CodeGenFunction.h revision 490a52b4947381879a47b4251db5fb81cdf5d02b
1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This is the internal per-function state used for llvm translation. 11// 12//===----------------------------------------------------------------------===// 13 14#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H 15#define CLANG_CODEGEN_CODEGENFUNCTION_H 16 17#include "clang/AST/Type.h" 18#include "clang/AST/ExprCXX.h" 19#include "clang/AST/ExprObjC.h" 20#include "clang/AST/CharUnits.h" 21#include "clang/Frontend/CodeGenOptions.h" 22#include "clang/Basic/ABI.h" 23#include "clang/Basic/TargetInfo.h" 24#include "llvm/ADT/ArrayRef.h" 25#include "llvm/ADT/DenseMap.h" 26#include "llvm/ADT/SmallVector.h" 27#include "llvm/Support/ValueHandle.h" 28#include "llvm/Support/Debug.h" 29#include "CodeGenModule.h" 30#include "CGBuilder.h" 31#include "CGDebugInfo.h" 32#include "CGValue.h" 33 34namespace llvm { 35 class BasicBlock; 36 class LLVMContext; 37 class MDNode; 38 class Module; 39 class SwitchInst; 40 class Twine; 41 class Value; 42 class CallSite; 43} 44 45namespace clang { 46 class ASTContext; 47 class BlockDecl; 48 class CXXDestructorDecl; 49 class CXXForRangeStmt; 50 class CXXTryStmt; 51 class Decl; 52 class LabelDecl; 53 class EnumConstantDecl; 54 class FunctionDecl; 55 class FunctionProtoType; 56 class LabelStmt; 57 class ObjCContainerDecl; 58 class ObjCInterfaceDecl; 59 class ObjCIvarDecl; 60 class ObjCMethodDecl; 61 class ObjCImplementationDecl; 62 class ObjCPropertyImplDecl; 63 class TargetInfo; 64 class TargetCodeGenInfo; 65 class VarDecl; 66 class ObjCForCollectionStmt; 67 class ObjCAtTryStmt; 68 class ObjCAtThrowStmt; 69 class ObjCAtSynchronizedStmt; 70 class ObjCAutoreleasePoolStmt; 71 72namespace CodeGen { 73 class CodeGenTypes; 74 class CGFunctionInfo; 75 class CGRecordLayout; 76 class CGBlockInfo; 77 class CGCXXABI; 78 class BlockFlags; 79 class BlockFieldFlags; 80 81/// A branch fixup. These are required when emitting a goto to a 82/// label which hasn't been emitted yet. The goto is optimistically 83/// emitted as a branch to the basic block for the label, and (if it 84/// occurs in a scope with non-trivial cleanups) a fixup is added to 85/// the innermost cleanup. When a (normal) cleanup is popped, any 86/// unresolved fixups in that scope are threaded through the cleanup. 87struct BranchFixup { 88 /// The block containing the terminator which needs to be modified 89 /// into a switch if this fixup is resolved into the current scope. 90 /// If null, LatestBranch points directly to the destination. 91 llvm::BasicBlock *OptimisticBranchBlock; 92 93 /// The ultimate destination of the branch. 94 /// 95 /// This can be set to null to indicate that this fixup was 96 /// successfully resolved. 97 llvm::BasicBlock *Destination; 98 99 /// The destination index value. 100 unsigned DestinationIndex; 101 102 /// The initial branch of the fixup. 103 llvm::BranchInst *InitialBranch; 104}; 105 106template <class T> struct InvariantValue { 107 typedef T type; 108 typedef T saved_type; 109 static bool needsSaving(type value) { return false; } 110 static saved_type save(CodeGenFunction &CGF, type value) { return value; } 111 static type restore(CodeGenFunction &CGF, saved_type value) { return value; } 112}; 113 114/// A metaprogramming class for ensuring that a value will dominate an 115/// arbitrary position in a function. 116template <class T> struct DominatingValue : InvariantValue<T> {}; 117 118template <class T, bool mightBeInstruction = 119 llvm::is_base_of<llvm::Value, T>::value && 120 !llvm::is_base_of<llvm::Constant, T>::value && 121 !llvm::is_base_of<llvm::BasicBlock, T>::value> 122struct DominatingPointer; 123template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {}; 124// template <class T> struct DominatingPointer<T,true> at end of file 125 126template <class T> struct DominatingValue<T*> : DominatingPointer<T> {}; 127 128enum CleanupKind { 129 EHCleanup = 0x1, 130 NormalCleanup = 0x2, 131 NormalAndEHCleanup = EHCleanup | NormalCleanup, 132 133 InactiveCleanup = 0x4, 134 InactiveEHCleanup = EHCleanup | InactiveCleanup, 135 InactiveNormalCleanup = NormalCleanup | InactiveCleanup, 136 InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup 137}; 138 139/// A stack of scopes which respond to exceptions, including cleanups 140/// and catch blocks. 141class EHScopeStack { 142public: 143 /// A saved depth on the scope stack. This is necessary because 144 /// pushing scopes onto the stack invalidates iterators. 145 class stable_iterator { 146 friend class EHScopeStack; 147 148 /// Offset from StartOfData to EndOfBuffer. 149 ptrdiff_t Size; 150 151 stable_iterator(ptrdiff_t Size) : Size(Size) {} 152 153 public: 154 static stable_iterator invalid() { return stable_iterator(-1); } 155 stable_iterator() : Size(-1) {} 156 157 bool isValid() const { return Size >= 0; } 158 159 /// Returns true if this scope encloses I. 160 /// Returns false if I is invalid. 161 /// This scope must be valid. 162 bool encloses(stable_iterator I) const { return Size <= I.Size; } 163 164 /// Returns true if this scope strictly encloses I: that is, 165 /// if it encloses I and is not I. 166 /// Returns false is I is invalid. 167 /// This scope must be valid. 168 bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; } 169 170 friend bool operator==(stable_iterator A, stable_iterator B) { 171 return A.Size == B.Size; 172 } 173 friend bool operator!=(stable_iterator A, stable_iterator B) { 174 return A.Size != B.Size; 175 } 176 }; 177 178 /// Information for lazily generating a cleanup. Subclasses must be 179 /// POD-like: cleanups will not be destructed, and they will be 180 /// allocated on the cleanup stack and freely copied and moved 181 /// around. 182 /// 183 /// Cleanup implementations should generally be declared in an 184 /// anonymous namespace. 185 class Cleanup { 186 // Anchor the construction vtable. 187 virtual void anchor(); 188 public: 189 /// Generation flags. 190 class Flags { 191 enum { 192 F_IsForEH = 0x1, 193 F_IsNormalCleanupKind = 0x2, 194 F_IsEHCleanupKind = 0x4 195 }; 196 unsigned flags; 197 198 public: 199 Flags() : flags(0) {} 200 201 /// isForEH - true if the current emission is for an EH cleanup. 202 bool isForEHCleanup() const { return flags & F_IsForEH; } 203 bool isForNormalCleanup() const { return !isForEHCleanup(); } 204 void setIsForEHCleanup() { flags |= F_IsForEH; } 205 206 bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; } 207 void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; } 208 209 /// isEHCleanupKind - true if the cleanup was pushed as an EH 210 /// cleanup. 211 bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; } 212 void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; } 213 }; 214 215 // Provide a virtual destructor to suppress a very common warning 216 // that unfortunately cannot be suppressed without this. Cleanups 217 // should not rely on this destructor ever being called. 218 virtual ~Cleanup() {} 219 220 /// Emit the cleanup. For normal cleanups, this is run in the 221 /// same EH context as when the cleanup was pushed, i.e. the 222 /// immediately-enclosing context of the cleanup scope. For 223 /// EH cleanups, this is run in a terminate context. 224 /// 225 // \param IsForEHCleanup true if this is for an EH cleanup, false 226 /// if for a normal cleanup. 227 virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0; 228 }; 229 230 /// ConditionalCleanupN stores the saved form of its N parameters, 231 /// then restores them and performs the cleanup. 232 template <class T, class A0> 233 class ConditionalCleanup1 : public Cleanup { 234 typedef typename DominatingValue<A0>::saved_type A0_saved; 235 A0_saved a0_saved; 236 237 void Emit(CodeGenFunction &CGF, Flags flags) { 238 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 239 T(a0).Emit(CGF, flags); 240 } 241 242 public: 243 ConditionalCleanup1(A0_saved a0) 244 : a0_saved(a0) {} 245 }; 246 247 template <class T, class A0, class A1> 248 class ConditionalCleanup2 : public Cleanup { 249 typedef typename DominatingValue<A0>::saved_type A0_saved; 250 typedef typename DominatingValue<A1>::saved_type A1_saved; 251 A0_saved a0_saved; 252 A1_saved a1_saved; 253 254 void Emit(CodeGenFunction &CGF, Flags flags) { 255 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 256 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 257 T(a0, a1).Emit(CGF, flags); 258 } 259 260 public: 261 ConditionalCleanup2(A0_saved a0, A1_saved a1) 262 : a0_saved(a0), a1_saved(a1) {} 263 }; 264 265 template <class T, class A0, class A1, class A2> 266 class ConditionalCleanup3 : public Cleanup { 267 typedef typename DominatingValue<A0>::saved_type A0_saved; 268 typedef typename DominatingValue<A1>::saved_type A1_saved; 269 typedef typename DominatingValue<A2>::saved_type A2_saved; 270 A0_saved a0_saved; 271 A1_saved a1_saved; 272 A2_saved a2_saved; 273 274 void Emit(CodeGenFunction &CGF, Flags flags) { 275 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 276 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 277 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 278 T(a0, a1, a2).Emit(CGF, flags); 279 } 280 281 public: 282 ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2) 283 : a0_saved(a0), a1_saved(a1), a2_saved(a2) {} 284 }; 285 286 template <class T, class A0, class A1, class A2, class A3> 287 class ConditionalCleanup4 : public Cleanup { 288 typedef typename DominatingValue<A0>::saved_type A0_saved; 289 typedef typename DominatingValue<A1>::saved_type A1_saved; 290 typedef typename DominatingValue<A2>::saved_type A2_saved; 291 typedef typename DominatingValue<A3>::saved_type A3_saved; 292 A0_saved a0_saved; 293 A1_saved a1_saved; 294 A2_saved a2_saved; 295 A3_saved a3_saved; 296 297 void Emit(CodeGenFunction &CGF, Flags flags) { 298 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 299 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 300 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 301 A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved); 302 T(a0, a1, a2, a3).Emit(CGF, flags); 303 } 304 305 public: 306 ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3) 307 : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {} 308 }; 309 310private: 311 // The implementation for this class is in CGException.h and 312 // CGException.cpp; the definition is here because it's used as a 313 // member of CodeGenFunction. 314 315 /// The start of the scope-stack buffer, i.e. the allocated pointer 316 /// for the buffer. All of these pointers are either simultaneously 317 /// null or simultaneously valid. 318 char *StartOfBuffer; 319 320 /// The end of the buffer. 321 char *EndOfBuffer; 322 323 /// The first valid entry in the buffer. 324 char *StartOfData; 325 326 /// The innermost normal cleanup on the stack. 327 stable_iterator InnermostNormalCleanup; 328 329 /// The innermost EH scope on the stack. 330 stable_iterator InnermostEHScope; 331 332 /// The current set of branch fixups. A branch fixup is a jump to 333 /// an as-yet unemitted label, i.e. a label for which we don't yet 334 /// know the EH stack depth. Whenever we pop a cleanup, we have 335 /// to thread all the current branch fixups through it. 336 /// 337 /// Fixups are recorded as the Use of the respective branch or 338 /// switch statement. The use points to the final destination. 339 /// When popping out of a cleanup, these uses are threaded through 340 /// the cleanup and adjusted to point to the new cleanup. 341 /// 342 /// Note that branches are allowed to jump into protected scopes 343 /// in certain situations; e.g. the following code is legal: 344 /// struct A { ~A(); }; // trivial ctor, non-trivial dtor 345 /// goto foo; 346 /// A a; 347 /// foo: 348 /// bar(); 349 SmallVector<BranchFixup, 8> BranchFixups; 350 351 char *allocate(size_t Size); 352 353 void *pushCleanup(CleanupKind K, size_t DataSize); 354 355public: 356 EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0), 357 InnermostNormalCleanup(stable_end()), 358 InnermostEHScope(stable_end()) {} 359 ~EHScopeStack() { delete[] StartOfBuffer; } 360 361 // Variadic templates would make this not terrible. 362 363 /// Push a lazily-created cleanup on the stack. 364 template <class T> 365 void pushCleanup(CleanupKind Kind) { 366 void *Buffer = pushCleanup(Kind, sizeof(T)); 367 Cleanup *Obj = new(Buffer) T(); 368 (void) Obj; 369 } 370 371 /// Push a lazily-created cleanup on the stack. 372 template <class T, class A0> 373 void pushCleanup(CleanupKind Kind, A0 a0) { 374 void *Buffer = pushCleanup(Kind, sizeof(T)); 375 Cleanup *Obj = new(Buffer) T(a0); 376 (void) Obj; 377 } 378 379 /// Push a lazily-created cleanup on the stack. 380 template <class T, class A0, class A1> 381 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) { 382 void *Buffer = pushCleanup(Kind, sizeof(T)); 383 Cleanup *Obj = new(Buffer) T(a0, a1); 384 (void) Obj; 385 } 386 387 /// Push a lazily-created cleanup on the stack. 388 template <class T, class A0, class A1, class A2> 389 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) { 390 void *Buffer = pushCleanup(Kind, sizeof(T)); 391 Cleanup *Obj = new(Buffer) T(a0, a1, a2); 392 (void) Obj; 393 } 394 395 /// Push a lazily-created cleanup on the stack. 396 template <class T, class A0, class A1, class A2, class A3> 397 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) { 398 void *Buffer = pushCleanup(Kind, sizeof(T)); 399 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3); 400 (void) Obj; 401 } 402 403 /// Push a lazily-created cleanup on the stack. 404 template <class T, class A0, class A1, class A2, class A3, class A4> 405 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) { 406 void *Buffer = pushCleanup(Kind, sizeof(T)); 407 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4); 408 (void) Obj; 409 } 410 411 // Feel free to add more variants of the following: 412 413 /// Push a cleanup with non-constant storage requirements on the 414 /// stack. The cleanup type must provide an additional static method: 415 /// static size_t getExtraSize(size_t); 416 /// The argument to this method will be the value N, which will also 417 /// be passed as the first argument to the constructor. 418 /// 419 /// The data stored in the extra storage must obey the same 420 /// restrictions as normal cleanup member data. 421 /// 422 /// The pointer returned from this method is valid until the cleanup 423 /// stack is modified. 424 template <class T, class A0, class A1, class A2> 425 T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) { 426 void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N)); 427 return new (Buffer) T(N, a0, a1, a2); 428 } 429 430 /// Pops a cleanup scope off the stack. This is private to CGCleanup.cpp. 431 void popCleanup(); 432 433 /// Push a set of catch handlers on the stack. The catch is 434 /// uninitialized and will need to have the given number of handlers 435 /// set on it. 436 class EHCatchScope *pushCatch(unsigned NumHandlers); 437 438 /// Pops a catch scope off the stack. This is private to CGException.cpp. 439 void popCatch(); 440 441 /// Push an exceptions filter on the stack. 442 class EHFilterScope *pushFilter(unsigned NumFilters); 443 444 /// Pops an exceptions filter off the stack. 445 void popFilter(); 446 447 /// Push a terminate handler on the stack. 448 void pushTerminate(); 449 450 /// Pops a terminate handler off the stack. 451 void popTerminate(); 452 453 /// Determines whether the exception-scopes stack is empty. 454 bool empty() const { return StartOfData == EndOfBuffer; } 455 456 bool requiresLandingPad() const { 457 return InnermostEHScope != stable_end(); 458 } 459 460 /// Determines whether there are any normal cleanups on the stack. 461 bool hasNormalCleanups() const { 462 return InnermostNormalCleanup != stable_end(); 463 } 464 465 /// Returns the innermost normal cleanup on the stack, or 466 /// stable_end() if there are no normal cleanups. 467 stable_iterator getInnermostNormalCleanup() const { 468 return InnermostNormalCleanup; 469 } 470 stable_iterator getInnermostActiveNormalCleanup() const; 471 472 stable_iterator getInnermostEHScope() const { 473 return InnermostEHScope; 474 } 475 476 stable_iterator getInnermostActiveEHScope() const; 477 478 /// An unstable reference to a scope-stack depth. Invalidated by 479 /// pushes but not pops. 480 class iterator; 481 482 /// Returns an iterator pointing to the innermost EH scope. 483 iterator begin() const; 484 485 /// Returns an iterator pointing to the outermost EH scope. 486 iterator end() const; 487 488 /// Create a stable reference to the top of the EH stack. The 489 /// returned reference is valid until that scope is popped off the 490 /// stack. 491 stable_iterator stable_begin() const { 492 return stable_iterator(EndOfBuffer - StartOfData); 493 } 494 495 /// Create a stable reference to the bottom of the EH stack. 496 static stable_iterator stable_end() { 497 return stable_iterator(0); 498 } 499 500 /// Translates an iterator into a stable_iterator. 501 stable_iterator stabilize(iterator it) const; 502 503 /// Turn a stable reference to a scope depth into a unstable pointer 504 /// to the EH stack. 505 iterator find(stable_iterator save) const; 506 507 /// Removes the cleanup pointed to by the given stable_iterator. 508 void removeCleanup(stable_iterator save); 509 510 /// Add a branch fixup to the current cleanup scope. 511 BranchFixup &addBranchFixup() { 512 assert(hasNormalCleanups() && "adding fixup in scope without cleanups"); 513 BranchFixups.push_back(BranchFixup()); 514 return BranchFixups.back(); 515 } 516 517 unsigned getNumBranchFixups() const { return BranchFixups.size(); } 518 BranchFixup &getBranchFixup(unsigned I) { 519 assert(I < getNumBranchFixups()); 520 return BranchFixups[I]; 521 } 522 523 /// Pops lazily-removed fixups from the end of the list. This 524 /// should only be called by procedures which have just popped a 525 /// cleanup or resolved one or more fixups. 526 void popNullFixups(); 527 528 /// Clears the branch-fixups list. This should only be called by 529 /// ResolveAllBranchFixups. 530 void clearFixups() { BranchFixups.clear(); } 531}; 532 533/// CodeGenFunction - This class organizes the per-function state that is used 534/// while generating LLVM code. 535class CodeGenFunction : public CodeGenTypeCache { 536 CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT 537 void operator=(const CodeGenFunction&); // DO NOT IMPLEMENT 538 539 friend class CGCXXABI; 540public: 541 /// A jump destination is an abstract label, branching to which may 542 /// require a jump out through normal cleanups. 543 struct JumpDest { 544 JumpDest() : Block(0), ScopeDepth(), Index(0) {} 545 JumpDest(llvm::BasicBlock *Block, 546 EHScopeStack::stable_iterator Depth, 547 unsigned Index) 548 : Block(Block), ScopeDepth(Depth), Index(Index) {} 549 550 bool isValid() const { return Block != 0; } 551 llvm::BasicBlock *getBlock() const { return Block; } 552 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 553 unsigned getDestIndex() const { return Index; } 554 555 private: 556 llvm::BasicBlock *Block; 557 EHScopeStack::stable_iterator ScopeDepth; 558 unsigned Index; 559 }; 560 561 CodeGenModule &CGM; // Per-module state. 562 const TargetInfo &Target; 563 564 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 565 CGBuilderTy Builder; 566 567 /// CurFuncDecl - Holds the Decl for the current function or ObjC method. 568 /// This excludes BlockDecls. 569 const Decl *CurFuncDecl; 570 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 571 const Decl *CurCodeDecl; 572 const CGFunctionInfo *CurFnInfo; 573 QualType FnRetTy; 574 llvm::Function *CurFn; 575 576 /// CurGD - The GlobalDecl for the current function being compiled. 577 GlobalDecl CurGD; 578 579 /// PrologueCleanupDepth - The cleanup depth enclosing all the 580 /// cleanups associated with the parameters. 581 EHScopeStack::stable_iterator PrologueCleanupDepth; 582 583 /// ReturnBlock - Unified return block. 584 JumpDest ReturnBlock; 585 586 /// ReturnValue - The temporary alloca to hold the return value. This is null 587 /// iff the function has no return value. 588 llvm::Value *ReturnValue; 589 590 /// AllocaInsertPoint - This is an instruction in the entry block before which 591 /// we prefer to insert allocas. 592 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 593 594 /// BoundsChecking - Emit run-time bounds checks. Higher values mean 595 /// potentially higher performance penalties. 596 unsigned char BoundsChecking; 597 598 /// CatchUndefined - Emit run-time checks to catch undefined behaviors. 599 bool CatchUndefined; 600 601 /// In ARC, whether we should autorelease the return value. 602 bool AutoreleaseResult; 603 604 const CodeGen::CGBlockInfo *BlockInfo; 605 llvm::Value *BlockPointer; 606 607 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 608 FieldDecl *LambdaThisCaptureField; 609 610 /// \brief A mapping from NRVO variables to the flags used to indicate 611 /// when the NRVO has been applied to this variable. 612 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 613 614 EHScopeStack EHStack; 615 616 /// i32s containing the indexes of the cleanup destinations. 617 llvm::AllocaInst *NormalCleanupDest; 618 619 unsigned NextCleanupDestIndex; 620 621 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 622 CGBlockInfo *FirstBlockInfo; 623 624 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 625 llvm::BasicBlock *EHResumeBlock; 626 627 /// The exception slot. All landing pads write the current exception pointer 628 /// into this alloca. 629 llvm::Value *ExceptionSlot; 630 631 /// The selector slot. Under the MandatoryCleanup model, all landing pads 632 /// write the current selector value into this alloca. 633 llvm::AllocaInst *EHSelectorSlot; 634 635 /// Emits a landing pad for the current EH stack. 636 llvm::BasicBlock *EmitLandingPad(); 637 638 llvm::BasicBlock *getInvokeDestImpl(); 639 640 template <class T> 641 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 642 return DominatingValue<T>::save(*this, value); 643 } 644 645public: 646 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 647 /// rethrows. 648 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 649 650 /// A class controlling the emission of a finally block. 651 class FinallyInfo { 652 /// Where the catchall's edge through the cleanup should go. 653 JumpDest RethrowDest; 654 655 /// A function to call to enter the catch. 656 llvm::Constant *BeginCatchFn; 657 658 /// An i1 variable indicating whether or not the @finally is 659 /// running for an exception. 660 llvm::AllocaInst *ForEHVar; 661 662 /// An i8* variable into which the exception pointer to rethrow 663 /// has been saved. 664 llvm::AllocaInst *SavedExnVar; 665 666 public: 667 void enter(CodeGenFunction &CGF, const Stmt *Finally, 668 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 669 llvm::Constant *rethrowFn); 670 void exit(CodeGenFunction &CGF); 671 }; 672 673 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 674 /// current full-expression. Safe against the possibility that 675 /// we're currently inside a conditionally-evaluated expression. 676 template <class T, class A0> 677 void pushFullExprCleanup(CleanupKind kind, A0 a0) { 678 // If we're not in a conditional branch, or if none of the 679 // arguments requires saving, then use the unconditional cleanup. 680 if (!isInConditionalBranch()) 681 return EHStack.pushCleanup<T>(kind, a0); 682 683 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 684 685 typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType; 686 EHStack.pushCleanup<CleanupType>(kind, a0_saved); 687 initFullExprCleanup(); 688 } 689 690 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 691 /// current full-expression. Safe against the possibility that 692 /// we're currently inside a conditionally-evaluated expression. 693 template <class T, class A0, class A1> 694 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) { 695 // If we're not in a conditional branch, or if none of the 696 // arguments requires saving, then use the unconditional cleanup. 697 if (!isInConditionalBranch()) 698 return EHStack.pushCleanup<T>(kind, a0, a1); 699 700 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 701 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 702 703 typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType; 704 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved); 705 initFullExprCleanup(); 706 } 707 708 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 709 /// current full-expression. Safe against the possibility that 710 /// we're currently inside a conditionally-evaluated expression. 711 template <class T, class A0, class A1, class A2> 712 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) { 713 // If we're not in a conditional branch, or if none of the 714 // arguments requires saving, then use the unconditional cleanup. 715 if (!isInConditionalBranch()) { 716 return EHStack.pushCleanup<T>(kind, a0, a1, a2); 717 } 718 719 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 720 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 721 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 722 723 typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType; 724 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved); 725 initFullExprCleanup(); 726 } 727 728 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 729 /// current full-expression. Safe against the possibility that 730 /// we're currently inside a conditionally-evaluated expression. 731 template <class T, class A0, class A1, class A2, class A3> 732 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) { 733 // If we're not in a conditional branch, or if none of the 734 // arguments requires saving, then use the unconditional cleanup. 735 if (!isInConditionalBranch()) { 736 return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3); 737 } 738 739 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 740 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 741 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 742 typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3); 743 744 typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType; 745 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, 746 a2_saved, a3_saved); 747 initFullExprCleanup(); 748 } 749 750 /// Set up the last cleaup that was pushed as a conditional 751 /// full-expression cleanup. 752 void initFullExprCleanup(); 753 754 /// PushDestructorCleanup - Push a cleanup to call the 755 /// complete-object destructor of an object of the given type at the 756 /// given address. Does nothing if T is not a C++ class type with a 757 /// non-trivial destructor. 758 void PushDestructorCleanup(QualType T, llvm::Value *Addr); 759 760 /// PushDestructorCleanup - Push a cleanup to call the 761 /// complete-object variant of the given destructor on the object at 762 /// the given address. 763 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, 764 llvm::Value *Addr); 765 766 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 767 /// process all branch fixups. 768 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 769 770 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 771 /// The block cannot be reactivated. Pops it if it's the top of the 772 /// stack. 773 /// 774 /// \param DominatingIP - An instruction which is known to 775 /// dominate the current IP (if set) and which lies along 776 /// all paths of execution between the current IP and the 777 /// the point at which the cleanup comes into scope. 778 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 779 llvm::Instruction *DominatingIP); 780 781 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 782 /// Cannot be used to resurrect a deactivated cleanup. 783 /// 784 /// \param DominatingIP - An instruction which is known to 785 /// dominate the current IP (if set) and which lies along 786 /// all paths of execution between the current IP and the 787 /// the point at which the cleanup comes into scope. 788 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 789 llvm::Instruction *DominatingIP); 790 791 /// \brief Enters a new scope for capturing cleanups, all of which 792 /// will be executed once the scope is exited. 793 class RunCleanupsScope { 794 EHScopeStack::stable_iterator CleanupStackDepth; 795 bool OldDidCallStackSave; 796 bool PerformCleanup; 797 798 RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT 799 RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT 800 801 protected: 802 CodeGenFunction& CGF; 803 804 public: 805 /// \brief Enter a new cleanup scope. 806 explicit RunCleanupsScope(CodeGenFunction &CGF) 807 : PerformCleanup(true), CGF(CGF) 808 { 809 CleanupStackDepth = CGF.EHStack.stable_begin(); 810 OldDidCallStackSave = CGF.DidCallStackSave; 811 CGF.DidCallStackSave = false; 812 } 813 814 /// \brief Exit this cleanup scope, emitting any accumulated 815 /// cleanups. 816 ~RunCleanupsScope() { 817 if (PerformCleanup) { 818 CGF.DidCallStackSave = OldDidCallStackSave; 819 CGF.PopCleanupBlocks(CleanupStackDepth); 820 } 821 } 822 823 /// \brief Determine whether this scope requires any cleanups. 824 bool requiresCleanups() const { 825 return CGF.EHStack.stable_begin() != CleanupStackDepth; 826 } 827 828 /// \brief Force the emission of cleanups now, instead of waiting 829 /// until this object is destroyed. 830 void ForceCleanup() { 831 assert(PerformCleanup && "Already forced cleanup"); 832 CGF.DidCallStackSave = OldDidCallStackSave; 833 CGF.PopCleanupBlocks(CleanupStackDepth); 834 PerformCleanup = false; 835 } 836 }; 837 838 class LexicalScope: protected RunCleanupsScope { 839 SourceRange Range; 840 bool PopDebugStack; 841 842 LexicalScope(const LexicalScope &); // DO NOT IMPLEMENT THESE 843 LexicalScope &operator=(const LexicalScope &); 844 845 public: 846 /// \brief Enter a new cleanup scope. 847 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 848 : RunCleanupsScope(CGF), Range(Range), PopDebugStack(true) { 849 if (CGDebugInfo *DI = CGF.getDebugInfo()) 850 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 851 } 852 853 /// \brief Exit this cleanup scope, emitting any accumulated 854 /// cleanups. 855 ~LexicalScope() { 856 if (PopDebugStack) { 857 CGDebugInfo *DI = CGF.getDebugInfo(); 858 if (DI) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 859 } 860 } 861 862 /// \brief Force the emission of cleanups now, instead of waiting 863 /// until this object is destroyed. 864 void ForceCleanup() { 865 RunCleanupsScope::ForceCleanup(); 866 if (CGDebugInfo *DI = CGF.getDebugInfo()) { 867 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 868 PopDebugStack = false; 869 } 870 } 871 }; 872 873 874 /// PopCleanupBlocks - Takes the old cleanup stack size and emits 875 /// the cleanup blocks that have been added. 876 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 877 878 void ResolveBranchFixups(llvm::BasicBlock *Target); 879 880 /// The given basic block lies in the current EH scope, but may be a 881 /// target of a potentially scope-crossing jump; get a stable handle 882 /// to which we can perform this jump later. 883 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 884 return JumpDest(Target, 885 EHStack.getInnermostNormalCleanup(), 886 NextCleanupDestIndex++); 887 } 888 889 /// The given basic block lies in the current EH scope, but may be a 890 /// target of a potentially scope-crossing jump; get a stable handle 891 /// to which we can perform this jump later. 892 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 893 return getJumpDestInCurrentScope(createBasicBlock(Name)); 894 } 895 896 /// EmitBranchThroughCleanup - Emit a branch from the current insert 897 /// block through the normal cleanup handling code (if any) and then 898 /// on to \arg Dest. 899 void EmitBranchThroughCleanup(JumpDest Dest); 900 901 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 902 /// specified destination obviously has no cleanups to run. 'false' is always 903 /// a conservatively correct answer for this method. 904 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 905 906 /// popCatchScope - Pops the catch scope at the top of the EHScope 907 /// stack, emitting any required code (other than the catch handlers 908 /// themselves). 909 void popCatchScope(); 910 911 llvm::BasicBlock *getEHResumeBlock(); 912 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 913 914 /// An object to manage conditionally-evaluated expressions. 915 class ConditionalEvaluation { 916 llvm::BasicBlock *StartBB; 917 918 public: 919 ConditionalEvaluation(CodeGenFunction &CGF) 920 : StartBB(CGF.Builder.GetInsertBlock()) {} 921 922 void begin(CodeGenFunction &CGF) { 923 assert(CGF.OutermostConditional != this); 924 if (!CGF.OutermostConditional) 925 CGF.OutermostConditional = this; 926 } 927 928 void end(CodeGenFunction &CGF) { 929 assert(CGF.OutermostConditional != 0); 930 if (CGF.OutermostConditional == this) 931 CGF.OutermostConditional = 0; 932 } 933 934 /// Returns a block which will be executed prior to each 935 /// evaluation of the conditional code. 936 llvm::BasicBlock *getStartingBlock() const { 937 return StartBB; 938 } 939 }; 940 941 /// isInConditionalBranch - Return true if we're currently emitting 942 /// one branch or the other of a conditional expression. 943 bool isInConditionalBranch() const { return OutermostConditional != 0; } 944 945 void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) { 946 assert(isInConditionalBranch()); 947 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 948 new llvm::StoreInst(value, addr, &block->back()); 949 } 950 951 /// An RAII object to record that we're evaluating a statement 952 /// expression. 953 class StmtExprEvaluation { 954 CodeGenFunction &CGF; 955 956 /// We have to save the outermost conditional: cleanups in a 957 /// statement expression aren't conditional just because the 958 /// StmtExpr is. 959 ConditionalEvaluation *SavedOutermostConditional; 960 961 public: 962 StmtExprEvaluation(CodeGenFunction &CGF) 963 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 964 CGF.OutermostConditional = 0; 965 } 966 967 ~StmtExprEvaluation() { 968 CGF.OutermostConditional = SavedOutermostConditional; 969 CGF.EnsureInsertPoint(); 970 } 971 }; 972 973 /// An object which temporarily prevents a value from being 974 /// destroyed by aggressive peephole optimizations that assume that 975 /// all uses of a value have been realized in the IR. 976 class PeepholeProtection { 977 llvm::Instruction *Inst; 978 friend class CodeGenFunction; 979 980 public: 981 PeepholeProtection() : Inst(0) {} 982 }; 983 984 /// A non-RAII class containing all the information about a bound 985 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 986 /// this which makes individual mappings very simple; using this 987 /// class directly is useful when you have a variable number of 988 /// opaque values or don't want the RAII functionality for some 989 /// reason. 990 class OpaqueValueMappingData { 991 const OpaqueValueExpr *OpaqueValue; 992 bool BoundLValue; 993 CodeGenFunction::PeepholeProtection Protection; 994 995 OpaqueValueMappingData(const OpaqueValueExpr *ov, 996 bool boundLValue) 997 : OpaqueValue(ov), BoundLValue(boundLValue) {} 998 public: 999 OpaqueValueMappingData() : OpaqueValue(0) {} 1000 1001 static bool shouldBindAsLValue(const Expr *expr) { 1002 // gl-values should be bound as l-values for obvious reasons. 1003 // Records should be bound as l-values because IR generation 1004 // always keeps them in memory. Expressions of function type 1005 // act exactly like l-values but are formally required to be 1006 // r-values in C. 1007 return expr->isGLValue() || 1008 expr->getType()->isRecordType() || 1009 expr->getType()->isFunctionType(); 1010 } 1011 1012 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1013 const OpaqueValueExpr *ov, 1014 const Expr *e) { 1015 if (shouldBindAsLValue(ov)) 1016 return bind(CGF, ov, CGF.EmitLValue(e)); 1017 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1018 } 1019 1020 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1021 const OpaqueValueExpr *ov, 1022 const LValue &lv) { 1023 assert(shouldBindAsLValue(ov)); 1024 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1025 return OpaqueValueMappingData(ov, true); 1026 } 1027 1028 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1029 const OpaqueValueExpr *ov, 1030 const RValue &rv) { 1031 assert(!shouldBindAsLValue(ov)); 1032 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1033 1034 OpaqueValueMappingData data(ov, false); 1035 1036 // Work around an extremely aggressive peephole optimization in 1037 // EmitScalarConversion which assumes that all other uses of a 1038 // value are extant. 1039 data.Protection = CGF.protectFromPeepholes(rv); 1040 1041 return data; 1042 } 1043 1044 bool isValid() const { return OpaqueValue != 0; } 1045 void clear() { OpaqueValue = 0; } 1046 1047 void unbind(CodeGenFunction &CGF) { 1048 assert(OpaqueValue && "no data to unbind!"); 1049 1050 if (BoundLValue) { 1051 CGF.OpaqueLValues.erase(OpaqueValue); 1052 } else { 1053 CGF.OpaqueRValues.erase(OpaqueValue); 1054 CGF.unprotectFromPeepholes(Protection); 1055 } 1056 } 1057 }; 1058 1059 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1060 class OpaqueValueMapping { 1061 CodeGenFunction &CGF; 1062 OpaqueValueMappingData Data; 1063 1064 public: 1065 static bool shouldBindAsLValue(const Expr *expr) { 1066 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1067 } 1068 1069 /// Build the opaque value mapping for the given conditional 1070 /// operator if it's the GNU ?: extension. This is a common 1071 /// enough pattern that the convenience operator is really 1072 /// helpful. 1073 /// 1074 OpaqueValueMapping(CodeGenFunction &CGF, 1075 const AbstractConditionalOperator *op) : CGF(CGF) { 1076 if (isa<ConditionalOperator>(op)) 1077 // Leave Data empty. 1078 return; 1079 1080 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1081 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1082 e->getCommon()); 1083 } 1084 1085 OpaqueValueMapping(CodeGenFunction &CGF, 1086 const OpaqueValueExpr *opaqueValue, 1087 LValue lvalue) 1088 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1089 } 1090 1091 OpaqueValueMapping(CodeGenFunction &CGF, 1092 const OpaqueValueExpr *opaqueValue, 1093 RValue rvalue) 1094 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1095 } 1096 1097 void pop() { 1098 Data.unbind(CGF); 1099 Data.clear(); 1100 } 1101 1102 ~OpaqueValueMapping() { 1103 if (Data.isValid()) Data.unbind(CGF); 1104 } 1105 }; 1106 1107 /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field 1108 /// number that holds the value. 1109 unsigned getByRefValueLLVMField(const ValueDecl *VD) const; 1110 1111 /// BuildBlockByrefAddress - Computes address location of the 1112 /// variable which is declared as __block. 1113 llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr, 1114 const VarDecl *V); 1115private: 1116 CGDebugInfo *DebugInfo; 1117 bool DisableDebugInfo; 1118 1119 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1120 /// calling llvm.stacksave for multiple VLAs in the same scope. 1121 bool DidCallStackSave; 1122 1123 /// IndirectBranch - The first time an indirect goto is seen we create a block 1124 /// with an indirect branch. Every time we see the address of a label taken, 1125 /// we add the label to the indirect goto. Every subsequent indirect goto is 1126 /// codegen'd as a jump to the IndirectBranch's basic block. 1127 llvm::IndirectBrInst *IndirectBranch; 1128 1129 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1130 /// decls. 1131 typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy; 1132 DeclMapTy LocalDeclMap; 1133 1134 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1135 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1136 1137 // BreakContinueStack - This keeps track of where break and continue 1138 // statements should jump to. 1139 struct BreakContinue { 1140 BreakContinue(JumpDest Break, JumpDest Continue) 1141 : BreakBlock(Break), ContinueBlock(Continue) {} 1142 1143 JumpDest BreakBlock; 1144 JumpDest ContinueBlock; 1145 }; 1146 SmallVector<BreakContinue, 8> BreakContinueStack; 1147 1148 /// SwitchInsn - This is nearest current switch instruction. It is null if 1149 /// current context is not in a switch. 1150 llvm::SwitchInst *SwitchInsn; 1151 1152 /// CaseRangeBlock - This block holds if condition check for last case 1153 /// statement range in current switch instruction. 1154 llvm::BasicBlock *CaseRangeBlock; 1155 1156 /// OpaqueLValues - Keeps track of the current set of opaque value 1157 /// expressions. 1158 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1159 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1160 1161 // VLASizeMap - This keeps track of the associated size for each VLA type. 1162 // We track this by the size expression rather than the type itself because 1163 // in certain situations, like a const qualifier applied to an VLA typedef, 1164 // multiple VLA types can share the same size expression. 1165 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1166 // enter/leave scopes. 1167 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1168 1169 /// A block containing a single 'unreachable' instruction. Created 1170 /// lazily by getUnreachableBlock(). 1171 llvm::BasicBlock *UnreachableBlock; 1172 1173 /// CXXThisDecl - When generating code for a C++ member function, 1174 /// this will hold the implicit 'this' declaration. 1175 ImplicitParamDecl *CXXABIThisDecl; 1176 llvm::Value *CXXABIThisValue; 1177 llvm::Value *CXXThisValue; 1178 1179 /// CXXVTTDecl - When generating code for a base object constructor or 1180 /// base object destructor with virtual bases, this will hold the implicit 1181 /// VTT parameter. 1182 ImplicitParamDecl *CXXVTTDecl; 1183 llvm::Value *CXXVTTValue; 1184 1185 /// OutermostConditional - Points to the outermost active 1186 /// conditional control. This is used so that we know if a 1187 /// temporary should be destroyed conditionally. 1188 ConditionalEvaluation *OutermostConditional; 1189 1190 1191 /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM 1192 /// type as well as the field number that contains the actual data. 1193 llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *, 1194 unsigned> > ByRefValueInfo; 1195 1196 llvm::BasicBlock *TerminateLandingPad; 1197 llvm::BasicBlock *TerminateHandler; 1198 llvm::BasicBlock *TrapBB; 1199 1200public: 1201 CodeGenFunction(CodeGenModule &cgm); 1202 ~CodeGenFunction(); 1203 1204 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1205 ASTContext &getContext() const { return CGM.getContext(); } 1206 CGDebugInfo *getDebugInfo() { 1207 if (DisableDebugInfo) 1208 return NULL; 1209 return DebugInfo; 1210 } 1211 void disableDebugInfo() { DisableDebugInfo = true; } 1212 void enableDebugInfo() { DisableDebugInfo = false; } 1213 1214 bool shouldUseFusedARCCalls() { 1215 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1216 } 1217 1218 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1219 1220 /// Returns a pointer to the function's exception object and selector slot, 1221 /// which is assigned in every landing pad. 1222 llvm::Value *getExceptionSlot(); 1223 llvm::Value *getEHSelectorSlot(); 1224 1225 /// Returns the contents of the function's exception object and selector 1226 /// slots. 1227 llvm::Value *getExceptionFromSlot(); 1228 llvm::Value *getSelectorFromSlot(); 1229 1230 llvm::Value *getNormalCleanupDestSlot(); 1231 1232 llvm::BasicBlock *getUnreachableBlock() { 1233 if (!UnreachableBlock) { 1234 UnreachableBlock = createBasicBlock("unreachable"); 1235 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1236 } 1237 return UnreachableBlock; 1238 } 1239 1240 llvm::BasicBlock *getInvokeDest() { 1241 if (!EHStack.requiresLandingPad()) return 0; 1242 return getInvokeDestImpl(); 1243 } 1244 1245 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1246 1247 //===--------------------------------------------------------------------===// 1248 // Cleanups 1249 //===--------------------------------------------------------------------===// 1250 1251 typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty); 1252 1253 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1254 llvm::Value *arrayEndPointer, 1255 QualType elementType, 1256 Destroyer *destroyer); 1257 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1258 llvm::Value *arrayEnd, 1259 QualType elementType, 1260 Destroyer *destroyer); 1261 1262 void pushDestroy(QualType::DestructionKind dtorKind, 1263 llvm::Value *addr, QualType type); 1264 void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type, 1265 Destroyer *destroyer, bool useEHCleanupForArray); 1266 void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer, 1267 bool useEHCleanupForArray); 1268 llvm::Function *generateDestroyHelper(llvm::Constant *addr, 1269 QualType type, 1270 Destroyer *destroyer, 1271 bool useEHCleanupForArray); 1272 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1273 QualType type, Destroyer *destroyer, 1274 bool checkZeroLength, bool useEHCleanup); 1275 1276 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1277 1278 /// Determines whether an EH cleanup is required to destroy a type 1279 /// with the given destruction kind. 1280 bool needsEHCleanup(QualType::DestructionKind kind) { 1281 switch (kind) { 1282 case QualType::DK_none: 1283 return false; 1284 case QualType::DK_cxx_destructor: 1285 case QualType::DK_objc_weak_lifetime: 1286 return getLangOpts().Exceptions; 1287 case QualType::DK_objc_strong_lifetime: 1288 return getLangOpts().Exceptions && 1289 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1290 } 1291 llvm_unreachable("bad destruction kind"); 1292 } 1293 1294 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1295 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1296 } 1297 1298 //===--------------------------------------------------------------------===// 1299 // Objective-C 1300 //===--------------------------------------------------------------------===// 1301 1302 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1303 1304 void StartObjCMethod(const ObjCMethodDecl *MD, 1305 const ObjCContainerDecl *CD, 1306 SourceLocation StartLoc); 1307 1308 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1309 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1310 const ObjCPropertyImplDecl *PID); 1311 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1312 const ObjCPropertyImplDecl *propImpl, 1313 const ObjCMethodDecl *GetterMothodDecl, 1314 llvm::Constant *AtomicHelperFn); 1315 1316 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1317 ObjCMethodDecl *MD, bool ctor); 1318 1319 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1320 /// for the given property. 1321 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1322 const ObjCPropertyImplDecl *PID); 1323 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1324 const ObjCPropertyImplDecl *propImpl, 1325 llvm::Constant *AtomicHelperFn); 1326 bool IndirectObjCSetterArg(const CGFunctionInfo &FI); 1327 bool IvarTypeWithAggrGCObjects(QualType Ty); 1328 1329 //===--------------------------------------------------------------------===// 1330 // Block Bits 1331 //===--------------------------------------------------------------------===// 1332 1333 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1334 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 1335 static void destroyBlockInfos(CGBlockInfo *info); 1336 llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *, 1337 const CGBlockInfo &Info, 1338 llvm::StructType *, 1339 llvm::Constant *BlockVarLayout); 1340 1341 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1342 const CGBlockInfo &Info, 1343 const Decl *OuterFuncDecl, 1344 const DeclMapTy &ldm, 1345 bool IsLambdaConversionToBlock); 1346 1347 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1348 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1349 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1350 const ObjCPropertyImplDecl *PID); 1351 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1352 const ObjCPropertyImplDecl *PID); 1353 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1354 1355 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1356 1357 class AutoVarEmission; 1358 1359 void emitByrefStructureInit(const AutoVarEmission &emission); 1360 void enterByrefCleanup(const AutoVarEmission &emission); 1361 1362 llvm::Value *LoadBlockStruct() { 1363 assert(BlockPointer && "no block pointer set!"); 1364 return BlockPointer; 1365 } 1366 1367 void AllocateBlockCXXThisPointer(const CXXThisExpr *E); 1368 void AllocateBlockDecl(const DeclRefExpr *E); 1369 llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1370 llvm::Type *BuildByRefType(const VarDecl *var); 1371 1372 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1373 const CGFunctionInfo &FnInfo); 1374 void StartFunction(GlobalDecl GD, QualType RetTy, 1375 llvm::Function *Fn, 1376 const CGFunctionInfo &FnInfo, 1377 const FunctionArgList &Args, 1378 SourceLocation StartLoc); 1379 1380 void EmitConstructorBody(FunctionArgList &Args); 1381 void EmitDestructorBody(FunctionArgList &Args); 1382 void EmitFunctionBody(FunctionArgList &Args); 1383 1384 void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda, 1385 CallArgList &CallArgs); 1386 void EmitLambdaToBlockPointerBody(FunctionArgList &Args); 1387 void EmitLambdaBlockInvokeBody(); 1388 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1389 void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); 1390 1391 /// EmitReturnBlock - Emit the unified return block, trying to avoid its 1392 /// emission when possible. 1393 void EmitReturnBlock(); 1394 1395 /// FinishFunction - Complete IR generation of the current function. It is 1396 /// legal to call this function even if there is no current insertion point. 1397 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1398 1399 /// GenerateThunk - Generate a thunk for the given method. 1400 void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1401 GlobalDecl GD, const ThunkInfo &Thunk); 1402 1403 void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1404 GlobalDecl GD, const ThunkInfo &Thunk); 1405 1406 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1407 FunctionArgList &Args); 1408 1409 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init, 1410 ArrayRef<VarDecl *> ArrayIndexes); 1411 1412 /// InitializeVTablePointer - Initialize the vtable pointer of the given 1413 /// subobject. 1414 /// 1415 void InitializeVTablePointer(BaseSubobject Base, 1416 const CXXRecordDecl *NearestVBase, 1417 CharUnits OffsetFromNearestVBase, 1418 llvm::Constant *VTable, 1419 const CXXRecordDecl *VTableClass); 1420 1421 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1422 void InitializeVTablePointers(BaseSubobject Base, 1423 const CXXRecordDecl *NearestVBase, 1424 CharUnits OffsetFromNearestVBase, 1425 bool BaseIsNonVirtualPrimaryBase, 1426 llvm::Constant *VTable, 1427 const CXXRecordDecl *VTableClass, 1428 VisitedVirtualBasesSetTy& VBases); 1429 1430 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1431 1432 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1433 /// to by This. 1434 llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty); 1435 1436 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1437 /// given phase of destruction for a destructor. The end result 1438 /// should call destructors on members and base classes in reverse 1439 /// order of their construction. 1440 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1441 1442 /// ShouldInstrumentFunction - Return true if the current function should be 1443 /// instrumented with __cyg_profile_func_* calls 1444 bool ShouldInstrumentFunction(); 1445 1446 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1447 /// instrumentation function with the current function and the call site, if 1448 /// function instrumentation is enabled. 1449 void EmitFunctionInstrumentation(const char *Fn); 1450 1451 /// EmitMCountInstrumentation - Emit call to .mcount. 1452 void EmitMCountInstrumentation(); 1453 1454 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1455 /// arguments for the given function. This is also responsible for naming the 1456 /// LLVM function arguments. 1457 void EmitFunctionProlog(const CGFunctionInfo &FI, 1458 llvm::Function *Fn, 1459 const FunctionArgList &Args); 1460 1461 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1462 /// given temporary. 1463 void EmitFunctionEpilog(const CGFunctionInfo &FI); 1464 1465 /// EmitStartEHSpec - Emit the start of the exception spec. 1466 void EmitStartEHSpec(const Decl *D); 1467 1468 /// EmitEndEHSpec - Emit the end of the exception spec. 1469 void EmitEndEHSpec(const Decl *D); 1470 1471 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1472 llvm::BasicBlock *getTerminateLandingPad(); 1473 1474 /// getTerminateHandler - Return a handler (not a landing pad, just 1475 /// a catch handler) that just calls terminate. This is used when 1476 /// a terminate scope encloses a try. 1477 llvm::BasicBlock *getTerminateHandler(); 1478 1479 llvm::Type *ConvertTypeForMem(QualType T); 1480 llvm::Type *ConvertType(QualType T); 1481 llvm::Type *ConvertType(const TypeDecl *T) { 1482 return ConvertType(getContext().getTypeDeclType(T)); 1483 } 1484 1485 /// LoadObjCSelf - Load the value of self. This function is only valid while 1486 /// generating code for an Objective-C method. 1487 llvm::Value *LoadObjCSelf(); 1488 1489 /// TypeOfSelfObject - Return type of object that this self represents. 1490 QualType TypeOfSelfObject(); 1491 1492 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1493 /// an aggregate LLVM type or is void. 1494 static bool hasAggregateLLVMType(QualType T); 1495 1496 /// createBasicBlock - Create an LLVM basic block. 1497 llvm::BasicBlock *createBasicBlock(StringRef name = "", 1498 llvm::Function *parent = 0, 1499 llvm::BasicBlock *before = 0) { 1500#ifdef NDEBUG 1501 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1502#else 1503 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1504#endif 1505 } 1506 1507 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1508 /// label maps to. 1509 JumpDest getJumpDestForLabel(const LabelDecl *S); 1510 1511 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1512 /// another basic block, simplify it. This assumes that no other code could 1513 /// potentially reference the basic block. 1514 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1515 1516 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1517 /// adding a fall-through branch from the current insert block if 1518 /// necessary. It is legal to call this function even if there is no current 1519 /// insertion point. 1520 /// 1521 /// IsFinished - If true, indicates that the caller has finished emitting 1522 /// branches to the given block and does not expect to emit code into it. This 1523 /// means the block can be ignored if it is unreachable. 1524 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1525 1526 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1527 /// near its uses, and leave the insertion point in it. 1528 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1529 1530 /// EmitBranch - Emit a branch to the specified basic block from the current 1531 /// insert block, taking care to avoid creation of branches from dummy 1532 /// blocks. It is legal to call this function even if there is no current 1533 /// insertion point. 1534 /// 1535 /// This function clears the current insertion point. The caller should follow 1536 /// calls to this function with calls to Emit*Block prior to generation new 1537 /// code. 1538 void EmitBranch(llvm::BasicBlock *Block); 1539 1540 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1541 /// indicates that the current code being emitted is unreachable. 1542 bool HaveInsertPoint() const { 1543 return Builder.GetInsertBlock() != 0; 1544 } 1545 1546 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1547 /// emitted IR has a place to go. Note that by definition, if this function 1548 /// creates a block then that block is unreachable; callers may do better to 1549 /// detect when no insertion point is defined and simply skip IR generation. 1550 void EnsureInsertPoint() { 1551 if (!HaveInsertPoint()) 1552 EmitBlock(createBasicBlock()); 1553 } 1554 1555 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1556 /// specified stmt yet. 1557 void ErrorUnsupported(const Stmt *S, const char *Type, 1558 bool OmitOnError=false); 1559 1560 //===--------------------------------------------------------------------===// 1561 // Helpers 1562 //===--------------------------------------------------------------------===// 1563 1564 LValue MakeAddrLValue(llvm::Value *V, QualType T, 1565 CharUnits Alignment = CharUnits()) { 1566 return LValue::MakeAddr(V, T, Alignment, getContext(), 1567 CGM.getTBAAInfo(T)); 1568 } 1569 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 1570 CharUnits Alignment; 1571 if (!T->isIncompleteType()) 1572 Alignment = getContext().getTypeAlignInChars(T); 1573 return LValue::MakeAddr(V, T, Alignment, getContext(), 1574 CGM.getTBAAInfo(T)); 1575 } 1576 1577 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1578 /// block. The caller is responsible for setting an appropriate alignment on 1579 /// the alloca. 1580 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1581 const Twine &Name = "tmp"); 1582 1583 /// InitTempAlloca - Provide an initial value for the given alloca. 1584 void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value); 1585 1586 /// CreateIRTemp - Create a temporary IR object of the given type, with 1587 /// appropriate alignment. This routine should only be used when an temporary 1588 /// value needs to be stored into an alloca (for example, to avoid explicit 1589 /// PHI construction), but the type is the IR type, not the type appropriate 1590 /// for storing in memory. 1591 llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1592 1593 /// CreateMemTemp - Create a temporary memory object of the given type, with 1594 /// appropriate alignment. 1595 llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1596 1597 /// CreateAggTemp - Create a temporary memory object for the given 1598 /// aggregate type. 1599 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1600 CharUnits Alignment = getContext().getTypeAlignInChars(T); 1601 return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment, 1602 T.getQualifiers(), 1603 AggValueSlot::IsNotDestructed, 1604 AggValueSlot::DoesNotNeedGCBarriers, 1605 AggValueSlot::IsNotAliased); 1606 } 1607 1608 /// Emit a cast to void* in the appropriate address space. 1609 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1610 1611 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1612 /// expression and compare the result against zero, returning an Int1Ty value. 1613 llvm::Value *EvaluateExprAsBool(const Expr *E); 1614 1615 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1616 void EmitIgnoredExpr(const Expr *E); 1617 1618 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1619 /// any type. The result is returned as an RValue struct. If this is an 1620 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1621 /// the result should be returned. 1622 /// 1623 /// \param IgnoreResult - True if the resulting value isn't used. 1624 RValue EmitAnyExpr(const Expr *E, 1625 AggValueSlot AggSlot = AggValueSlot::ignored(), 1626 bool IgnoreResult = false); 1627 1628 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1629 // or the value of the expression, depending on how va_list is defined. 1630 llvm::Value *EmitVAListRef(const Expr *E); 1631 1632 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1633 /// always be accessible even if no aggregate location is provided. 1634 RValue EmitAnyExprToTemp(const Expr *E); 1635 1636 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1637 /// arbitrary expression into the given memory location. 1638 void EmitAnyExprToMem(const Expr *E, llvm::Value *Location, 1639 Qualifiers Quals, bool IsInitializer); 1640 1641 /// EmitExprAsInit - Emits the code necessary to initialize a 1642 /// location in memory with the given initializer. 1643 void EmitExprAsInit(const Expr *init, const ValueDecl *D, 1644 LValue lvalue, bool capturedByInit); 1645 1646 /// EmitAggregateCopy - Emit an aggrate copy. 1647 /// 1648 /// \param isVolatile - True iff either the source or the destination is 1649 /// volatile. 1650 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1651 QualType EltTy, bool isVolatile=false, 1652 unsigned Alignment = 0); 1653 1654 /// StartBlock - Start new block named N. If insert block is a dummy block 1655 /// then reuse it. 1656 void StartBlock(const char *N); 1657 1658 /// GetAddrOfStaticLocalVar - Return the address of a static local variable. 1659 llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) { 1660 return cast<llvm::Constant>(GetAddrOfLocalVar(BVD)); 1661 } 1662 1663 /// GetAddrOfLocalVar - Return the address of a local variable. 1664 llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) { 1665 llvm::Value *Res = LocalDeclMap[VD]; 1666 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1667 return Res; 1668 } 1669 1670 /// getOpaqueLValueMapping - Given an opaque value expression (which 1671 /// must be mapped to an l-value), return its mapping. 1672 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1673 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1674 1675 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1676 it = OpaqueLValues.find(e); 1677 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1678 return it->second; 1679 } 1680 1681 /// getOpaqueRValueMapping - Given an opaque value expression (which 1682 /// must be mapped to an r-value), return its mapping. 1683 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1684 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1685 1686 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1687 it = OpaqueRValues.find(e); 1688 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1689 return it->second; 1690 } 1691 1692 /// getAccessedFieldNo - Given an encoded value and a result number, return 1693 /// the input field number being accessed. 1694 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1695 1696 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1697 llvm::BasicBlock *GetIndirectGotoBlock(); 1698 1699 /// EmitNullInitialization - Generate code to set a value of the given type to 1700 /// null, If the type contains data member pointers, they will be initialized 1701 /// to -1 in accordance with the Itanium C++ ABI. 1702 void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty); 1703 1704 // EmitVAArg - Generate code to get an argument from the passed in pointer 1705 // and update it accordingly. The return value is a pointer to the argument. 1706 // FIXME: We should be able to get rid of this method and use the va_arg 1707 // instruction in LLVM instead once it works well enough. 1708 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty); 1709 1710 /// emitArrayLength - Compute the length of an array, even if it's a 1711 /// VLA, and drill down to the base element type. 1712 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1713 QualType &baseType, 1714 llvm::Value *&addr); 1715 1716 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1717 /// the given variably-modified type and store them in the VLASizeMap. 1718 /// 1719 /// This function can be called with a null (unreachable) insert point. 1720 void EmitVariablyModifiedType(QualType Ty); 1721 1722 /// getVLASize - Returns an LLVM value that corresponds to the size, 1723 /// in non-variably-sized elements, of a variable length array type, 1724 /// plus that largest non-variably-sized element type. Assumes that 1725 /// the type has already been emitted with EmitVariablyModifiedType. 1726 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1727 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1728 1729 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1730 /// generating code for an C++ member function. 1731 llvm::Value *LoadCXXThis() { 1732 assert(CXXThisValue && "no 'this' value for this function"); 1733 return CXXThisValue; 1734 } 1735 1736 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1737 /// virtual bases. 1738 llvm::Value *LoadCXXVTT() { 1739 assert(CXXVTTValue && "no VTT value for this function"); 1740 return CXXVTTValue; 1741 } 1742 1743 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1744 /// complete class to the given direct base. 1745 llvm::Value * 1746 GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value, 1747 const CXXRecordDecl *Derived, 1748 const CXXRecordDecl *Base, 1749 bool BaseIsVirtual); 1750 1751 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1752 /// load of 'this' and returns address of the base class. 1753 llvm::Value *GetAddressOfBaseClass(llvm::Value *Value, 1754 const CXXRecordDecl *Derived, 1755 CastExpr::path_const_iterator PathBegin, 1756 CastExpr::path_const_iterator PathEnd, 1757 bool NullCheckValue); 1758 1759 llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value, 1760 const CXXRecordDecl *Derived, 1761 CastExpr::path_const_iterator PathBegin, 1762 CastExpr::path_const_iterator PathEnd, 1763 bool NullCheckValue); 1764 1765 llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This, 1766 const CXXRecordDecl *ClassDecl, 1767 const CXXRecordDecl *BaseClassDecl); 1768 1769 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1770 CXXCtorType CtorType, 1771 const FunctionArgList &Args); 1772 // It's important not to confuse this and the previous function. Delegating 1773 // constructors are the C++0x feature. The constructor delegate optimization 1774 // is used to reduce duplication in the base and complete consturctors where 1775 // they are substantially the same. 1776 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1777 const FunctionArgList &Args); 1778 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1779 bool ForVirtualBase, llvm::Value *This, 1780 CallExpr::const_arg_iterator ArgBeg, 1781 CallExpr::const_arg_iterator ArgEnd); 1782 1783 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1784 llvm::Value *This, llvm::Value *Src, 1785 CallExpr::const_arg_iterator ArgBeg, 1786 CallExpr::const_arg_iterator ArgEnd); 1787 1788 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1789 const ConstantArrayType *ArrayTy, 1790 llvm::Value *ArrayPtr, 1791 CallExpr::const_arg_iterator ArgBeg, 1792 CallExpr::const_arg_iterator ArgEnd, 1793 bool ZeroInitialization = false); 1794 1795 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1796 llvm::Value *NumElements, 1797 llvm::Value *ArrayPtr, 1798 CallExpr::const_arg_iterator ArgBeg, 1799 CallExpr::const_arg_iterator ArgEnd, 1800 bool ZeroInitialization = false); 1801 1802 static Destroyer destroyCXXObject; 1803 1804 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1805 bool ForVirtualBase, llvm::Value *This); 1806 1807 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 1808 llvm::Value *NewPtr, llvm::Value *NumElements); 1809 1810 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 1811 llvm::Value *Ptr); 1812 1813 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1814 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1815 1816 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1817 QualType DeleteTy); 1818 1819 llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1820 llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE); 1821 1822 void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init); 1823 void EmitStdInitializerListCleanup(llvm::Value *loc, 1824 const InitListExpr *init); 1825 1826 void EmitCheck(llvm::Value *, unsigned Size); 1827 1828 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1829 bool isInc, bool isPre); 1830 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1831 bool isInc, bool isPre); 1832 //===--------------------------------------------------------------------===// 1833 // Declaration Emission 1834 //===--------------------------------------------------------------------===// 1835 1836 /// EmitDecl - Emit a declaration. 1837 /// 1838 /// This function can be called with a null (unreachable) insert point. 1839 void EmitDecl(const Decl &D); 1840 1841 /// EmitVarDecl - Emit a local variable declaration. 1842 /// 1843 /// This function can be called with a null (unreachable) insert point. 1844 void EmitVarDecl(const VarDecl &D); 1845 1846 void EmitScalarInit(const Expr *init, const ValueDecl *D, 1847 LValue lvalue, bool capturedByInit); 1848 void EmitScalarInit(llvm::Value *init, LValue lvalue); 1849 1850 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1851 llvm::Value *Address); 1852 1853 /// EmitAutoVarDecl - Emit an auto variable declaration. 1854 /// 1855 /// This function can be called with a null (unreachable) insert point. 1856 void EmitAutoVarDecl(const VarDecl &D); 1857 1858 class AutoVarEmission { 1859 friend class CodeGenFunction; 1860 1861 const VarDecl *Variable; 1862 1863 /// The alignment of the variable. 1864 CharUnits Alignment; 1865 1866 /// The address of the alloca. Null if the variable was emitted 1867 /// as a global constant. 1868 llvm::Value *Address; 1869 1870 llvm::Value *NRVOFlag; 1871 1872 /// True if the variable is a __block variable. 1873 bool IsByRef; 1874 1875 /// True if the variable is of aggregate type and has a constant 1876 /// initializer. 1877 bool IsConstantAggregate; 1878 1879 struct Invalid {}; 1880 AutoVarEmission(Invalid) : Variable(0) {} 1881 1882 AutoVarEmission(const VarDecl &variable) 1883 : Variable(&variable), Address(0), NRVOFlag(0), 1884 IsByRef(false), IsConstantAggregate(false) {} 1885 1886 bool wasEmittedAsGlobal() const { return Address == 0; } 1887 1888 public: 1889 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 1890 1891 /// Returns the address of the object within this declaration. 1892 /// Note that this does not chase the forwarding pointer for 1893 /// __block decls. 1894 llvm::Value *getObjectAddress(CodeGenFunction &CGF) const { 1895 if (!IsByRef) return Address; 1896 1897 return CGF.Builder.CreateStructGEP(Address, 1898 CGF.getByRefValueLLVMField(Variable), 1899 Variable->getNameAsString()); 1900 } 1901 }; 1902 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 1903 void EmitAutoVarInit(const AutoVarEmission &emission); 1904 void EmitAutoVarCleanups(const AutoVarEmission &emission); 1905 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 1906 QualType::DestructionKind dtorKind); 1907 1908 void EmitStaticVarDecl(const VarDecl &D, 1909 llvm::GlobalValue::LinkageTypes Linkage); 1910 1911 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 1912 void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo); 1913 1914 /// protectFromPeepholes - Protect a value that we're intending to 1915 /// store to the side, but which will probably be used later, from 1916 /// aggressive peepholing optimizations that might delete it. 1917 /// 1918 /// Pass the result to unprotectFromPeepholes to declare that 1919 /// protection is no longer required. 1920 /// 1921 /// There's no particular reason why this shouldn't apply to 1922 /// l-values, it's just that no existing peepholes work on pointers. 1923 PeepholeProtection protectFromPeepholes(RValue rvalue); 1924 void unprotectFromPeepholes(PeepholeProtection protection); 1925 1926 //===--------------------------------------------------------------------===// 1927 // Statement Emission 1928 //===--------------------------------------------------------------------===// 1929 1930 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 1931 void EmitStopPoint(const Stmt *S); 1932 1933 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 1934 /// this function even if there is no current insertion point. 1935 /// 1936 /// This function may clear the current insertion point; callers should use 1937 /// EnsureInsertPoint if they wish to subsequently generate code without first 1938 /// calling EmitBlock, EmitBranch, or EmitStmt. 1939 void EmitStmt(const Stmt *S); 1940 1941 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 1942 /// necessarily require an insertion point or debug information; typically 1943 /// because the statement amounts to a jump or a container of other 1944 /// statements. 1945 /// 1946 /// \return True if the statement was handled. 1947 bool EmitSimpleStmt(const Stmt *S); 1948 1949 RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 1950 AggValueSlot AVS = AggValueSlot::ignored()); 1951 1952 /// EmitLabel - Emit the block for the given label. It is legal to call this 1953 /// function even if there is no current insertion point. 1954 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 1955 1956 void EmitLabelStmt(const LabelStmt &S); 1957 void EmitAttributedStmt(const AttributedStmt &S); 1958 void EmitGotoStmt(const GotoStmt &S); 1959 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 1960 void EmitIfStmt(const IfStmt &S); 1961 void EmitWhileStmt(const WhileStmt &S); 1962 void EmitDoStmt(const DoStmt &S); 1963 void EmitForStmt(const ForStmt &S); 1964 void EmitReturnStmt(const ReturnStmt &S); 1965 void EmitDeclStmt(const DeclStmt &S); 1966 void EmitBreakStmt(const BreakStmt &S); 1967 void EmitContinueStmt(const ContinueStmt &S); 1968 void EmitSwitchStmt(const SwitchStmt &S); 1969 void EmitDefaultStmt(const DefaultStmt &S); 1970 void EmitCaseStmt(const CaseStmt &S); 1971 void EmitCaseStmtRange(const CaseStmt &S); 1972 void EmitAsmStmt(const AsmStmt &S); 1973 1974 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 1975 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 1976 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 1977 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 1978 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 1979 1980 llvm::Constant *getUnwindResumeFn(); 1981 llvm::Constant *getUnwindResumeOrRethrowFn(); 1982 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1983 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1984 1985 void EmitCXXTryStmt(const CXXTryStmt &S); 1986 void EmitCXXForRangeStmt(const CXXForRangeStmt &S); 1987 1988 //===--------------------------------------------------------------------===// 1989 // LValue Expression Emission 1990 //===--------------------------------------------------------------------===// 1991 1992 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 1993 RValue GetUndefRValue(QualType Ty); 1994 1995 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 1996 /// and issue an ErrorUnsupported style diagnostic (using the 1997 /// provided Name). 1998 RValue EmitUnsupportedRValue(const Expr *E, 1999 const char *Name); 2000 2001 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 2002 /// an ErrorUnsupported style diagnostic (using the provided Name). 2003 LValue EmitUnsupportedLValue(const Expr *E, 2004 const char *Name); 2005 2006 /// EmitLValue - Emit code to compute a designator that specifies the location 2007 /// of the expression. 2008 /// 2009 /// This can return one of two things: a simple address or a bitfield 2010 /// reference. In either case, the LLVM Value* in the LValue structure is 2011 /// guaranteed to be an LLVM pointer type. 2012 /// 2013 /// If this returns a bitfield reference, nothing about the pointee type of 2014 /// the LLVM value is known: For example, it may not be a pointer to an 2015 /// integer. 2016 /// 2017 /// If this returns a normal address, and if the lvalue's C type is fixed 2018 /// size, this method guarantees that the returned pointer type will point to 2019 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 2020 /// variable length type, this is not possible. 2021 /// 2022 LValue EmitLValue(const Expr *E); 2023 2024 /// EmitCheckedLValue - Same as EmitLValue but additionally we generate 2025 /// checking code to guard against undefined behavior. This is only 2026 /// suitable when we know that the address will be used to access the 2027 /// object. 2028 LValue EmitCheckedLValue(const Expr *E); 2029 2030 /// EmitToMemory - Change a scalar value from its value 2031 /// representation to its in-memory representation. 2032 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 2033 2034 /// EmitFromMemory - Change a scalar value from its memory 2035 /// representation to its value representation. 2036 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 2037 2038 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2039 /// care to appropriately convert from the memory representation to 2040 /// the LLVM value representation. 2041 llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 2042 unsigned Alignment, QualType Ty, 2043 llvm::MDNode *TBAAInfo = 0); 2044 2045 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2046 /// care to appropriately convert from the memory representation to 2047 /// the LLVM value representation. The l-value must be a simple 2048 /// l-value. 2049 llvm::Value *EmitLoadOfScalar(LValue lvalue); 2050 2051 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2052 /// care to appropriately convert from the memory representation to 2053 /// the LLVM value representation. 2054 void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 2055 bool Volatile, unsigned Alignment, QualType Ty, 2056 llvm::MDNode *TBAAInfo = 0, bool isInit=false); 2057 2058 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2059 /// care to appropriately convert from the memory representation to 2060 /// the LLVM value representation. The l-value must be a simple 2061 /// l-value. The isInit flag indicates whether this is an initialization. 2062 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 2063 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 2064 2065 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 2066 /// this method emits the address of the lvalue, then loads the result as an 2067 /// rvalue, returning the rvalue. 2068 RValue EmitLoadOfLValue(LValue V); 2069 RValue EmitLoadOfExtVectorElementLValue(LValue V); 2070 RValue EmitLoadOfBitfieldLValue(LValue LV); 2071 2072 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2073 /// lvalue, where both are guaranteed to the have the same type, and that type 2074 /// is 'Ty'. 2075 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false); 2076 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 2077 2078 /// EmitStoreThroughLValue - Store Src into Dst with same constraints as 2079 /// EmitStoreThroughLValue. 2080 /// 2081 /// \param Result [out] - If non-null, this will be set to a Value* for the 2082 /// bit-field contents after the store, appropriate for use as the result of 2083 /// an assignment to the bit-field. 2084 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2085 llvm::Value **Result=0); 2086 2087 /// Emit an l-value for an assignment (simple or compound) of complex type. 2088 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 2089 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 2090 2091 // Note: only available for agg return types 2092 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 2093 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 2094 // Note: only available for agg return types 2095 LValue EmitCallExprLValue(const CallExpr *E); 2096 // Note: only available for agg return types 2097 LValue EmitVAArgExprLValue(const VAArgExpr *E); 2098 LValue EmitDeclRefLValue(const DeclRefExpr *E); 2099 LValue EmitStringLiteralLValue(const StringLiteral *E); 2100 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 2101 LValue EmitPredefinedLValue(const PredefinedExpr *E); 2102 LValue EmitUnaryOpLValue(const UnaryOperator *E); 2103 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E); 2104 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 2105 LValue EmitMemberExpr(const MemberExpr *E); 2106 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 2107 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 2108 LValue EmitInitListLValue(const InitListExpr *E); 2109 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 2110 LValue EmitCastLValue(const CastExpr *E); 2111 LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E); 2112 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 2113 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 2114 2115 RValue EmitRValueForField(LValue LV, const FieldDecl *FD); 2116 2117 class ConstantEmission { 2118 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 2119 ConstantEmission(llvm::Constant *C, bool isReference) 2120 : ValueAndIsReference(C, isReference) {} 2121 public: 2122 ConstantEmission() {} 2123 static ConstantEmission forReference(llvm::Constant *C) { 2124 return ConstantEmission(C, true); 2125 } 2126 static ConstantEmission forValue(llvm::Constant *C) { 2127 return ConstantEmission(C, false); 2128 } 2129 2130 operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; } 2131 2132 bool isReference() const { return ValueAndIsReference.getInt(); } 2133 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 2134 assert(isReference()); 2135 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 2136 refExpr->getType()); 2137 } 2138 2139 llvm::Constant *getValue() const { 2140 assert(!isReference()); 2141 return ValueAndIsReference.getPointer(); 2142 } 2143 }; 2144 2145 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 2146 2147 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 2148 AggValueSlot slot = AggValueSlot::ignored()); 2149 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 2150 2151 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2152 const ObjCIvarDecl *Ivar); 2153 LValue EmitLValueForAnonRecordField(llvm::Value* Base, 2154 const IndirectFieldDecl* Field, 2155 unsigned CVRQualifiers); 2156 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 2157 2158 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 2159 /// if the Field is a reference, this will return the address of the reference 2160 /// and not the address of the value stored in the reference. 2161 LValue EmitLValueForFieldInitialization(LValue Base, 2162 const FieldDecl* Field); 2163 2164 LValue EmitLValueForIvar(QualType ObjectTy, 2165 llvm::Value* Base, const ObjCIvarDecl *Ivar, 2166 unsigned CVRQualifiers); 2167 2168 LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field, 2169 unsigned CVRQualifiers); 2170 2171 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 2172 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 2173 LValue EmitLambdaLValue(const LambdaExpr *E); 2174 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2175 2176 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2177 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2178 LValue EmitStmtExprLValue(const StmtExpr *E); 2179 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2180 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2181 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 2182 2183 //===--------------------------------------------------------------------===// 2184 // Scalar Expression Emission 2185 //===--------------------------------------------------------------------===// 2186 2187 /// EmitCall - Generate a call of the given function, expecting the given 2188 /// result type, and using the given argument list which specifies both the 2189 /// LLVM arguments and the types they were derived from. 2190 /// 2191 /// \param TargetDecl - If given, the decl of the function in a direct call; 2192 /// used to set attributes on the call (noreturn, etc.). 2193 RValue EmitCall(const CGFunctionInfo &FnInfo, 2194 llvm::Value *Callee, 2195 ReturnValueSlot ReturnValue, 2196 const CallArgList &Args, 2197 const Decl *TargetDecl = 0, 2198 llvm::Instruction **callOrInvoke = 0); 2199 2200 RValue EmitCall(QualType FnType, llvm::Value *Callee, 2201 ReturnValueSlot ReturnValue, 2202 CallExpr::const_arg_iterator ArgBeg, 2203 CallExpr::const_arg_iterator ArgEnd, 2204 const Decl *TargetDecl = 0); 2205 RValue EmitCallExpr(const CallExpr *E, 2206 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2207 2208 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2209 ArrayRef<llvm::Value *> Args, 2210 const Twine &Name = ""); 2211 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2212 const Twine &Name = ""); 2213 2214 llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This, 2215 llvm::Type *Ty); 2216 llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type, 2217 llvm::Value *This, llvm::Type *Ty); 2218 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2219 NestedNameSpecifier *Qual, 2220 llvm::Type *Ty); 2221 2222 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2223 CXXDtorType Type, 2224 const CXXRecordDecl *RD); 2225 2226 RValue EmitCXXMemberCall(const CXXMethodDecl *MD, 2227 llvm::Value *Callee, 2228 ReturnValueSlot ReturnValue, 2229 llvm::Value *This, 2230 llvm::Value *VTT, 2231 CallExpr::const_arg_iterator ArgBeg, 2232 CallExpr::const_arg_iterator ArgEnd); 2233 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2234 ReturnValueSlot ReturnValue); 2235 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2236 ReturnValueSlot ReturnValue); 2237 2238 llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E, 2239 const CXXMethodDecl *MD, 2240 llvm::Value *This); 2241 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2242 const CXXMethodDecl *MD, 2243 ReturnValueSlot ReturnValue); 2244 2245 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 2246 ReturnValueSlot ReturnValue); 2247 2248 2249 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2250 unsigned BuiltinID, const CallExpr *E); 2251 2252 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2253 2254 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2255 /// is unhandled by the current target. 2256 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2257 2258 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2259 llvm::Value *EmitNeonCall(llvm::Function *F, 2260 SmallVectorImpl<llvm::Value*> &O, 2261 const char *name, 2262 unsigned shift = 0, bool rightshift = false); 2263 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2264 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 2265 bool negateForRightShift); 2266 2267 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 2268 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2269 llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2270 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2271 2272 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2273 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2274 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 2275 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 2276 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 2277 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 2278 const ObjCMethodDecl *MethodWithObjects); 2279 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2280 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2281 ReturnValueSlot Return = ReturnValueSlot()); 2282 2283 /// Retrieves the default cleanup kind for an ARC cleanup. 2284 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 2285 CleanupKind getARCCleanupKind() { 2286 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 2287 ? NormalAndEHCleanup : NormalCleanup; 2288 } 2289 2290 // ARC primitives. 2291 void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr); 2292 void EmitARCDestroyWeak(llvm::Value *addr); 2293 llvm::Value *EmitARCLoadWeak(llvm::Value *addr); 2294 llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr); 2295 llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr, 2296 bool ignored); 2297 void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src); 2298 void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src); 2299 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 2300 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 2301 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 2302 bool ignored); 2303 llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value, 2304 bool ignored); 2305 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 2306 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 2307 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 2308 void EmitARCRelease(llvm::Value *value, bool precise); 2309 llvm::Value *EmitARCAutorelease(llvm::Value *value); 2310 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 2311 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 2312 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 2313 2314 std::pair<LValue,llvm::Value*> 2315 EmitARCStoreAutoreleasing(const BinaryOperator *e); 2316 std::pair<LValue,llvm::Value*> 2317 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 2318 2319 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 2320 2321 llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr); 2322 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 2323 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 2324 2325 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 2326 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 2327 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 2328 2329 static Destroyer destroyARCStrongImprecise; 2330 static Destroyer destroyARCStrongPrecise; 2331 static Destroyer destroyARCWeak; 2332 2333 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 2334 llvm::Value *EmitObjCAutoreleasePoolPush(); 2335 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 2336 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 2337 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 2338 2339 /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in 2340 /// expression. Will emit a temporary variable if E is not an LValue. 2341 RValue EmitReferenceBindingToExpr(const Expr* E, 2342 const NamedDecl *InitializedDecl); 2343 2344 //===--------------------------------------------------------------------===// 2345 // Expression Emission 2346 //===--------------------------------------------------------------------===// 2347 2348 // Expressions are broken into three classes: scalar, complex, aggregate. 2349 2350 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 2351 /// scalar type, returning the result. 2352 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 2353 2354 /// EmitScalarConversion - Emit a conversion from the specified type to the 2355 /// specified destination type, both of which are LLVM scalar types. 2356 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 2357 QualType DstTy); 2358 2359 /// EmitComplexToScalarConversion - Emit a conversion from the specified 2360 /// complex type to the specified destination type, where the destination type 2361 /// is an LLVM scalar type. 2362 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 2363 QualType DstTy); 2364 2365 2366 /// EmitAggExpr - Emit the computation of the specified expression 2367 /// of aggregate type. The result is computed into the given slot, 2368 /// which may be null to indicate that the value is not needed. 2369 void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false); 2370 2371 /// EmitAggExprToLValue - Emit the computation of the specified expression of 2372 /// aggregate type into a temporary LValue. 2373 LValue EmitAggExprToLValue(const Expr *E); 2374 2375 /// EmitGCMemmoveCollectable - Emit special API for structs with object 2376 /// pointers. 2377 void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr, 2378 QualType Ty); 2379 2380 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2381 /// make sure it survives garbage collection until this point. 2382 void EmitExtendGCLifetime(llvm::Value *object); 2383 2384 /// EmitComplexExpr - Emit the computation of the specified expression of 2385 /// complex type, returning the result. 2386 ComplexPairTy EmitComplexExpr(const Expr *E, 2387 bool IgnoreReal = false, 2388 bool IgnoreImag = false); 2389 2390 /// EmitComplexExprIntoAddr - Emit the computation of the specified expression 2391 /// of complex type, storing into the specified Value*. 2392 void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr, 2393 bool DestIsVolatile); 2394 2395 /// StoreComplexToAddr - Store a complex number into the specified address. 2396 void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr, 2397 bool DestIsVolatile); 2398 /// LoadComplexFromAddr - Load a complex number from the specified address. 2399 ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile); 2400 2401 /// CreateStaticVarDecl - Create a zero-initialized LLVM global for 2402 /// a static local variable. 2403 llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D, 2404 const char *Separator, 2405 llvm::GlobalValue::LinkageTypes Linkage); 2406 2407 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2408 /// global variable that has already been created for it. If the initializer 2409 /// has a different type than GV does, this may free GV and return a different 2410 /// one. Otherwise it just returns GV. 2411 llvm::GlobalVariable * 2412 AddInitializerToStaticVarDecl(const VarDecl &D, 2413 llvm::GlobalVariable *GV); 2414 2415 2416 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2417 /// variable with global storage. 2418 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 2419 bool PerformInit); 2420 2421 /// Call atexit() with a function that passes the given argument to 2422 /// the given function. 2423 void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr); 2424 2425 /// Emit code in this function to perform a guarded variable 2426 /// initialization. Guarded initializations are used when it's not 2427 /// possible to prove that an initialization will be done exactly 2428 /// once, e.g. with a static local variable or a static data member 2429 /// of a class template. 2430 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 2431 bool PerformInit); 2432 2433 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2434 /// variables. 2435 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2436 llvm::Constant **Decls, 2437 unsigned NumDecls); 2438 2439 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 2440 /// variables. 2441 void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn, 2442 const std::vector<std::pair<llvm::WeakVH, 2443 llvm::Constant*> > &DtorsAndObjects); 2444 2445 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2446 const VarDecl *D, 2447 llvm::GlobalVariable *Addr, 2448 bool PerformInit); 2449 2450 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2451 2452 void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, 2453 const Expr *Exp); 2454 2455 void enterFullExpression(const ExprWithCleanups *E) { 2456 if (E->getNumObjects() == 0) return; 2457 enterNonTrivialFullExpression(E); 2458 } 2459 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 2460 2461 void EmitCXXThrowExpr(const CXXThrowExpr *E); 2462 2463 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 2464 2465 RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0); 2466 2467 //===--------------------------------------------------------------------===// 2468 // Annotations Emission 2469 //===--------------------------------------------------------------------===// 2470 2471 /// Emit an annotation call (intrinsic or builtin). 2472 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 2473 llvm::Value *AnnotatedVal, 2474 llvm::StringRef AnnotationStr, 2475 SourceLocation Location); 2476 2477 /// Emit local annotations for the local variable V, declared by D. 2478 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 2479 2480 /// Emit field annotations for the given field & value. Returns the 2481 /// annotation result. 2482 llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V); 2483 2484 //===--------------------------------------------------------------------===// 2485 // Internal Helpers 2486 //===--------------------------------------------------------------------===// 2487 2488 /// ContainsLabel - Return true if the statement contains a label in it. If 2489 /// this statement is not executed normally, it not containing a label means 2490 /// that we can just remove the code. 2491 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 2492 2493 /// containsBreak - Return true if the statement contains a break out of it. 2494 /// If the statement (recursively) contains a switch or loop with a break 2495 /// inside of it, this is fine. 2496 static bool containsBreak(const Stmt *S); 2497 2498 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2499 /// to a constant, or if it does but contains a label, return false. If it 2500 /// constant folds return true and set the boolean result in Result. 2501 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 2502 2503 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2504 /// to a constant, or if it does but contains a label, return false. If it 2505 /// constant folds return true and set the folded value. 2506 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result); 2507 2508 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 2509 /// if statement) to the specified blocks. Based on the condition, this might 2510 /// try to simplify the codegen of the conditional based on the branch. 2511 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 2512 llvm::BasicBlock *FalseBlock); 2513 2514 /// getTrapBB - Create a basic block that will call the trap intrinsic. We'll 2515 /// generate a branch around the created basic block as necessary. 2516 llvm::BasicBlock *getTrapBB(); 2517 2518 /// EmitCallArg - Emit a single call argument. 2519 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 2520 2521 /// EmitDelegateCallArg - We are performing a delegate call; that 2522 /// is, the current function is delegating to another one. Produce 2523 /// a r-value suitable for passing the given parameter. 2524 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param); 2525 2526 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 2527 /// point operation, expressed as the maximum relative error in ulp. 2528 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 2529 2530private: 2531 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 2532 void EmitReturnOfRValue(RValue RV, QualType Ty); 2533 2534 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 2535 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 2536 /// 2537 /// \param AI - The first function argument of the expansion. 2538 /// \return The argument following the last expanded function 2539 /// argument. 2540 llvm::Function::arg_iterator 2541 ExpandTypeFromArgs(QualType Ty, LValue Dst, 2542 llvm::Function::arg_iterator AI); 2543 2544 /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg 2545 /// Ty, into individual arguments on the provided vector \arg Args. See 2546 /// ABIArgInfo::Expand. 2547 void ExpandTypeToArgs(QualType Ty, RValue Src, 2548 SmallVector<llvm::Value*, 16> &Args, 2549 llvm::FunctionType *IRFuncTy); 2550 2551 llvm::Value* EmitAsmInput(const AsmStmt &S, 2552 const TargetInfo::ConstraintInfo &Info, 2553 const Expr *InputExpr, std::string &ConstraintStr); 2554 2555 llvm::Value* EmitAsmInputLValue(const AsmStmt &S, 2556 const TargetInfo::ConstraintInfo &Info, 2557 LValue InputValue, QualType InputType, 2558 std::string &ConstraintStr); 2559 2560 /// EmitCallArgs - Emit call arguments for a function. 2561 /// The CallArgTypeInfo parameter is used for iterating over the known 2562 /// argument types of the function being called. 2563 template<typename T> 2564 void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo, 2565 CallExpr::const_arg_iterator ArgBeg, 2566 CallExpr::const_arg_iterator ArgEnd) { 2567 CallExpr::const_arg_iterator Arg = ArgBeg; 2568 2569 // First, use the argument types that the type info knows about 2570 if (CallArgTypeInfo) { 2571 for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(), 2572 E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) { 2573 assert(Arg != ArgEnd && "Running over edge of argument list!"); 2574 QualType ArgType = *I; 2575#ifndef NDEBUG 2576 QualType ActualArgType = Arg->getType(); 2577 if (ArgType->isPointerType() && ActualArgType->isPointerType()) { 2578 QualType ActualBaseType = 2579 ActualArgType->getAs<PointerType>()->getPointeeType(); 2580 QualType ArgBaseType = 2581 ArgType->getAs<PointerType>()->getPointeeType(); 2582 if (ArgBaseType->isVariableArrayType()) { 2583 if (const VariableArrayType *VAT = 2584 getContext().getAsVariableArrayType(ActualBaseType)) { 2585 if (!VAT->getSizeExpr()) 2586 ActualArgType = ArgType; 2587 } 2588 } 2589 } 2590 assert(getContext().getCanonicalType(ArgType.getNonReferenceType()). 2591 getTypePtr() == 2592 getContext().getCanonicalType(ActualArgType).getTypePtr() && 2593 "type mismatch in call argument!"); 2594#endif 2595 EmitCallArg(Args, *Arg, ArgType); 2596 } 2597 2598 // Either we've emitted all the call args, or we have a call to a 2599 // variadic function. 2600 assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) && 2601 "Extra arguments in non-variadic function!"); 2602 2603 } 2604 2605 // If we still have any arguments, emit them using the type of the argument. 2606 for (; Arg != ArgEnd; ++Arg) 2607 EmitCallArg(Args, *Arg, Arg->getType()); 2608 } 2609 2610 const TargetCodeGenInfo &getTargetHooks() const { 2611 return CGM.getTargetCodeGenInfo(); 2612 } 2613 2614 void EmitDeclMetadata(); 2615 2616 CodeGenModule::ByrefHelpers * 2617 buildByrefHelpers(llvm::StructType &byrefType, 2618 const AutoVarEmission &emission); 2619 2620 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 2621 2622 /// GetPointeeAlignment - Given an expression with a pointer type, find the 2623 /// alignment of the type referenced by the pointer. Skip over implicit 2624 /// casts. 2625 unsigned GetPointeeAlignment(const Expr *Addr); 2626 2627 /// GetPointeeAlignmentValue - Given an expression with a pointer type, find 2628 /// the alignment of the type referenced by the pointer. Skip over implicit 2629 /// casts. Return the alignment as an llvm::Value. 2630 llvm::Value *GetPointeeAlignmentValue(const Expr *Addr); 2631}; 2632 2633/// Helper class with most of the code for saving a value for a 2634/// conditional expression cleanup. 2635struct DominatingLLVMValue { 2636 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 2637 2638 /// Answer whether the given value needs extra work to be saved. 2639 static bool needsSaving(llvm::Value *value) { 2640 // If it's not an instruction, we don't need to save. 2641 if (!isa<llvm::Instruction>(value)) return false; 2642 2643 // If it's an instruction in the entry block, we don't need to save. 2644 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 2645 return (block != &block->getParent()->getEntryBlock()); 2646 } 2647 2648 /// Try to save the given value. 2649 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 2650 if (!needsSaving(value)) return saved_type(value, false); 2651 2652 // Otherwise we need an alloca. 2653 llvm::Value *alloca = 2654 CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save"); 2655 CGF.Builder.CreateStore(value, alloca); 2656 2657 return saved_type(alloca, true); 2658 } 2659 2660 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 2661 if (!value.getInt()) return value.getPointer(); 2662 return CGF.Builder.CreateLoad(value.getPointer()); 2663 } 2664}; 2665 2666/// A partial specialization of DominatingValue for llvm::Values that 2667/// might be llvm::Instructions. 2668template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 2669 typedef T *type; 2670 static type restore(CodeGenFunction &CGF, saved_type value) { 2671 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 2672 } 2673}; 2674 2675/// A specialization of DominatingValue for RValue. 2676template <> struct DominatingValue<RValue> { 2677 typedef RValue type; 2678 class saved_type { 2679 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 2680 AggregateAddress, ComplexAddress }; 2681 2682 llvm::Value *Value; 2683 Kind K; 2684 saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {} 2685 2686 public: 2687 static bool needsSaving(RValue value); 2688 static saved_type save(CodeGenFunction &CGF, RValue value); 2689 RValue restore(CodeGenFunction &CGF); 2690 2691 // implementations in CGExprCXX.cpp 2692 }; 2693 2694 static bool needsSaving(type value) { 2695 return saved_type::needsSaving(value); 2696 } 2697 static saved_type save(CodeGenFunction &CGF, type value) { 2698 return saved_type::save(CGF, value); 2699 } 2700 static type restore(CodeGenFunction &CGF, saved_type value) { 2701 return value.restore(CGF); 2702 } 2703}; 2704 2705} // end namespace CodeGen 2706} // end namespace clang 2707 2708#endif 2709