 984 PeepholeProtection() : Inst(0) {} 985 }; 986 987 /// A non-RAII class containing all the information about a bound 988 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 989 /// this which makes individual mappings very simple; using this 990 /// class directly is useful when you have a variable number of 991 /// opaque values or don't want the RAII functionality for some 992 /// reason. 993 class OpaqueValueMappingData { 994 const OpaqueValueExpr *OpaqueValue; 995 bool BoundLValue; 996 CodeGenFunction::PeepholeProtection Protection; 997 998 OpaqueValueMappingData(const OpaqueValueExpr *ov, 999 bool boundLValue) 1000 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1001 public: 1002 OpaqueValueMappingData() : OpaqueValue(0) {} 1003 1004 static bool shouldBindAsLValue(const Expr *expr) { 1005 // gl-values should be bound as l-values for obvious reasons. 1006 // Records should be bound as l-values because IR generation 1007 // always keeps them in memory. Expressions of function type 1008 // act exactly like l-values but are formally required to be 1009 // r-values in C. 1010 return expr->isGLValue() || 1011 expr->getType()->isRecordType() || 1012 expr->getType()->isFunctionType(); 1013 } 1014 1015 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1016 const OpaqueValueExpr *ov, 1017 const Expr *e) { 1018 if (shouldBindAsLValue(ov)) 1019 return bind(CGF, ov, CGF.EmitLValue(e)); 1020 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1021 } 1022 1023 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1024 const OpaqueValueExpr *ov, 1025 const LValue &lv) { 1026 assert(shouldBindAsLValue(ov)); 1027 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1028 return OpaqueValueMappingData(ov, true); 1029 } 1030 1031 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1032 const OpaqueValueExpr *ov, 1033 const RValue &rv) { 1034 assert(!shouldBindAsLValue(ov)); 1035 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1036 1037 OpaqueValueMappingData data(ov, false); 1038 1039 // Work around an extremely aggressive peephole optimization in 1040 // EmitScalarConversion which assumes that all other uses of a 1041 // value are extant. 1042 data.Protection = CGF.protectFromPeepholes(rv); 1043 1044 return data; 1045 } 1046 1047 bool isValid() const { return OpaqueValue != 0; } 1048 void clear() { OpaqueValue = 0; } 1049 1050 void unbind(CodeGenFunction &CGF) { 1051 assert(OpaqueValue && "no data to unbind!"); 1052 1053 if (BoundLValue) { 1054 CGF.OpaqueLValues.erase(OpaqueValue); 1055 } else { 1056 CGF.OpaqueRValues.erase(OpaqueValue); 1057 CGF.unprotectFromPeepholes(Protection); 1058 } 1059 } 1060 }; 1061 1062 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1063 class OpaqueValueMapping { 1064 CodeGenFunction &CGF; 1065 OpaqueValueMappingData Data; 1066 1067 public: 1068 static bool shouldBindAsLValue(const Expr *expr) { 1069 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1070 } 1071 1072 /// Build the opaque value mapping for the given conditional 1073 /// operator if it's the GNU ?: extension. This is a common 1074 /// enough pattern that the convenience operator is really 1075 /// helpful. 1076 /// 1077 OpaqueValueMapping(CodeGenFunction &CGF, 1078 const AbstractConditionalOperator *op) : CGF(CGF) { 1079 if (isa<ConditionalOperator>(op)) 1080 // Leave Data empty. 1081 return; 1082 1083 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1084 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1085 e->getCommon()); 1086 } 1087 1088 OpaqueValueMapping(CodeGenFunction &CGF, 1089 const OpaqueValueExpr *opaqueValue, 1090 LValue lvalue) 1091 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1092 } 1093 1094 OpaqueValueMapping(CodeGenFunction &CGF, 1095 const OpaqueValueExpr *opaqueValue, 1096 RValue rvalue) 1097 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1098 } 1099 1100 void pop() { 1101 Data.unbind(CGF); 1102 Data.clear(); 1103 } 1104 1105 ~OpaqueValueMapping() { 1106 if (Data.isValid()) Data.unbind(CGF); 1107 } 1108 }; 1109 1110 /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field 1111 /// number that holds the value. 1112 unsigned getByRefValueLLVMField(const ValueDecl *VD) const; 1113 1114 /// BuildBlockByrefAddress - Computes address location of the 1115 /// variable which is declared as __block. 1116 llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr, 1117 const VarDecl *V); 1118private: 1119 CGDebugInfo *DebugInfo; 1120 bool DisableDebugInfo; 1121 1122 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1123 /// calling llvm.stacksave for multiple VLAs in the same scope. 1124 bool DidCallStackSave; 1125 1126 /// IndirectBranch - The first time an indirect goto is seen we create a block 1127 /// with an indirect branch. Every time we see the address of a label taken, 1128 /// we add the label to the indirect goto. Every subsequent indirect goto is 1129 /// codegen'd as a jump to the IndirectBranch's basic block. 1130 llvm::IndirectBrInst *IndirectBranch; 1131 1132 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1133 /// decls. 1134 typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy; 1135 DeclMapTy LocalDeclMap; 1136 1137 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1138 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1139 1140 // BreakContinueStack - This keeps track of where break and continue 1141 // statements should jump to. 1142 struct BreakContinue { 1143 BreakContinue(JumpDest Break, JumpDest Continue) 1144 : BreakBlock(Break), ContinueBlock(Continue) {} 1145 1146 JumpDest BreakBlock; 1147 JumpDest ContinueBlock; 1148 }; 1149 SmallVector<BreakContinue, 8> BreakContinueStack; 1150 1151 /// SwitchInsn - This is nearest current switch instruction. It is null if 1152 /// current context is not in a switch. 1153 llvm::SwitchInst *SwitchInsn; 1154 1155 /// CaseRangeBlock - This block holds if condition check for last case 1156 /// statement range in current switch instruction. 1157 llvm::BasicBlock *CaseRangeBlock; 1158 1159 /// OpaqueLValues - Keeps track of the current set of opaque value 1160 /// expressions. 1161 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1162 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1163 1164 // VLASizeMap - This keeps track of the associated size for each VLA type. 1165 // We track this by the size expression rather than the type itself because 1166 // in certain situations, like a const qualifier applied to an VLA typedef, 1167 // multiple VLA types can share the same size expression. 1168 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1169 // enter/leave scopes. 1170 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1171 1172 /// A block containing a single 'unreachable' instruction. Created 1173 /// lazily by getUnreachableBlock(). 1174 llvm::BasicBlock *UnreachableBlock; 1175 1176 /// CXXThisDecl - When generating code for a C++ member function, 1177 /// this will hold the implicit 'this' declaration. 1178 ImplicitParamDecl *CXXABIThisDecl; 1179 llvm::Value *CXXABIThisValue; 1180 llvm::Value *CXXThisValue; 1181 1182 /// CXXVTTDecl - When generating code for a base object constructor or 1183 /// base object destructor with virtual bases, this will hold the implicit 1184 /// VTT parameter. 1185 ImplicitParamDecl *CXXVTTDecl; 1186 llvm::Value *CXXVTTValue; 1187 1188 /// OutermostConditional - Points to the outermost active 1189 /// conditional control. This is used so that we know if a 1190 /// temporary should be destroyed conditionally. 1191 ConditionalEvaluation *OutermostConditional; 1192 1193 1194 /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM 1195 /// type as well as the field number that contains the actual data. 1196 llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *, 1197 unsigned> > ByRefValueInfo; 1198 1199 llvm::BasicBlock *TerminateLandingPad; 1200 llvm::BasicBlock *TerminateHandler; 1201 llvm::BasicBlock *TrapBB; 1202 1203 /// Add a kernel metadata node to the named metadata node 'opencl.kernels'. 1204 /// In the kernel metadata node, reference the kernel function and metadata 1205 /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2): 1206 /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string 1207 /// "work_group_size_hint", and three 32-bit integers X, Y and Z. 1208 /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string 1209 /// "reqd_work_group_size", and three 32-bit integers X, Y and Z. 1210 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1211 llvm::Function *Fn); 1212 1213public: 1214 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1215 ~CodeGenFunction(); 1216 1217 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1218 ASTContext &getContext() const { return CGM.getContext(); } 1219 /// Returns true if DebugInfo is actually initialized. 1220 bool maybeInitializeDebugInfo() { 1221 if (CGM.getModuleDebugInfo()) { 1222 DebugInfo = CGM.getModuleDebugInfo(); 1223 return true; 1224 } 1225 return false; 1226 } 1227 CGDebugInfo *getDebugInfo() { 1228 if (DisableDebugInfo) 1229 return NULL; 1230 return DebugInfo; 1231 } 1232 void disableDebugInfo() { DisableDebugInfo = true; } 1233 void enableDebugInfo() { DisableDebugInfo = false; } 1234 1235 bool shouldUseFusedARCCalls() { 1236 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1237 } 1238 1239 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1240 1241 /// Returns a pointer to the function's exception object and selector slot, 1242 /// which is assigned in every landing pad. 1243 llvm::Value *getExceptionSlot(); 1244 llvm::Value *getEHSelectorSlot(); 1245 1246 /// Returns the contents of the function's exception object and selector 1247 /// slots. 1248 llvm::Value *getExceptionFromSlot(); 1249 llvm::Value *getSelectorFromSlot(); 1250 1251 llvm::Value *getNormalCleanupDestSlot(); 1252 1253 llvm::BasicBlock *getUnreachableBlock() { 1254 if (!UnreachableBlock) { 1255 UnreachableBlock = createBasicBlock("unreachable"); 1256 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1257 } 1258 return UnreachableBlock; 1259 } 1260 1261 llvm::BasicBlock *getInvokeDest() { 1262 if (!EHStack.requiresLandingPad()) return 0; 1263 return getInvokeDestImpl(); 1264 } 1265 1266 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1267 1268 //===--------------------------------------------------------------------===// 1269 // Cleanups 1270 //===--------------------------------------------------------------------===// 1271 1272 typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty); 1273 1274 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1275 llvm::Value *arrayEndPointer, 1276 QualType elementType, 1277 Destroyer *destroyer); 1278 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1279 llvm::Value *arrayEnd, 1280 QualType elementType, 1281 Destroyer *destroyer); 1282 1283 void pushDestroy(QualType::DestructionKind dtorKind, 1284 llvm::Value *addr, QualType type); 1285 void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type, 1286 Destroyer *destroyer, bool useEHCleanupForArray); 1287 void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer, 1288 bool useEHCleanupForArray); 1289 llvm::Function *generateDestroyHelper(llvm::Constant *addr, 1290 QualType type, 1291 Destroyer *destroyer, 1292 bool useEHCleanupForArray); 1293 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1294 QualType type, Destroyer *destroyer, 1295 bool checkZeroLength, bool useEHCleanup); 1296 1297 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1298 1299 /// Determines whether an EH cleanup is required to destroy a type 1300 /// with the given destruction kind. 1301 bool needsEHCleanup(QualType::DestructionKind kind) { 1302 switch (kind) { 1303 case QualType::DK_none: 1304 return false; 1305 case QualType::DK_cxx_destructor: 1306 case QualType::DK_objc_weak_lifetime: 1307 return getLangOpts().Exceptions; 1308 case QualType::DK_objc_strong_lifetime: 1309 return getLangOpts().Exceptions && 1310 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1311 } 1312 llvm_unreachable("bad destruction kind"); 1313 } 1314 1315 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1316 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1317 } 1318 1319 //===--------------------------------------------------------------------===// 1320 // Objective-C 1321 //===--------------------------------------------------------------------===// 1322 1323 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1324 1325 void StartObjCMethod(const ObjCMethodDecl *MD, 1326 const ObjCContainerDecl *CD, 1327 SourceLocation StartLoc); 1328 1329 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1330 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1331 const ObjCPropertyImplDecl *PID); 1332 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1333 const ObjCPropertyImplDecl *propImpl, 1334 const ObjCMethodDecl *GetterMothodDecl, 1335 llvm::Constant *AtomicHelperFn); 1336 1337 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1338 ObjCMethodDecl *MD, bool ctor); 1339 1340 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1341 /// for the given property. 1342 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1343 const ObjCPropertyImplDecl *PID); 1344 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1345 const ObjCPropertyImplDecl *propImpl, 1346 llvm::Constant *AtomicHelperFn); 1347 bool IndirectObjCSetterArg(const CGFunctionInfo &FI); 1348 bool IvarTypeWithAggrGCObjects(QualType Ty); 1349 1350 //===--------------------------------------------------------------------===// 1351 // Block Bits 1352 //===--------------------------------------------------------------------===// 1353 1354 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1355 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 1356 static void destroyBlockInfos(CGBlockInfo *info); 1357 llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *, 1358 const CGBlockInfo &Info, 1359 llvm::StructType *, 1360 llvm::Constant *BlockVarLayout); 1361 1362 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1363 const CGBlockInfo &Info, 1364 const Decl *OuterFuncDecl, 1365 const DeclMapTy &ldm, 1366 bool IsLambdaConversionToBlock); 1367 1368 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1369 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1370 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1371 const ObjCPropertyImplDecl *PID); 1372 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1373 const ObjCPropertyImplDecl *PID); 1374 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1375 1376 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1377 1378 class AutoVarEmission; 1379 1380 void emitByrefStructureInit(const AutoVarEmission &emission); 1381 void enterByrefCleanup(const AutoVarEmission &emission); 1382 1383 llvm::Value *LoadBlockStruct() { 1384 assert(BlockPointer && "no block pointer set!"); 1385 return BlockPointer; 1386 } 1387 1388 void AllocateBlockCXXThisPointer(const CXXThisExpr *E); 1389 void AllocateBlockDecl(const DeclRefExpr *E); 1390 llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1391 llvm::Type *BuildByRefType(const VarDecl *var); 1392 1393 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1394 const CGFunctionInfo &FnInfo); 1395 void StartFunction(GlobalDecl GD, QualType RetTy, 1396 llvm::Function *Fn, 1397 const CGFunctionInfo &FnInfo, 1398 const FunctionArgList &Args, 1399 SourceLocation StartLoc); 1400 1401 void EmitConstructorBody(FunctionArgList &Args); 1402 void EmitDestructorBody(FunctionArgList &Args); 1403 void EmitFunctionBody(FunctionArgList &Args); 1404 1405 void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda, 1406 CallArgList &CallArgs); 1407 void EmitLambdaToBlockPointerBody(FunctionArgList &Args); 1408 void EmitLambdaBlockInvokeBody(); 1409 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1410 void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); 1411 1412 /// EmitReturnBlock - Emit the unified return block, trying to avoid its 1413 /// emission when possible. 1414 void EmitReturnBlock(); 1415 1416 /// FinishFunction - Complete IR generation of the current function. It is 1417 /// legal to call this function even if there is no current insertion point. 1418 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1419 1420 /// GenerateThunk - Generate a thunk for the given method. 1421 void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1422 GlobalDecl GD, const ThunkInfo &Thunk); 1423 1424 void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1425 GlobalDecl GD, const ThunkInfo &Thunk); 1426 1427 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1428 FunctionArgList &Args); 1429 1430 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init, 1431 ArrayRef<VarDecl *> ArrayIndexes); 1432 1433 /// InitializeVTablePointer - Initialize the vtable pointer of the given 1434 /// subobject. 1435 /// 1436 void InitializeVTablePointer(BaseSubobject Base, 1437 const CXXRecordDecl *NearestVBase, 1438 CharUnits OffsetFromNearestVBase, 1439 llvm::Constant *VTable, 1440 const CXXRecordDecl *VTableClass); 1441 1442 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1443 void InitializeVTablePointers(BaseSubobject Base, 1444 const CXXRecordDecl *NearestVBase, 1445 CharUnits OffsetFromNearestVBase, 1446 bool BaseIsNonVirtualPrimaryBase, 1447 llvm::Constant *VTable, 1448 const CXXRecordDecl *VTableClass, 1449 VisitedVirtualBasesSetTy& VBases); 1450 1451 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1452 1453 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1454 /// to by This. 1455 llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty); 1456 1457 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1458 /// given phase of destruction for a destructor. The end result 1459 /// should call destructors on members and base classes in reverse 1460 /// order of their construction. 1461 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1462 1463 /// ShouldInstrumentFunction - Return true if the current function should be 1464 /// instrumented with __cyg_profile_func_* calls 1465 bool ShouldInstrumentFunction(); 1466 1467 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1468 /// instrumentation function with the current function and the call site, if 1469 /// function instrumentation is enabled. 1470 void EmitFunctionInstrumentation(const char *Fn); 1471 1472 /// EmitMCountInstrumentation - Emit call to .mcount. 1473 void EmitMCountInstrumentation(); 1474 1475 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1476 /// arguments for the given function. This is also responsible for naming the 1477 /// LLVM function arguments. 1478 void EmitFunctionProlog(const CGFunctionInfo &FI, 1479 llvm::Function *Fn, 1480 const FunctionArgList &Args); 1481 1482 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1483 /// given temporary. 1484 void EmitFunctionEpilog(const CGFunctionInfo &FI); 1485 1486 /// EmitStartEHSpec - Emit the start of the exception spec. 1487 void EmitStartEHSpec(const Decl *D); 1488 1489 /// EmitEndEHSpec - Emit the end of the exception spec. 1490 void EmitEndEHSpec(const Decl *D); 1491 1492 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1493 llvm::BasicBlock *getTerminateLandingPad(); 1494 1495 /// getTerminateHandler - Return a handler (not a landing pad, just 1496 /// a catch handler) that just calls terminate. This is used when 1497 /// a terminate scope encloses a try. 1498 llvm::BasicBlock *getTerminateHandler(); 1499 1500 llvm::Type *ConvertTypeForMem(QualType T); 1501 llvm::Type *ConvertType(QualType T); 1502 llvm::Type *ConvertType(const TypeDecl *T) { 1503 return ConvertType(getContext().getTypeDeclType(T)); 1504 } 1505 1506 /// LoadObjCSelf - Load the value of self. This function is only valid while 1507 /// generating code for an Objective-C method. 1508 llvm::Value *LoadObjCSelf(); 1509 1510 /// TypeOfSelfObject - Return type of object that this self represents. 1511 QualType TypeOfSelfObject(); 1512 1513 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1514 /// an aggregate LLVM type or is void. 1515 static bool hasAggregateLLVMType(QualType T); 1516 1517 /// createBasicBlock - Create an LLVM basic block. 1518 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1519 llvm::Function *parent = 0, 1520 llvm::BasicBlock *before = 0) { 1521#ifdef NDEBUG 1522 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1523#else 1524 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1525#endif 1526 } 1527 1528 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1529 /// label maps to. 1530 JumpDest getJumpDestForLabel(const LabelDecl *S); 1531 1532 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1533 /// another basic block, simplify it. This assumes that no other code could 1534 /// potentially reference the basic block. 1535 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1536 1537 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1538 /// adding a fall-through branch from the current insert block if 1539 /// necessary. It is legal to call this function even if there is no current 1540 /// insertion point. 1541 /// 1542 /// IsFinished - If true, indicates that the caller has finished emitting 1543 /// branches to the given block and does not expect to emit code into it. This 1544 /// means the block can be ignored if it is unreachable. 1545 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1546 1547 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1548 /// near its uses, and leave the insertion point in it. 1549 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1550 1551 /// EmitBranch - Emit a branch to the specified basic block from the current 1552 /// insert block, taking care to avoid creation of branches from dummy 1553 /// blocks. It is legal to call this function even if there is no current 1554 /// insertion point. 1555 /// 1556 /// This function clears the current insertion point. The caller should follow 1557 /// calls to this function with calls to Emit*Block prior to generation new 1558 /// code. 1559 void EmitBranch(llvm::BasicBlock *Block); 1560 1561 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1562 /// indicates that the current code being emitted is unreachable. 1563 bool HaveInsertPoint() const { 1564 return Builder.GetInsertBlock() != 0; 1565 } 1566 1567 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1568 /// emitted IR has a place to go. Note that by definition, if this function 1569 /// creates a block then that block is unreachable; callers may do better to 1570 /// detect when no insertion point is defined and simply skip IR generation. 1571 void EnsureInsertPoint() { 1572 if (!HaveInsertPoint()) 1573 EmitBlock(createBasicBlock()); 1574 } 1575 1576 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1577 /// specified stmt yet. 1578 void ErrorUnsupported(const Stmt *S, const char *Type, 1579 bool OmitOnError=false); 1580 1581 //===--------------------------------------------------------------------===// 1582 // Helpers 1583 //===--------------------------------------------------------------------===// 1584 1585 LValue MakeAddrLValue(llvm::Value *V, QualType T, 1586 CharUnits Alignment = CharUnits()) { 1587 return LValue::MakeAddr(V, T, Alignment, getContext(), 1588 CGM.getTBAAInfo(T)); 1589 } 1590 1591 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 1592 CharUnits Alignment; 1593 if (!T->isIncompleteType()) 1594 Alignment = getContext().getTypeAlignInChars(T); 1595 return LValue::MakeAddr(V, T, Alignment, getContext(), 1596 CGM.getTBAAInfo(T)); 1597 } 1598 1599 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1600 /// block. The caller is responsible for setting an appropriate alignment on 1601 /// the alloca. 1602 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1603 const Twine &Name = "tmp"); 1604 1605 /// InitTempAlloca - Provide an initial value for the given alloca. 1606 void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value); 1607 1608 /// CreateIRTemp - Create a temporary IR object of the given type, with 1609 /// appropriate alignment. This routine should only be used when an temporary 1610 /// value needs to be stored into an alloca (for example, to avoid explicit 1611 /// PHI construction), but the type is the IR type, not the type appropriate 1612 /// for storing in memory. 1613 llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1614 1615 /// CreateMemTemp - Create a temporary memory object of the given type, with 1616 /// appropriate alignment. 1617 llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1618 1619 /// CreateAggTemp - Create a temporary memory object for the given 1620 /// aggregate type. 1621 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1622 CharUnits Alignment = getContext().getTypeAlignInChars(T); 1623 return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment, 1624 T.getQualifiers(), 1625 AggValueSlot::IsNotDestructed, 1626 AggValueSlot::DoesNotNeedGCBarriers, 1627 AggValueSlot::IsNotAliased); 1628 } 1629 1630 /// Emit a cast to void* in the appropriate address space. 1631 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1632 1633 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1634 /// expression and compare the result against zero, returning an Int1Ty value. 1635 llvm::Value *EvaluateExprAsBool(const Expr *E); 1636 1637 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1638 void EmitIgnoredExpr(const Expr *E); 1639 1640 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1641 /// any type. The result is returned as an RValue struct. If this is an 1642 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1643 /// the result should be returned. 1644 /// 1645 /// \param ignoreResult True if the resulting value isn't used. 1646 RValue EmitAnyExpr(const Expr *E, 1647 AggValueSlot aggSlot = AggValueSlot::ignored(), 1648 bool ignoreResult = false); 1649 1650 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1651 // or the value of the expression, depending on how va_list is defined. 1652 llvm::Value *EmitVAListRef(const Expr *E); 1653 1654 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1655 /// always be accessible even if no aggregate location is provided. 1656 RValue EmitAnyExprToTemp(const Expr *E); 1657 1658 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1659 /// arbitrary expression into the given memory location. 1660 void EmitAnyExprToMem(const Expr *E, llvm::Value *Location, 1661 Qualifiers Quals, bool IsInitializer); 1662 1663 /// EmitExprAsInit - Emits the code necessary to initialize a 1664 /// location in memory with the given initializer. 1665 void EmitExprAsInit(const Expr *init, const ValueDecl *D, 1666 LValue lvalue, bool capturedByInit); 1667 1668 /// hasVolatileMember - returns true if aggregate type has a volatile 1669 /// member. 1670 bool hasVolatileMember(QualType T) { 1671 if (const RecordType *RT = T->getAs<RecordType>()) { 1672 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 1673 return RD->hasVolatileMember(); 1674 } 1675 return false; 1676 } 1677 /// EmitAggregateCopy - Emit an aggrate assignment. 1678 /// 1679 /// The difference to EmitAggregateCopy is that tail padding is not copied. 1680 /// This is required for correctness when assigning non-POD structures in C++. 1681 void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1682 QualType EltTy) { 1683 bool IsVolatile = hasVolatileMember(EltTy); 1684 EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(), 1685 true); 1686 } 1687 1688 /// EmitAggregateCopy - Emit an aggrate copy. 1689 /// 1690 /// \param isVolatile - True iff either the source or the destination is 1691 /// volatile. 1692 /// \param isAssignment - If false, allow padding to be copied. This often 1693 /// yields more efficient. 1694 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1695 QualType EltTy, bool isVolatile=false, 1696 CharUnits Alignment = CharUnits::Zero(), 1697 bool isAssignment = false); 1698 1699 /// StartBlock - Start new block named N. If insert block is a dummy block 1700 /// then reuse it. 1701 void StartBlock(const char *N); 1702 1703 /// GetAddrOfLocalVar - Return the address of a local variable. 1704 llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) { 1705 llvm::Value *Res = LocalDeclMap[VD]; 1706 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1707 return Res; 1708 } 1709 1710 /// getOpaqueLValueMapping - Given an opaque value expression (which 1711 /// must be mapped to an l-value), return its mapping. 1712 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1713 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1714 1715 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1716 it = OpaqueLValues.find(e); 1717 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1718 return it->second; 1719 } 1720 1721 /// getOpaqueRValueMapping - Given an opaque value expression (which 1722 /// must be mapped to an r-value), return its mapping. 1723 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1724 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1725 1726 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1727 it = OpaqueRValues.find(e); 1728 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1729 return it->second; 1730 } 1731 1732 /// getAccessedFieldNo - Given an encoded value and a result number, return 1733 /// the input field number being accessed. 1734 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1735 1736 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1737 llvm::BasicBlock *GetIndirectGotoBlock(); 1738 1739 /// EmitNullInitialization - Generate code to set a value of the given type to 1740 /// null, If the type contains data member pointers, they will be initialized 1741 /// to -1 in accordance with the Itanium C++ ABI. 1742 void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty); 1743 1744 // EmitVAArg - Generate code to get an argument from the passed in pointer 1745 // and update it accordingly. The return value is a pointer to the argument. 1746 // FIXME: We should be able to get rid of this method and use the va_arg 1747 // instruction in LLVM instead once it works well enough. 1748 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty); 1749 1750 /// emitArrayLength - Compute the length of an array, even if it's a 1751 /// VLA, and drill down to the base element type. 1752 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1753 QualType &baseType, 1754 llvm::Value *&addr); 1755 1756 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1757 /// the given variably-modified type and store them in the VLASizeMap. 1758 /// 1759 /// This function can be called with a null (unreachable) insert point. 1760 void EmitVariablyModifiedType(QualType Ty); 1761 1762 /// getVLASize - Returns an LLVM value that corresponds to the size, 1763 /// in non-variably-sized elements, of a variable length array type, 1764 /// plus that largest non-variably-sized element type. Assumes that 1765 /// the type has already been emitted with EmitVariablyModifiedType. 1766 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1767 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1768 1769 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1770 /// generating code for an C++ member function. 1771 llvm::Value *LoadCXXThis() { 1772 assert(CXXThisValue && "no 'this' value for this function"); 1773 return CXXThisValue; 1774 } 1775 1776 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1777 /// virtual bases. 1778 llvm::Value *LoadCXXVTT() { 1779 assert(CXXVTTValue && "no VTT value for this function"); 1780 return CXXVTTValue; 1781 } 1782 1783 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1784 /// complete class to the given direct base. 1785 llvm::Value * 1786 GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value, 1787 const CXXRecordDecl *Derived, 1788 const CXXRecordDecl *Base, 1789 bool BaseIsVirtual); 1790 1791 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1792 /// load of 'this' and returns address of the base class. 1793 llvm::Value *GetAddressOfBaseClass(llvm::Value *Value, 1794 const CXXRecordDecl *Derived, 1795 CastExpr::path_const_iterator PathBegin, 1796 CastExpr::path_const_iterator PathEnd, 1797 bool NullCheckValue); 1798 1799 llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value, 1800 const CXXRecordDecl *Derived, 1801 CastExpr::path_const_iterator PathBegin, 1802 CastExpr::path_const_iterator PathEnd, 1803 bool NullCheckValue); 1804 1805 llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This, 1806 const CXXRecordDecl *ClassDecl, 1807 const CXXRecordDecl *BaseClassDecl); 1808 1809 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1810 CXXCtorType CtorType, 1811 const FunctionArgList &Args); 1812 // It's important not to confuse this and the previous function. Delegating 1813 // constructors are the C++0x feature. The constructor delegate optimization 1814 // is used to reduce duplication in the base and complete consturctors where 1815 // they are substantially the same. 1816 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1817 const FunctionArgList &Args); 1818 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1819 bool ForVirtualBase, llvm::Value *This, 1820 CallExpr::const_arg_iterator ArgBeg, 1821 CallExpr::const_arg_iterator ArgEnd); 1822 1823 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1824 llvm::Value *This, llvm::Value *Src, 1825 CallExpr::const_arg_iterator ArgBeg, 1826 CallExpr::const_arg_iterator ArgEnd); 1827 1828 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1829 const ConstantArrayType *ArrayTy, 1830 llvm::Value *ArrayPtr, 1831 CallExpr::const_arg_iterator ArgBeg, 1832 CallExpr::const_arg_iterator ArgEnd, 1833 bool ZeroInitialization = false); 1834 1835 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1836 llvm::Value *NumElements, 1837 llvm::Value *ArrayPtr, 1838 CallExpr::const_arg_iterator ArgBeg, 1839 CallExpr::const_arg_iterator ArgEnd, 1840 bool ZeroInitialization = false); 1841 1842 static Destroyer destroyCXXObject; 1843 1844 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1845 bool ForVirtualBase, llvm::Value *This); 1846 1847 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 1848 llvm::Value *NewPtr, llvm::Value *NumElements); 1849 1850 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 1851 llvm::Value *Ptr); 1852 1853 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1854 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1855 1856 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1857 QualType DeleteTy); 1858 1859 llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1860 llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE); 1861 llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E); 1862 1863 void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init); 1864 void EmitStdInitializerListCleanup(llvm::Value *loc, 1865 const InitListExpr *init); 1866 1867 /// \brief Situations in which we might emit a check for the suitability of a 1868 /// pointer or glvalue. 1869 enum TypeCheckKind { 1870 /// Checking the operand of a load. Must be suitably sized and aligned. 1871 TCK_Load, 1872 /// Checking the destination of a store. Must be suitably sized and aligned. 1873 TCK_Store, 1874 /// Checking the bound value in a reference binding. Must be suitably sized 1875 /// and aligned, but is not required to refer to an object (until the 1876 /// reference is used), per core issue 453. 1877 TCK_ReferenceBinding, 1878 /// Checking the object expression in a non-static data member access. Must 1879 /// be an object within its lifetime. 1880 TCK_MemberAccess, 1881 /// Checking the 'this' pointer for a call to a non-static member function. 1882 /// Must be an object within its lifetime. 1883 TCK_MemberCall, 1884 /// Checking the 'this' pointer for a constructor call. 1885 TCK_ConstructorCall 1886 }; 1887 1888 /// \brief Emit a check that \p V is the address of storage of the 1889 /// appropriate size and alignment for an object of type \p Type. 1890 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 1891 QualType Type, CharUnits Alignment = CharUnits::Zero()); 1892 1893 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1894 bool isInc, bool isPre); 1895 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1896 bool isInc, bool isPre); 1897 //===--------------------------------------------------------------------===// 1898 // Declaration Emission 1899 //===--------------------------------------------------------------------===// 1900 1901 /// EmitDecl - Emit a declaration. 1902 /// 1903 /// This function can be called with a null (unreachable) insert point. 1904 void EmitDecl(const Decl &D); 1905 1906 /// EmitVarDecl - Emit a local variable declaration. 1907 /// 1908 /// This function can be called with a null (unreachable) insert point. 1909 void EmitVarDecl(const VarDecl &D); 1910 1911 void EmitScalarInit(const Expr *init, const ValueDecl *D, 1912 LValue lvalue, bool capturedByInit); 1913 void EmitScalarInit(llvm::Value *init, LValue lvalue); 1914 1915 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1916 llvm::Value *Address); 1917 1918 /// EmitAutoVarDecl - Emit an auto variable declaration. 1919 /// 1920 /// This function can be called with a null (unreachable) insert point. 1921 void EmitAutoVarDecl(const VarDecl &D); 1922 1923 class AutoVarEmission { 1924 friend class CodeGenFunction; 1925 1926 const VarDecl *Variable; 1927 1928 /// The alignment of the variable. 1929 CharUnits Alignment; 1930 1931 /// The address of the alloca. Null if the variable was emitted 1932 /// as a global constant. 1933 llvm::Value *Address; 1934 1935 llvm::Value *NRVOFlag; 1936 1937 /// True if the variable is a __block variable. 1938 bool IsByRef; 1939 1940 /// True if the variable is of aggregate type and has a constant 1941 /// initializer. 1942 bool IsConstantAggregate; 1943 1944 struct Invalid {}; 1945 AutoVarEmission(Invalid) : Variable(0) {} 1946 1947 AutoVarEmission(const VarDecl &variable) 1948 : Variable(&variable), Address(0), NRVOFlag(0), 1949 IsByRef(false), IsConstantAggregate(false) {} 1950 1951 bool wasEmittedAsGlobal() const { return Address == 0; } 1952 1953 public: 1954 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 1955 1956 /// Returns the address of the object within this declaration. 1957 /// Note that this does not chase the forwarding pointer for 1958 /// __block decls. 1959 llvm::Value *getObjectAddress(CodeGenFunction &CGF) const { 1960 if (!IsByRef) return Address; 1961 1962 return CGF.Builder.CreateStructGEP(Address, 1963 CGF.getByRefValueLLVMField(Variable), 1964 Variable->getNameAsString()); 1965 } 1966 }; 1967 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 1968 void EmitAutoVarInit(const AutoVarEmission &emission); 1969 void EmitAutoVarCleanups(const AutoVarEmission &emission); 1970 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 1971 QualType::DestructionKind dtorKind); 1972 1973 void EmitStaticVarDecl(const VarDecl &D, 1974 llvm::GlobalValue::LinkageTypes Linkage); 1975 1976 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 1977 void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo); 1978 1979 /// protectFromPeepholes - Protect a value that we're intending to 1980 /// store to the side, but which will probably be used later, from 1981 /// aggressive peepholing optimizations that might delete it. 1982 /// 1983 /// Pass the result to unprotectFromPeepholes to declare that 1984 /// protection is no longer required. 1985 /// 1986 /// There's no particular reason why this shouldn't apply to 1987 /// l-values, it's just that no existing peepholes work on pointers. 1988 PeepholeProtection protectFromPeepholes(RValue rvalue); 1989 void unprotectFromPeepholes(PeepholeProtection protection); 1990 1991 //===--------------------------------------------------------------------===// 1992 // Statement Emission 1993 //===--------------------------------------------------------------------===// 1994 1995 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 1996 void EmitStopPoint(const Stmt *S); 1997 1998 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 1999 /// this function even if there is no current insertion point. 2000 /// 2001 /// This function may clear the current insertion point; callers should use 2002 /// EnsureInsertPoint if they wish to subsequently generate code without first 2003 /// calling EmitBlock, EmitBranch, or EmitStmt. 2004 void EmitStmt(const Stmt *S); 2005 2006 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2007 /// necessarily require an insertion point or debug information; typically 2008 /// because the statement amounts to a jump or a container of other 2009 /// statements. 2010 /// 2011 /// \return True if the statement was handled. 2012 bool EmitSimpleStmt(const Stmt *S); 2013 2014 RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2015 AggValueSlot AVS = AggValueSlot::ignored()); 2016 2017 /// EmitLabel - Emit the block for the given label. It is legal to call this 2018 /// function even if there is no current insertion point. 2019 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2020 2021 void EmitLabelStmt(const LabelStmt &S); 2022 void EmitAttributedStmt(const AttributedStmt &S); 2023 void EmitGotoStmt(const GotoStmt &S); 2024 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2025 void EmitIfStmt(const IfStmt &S); 2026 void EmitWhileStmt(const WhileStmt &S); 2027 void EmitDoStmt(const DoStmt &S); 2028 void EmitForStmt(const ForStmt &S); 2029 void EmitReturnStmt(const ReturnStmt &S); 2030 void EmitDeclStmt(const DeclStmt &S); 2031 void EmitBreakStmt(const BreakStmt &S); 2032 void EmitContinueStmt(const ContinueStmt &S); 2033 void EmitSwitchStmt(const SwitchStmt &S); 2034 void EmitDefaultStmt(const DefaultStmt &S); 2035 void EmitCaseStmt(const CaseStmt &S); 2036 void EmitCaseStmtRange(const CaseStmt &S); 2037 void EmitAsmStmt(const AsmStmt &S); 2038 2039 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2040 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2041 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2042 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2043 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2044 2045 llvm::Constant *getUnwindResumeFn(); 2046 llvm::Constant *getUnwindResumeOrRethrowFn(); 2047 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2048 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2049 2050 void EmitCXXTryStmt(const CXXTryStmt &S); 2051 void EmitCXXForRangeStmt(const CXXForRangeStmt &S); 2052 2053 //===--------------------------------------------------------------------===// 2054 // LValue Expression Emission 2055 //===--------------------------------------------------------------------===// 2056 2057 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 2058 RValue GetUndefRValue(QualType Ty); 2059 2060 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 2061 /// and issue an ErrorUnsupported style diagnostic (using the 2062 /// provided Name). 2063 RValue EmitUnsupportedRValue(const Expr *E, 2064 const char *Name); 2065 2066 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 2067 /// an ErrorUnsupported style diagnostic (using the provided Name). 2068 LValue EmitUnsupportedLValue(const Expr *E, 2069 const char *Name); 2070 2071 /// EmitLValue - Emit code to compute a designator that specifies the location 2072 /// of the expression. 2073 /// 2074 /// This can return one of two things: a simple address or a bitfield 2075 /// reference. In either case, the LLVM Value* in the LValue structure is 2076 /// guaranteed to be an LLVM pointer type. 2077 /// 2078 /// If this returns a bitfield reference, nothing about the pointee type of 2079 /// the LLVM value is known: For example, it may not be a pointer to an 2080 /// integer. 2081 /// 2082 /// If this returns a normal address, and if the lvalue's C type is fixed 2083 /// size, this method guarantees that the returned pointer type will point to 2084 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 2085 /// variable length type, this is not possible. 2086 /// 2087 LValue EmitLValue(const Expr *E); 2088 2089 /// \brief Same as EmitLValue but additionally we generate checking code to 2090 /// guard against undefined behavior. This is only suitable when we know 2091 /// that the address will be used to access the object. 2092 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 2093 2094 /// EmitToMemory - Change a scalar value from its value 2095 /// representation to its in-memory representation. 2096 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 2097 2098 /// EmitFromMemory - Change a scalar value from its memory 2099 /// representation to its value representation. 2100 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 2101 2102 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2103 /// care to appropriately convert from the memory representation to 2104 /// the LLVM value representation. 2105 llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 2106 unsigned Alignment, QualType Ty, 2107 llvm::MDNode *TBAAInfo = 0); 2108 2109 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2110 /// care to appropriately convert from the memory representation to 2111 /// the LLVM value representation. The l-value must be a simple 2112 /// l-value. 2113 llvm::Value *EmitLoadOfScalar(LValue lvalue); 2114 2115 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2116 /// care to appropriately convert from the memory representation to 2117 /// the LLVM value representation. 2118 void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 2119 bool Volatile, unsigned Alignment, QualType Ty, 2120 llvm::MDNode *TBAAInfo = 0, bool isInit=false); 2121 2122 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2123 /// care to appropriately convert from the memory representation to 2124 /// the LLVM value representation. The l-value must be a simple 2125 /// l-value. The isInit flag indicates whether this is an initialization. 2126 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 2127 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 2128 2129 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 2130 /// this method emits the address of the lvalue, then loads the result as an 2131 /// rvalue, returning the rvalue. 2132 RValue EmitLoadOfLValue(LValue V); 2133 RValue EmitLoadOfExtVectorElementLValue(LValue V); 2134 RValue EmitLoadOfBitfieldLValue(LValue LV); 2135 2136 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2137 /// lvalue, where both are guaranteed to the have the same type, and that type 2138 /// is 'Ty'. 2139 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false); 2140 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 2141 2142 /// EmitStoreThroughLValue - Store Src into Dst with same constraints as 2143 /// EmitStoreThroughLValue. 2144 /// 2145 /// \param Result [out] - If non-null, this will be set to a Value* for the 2146 /// bit-field contents after the store, appropriate for use as the result of 2147 /// an assignment to the bit-field. 2148 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2149 llvm::Value **Result=0); 2150 2151 /// Emit an l-value for an assignment (simple or compound) of complex type. 2152 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 2153 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 2154 2155 // Note: only available for agg return types 2156 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 2157 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 2158 // Note: only available for agg return types 2159 LValue EmitCallExprLValue(const CallExpr *E); 2160 // Note: only available for agg return types 2161 LValue EmitVAArgExprLValue(const VAArgExpr *E); 2162 LValue EmitDeclRefLValue(const DeclRefExpr *E); 2163 LValue EmitStringLiteralLValue(const StringLiteral *E); 2164 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 2165 LValue EmitPredefinedLValue(const PredefinedExpr *E); 2166 LValue EmitUnaryOpLValue(const UnaryOperator *E); 2167 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E); 2168 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 2169 LValue EmitMemberExpr(const MemberExpr *E); 2170 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 2171 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 2172 LValue EmitInitListLValue(const InitListExpr *E); 2173 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 2174 LValue EmitCastLValue(const CastExpr *E); 2175 LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E); 2176 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 2177 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 2178 2179 RValue EmitRValueForField(LValue LV, const FieldDecl *FD); 2180 2181 class ConstantEmission { 2182 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 2183 ConstantEmission(llvm::Constant *C, bool isReference) 2184 : ValueAndIsReference(C, isReference) {} 2185 public: 2186 ConstantEmission() {} 2187 static ConstantEmission forReference(llvm::Constant *C) { 2188 return ConstantEmission(C, true); 2189 } 2190 static ConstantEmission forValue(llvm::Constant *C) { 2191 return ConstantEmission(C, false); 2192 } 2193 2194 operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; } 2195 2196 bool isReference() const { return ValueAndIsReference.getInt(); } 2197 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 2198 assert(isReference()); 2199 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 2200 refExpr->getType()); 2201 } 2202 2203 llvm::Constant *getValue() const { 2204 assert(!isReference()); 2205 return ValueAndIsReference.getPointer(); 2206 } 2207 }; 2208 2209 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 2210 2211 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 2212 AggValueSlot slot = AggValueSlot::ignored()); 2213 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 2214 2215 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2216 const ObjCIvarDecl *Ivar); 2217 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 2218 2219 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 2220 /// if the Field is a reference, this will return the address of the reference 2221 /// and not the address of the value stored in the reference. 2222 LValue EmitLValueForFieldInitialization(LValue Base, 2223 const FieldDecl* Field); 2224 2225 LValue EmitLValueForIvar(QualType ObjectTy, 2226 llvm::Value* Base, const ObjCIvarDecl *Ivar, 2227 unsigned CVRQualifiers); 2228 2229 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 2230 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 2231 LValue EmitLambdaLValue(const LambdaExpr *E); 2232 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2233 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 2234 2235 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2236 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2237 LValue EmitStmtExprLValue(const StmtExpr *E); 2238 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2239 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2240 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 2241 2242 //===--------------------------------------------------------------------===// 2243 // Scalar Expression Emission 2244 //===--------------------------------------------------------------------===// 2245 2246 /// EmitCall - Generate a call of the given function, expecting the given 2247 /// result type, and using the given argument list which specifies both the 2248 /// LLVM arguments and the types they were derived from. 2249 /// 2250 /// \param TargetDecl - If given, the decl of the function in a direct call; 2251 /// used to set attributes on the call (noreturn, etc.). 2252 RValue EmitCall(const CGFunctionInfo &FnInfo, 2253 llvm::Value *Callee, 2254 ReturnValueSlot ReturnValue, 2255 const CallArgList &Args, 2256 const Decl *TargetDecl = 0, 2257 llvm::Instruction **callOrInvoke = 0); 2258 2259 RValue EmitCall(QualType FnType, llvm::Value *Callee, 2260 ReturnValueSlot ReturnValue, 2261 CallExpr::const_arg_iterator ArgBeg, 2262 CallExpr::const_arg_iterator ArgEnd, 2263 const Decl *TargetDecl = 0); 2264 RValue EmitCallExpr(const CallExpr *E, 2265 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2266 2267 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2268 ArrayRef<llvm::Value *> Args, 2269 const Twine &Name = ""); 2270 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2271 const Twine &Name = ""); 2272 2273 llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This, 2274 llvm::Type *Ty); 2275 llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type, 2276 llvm::Value *This, llvm::Type *Ty); 2277 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2278 NestedNameSpecifier *Qual, 2279 llvm::Type *Ty); 2280 2281 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2282 CXXDtorType Type, 2283 const CXXRecordDecl *RD); 2284 2285 RValue EmitCXXMemberCall(const CXXMethodDecl *MD, 2286 SourceLocation CallLoc, 2287 llvm::Value *Callee, 2288 ReturnValueSlot ReturnValue, 2289 llvm::Value *This, 2290 llvm::Value *VTT, 2291 CallExpr::const_arg_iterator ArgBeg, 2292 CallExpr::const_arg_iterator ArgEnd); 2293 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2294 ReturnValueSlot ReturnValue); 2295 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2296 ReturnValueSlot ReturnValue); 2297 2298 llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E, 2299 const CXXMethodDecl *MD, 2300 llvm::Value *This); 2301 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2302 const CXXMethodDecl *MD, 2303 ReturnValueSlot ReturnValue); 2304 2305 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 2306 ReturnValueSlot ReturnValue); 2307 2308 2309 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2310 unsigned BuiltinID, const CallExpr *E); 2311 2312 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2313 2314 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2315 /// is unhandled by the current target. 2316 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2317 2318 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2319 llvm::Value *EmitNeonCall(llvm::Function *F, 2320 SmallVectorImpl<llvm::Value*> &O, 2321 const char *name, 2322 unsigned shift = 0, bool rightshift = false); 2323 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2324 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 2325 bool negateForRightShift); 2326 2327 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 2328 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2329 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2330 2331 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2332 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2333 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 2334 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 2335 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 2336 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 2337 const ObjCMethodDecl *MethodWithObjects); 2338 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2339 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2340 ReturnValueSlot Return = ReturnValueSlot()); 2341 2342 /// Retrieves the default cleanup kind for an ARC cleanup. 2343 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 2344 CleanupKind getARCCleanupKind() { 2345 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 2346 ? NormalAndEHCleanup : NormalCleanup; 2347 } 2348 2349 // ARC primitives. 2350 void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr); 2351 void EmitARCDestroyWeak(llvm::Value *addr); 2352 llvm::Value *EmitARCLoadWeak(llvm::Value *addr); 2353 llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr); 2354 llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr, 2355 bool ignored); 2356 void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src); 2357 void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src); 2358 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 2359 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 2360 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 2361 bool ignored); 2362 llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value, 2363 bool ignored); 2364 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 2365 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 2366 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 2367 void EmitARCDestroyStrong(llvm::Value *addr, bool precise); 2368 void EmitARCRelease(llvm::Value *value, bool precise); 2369 llvm::Value *EmitARCAutorelease(llvm::Value *value); 2370 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 2371 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 2372 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 2373 2374 std::pair<LValue,llvm::Value*> 2375 EmitARCStoreAutoreleasing(const BinaryOperator *e); 2376 std::pair<LValue,llvm::Value*> 2377 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 2378 2379 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 2380 2381 llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr); 2382 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 2383 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 2384 2385 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 2386 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 2387 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 2388 2389 static Destroyer destroyARCStrongImprecise; 2390 static Destroyer destroyARCStrongPrecise; 2391 static Destroyer destroyARCWeak; 2392 2393 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 2394 llvm::Value *EmitObjCAutoreleasePoolPush(); 2395 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 2396 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 2397 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 2398 2399 /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in 2400 /// expression. Will emit a temporary variable if E is not an LValue. 2401 RValue EmitReferenceBindingToExpr(const Expr* E, 2402 const NamedDecl *InitializedDecl); 2403 2404 //===--------------------------------------------------------------------===// 2405 // Expression Emission 2406 //===--------------------------------------------------------------------===// 2407 2408 // Expressions are broken into three classes: scalar, complex, aggregate. 2409 2410 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 2411 /// scalar type, returning the result. 2412 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 2413 2414 /// EmitScalarConversion - Emit a conversion from the specified type to the 2415 /// specified destination type, both of which are LLVM scalar types. 2416 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 2417 QualType DstTy); 2418 2419 /// EmitComplexToScalarConversion - Emit a conversion from the specified 2420 /// complex type to the specified destination type, where the destination type 2421 /// is an LLVM scalar type. 2422 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 2423 QualType DstTy); 2424 2425 2426 /// EmitAggExpr - Emit the computation of the specified expression 2427 /// of aggregate type. The result is computed into the given slot, 2428 /// which may be null to indicate that the value is not needed. 2429 void EmitAggExpr(const Expr *E, AggValueSlot AS); 2430 2431 /// EmitAggExprToLValue - Emit the computation of the specified expression of 2432 /// aggregate type into a temporary LValue. 2433 LValue EmitAggExprToLValue(const Expr *E); 2434 2435 /// EmitGCMemmoveCollectable - Emit special API for structs with object 2436 /// pointers. 2437 void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr, 2438 QualType Ty); 2439 2440 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2441 /// make sure it survives garbage collection until this point. 2442 void EmitExtendGCLifetime(llvm::Value *object); 2443 2444 /// EmitComplexExpr - Emit the computation of the specified expression of 2445 /// complex type, returning the result. 2446 ComplexPairTy EmitComplexExpr(const Expr *E, 2447 bool IgnoreReal = false, 2448 bool IgnoreImag = false); 2449 2450 /// EmitComplexExprIntoAddr - Emit the computation of the specified expression 2451 /// of complex type, storing into the specified Value*. 2452 void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr, 2453 bool DestIsVolatile); 2454 2455 /// StoreComplexToAddr - Store a complex number into the specified address. 2456 void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr, 2457 bool DestIsVolatile); 2458 /// LoadComplexFromAddr - Load a complex number from the specified address. 2459 ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile); 2460 2461 /// CreateStaticVarDecl - Create a zero-initialized LLVM global for 2462 /// a static local variable. 2463 llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D, 2464 const char *Separator, 2465 llvm::GlobalValue::LinkageTypes Linkage); 2466 2467 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2468 /// global variable that has already been created for it. If the initializer 2469 /// has a different type than GV does, this may free GV and return a different 2470 /// one. Otherwise it just returns GV. 2471 llvm::GlobalVariable * 2472 AddInitializerToStaticVarDecl(const VarDecl &D, 2473 llvm::GlobalVariable *GV); 2474 2475 2476 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2477 /// variable with global storage. 2478 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 2479 bool PerformInit); 2480 2481 /// Call atexit() with a function that passes the given argument to 2482 /// the given function. 2483 void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr); 2484 2485 /// Emit code in this function to perform a guarded variable 2486 /// initialization. Guarded initializations are used when it's not 2487 /// possible to prove that an initialization will be done exactly 2488 /// once, e.g. with a static local variable or a static data member 2489 /// of a class template. 2490 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 2491 bool PerformInit); 2492 2493 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2494 /// variables. 2495 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2496 llvm::Constant **Decls, 2497 unsigned NumDecls); 2498 2499 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 2500 /// variables. 2501 void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn, 2502 const std::vector<std::pair<llvm::WeakVH, 2503 llvm::Constant*> > &DtorsAndObjects); 2504 2505 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2506 const VarDecl *D, 2507 llvm::GlobalVariable *Addr, 2508 bool PerformInit); 2509 2510 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2511 2512 void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, 2513 const Expr *Exp); 2514 2515 void enterFullExpression(const ExprWithCleanups *E) { 2516 if (E->getNumObjects() == 0) return; 2517 enterNonTrivialFullExpression(E); 2518 } 2519 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 2520 2521 void EmitCXXThrowExpr(const CXXThrowExpr *E); 2522 2523 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 2524 2525 RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0); 2526 2527 //===--------------------------------------------------------------------===// 2528 // Annotations Emission 2529 //===--------------------------------------------------------------------===// 2530 2531 /// Emit an annotation call (intrinsic or builtin). 2532 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 2533 llvm::Value *AnnotatedVal, 2534 StringRef AnnotationStr, 2535 SourceLocation Location); 2536 2537 /// Emit local annotations for the local variable V, declared by D. 2538 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 2539 2540 /// Emit field annotations for the given field & value. Returns the 2541 /// annotation result. 2542 llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V); 2543 2544 //===--------------------------------------------------------------------===// 2545 // Internal Helpers 2546 //===--------------------------------------------------------------------===// 2547 2548 /// ContainsLabel - Return true if the statement contains a label in it. If 2549 /// this statement is not executed normally, it not containing a label means 2550 /// that we can just remove the code. 2551 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 2552 2553 /// containsBreak - Return true if the statement contains a break out of it. 2554 /// If the statement (recursively) contains a switch or loop with a break 2555 /// inside of it, this is fine. 2556 static bool containsBreak(const Stmt *S); 2557 2558 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2559 /// to a constant, or if it does but contains a label, return false. If it 2560 /// constant folds return true and set the boolean result in Result. 2561 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 2562 2563 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2564 /// to a constant, or if it does but contains a label, return false. If it 2565 /// constant folds return true and set the folded value. 2566 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result); 2567 2568 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 2569 /// if statement) to the specified blocks. Based on the condition, this might 2570 /// try to simplify the codegen of the conditional based on the branch. 2571 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 2572 llvm::BasicBlock *FalseBlock); 2573 2574 /// \brief Emit a description of a type in a format suitable for passing to 2575 /// a runtime sanitizer handler. 2576 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 2577 2578 /// \brief Convert a value into a format suitable for passing to a runtime 2579 /// sanitizer handler. 2580 llvm::Value *EmitCheckValue(llvm::Value *V); 2581 2582 /// \brief Emit a description of a source location in a format suitable for 2583 /// passing to a runtime sanitizer handler. 2584 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 2585 2586 /// \brief Specify under what conditions this check can be recovered 2587 enum CheckRecoverableKind { 2588 /// Always terminate program execution if this check fails 2589 CRK_Unrecoverable, 2590 /// Check supports recovering, allows user to specify which 2591 CRK_Recoverable, 2592 /// Runtime conditionally aborts, always need to support recovery. 2593 CRK_AlwaysRecoverable 2594 }; 2595 2596 /// \brief Create a basic block that will call a handler function in a 2597 /// sanitizer runtime with the provided arguments, and create a conditional 2598 /// branch to it. 2599 void EmitCheck(llvm::Value *Checked, StringRef CheckName, 2600 ArrayRef<llvm::Constant *> StaticArgs, 2601 ArrayRef<llvm::Value *> DynamicArgs, 2602 CheckRecoverableKind Recoverable); 2603 2604 /// \brief Create a basic block that will call the trap intrinsic, and emit a 2605 /// conditional branch to it, for the -ftrapv checks. 2606 void EmitTrapvCheck(llvm::Value *Checked); 2607 2608 /// EmitCallArg - Emit a single call argument. 2609 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 2610 2611 /// EmitDelegateCallArg - We are performing a delegate call; that 2612 /// is, the current function is delegating to another one. Produce 2613 /// a r-value suitable for passing the given parameter. 2614 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param); 2615 2616 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 2617 /// point operation, expressed as the maximum relative error in ulp. 2618 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 2619 2620private: 2621 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 2622 void EmitReturnOfRValue(RValue RV, QualType Ty); 2623 2624 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 2625 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 2626 /// 2627 /// \param AI - The first function argument of the expansion. 2628 /// \return The argument following the last expanded function 2629 /// argument. 2630 llvm::Function::arg_iterator 2631 ExpandTypeFromArgs(QualType Ty, LValue Dst, 2632 llvm::Function::arg_iterator AI); 2633 2634 /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg 2635 /// Ty, into individual arguments on the provided vector \arg Args. See 2636 /// ABIArgInfo::Expand. 2637 void ExpandTypeToArgs(QualType Ty, RValue Src, 2638 SmallVector<llvm::Value*, 16> &Args, 2639 llvm::FunctionType *IRFuncTy); 2640 2641 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 2642 const Expr *InputExpr, std::string &ConstraintStr); 2643 2644 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 2645 LValue InputValue, QualType InputType, 2646 std::string &ConstraintStr); 2647 2648 /// EmitCallArgs - Emit call arguments for a function. 2649 /// The CallArgTypeInfo parameter is used for iterating over the known 2650 /// argument types of the function being called. 2651 template<typename T> 2652 void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo, 2653 CallExpr::const_arg_iterator ArgBeg, 2654 CallExpr::const_arg_iterator ArgEnd) { 2655 CallExpr::const_arg_iterator Arg = ArgBeg; 2656 2657 // First, use the argument types that the type info knows about 2658 if (CallArgTypeInfo) { 2659 for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(), 2660 E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) { 2661 assert(Arg != ArgEnd && "Running over edge of argument list!"); 2662 QualType ArgType = *I; 2663#ifndef NDEBUG 2664 QualType ActualArgType = Arg->getType(); 2665 if (ArgType->isPointerType() && ActualArgType->isPointerType()) { 2666 QualType ActualBaseType = 2667 ActualArgType->getAs<PointerType>()->getPointeeType(); 2668 QualType ArgBaseType = 2669 ArgType->getAs<PointerType>()->getPointeeType(); 2670 if (ArgBaseType->isVariableArrayType()) { 2671 if (const VariableArrayType *VAT = 2672 getContext().getAsVariableArrayType(ActualBaseType)) { 2673 if (!VAT->getSizeExpr()) 2674 ActualArgType = ArgType; 2675 } 2676 } 2677 } 2678 assert(getContext().getCanonicalType(ArgType.getNonReferenceType()). 2679 getTypePtr() == 2680 getContext().getCanonicalType(ActualArgType).getTypePtr() && 2681 "type mismatch in call argument!"); 2682#endif 2683 EmitCallArg(Args, *Arg, ArgType); 2684 } 2685 2686 // Either we've emitted all the call args, or we have a call to a 2687 // variadic function. 2688 assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) && 2689 "Extra arguments in non-variadic function!"); 2690 2691 } 2692 2693 // If we still have any arguments, emit them using the type of the argument. 2694 for (; Arg != ArgEnd; ++Arg) 2695 EmitCallArg(Args, *Arg, Arg->getType()); 2696 } 2697 2698 const TargetCodeGenInfo &getTargetHooks() const { 2699 return CGM.getTargetCodeGenInfo(); 2700 } 2701 2702 void EmitDeclMetadata(); 2703 2704 CodeGenModule::ByrefHelpers * 2705 buildByrefHelpers(llvm::StructType &byrefType, 2706 const AutoVarEmission &emission); 2707 2708 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 2709 2710 /// GetPointeeAlignment - Given an expression with a pointer type, emit the 2711 /// value and compute our best estimate of the alignment of the pointee. 2712 std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr); 2713}; 2714 2715/// Helper class with most of the code for saving a value for a 2716/// conditional expression cleanup. 2717struct DominatingLLVMValue { 2718 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 2719 2720 /// Answer whether the given value needs extra work to be saved. 2721 static bool needsSaving(llvm::Value *value) { 2722 // If it's not an instruction, we don't need to save. 2723 if (!isa<llvm::Instruction>(value)) return false; 2724 2725 // If it's an instruction in the entry block, we don't need to save. 2726 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 2727 return (block != &block->getParent()->getEntryBlock()); 2728 } 2729 2730 /// Try to save the given value. 2731 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 2732 if (!needsSaving(value)) return saved_type(value, false); 2733 2734 // Otherwise we need an alloca. 2735 llvm::Value *alloca = 2736 CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save"); 2737 CGF.Builder.CreateStore(value, alloca); 2738 2739 return saved_type(alloca, true); 2740 } 2741 2742 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 2743 if (!value.getInt()) return value.getPointer(); 2744 return CGF.Builder.CreateLoad(value.getPointer()); 2745 } 2746}; 2747 2748/// A partial specialization of DominatingValue for llvm::Values that 2749/// might be llvm::Instructions. 2750template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 2751 typedef T *type; 2752 static type restore(CodeGenFunction &CGF, saved_type value) { 2753 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 2754 } 2755}; 2756 2757/// A specialization of DominatingValue for RValue. 2758template <> struct DominatingValue<RValue> { 2759 typedef RValue type; 2760 class saved_type { 2761 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 2762 AggregateAddress, ComplexAddress }; 2763 2764 llvm::Value *Value; 2765 Kind K; 2766 saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {} 2767 2768 public: 2769 static bool needsSaving(RValue value); 2770 static saved_type save(CodeGenFunction &CGF, RValue value); 2771 RValue restore(CodeGenFunction &CGF); 2772 2773 // implementations in CGExprCXX.cpp 2774 }; 2775 2776 static bool needsSaving(type value) { 2777 return saved_type::needsSaving(value); 2778 } 2779 static saved_type save(CodeGenFunction &CGF, type value) { 2780 return saved_type::save(CGF, value); 2781 } 2782 static type restore(CodeGenFunction &CGF, saved_type value) { 2783 return value.restore(CGF); 2784 } 2785}; 2786 2787} // end namespace CodeGen 2788} // end namespace clang 2789 2790#endif 2791