CodeGenFunction.h revision 490a52b4947381879a47b4251db5fb81cdf5d02b
1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the internal per-function state used for llvm translation.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15#define CLANG_CODEGEN_CODEGENFUNCTION_H
16
17#include "clang/AST/Type.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/Frontend/CodeGenOptions.h"
22#include "clang/Basic/ABI.h"
23#include "clang/Basic/TargetInfo.h"
24#include "llvm/ADT/ArrayRef.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/Support/ValueHandle.h"
28#include "llvm/Support/Debug.h"
29#include "CodeGenModule.h"
30#include "CGBuilder.h"
31#include "CGDebugInfo.h"
32#include "CGValue.h"
33
34namespace llvm {
35  class BasicBlock;
36  class LLVMContext;
37  class MDNode;
38  class Module;
39  class SwitchInst;
40  class Twine;
41  class Value;
42  class CallSite;
43}
44
45namespace clang {
46  class ASTContext;
47  class BlockDecl;
48  class CXXDestructorDecl;
49  class CXXForRangeStmt;
50  class CXXTryStmt;
51  class Decl;
52  class LabelDecl;
53  class EnumConstantDecl;
54  class FunctionDecl;
55  class FunctionProtoType;
56  class LabelStmt;
57  class ObjCContainerDecl;
58  class ObjCInterfaceDecl;
59  class ObjCIvarDecl;
60  class ObjCMethodDecl;
61  class ObjCImplementationDecl;
62  class ObjCPropertyImplDecl;
63  class TargetInfo;
64  class TargetCodeGenInfo;
65  class VarDecl;
66  class ObjCForCollectionStmt;
67  class ObjCAtTryStmt;
68  class ObjCAtThrowStmt;
69  class ObjCAtSynchronizedStmt;
70  class ObjCAutoreleasePoolStmt;
71
72namespace CodeGen {
73  class CodeGenTypes;
74  class CGFunctionInfo;
75  class CGRecordLayout;
76  class CGBlockInfo;
77  class CGCXXABI;
78  class BlockFlags;
79  class BlockFieldFlags;
80
81/// A branch fixup.  These are required when emitting a goto to a
82/// label which hasn't been emitted yet.  The goto is optimistically
83/// emitted as a branch to the basic block for the label, and (if it
84/// occurs in a scope with non-trivial cleanups) a fixup is added to
85/// the innermost cleanup.  When a (normal) cleanup is popped, any
86/// unresolved fixups in that scope are threaded through the cleanup.
87struct BranchFixup {
88  /// The block containing the terminator which needs to be modified
89  /// into a switch if this fixup is resolved into the current scope.
90  /// If null, LatestBranch points directly to the destination.
91  llvm::BasicBlock *OptimisticBranchBlock;
92
93  /// The ultimate destination of the branch.
94  ///
95  /// This can be set to null to indicate that this fixup was
96  /// successfully resolved.
97  llvm::BasicBlock *Destination;
98
99  /// The destination index value.
100  unsigned DestinationIndex;
101
102  /// The initial branch of the fixup.
103  llvm::BranchInst *InitialBranch;
104};
105
106template <class T> struct InvariantValue {
107  typedef T type;
108  typedef T saved_type;
109  static bool needsSaving(type value) { return false; }
110  static saved_type save(CodeGenFunction &CGF, type value) { return value; }
111  static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
112};
113
114/// A metaprogramming class for ensuring that a value will dominate an
115/// arbitrary position in a function.
116template <class T> struct DominatingValue : InvariantValue<T> {};
117
118template <class T, bool mightBeInstruction =
119            llvm::is_base_of<llvm::Value, T>::value &&
120            !llvm::is_base_of<llvm::Constant, T>::value &&
121            !llvm::is_base_of<llvm::BasicBlock, T>::value>
122struct DominatingPointer;
123template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
124// template <class T> struct DominatingPointer<T,true> at end of file
125
126template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
127
128enum CleanupKind {
129  EHCleanup = 0x1,
130  NormalCleanup = 0x2,
131  NormalAndEHCleanup = EHCleanup | NormalCleanup,
132
133  InactiveCleanup = 0x4,
134  InactiveEHCleanup = EHCleanup | InactiveCleanup,
135  InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
136  InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
137};
138
139/// A stack of scopes which respond to exceptions, including cleanups
140/// and catch blocks.
141class EHScopeStack {
142public:
143  /// A saved depth on the scope stack.  This is necessary because
144  /// pushing scopes onto the stack invalidates iterators.
145  class stable_iterator {
146    friend class EHScopeStack;
147
148    /// Offset from StartOfData to EndOfBuffer.
149    ptrdiff_t Size;
150
151    stable_iterator(ptrdiff_t Size) : Size(Size) {}
152
153  public:
154    static stable_iterator invalid() { return stable_iterator(-1); }
155    stable_iterator() : Size(-1) {}
156
157    bool isValid() const { return Size >= 0; }
158
159    /// Returns true if this scope encloses I.
160    /// Returns false if I is invalid.
161    /// This scope must be valid.
162    bool encloses(stable_iterator I) const { return Size <= I.Size; }
163
164    /// Returns true if this scope strictly encloses I: that is,
165    /// if it encloses I and is not I.
166    /// Returns false is I is invalid.
167    /// This scope must be valid.
168    bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
169
170    friend bool operator==(stable_iterator A, stable_iterator B) {
171      return A.Size == B.Size;
172    }
173    friend bool operator!=(stable_iterator A, stable_iterator B) {
174      return A.Size != B.Size;
175    }
176  };
177
178  /// Information for lazily generating a cleanup.  Subclasses must be
179  /// POD-like: cleanups will not be destructed, and they will be
180  /// allocated on the cleanup stack and freely copied and moved
181  /// around.
182  ///
183  /// Cleanup implementations should generally be declared in an
184  /// anonymous namespace.
185  class Cleanup {
186    // Anchor the construction vtable.
187    virtual void anchor();
188  public:
189    /// Generation flags.
190    class Flags {
191      enum {
192        F_IsForEH             = 0x1,
193        F_IsNormalCleanupKind = 0x2,
194        F_IsEHCleanupKind     = 0x4
195      };
196      unsigned flags;
197
198    public:
199      Flags() : flags(0) {}
200
201      /// isForEH - true if the current emission is for an EH cleanup.
202      bool isForEHCleanup() const { return flags & F_IsForEH; }
203      bool isForNormalCleanup() const { return !isForEHCleanup(); }
204      void setIsForEHCleanup() { flags |= F_IsForEH; }
205
206      bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; }
207      void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; }
208
209      /// isEHCleanupKind - true if the cleanup was pushed as an EH
210      /// cleanup.
211      bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; }
212      void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; }
213    };
214
215    // Provide a virtual destructor to suppress a very common warning
216    // that unfortunately cannot be suppressed without this.  Cleanups
217    // should not rely on this destructor ever being called.
218    virtual ~Cleanup() {}
219
220    /// Emit the cleanup.  For normal cleanups, this is run in the
221    /// same EH context as when the cleanup was pushed, i.e. the
222    /// immediately-enclosing context of the cleanup scope.  For
223    /// EH cleanups, this is run in a terminate context.
224    ///
225    // \param IsForEHCleanup true if this is for an EH cleanup, false
226    ///  if for a normal cleanup.
227    virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0;
228  };
229
230  /// ConditionalCleanupN stores the saved form of its N parameters,
231  /// then restores them and performs the cleanup.
232  template <class T, class A0>
233  class ConditionalCleanup1 : public Cleanup {
234    typedef typename DominatingValue<A0>::saved_type A0_saved;
235    A0_saved a0_saved;
236
237    void Emit(CodeGenFunction &CGF, Flags flags) {
238      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
239      T(a0).Emit(CGF, flags);
240    }
241
242  public:
243    ConditionalCleanup1(A0_saved a0)
244      : a0_saved(a0) {}
245  };
246
247  template <class T, class A0, class A1>
248  class ConditionalCleanup2 : public Cleanup {
249    typedef typename DominatingValue<A0>::saved_type A0_saved;
250    typedef typename DominatingValue<A1>::saved_type A1_saved;
251    A0_saved a0_saved;
252    A1_saved a1_saved;
253
254    void Emit(CodeGenFunction &CGF, Flags flags) {
255      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
256      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
257      T(a0, a1).Emit(CGF, flags);
258    }
259
260  public:
261    ConditionalCleanup2(A0_saved a0, A1_saved a1)
262      : a0_saved(a0), a1_saved(a1) {}
263  };
264
265  template <class T, class A0, class A1, class A2>
266  class ConditionalCleanup3 : public Cleanup {
267    typedef typename DominatingValue<A0>::saved_type A0_saved;
268    typedef typename DominatingValue<A1>::saved_type A1_saved;
269    typedef typename DominatingValue<A2>::saved_type A2_saved;
270    A0_saved a0_saved;
271    A1_saved a1_saved;
272    A2_saved a2_saved;
273
274    void Emit(CodeGenFunction &CGF, Flags flags) {
275      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
276      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
277      A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
278      T(a0, a1, a2).Emit(CGF, flags);
279    }
280
281  public:
282    ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2)
283      : a0_saved(a0), a1_saved(a1), a2_saved(a2) {}
284  };
285
286  template <class T, class A0, class A1, class A2, class A3>
287  class ConditionalCleanup4 : public Cleanup {
288    typedef typename DominatingValue<A0>::saved_type A0_saved;
289    typedef typename DominatingValue<A1>::saved_type A1_saved;
290    typedef typename DominatingValue<A2>::saved_type A2_saved;
291    typedef typename DominatingValue<A3>::saved_type A3_saved;
292    A0_saved a0_saved;
293    A1_saved a1_saved;
294    A2_saved a2_saved;
295    A3_saved a3_saved;
296
297    void Emit(CodeGenFunction &CGF, Flags flags) {
298      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
299      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
300      A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
301      A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved);
302      T(a0, a1, a2, a3).Emit(CGF, flags);
303    }
304
305  public:
306    ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3)
307      : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {}
308  };
309
310private:
311  // The implementation for this class is in CGException.h and
312  // CGException.cpp; the definition is here because it's used as a
313  // member of CodeGenFunction.
314
315  /// The start of the scope-stack buffer, i.e. the allocated pointer
316  /// for the buffer.  All of these pointers are either simultaneously
317  /// null or simultaneously valid.
318  char *StartOfBuffer;
319
320  /// The end of the buffer.
321  char *EndOfBuffer;
322
323  /// The first valid entry in the buffer.
324  char *StartOfData;
325
326  /// The innermost normal cleanup on the stack.
327  stable_iterator InnermostNormalCleanup;
328
329  /// The innermost EH scope on the stack.
330  stable_iterator InnermostEHScope;
331
332  /// The current set of branch fixups.  A branch fixup is a jump to
333  /// an as-yet unemitted label, i.e. a label for which we don't yet
334  /// know the EH stack depth.  Whenever we pop a cleanup, we have
335  /// to thread all the current branch fixups through it.
336  ///
337  /// Fixups are recorded as the Use of the respective branch or
338  /// switch statement.  The use points to the final destination.
339  /// When popping out of a cleanup, these uses are threaded through
340  /// the cleanup and adjusted to point to the new cleanup.
341  ///
342  /// Note that branches are allowed to jump into protected scopes
343  /// in certain situations;  e.g. the following code is legal:
344  ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
345  ///     goto foo;
346  ///     A a;
347  ///    foo:
348  ///     bar();
349  SmallVector<BranchFixup, 8> BranchFixups;
350
351  char *allocate(size_t Size);
352
353  void *pushCleanup(CleanupKind K, size_t DataSize);
354
355public:
356  EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
357                   InnermostNormalCleanup(stable_end()),
358                   InnermostEHScope(stable_end()) {}
359  ~EHScopeStack() { delete[] StartOfBuffer; }
360
361  // Variadic templates would make this not terrible.
362
363  /// Push a lazily-created cleanup on the stack.
364  template <class T>
365  void pushCleanup(CleanupKind Kind) {
366    void *Buffer = pushCleanup(Kind, sizeof(T));
367    Cleanup *Obj = new(Buffer) T();
368    (void) Obj;
369  }
370
371  /// Push a lazily-created cleanup on the stack.
372  template <class T, class A0>
373  void pushCleanup(CleanupKind Kind, A0 a0) {
374    void *Buffer = pushCleanup(Kind, sizeof(T));
375    Cleanup *Obj = new(Buffer) T(a0);
376    (void) Obj;
377  }
378
379  /// Push a lazily-created cleanup on the stack.
380  template <class T, class A0, class A1>
381  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
382    void *Buffer = pushCleanup(Kind, sizeof(T));
383    Cleanup *Obj = new(Buffer) T(a0, a1);
384    (void) Obj;
385  }
386
387  /// Push a lazily-created cleanup on the stack.
388  template <class T, class A0, class A1, class A2>
389  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
390    void *Buffer = pushCleanup(Kind, sizeof(T));
391    Cleanup *Obj = new(Buffer) T(a0, a1, a2);
392    (void) Obj;
393  }
394
395  /// Push a lazily-created cleanup on the stack.
396  template <class T, class A0, class A1, class A2, class A3>
397  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
398    void *Buffer = pushCleanup(Kind, sizeof(T));
399    Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
400    (void) Obj;
401  }
402
403  /// Push a lazily-created cleanup on the stack.
404  template <class T, class A0, class A1, class A2, class A3, class A4>
405  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
406    void *Buffer = pushCleanup(Kind, sizeof(T));
407    Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
408    (void) Obj;
409  }
410
411  // Feel free to add more variants of the following:
412
413  /// Push a cleanup with non-constant storage requirements on the
414  /// stack.  The cleanup type must provide an additional static method:
415  ///   static size_t getExtraSize(size_t);
416  /// The argument to this method will be the value N, which will also
417  /// be passed as the first argument to the constructor.
418  ///
419  /// The data stored in the extra storage must obey the same
420  /// restrictions as normal cleanup member data.
421  ///
422  /// The pointer returned from this method is valid until the cleanup
423  /// stack is modified.
424  template <class T, class A0, class A1, class A2>
425  T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
426    void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
427    return new (Buffer) T(N, a0, a1, a2);
428  }
429
430  /// Pops a cleanup scope off the stack.  This is private to CGCleanup.cpp.
431  void popCleanup();
432
433  /// Push a set of catch handlers on the stack.  The catch is
434  /// uninitialized and will need to have the given number of handlers
435  /// set on it.
436  class EHCatchScope *pushCatch(unsigned NumHandlers);
437
438  /// Pops a catch scope off the stack.  This is private to CGException.cpp.
439  void popCatch();
440
441  /// Push an exceptions filter on the stack.
442  class EHFilterScope *pushFilter(unsigned NumFilters);
443
444  /// Pops an exceptions filter off the stack.
445  void popFilter();
446
447  /// Push a terminate handler on the stack.
448  void pushTerminate();
449
450  /// Pops a terminate handler off the stack.
451  void popTerminate();
452
453  /// Determines whether the exception-scopes stack is empty.
454  bool empty() const { return StartOfData == EndOfBuffer; }
455
456  bool requiresLandingPad() const {
457    return InnermostEHScope != stable_end();
458  }
459
460  /// Determines whether there are any normal cleanups on the stack.
461  bool hasNormalCleanups() const {
462    return InnermostNormalCleanup != stable_end();
463  }
464
465  /// Returns the innermost normal cleanup on the stack, or
466  /// stable_end() if there are no normal cleanups.
467  stable_iterator getInnermostNormalCleanup() const {
468    return InnermostNormalCleanup;
469  }
470  stable_iterator getInnermostActiveNormalCleanup() const;
471
472  stable_iterator getInnermostEHScope() const {
473    return InnermostEHScope;
474  }
475
476  stable_iterator getInnermostActiveEHScope() const;
477
478  /// An unstable reference to a scope-stack depth.  Invalidated by
479  /// pushes but not pops.
480  class iterator;
481
482  /// Returns an iterator pointing to the innermost EH scope.
483  iterator begin() const;
484
485  /// Returns an iterator pointing to the outermost EH scope.
486  iterator end() const;
487
488  /// Create a stable reference to the top of the EH stack.  The
489  /// returned reference is valid until that scope is popped off the
490  /// stack.
491  stable_iterator stable_begin() const {
492    return stable_iterator(EndOfBuffer - StartOfData);
493  }
494
495  /// Create a stable reference to the bottom of the EH stack.
496  static stable_iterator stable_end() {
497    return stable_iterator(0);
498  }
499
500  /// Translates an iterator into a stable_iterator.
501  stable_iterator stabilize(iterator it) const;
502
503  /// Turn a stable reference to a scope depth into a unstable pointer
504  /// to the EH stack.
505  iterator find(stable_iterator save) const;
506
507  /// Removes the cleanup pointed to by the given stable_iterator.
508  void removeCleanup(stable_iterator save);
509
510  /// Add a branch fixup to the current cleanup scope.
511  BranchFixup &addBranchFixup() {
512    assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
513    BranchFixups.push_back(BranchFixup());
514    return BranchFixups.back();
515  }
516
517  unsigned getNumBranchFixups() const { return BranchFixups.size(); }
518  BranchFixup &getBranchFixup(unsigned I) {
519    assert(I < getNumBranchFixups());
520    return BranchFixups[I];
521  }
522
523  /// Pops lazily-removed fixups from the end of the list.  This
524  /// should only be called by procedures which have just popped a
525  /// cleanup or resolved one or more fixups.
526  void popNullFixups();
527
528  /// Clears the branch-fixups list.  This should only be called by
529  /// ResolveAllBranchFixups.
530  void clearFixups() { BranchFixups.clear(); }
531};
532
533/// CodeGenFunction - This class organizes the per-function state that is used
534/// while generating LLVM code.
535class CodeGenFunction : public CodeGenTypeCache {
536  CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT
537  void operator=(const CodeGenFunction&);  // DO NOT IMPLEMENT
538
539  friend class CGCXXABI;
540public:
541  /// A jump destination is an abstract label, branching to which may
542  /// require a jump out through normal cleanups.
543  struct JumpDest {
544    JumpDest() : Block(0), ScopeDepth(), Index(0) {}
545    JumpDest(llvm::BasicBlock *Block,
546             EHScopeStack::stable_iterator Depth,
547             unsigned Index)
548      : Block(Block), ScopeDepth(Depth), Index(Index) {}
549
550    bool isValid() const { return Block != 0; }
551    llvm::BasicBlock *getBlock() const { return Block; }
552    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
553    unsigned getDestIndex() const { return Index; }
554
555  private:
556    llvm::BasicBlock *Block;
557    EHScopeStack::stable_iterator ScopeDepth;
558    unsigned Index;
559  };
560
561  CodeGenModule &CGM;  // Per-module state.
562  const TargetInfo &Target;
563
564  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
565  CGBuilderTy Builder;
566
567  /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
568  /// This excludes BlockDecls.
569  const Decl *CurFuncDecl;
570  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
571  const Decl *CurCodeDecl;
572  const CGFunctionInfo *CurFnInfo;
573  QualType FnRetTy;
574  llvm::Function *CurFn;
575
576  /// CurGD - The GlobalDecl for the current function being compiled.
577  GlobalDecl CurGD;
578
579  /// PrologueCleanupDepth - The cleanup depth enclosing all the
580  /// cleanups associated with the parameters.
581  EHScopeStack::stable_iterator PrologueCleanupDepth;
582
583  /// ReturnBlock - Unified return block.
584  JumpDest ReturnBlock;
585
586  /// ReturnValue - The temporary alloca to hold the return value. This is null
587  /// iff the function has no return value.
588  llvm::Value *ReturnValue;
589
590  /// AllocaInsertPoint - This is an instruction in the entry block before which
591  /// we prefer to insert allocas.
592  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
593
594  /// BoundsChecking - Emit run-time bounds checks. Higher values mean
595  /// potentially higher performance penalties.
596  unsigned char BoundsChecking;
597
598  /// CatchUndefined - Emit run-time checks to catch undefined behaviors.
599  bool CatchUndefined;
600
601  /// In ARC, whether we should autorelease the return value.
602  bool AutoreleaseResult;
603
604  const CodeGen::CGBlockInfo *BlockInfo;
605  llvm::Value *BlockPointer;
606
607  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
608  FieldDecl *LambdaThisCaptureField;
609
610  /// \brief A mapping from NRVO variables to the flags used to indicate
611  /// when the NRVO has been applied to this variable.
612  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
613
614  EHScopeStack EHStack;
615
616  /// i32s containing the indexes of the cleanup destinations.
617  llvm::AllocaInst *NormalCleanupDest;
618
619  unsigned NextCleanupDestIndex;
620
621  /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
622  CGBlockInfo *FirstBlockInfo;
623
624  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
625  llvm::BasicBlock *EHResumeBlock;
626
627  /// The exception slot.  All landing pads write the current exception pointer
628  /// into this alloca.
629  llvm::Value *ExceptionSlot;
630
631  /// The selector slot.  Under the MandatoryCleanup model, all landing pads
632  /// write the current selector value into this alloca.
633  llvm::AllocaInst *EHSelectorSlot;
634
635  /// Emits a landing pad for the current EH stack.
636  llvm::BasicBlock *EmitLandingPad();
637
638  llvm::BasicBlock *getInvokeDestImpl();
639
640  template <class T>
641  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
642    return DominatingValue<T>::save(*this, value);
643  }
644
645public:
646  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
647  /// rethrows.
648  SmallVector<llvm::Value*, 8> ObjCEHValueStack;
649
650  /// A class controlling the emission of a finally block.
651  class FinallyInfo {
652    /// Where the catchall's edge through the cleanup should go.
653    JumpDest RethrowDest;
654
655    /// A function to call to enter the catch.
656    llvm::Constant *BeginCatchFn;
657
658    /// An i1 variable indicating whether or not the @finally is
659    /// running for an exception.
660    llvm::AllocaInst *ForEHVar;
661
662    /// An i8* variable into which the exception pointer to rethrow
663    /// has been saved.
664    llvm::AllocaInst *SavedExnVar;
665
666  public:
667    void enter(CodeGenFunction &CGF, const Stmt *Finally,
668               llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
669               llvm::Constant *rethrowFn);
670    void exit(CodeGenFunction &CGF);
671  };
672
673  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
674  /// current full-expression.  Safe against the possibility that
675  /// we're currently inside a conditionally-evaluated expression.
676  template <class T, class A0>
677  void pushFullExprCleanup(CleanupKind kind, A0 a0) {
678    // If we're not in a conditional branch, or if none of the
679    // arguments requires saving, then use the unconditional cleanup.
680    if (!isInConditionalBranch())
681      return EHStack.pushCleanup<T>(kind, a0);
682
683    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
684
685    typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
686    EHStack.pushCleanup<CleanupType>(kind, a0_saved);
687    initFullExprCleanup();
688  }
689
690  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
691  /// current full-expression.  Safe against the possibility that
692  /// we're currently inside a conditionally-evaluated expression.
693  template <class T, class A0, class A1>
694  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
695    // If we're not in a conditional branch, or if none of the
696    // arguments requires saving, then use the unconditional cleanup.
697    if (!isInConditionalBranch())
698      return EHStack.pushCleanup<T>(kind, a0, a1);
699
700    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
701    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
702
703    typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
704    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
705    initFullExprCleanup();
706  }
707
708  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
709  /// current full-expression.  Safe against the possibility that
710  /// we're currently inside a conditionally-evaluated expression.
711  template <class T, class A0, class A1, class A2>
712  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
713    // If we're not in a conditional branch, or if none of the
714    // arguments requires saving, then use the unconditional cleanup.
715    if (!isInConditionalBranch()) {
716      return EHStack.pushCleanup<T>(kind, a0, a1, a2);
717    }
718
719    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
720    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
721    typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
722
723    typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
724    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
725    initFullExprCleanup();
726  }
727
728  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
729  /// current full-expression.  Safe against the possibility that
730  /// we're currently inside a conditionally-evaluated expression.
731  template <class T, class A0, class A1, class A2, class A3>
732  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
733    // If we're not in a conditional branch, or if none of the
734    // arguments requires saving, then use the unconditional cleanup.
735    if (!isInConditionalBranch()) {
736      return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
737    }
738
739    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
740    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
741    typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
742    typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
743
744    typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
745    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
746                                     a2_saved, a3_saved);
747    initFullExprCleanup();
748  }
749
750  /// Set up the last cleaup that was pushed as a conditional
751  /// full-expression cleanup.
752  void initFullExprCleanup();
753
754  /// PushDestructorCleanup - Push a cleanup to call the
755  /// complete-object destructor of an object of the given type at the
756  /// given address.  Does nothing if T is not a C++ class type with a
757  /// non-trivial destructor.
758  void PushDestructorCleanup(QualType T, llvm::Value *Addr);
759
760  /// PushDestructorCleanup - Push a cleanup to call the
761  /// complete-object variant of the given destructor on the object at
762  /// the given address.
763  void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
764                             llvm::Value *Addr);
765
766  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
767  /// process all branch fixups.
768  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
769
770  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
771  /// The block cannot be reactivated.  Pops it if it's the top of the
772  /// stack.
773  ///
774  /// \param DominatingIP - An instruction which is known to
775  ///   dominate the current IP (if set) and which lies along
776  ///   all paths of execution between the current IP and the
777  ///   the point at which the cleanup comes into scope.
778  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
779                              llvm::Instruction *DominatingIP);
780
781  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
782  /// Cannot be used to resurrect a deactivated cleanup.
783  ///
784  /// \param DominatingIP - An instruction which is known to
785  ///   dominate the current IP (if set) and which lies along
786  ///   all paths of execution between the current IP and the
787  ///   the point at which the cleanup comes into scope.
788  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
789                            llvm::Instruction *DominatingIP);
790
791  /// \brief Enters a new scope for capturing cleanups, all of which
792  /// will be executed once the scope is exited.
793  class RunCleanupsScope {
794    EHScopeStack::stable_iterator CleanupStackDepth;
795    bool OldDidCallStackSave;
796    bool PerformCleanup;
797
798    RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT
799    RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT
800
801  protected:
802    CodeGenFunction& CGF;
803
804  public:
805    /// \brief Enter a new cleanup scope.
806    explicit RunCleanupsScope(CodeGenFunction &CGF)
807      : PerformCleanup(true), CGF(CGF)
808    {
809      CleanupStackDepth = CGF.EHStack.stable_begin();
810      OldDidCallStackSave = CGF.DidCallStackSave;
811      CGF.DidCallStackSave = false;
812    }
813
814    /// \brief Exit this cleanup scope, emitting any accumulated
815    /// cleanups.
816    ~RunCleanupsScope() {
817      if (PerformCleanup) {
818        CGF.DidCallStackSave = OldDidCallStackSave;
819        CGF.PopCleanupBlocks(CleanupStackDepth);
820      }
821    }
822
823    /// \brief Determine whether this scope requires any cleanups.
824    bool requiresCleanups() const {
825      return CGF.EHStack.stable_begin() != CleanupStackDepth;
826    }
827
828    /// \brief Force the emission of cleanups now, instead of waiting
829    /// until this object is destroyed.
830    void ForceCleanup() {
831      assert(PerformCleanup && "Already forced cleanup");
832      CGF.DidCallStackSave = OldDidCallStackSave;
833      CGF.PopCleanupBlocks(CleanupStackDepth);
834      PerformCleanup = false;
835    }
836  };
837
838  class LexicalScope: protected RunCleanupsScope {
839    SourceRange Range;
840    bool PopDebugStack;
841
842    LexicalScope(const LexicalScope &); // DO NOT IMPLEMENT THESE
843    LexicalScope &operator=(const LexicalScope &);
844
845  public:
846    /// \brief Enter a new cleanup scope.
847    explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
848      : RunCleanupsScope(CGF), Range(Range), PopDebugStack(true) {
849      if (CGDebugInfo *DI = CGF.getDebugInfo())
850        DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
851    }
852
853    /// \brief Exit this cleanup scope, emitting any accumulated
854    /// cleanups.
855    ~LexicalScope() {
856      if (PopDebugStack) {
857        CGDebugInfo *DI = CGF.getDebugInfo();
858        if (DI) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
859      }
860    }
861
862    /// \brief Force the emission of cleanups now, instead of waiting
863    /// until this object is destroyed.
864    void ForceCleanup() {
865      RunCleanupsScope::ForceCleanup();
866      if (CGDebugInfo *DI = CGF.getDebugInfo()) {
867        DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
868        PopDebugStack = false;
869      }
870    }
871  };
872
873
874  /// PopCleanupBlocks - Takes the old cleanup stack size and emits
875  /// the cleanup blocks that have been added.
876  void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
877
878  void ResolveBranchFixups(llvm::BasicBlock *Target);
879
880  /// The given basic block lies in the current EH scope, but may be a
881  /// target of a potentially scope-crossing jump; get a stable handle
882  /// to which we can perform this jump later.
883  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
884    return JumpDest(Target,
885                    EHStack.getInnermostNormalCleanup(),
886                    NextCleanupDestIndex++);
887  }
888
889  /// The given basic block lies in the current EH scope, but may be a
890  /// target of a potentially scope-crossing jump; get a stable handle
891  /// to which we can perform this jump later.
892  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
893    return getJumpDestInCurrentScope(createBasicBlock(Name));
894  }
895
896  /// EmitBranchThroughCleanup - Emit a branch from the current insert
897  /// block through the normal cleanup handling code (if any) and then
898  /// on to \arg Dest.
899  void EmitBranchThroughCleanup(JumpDest Dest);
900
901  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
902  /// specified destination obviously has no cleanups to run.  'false' is always
903  /// a conservatively correct answer for this method.
904  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
905
906  /// popCatchScope - Pops the catch scope at the top of the EHScope
907  /// stack, emitting any required code (other than the catch handlers
908  /// themselves).
909  void popCatchScope();
910
911  llvm::BasicBlock *getEHResumeBlock();
912  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
913
914  /// An object to manage conditionally-evaluated expressions.
915  class ConditionalEvaluation {
916    llvm::BasicBlock *StartBB;
917
918  public:
919    ConditionalEvaluation(CodeGenFunction &CGF)
920      : StartBB(CGF.Builder.GetInsertBlock()) {}
921
922    void begin(CodeGenFunction &CGF) {
923      assert(CGF.OutermostConditional != this);
924      if (!CGF.OutermostConditional)
925        CGF.OutermostConditional = this;
926    }
927
928    void end(CodeGenFunction &CGF) {
929      assert(CGF.OutermostConditional != 0);
930      if (CGF.OutermostConditional == this)
931        CGF.OutermostConditional = 0;
932    }
933
934    /// Returns a block which will be executed prior to each
935    /// evaluation of the conditional code.
936    llvm::BasicBlock *getStartingBlock() const {
937      return StartBB;
938    }
939  };
940
941  /// isInConditionalBranch - Return true if we're currently emitting
942  /// one branch or the other of a conditional expression.
943  bool isInConditionalBranch() const { return OutermostConditional != 0; }
944
945  void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
946    assert(isInConditionalBranch());
947    llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
948    new llvm::StoreInst(value, addr, &block->back());
949  }
950
951  /// An RAII object to record that we're evaluating a statement
952  /// expression.
953  class StmtExprEvaluation {
954    CodeGenFunction &CGF;
955
956    /// We have to save the outermost conditional: cleanups in a
957    /// statement expression aren't conditional just because the
958    /// StmtExpr is.
959    ConditionalEvaluation *SavedOutermostConditional;
960
961  public:
962    StmtExprEvaluation(CodeGenFunction &CGF)
963      : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
964      CGF.OutermostConditional = 0;
965    }
966
967    ~StmtExprEvaluation() {
968      CGF.OutermostConditional = SavedOutermostConditional;
969      CGF.EnsureInsertPoint();
970    }
971  };
972
973  /// An object which temporarily prevents a value from being
974  /// destroyed by aggressive peephole optimizations that assume that
975  /// all uses of a value have been realized in the IR.
976  class PeepholeProtection {
977    llvm::Instruction *Inst;
978    friend class CodeGenFunction;
979
980  public:
981    PeepholeProtection() : Inst(0) {}
982  };
983
984  /// A non-RAII class containing all the information about a bound
985  /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
986  /// this which makes individual mappings very simple; using this
987  /// class directly is useful when you have a variable number of
988  /// opaque values or don't want the RAII functionality for some
989  /// reason.
990  class OpaqueValueMappingData {
991    const OpaqueValueExpr *OpaqueValue;
992    bool BoundLValue;
993    CodeGenFunction::PeepholeProtection Protection;
994
995    OpaqueValueMappingData(const OpaqueValueExpr *ov,
996                           bool boundLValue)
997      : OpaqueValue(ov), BoundLValue(boundLValue) {}
998  public:
999    OpaqueValueMappingData() : OpaqueValue(0) {}
1000
1001    static bool shouldBindAsLValue(const Expr *expr) {
1002      // gl-values should be bound as l-values for obvious reasons.
1003      // Records should be bound as l-values because IR generation
1004      // always keeps them in memory.  Expressions of function type
1005      // act exactly like l-values but are formally required to be
1006      // r-values in C.
1007      return expr->isGLValue() ||
1008             expr->getType()->isRecordType() ||
1009             expr->getType()->isFunctionType();
1010    }
1011
1012    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1013                                       const OpaqueValueExpr *ov,
1014                                       const Expr *e) {
1015      if (shouldBindAsLValue(ov))
1016        return bind(CGF, ov, CGF.EmitLValue(e));
1017      return bind(CGF, ov, CGF.EmitAnyExpr(e));
1018    }
1019
1020    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1021                                       const OpaqueValueExpr *ov,
1022                                       const LValue &lv) {
1023      assert(shouldBindAsLValue(ov));
1024      CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1025      return OpaqueValueMappingData(ov, true);
1026    }
1027
1028    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1029                                       const OpaqueValueExpr *ov,
1030                                       const RValue &rv) {
1031      assert(!shouldBindAsLValue(ov));
1032      CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1033
1034      OpaqueValueMappingData data(ov, false);
1035
1036      // Work around an extremely aggressive peephole optimization in
1037      // EmitScalarConversion which assumes that all other uses of a
1038      // value are extant.
1039      data.Protection = CGF.protectFromPeepholes(rv);
1040
1041      return data;
1042    }
1043
1044    bool isValid() const { return OpaqueValue != 0; }
1045    void clear() { OpaqueValue = 0; }
1046
1047    void unbind(CodeGenFunction &CGF) {
1048      assert(OpaqueValue && "no data to unbind!");
1049
1050      if (BoundLValue) {
1051        CGF.OpaqueLValues.erase(OpaqueValue);
1052      } else {
1053        CGF.OpaqueRValues.erase(OpaqueValue);
1054        CGF.unprotectFromPeepholes(Protection);
1055      }
1056    }
1057  };
1058
1059  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1060  class OpaqueValueMapping {
1061    CodeGenFunction &CGF;
1062    OpaqueValueMappingData Data;
1063
1064  public:
1065    static bool shouldBindAsLValue(const Expr *expr) {
1066      return OpaqueValueMappingData::shouldBindAsLValue(expr);
1067    }
1068
1069    /// Build the opaque value mapping for the given conditional
1070    /// operator if it's the GNU ?: extension.  This is a common
1071    /// enough pattern that the convenience operator is really
1072    /// helpful.
1073    ///
1074    OpaqueValueMapping(CodeGenFunction &CGF,
1075                       const AbstractConditionalOperator *op) : CGF(CGF) {
1076      if (isa<ConditionalOperator>(op))
1077        // Leave Data empty.
1078        return;
1079
1080      const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1081      Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1082                                          e->getCommon());
1083    }
1084
1085    OpaqueValueMapping(CodeGenFunction &CGF,
1086                       const OpaqueValueExpr *opaqueValue,
1087                       LValue lvalue)
1088      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1089    }
1090
1091    OpaqueValueMapping(CodeGenFunction &CGF,
1092                       const OpaqueValueExpr *opaqueValue,
1093                       RValue rvalue)
1094      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1095    }
1096
1097    void pop() {
1098      Data.unbind(CGF);
1099      Data.clear();
1100    }
1101
1102    ~OpaqueValueMapping() {
1103      if (Data.isValid()) Data.unbind(CGF);
1104    }
1105  };
1106
1107  /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
1108  /// number that holds the value.
1109  unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
1110
1111  /// BuildBlockByrefAddress - Computes address location of the
1112  /// variable which is declared as __block.
1113  llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
1114                                      const VarDecl *V);
1115private:
1116  CGDebugInfo *DebugInfo;
1117  bool DisableDebugInfo;
1118
1119  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1120  /// calling llvm.stacksave for multiple VLAs in the same scope.
1121  bool DidCallStackSave;
1122
1123  /// IndirectBranch - The first time an indirect goto is seen we create a block
1124  /// with an indirect branch.  Every time we see the address of a label taken,
1125  /// we add the label to the indirect goto.  Every subsequent indirect goto is
1126  /// codegen'd as a jump to the IndirectBranch's basic block.
1127  llvm::IndirectBrInst *IndirectBranch;
1128
1129  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1130  /// decls.
1131  typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
1132  DeclMapTy LocalDeclMap;
1133
1134  /// LabelMap - This keeps track of the LLVM basic block for each C label.
1135  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1136
1137  // BreakContinueStack - This keeps track of where break and continue
1138  // statements should jump to.
1139  struct BreakContinue {
1140    BreakContinue(JumpDest Break, JumpDest Continue)
1141      : BreakBlock(Break), ContinueBlock(Continue) {}
1142
1143    JumpDest BreakBlock;
1144    JumpDest ContinueBlock;
1145  };
1146  SmallVector<BreakContinue, 8> BreakContinueStack;
1147
1148  /// SwitchInsn - This is nearest current switch instruction. It is null if
1149  /// current context is not in a switch.
1150  llvm::SwitchInst *SwitchInsn;
1151
1152  /// CaseRangeBlock - This block holds if condition check for last case
1153  /// statement range in current switch instruction.
1154  llvm::BasicBlock *CaseRangeBlock;
1155
1156  /// OpaqueLValues - Keeps track of the current set of opaque value
1157  /// expressions.
1158  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1159  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1160
1161  // VLASizeMap - This keeps track of the associated size for each VLA type.
1162  // We track this by the size expression rather than the type itself because
1163  // in certain situations, like a const qualifier applied to an VLA typedef,
1164  // multiple VLA types can share the same size expression.
1165  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1166  // enter/leave scopes.
1167  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1168
1169  /// A block containing a single 'unreachable' instruction.  Created
1170  /// lazily by getUnreachableBlock().
1171  llvm::BasicBlock *UnreachableBlock;
1172
1173  /// CXXThisDecl - When generating code for a C++ member function,
1174  /// this will hold the implicit 'this' declaration.
1175  ImplicitParamDecl *CXXABIThisDecl;
1176  llvm::Value *CXXABIThisValue;
1177  llvm::Value *CXXThisValue;
1178
1179  /// CXXVTTDecl - When generating code for a base object constructor or
1180  /// base object destructor with virtual bases, this will hold the implicit
1181  /// VTT parameter.
1182  ImplicitParamDecl *CXXVTTDecl;
1183  llvm::Value *CXXVTTValue;
1184
1185  /// OutermostConditional - Points to the outermost active
1186  /// conditional control.  This is used so that we know if a
1187  /// temporary should be destroyed conditionally.
1188  ConditionalEvaluation *OutermostConditional;
1189
1190
1191  /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1192  /// type as well as the field number that contains the actual data.
1193  llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
1194                                              unsigned> > ByRefValueInfo;
1195
1196  llvm::BasicBlock *TerminateLandingPad;
1197  llvm::BasicBlock *TerminateHandler;
1198  llvm::BasicBlock *TrapBB;
1199
1200public:
1201  CodeGenFunction(CodeGenModule &cgm);
1202  ~CodeGenFunction();
1203
1204  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1205  ASTContext &getContext() const { return CGM.getContext(); }
1206  CGDebugInfo *getDebugInfo() {
1207    if (DisableDebugInfo)
1208      return NULL;
1209    return DebugInfo;
1210  }
1211  void disableDebugInfo() { DisableDebugInfo = true; }
1212  void enableDebugInfo() { DisableDebugInfo = false; }
1213
1214  bool shouldUseFusedARCCalls() {
1215    return CGM.getCodeGenOpts().OptimizationLevel == 0;
1216  }
1217
1218  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1219
1220  /// Returns a pointer to the function's exception object and selector slot,
1221  /// which is assigned in every landing pad.
1222  llvm::Value *getExceptionSlot();
1223  llvm::Value *getEHSelectorSlot();
1224
1225  /// Returns the contents of the function's exception object and selector
1226  /// slots.
1227  llvm::Value *getExceptionFromSlot();
1228  llvm::Value *getSelectorFromSlot();
1229
1230  llvm::Value *getNormalCleanupDestSlot();
1231
1232  llvm::BasicBlock *getUnreachableBlock() {
1233    if (!UnreachableBlock) {
1234      UnreachableBlock = createBasicBlock("unreachable");
1235      new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1236    }
1237    return UnreachableBlock;
1238  }
1239
1240  llvm::BasicBlock *getInvokeDest() {
1241    if (!EHStack.requiresLandingPad()) return 0;
1242    return getInvokeDestImpl();
1243  }
1244
1245  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1246
1247  //===--------------------------------------------------------------------===//
1248  //                                  Cleanups
1249  //===--------------------------------------------------------------------===//
1250
1251  typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1252
1253  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1254                                        llvm::Value *arrayEndPointer,
1255                                        QualType elementType,
1256                                        Destroyer *destroyer);
1257  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1258                                      llvm::Value *arrayEnd,
1259                                      QualType elementType,
1260                                      Destroyer *destroyer);
1261
1262  void pushDestroy(QualType::DestructionKind dtorKind,
1263                   llvm::Value *addr, QualType type);
1264  void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1265                   Destroyer *destroyer, bool useEHCleanupForArray);
1266  void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1267                   bool useEHCleanupForArray);
1268  llvm::Function *generateDestroyHelper(llvm::Constant *addr,
1269                                        QualType type,
1270                                        Destroyer *destroyer,
1271                                        bool useEHCleanupForArray);
1272  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1273                        QualType type, Destroyer *destroyer,
1274                        bool checkZeroLength, bool useEHCleanup);
1275
1276  Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1277
1278  /// Determines whether an EH cleanup is required to destroy a type
1279  /// with the given destruction kind.
1280  bool needsEHCleanup(QualType::DestructionKind kind) {
1281    switch (kind) {
1282    case QualType::DK_none:
1283      return false;
1284    case QualType::DK_cxx_destructor:
1285    case QualType::DK_objc_weak_lifetime:
1286      return getLangOpts().Exceptions;
1287    case QualType::DK_objc_strong_lifetime:
1288      return getLangOpts().Exceptions &&
1289             CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1290    }
1291    llvm_unreachable("bad destruction kind");
1292  }
1293
1294  CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1295    return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1296  }
1297
1298  //===--------------------------------------------------------------------===//
1299  //                                  Objective-C
1300  //===--------------------------------------------------------------------===//
1301
1302  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1303
1304  void StartObjCMethod(const ObjCMethodDecl *MD,
1305                       const ObjCContainerDecl *CD,
1306                       SourceLocation StartLoc);
1307
1308  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1309  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1310                          const ObjCPropertyImplDecl *PID);
1311  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1312                              const ObjCPropertyImplDecl *propImpl,
1313                              const ObjCMethodDecl *GetterMothodDecl,
1314                              llvm::Constant *AtomicHelperFn);
1315
1316  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1317                                  ObjCMethodDecl *MD, bool ctor);
1318
1319  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1320  /// for the given property.
1321  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1322                          const ObjCPropertyImplDecl *PID);
1323  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1324                              const ObjCPropertyImplDecl *propImpl,
1325                              llvm::Constant *AtomicHelperFn);
1326  bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1327  bool IvarTypeWithAggrGCObjects(QualType Ty);
1328
1329  //===--------------------------------------------------------------------===//
1330  //                                  Block Bits
1331  //===--------------------------------------------------------------------===//
1332
1333  llvm::Value *EmitBlockLiteral(const BlockExpr *);
1334  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1335  static void destroyBlockInfos(CGBlockInfo *info);
1336  llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1337                                           const CGBlockInfo &Info,
1338                                           llvm::StructType *,
1339                                           llvm::Constant *BlockVarLayout);
1340
1341  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1342                                        const CGBlockInfo &Info,
1343                                        const Decl *OuterFuncDecl,
1344                                        const DeclMapTy &ldm,
1345                                        bool IsLambdaConversionToBlock);
1346
1347  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1348  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1349  llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1350                                             const ObjCPropertyImplDecl *PID);
1351  llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1352                                             const ObjCPropertyImplDecl *PID);
1353  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1354
1355  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1356
1357  class AutoVarEmission;
1358
1359  void emitByrefStructureInit(const AutoVarEmission &emission);
1360  void enterByrefCleanup(const AutoVarEmission &emission);
1361
1362  llvm::Value *LoadBlockStruct() {
1363    assert(BlockPointer && "no block pointer set!");
1364    return BlockPointer;
1365  }
1366
1367  void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1368  void AllocateBlockDecl(const DeclRefExpr *E);
1369  llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1370  llvm::Type *BuildByRefType(const VarDecl *var);
1371
1372  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1373                    const CGFunctionInfo &FnInfo);
1374  void StartFunction(GlobalDecl GD, QualType RetTy,
1375                     llvm::Function *Fn,
1376                     const CGFunctionInfo &FnInfo,
1377                     const FunctionArgList &Args,
1378                     SourceLocation StartLoc);
1379
1380  void EmitConstructorBody(FunctionArgList &Args);
1381  void EmitDestructorBody(FunctionArgList &Args);
1382  void EmitFunctionBody(FunctionArgList &Args);
1383
1384  void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda,
1385                                  CallArgList &CallArgs);
1386  void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1387  void EmitLambdaBlockInvokeBody();
1388  void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1389  void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1390
1391  /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1392  /// emission when possible.
1393  void EmitReturnBlock();
1394
1395  /// FinishFunction - Complete IR generation of the current function. It is
1396  /// legal to call this function even if there is no current insertion point.
1397  void FinishFunction(SourceLocation EndLoc=SourceLocation());
1398
1399  /// GenerateThunk - Generate a thunk for the given method.
1400  void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1401                     GlobalDecl GD, const ThunkInfo &Thunk);
1402
1403  void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1404                            GlobalDecl GD, const ThunkInfo &Thunk);
1405
1406  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1407                        FunctionArgList &Args);
1408
1409  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1410                               ArrayRef<VarDecl *> ArrayIndexes);
1411
1412  /// InitializeVTablePointer - Initialize the vtable pointer of the given
1413  /// subobject.
1414  ///
1415  void InitializeVTablePointer(BaseSubobject Base,
1416                               const CXXRecordDecl *NearestVBase,
1417                               CharUnits OffsetFromNearestVBase,
1418                               llvm::Constant *VTable,
1419                               const CXXRecordDecl *VTableClass);
1420
1421  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1422  void InitializeVTablePointers(BaseSubobject Base,
1423                                const CXXRecordDecl *NearestVBase,
1424                                CharUnits OffsetFromNearestVBase,
1425                                bool BaseIsNonVirtualPrimaryBase,
1426                                llvm::Constant *VTable,
1427                                const CXXRecordDecl *VTableClass,
1428                                VisitedVirtualBasesSetTy& VBases);
1429
1430  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1431
1432  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1433  /// to by This.
1434  llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1435
1436  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1437  /// given phase of destruction for a destructor.  The end result
1438  /// should call destructors on members and base classes in reverse
1439  /// order of their construction.
1440  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1441
1442  /// ShouldInstrumentFunction - Return true if the current function should be
1443  /// instrumented with __cyg_profile_func_* calls
1444  bool ShouldInstrumentFunction();
1445
1446  /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1447  /// instrumentation function with the current function and the call site, if
1448  /// function instrumentation is enabled.
1449  void EmitFunctionInstrumentation(const char *Fn);
1450
1451  /// EmitMCountInstrumentation - Emit call to .mcount.
1452  void EmitMCountInstrumentation();
1453
1454  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1455  /// arguments for the given function. This is also responsible for naming the
1456  /// LLVM function arguments.
1457  void EmitFunctionProlog(const CGFunctionInfo &FI,
1458                          llvm::Function *Fn,
1459                          const FunctionArgList &Args);
1460
1461  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1462  /// given temporary.
1463  void EmitFunctionEpilog(const CGFunctionInfo &FI);
1464
1465  /// EmitStartEHSpec - Emit the start of the exception spec.
1466  void EmitStartEHSpec(const Decl *D);
1467
1468  /// EmitEndEHSpec - Emit the end of the exception spec.
1469  void EmitEndEHSpec(const Decl *D);
1470
1471  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1472  llvm::BasicBlock *getTerminateLandingPad();
1473
1474  /// getTerminateHandler - Return a handler (not a landing pad, just
1475  /// a catch handler) that just calls terminate.  This is used when
1476  /// a terminate scope encloses a try.
1477  llvm::BasicBlock *getTerminateHandler();
1478
1479  llvm::Type *ConvertTypeForMem(QualType T);
1480  llvm::Type *ConvertType(QualType T);
1481  llvm::Type *ConvertType(const TypeDecl *T) {
1482    return ConvertType(getContext().getTypeDeclType(T));
1483  }
1484
1485  /// LoadObjCSelf - Load the value of self. This function is only valid while
1486  /// generating code for an Objective-C method.
1487  llvm::Value *LoadObjCSelf();
1488
1489  /// TypeOfSelfObject - Return type of object that this self represents.
1490  QualType TypeOfSelfObject();
1491
1492  /// hasAggregateLLVMType - Return true if the specified AST type will map into
1493  /// an aggregate LLVM type or is void.
1494  static bool hasAggregateLLVMType(QualType T);
1495
1496  /// createBasicBlock - Create an LLVM basic block.
1497  llvm::BasicBlock *createBasicBlock(StringRef name = "",
1498                                     llvm::Function *parent = 0,
1499                                     llvm::BasicBlock *before = 0) {
1500#ifdef NDEBUG
1501    return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1502#else
1503    return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1504#endif
1505  }
1506
1507  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1508  /// label maps to.
1509  JumpDest getJumpDestForLabel(const LabelDecl *S);
1510
1511  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1512  /// another basic block, simplify it. This assumes that no other code could
1513  /// potentially reference the basic block.
1514  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1515
1516  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1517  /// adding a fall-through branch from the current insert block if
1518  /// necessary. It is legal to call this function even if there is no current
1519  /// insertion point.
1520  ///
1521  /// IsFinished - If true, indicates that the caller has finished emitting
1522  /// branches to the given block and does not expect to emit code into it. This
1523  /// means the block can be ignored if it is unreachable.
1524  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1525
1526  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1527  /// near its uses, and leave the insertion point in it.
1528  void EmitBlockAfterUses(llvm::BasicBlock *BB);
1529
1530  /// EmitBranch - Emit a branch to the specified basic block from the current
1531  /// insert block, taking care to avoid creation of branches from dummy
1532  /// blocks. It is legal to call this function even if there is no current
1533  /// insertion point.
1534  ///
1535  /// This function clears the current insertion point. The caller should follow
1536  /// calls to this function with calls to Emit*Block prior to generation new
1537  /// code.
1538  void EmitBranch(llvm::BasicBlock *Block);
1539
1540  /// HaveInsertPoint - True if an insertion point is defined. If not, this
1541  /// indicates that the current code being emitted is unreachable.
1542  bool HaveInsertPoint() const {
1543    return Builder.GetInsertBlock() != 0;
1544  }
1545
1546  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1547  /// emitted IR has a place to go. Note that by definition, if this function
1548  /// creates a block then that block is unreachable; callers may do better to
1549  /// detect when no insertion point is defined and simply skip IR generation.
1550  void EnsureInsertPoint() {
1551    if (!HaveInsertPoint())
1552      EmitBlock(createBasicBlock());
1553  }
1554
1555  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1556  /// specified stmt yet.
1557  void ErrorUnsupported(const Stmt *S, const char *Type,
1558                        bool OmitOnError=false);
1559
1560  //===--------------------------------------------------------------------===//
1561  //                                  Helpers
1562  //===--------------------------------------------------------------------===//
1563
1564  LValue MakeAddrLValue(llvm::Value *V, QualType T,
1565                        CharUnits Alignment = CharUnits()) {
1566    return LValue::MakeAddr(V, T, Alignment, getContext(),
1567                            CGM.getTBAAInfo(T));
1568  }
1569  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
1570    CharUnits Alignment;
1571    if (!T->isIncompleteType())
1572      Alignment = getContext().getTypeAlignInChars(T);
1573    return LValue::MakeAddr(V, T, Alignment, getContext(),
1574                            CGM.getTBAAInfo(T));
1575  }
1576
1577  /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1578  /// block. The caller is responsible for setting an appropriate alignment on
1579  /// the alloca.
1580  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1581                                     const Twine &Name = "tmp");
1582
1583  /// InitTempAlloca - Provide an initial value for the given alloca.
1584  void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1585
1586  /// CreateIRTemp - Create a temporary IR object of the given type, with
1587  /// appropriate alignment. This routine should only be used when an temporary
1588  /// value needs to be stored into an alloca (for example, to avoid explicit
1589  /// PHI construction), but the type is the IR type, not the type appropriate
1590  /// for storing in memory.
1591  llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1592
1593  /// CreateMemTemp - Create a temporary memory object of the given type, with
1594  /// appropriate alignment.
1595  llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1596
1597  /// CreateAggTemp - Create a temporary memory object for the given
1598  /// aggregate type.
1599  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1600    CharUnits Alignment = getContext().getTypeAlignInChars(T);
1601    return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1602                                 T.getQualifiers(),
1603                                 AggValueSlot::IsNotDestructed,
1604                                 AggValueSlot::DoesNotNeedGCBarriers,
1605                                 AggValueSlot::IsNotAliased);
1606  }
1607
1608  /// Emit a cast to void* in the appropriate address space.
1609  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1610
1611  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1612  /// expression and compare the result against zero, returning an Int1Ty value.
1613  llvm::Value *EvaluateExprAsBool(const Expr *E);
1614
1615  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1616  void EmitIgnoredExpr(const Expr *E);
1617
1618  /// EmitAnyExpr - Emit code to compute the specified expression which can have
1619  /// any type.  The result is returned as an RValue struct.  If this is an
1620  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1621  /// the result should be returned.
1622  ///
1623  /// \param IgnoreResult - True if the resulting value isn't used.
1624  RValue EmitAnyExpr(const Expr *E,
1625                     AggValueSlot AggSlot = AggValueSlot::ignored(),
1626                     bool IgnoreResult = false);
1627
1628  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1629  // or the value of the expression, depending on how va_list is defined.
1630  llvm::Value *EmitVAListRef(const Expr *E);
1631
1632  /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1633  /// always be accessible even if no aggregate location is provided.
1634  RValue EmitAnyExprToTemp(const Expr *E);
1635
1636  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1637  /// arbitrary expression into the given memory location.
1638  void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1639                        Qualifiers Quals, bool IsInitializer);
1640
1641  /// EmitExprAsInit - Emits the code necessary to initialize a
1642  /// location in memory with the given initializer.
1643  void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1644                      LValue lvalue, bool capturedByInit);
1645
1646  /// EmitAggregateCopy - Emit an aggrate copy.
1647  ///
1648  /// \param isVolatile - True iff either the source or the destination is
1649  /// volatile.
1650  void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1651                         QualType EltTy, bool isVolatile=false,
1652                         unsigned Alignment = 0);
1653
1654  /// StartBlock - Start new block named N. If insert block is a dummy block
1655  /// then reuse it.
1656  void StartBlock(const char *N);
1657
1658  /// GetAddrOfStaticLocalVar - Return the address of a static local variable.
1659  llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) {
1660    return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
1661  }
1662
1663  /// GetAddrOfLocalVar - Return the address of a local variable.
1664  llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1665    llvm::Value *Res = LocalDeclMap[VD];
1666    assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1667    return Res;
1668  }
1669
1670  /// getOpaqueLValueMapping - Given an opaque value expression (which
1671  /// must be mapped to an l-value), return its mapping.
1672  const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1673    assert(OpaqueValueMapping::shouldBindAsLValue(e));
1674
1675    llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1676      it = OpaqueLValues.find(e);
1677    assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1678    return it->second;
1679  }
1680
1681  /// getOpaqueRValueMapping - Given an opaque value expression (which
1682  /// must be mapped to an r-value), return its mapping.
1683  const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1684    assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1685
1686    llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1687      it = OpaqueRValues.find(e);
1688    assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1689    return it->second;
1690  }
1691
1692  /// getAccessedFieldNo - Given an encoded value and a result number, return
1693  /// the input field number being accessed.
1694  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1695
1696  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1697  llvm::BasicBlock *GetIndirectGotoBlock();
1698
1699  /// EmitNullInitialization - Generate code to set a value of the given type to
1700  /// null, If the type contains data member pointers, they will be initialized
1701  /// to -1 in accordance with the Itanium C++ ABI.
1702  void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1703
1704  // EmitVAArg - Generate code to get an argument from the passed in pointer
1705  // and update it accordingly. The return value is a pointer to the argument.
1706  // FIXME: We should be able to get rid of this method and use the va_arg
1707  // instruction in LLVM instead once it works well enough.
1708  llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1709
1710  /// emitArrayLength - Compute the length of an array, even if it's a
1711  /// VLA, and drill down to the base element type.
1712  llvm::Value *emitArrayLength(const ArrayType *arrayType,
1713                               QualType &baseType,
1714                               llvm::Value *&addr);
1715
1716  /// EmitVLASize - Capture all the sizes for the VLA expressions in
1717  /// the given variably-modified type and store them in the VLASizeMap.
1718  ///
1719  /// This function can be called with a null (unreachable) insert point.
1720  void EmitVariablyModifiedType(QualType Ty);
1721
1722  /// getVLASize - Returns an LLVM value that corresponds to the size,
1723  /// in non-variably-sized elements, of a variable length array type,
1724  /// plus that largest non-variably-sized element type.  Assumes that
1725  /// the type has already been emitted with EmitVariablyModifiedType.
1726  std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1727  std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1728
1729  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1730  /// generating code for an C++ member function.
1731  llvm::Value *LoadCXXThis() {
1732    assert(CXXThisValue && "no 'this' value for this function");
1733    return CXXThisValue;
1734  }
1735
1736  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1737  /// virtual bases.
1738  llvm::Value *LoadCXXVTT() {
1739    assert(CXXVTTValue && "no VTT value for this function");
1740    return CXXVTTValue;
1741  }
1742
1743  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1744  /// complete class to the given direct base.
1745  llvm::Value *
1746  GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1747                                        const CXXRecordDecl *Derived,
1748                                        const CXXRecordDecl *Base,
1749                                        bool BaseIsVirtual);
1750
1751  /// GetAddressOfBaseClass - This function will add the necessary delta to the
1752  /// load of 'this' and returns address of the base class.
1753  llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1754                                     const CXXRecordDecl *Derived,
1755                                     CastExpr::path_const_iterator PathBegin,
1756                                     CastExpr::path_const_iterator PathEnd,
1757                                     bool NullCheckValue);
1758
1759  llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1760                                        const CXXRecordDecl *Derived,
1761                                        CastExpr::path_const_iterator PathBegin,
1762                                        CastExpr::path_const_iterator PathEnd,
1763                                        bool NullCheckValue);
1764
1765  llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
1766                                         const CXXRecordDecl *ClassDecl,
1767                                         const CXXRecordDecl *BaseClassDecl);
1768
1769  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1770                                      CXXCtorType CtorType,
1771                                      const FunctionArgList &Args);
1772  // It's important not to confuse this and the previous function. Delegating
1773  // constructors are the C++0x feature. The constructor delegate optimization
1774  // is used to reduce duplication in the base and complete consturctors where
1775  // they are substantially the same.
1776  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1777                                        const FunctionArgList &Args);
1778  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1779                              bool ForVirtualBase, llvm::Value *This,
1780                              CallExpr::const_arg_iterator ArgBeg,
1781                              CallExpr::const_arg_iterator ArgEnd);
1782
1783  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1784                              llvm::Value *This, llvm::Value *Src,
1785                              CallExpr::const_arg_iterator ArgBeg,
1786                              CallExpr::const_arg_iterator ArgEnd);
1787
1788  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1789                                  const ConstantArrayType *ArrayTy,
1790                                  llvm::Value *ArrayPtr,
1791                                  CallExpr::const_arg_iterator ArgBeg,
1792                                  CallExpr::const_arg_iterator ArgEnd,
1793                                  bool ZeroInitialization = false);
1794
1795  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1796                                  llvm::Value *NumElements,
1797                                  llvm::Value *ArrayPtr,
1798                                  CallExpr::const_arg_iterator ArgBeg,
1799                                  CallExpr::const_arg_iterator ArgEnd,
1800                                  bool ZeroInitialization = false);
1801
1802  static Destroyer destroyCXXObject;
1803
1804  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1805                             bool ForVirtualBase, llvm::Value *This);
1806
1807  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1808                               llvm::Value *NewPtr, llvm::Value *NumElements);
1809
1810  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1811                        llvm::Value *Ptr);
1812
1813  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1814  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1815
1816  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1817                      QualType DeleteTy);
1818
1819  llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1820  llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1821
1822  void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init);
1823  void EmitStdInitializerListCleanup(llvm::Value *loc,
1824                                     const InitListExpr *init);
1825
1826  void EmitCheck(llvm::Value *, unsigned Size);
1827
1828  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1829                                       bool isInc, bool isPre);
1830  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1831                                         bool isInc, bool isPre);
1832  //===--------------------------------------------------------------------===//
1833  //                            Declaration Emission
1834  //===--------------------------------------------------------------------===//
1835
1836  /// EmitDecl - Emit a declaration.
1837  ///
1838  /// This function can be called with a null (unreachable) insert point.
1839  void EmitDecl(const Decl &D);
1840
1841  /// EmitVarDecl - Emit a local variable declaration.
1842  ///
1843  /// This function can be called with a null (unreachable) insert point.
1844  void EmitVarDecl(const VarDecl &D);
1845
1846  void EmitScalarInit(const Expr *init, const ValueDecl *D,
1847                      LValue lvalue, bool capturedByInit);
1848  void EmitScalarInit(llvm::Value *init, LValue lvalue);
1849
1850  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1851                             llvm::Value *Address);
1852
1853  /// EmitAutoVarDecl - Emit an auto variable declaration.
1854  ///
1855  /// This function can be called with a null (unreachable) insert point.
1856  void EmitAutoVarDecl(const VarDecl &D);
1857
1858  class AutoVarEmission {
1859    friend class CodeGenFunction;
1860
1861    const VarDecl *Variable;
1862
1863    /// The alignment of the variable.
1864    CharUnits Alignment;
1865
1866    /// The address of the alloca.  Null if the variable was emitted
1867    /// as a global constant.
1868    llvm::Value *Address;
1869
1870    llvm::Value *NRVOFlag;
1871
1872    /// True if the variable is a __block variable.
1873    bool IsByRef;
1874
1875    /// True if the variable is of aggregate type and has a constant
1876    /// initializer.
1877    bool IsConstantAggregate;
1878
1879    struct Invalid {};
1880    AutoVarEmission(Invalid) : Variable(0) {}
1881
1882    AutoVarEmission(const VarDecl &variable)
1883      : Variable(&variable), Address(0), NRVOFlag(0),
1884        IsByRef(false), IsConstantAggregate(false) {}
1885
1886    bool wasEmittedAsGlobal() const { return Address == 0; }
1887
1888  public:
1889    static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1890
1891    /// Returns the address of the object within this declaration.
1892    /// Note that this does not chase the forwarding pointer for
1893    /// __block decls.
1894    llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1895      if (!IsByRef) return Address;
1896
1897      return CGF.Builder.CreateStructGEP(Address,
1898                                         CGF.getByRefValueLLVMField(Variable),
1899                                         Variable->getNameAsString());
1900    }
1901  };
1902  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1903  void EmitAutoVarInit(const AutoVarEmission &emission);
1904  void EmitAutoVarCleanups(const AutoVarEmission &emission);
1905  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1906                              QualType::DestructionKind dtorKind);
1907
1908  void EmitStaticVarDecl(const VarDecl &D,
1909                         llvm::GlobalValue::LinkageTypes Linkage);
1910
1911  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1912  void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
1913
1914  /// protectFromPeepholes - Protect a value that we're intending to
1915  /// store to the side, but which will probably be used later, from
1916  /// aggressive peepholing optimizations that might delete it.
1917  ///
1918  /// Pass the result to unprotectFromPeepholes to declare that
1919  /// protection is no longer required.
1920  ///
1921  /// There's no particular reason why this shouldn't apply to
1922  /// l-values, it's just that no existing peepholes work on pointers.
1923  PeepholeProtection protectFromPeepholes(RValue rvalue);
1924  void unprotectFromPeepholes(PeepholeProtection protection);
1925
1926  //===--------------------------------------------------------------------===//
1927  //                             Statement Emission
1928  //===--------------------------------------------------------------------===//
1929
1930  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1931  void EmitStopPoint(const Stmt *S);
1932
1933  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1934  /// this function even if there is no current insertion point.
1935  ///
1936  /// This function may clear the current insertion point; callers should use
1937  /// EnsureInsertPoint if they wish to subsequently generate code without first
1938  /// calling EmitBlock, EmitBranch, or EmitStmt.
1939  void EmitStmt(const Stmt *S);
1940
1941  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1942  /// necessarily require an insertion point or debug information; typically
1943  /// because the statement amounts to a jump or a container of other
1944  /// statements.
1945  ///
1946  /// \return True if the statement was handled.
1947  bool EmitSimpleStmt(const Stmt *S);
1948
1949  RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1950                          AggValueSlot AVS = AggValueSlot::ignored());
1951
1952  /// EmitLabel - Emit the block for the given label. It is legal to call this
1953  /// function even if there is no current insertion point.
1954  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1955
1956  void EmitLabelStmt(const LabelStmt &S);
1957  void EmitAttributedStmt(const AttributedStmt &S);
1958  void EmitGotoStmt(const GotoStmt &S);
1959  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1960  void EmitIfStmt(const IfStmt &S);
1961  void EmitWhileStmt(const WhileStmt &S);
1962  void EmitDoStmt(const DoStmt &S);
1963  void EmitForStmt(const ForStmt &S);
1964  void EmitReturnStmt(const ReturnStmt &S);
1965  void EmitDeclStmt(const DeclStmt &S);
1966  void EmitBreakStmt(const BreakStmt &S);
1967  void EmitContinueStmt(const ContinueStmt &S);
1968  void EmitSwitchStmt(const SwitchStmt &S);
1969  void EmitDefaultStmt(const DefaultStmt &S);
1970  void EmitCaseStmt(const CaseStmt &S);
1971  void EmitCaseStmtRange(const CaseStmt &S);
1972  void EmitAsmStmt(const AsmStmt &S);
1973
1974  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1975  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1976  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1977  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1978  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
1979
1980  llvm::Constant *getUnwindResumeFn();
1981  llvm::Constant *getUnwindResumeOrRethrowFn();
1982  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1983  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1984
1985  void EmitCXXTryStmt(const CXXTryStmt &S);
1986  void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
1987
1988  //===--------------------------------------------------------------------===//
1989  //                         LValue Expression Emission
1990  //===--------------------------------------------------------------------===//
1991
1992  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
1993  RValue GetUndefRValue(QualType Ty);
1994
1995  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
1996  /// and issue an ErrorUnsupported style diagnostic (using the
1997  /// provided Name).
1998  RValue EmitUnsupportedRValue(const Expr *E,
1999                               const char *Name);
2000
2001  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2002  /// an ErrorUnsupported style diagnostic (using the provided Name).
2003  LValue EmitUnsupportedLValue(const Expr *E,
2004                               const char *Name);
2005
2006  /// EmitLValue - Emit code to compute a designator that specifies the location
2007  /// of the expression.
2008  ///
2009  /// This can return one of two things: a simple address or a bitfield
2010  /// reference.  In either case, the LLVM Value* in the LValue structure is
2011  /// guaranteed to be an LLVM pointer type.
2012  ///
2013  /// If this returns a bitfield reference, nothing about the pointee type of
2014  /// the LLVM value is known: For example, it may not be a pointer to an
2015  /// integer.
2016  ///
2017  /// If this returns a normal address, and if the lvalue's C type is fixed
2018  /// size, this method guarantees that the returned pointer type will point to
2019  /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2020  /// variable length type, this is not possible.
2021  ///
2022  LValue EmitLValue(const Expr *E);
2023
2024  /// EmitCheckedLValue - Same as EmitLValue but additionally we generate
2025  /// checking code to guard against undefined behavior.  This is only
2026  /// suitable when we know that the address will be used to access the
2027  /// object.
2028  LValue EmitCheckedLValue(const Expr *E);
2029
2030  /// EmitToMemory - Change a scalar value from its value
2031  /// representation to its in-memory representation.
2032  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2033
2034  /// EmitFromMemory - Change a scalar value from its memory
2035  /// representation to its value representation.
2036  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2037
2038  /// EmitLoadOfScalar - Load a scalar value from an address, taking
2039  /// care to appropriately convert from the memory representation to
2040  /// the LLVM value representation.
2041  llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
2042                                unsigned Alignment, QualType Ty,
2043                                llvm::MDNode *TBAAInfo = 0);
2044
2045  /// EmitLoadOfScalar - Load a scalar value from an address, taking
2046  /// care to appropriately convert from the memory representation to
2047  /// the LLVM value representation.  The l-value must be a simple
2048  /// l-value.
2049  llvm::Value *EmitLoadOfScalar(LValue lvalue);
2050
2051  /// EmitStoreOfScalar - Store a scalar value to an address, taking
2052  /// care to appropriately convert from the memory representation to
2053  /// the LLVM value representation.
2054  void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
2055                         bool Volatile, unsigned Alignment, QualType Ty,
2056                         llvm::MDNode *TBAAInfo = 0, bool isInit=false);
2057
2058  /// EmitStoreOfScalar - Store a scalar value to an address, taking
2059  /// care to appropriately convert from the memory representation to
2060  /// the LLVM value representation.  The l-value must be a simple
2061  /// l-value.  The isInit flag indicates whether this is an initialization.
2062  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2063  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2064
2065  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2066  /// this method emits the address of the lvalue, then loads the result as an
2067  /// rvalue, returning the rvalue.
2068  RValue EmitLoadOfLValue(LValue V);
2069  RValue EmitLoadOfExtVectorElementLValue(LValue V);
2070  RValue EmitLoadOfBitfieldLValue(LValue LV);
2071
2072  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2073  /// lvalue, where both are guaranteed to the have the same type, and that type
2074  /// is 'Ty'.
2075  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false);
2076  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2077
2078  /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
2079  /// EmitStoreThroughLValue.
2080  ///
2081  /// \param Result [out] - If non-null, this will be set to a Value* for the
2082  /// bit-field contents after the store, appropriate for use as the result of
2083  /// an assignment to the bit-field.
2084  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2085                                      llvm::Value **Result=0);
2086
2087  /// Emit an l-value for an assignment (simple or compound) of complex type.
2088  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2089  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2090
2091  // Note: only available for agg return types
2092  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2093  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2094  // Note: only available for agg return types
2095  LValue EmitCallExprLValue(const CallExpr *E);
2096  // Note: only available for agg return types
2097  LValue EmitVAArgExprLValue(const VAArgExpr *E);
2098  LValue EmitDeclRefLValue(const DeclRefExpr *E);
2099  LValue EmitStringLiteralLValue(const StringLiteral *E);
2100  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2101  LValue EmitPredefinedLValue(const PredefinedExpr *E);
2102  LValue EmitUnaryOpLValue(const UnaryOperator *E);
2103  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
2104  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2105  LValue EmitMemberExpr(const MemberExpr *E);
2106  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2107  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2108  LValue EmitInitListLValue(const InitListExpr *E);
2109  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2110  LValue EmitCastLValue(const CastExpr *E);
2111  LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
2112  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2113  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2114
2115  RValue EmitRValueForField(LValue LV, const FieldDecl *FD);
2116
2117  class ConstantEmission {
2118    llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2119    ConstantEmission(llvm::Constant *C, bool isReference)
2120      : ValueAndIsReference(C, isReference) {}
2121  public:
2122    ConstantEmission() {}
2123    static ConstantEmission forReference(llvm::Constant *C) {
2124      return ConstantEmission(C, true);
2125    }
2126    static ConstantEmission forValue(llvm::Constant *C) {
2127      return ConstantEmission(C, false);
2128    }
2129
2130    operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; }
2131
2132    bool isReference() const { return ValueAndIsReference.getInt(); }
2133    LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2134      assert(isReference());
2135      return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2136                                            refExpr->getType());
2137    }
2138
2139    llvm::Constant *getValue() const {
2140      assert(!isReference());
2141      return ValueAndIsReference.getPointer();
2142    }
2143  };
2144
2145  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2146
2147  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2148                                AggValueSlot slot = AggValueSlot::ignored());
2149  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2150
2151  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2152                              const ObjCIvarDecl *Ivar);
2153  LValue EmitLValueForAnonRecordField(llvm::Value* Base,
2154                                      const IndirectFieldDecl* Field,
2155                                      unsigned CVRQualifiers);
2156  LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2157
2158  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2159  /// if the Field is a reference, this will return the address of the reference
2160  /// and not the address of the value stored in the reference.
2161  LValue EmitLValueForFieldInitialization(LValue Base,
2162                                          const FieldDecl* Field);
2163
2164  LValue EmitLValueForIvar(QualType ObjectTy,
2165                           llvm::Value* Base, const ObjCIvarDecl *Ivar,
2166                           unsigned CVRQualifiers);
2167
2168  LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field,
2169                                unsigned CVRQualifiers);
2170
2171  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2172  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2173  LValue EmitLambdaLValue(const LambdaExpr *E);
2174  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2175
2176  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2177  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2178  LValue EmitStmtExprLValue(const StmtExpr *E);
2179  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2180  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2181  void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2182
2183  //===--------------------------------------------------------------------===//
2184  //                         Scalar Expression Emission
2185  //===--------------------------------------------------------------------===//
2186
2187  /// EmitCall - Generate a call of the given function, expecting the given
2188  /// result type, and using the given argument list which specifies both the
2189  /// LLVM arguments and the types they were derived from.
2190  ///
2191  /// \param TargetDecl - If given, the decl of the function in a direct call;
2192  /// used to set attributes on the call (noreturn, etc.).
2193  RValue EmitCall(const CGFunctionInfo &FnInfo,
2194                  llvm::Value *Callee,
2195                  ReturnValueSlot ReturnValue,
2196                  const CallArgList &Args,
2197                  const Decl *TargetDecl = 0,
2198                  llvm::Instruction **callOrInvoke = 0);
2199
2200  RValue EmitCall(QualType FnType, llvm::Value *Callee,
2201                  ReturnValueSlot ReturnValue,
2202                  CallExpr::const_arg_iterator ArgBeg,
2203                  CallExpr::const_arg_iterator ArgEnd,
2204                  const Decl *TargetDecl = 0);
2205  RValue EmitCallExpr(const CallExpr *E,
2206                      ReturnValueSlot ReturnValue = ReturnValueSlot());
2207
2208  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2209                                  ArrayRef<llvm::Value *> Args,
2210                                  const Twine &Name = "");
2211  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2212                                  const Twine &Name = "");
2213
2214  llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
2215                                llvm::Type *Ty);
2216  llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
2217                                llvm::Value *This, llvm::Type *Ty);
2218  llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2219                                         NestedNameSpecifier *Qual,
2220                                         llvm::Type *Ty);
2221
2222  llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2223                                                   CXXDtorType Type,
2224                                                   const CXXRecordDecl *RD);
2225
2226  RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2227                           llvm::Value *Callee,
2228                           ReturnValueSlot ReturnValue,
2229                           llvm::Value *This,
2230                           llvm::Value *VTT,
2231                           CallExpr::const_arg_iterator ArgBeg,
2232                           CallExpr::const_arg_iterator ArgEnd);
2233  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2234                               ReturnValueSlot ReturnValue);
2235  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2236                                      ReturnValueSlot ReturnValue);
2237
2238  llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2239                                           const CXXMethodDecl *MD,
2240                                           llvm::Value *This);
2241  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2242                                       const CXXMethodDecl *MD,
2243                                       ReturnValueSlot ReturnValue);
2244
2245  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2246                                ReturnValueSlot ReturnValue);
2247
2248
2249  RValue EmitBuiltinExpr(const FunctionDecl *FD,
2250                         unsigned BuiltinID, const CallExpr *E);
2251
2252  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2253
2254  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2255  /// is unhandled by the current target.
2256  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2257
2258  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2259  llvm::Value *EmitNeonCall(llvm::Function *F,
2260                            SmallVectorImpl<llvm::Value*> &O,
2261                            const char *name,
2262                            unsigned shift = 0, bool rightshift = false);
2263  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2264  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2265                                   bool negateForRightShift);
2266
2267  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2268  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2269  llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2270  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2271
2272  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2273  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2274  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2275  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2276  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2277  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2278                                const ObjCMethodDecl *MethodWithObjects);
2279  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2280  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2281                             ReturnValueSlot Return = ReturnValueSlot());
2282
2283  /// Retrieves the default cleanup kind for an ARC cleanup.
2284  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2285  CleanupKind getARCCleanupKind() {
2286    return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2287             ? NormalAndEHCleanup : NormalCleanup;
2288  }
2289
2290  // ARC primitives.
2291  void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2292  void EmitARCDestroyWeak(llvm::Value *addr);
2293  llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2294  llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2295  llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2296                                bool ignored);
2297  void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2298  void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2299  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2300  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2301  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2302                                  bool ignored);
2303  llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2304                                      bool ignored);
2305  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2306  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2307  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2308  void EmitARCRelease(llvm::Value *value, bool precise);
2309  llvm::Value *EmitARCAutorelease(llvm::Value *value);
2310  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2311  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2312  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2313
2314  std::pair<LValue,llvm::Value*>
2315  EmitARCStoreAutoreleasing(const BinaryOperator *e);
2316  std::pair<LValue,llvm::Value*>
2317  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2318
2319  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2320
2321  llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2322  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2323  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2324
2325  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2326  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2327  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2328
2329  static Destroyer destroyARCStrongImprecise;
2330  static Destroyer destroyARCStrongPrecise;
2331  static Destroyer destroyARCWeak;
2332
2333  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2334  llvm::Value *EmitObjCAutoreleasePoolPush();
2335  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2336  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2337  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2338
2339  /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
2340  /// expression. Will emit a temporary variable if E is not an LValue.
2341  RValue EmitReferenceBindingToExpr(const Expr* E,
2342                                    const NamedDecl *InitializedDecl);
2343
2344  //===--------------------------------------------------------------------===//
2345  //                           Expression Emission
2346  //===--------------------------------------------------------------------===//
2347
2348  // Expressions are broken into three classes: scalar, complex, aggregate.
2349
2350  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2351  /// scalar type, returning the result.
2352  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2353
2354  /// EmitScalarConversion - Emit a conversion from the specified type to the
2355  /// specified destination type, both of which are LLVM scalar types.
2356  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2357                                    QualType DstTy);
2358
2359  /// EmitComplexToScalarConversion - Emit a conversion from the specified
2360  /// complex type to the specified destination type, where the destination type
2361  /// is an LLVM scalar type.
2362  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2363                                             QualType DstTy);
2364
2365
2366  /// EmitAggExpr - Emit the computation of the specified expression
2367  /// of aggregate type.  The result is computed into the given slot,
2368  /// which may be null to indicate that the value is not needed.
2369  void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false);
2370
2371  /// EmitAggExprToLValue - Emit the computation of the specified expression of
2372  /// aggregate type into a temporary LValue.
2373  LValue EmitAggExprToLValue(const Expr *E);
2374
2375  /// EmitGCMemmoveCollectable - Emit special API for structs with object
2376  /// pointers.
2377  void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2378                                QualType Ty);
2379
2380  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2381  /// make sure it survives garbage collection until this point.
2382  void EmitExtendGCLifetime(llvm::Value *object);
2383
2384  /// EmitComplexExpr - Emit the computation of the specified expression of
2385  /// complex type, returning the result.
2386  ComplexPairTy EmitComplexExpr(const Expr *E,
2387                                bool IgnoreReal = false,
2388                                bool IgnoreImag = false);
2389
2390  /// EmitComplexExprIntoAddr - Emit the computation of the specified expression
2391  /// of complex type, storing into the specified Value*.
2392  void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
2393                               bool DestIsVolatile);
2394
2395  /// StoreComplexToAddr - Store a complex number into the specified address.
2396  void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
2397                          bool DestIsVolatile);
2398  /// LoadComplexFromAddr - Load a complex number from the specified address.
2399  ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
2400
2401  /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2402  /// a static local variable.
2403  llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2404                                            const char *Separator,
2405                                       llvm::GlobalValue::LinkageTypes Linkage);
2406
2407  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2408  /// global variable that has already been created for it.  If the initializer
2409  /// has a different type than GV does, this may free GV and return a different
2410  /// one.  Otherwise it just returns GV.
2411  llvm::GlobalVariable *
2412  AddInitializerToStaticVarDecl(const VarDecl &D,
2413                                llvm::GlobalVariable *GV);
2414
2415
2416  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2417  /// variable with global storage.
2418  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2419                                bool PerformInit);
2420
2421  /// Call atexit() with a function that passes the given argument to
2422  /// the given function.
2423  void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr);
2424
2425  /// Emit code in this function to perform a guarded variable
2426  /// initialization.  Guarded initializations are used when it's not
2427  /// possible to prove that an initialization will be done exactly
2428  /// once, e.g. with a static local variable or a static data member
2429  /// of a class template.
2430  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2431                          bool PerformInit);
2432
2433  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2434  /// variables.
2435  void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2436                                 llvm::Constant **Decls,
2437                                 unsigned NumDecls);
2438
2439  /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2440  /// variables.
2441  void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2442                                  const std::vector<std::pair<llvm::WeakVH,
2443                                  llvm::Constant*> > &DtorsAndObjects);
2444
2445  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2446                                        const VarDecl *D,
2447                                        llvm::GlobalVariable *Addr,
2448                                        bool PerformInit);
2449
2450  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2451
2452  void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2453                                  const Expr *Exp);
2454
2455  void enterFullExpression(const ExprWithCleanups *E) {
2456    if (E->getNumObjects() == 0) return;
2457    enterNonTrivialFullExpression(E);
2458  }
2459  void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2460
2461  void EmitCXXThrowExpr(const CXXThrowExpr *E);
2462
2463  void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2464
2465  RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
2466
2467  //===--------------------------------------------------------------------===//
2468  //                         Annotations Emission
2469  //===--------------------------------------------------------------------===//
2470
2471  /// Emit an annotation call (intrinsic or builtin).
2472  llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2473                                  llvm::Value *AnnotatedVal,
2474                                  llvm::StringRef AnnotationStr,
2475                                  SourceLocation Location);
2476
2477  /// Emit local annotations for the local variable V, declared by D.
2478  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2479
2480  /// Emit field annotations for the given field & value. Returns the
2481  /// annotation result.
2482  llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2483
2484  //===--------------------------------------------------------------------===//
2485  //                             Internal Helpers
2486  //===--------------------------------------------------------------------===//
2487
2488  /// ContainsLabel - Return true if the statement contains a label in it.  If
2489  /// this statement is not executed normally, it not containing a label means
2490  /// that we can just remove the code.
2491  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2492
2493  /// containsBreak - Return true if the statement contains a break out of it.
2494  /// If the statement (recursively) contains a switch or loop with a break
2495  /// inside of it, this is fine.
2496  static bool containsBreak(const Stmt *S);
2497
2498  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2499  /// to a constant, or if it does but contains a label, return false.  If it
2500  /// constant folds return true and set the boolean result in Result.
2501  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2502
2503  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2504  /// to a constant, or if it does but contains a label, return false.  If it
2505  /// constant folds return true and set the folded value.
2506  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result);
2507
2508  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2509  /// if statement) to the specified blocks.  Based on the condition, this might
2510  /// try to simplify the codegen of the conditional based on the branch.
2511  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2512                            llvm::BasicBlock *FalseBlock);
2513
2514  /// getTrapBB - Create a basic block that will call the trap intrinsic.  We'll
2515  /// generate a branch around the created basic block as necessary.
2516  llvm::BasicBlock *getTrapBB();
2517
2518  /// EmitCallArg - Emit a single call argument.
2519  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2520
2521  /// EmitDelegateCallArg - We are performing a delegate call; that
2522  /// is, the current function is delegating to another one.  Produce
2523  /// a r-value suitable for passing the given parameter.
2524  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
2525
2526  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2527  /// point operation, expressed as the maximum relative error in ulp.
2528  void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2529
2530private:
2531  llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2532  void EmitReturnOfRValue(RValue RV, QualType Ty);
2533
2534  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2535  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2536  ///
2537  /// \param AI - The first function argument of the expansion.
2538  /// \return The argument following the last expanded function
2539  /// argument.
2540  llvm::Function::arg_iterator
2541  ExpandTypeFromArgs(QualType Ty, LValue Dst,
2542                     llvm::Function::arg_iterator AI);
2543
2544  /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2545  /// Ty, into individual arguments on the provided vector \arg Args. See
2546  /// ABIArgInfo::Expand.
2547  void ExpandTypeToArgs(QualType Ty, RValue Src,
2548                        SmallVector<llvm::Value*, 16> &Args,
2549                        llvm::FunctionType *IRFuncTy);
2550
2551  llvm::Value* EmitAsmInput(const AsmStmt &S,
2552                            const TargetInfo::ConstraintInfo &Info,
2553                            const Expr *InputExpr, std::string &ConstraintStr);
2554
2555  llvm::Value* EmitAsmInputLValue(const AsmStmt &S,
2556                                  const TargetInfo::ConstraintInfo &Info,
2557                                  LValue InputValue, QualType InputType,
2558                                  std::string &ConstraintStr);
2559
2560  /// EmitCallArgs - Emit call arguments for a function.
2561  /// The CallArgTypeInfo parameter is used for iterating over the known
2562  /// argument types of the function being called.
2563  template<typename T>
2564  void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2565                    CallExpr::const_arg_iterator ArgBeg,
2566                    CallExpr::const_arg_iterator ArgEnd) {
2567      CallExpr::const_arg_iterator Arg = ArgBeg;
2568
2569    // First, use the argument types that the type info knows about
2570    if (CallArgTypeInfo) {
2571      for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2572           E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2573        assert(Arg != ArgEnd && "Running over edge of argument list!");
2574        QualType ArgType = *I;
2575#ifndef NDEBUG
2576        QualType ActualArgType = Arg->getType();
2577        if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2578          QualType ActualBaseType =
2579            ActualArgType->getAs<PointerType>()->getPointeeType();
2580          QualType ArgBaseType =
2581            ArgType->getAs<PointerType>()->getPointeeType();
2582          if (ArgBaseType->isVariableArrayType()) {
2583            if (const VariableArrayType *VAT =
2584                getContext().getAsVariableArrayType(ActualBaseType)) {
2585              if (!VAT->getSizeExpr())
2586                ActualArgType = ArgType;
2587            }
2588          }
2589        }
2590        assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2591               getTypePtr() ==
2592               getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2593               "type mismatch in call argument!");
2594#endif
2595        EmitCallArg(Args, *Arg, ArgType);
2596      }
2597
2598      // Either we've emitted all the call args, or we have a call to a
2599      // variadic function.
2600      assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2601             "Extra arguments in non-variadic function!");
2602
2603    }
2604
2605    // If we still have any arguments, emit them using the type of the argument.
2606    for (; Arg != ArgEnd; ++Arg)
2607      EmitCallArg(Args, *Arg, Arg->getType());
2608  }
2609
2610  const TargetCodeGenInfo &getTargetHooks() const {
2611    return CGM.getTargetCodeGenInfo();
2612  }
2613
2614  void EmitDeclMetadata();
2615
2616  CodeGenModule::ByrefHelpers *
2617  buildByrefHelpers(llvm::StructType &byrefType,
2618                    const AutoVarEmission &emission);
2619
2620  void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
2621
2622  /// GetPointeeAlignment - Given an expression with a pointer type, find the
2623  /// alignment of the type referenced by the pointer.  Skip over implicit
2624  /// casts.
2625  unsigned GetPointeeAlignment(const Expr *Addr);
2626
2627  /// GetPointeeAlignmentValue - Given an expression with a pointer type, find
2628  /// the alignment of the type referenced by the pointer.  Skip over implicit
2629  /// casts.  Return the alignment as an llvm::Value.
2630  llvm::Value *GetPointeeAlignmentValue(const Expr *Addr);
2631};
2632
2633/// Helper class with most of the code for saving a value for a
2634/// conditional expression cleanup.
2635struct DominatingLLVMValue {
2636  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2637
2638  /// Answer whether the given value needs extra work to be saved.
2639  static bool needsSaving(llvm::Value *value) {
2640    // If it's not an instruction, we don't need to save.
2641    if (!isa<llvm::Instruction>(value)) return false;
2642
2643    // If it's an instruction in the entry block, we don't need to save.
2644    llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2645    return (block != &block->getParent()->getEntryBlock());
2646  }
2647
2648  /// Try to save the given value.
2649  static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2650    if (!needsSaving(value)) return saved_type(value, false);
2651
2652    // Otherwise we need an alloca.
2653    llvm::Value *alloca =
2654      CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2655    CGF.Builder.CreateStore(value, alloca);
2656
2657    return saved_type(alloca, true);
2658  }
2659
2660  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2661    if (!value.getInt()) return value.getPointer();
2662    return CGF.Builder.CreateLoad(value.getPointer());
2663  }
2664};
2665
2666/// A partial specialization of DominatingValue for llvm::Values that
2667/// might be llvm::Instructions.
2668template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2669  typedef T *type;
2670  static type restore(CodeGenFunction &CGF, saved_type value) {
2671    return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2672  }
2673};
2674
2675/// A specialization of DominatingValue for RValue.
2676template <> struct DominatingValue<RValue> {
2677  typedef RValue type;
2678  class saved_type {
2679    enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2680                AggregateAddress, ComplexAddress };
2681
2682    llvm::Value *Value;
2683    Kind K;
2684    saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2685
2686  public:
2687    static bool needsSaving(RValue value);
2688    static saved_type save(CodeGenFunction &CGF, RValue value);
2689    RValue restore(CodeGenFunction &CGF);
2690
2691    // implementations in CGExprCXX.cpp
2692  };
2693
2694  static bool needsSaving(type value) {
2695    return saved_type::needsSaving(value);
2696  }
2697  static saved_type save(CodeGenFunction &CGF, type value) {
2698    return saved_type::save(CGF, value);
2699  }
2700  static type restore(CodeGenFunction &CGF, saved_type value) {
2701    return value.restore(CGF);
2702  }
2703};
2704
2705}  // end namespace CodeGen
2706}  // end namespace clang
2707
2708#endif
2709