CodeGenFunction.h revision 4a68c7bc86bcaf44f6aee5a470c743b47c11716e
1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This is the internal per-function state used for llvm translation. 11// 12//===----------------------------------------------------------------------===// 13 14#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H 15#define CLANG_CODEGEN_CODEGENFUNCTION_H 16 17#include "CGBuilder.h" 18#include "CGDebugInfo.h" 19#include "CGValue.h" 20#include "CodeGenModule.h" 21#include "clang/AST/CharUnits.h" 22#include "clang/AST/ExprCXX.h" 23#include "clang/AST/ExprObjC.h" 24#include "clang/AST/Type.h" 25#include "clang/Basic/ABI.h" 26#include "clang/Basic/TargetInfo.h" 27#include "clang/Frontend/CodeGenOptions.h" 28#include "llvm/ADT/ArrayRef.h" 29#include "llvm/ADT/DenseMap.h" 30#include "llvm/ADT/SmallVector.h" 31#include "llvm/Support/Debug.h" 32#include "llvm/Support/ValueHandle.h" 33 34namespace llvm { 35 class BasicBlock; 36 class LLVMContext; 37 class MDNode; 38 class Module; 39 class SwitchInst; 40 class Twine; 41 class Value; 42 class CallSite; 43} 44 45namespace clang { 46 class ASTContext; 47 class BlockDecl; 48 class CXXDestructorDecl; 49 class CXXForRangeStmt; 50 class CXXTryStmt; 51 class Decl; 52 class LabelDecl; 53 class EnumConstantDecl; 54 class FunctionDecl; 55 class FunctionProtoType; 56 class LabelStmt; 57 class ObjCContainerDecl; 58 class ObjCInterfaceDecl; 59 class ObjCIvarDecl; 60 class ObjCMethodDecl; 61 class ObjCImplementationDecl; 62 class ObjCPropertyImplDecl; 63 class TargetInfo; 64 class TargetCodeGenInfo; 65 class VarDecl; 66 class ObjCForCollectionStmt; 67 class ObjCAtTryStmt; 68 class ObjCAtThrowStmt; 69 class ObjCAtSynchronizedStmt; 70 class ObjCAutoreleasePoolStmt; 71 72namespace CodeGen { 73 class CodeGenTypes; 74 class CGFunctionInfo; 75 class CGRecordLayout; 76 class CGBlockInfo; 77 class CGCXXABI; 78 class BlockFlags; 79 class BlockFieldFlags; 80 81/// A branch fixup. These are required when emitting a goto to a 82/// label which hasn't been emitted yet. The goto is optimistically 83/// emitted as a branch to the basic block for the label, and (if it 84/// occurs in a scope with non-trivial cleanups) a fixup is added to 85/// the innermost cleanup. When a (normal) cleanup is popped, any 86/// unresolved fixups in that scope are threaded through the cleanup. 87struct BranchFixup { 88 /// The block containing the terminator which needs to be modified 89 /// into a switch if this fixup is resolved into the current scope. 90 /// If null, LatestBranch points directly to the destination. 91 llvm::BasicBlock *OptimisticBranchBlock; 92 93 /// The ultimate destination of the branch. 94 /// 95 /// This can be set to null to indicate that this fixup was 96 /// successfully resolved. 97 llvm::BasicBlock *Destination; 98 99 /// The destination index value. 100 unsigned DestinationIndex; 101 102 /// The initial branch of the fixup. 103 llvm::BranchInst *InitialBranch; 104}; 105 106template <class T> struct InvariantValue { 107 typedef T type; 108 typedef T saved_type; 109 static bool needsSaving(type value) { return false; } 110 static saved_type save(CodeGenFunction &CGF, type value) { return value; } 111 static type restore(CodeGenFunction &CGF, saved_type value) { return value; } 112}; 113 114/// A metaprogramming class for ensuring that a value will dominate an 115/// arbitrary position in a function. 116template <class T> struct DominatingValue : InvariantValue<T> {}; 117 118template <class T, bool mightBeInstruction = 119 llvm::is_base_of<llvm::Value, T>::value && 120 !llvm::is_base_of<llvm::Constant, T>::value && 121 !llvm::is_base_of<llvm::BasicBlock, T>::value> 122struct DominatingPointer; 123template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {}; 124// template <class T> struct DominatingPointer<T,true> at end of file 125 126template <class T> struct DominatingValue<T*> : DominatingPointer<T> {}; 127 128enum CleanupKind { 129 EHCleanup = 0x1, 130 NormalCleanup = 0x2, 131 NormalAndEHCleanup = EHCleanup | NormalCleanup, 132 133 InactiveCleanup = 0x4, 134 InactiveEHCleanup = EHCleanup | InactiveCleanup, 135 InactiveNormalCleanup = NormalCleanup | InactiveCleanup, 136 InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup 137}; 138 139/// A stack of scopes which respond to exceptions, including cleanups 140/// and catch blocks. 141class EHScopeStack { 142public: 143 /// A saved depth on the scope stack. This is necessary because 144 /// pushing scopes onto the stack invalidates iterators. 145 class stable_iterator { 146 friend class EHScopeStack; 147 148 /// Offset from StartOfData to EndOfBuffer. 149 ptrdiff_t Size; 150 151 stable_iterator(ptrdiff_t Size) : Size(Size) {} 152 153 public: 154 static stable_iterator invalid() { return stable_iterator(-1); } 155 stable_iterator() : Size(-1) {} 156 157 bool isValid() const { return Size >= 0; } 158 159 /// Returns true if this scope encloses I. 160 /// Returns false if I is invalid. 161 /// This scope must be valid. 162 bool encloses(stable_iterator I) const { return Size <= I.Size; } 163 164 /// Returns true if this scope strictly encloses I: that is, 165 /// if it encloses I and is not I. 166 /// Returns false is I is invalid. 167 /// This scope must be valid. 168 bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; } 169 170 friend bool operator==(stable_iterator A, stable_iterator B) { 171 return A.Size == B.Size; 172 } 173 friend bool operator!=(stable_iterator A, stable_iterator B) { 174 return A.Size != B.Size; 175 } 176 }; 177 178 /// Information for lazily generating a cleanup. Subclasses must be 179 /// POD-like: cleanups will not be destructed, and they will be 180 /// allocated on the cleanup stack and freely copied and moved 181 /// around. 182 /// 183 /// Cleanup implementations should generally be declared in an 184 /// anonymous namespace. 185 class Cleanup { 186 // Anchor the construction vtable. 187 virtual void anchor(); 188 public: 189 /// Generation flags. 190 class Flags { 191 enum { 192 F_IsForEH = 0x1, 193 F_IsNormalCleanupKind = 0x2, 194 F_IsEHCleanupKind = 0x4 195 }; 196 unsigned flags; 197 198 public: 199 Flags() : flags(0) {} 200 201 /// isForEH - true if the current emission is for an EH cleanup. 202 bool isForEHCleanup() const { return flags & F_IsForEH; } 203 bool isForNormalCleanup() const { return !isForEHCleanup(); } 204 void setIsForEHCleanup() { flags |= F_IsForEH; } 205 206 bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; } 207 void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; } 208 209 /// isEHCleanupKind - true if the cleanup was pushed as an EH 210 /// cleanup. 211 bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; } 212 void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; } 213 }; 214 215 // Provide a virtual destructor to suppress a very common warning 216 // that unfortunately cannot be suppressed without this. Cleanups 217 // should not rely on this destructor ever being called. 218 virtual ~Cleanup() {} 219 220 /// Emit the cleanup. For normal cleanups, this is run in the 221 /// same EH context as when the cleanup was pushed, i.e. the 222 /// immediately-enclosing context of the cleanup scope. For 223 /// EH cleanups, this is run in a terminate context. 224 /// 225 // \param flags cleanup kind. 226 virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0; 227 }; 228 229 /// ConditionalCleanupN stores the saved form of its N parameters, 230 /// then restores them and performs the cleanup. 231 template <class T, class A0> 232 class ConditionalCleanup1 : public Cleanup { 233 typedef typename DominatingValue<A0>::saved_type A0_saved; 234 A0_saved a0_saved; 235 236 void Emit(CodeGenFunction &CGF, Flags flags) { 237 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 238 T(a0).Emit(CGF, flags); 239 } 240 241 public: 242 ConditionalCleanup1(A0_saved a0) 243 : a0_saved(a0) {} 244 }; 245 246 template <class T, class A0, class A1> 247 class ConditionalCleanup2 : public Cleanup { 248 typedef typename DominatingValue<A0>::saved_type A0_saved; 249 typedef typename DominatingValue<A1>::saved_type A1_saved; 250 A0_saved a0_saved; 251 A1_saved a1_saved; 252 253 void Emit(CodeGenFunction &CGF, Flags flags) { 254 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 255 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 256 T(a0, a1).Emit(CGF, flags); 257 } 258 259 public: 260 ConditionalCleanup2(A0_saved a0, A1_saved a1) 261 : a0_saved(a0), a1_saved(a1) {} 262 }; 263 264 template <class T, class A0, class A1, class A2> 265 class ConditionalCleanup3 : public Cleanup { 266 typedef typename DominatingValue<A0>::saved_type A0_saved; 267 typedef typename DominatingValue<A1>::saved_type A1_saved; 268 typedef typename DominatingValue<A2>::saved_type A2_saved; 269 A0_saved a0_saved; 270 A1_saved a1_saved; 271 A2_saved a2_saved; 272 273 void Emit(CodeGenFunction &CGF, Flags flags) { 274 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 275 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 276 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 277 T(a0, a1, a2).Emit(CGF, flags); 278 } 279 280 public: 281 ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2) 282 : a0_saved(a0), a1_saved(a1), a2_saved(a2) {} 283 }; 284 285 template <class T, class A0, class A1, class A2, class A3> 286 class ConditionalCleanup4 : public Cleanup { 287 typedef typename DominatingValue<A0>::saved_type A0_saved; 288 typedef typename DominatingValue<A1>::saved_type A1_saved; 289 typedef typename DominatingValue<A2>::saved_type A2_saved; 290 typedef typename DominatingValue<A3>::saved_type A3_saved; 291 A0_saved a0_saved; 292 A1_saved a1_saved; 293 A2_saved a2_saved; 294 A3_saved a3_saved; 295 296 void Emit(CodeGenFunction &CGF, Flags flags) { 297 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 298 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 299 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 300 A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved); 301 T(a0, a1, a2, a3).Emit(CGF, flags); 302 } 303 304 public: 305 ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3) 306 : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {} 307 }; 308 309private: 310 // The implementation for this class is in CGException.h and 311 // CGException.cpp; the definition is here because it's used as a 312 // member of CodeGenFunction. 313 314 /// The start of the scope-stack buffer, i.e. the allocated pointer 315 /// for the buffer. All of these pointers are either simultaneously 316 /// null or simultaneously valid. 317 char *StartOfBuffer; 318 319 /// The end of the buffer. 320 char *EndOfBuffer; 321 322 /// The first valid entry in the buffer. 323 char *StartOfData; 324 325 /// The innermost normal cleanup on the stack. 326 stable_iterator InnermostNormalCleanup; 327 328 /// The innermost EH scope on the stack. 329 stable_iterator InnermostEHScope; 330 331 /// The current set of branch fixups. A branch fixup is a jump to 332 /// an as-yet unemitted label, i.e. a label for which we don't yet 333 /// know the EH stack depth. Whenever we pop a cleanup, we have 334 /// to thread all the current branch fixups through it. 335 /// 336 /// Fixups are recorded as the Use of the respective branch or 337 /// switch statement. The use points to the final destination. 338 /// When popping out of a cleanup, these uses are threaded through 339 /// the cleanup and adjusted to point to the new cleanup. 340 /// 341 /// Note that branches are allowed to jump into protected scopes 342 /// in certain situations; e.g. the following code is legal: 343 /// struct A { ~A(); }; // trivial ctor, non-trivial dtor 344 /// goto foo; 345 /// A a; 346 /// foo: 347 /// bar(); 348 SmallVector<BranchFixup, 8> BranchFixups; 349 350 char *allocate(size_t Size); 351 352 void *pushCleanup(CleanupKind K, size_t DataSize); 353 354public: 355 EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0), 356 InnermostNormalCleanup(stable_end()), 357 InnermostEHScope(stable_end()) {} 358 ~EHScopeStack() { delete[] StartOfBuffer; } 359 360 // Variadic templates would make this not terrible. 361 362 /// Push a lazily-created cleanup on the stack. 363 template <class T> 364 void pushCleanup(CleanupKind Kind) { 365 void *Buffer = pushCleanup(Kind, sizeof(T)); 366 Cleanup *Obj = new(Buffer) T(); 367 (void) Obj; 368 } 369 370 /// Push a lazily-created cleanup on the stack. 371 template <class T, class A0> 372 void pushCleanup(CleanupKind Kind, A0 a0) { 373 void *Buffer = pushCleanup(Kind, sizeof(T)); 374 Cleanup *Obj = new(Buffer) T(a0); 375 (void) Obj; 376 } 377 378 /// Push a lazily-created cleanup on the stack. 379 template <class T, class A0, class A1> 380 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) { 381 void *Buffer = pushCleanup(Kind, sizeof(T)); 382 Cleanup *Obj = new(Buffer) T(a0, a1); 383 (void) Obj; 384 } 385 386 /// Push a lazily-created cleanup on the stack. 387 template <class T, class A0, class A1, class A2> 388 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) { 389 void *Buffer = pushCleanup(Kind, sizeof(T)); 390 Cleanup *Obj = new(Buffer) T(a0, a1, a2); 391 (void) Obj; 392 } 393 394 /// Push a lazily-created cleanup on the stack. 395 template <class T, class A0, class A1, class A2, class A3> 396 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) { 397 void *Buffer = pushCleanup(Kind, sizeof(T)); 398 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3); 399 (void) Obj; 400 } 401 402 /// Push a lazily-created cleanup on the stack. 403 template <class T, class A0, class A1, class A2, class A3, class A4> 404 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) { 405 void *Buffer = pushCleanup(Kind, sizeof(T)); 406 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4); 407 (void) Obj; 408 } 409 410 // Feel free to add more variants of the following: 411 412 /// Push a cleanup with non-constant storage requirements on the 413 /// stack. The cleanup type must provide an additional static method: 414 /// static size_t getExtraSize(size_t); 415 /// The argument to this method will be the value N, which will also 416 /// be passed as the first argument to the constructor. 417 /// 418 /// The data stored in the extra storage must obey the same 419 /// restrictions as normal cleanup member data. 420 /// 421 /// The pointer returned from this method is valid until the cleanup 422 /// stack is modified. 423 template <class T, class A0, class A1, class A2> 424 T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) { 425 void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N)); 426 return new (Buffer) T(N, a0, a1, a2); 427 } 428 429 /// Pops a cleanup scope off the stack. This is private to CGCleanup.cpp. 430 void popCleanup(); 431 432 /// Push a set of catch handlers on the stack. The catch is 433 /// uninitialized and will need to have the given number of handlers 434 /// set on it. 435 class EHCatchScope *pushCatch(unsigned NumHandlers); 436 437 /// Pops a catch scope off the stack. This is private to CGException.cpp. 438 void popCatch(); 439 440 /// Push an exceptions filter on the stack. 441 class EHFilterScope *pushFilter(unsigned NumFilters); 442 443 /// Pops an exceptions filter off the stack. 444 void popFilter(); 445 446 /// Push a terminate handler on the stack. 447 void pushTerminate(); 448 449 /// Pops a terminate handler off the stack. 450 void popTerminate(); 451 452 /// Determines whether the exception-scopes stack is empty. 453 bool empty() const { return StartOfData == EndOfBuffer; } 454 455 bool requiresLandingPad() const { 456 return InnermostEHScope != stable_end(); 457 } 458 459 /// Determines whether there are any normal cleanups on the stack. 460 bool hasNormalCleanups() const { 461 return InnermostNormalCleanup != stable_end(); 462 } 463 464 /// Returns the innermost normal cleanup on the stack, or 465 /// stable_end() if there are no normal cleanups. 466 stable_iterator getInnermostNormalCleanup() const { 467 return InnermostNormalCleanup; 468 } 469 stable_iterator getInnermostActiveNormalCleanup() const; 470 471 stable_iterator getInnermostEHScope() const { 472 return InnermostEHScope; 473 } 474 475 stable_iterator getInnermostActiveEHScope() const; 476 477 /// An unstable reference to a scope-stack depth. Invalidated by 478 /// pushes but not pops. 479 class iterator; 480 481 /// Returns an iterator pointing to the innermost EH scope. 482 iterator begin() const; 483 484 /// Returns an iterator pointing to the outermost EH scope. 485 iterator end() const; 486 487 /// Create a stable reference to the top of the EH stack. The 488 /// returned reference is valid until that scope is popped off the 489 /// stack. 490 stable_iterator stable_begin() const { 491 return stable_iterator(EndOfBuffer - StartOfData); 492 } 493 494 /// Create a stable reference to the bottom of the EH stack. 495 static stable_iterator stable_end() { 496 return stable_iterator(0); 497 } 498 499 /// Translates an iterator into a stable_iterator. 500 stable_iterator stabilize(iterator it) const; 501 502 /// Turn a stable reference to a scope depth into a unstable pointer 503 /// to the EH stack. 504 iterator find(stable_iterator save) const; 505 506 /// Removes the cleanup pointed to by the given stable_iterator. 507 void removeCleanup(stable_iterator save); 508 509 /// Add a branch fixup to the current cleanup scope. 510 BranchFixup &addBranchFixup() { 511 assert(hasNormalCleanups() && "adding fixup in scope without cleanups"); 512 BranchFixups.push_back(BranchFixup()); 513 return BranchFixups.back(); 514 } 515 516 unsigned getNumBranchFixups() const { return BranchFixups.size(); } 517 BranchFixup &getBranchFixup(unsigned I) { 518 assert(I < getNumBranchFixups()); 519 return BranchFixups[I]; 520 } 521 522 /// Pops lazily-removed fixups from the end of the list. This 523 /// should only be called by procedures which have just popped a 524 /// cleanup or resolved one or more fixups. 525 void popNullFixups(); 526 527 /// Clears the branch-fixups list. This should only be called by 528 /// ResolveAllBranchFixups. 529 void clearFixups() { BranchFixups.clear(); } 530}; 531 532/// CodeGenFunction - This class organizes the per-function state that is used 533/// while generating LLVM code. 534class CodeGenFunction : public CodeGenTypeCache { 535 CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION; 536 void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION; 537 538 friend class CGCXXABI; 539public: 540 /// A jump destination is an abstract label, branching to which may 541 /// require a jump out through normal cleanups. 542 struct JumpDest { 543 JumpDest() : Block(0), ScopeDepth(), Index(0) {} 544 JumpDest(llvm::BasicBlock *Block, 545 EHScopeStack::stable_iterator Depth, 546 unsigned Index) 547 : Block(Block), ScopeDepth(Depth), Index(Index) {} 548 549 bool isValid() const { return Block != 0; } 550 llvm::BasicBlock *getBlock() const { return Block; } 551 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 552 unsigned getDestIndex() const { return Index; } 553 554 private: 555 llvm::BasicBlock *Block; 556 EHScopeStack::stable_iterator ScopeDepth; 557 unsigned Index; 558 }; 559 560 CodeGenModule &CGM; // Per-module state. 561 const TargetInfo &Target; 562 563 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 564 CGBuilderTy Builder; 565 566 /// CurFuncDecl - Holds the Decl for the current function or ObjC method. 567 /// This excludes BlockDecls. 568 const Decl *CurFuncDecl; 569 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 570 const Decl *CurCodeDecl; 571 const CGFunctionInfo *CurFnInfo; 572 QualType FnRetTy; 573 llvm::Function *CurFn; 574 575 /// CurGD - The GlobalDecl for the current function being compiled. 576 GlobalDecl CurGD; 577 578 /// PrologueCleanupDepth - The cleanup depth enclosing all the 579 /// cleanups associated with the parameters. 580 EHScopeStack::stable_iterator PrologueCleanupDepth; 581 582 /// ReturnBlock - Unified return block. 583 JumpDest ReturnBlock; 584 585 /// ReturnValue - The temporary alloca to hold the return value. This is null 586 /// iff the function has no return value. 587 llvm::Value *ReturnValue; 588 589 /// AllocaInsertPoint - This is an instruction in the entry block before which 590 /// we prefer to insert allocas. 591 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 592 593 /// BoundsChecking - Emit run-time bounds checks. Higher values mean 594 /// potentially higher performance penalties. 595 unsigned char BoundsChecking; 596 597 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 598 /// calls to EmitTypeCheck can be skipped. 599 bool SanitizePerformTypeCheck; 600 601 /// \brief Sanitizer options to use for this function. 602 const SanitizerOptions *SanOpts; 603 604 /// In ARC, whether we should autorelease the return value. 605 bool AutoreleaseResult; 606 607 const CodeGen::CGBlockInfo *BlockInfo; 608 llvm::Value *BlockPointer; 609 610 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 611 FieldDecl *LambdaThisCaptureField; 612 613 /// \brief A mapping from NRVO variables to the flags used to indicate 614 /// when the NRVO has been applied to this variable. 615 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 616 617 EHScopeStack EHStack; 618 619 /// i32s containing the indexes of the cleanup destinations. 620 llvm::AllocaInst *NormalCleanupDest; 621 622 unsigned NextCleanupDestIndex; 623 624 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 625 CGBlockInfo *FirstBlockInfo; 626 627 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 628 llvm::BasicBlock *EHResumeBlock; 629 630 /// The exception slot. All landing pads write the current exception pointer 631 /// into this alloca. 632 llvm::Value *ExceptionSlot; 633 634 /// The selector slot. Under the MandatoryCleanup model, all landing pads 635 /// write the current selector value into this alloca. 636 llvm::AllocaInst *EHSelectorSlot; 637 638 /// Emits a landing pad for the current EH stack. 639 llvm::BasicBlock *EmitLandingPad(); 640 641 llvm::BasicBlock *getInvokeDestImpl(); 642 643 template <class T> 644 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 645 return DominatingValue<T>::save(*this, value); 646 } 647 648public: 649 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 650 /// rethrows. 651 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 652 653 /// A class controlling the emission of a finally block. 654 class FinallyInfo { 655 /// Where the catchall's edge through the cleanup should go. 656 JumpDest RethrowDest; 657 658 /// A function to call to enter the catch. 659 llvm::Constant *BeginCatchFn; 660 661 /// An i1 variable indicating whether or not the @finally is 662 /// running for an exception. 663 llvm::AllocaInst *ForEHVar; 664 665 /// An i8* variable into which the exception pointer to rethrow 666 /// has been saved. 667 llvm::AllocaInst *SavedExnVar; 668 669 public: 670 void enter(CodeGenFunction &CGF, const Stmt *Finally, 671 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 672 llvm::Constant *rethrowFn); 673 void exit(CodeGenFunction &CGF); 674 }; 675 676 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 677 /// current full-expression. Safe against the possibility that 678 /// we're currently inside a conditionally-evaluated expression. 679 template <class T, class A0> 680 void pushFullExprCleanup(CleanupKind kind, A0 a0) { 681 // If we're not in a conditional branch, or if none of the 682 // arguments requires saving, then use the unconditional cleanup. 683 if (!isInConditionalBranch()) 684 return EHStack.pushCleanup<T>(kind, a0); 685 686 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 687 688 typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType; 689 EHStack.pushCleanup<CleanupType>(kind, a0_saved); 690 initFullExprCleanup(); 691 } 692 693 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 694 /// current full-expression. Safe against the possibility that 695 /// we're currently inside a conditionally-evaluated expression. 696 template <class T, class A0, class A1> 697 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) { 698 // If we're not in a conditional branch, or if none of the 699 // arguments requires saving, then use the unconditional cleanup. 700 if (!isInConditionalBranch()) 701 return EHStack.pushCleanup<T>(kind, a0, a1); 702 703 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 704 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 705 706 typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType; 707 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved); 708 initFullExprCleanup(); 709 } 710 711 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 712 /// current full-expression. Safe against the possibility that 713 /// we're currently inside a conditionally-evaluated expression. 714 template <class T, class A0, class A1, class A2> 715 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) { 716 // If we're not in a conditional branch, or if none of the 717 // arguments requires saving, then use the unconditional cleanup. 718 if (!isInConditionalBranch()) { 719 return EHStack.pushCleanup<T>(kind, a0, a1, a2); 720 } 721 722 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 723 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 724 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 725 726 typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType; 727 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved); 728 initFullExprCleanup(); 729 } 730 731 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 732 /// current full-expression. Safe against the possibility that 733 /// we're currently inside a conditionally-evaluated expression. 734 template <class T, class A0, class A1, class A2, class A3> 735 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) { 736 // If we're not in a conditional branch, or if none of the 737 // arguments requires saving, then use the unconditional cleanup. 738 if (!isInConditionalBranch()) { 739 return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3); 740 } 741 742 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 743 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 744 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 745 typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3); 746 747 typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType; 748 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, 749 a2_saved, a3_saved); 750 initFullExprCleanup(); 751 } 752 753 /// Set up the last cleaup that was pushed as a conditional 754 /// full-expression cleanup. 755 void initFullExprCleanup(); 756 757 /// PushDestructorCleanup - Push a cleanup to call the 758 /// complete-object destructor of an object of the given type at the 759 /// given address. Does nothing if T is not a C++ class type with a 760 /// non-trivial destructor. 761 void PushDestructorCleanup(QualType T, llvm::Value *Addr); 762 763 /// PushDestructorCleanup - Push a cleanup to call the 764 /// complete-object variant of the given destructor on the object at 765 /// the given address. 766 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, 767 llvm::Value *Addr); 768 769 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 770 /// process all branch fixups. 771 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 772 773 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 774 /// The block cannot be reactivated. Pops it if it's the top of the 775 /// stack. 776 /// 777 /// \param DominatingIP - An instruction which is known to 778 /// dominate the current IP (if set) and which lies along 779 /// all paths of execution between the current IP and the 780 /// the point at which the cleanup comes into scope. 781 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 782 llvm::Instruction *DominatingIP); 783 784 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 785 /// Cannot be used to resurrect a deactivated cleanup. 786 /// 787 /// \param DominatingIP - An instruction which is known to 788 /// dominate the current IP (if set) and which lies along 789 /// all paths of execution between the current IP and the 790 /// the point at which the cleanup comes into scope. 791 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 792 llvm::Instruction *DominatingIP); 793 794 /// \brief Enters a new scope for capturing cleanups, all of which 795 /// will be executed once the scope is exited. 796 class RunCleanupsScope { 797 EHScopeStack::stable_iterator CleanupStackDepth; 798 bool OldDidCallStackSave; 799 protected: 800 bool PerformCleanup; 801 private: 802 803 RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION; 804 void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION; 805 806 protected: 807 CodeGenFunction& CGF; 808 809 public: 810 /// \brief Enter a new cleanup scope. 811 explicit RunCleanupsScope(CodeGenFunction &CGF) 812 : PerformCleanup(true), CGF(CGF) 813 { 814 CleanupStackDepth = CGF.EHStack.stable_begin(); 815 OldDidCallStackSave = CGF.DidCallStackSave; 816 CGF.DidCallStackSave = false; 817 } 818 819 /// \brief Exit this cleanup scope, emitting any accumulated 820 /// cleanups. 821 ~RunCleanupsScope() { 822 if (PerformCleanup) { 823 CGF.DidCallStackSave = OldDidCallStackSave; 824 CGF.PopCleanupBlocks(CleanupStackDepth); 825 } 826 } 827 828 /// \brief Determine whether this scope requires any cleanups. 829 bool requiresCleanups() const { 830 return CGF.EHStack.stable_begin() != CleanupStackDepth; 831 } 832 833 /// \brief Force the emission of cleanups now, instead of waiting 834 /// until this object is destroyed. 835 void ForceCleanup() { 836 assert(PerformCleanup && "Already forced cleanup"); 837 CGF.DidCallStackSave = OldDidCallStackSave; 838 CGF.PopCleanupBlocks(CleanupStackDepth); 839 PerformCleanup = false; 840 } 841 }; 842 843 class LexicalScope: protected RunCleanupsScope { 844 SourceRange Range; 845 846 LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION; 847 void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION; 848 849 public: 850 /// \brief Enter a new cleanup scope. 851 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 852 : RunCleanupsScope(CGF), Range(Range) { 853 if (CGDebugInfo *DI = CGF.getDebugInfo()) 854 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 855 } 856 857 /// \brief Exit this cleanup scope, emitting any accumulated 858 /// cleanups. 859 ~LexicalScope() { 860 if (PerformCleanup) endLexicalScope(); 861 } 862 863 /// \brief Force the emission of cleanups now, instead of waiting 864 /// until this object is destroyed. 865 void ForceCleanup() { 866 RunCleanupsScope::ForceCleanup(); 867 endLexicalScope(); 868 } 869 870 private: 871 void endLexicalScope() { 872 if (CGDebugInfo *DI = CGF.getDebugInfo()) 873 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 874 } 875 }; 876 877 878 /// PopCleanupBlocks - Takes the old cleanup stack size and emits 879 /// the cleanup blocks that have been added. 880 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 881 882 void ResolveBranchFixups(llvm::BasicBlock *Target); 883 884 /// The given basic block lies in the current EH scope, but may be a 885 /// target of a potentially scope-crossing jump; get a stable handle 886 /// to which we can perform this jump later. 887 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 888 return JumpDest(Target, 889 EHStack.getInnermostNormalCleanup(), 890 NextCleanupDestIndex++); 891 } 892 893 /// The given basic block lies in the current EH scope, but may be a 894 /// target of a potentially scope-crossing jump; get a stable handle 895 /// to which we can perform this jump later. 896 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 897 return getJumpDestInCurrentScope(createBasicBlock(Name)); 898 } 899 900 /// EmitBranchThroughCleanup - Emit a branch from the current insert 901 /// block through the normal cleanup handling code (if any) and then 902 /// on to \arg Dest. 903 void EmitBranchThroughCleanup(JumpDest Dest); 904 905 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 906 /// specified destination obviously has no cleanups to run. 'false' is always 907 /// a conservatively correct answer for this method. 908 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 909 910 /// popCatchScope - Pops the catch scope at the top of the EHScope 911 /// stack, emitting any required code (other than the catch handlers 912 /// themselves). 913 void popCatchScope(); 914 915 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 916 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 917 918 /// An object to manage conditionally-evaluated expressions. 919 class ConditionalEvaluation { 920 llvm::BasicBlock *StartBB; 921 922 public: 923 ConditionalEvaluation(CodeGenFunction &CGF) 924 : StartBB(CGF.Builder.GetInsertBlock()) {} 925 926 void begin(CodeGenFunction &CGF) { 927 assert(CGF.OutermostConditional != this); 928 if (!CGF.OutermostConditional) 929 CGF.OutermostConditional = this; 930 } 931 932 void end(CodeGenFunction &CGF) { 933 assert(CGF.OutermostConditional != 0); 934 if (CGF.OutermostConditional == this) 935 CGF.OutermostConditional = 0; 936 } 937 938 /// Returns a block which will be executed prior to each 939 /// evaluation of the conditional code. 940 llvm::BasicBlock *getStartingBlock() const { 941 return StartBB; 942 } 943 }; 944 945 /// isInConditionalBranch - Return true if we're currently emitting 946 /// one branch or the other of a conditional expression. 947 bool isInConditionalBranch() const { return OutermostConditional != 0; } 948 949 void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) { 950 assert(isInConditionalBranch()); 951 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 952 new llvm::StoreInst(value, addr, &block->back()); 953 } 954 955 /// An RAII object to record that we're evaluating a statement 956 /// expression. 957 class StmtExprEvaluation { 958 CodeGenFunction &CGF; 959 960 /// We have to save the outermost conditional: cleanups in a 961 /// statement expression aren't conditional just because the 962 /// StmtExpr is. 963 ConditionalEvaluation *SavedOutermostConditional; 964 965 public: 966 StmtExprEvaluation(CodeGenFunction &CGF) 967 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 968 CGF.OutermostConditional = 0; 969 } 970 971 ~StmtExprEvaluation() { 972 CGF.OutermostConditional = SavedOutermostConditional; 973 CGF.EnsureInsertPoint(); 974 } 975 }; 976 977 /// An object which temporarily prevents a value from being 978 /// destroyed by aggressive peephole optimizations that assume that 979 /// all uses of a value have been realized in the IR. 980 class PeepholeProtection { 981 llvm::Instruction *Inst; 982 friend class CodeGenFunction; 983 984 public: 985 PeepholeProtection() : Inst(0) {} 986 }; 987 988 /// A non-RAII class containing all the information about a bound 989 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 990 /// this which makes individual mappings very simple; using this 991 /// class directly is useful when you have a variable number of 992 /// opaque values or don't want the RAII functionality for some 993 /// reason. 994 class OpaqueValueMappingData { 995 const OpaqueValueExpr *OpaqueValue; 996 bool BoundLValue; 997 CodeGenFunction::PeepholeProtection Protection; 998 999 OpaqueValueMappingData(const OpaqueValueExpr *ov, 1000 bool boundLValue) 1001 : OpaqueValue(ov), BoundLValue(boundLValue) {} 1002 public: 1003 OpaqueValueMappingData() : OpaqueValue(0) {} 1004 1005 static bool shouldBindAsLValue(const Expr *expr) { 1006 // gl-values should be bound as l-values for obvious reasons. 1007 // Records should be bound as l-values because IR generation 1008 // always keeps them in memory. Expressions of function type 1009 // act exactly like l-values but are formally required to be 1010 // r-values in C. 1011 return expr->isGLValue() || 1012 expr->getType()->isRecordType() || 1013 expr->getType()->isFunctionType(); 1014 } 1015 1016 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1017 const OpaqueValueExpr *ov, 1018 const Expr *e) { 1019 if (shouldBindAsLValue(ov)) 1020 return bind(CGF, ov, CGF.EmitLValue(e)); 1021 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1022 } 1023 1024 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1025 const OpaqueValueExpr *ov, 1026 const LValue &lv) { 1027 assert(shouldBindAsLValue(ov)); 1028 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1029 return OpaqueValueMappingData(ov, true); 1030 } 1031 1032 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1033 const OpaqueValueExpr *ov, 1034 const RValue &rv) { 1035 assert(!shouldBindAsLValue(ov)); 1036 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1037 1038 OpaqueValueMappingData data(ov, false); 1039 1040 // Work around an extremely aggressive peephole optimization in 1041 // EmitScalarConversion which assumes that all other uses of a 1042 // value are extant. 1043 data.Protection = CGF.protectFromPeepholes(rv); 1044 1045 return data; 1046 } 1047 1048 bool isValid() const { return OpaqueValue != 0; } 1049 void clear() { OpaqueValue = 0; } 1050 1051 void unbind(CodeGenFunction &CGF) { 1052 assert(OpaqueValue && "no data to unbind!"); 1053 1054 if (BoundLValue) { 1055 CGF.OpaqueLValues.erase(OpaqueValue); 1056 } else { 1057 CGF.OpaqueRValues.erase(OpaqueValue); 1058 CGF.unprotectFromPeepholes(Protection); 1059 } 1060 } 1061 }; 1062 1063 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1064 class OpaqueValueMapping { 1065 CodeGenFunction &CGF; 1066 OpaqueValueMappingData Data; 1067 1068 public: 1069 static bool shouldBindAsLValue(const Expr *expr) { 1070 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1071 } 1072 1073 /// Build the opaque value mapping for the given conditional 1074 /// operator if it's the GNU ?: extension. This is a common 1075 /// enough pattern that the convenience operator is really 1076 /// helpful. 1077 /// 1078 OpaqueValueMapping(CodeGenFunction &CGF, 1079 const AbstractConditionalOperator *op) : CGF(CGF) { 1080 if (isa<ConditionalOperator>(op)) 1081 // Leave Data empty. 1082 return; 1083 1084 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1085 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1086 e->getCommon()); 1087 } 1088 1089 OpaqueValueMapping(CodeGenFunction &CGF, 1090 const OpaqueValueExpr *opaqueValue, 1091 LValue lvalue) 1092 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1093 } 1094 1095 OpaqueValueMapping(CodeGenFunction &CGF, 1096 const OpaqueValueExpr *opaqueValue, 1097 RValue rvalue) 1098 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1099 } 1100 1101 void pop() { 1102 Data.unbind(CGF); 1103 Data.clear(); 1104 } 1105 1106 ~OpaqueValueMapping() { 1107 if (Data.isValid()) Data.unbind(CGF); 1108 } 1109 }; 1110 1111 /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field 1112 /// number that holds the value. 1113 unsigned getByRefValueLLVMField(const ValueDecl *VD) const; 1114 1115 /// BuildBlockByrefAddress - Computes address location of the 1116 /// variable which is declared as __block. 1117 llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr, 1118 const VarDecl *V); 1119private: 1120 CGDebugInfo *DebugInfo; 1121 bool DisableDebugInfo; 1122 1123 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1124 /// calling llvm.stacksave for multiple VLAs in the same scope. 1125 bool DidCallStackSave; 1126 1127 /// IndirectBranch - The first time an indirect goto is seen we create a block 1128 /// with an indirect branch. Every time we see the address of a label taken, 1129 /// we add the label to the indirect goto. Every subsequent indirect goto is 1130 /// codegen'd as a jump to the IndirectBranch's basic block. 1131 llvm::IndirectBrInst *IndirectBranch; 1132 1133 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1134 /// decls. 1135 typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy; 1136 DeclMapTy LocalDeclMap; 1137 1138 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1139 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1140 1141 // BreakContinueStack - This keeps track of where break and continue 1142 // statements should jump to. 1143 struct BreakContinue { 1144 BreakContinue(JumpDest Break, JumpDest Continue) 1145 : BreakBlock(Break), ContinueBlock(Continue) {} 1146 1147 JumpDest BreakBlock; 1148 JumpDest ContinueBlock; 1149 }; 1150 SmallVector<BreakContinue, 8> BreakContinueStack; 1151 1152 /// SwitchInsn - This is nearest current switch instruction. It is null if 1153 /// current context is not in a switch. 1154 llvm::SwitchInst *SwitchInsn; 1155 1156 /// CaseRangeBlock - This block holds if condition check for last case 1157 /// statement range in current switch instruction. 1158 llvm::BasicBlock *CaseRangeBlock; 1159 1160 /// OpaqueLValues - Keeps track of the current set of opaque value 1161 /// expressions. 1162 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1163 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1164 1165 // VLASizeMap - This keeps track of the associated size for each VLA type. 1166 // We track this by the size expression rather than the type itself because 1167 // in certain situations, like a const qualifier applied to an VLA typedef, 1168 // multiple VLA types can share the same size expression. 1169 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1170 // enter/leave scopes. 1171 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1172 1173 /// A block containing a single 'unreachable' instruction. Created 1174 /// lazily by getUnreachableBlock(). 1175 llvm::BasicBlock *UnreachableBlock; 1176 1177 /// CXXThisDecl - When generating code for a C++ member function, 1178 /// this will hold the implicit 'this' declaration. 1179 ImplicitParamDecl *CXXABIThisDecl; 1180 llvm::Value *CXXABIThisValue; 1181 llvm::Value *CXXThisValue; 1182 1183 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1184 /// destructor, this will hold the implicit argument (e.g. VTT). 1185 ImplicitParamDecl *CXXStructorImplicitParamDecl; 1186 llvm::Value *CXXStructorImplicitParamValue; 1187 1188 /// OutermostConditional - Points to the outermost active 1189 /// conditional control. This is used so that we know if a 1190 /// temporary should be destroyed conditionally. 1191 ConditionalEvaluation *OutermostConditional; 1192 1193 1194 /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM 1195 /// type as well as the field number that contains the actual data. 1196 llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *, 1197 unsigned> > ByRefValueInfo; 1198 1199 llvm::BasicBlock *TerminateLandingPad; 1200 llvm::BasicBlock *TerminateHandler; 1201 llvm::BasicBlock *TrapBB; 1202 1203 /// Add a kernel metadata node to the named metadata node 'opencl.kernels'. 1204 /// In the kernel metadata node, reference the kernel function and metadata 1205 /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2): 1206 /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string 1207 /// "work_group_size_hint", and three 32-bit integers X, Y and Z. 1208 /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string 1209 /// "reqd_work_group_size", and three 32-bit integers X, Y and Z. 1210 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1211 llvm::Function *Fn); 1212 1213public: 1214 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1215 ~CodeGenFunction(); 1216 1217 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1218 ASTContext &getContext() const { return CGM.getContext(); } 1219 /// Returns true if DebugInfo is actually initialized. 1220 bool maybeInitializeDebugInfo() { 1221 if (CGM.getModuleDebugInfo()) { 1222 DebugInfo = CGM.getModuleDebugInfo(); 1223 return true; 1224 } 1225 return false; 1226 } 1227 CGDebugInfo *getDebugInfo() { 1228 if (DisableDebugInfo) 1229 return NULL; 1230 return DebugInfo; 1231 } 1232 void disableDebugInfo() { DisableDebugInfo = true; } 1233 void enableDebugInfo() { DisableDebugInfo = false; } 1234 1235 bool shouldUseFusedARCCalls() { 1236 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1237 } 1238 1239 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1240 1241 /// Returns a pointer to the function's exception object and selector slot, 1242 /// which is assigned in every landing pad. 1243 llvm::Value *getExceptionSlot(); 1244 llvm::Value *getEHSelectorSlot(); 1245 1246 /// Returns the contents of the function's exception object and selector 1247 /// slots. 1248 llvm::Value *getExceptionFromSlot(); 1249 llvm::Value *getSelectorFromSlot(); 1250 1251 llvm::Value *getNormalCleanupDestSlot(); 1252 1253 llvm::BasicBlock *getUnreachableBlock() { 1254 if (!UnreachableBlock) { 1255 UnreachableBlock = createBasicBlock("unreachable"); 1256 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1257 } 1258 return UnreachableBlock; 1259 } 1260 1261 llvm::BasicBlock *getInvokeDest() { 1262 if (!EHStack.requiresLandingPad()) return 0; 1263 return getInvokeDestImpl(); 1264 } 1265 1266 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1267 1268 //===--------------------------------------------------------------------===// 1269 // Cleanups 1270 //===--------------------------------------------------------------------===// 1271 1272 typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty); 1273 1274 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1275 llvm::Value *arrayEndPointer, 1276 QualType elementType, 1277 Destroyer *destroyer); 1278 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1279 llvm::Value *arrayEnd, 1280 QualType elementType, 1281 Destroyer *destroyer); 1282 1283 void pushDestroy(QualType::DestructionKind dtorKind, 1284 llvm::Value *addr, QualType type); 1285 void pushEHDestroy(QualType::DestructionKind dtorKind, 1286 llvm::Value *addr, QualType type); 1287 void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type, 1288 Destroyer *destroyer, bool useEHCleanupForArray); 1289 void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer, 1290 bool useEHCleanupForArray); 1291 llvm::Function *generateDestroyHelper(llvm::Constant *addr, 1292 QualType type, 1293 Destroyer *destroyer, 1294 bool useEHCleanupForArray); 1295 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1296 QualType type, Destroyer *destroyer, 1297 bool checkZeroLength, bool useEHCleanup); 1298 1299 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1300 1301 /// Determines whether an EH cleanup is required to destroy a type 1302 /// with the given destruction kind. 1303 bool needsEHCleanup(QualType::DestructionKind kind) { 1304 switch (kind) { 1305 case QualType::DK_none: 1306 return false; 1307 case QualType::DK_cxx_destructor: 1308 case QualType::DK_objc_weak_lifetime: 1309 return getLangOpts().Exceptions; 1310 case QualType::DK_objc_strong_lifetime: 1311 return getLangOpts().Exceptions && 1312 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1313 } 1314 llvm_unreachable("bad destruction kind"); 1315 } 1316 1317 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1318 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1319 } 1320 1321 //===--------------------------------------------------------------------===// 1322 // Objective-C 1323 //===--------------------------------------------------------------------===// 1324 1325 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1326 1327 void StartObjCMethod(const ObjCMethodDecl *MD, 1328 const ObjCContainerDecl *CD, 1329 SourceLocation StartLoc); 1330 1331 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1332 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1333 const ObjCPropertyImplDecl *PID); 1334 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1335 const ObjCPropertyImplDecl *propImpl, 1336 const ObjCMethodDecl *GetterMothodDecl, 1337 llvm::Constant *AtomicHelperFn); 1338 1339 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1340 ObjCMethodDecl *MD, bool ctor); 1341 1342 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1343 /// for the given property. 1344 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1345 const ObjCPropertyImplDecl *PID); 1346 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1347 const ObjCPropertyImplDecl *propImpl, 1348 llvm::Constant *AtomicHelperFn); 1349 bool IndirectObjCSetterArg(const CGFunctionInfo &FI); 1350 bool IvarTypeWithAggrGCObjects(QualType Ty); 1351 1352 //===--------------------------------------------------------------------===// 1353 // Block Bits 1354 //===--------------------------------------------------------------------===// 1355 1356 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1357 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 1358 static void destroyBlockInfos(CGBlockInfo *info); 1359 llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *, 1360 const CGBlockInfo &Info, 1361 llvm::StructType *, 1362 llvm::Constant *BlockVarLayout); 1363 1364 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1365 const CGBlockInfo &Info, 1366 const Decl *OuterFuncDecl, 1367 const DeclMapTy &ldm, 1368 bool IsLambdaConversionToBlock); 1369 1370 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1371 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1372 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1373 const ObjCPropertyImplDecl *PID); 1374 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1375 const ObjCPropertyImplDecl *PID); 1376 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1377 1378 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1379 1380 class AutoVarEmission; 1381 1382 void emitByrefStructureInit(const AutoVarEmission &emission); 1383 void enterByrefCleanup(const AutoVarEmission &emission); 1384 1385 llvm::Value *LoadBlockStruct() { 1386 assert(BlockPointer && "no block pointer set!"); 1387 return BlockPointer; 1388 } 1389 1390 void AllocateBlockCXXThisPointer(const CXXThisExpr *E); 1391 void AllocateBlockDecl(const DeclRefExpr *E); 1392 llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1393 llvm::Type *BuildByRefType(const VarDecl *var); 1394 1395 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1396 const CGFunctionInfo &FnInfo); 1397 void StartFunction(GlobalDecl GD, QualType RetTy, 1398 llvm::Function *Fn, 1399 const CGFunctionInfo &FnInfo, 1400 const FunctionArgList &Args, 1401 SourceLocation StartLoc); 1402 1403 void EmitConstructorBody(FunctionArgList &Args); 1404 void EmitDestructorBody(FunctionArgList &Args); 1405 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1406 void EmitFunctionBody(FunctionArgList &Args); 1407 1408 void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda, 1409 CallArgList &CallArgs); 1410 void EmitLambdaToBlockPointerBody(FunctionArgList &Args); 1411 void EmitLambdaBlockInvokeBody(); 1412 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1413 void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); 1414 1415 /// EmitReturnBlock - Emit the unified return block, trying to avoid its 1416 /// emission when possible. 1417 void EmitReturnBlock(); 1418 1419 /// FinishFunction - Complete IR generation of the current function. It is 1420 /// legal to call this function even if there is no current insertion point. 1421 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1422 1423 /// GenerateThunk - Generate a thunk for the given method. 1424 void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1425 GlobalDecl GD, const ThunkInfo &Thunk); 1426 1427 void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1428 GlobalDecl GD, const ThunkInfo &Thunk); 1429 1430 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1431 FunctionArgList &Args); 1432 1433 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init, 1434 ArrayRef<VarDecl *> ArrayIndexes); 1435 1436 /// InitializeVTablePointer - Initialize the vtable pointer of the given 1437 /// subobject. 1438 /// 1439 void InitializeVTablePointer(BaseSubobject Base, 1440 const CXXRecordDecl *NearestVBase, 1441 CharUnits OffsetFromNearestVBase, 1442 llvm::Constant *VTable, 1443 const CXXRecordDecl *VTableClass); 1444 1445 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1446 void InitializeVTablePointers(BaseSubobject Base, 1447 const CXXRecordDecl *NearestVBase, 1448 CharUnits OffsetFromNearestVBase, 1449 bool BaseIsNonVirtualPrimaryBase, 1450 llvm::Constant *VTable, 1451 const CXXRecordDecl *VTableClass, 1452 VisitedVirtualBasesSetTy& VBases); 1453 1454 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1455 1456 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1457 /// to by This. 1458 llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty); 1459 1460 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1461 /// given phase of destruction for a destructor. The end result 1462 /// should call destructors on members and base classes in reverse 1463 /// order of their construction. 1464 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1465 1466 /// ShouldInstrumentFunction - Return true if the current function should be 1467 /// instrumented with __cyg_profile_func_* calls 1468 bool ShouldInstrumentFunction(); 1469 1470 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1471 /// instrumentation function with the current function and the call site, if 1472 /// function instrumentation is enabled. 1473 void EmitFunctionInstrumentation(const char *Fn); 1474 1475 /// EmitMCountInstrumentation - Emit call to .mcount. 1476 void EmitMCountInstrumentation(); 1477 1478 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1479 /// arguments for the given function. This is also responsible for naming the 1480 /// LLVM function arguments. 1481 void EmitFunctionProlog(const CGFunctionInfo &FI, 1482 llvm::Function *Fn, 1483 const FunctionArgList &Args); 1484 1485 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1486 /// given temporary. 1487 void EmitFunctionEpilog(const CGFunctionInfo &FI); 1488 1489 /// EmitStartEHSpec - Emit the start of the exception spec. 1490 void EmitStartEHSpec(const Decl *D); 1491 1492 /// EmitEndEHSpec - Emit the end of the exception spec. 1493 void EmitEndEHSpec(const Decl *D); 1494 1495 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1496 llvm::BasicBlock *getTerminateLandingPad(); 1497 1498 /// getTerminateHandler - Return a handler (not a landing pad, just 1499 /// a catch handler) that just calls terminate. This is used when 1500 /// a terminate scope encloses a try. 1501 llvm::BasicBlock *getTerminateHandler(); 1502 1503 llvm::Type *ConvertTypeForMem(QualType T); 1504 llvm::Type *ConvertType(QualType T); 1505 llvm::Type *ConvertType(const TypeDecl *T) { 1506 return ConvertType(getContext().getTypeDeclType(T)); 1507 } 1508 1509 /// LoadObjCSelf - Load the value of self. This function is only valid while 1510 /// generating code for an Objective-C method. 1511 llvm::Value *LoadObjCSelf(); 1512 1513 /// TypeOfSelfObject - Return type of object that this self represents. 1514 QualType TypeOfSelfObject(); 1515 1516 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1517 /// an aggregate LLVM type or is void. 1518 static bool hasAggregateLLVMType(QualType T); 1519 1520 /// createBasicBlock - Create an LLVM basic block. 1521 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1522 llvm::Function *parent = 0, 1523 llvm::BasicBlock *before = 0) { 1524#ifdef NDEBUG 1525 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1526#else 1527 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1528#endif 1529 } 1530 1531 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1532 /// label maps to. 1533 JumpDest getJumpDestForLabel(const LabelDecl *S); 1534 1535 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1536 /// another basic block, simplify it. This assumes that no other code could 1537 /// potentially reference the basic block. 1538 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1539 1540 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1541 /// adding a fall-through branch from the current insert block if 1542 /// necessary. It is legal to call this function even if there is no current 1543 /// insertion point. 1544 /// 1545 /// IsFinished - If true, indicates that the caller has finished emitting 1546 /// branches to the given block and does not expect to emit code into it. This 1547 /// means the block can be ignored if it is unreachable. 1548 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1549 1550 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1551 /// near its uses, and leave the insertion point in it. 1552 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1553 1554 /// EmitBranch - Emit a branch to the specified basic block from the current 1555 /// insert block, taking care to avoid creation of branches from dummy 1556 /// blocks. It is legal to call this function even if there is no current 1557 /// insertion point. 1558 /// 1559 /// This function clears the current insertion point. The caller should follow 1560 /// calls to this function with calls to Emit*Block prior to generation new 1561 /// code. 1562 void EmitBranch(llvm::BasicBlock *Block); 1563 1564 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1565 /// indicates that the current code being emitted is unreachable. 1566 bool HaveInsertPoint() const { 1567 return Builder.GetInsertBlock() != 0; 1568 } 1569 1570 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1571 /// emitted IR has a place to go. Note that by definition, if this function 1572 /// creates a block then that block is unreachable; callers may do better to 1573 /// detect when no insertion point is defined and simply skip IR generation. 1574 void EnsureInsertPoint() { 1575 if (!HaveInsertPoint()) 1576 EmitBlock(createBasicBlock()); 1577 } 1578 1579 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1580 /// specified stmt yet. 1581 void ErrorUnsupported(const Stmt *S, const char *Type, 1582 bool OmitOnError=false); 1583 1584 //===--------------------------------------------------------------------===// 1585 // Helpers 1586 //===--------------------------------------------------------------------===// 1587 1588 LValue MakeAddrLValue(llvm::Value *V, QualType T, 1589 CharUnits Alignment = CharUnits()) { 1590 return LValue::MakeAddr(V, T, Alignment, getContext(), 1591 CGM.getTBAAInfo(T)); 1592 } 1593 1594 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 1595 CharUnits Alignment; 1596 if (!T->isIncompleteType()) 1597 Alignment = getContext().getTypeAlignInChars(T); 1598 return LValue::MakeAddr(V, T, Alignment, getContext(), 1599 CGM.getTBAAInfo(T)); 1600 } 1601 1602 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1603 /// block. The caller is responsible for setting an appropriate alignment on 1604 /// the alloca. 1605 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1606 const Twine &Name = "tmp"); 1607 1608 /// InitTempAlloca - Provide an initial value for the given alloca. 1609 void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value); 1610 1611 /// CreateIRTemp - Create a temporary IR object of the given type, with 1612 /// appropriate alignment. This routine should only be used when an temporary 1613 /// value needs to be stored into an alloca (for example, to avoid explicit 1614 /// PHI construction), but the type is the IR type, not the type appropriate 1615 /// for storing in memory. 1616 llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1617 1618 /// CreateMemTemp - Create a temporary memory object of the given type, with 1619 /// appropriate alignment. 1620 llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1621 1622 /// CreateAggTemp - Create a temporary memory object for the given 1623 /// aggregate type. 1624 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1625 CharUnits Alignment = getContext().getTypeAlignInChars(T); 1626 return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment, 1627 T.getQualifiers(), 1628 AggValueSlot::IsNotDestructed, 1629 AggValueSlot::DoesNotNeedGCBarriers, 1630 AggValueSlot::IsNotAliased); 1631 } 1632 1633 /// Emit a cast to void* in the appropriate address space. 1634 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1635 1636 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1637 /// expression and compare the result against zero, returning an Int1Ty value. 1638 llvm::Value *EvaluateExprAsBool(const Expr *E); 1639 1640 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1641 void EmitIgnoredExpr(const Expr *E); 1642 1643 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1644 /// any type. The result is returned as an RValue struct. If this is an 1645 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1646 /// the result should be returned. 1647 /// 1648 /// \param ignoreResult True if the resulting value isn't used. 1649 RValue EmitAnyExpr(const Expr *E, 1650 AggValueSlot aggSlot = AggValueSlot::ignored(), 1651 bool ignoreResult = false); 1652 1653 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1654 // or the value of the expression, depending on how va_list is defined. 1655 llvm::Value *EmitVAListRef(const Expr *E); 1656 1657 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1658 /// always be accessible even if no aggregate location is provided. 1659 RValue EmitAnyExprToTemp(const Expr *E); 1660 1661 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1662 /// arbitrary expression into the given memory location. 1663 void EmitAnyExprToMem(const Expr *E, llvm::Value *Location, 1664 Qualifiers Quals, bool IsInitializer); 1665 1666 /// EmitExprAsInit - Emits the code necessary to initialize a 1667 /// location in memory with the given initializer. 1668 void EmitExprAsInit(const Expr *init, const ValueDecl *D, 1669 LValue lvalue, bool capturedByInit); 1670 1671 /// hasVolatileMember - returns true if aggregate type has a volatile 1672 /// member. 1673 bool hasVolatileMember(QualType T) { 1674 if (const RecordType *RT = T->getAs<RecordType>()) { 1675 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 1676 return RD->hasVolatileMember(); 1677 } 1678 return false; 1679 } 1680 /// EmitAggregateCopy - Emit an aggregate assignment. 1681 /// 1682 /// The difference to EmitAggregateCopy is that tail padding is not copied. 1683 /// This is required for correctness when assigning non-POD structures in C++. 1684 void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1685 QualType EltTy) { 1686 bool IsVolatile = hasVolatileMember(EltTy); 1687 EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(), 1688 true); 1689 } 1690 1691 /// EmitAggregateCopy - Emit an aggregate copy. 1692 /// 1693 /// \param isVolatile - True iff either the source or the destination is 1694 /// volatile. 1695 /// \param isAssignment - If false, allow padding to be copied. This often 1696 /// yields more efficient. 1697 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1698 QualType EltTy, bool isVolatile=false, 1699 CharUnits Alignment = CharUnits::Zero(), 1700 bool isAssignment = false); 1701 1702 /// StartBlock - Start new block named N. If insert block is a dummy block 1703 /// then reuse it. 1704 void StartBlock(const char *N); 1705 1706 /// GetAddrOfLocalVar - Return the address of a local variable. 1707 llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) { 1708 llvm::Value *Res = LocalDeclMap[VD]; 1709 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1710 return Res; 1711 } 1712 1713 /// getOpaqueLValueMapping - Given an opaque value expression (which 1714 /// must be mapped to an l-value), return its mapping. 1715 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1716 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1717 1718 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1719 it = OpaqueLValues.find(e); 1720 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1721 return it->second; 1722 } 1723 1724 /// getOpaqueRValueMapping - Given an opaque value expression (which 1725 /// must be mapped to an r-value), return its mapping. 1726 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1727 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1728 1729 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1730 it = OpaqueRValues.find(e); 1731 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1732 return it->second; 1733 } 1734 1735 /// getAccessedFieldNo - Given an encoded value and a result number, return 1736 /// the input field number being accessed. 1737 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1738 1739 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1740 llvm::BasicBlock *GetIndirectGotoBlock(); 1741 1742 /// EmitNullInitialization - Generate code to set a value of the given type to 1743 /// null, If the type contains data member pointers, they will be initialized 1744 /// to -1 in accordance with the Itanium C++ ABI. 1745 void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty); 1746 1747 // EmitVAArg - Generate code to get an argument from the passed in pointer 1748 // and update it accordingly. The return value is a pointer to the argument. 1749 // FIXME: We should be able to get rid of this method and use the va_arg 1750 // instruction in LLVM instead once it works well enough. 1751 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty); 1752 1753 /// emitArrayLength - Compute the length of an array, even if it's a 1754 /// VLA, and drill down to the base element type. 1755 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1756 QualType &baseType, 1757 llvm::Value *&addr); 1758 1759 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1760 /// the given variably-modified type and store them in the VLASizeMap. 1761 /// 1762 /// This function can be called with a null (unreachable) insert point. 1763 void EmitVariablyModifiedType(QualType Ty); 1764 1765 /// getVLASize - Returns an LLVM value that corresponds to the size, 1766 /// in non-variably-sized elements, of a variable length array type, 1767 /// plus that largest non-variably-sized element type. Assumes that 1768 /// the type has already been emitted with EmitVariablyModifiedType. 1769 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1770 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1771 1772 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1773 /// generating code for an C++ member function. 1774 llvm::Value *LoadCXXThis() { 1775 assert(CXXThisValue && "no 'this' value for this function"); 1776 return CXXThisValue; 1777 } 1778 1779 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1780 /// virtual bases. 1781 // FIXME: Every place that calls LoadCXXVTT is something 1782 // that needs to be abstracted properly. 1783 llvm::Value *LoadCXXVTT() { 1784 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 1785 return CXXStructorImplicitParamValue; 1786 } 1787 1788 /// LoadCXXStructorImplicitParam - Load the implicit parameter 1789 /// for a constructor/destructor. 1790 llvm::Value *LoadCXXStructorImplicitParam() { 1791 assert(CXXStructorImplicitParamValue && 1792 "no implicit argument value for this function"); 1793 return CXXStructorImplicitParamValue; 1794 } 1795 1796 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1797 /// complete class to the given direct base. 1798 llvm::Value * 1799 GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value, 1800 const CXXRecordDecl *Derived, 1801 const CXXRecordDecl *Base, 1802 bool BaseIsVirtual); 1803 1804 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1805 /// load of 'this' and returns address of the base class. 1806 llvm::Value *GetAddressOfBaseClass(llvm::Value *Value, 1807 const CXXRecordDecl *Derived, 1808 CastExpr::path_const_iterator PathBegin, 1809 CastExpr::path_const_iterator PathEnd, 1810 bool NullCheckValue); 1811 1812 llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value, 1813 const CXXRecordDecl *Derived, 1814 CastExpr::path_const_iterator PathBegin, 1815 CastExpr::path_const_iterator PathEnd, 1816 bool NullCheckValue); 1817 1818 llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This, 1819 const CXXRecordDecl *ClassDecl, 1820 const CXXRecordDecl *BaseClassDecl); 1821 1822 /// GetVTTParameter - Return the VTT parameter that should be passed to a 1823 /// base constructor/destructor with virtual bases. 1824 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 1825 /// to ItaniumCXXABI.cpp together with all the references to VTT. 1826 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 1827 bool Delegating); 1828 1829 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1830 CXXCtorType CtorType, 1831 const FunctionArgList &Args); 1832 // It's important not to confuse this and the previous function. Delegating 1833 // constructors are the C++0x feature. The constructor delegate optimization 1834 // is used to reduce duplication in the base and complete consturctors where 1835 // they are substantially the same. 1836 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1837 const FunctionArgList &Args); 1838 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1839 bool ForVirtualBase, bool Delegating, 1840 llvm::Value *This, 1841 CallExpr::const_arg_iterator ArgBeg, 1842 CallExpr::const_arg_iterator ArgEnd); 1843 1844 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1845 llvm::Value *This, llvm::Value *Src, 1846 CallExpr::const_arg_iterator ArgBeg, 1847 CallExpr::const_arg_iterator ArgEnd); 1848 1849 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1850 const ConstantArrayType *ArrayTy, 1851 llvm::Value *ArrayPtr, 1852 CallExpr::const_arg_iterator ArgBeg, 1853 CallExpr::const_arg_iterator ArgEnd, 1854 bool ZeroInitialization = false); 1855 1856 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1857 llvm::Value *NumElements, 1858 llvm::Value *ArrayPtr, 1859 CallExpr::const_arg_iterator ArgBeg, 1860 CallExpr::const_arg_iterator ArgEnd, 1861 bool ZeroInitialization = false); 1862 1863 static Destroyer destroyCXXObject; 1864 1865 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1866 bool ForVirtualBase, bool Delegating, 1867 llvm::Value *This); 1868 1869 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 1870 llvm::Value *NewPtr, llvm::Value *NumElements); 1871 1872 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 1873 llvm::Value *Ptr); 1874 1875 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1876 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1877 1878 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1879 QualType DeleteTy); 1880 1881 llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1882 llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE); 1883 llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E); 1884 1885 void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init); 1886 void EmitStdInitializerListCleanup(llvm::Value *loc, 1887 const InitListExpr *init); 1888 1889 /// \brief Situations in which we might emit a check for the suitability of a 1890 /// pointer or glvalue. 1891 enum TypeCheckKind { 1892 /// Checking the operand of a load. Must be suitably sized and aligned. 1893 TCK_Load, 1894 /// Checking the destination of a store. Must be suitably sized and aligned. 1895 TCK_Store, 1896 /// Checking the bound value in a reference binding. Must be suitably sized 1897 /// and aligned, but is not required to refer to an object (until the 1898 /// reference is used), per core issue 453. 1899 TCK_ReferenceBinding, 1900 /// Checking the object expression in a non-static data member access. Must 1901 /// be an object within its lifetime. 1902 TCK_MemberAccess, 1903 /// Checking the 'this' pointer for a call to a non-static member function. 1904 /// Must be an object within its lifetime. 1905 TCK_MemberCall, 1906 /// Checking the 'this' pointer for a constructor call. 1907 TCK_ConstructorCall, 1908 /// Checking the operand of a static_cast to a derived pointer type. Must be 1909 /// null or an object within its lifetime. 1910 TCK_DowncastPointer, 1911 /// Checking the operand of a static_cast to a derived reference type. Must 1912 /// be an object within its lifetime. 1913 TCK_DowncastReference 1914 }; 1915 1916 /// \brief Emit a check that \p V is the address of storage of the 1917 /// appropriate size and alignment for an object of type \p Type. 1918 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 1919 QualType Type, CharUnits Alignment = CharUnits::Zero()); 1920 1921 /// \brief Emit a check that \p Base points into an array object, which 1922 /// we can access at index \p Index. \p Accessed should be \c false if we 1923 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 1924 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 1925 QualType IndexType, bool Accessed); 1926 1927 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1928 bool isInc, bool isPre); 1929 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1930 bool isInc, bool isPre); 1931 //===--------------------------------------------------------------------===// 1932 // Declaration Emission 1933 //===--------------------------------------------------------------------===// 1934 1935 /// EmitDecl - Emit a declaration. 1936 /// 1937 /// This function can be called with a null (unreachable) insert point. 1938 void EmitDecl(const Decl &D); 1939 1940 /// EmitVarDecl - Emit a local variable declaration. 1941 /// 1942 /// This function can be called with a null (unreachable) insert point. 1943 void EmitVarDecl(const VarDecl &D); 1944 1945 void EmitScalarInit(const Expr *init, const ValueDecl *D, 1946 LValue lvalue, bool capturedByInit); 1947 void EmitScalarInit(llvm::Value *init, LValue lvalue); 1948 1949 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1950 llvm::Value *Address); 1951 1952 /// EmitAutoVarDecl - Emit an auto variable declaration. 1953 /// 1954 /// This function can be called with a null (unreachable) insert point. 1955 void EmitAutoVarDecl(const VarDecl &D); 1956 1957 class AutoVarEmission { 1958 friend class CodeGenFunction; 1959 1960 const VarDecl *Variable; 1961 1962 /// The alignment of the variable. 1963 CharUnits Alignment; 1964 1965 /// The address of the alloca. Null if the variable was emitted 1966 /// as a global constant. 1967 llvm::Value *Address; 1968 1969 llvm::Value *NRVOFlag; 1970 1971 /// True if the variable is a __block variable. 1972 bool IsByRef; 1973 1974 /// True if the variable is of aggregate type and has a constant 1975 /// initializer. 1976 bool IsConstantAggregate; 1977 1978 struct Invalid {}; 1979 AutoVarEmission(Invalid) : Variable(0) {} 1980 1981 AutoVarEmission(const VarDecl &variable) 1982 : Variable(&variable), Address(0), NRVOFlag(0), 1983 IsByRef(false), IsConstantAggregate(false) {} 1984 1985 bool wasEmittedAsGlobal() const { return Address == 0; } 1986 1987 public: 1988 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 1989 1990 /// Returns the address of the object within this declaration. 1991 /// Note that this does not chase the forwarding pointer for 1992 /// __block decls. 1993 llvm::Value *getObjectAddress(CodeGenFunction &CGF) const { 1994 if (!IsByRef) return Address; 1995 1996 return CGF.Builder.CreateStructGEP(Address, 1997 CGF.getByRefValueLLVMField(Variable), 1998 Variable->getNameAsString()); 1999 } 2000 }; 2001 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2002 void EmitAutoVarInit(const AutoVarEmission &emission); 2003 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2004 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2005 QualType::DestructionKind dtorKind); 2006 2007 void EmitStaticVarDecl(const VarDecl &D, 2008 llvm::GlobalValue::LinkageTypes Linkage); 2009 2010 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2011 void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo); 2012 2013 /// protectFromPeepholes - Protect a value that we're intending to 2014 /// store to the side, but which will probably be used later, from 2015 /// aggressive peepholing optimizations that might delete it. 2016 /// 2017 /// Pass the result to unprotectFromPeepholes to declare that 2018 /// protection is no longer required. 2019 /// 2020 /// There's no particular reason why this shouldn't apply to 2021 /// l-values, it's just that no existing peepholes work on pointers. 2022 PeepholeProtection protectFromPeepholes(RValue rvalue); 2023 void unprotectFromPeepholes(PeepholeProtection protection); 2024 2025 //===--------------------------------------------------------------------===// 2026 // Statement Emission 2027 //===--------------------------------------------------------------------===// 2028 2029 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2030 void EmitStopPoint(const Stmt *S); 2031 2032 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2033 /// this function even if there is no current insertion point. 2034 /// 2035 /// This function may clear the current insertion point; callers should use 2036 /// EnsureInsertPoint if they wish to subsequently generate code without first 2037 /// calling EmitBlock, EmitBranch, or EmitStmt. 2038 void EmitStmt(const Stmt *S); 2039 2040 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2041 /// necessarily require an insertion point or debug information; typically 2042 /// because the statement amounts to a jump or a container of other 2043 /// statements. 2044 /// 2045 /// \return True if the statement was handled. 2046 bool EmitSimpleStmt(const Stmt *S); 2047 2048 RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2049 AggValueSlot AVS = AggValueSlot::ignored()); 2050 RValue EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2051 bool GetLast = false, AggValueSlot AVS = 2052 AggValueSlot::ignored()); 2053 2054 /// EmitLabel - Emit the block for the given label. It is legal to call this 2055 /// function even if there is no current insertion point. 2056 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2057 2058 void EmitLabelStmt(const LabelStmt &S); 2059 void EmitAttributedStmt(const AttributedStmt &S); 2060 void EmitGotoStmt(const GotoStmt &S); 2061 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2062 void EmitIfStmt(const IfStmt &S); 2063 void EmitWhileStmt(const WhileStmt &S); 2064 void EmitDoStmt(const DoStmt &S); 2065 void EmitForStmt(const ForStmt &S); 2066 void EmitReturnStmt(const ReturnStmt &S); 2067 void EmitDeclStmt(const DeclStmt &S); 2068 void EmitBreakStmt(const BreakStmt &S); 2069 void EmitContinueStmt(const ContinueStmt &S); 2070 void EmitSwitchStmt(const SwitchStmt &S); 2071 void EmitDefaultStmt(const DefaultStmt &S); 2072 void EmitCaseStmt(const CaseStmt &S); 2073 void EmitCaseStmtRange(const CaseStmt &S); 2074 void EmitAsmStmt(const AsmStmt &S); 2075 2076 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2077 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2078 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2079 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2080 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2081 2082 llvm::Constant *getUnwindResumeFn(); 2083 llvm::Constant *getUnwindResumeOrRethrowFn(); 2084 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2085 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2086 2087 void EmitCXXTryStmt(const CXXTryStmt &S); 2088 void EmitCXXForRangeStmt(const CXXForRangeStmt &S); 2089 2090 //===--------------------------------------------------------------------===// 2091 // LValue Expression Emission 2092 //===--------------------------------------------------------------------===// 2093 2094 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 2095 RValue GetUndefRValue(QualType Ty); 2096 2097 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 2098 /// and issue an ErrorUnsupported style diagnostic (using the 2099 /// provided Name). 2100 RValue EmitUnsupportedRValue(const Expr *E, 2101 const char *Name); 2102 2103 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 2104 /// an ErrorUnsupported style diagnostic (using the provided Name). 2105 LValue EmitUnsupportedLValue(const Expr *E, 2106 const char *Name); 2107 2108 /// EmitLValue - Emit code to compute a designator that specifies the location 2109 /// of the expression. 2110 /// 2111 /// This can return one of two things: a simple address or a bitfield 2112 /// reference. In either case, the LLVM Value* in the LValue structure is 2113 /// guaranteed to be an LLVM pointer type. 2114 /// 2115 /// If this returns a bitfield reference, nothing about the pointee type of 2116 /// the LLVM value is known: For example, it may not be a pointer to an 2117 /// integer. 2118 /// 2119 /// If this returns a normal address, and if the lvalue's C type is fixed 2120 /// size, this method guarantees that the returned pointer type will point to 2121 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 2122 /// variable length type, this is not possible. 2123 /// 2124 LValue EmitLValue(const Expr *E); 2125 2126 /// \brief Same as EmitLValue but additionally we generate checking code to 2127 /// guard against undefined behavior. This is only suitable when we know 2128 /// that the address will be used to access the object. 2129 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 2130 2131 /// EmitToMemory - Change a scalar value from its value 2132 /// representation to its in-memory representation. 2133 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 2134 2135 /// EmitFromMemory - Change a scalar value from its memory 2136 /// representation to its value representation. 2137 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 2138 2139 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2140 /// care to appropriately convert from the memory representation to 2141 /// the LLVM value representation. 2142 llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 2143 unsigned Alignment, QualType Ty, 2144 llvm::MDNode *TBAAInfo = 0); 2145 2146 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2147 /// care to appropriately convert from the memory representation to 2148 /// the LLVM value representation. The l-value must be a simple 2149 /// l-value. 2150 llvm::Value *EmitLoadOfScalar(LValue lvalue); 2151 2152 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2153 /// care to appropriately convert from the memory representation to 2154 /// the LLVM value representation. 2155 void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 2156 bool Volatile, unsigned Alignment, QualType Ty, 2157 llvm::MDNode *TBAAInfo = 0, bool isInit=false); 2158 2159 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2160 /// care to appropriately convert from the memory representation to 2161 /// the LLVM value representation. The l-value must be a simple 2162 /// l-value. The isInit flag indicates whether this is an initialization. 2163 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 2164 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 2165 2166 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 2167 /// this method emits the address of the lvalue, then loads the result as an 2168 /// rvalue, returning the rvalue. 2169 RValue EmitLoadOfLValue(LValue V); 2170 RValue EmitLoadOfExtVectorElementLValue(LValue V); 2171 RValue EmitLoadOfBitfieldLValue(LValue LV); 2172 2173 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2174 /// lvalue, where both are guaranteed to the have the same type, and that type 2175 /// is 'Ty'. 2176 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false); 2177 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 2178 2179 /// EmitStoreThroughLValue - Store Src into Dst with same constraints as 2180 /// EmitStoreThroughLValue. 2181 /// 2182 /// \param Result [out] - If non-null, this will be set to a Value* for the 2183 /// bit-field contents after the store, appropriate for use as the result of 2184 /// an assignment to the bit-field. 2185 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2186 llvm::Value **Result=0); 2187 2188 /// Emit an l-value for an assignment (simple or compound) of complex type. 2189 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 2190 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 2191 2192 // Note: only available for agg return types 2193 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 2194 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 2195 // Note: only available for agg return types 2196 LValue EmitCallExprLValue(const CallExpr *E); 2197 // Note: only available for agg return types 2198 LValue EmitVAArgExprLValue(const VAArgExpr *E); 2199 LValue EmitDeclRefLValue(const DeclRefExpr *E); 2200 LValue EmitStringLiteralLValue(const StringLiteral *E); 2201 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 2202 LValue EmitPredefinedLValue(const PredefinedExpr *E); 2203 LValue EmitUnaryOpLValue(const UnaryOperator *E); 2204 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2205 bool Accessed = false); 2206 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 2207 LValue EmitMemberExpr(const MemberExpr *E); 2208 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 2209 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 2210 LValue EmitInitListLValue(const InitListExpr *E); 2211 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 2212 LValue EmitCastLValue(const CastExpr *E); 2213 LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E); 2214 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 2215 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 2216 2217 RValue EmitRValueForField(LValue LV, const FieldDecl *FD); 2218 2219 class ConstantEmission { 2220 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 2221 ConstantEmission(llvm::Constant *C, bool isReference) 2222 : ValueAndIsReference(C, isReference) {} 2223 public: 2224 ConstantEmission() {} 2225 static ConstantEmission forReference(llvm::Constant *C) { 2226 return ConstantEmission(C, true); 2227 } 2228 static ConstantEmission forValue(llvm::Constant *C) { 2229 return ConstantEmission(C, false); 2230 } 2231 2232 operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; } 2233 2234 bool isReference() const { return ValueAndIsReference.getInt(); } 2235 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 2236 assert(isReference()); 2237 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 2238 refExpr->getType()); 2239 } 2240 2241 llvm::Constant *getValue() const { 2242 assert(!isReference()); 2243 return ValueAndIsReference.getPointer(); 2244 } 2245 }; 2246 2247 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 2248 2249 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 2250 AggValueSlot slot = AggValueSlot::ignored()); 2251 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 2252 2253 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2254 const ObjCIvarDecl *Ivar); 2255 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 2256 2257 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 2258 /// if the Field is a reference, this will return the address of the reference 2259 /// and not the address of the value stored in the reference. 2260 LValue EmitLValueForFieldInitialization(LValue Base, 2261 const FieldDecl* Field); 2262 2263 LValue EmitLValueForIvar(QualType ObjectTy, 2264 llvm::Value* Base, const ObjCIvarDecl *Ivar, 2265 unsigned CVRQualifiers); 2266 2267 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 2268 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 2269 LValue EmitLambdaLValue(const LambdaExpr *E); 2270 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2271 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 2272 2273 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2274 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2275 LValue EmitStmtExprLValue(const StmtExpr *E); 2276 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2277 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2278 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 2279 2280 //===--------------------------------------------------------------------===// 2281 // Scalar Expression Emission 2282 //===--------------------------------------------------------------------===// 2283 2284 /// EmitCall - Generate a call of the given function, expecting the given 2285 /// result type, and using the given argument list which specifies both the 2286 /// LLVM arguments and the types they were derived from. 2287 /// 2288 /// \param TargetDecl - If given, the decl of the function in a direct call; 2289 /// used to set attributes on the call (noreturn, etc.). 2290 RValue EmitCall(const CGFunctionInfo &FnInfo, 2291 llvm::Value *Callee, 2292 ReturnValueSlot ReturnValue, 2293 const CallArgList &Args, 2294 const Decl *TargetDecl = 0, 2295 llvm::Instruction **callOrInvoke = 0); 2296 2297 RValue EmitCall(QualType FnType, llvm::Value *Callee, 2298 ReturnValueSlot ReturnValue, 2299 CallExpr::const_arg_iterator ArgBeg, 2300 CallExpr::const_arg_iterator ArgEnd, 2301 const Decl *TargetDecl = 0); 2302 RValue EmitCallExpr(const CallExpr *E, 2303 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2304 2305 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2306 const Twine &name = ""); 2307 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2308 ArrayRef<llvm::Value*> args, 2309 const Twine &name = ""); 2310 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2311 const Twine &name = ""); 2312 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2313 ArrayRef<llvm::Value*> args, 2314 const Twine &name = ""); 2315 2316 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2317 ArrayRef<llvm::Value *> Args, 2318 const Twine &Name = ""); 2319 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2320 const Twine &Name = ""); 2321 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2322 ArrayRef<llvm::Value*> args, 2323 const Twine &name = ""); 2324 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2325 const Twine &name = ""); 2326 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 2327 ArrayRef<llvm::Value*> args); 2328 2329 llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This, 2330 llvm::Type *Ty); 2331 llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type, 2332 llvm::Value *This, llvm::Type *Ty); 2333 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2334 NestedNameSpecifier *Qual, 2335 llvm::Type *Ty); 2336 2337 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2338 CXXDtorType Type, 2339 const CXXRecordDecl *RD); 2340 2341 RValue EmitCXXMemberCall(const CXXMethodDecl *MD, 2342 SourceLocation CallLoc, 2343 llvm::Value *Callee, 2344 ReturnValueSlot ReturnValue, 2345 llvm::Value *This, 2346 llvm::Value *ImplicitParam, 2347 QualType ImplicitParamTy, 2348 CallExpr::const_arg_iterator ArgBeg, 2349 CallExpr::const_arg_iterator ArgEnd); 2350 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2351 ReturnValueSlot ReturnValue); 2352 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2353 ReturnValueSlot ReturnValue); 2354 2355 llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E, 2356 const CXXMethodDecl *MD, 2357 llvm::Value *This); 2358 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2359 const CXXMethodDecl *MD, 2360 ReturnValueSlot ReturnValue); 2361 2362 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 2363 ReturnValueSlot ReturnValue); 2364 2365 2366 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2367 unsigned BuiltinID, const CallExpr *E); 2368 2369 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2370 2371 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2372 /// is unhandled by the current target. 2373 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2374 2375 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2376 llvm::Value *EmitNeonCall(llvm::Function *F, 2377 SmallVectorImpl<llvm::Value*> &O, 2378 const char *name, 2379 unsigned shift = 0, bool rightshift = false); 2380 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2381 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 2382 bool negateForRightShift); 2383 2384 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 2385 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2386 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2387 2388 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2389 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2390 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 2391 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 2392 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 2393 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 2394 const ObjCMethodDecl *MethodWithObjects); 2395 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2396 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2397 ReturnValueSlot Return = ReturnValueSlot()); 2398 2399 /// Retrieves the default cleanup kind for an ARC cleanup. 2400 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 2401 CleanupKind getARCCleanupKind() { 2402 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 2403 ? NormalAndEHCleanup : NormalCleanup; 2404 } 2405 2406 // ARC primitives. 2407 void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr); 2408 void EmitARCDestroyWeak(llvm::Value *addr); 2409 llvm::Value *EmitARCLoadWeak(llvm::Value *addr); 2410 llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr); 2411 llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr, 2412 bool ignored); 2413 void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src); 2414 void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src); 2415 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 2416 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 2417 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 2418 bool ignored); 2419 llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value, 2420 bool ignored); 2421 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 2422 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 2423 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 2424 void EmitARCDestroyStrong(llvm::Value *addr, bool precise); 2425 void EmitARCRelease(llvm::Value *value, bool precise); 2426 llvm::Value *EmitARCAutorelease(llvm::Value *value); 2427 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 2428 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 2429 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 2430 2431 std::pair<LValue,llvm::Value*> 2432 EmitARCStoreAutoreleasing(const BinaryOperator *e); 2433 std::pair<LValue,llvm::Value*> 2434 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 2435 2436 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 2437 2438 llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr); 2439 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 2440 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 2441 2442 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 2443 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 2444 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 2445 2446 static Destroyer destroyARCStrongImprecise; 2447 static Destroyer destroyARCStrongPrecise; 2448 static Destroyer destroyARCWeak; 2449 2450 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 2451 llvm::Value *EmitObjCAutoreleasePoolPush(); 2452 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 2453 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 2454 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 2455 2456 /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in 2457 /// expression. Will emit a temporary variable if E is not an LValue. 2458 RValue EmitReferenceBindingToExpr(const Expr* E, 2459 const NamedDecl *InitializedDecl); 2460 2461 //===--------------------------------------------------------------------===// 2462 // Expression Emission 2463 //===--------------------------------------------------------------------===// 2464 2465 // Expressions are broken into three classes: scalar, complex, aggregate. 2466 2467 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 2468 /// scalar type, returning the result. 2469 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 2470 2471 /// EmitScalarConversion - Emit a conversion from the specified type to the 2472 /// specified destination type, both of which are LLVM scalar types. 2473 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 2474 QualType DstTy); 2475 2476 /// EmitComplexToScalarConversion - Emit a conversion from the specified 2477 /// complex type to the specified destination type, where the destination type 2478 /// is an LLVM scalar type. 2479 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 2480 QualType DstTy); 2481 2482 2483 /// EmitAggExpr - Emit the computation of the specified expression 2484 /// of aggregate type. The result is computed into the given slot, 2485 /// which may be null to indicate that the value is not needed. 2486 void EmitAggExpr(const Expr *E, AggValueSlot AS); 2487 2488 /// EmitAggExprToLValue - Emit the computation of the specified expression of 2489 /// aggregate type into a temporary LValue. 2490 LValue EmitAggExprToLValue(const Expr *E); 2491 2492 /// EmitGCMemmoveCollectable - Emit special API for structs with object 2493 /// pointers. 2494 void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr, 2495 QualType Ty); 2496 2497 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2498 /// make sure it survives garbage collection until this point. 2499 void EmitExtendGCLifetime(llvm::Value *object); 2500 2501 /// EmitComplexExpr - Emit the computation of the specified expression of 2502 /// complex type, returning the result. 2503 ComplexPairTy EmitComplexExpr(const Expr *E, 2504 bool IgnoreReal = false, 2505 bool IgnoreImag = false); 2506 2507 /// EmitComplexExprIntoAddr - Emit the computation of the specified expression 2508 /// of complex type, storing into the specified Value*. 2509 void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr, 2510 bool DestIsVolatile); 2511 2512 /// StoreComplexToAddr - Store a complex number into the specified address. 2513 void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr, 2514 bool DestIsVolatile); 2515 /// LoadComplexFromAddr - Load a complex number from the specified address. 2516 ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile); 2517 2518 /// CreateStaticVarDecl - Create a zero-initialized LLVM global for 2519 /// a static local variable. 2520 llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D, 2521 const char *Separator, 2522 llvm::GlobalValue::LinkageTypes Linkage); 2523 2524 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2525 /// global variable that has already been created for it. If the initializer 2526 /// has a different type than GV does, this may free GV and return a different 2527 /// one. Otherwise it just returns GV. 2528 llvm::GlobalVariable * 2529 AddInitializerToStaticVarDecl(const VarDecl &D, 2530 llvm::GlobalVariable *GV); 2531 2532 2533 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2534 /// variable with global storage. 2535 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 2536 bool PerformInit); 2537 2538 /// Call atexit() with a function that passes the given argument to 2539 /// the given function. 2540 void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr); 2541 2542 /// Emit code in this function to perform a guarded variable 2543 /// initialization. Guarded initializations are used when it's not 2544 /// possible to prove that an initialization will be done exactly 2545 /// once, e.g. with a static local variable or a static data member 2546 /// of a class template. 2547 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 2548 bool PerformInit); 2549 2550 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2551 /// variables. 2552 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2553 llvm::Constant **Decls, 2554 unsigned NumDecls); 2555 2556 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 2557 /// variables. 2558 void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn, 2559 const std::vector<std::pair<llvm::WeakVH, 2560 llvm::Constant*> > &DtorsAndObjects); 2561 2562 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2563 const VarDecl *D, 2564 llvm::GlobalVariable *Addr, 2565 bool PerformInit); 2566 2567 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2568 2569 void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, 2570 const Expr *Exp); 2571 2572 void enterFullExpression(const ExprWithCleanups *E) { 2573 if (E->getNumObjects() == 0) return; 2574 enterNonTrivialFullExpression(E); 2575 } 2576 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 2577 2578 void EmitCXXThrowExpr(const CXXThrowExpr *E); 2579 2580 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 2581 2582 RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0); 2583 2584 //===--------------------------------------------------------------------===// 2585 // Annotations Emission 2586 //===--------------------------------------------------------------------===// 2587 2588 /// Emit an annotation call (intrinsic or builtin). 2589 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 2590 llvm::Value *AnnotatedVal, 2591 StringRef AnnotationStr, 2592 SourceLocation Location); 2593 2594 /// Emit local annotations for the local variable V, declared by D. 2595 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 2596 2597 /// Emit field annotations for the given field & value. Returns the 2598 /// annotation result. 2599 llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V); 2600 2601 //===--------------------------------------------------------------------===// 2602 // Internal Helpers 2603 //===--------------------------------------------------------------------===// 2604 2605 /// ContainsLabel - Return true if the statement contains a label in it. If 2606 /// this statement is not executed normally, it not containing a label means 2607 /// that we can just remove the code. 2608 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 2609 2610 /// containsBreak - Return true if the statement contains a break out of it. 2611 /// If the statement (recursively) contains a switch or loop with a break 2612 /// inside of it, this is fine. 2613 static bool containsBreak(const Stmt *S); 2614 2615 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2616 /// to a constant, or if it does but contains a label, return false. If it 2617 /// constant folds return true and set the boolean result in Result. 2618 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 2619 2620 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2621 /// to a constant, or if it does but contains a label, return false. If it 2622 /// constant folds return true and set the folded value. 2623 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result); 2624 2625 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 2626 /// if statement) to the specified blocks. Based on the condition, this might 2627 /// try to simplify the codegen of the conditional based on the branch. 2628 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 2629 llvm::BasicBlock *FalseBlock); 2630 2631 /// \brief Emit a description of a type in a format suitable for passing to 2632 /// a runtime sanitizer handler. 2633 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 2634 2635 /// \brief Convert a value into a format suitable for passing to a runtime 2636 /// sanitizer handler. 2637 llvm::Value *EmitCheckValue(llvm::Value *V); 2638 2639 /// \brief Emit a description of a source location in a format suitable for 2640 /// passing to a runtime sanitizer handler. 2641 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 2642 2643 /// \brief Specify under what conditions this check can be recovered 2644 enum CheckRecoverableKind { 2645 /// Always terminate program execution if this check fails 2646 CRK_Unrecoverable, 2647 /// Check supports recovering, allows user to specify which 2648 CRK_Recoverable, 2649 /// Runtime conditionally aborts, always need to support recovery. 2650 CRK_AlwaysRecoverable 2651 }; 2652 2653 /// \brief Create a basic block that will call a handler function in a 2654 /// sanitizer runtime with the provided arguments, and create a conditional 2655 /// branch to it. 2656 void EmitCheck(llvm::Value *Checked, StringRef CheckName, 2657 ArrayRef<llvm::Constant *> StaticArgs, 2658 ArrayRef<llvm::Value *> DynamicArgs, 2659 CheckRecoverableKind Recoverable); 2660 2661 /// \brief Create a basic block that will call the trap intrinsic, and emit a 2662 /// conditional branch to it, for the -ftrapv checks. 2663 void EmitTrapCheck(llvm::Value *Checked); 2664 2665 /// EmitCallArg - Emit a single call argument. 2666 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 2667 2668 /// EmitDelegateCallArg - We are performing a delegate call; that 2669 /// is, the current function is delegating to another one. Produce 2670 /// a r-value suitable for passing the given parameter. 2671 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param); 2672 2673 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 2674 /// point operation, expressed as the maximum relative error in ulp. 2675 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 2676 2677private: 2678 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 2679 void EmitReturnOfRValue(RValue RV, QualType Ty); 2680 2681 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 2682 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 2683 /// 2684 /// \param AI - The first function argument of the expansion. 2685 /// \return The argument following the last expanded function 2686 /// argument. 2687 llvm::Function::arg_iterator 2688 ExpandTypeFromArgs(QualType Ty, LValue Dst, 2689 llvm::Function::arg_iterator AI); 2690 2691 /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg 2692 /// Ty, into individual arguments on the provided vector \arg Args. See 2693 /// ABIArgInfo::Expand. 2694 void ExpandTypeToArgs(QualType Ty, RValue Src, 2695 SmallVector<llvm::Value*, 16> &Args, 2696 llvm::FunctionType *IRFuncTy); 2697 2698 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 2699 const Expr *InputExpr, std::string &ConstraintStr); 2700 2701 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 2702 LValue InputValue, QualType InputType, 2703 std::string &ConstraintStr); 2704 2705 /// EmitCallArgs - Emit call arguments for a function. 2706 /// The CallArgTypeInfo parameter is used for iterating over the known 2707 /// argument types of the function being called. 2708 template<typename T> 2709 void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo, 2710 CallExpr::const_arg_iterator ArgBeg, 2711 CallExpr::const_arg_iterator ArgEnd) { 2712 CallExpr::const_arg_iterator Arg = ArgBeg; 2713 2714 // First, use the argument types that the type info knows about 2715 if (CallArgTypeInfo) { 2716 for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(), 2717 E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) { 2718 assert(Arg != ArgEnd && "Running over edge of argument list!"); 2719 QualType ArgType = *I; 2720#ifndef NDEBUG 2721 QualType ActualArgType = Arg->getType(); 2722 if (ArgType->isPointerType() && ActualArgType->isPointerType()) { 2723 QualType ActualBaseType = 2724 ActualArgType->getAs<PointerType>()->getPointeeType(); 2725 QualType ArgBaseType = 2726 ArgType->getAs<PointerType>()->getPointeeType(); 2727 if (ArgBaseType->isVariableArrayType()) { 2728 if (const VariableArrayType *VAT = 2729 getContext().getAsVariableArrayType(ActualBaseType)) { 2730 if (!VAT->getSizeExpr()) 2731 ActualArgType = ArgType; 2732 } 2733 } 2734 } 2735 assert(getContext().getCanonicalType(ArgType.getNonReferenceType()). 2736 getTypePtr() == 2737 getContext().getCanonicalType(ActualArgType).getTypePtr() && 2738 "type mismatch in call argument!"); 2739#endif 2740 EmitCallArg(Args, *Arg, ArgType); 2741 } 2742 2743 // Either we've emitted all the call args, or we have a call to a 2744 // variadic function. 2745 assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) && 2746 "Extra arguments in non-variadic function!"); 2747 2748 } 2749 2750 // If we still have any arguments, emit them using the type of the argument. 2751 for (; Arg != ArgEnd; ++Arg) 2752 EmitCallArg(Args, *Arg, Arg->getType()); 2753 } 2754 2755 const TargetCodeGenInfo &getTargetHooks() const { 2756 return CGM.getTargetCodeGenInfo(); 2757 } 2758 2759 void EmitDeclMetadata(); 2760 2761 CodeGenModule::ByrefHelpers * 2762 buildByrefHelpers(llvm::StructType &byrefType, 2763 const AutoVarEmission &emission); 2764 2765 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 2766 2767 /// GetPointeeAlignment - Given an expression with a pointer type, emit the 2768 /// value and compute our best estimate of the alignment of the pointee. 2769 std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr); 2770}; 2771 2772/// Helper class with most of the code for saving a value for a 2773/// conditional expression cleanup. 2774struct DominatingLLVMValue { 2775 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 2776 2777 /// Answer whether the given value needs extra work to be saved. 2778 static bool needsSaving(llvm::Value *value) { 2779 // If it's not an instruction, we don't need to save. 2780 if (!isa<llvm::Instruction>(value)) return false; 2781 2782 // If it's an instruction in the entry block, we don't need to save. 2783 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 2784 return (block != &block->getParent()->getEntryBlock()); 2785 } 2786 2787 /// Try to save the given value. 2788 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 2789 if (!needsSaving(value)) return saved_type(value, false); 2790 2791 // Otherwise we need an alloca. 2792 llvm::Value *alloca = 2793 CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save"); 2794 CGF.Builder.CreateStore(value, alloca); 2795 2796 return saved_type(alloca, true); 2797 } 2798 2799 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 2800 if (!value.getInt()) return value.getPointer(); 2801 return CGF.Builder.CreateLoad(value.getPointer()); 2802 } 2803}; 2804 2805/// A partial specialization of DominatingValue for llvm::Values that 2806/// might be llvm::Instructions. 2807template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 2808 typedef T *type; 2809 static type restore(CodeGenFunction &CGF, saved_type value) { 2810 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 2811 } 2812}; 2813 2814/// A specialization of DominatingValue for RValue. 2815template <> struct DominatingValue<RValue> { 2816 typedef RValue type; 2817 class saved_type { 2818 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 2819 AggregateAddress, ComplexAddress }; 2820 2821 llvm::Value *Value; 2822 Kind K; 2823 saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {} 2824 2825 public: 2826 static bool needsSaving(RValue value); 2827 static saved_type save(CodeGenFunction &CGF, RValue value); 2828 RValue restore(CodeGenFunction &CGF); 2829 2830 // implementations in CGExprCXX.cpp 2831 }; 2832 2833 static bool needsSaving(type value) { 2834 return saved_type::needsSaving(value); 2835 } 2836 static saved_type save(CodeGenFunction &CGF, type value) { 2837 return saved_type::save(CGF, value); 2838 } 2839 static type restore(CodeGenFunction &CGF, saved_type value) { 2840 return value.restore(CGF); 2841 } 2842}; 2843 2844} // end namespace CodeGen 2845} // end namespace clang 2846 2847#endif 2848