CodeGenFunction.h revision 4a68c7bc86bcaf44f6aee5a470c743b47c11716e
1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the internal per-function state used for llvm translation.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15#define CLANG_CODEGEN_CODEGENFUNCTION_H
16
17#include "CGBuilder.h"
18#include "CGDebugInfo.h"
19#include "CGValue.h"
20#include "CodeGenModule.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/Type.h"
25#include "clang/Basic/ABI.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Frontend/CodeGenOptions.h"
28#include "llvm/ADT/ArrayRef.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ValueHandle.h"
33
34namespace llvm {
35  class BasicBlock;
36  class LLVMContext;
37  class MDNode;
38  class Module;
39  class SwitchInst;
40  class Twine;
41  class Value;
42  class CallSite;
43}
44
45namespace clang {
46  class ASTContext;
47  class BlockDecl;
48  class CXXDestructorDecl;
49  class CXXForRangeStmt;
50  class CXXTryStmt;
51  class Decl;
52  class LabelDecl;
53  class EnumConstantDecl;
54  class FunctionDecl;
55  class FunctionProtoType;
56  class LabelStmt;
57  class ObjCContainerDecl;
58  class ObjCInterfaceDecl;
59  class ObjCIvarDecl;
60  class ObjCMethodDecl;
61  class ObjCImplementationDecl;
62  class ObjCPropertyImplDecl;
63  class TargetInfo;
64  class TargetCodeGenInfo;
65  class VarDecl;
66  class ObjCForCollectionStmt;
67  class ObjCAtTryStmt;
68  class ObjCAtThrowStmt;
69  class ObjCAtSynchronizedStmt;
70  class ObjCAutoreleasePoolStmt;
71
72namespace CodeGen {
73  class CodeGenTypes;
74  class CGFunctionInfo;
75  class CGRecordLayout;
76  class CGBlockInfo;
77  class CGCXXABI;
78  class BlockFlags;
79  class BlockFieldFlags;
80
81/// A branch fixup.  These are required when emitting a goto to a
82/// label which hasn't been emitted yet.  The goto is optimistically
83/// emitted as a branch to the basic block for the label, and (if it
84/// occurs in a scope with non-trivial cleanups) a fixup is added to
85/// the innermost cleanup.  When a (normal) cleanup is popped, any
86/// unresolved fixups in that scope are threaded through the cleanup.
87struct BranchFixup {
88  /// The block containing the terminator which needs to be modified
89  /// into a switch if this fixup is resolved into the current scope.
90  /// If null, LatestBranch points directly to the destination.
91  llvm::BasicBlock *OptimisticBranchBlock;
92
93  /// The ultimate destination of the branch.
94  ///
95  /// This can be set to null to indicate that this fixup was
96  /// successfully resolved.
97  llvm::BasicBlock *Destination;
98
99  /// The destination index value.
100  unsigned DestinationIndex;
101
102  /// The initial branch of the fixup.
103  llvm::BranchInst *InitialBranch;
104};
105
106template <class T> struct InvariantValue {
107  typedef T type;
108  typedef T saved_type;
109  static bool needsSaving(type value) { return false; }
110  static saved_type save(CodeGenFunction &CGF, type value) { return value; }
111  static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
112};
113
114/// A metaprogramming class for ensuring that a value will dominate an
115/// arbitrary position in a function.
116template <class T> struct DominatingValue : InvariantValue<T> {};
117
118template <class T, bool mightBeInstruction =
119            llvm::is_base_of<llvm::Value, T>::value &&
120            !llvm::is_base_of<llvm::Constant, T>::value &&
121            !llvm::is_base_of<llvm::BasicBlock, T>::value>
122struct DominatingPointer;
123template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
124// template <class T> struct DominatingPointer<T,true> at end of file
125
126template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
127
128enum CleanupKind {
129  EHCleanup = 0x1,
130  NormalCleanup = 0x2,
131  NormalAndEHCleanup = EHCleanup | NormalCleanup,
132
133  InactiveCleanup = 0x4,
134  InactiveEHCleanup = EHCleanup | InactiveCleanup,
135  InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
136  InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
137};
138
139/// A stack of scopes which respond to exceptions, including cleanups
140/// and catch blocks.
141class EHScopeStack {
142public:
143  /// A saved depth on the scope stack.  This is necessary because
144  /// pushing scopes onto the stack invalidates iterators.
145  class stable_iterator {
146    friend class EHScopeStack;
147
148    /// Offset from StartOfData to EndOfBuffer.
149    ptrdiff_t Size;
150
151    stable_iterator(ptrdiff_t Size) : Size(Size) {}
152
153  public:
154    static stable_iterator invalid() { return stable_iterator(-1); }
155    stable_iterator() : Size(-1) {}
156
157    bool isValid() const { return Size >= 0; }
158
159    /// Returns true if this scope encloses I.
160    /// Returns false if I is invalid.
161    /// This scope must be valid.
162    bool encloses(stable_iterator I) const { return Size <= I.Size; }
163
164    /// Returns true if this scope strictly encloses I: that is,
165    /// if it encloses I and is not I.
166    /// Returns false is I is invalid.
167    /// This scope must be valid.
168    bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
169
170    friend bool operator==(stable_iterator A, stable_iterator B) {
171      return A.Size == B.Size;
172    }
173    friend bool operator!=(stable_iterator A, stable_iterator B) {
174      return A.Size != B.Size;
175    }
176  };
177
178  /// Information for lazily generating a cleanup.  Subclasses must be
179  /// POD-like: cleanups will not be destructed, and they will be
180  /// allocated on the cleanup stack and freely copied and moved
181  /// around.
182  ///
183  /// Cleanup implementations should generally be declared in an
184  /// anonymous namespace.
185  class Cleanup {
186    // Anchor the construction vtable.
187    virtual void anchor();
188  public:
189    /// Generation flags.
190    class Flags {
191      enum {
192        F_IsForEH             = 0x1,
193        F_IsNormalCleanupKind = 0x2,
194        F_IsEHCleanupKind     = 0x4
195      };
196      unsigned flags;
197
198    public:
199      Flags() : flags(0) {}
200
201      /// isForEH - true if the current emission is for an EH cleanup.
202      bool isForEHCleanup() const { return flags & F_IsForEH; }
203      bool isForNormalCleanup() const { return !isForEHCleanup(); }
204      void setIsForEHCleanup() { flags |= F_IsForEH; }
205
206      bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; }
207      void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; }
208
209      /// isEHCleanupKind - true if the cleanup was pushed as an EH
210      /// cleanup.
211      bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; }
212      void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; }
213    };
214
215    // Provide a virtual destructor to suppress a very common warning
216    // that unfortunately cannot be suppressed without this.  Cleanups
217    // should not rely on this destructor ever being called.
218    virtual ~Cleanup() {}
219
220    /// Emit the cleanup.  For normal cleanups, this is run in the
221    /// same EH context as when the cleanup was pushed, i.e. the
222    /// immediately-enclosing context of the cleanup scope.  For
223    /// EH cleanups, this is run in a terminate context.
224    ///
225    // \param flags cleanup kind.
226    virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0;
227  };
228
229  /// ConditionalCleanupN stores the saved form of its N parameters,
230  /// then restores them and performs the cleanup.
231  template <class T, class A0>
232  class ConditionalCleanup1 : public Cleanup {
233    typedef typename DominatingValue<A0>::saved_type A0_saved;
234    A0_saved a0_saved;
235
236    void Emit(CodeGenFunction &CGF, Flags flags) {
237      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
238      T(a0).Emit(CGF, flags);
239    }
240
241  public:
242    ConditionalCleanup1(A0_saved a0)
243      : a0_saved(a0) {}
244  };
245
246  template <class T, class A0, class A1>
247  class ConditionalCleanup2 : public Cleanup {
248    typedef typename DominatingValue<A0>::saved_type A0_saved;
249    typedef typename DominatingValue<A1>::saved_type A1_saved;
250    A0_saved a0_saved;
251    A1_saved a1_saved;
252
253    void Emit(CodeGenFunction &CGF, Flags flags) {
254      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
255      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
256      T(a0, a1).Emit(CGF, flags);
257    }
258
259  public:
260    ConditionalCleanup2(A0_saved a0, A1_saved a1)
261      : a0_saved(a0), a1_saved(a1) {}
262  };
263
264  template <class T, class A0, class A1, class A2>
265  class ConditionalCleanup3 : public Cleanup {
266    typedef typename DominatingValue<A0>::saved_type A0_saved;
267    typedef typename DominatingValue<A1>::saved_type A1_saved;
268    typedef typename DominatingValue<A2>::saved_type A2_saved;
269    A0_saved a0_saved;
270    A1_saved a1_saved;
271    A2_saved a2_saved;
272
273    void Emit(CodeGenFunction &CGF, Flags flags) {
274      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
275      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
276      A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
277      T(a0, a1, a2).Emit(CGF, flags);
278    }
279
280  public:
281    ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2)
282      : a0_saved(a0), a1_saved(a1), a2_saved(a2) {}
283  };
284
285  template <class T, class A0, class A1, class A2, class A3>
286  class ConditionalCleanup4 : public Cleanup {
287    typedef typename DominatingValue<A0>::saved_type A0_saved;
288    typedef typename DominatingValue<A1>::saved_type A1_saved;
289    typedef typename DominatingValue<A2>::saved_type A2_saved;
290    typedef typename DominatingValue<A3>::saved_type A3_saved;
291    A0_saved a0_saved;
292    A1_saved a1_saved;
293    A2_saved a2_saved;
294    A3_saved a3_saved;
295
296    void Emit(CodeGenFunction &CGF, Flags flags) {
297      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
298      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
299      A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
300      A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved);
301      T(a0, a1, a2, a3).Emit(CGF, flags);
302    }
303
304  public:
305    ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3)
306      : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {}
307  };
308
309private:
310  // The implementation for this class is in CGException.h and
311  // CGException.cpp; the definition is here because it's used as a
312  // member of CodeGenFunction.
313
314  /// The start of the scope-stack buffer, i.e. the allocated pointer
315  /// for the buffer.  All of these pointers are either simultaneously
316  /// null or simultaneously valid.
317  char *StartOfBuffer;
318
319  /// The end of the buffer.
320  char *EndOfBuffer;
321
322  /// The first valid entry in the buffer.
323  char *StartOfData;
324
325  /// The innermost normal cleanup on the stack.
326  stable_iterator InnermostNormalCleanup;
327
328  /// The innermost EH scope on the stack.
329  stable_iterator InnermostEHScope;
330
331  /// The current set of branch fixups.  A branch fixup is a jump to
332  /// an as-yet unemitted label, i.e. a label for which we don't yet
333  /// know the EH stack depth.  Whenever we pop a cleanup, we have
334  /// to thread all the current branch fixups through it.
335  ///
336  /// Fixups are recorded as the Use of the respective branch or
337  /// switch statement.  The use points to the final destination.
338  /// When popping out of a cleanup, these uses are threaded through
339  /// the cleanup and adjusted to point to the new cleanup.
340  ///
341  /// Note that branches are allowed to jump into protected scopes
342  /// in certain situations;  e.g. the following code is legal:
343  ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
344  ///     goto foo;
345  ///     A a;
346  ///    foo:
347  ///     bar();
348  SmallVector<BranchFixup, 8> BranchFixups;
349
350  char *allocate(size_t Size);
351
352  void *pushCleanup(CleanupKind K, size_t DataSize);
353
354public:
355  EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
356                   InnermostNormalCleanup(stable_end()),
357                   InnermostEHScope(stable_end()) {}
358  ~EHScopeStack() { delete[] StartOfBuffer; }
359
360  // Variadic templates would make this not terrible.
361
362  /// Push a lazily-created cleanup on the stack.
363  template <class T>
364  void pushCleanup(CleanupKind Kind) {
365    void *Buffer = pushCleanup(Kind, sizeof(T));
366    Cleanup *Obj = new(Buffer) T();
367    (void) Obj;
368  }
369
370  /// Push a lazily-created cleanup on the stack.
371  template <class T, class A0>
372  void pushCleanup(CleanupKind Kind, A0 a0) {
373    void *Buffer = pushCleanup(Kind, sizeof(T));
374    Cleanup *Obj = new(Buffer) T(a0);
375    (void) Obj;
376  }
377
378  /// Push a lazily-created cleanup on the stack.
379  template <class T, class A0, class A1>
380  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
381    void *Buffer = pushCleanup(Kind, sizeof(T));
382    Cleanup *Obj = new(Buffer) T(a0, a1);
383    (void) Obj;
384  }
385
386  /// Push a lazily-created cleanup on the stack.
387  template <class T, class A0, class A1, class A2>
388  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
389    void *Buffer = pushCleanup(Kind, sizeof(T));
390    Cleanup *Obj = new(Buffer) T(a0, a1, a2);
391    (void) Obj;
392  }
393
394  /// Push a lazily-created cleanup on the stack.
395  template <class T, class A0, class A1, class A2, class A3>
396  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
397    void *Buffer = pushCleanup(Kind, sizeof(T));
398    Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
399    (void) Obj;
400  }
401
402  /// Push a lazily-created cleanup on the stack.
403  template <class T, class A0, class A1, class A2, class A3, class A4>
404  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
405    void *Buffer = pushCleanup(Kind, sizeof(T));
406    Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
407    (void) Obj;
408  }
409
410  // Feel free to add more variants of the following:
411
412  /// Push a cleanup with non-constant storage requirements on the
413  /// stack.  The cleanup type must provide an additional static method:
414  ///   static size_t getExtraSize(size_t);
415  /// The argument to this method will be the value N, which will also
416  /// be passed as the first argument to the constructor.
417  ///
418  /// The data stored in the extra storage must obey the same
419  /// restrictions as normal cleanup member data.
420  ///
421  /// The pointer returned from this method is valid until the cleanup
422  /// stack is modified.
423  template <class T, class A0, class A1, class A2>
424  T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
425    void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
426    return new (Buffer) T(N, a0, a1, a2);
427  }
428
429  /// Pops a cleanup scope off the stack.  This is private to CGCleanup.cpp.
430  void popCleanup();
431
432  /// Push a set of catch handlers on the stack.  The catch is
433  /// uninitialized and will need to have the given number of handlers
434  /// set on it.
435  class EHCatchScope *pushCatch(unsigned NumHandlers);
436
437  /// Pops a catch scope off the stack.  This is private to CGException.cpp.
438  void popCatch();
439
440  /// Push an exceptions filter on the stack.
441  class EHFilterScope *pushFilter(unsigned NumFilters);
442
443  /// Pops an exceptions filter off the stack.
444  void popFilter();
445
446  /// Push a terminate handler on the stack.
447  void pushTerminate();
448
449  /// Pops a terminate handler off the stack.
450  void popTerminate();
451
452  /// Determines whether the exception-scopes stack is empty.
453  bool empty() const { return StartOfData == EndOfBuffer; }
454
455  bool requiresLandingPad() const {
456    return InnermostEHScope != stable_end();
457  }
458
459  /// Determines whether there are any normal cleanups on the stack.
460  bool hasNormalCleanups() const {
461    return InnermostNormalCleanup != stable_end();
462  }
463
464  /// Returns the innermost normal cleanup on the stack, or
465  /// stable_end() if there are no normal cleanups.
466  stable_iterator getInnermostNormalCleanup() const {
467    return InnermostNormalCleanup;
468  }
469  stable_iterator getInnermostActiveNormalCleanup() const;
470
471  stable_iterator getInnermostEHScope() const {
472    return InnermostEHScope;
473  }
474
475  stable_iterator getInnermostActiveEHScope() const;
476
477  /// An unstable reference to a scope-stack depth.  Invalidated by
478  /// pushes but not pops.
479  class iterator;
480
481  /// Returns an iterator pointing to the innermost EH scope.
482  iterator begin() const;
483
484  /// Returns an iterator pointing to the outermost EH scope.
485  iterator end() const;
486
487  /// Create a stable reference to the top of the EH stack.  The
488  /// returned reference is valid until that scope is popped off the
489  /// stack.
490  stable_iterator stable_begin() const {
491    return stable_iterator(EndOfBuffer - StartOfData);
492  }
493
494  /// Create a stable reference to the bottom of the EH stack.
495  static stable_iterator stable_end() {
496    return stable_iterator(0);
497  }
498
499  /// Translates an iterator into a stable_iterator.
500  stable_iterator stabilize(iterator it) const;
501
502  /// Turn a stable reference to a scope depth into a unstable pointer
503  /// to the EH stack.
504  iterator find(stable_iterator save) const;
505
506  /// Removes the cleanup pointed to by the given stable_iterator.
507  void removeCleanup(stable_iterator save);
508
509  /// Add a branch fixup to the current cleanup scope.
510  BranchFixup &addBranchFixup() {
511    assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
512    BranchFixups.push_back(BranchFixup());
513    return BranchFixups.back();
514  }
515
516  unsigned getNumBranchFixups() const { return BranchFixups.size(); }
517  BranchFixup &getBranchFixup(unsigned I) {
518    assert(I < getNumBranchFixups());
519    return BranchFixups[I];
520  }
521
522  /// Pops lazily-removed fixups from the end of the list.  This
523  /// should only be called by procedures which have just popped a
524  /// cleanup or resolved one or more fixups.
525  void popNullFixups();
526
527  /// Clears the branch-fixups list.  This should only be called by
528  /// ResolveAllBranchFixups.
529  void clearFixups() { BranchFixups.clear(); }
530};
531
532/// CodeGenFunction - This class organizes the per-function state that is used
533/// while generating LLVM code.
534class CodeGenFunction : public CodeGenTypeCache {
535  CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
536  void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
537
538  friend class CGCXXABI;
539public:
540  /// A jump destination is an abstract label, branching to which may
541  /// require a jump out through normal cleanups.
542  struct JumpDest {
543    JumpDest() : Block(0), ScopeDepth(), Index(0) {}
544    JumpDest(llvm::BasicBlock *Block,
545             EHScopeStack::stable_iterator Depth,
546             unsigned Index)
547      : Block(Block), ScopeDepth(Depth), Index(Index) {}
548
549    bool isValid() const { return Block != 0; }
550    llvm::BasicBlock *getBlock() const { return Block; }
551    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
552    unsigned getDestIndex() const { return Index; }
553
554  private:
555    llvm::BasicBlock *Block;
556    EHScopeStack::stable_iterator ScopeDepth;
557    unsigned Index;
558  };
559
560  CodeGenModule &CGM;  // Per-module state.
561  const TargetInfo &Target;
562
563  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
564  CGBuilderTy Builder;
565
566  /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
567  /// This excludes BlockDecls.
568  const Decl *CurFuncDecl;
569  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
570  const Decl *CurCodeDecl;
571  const CGFunctionInfo *CurFnInfo;
572  QualType FnRetTy;
573  llvm::Function *CurFn;
574
575  /// CurGD - The GlobalDecl for the current function being compiled.
576  GlobalDecl CurGD;
577
578  /// PrologueCleanupDepth - The cleanup depth enclosing all the
579  /// cleanups associated with the parameters.
580  EHScopeStack::stable_iterator PrologueCleanupDepth;
581
582  /// ReturnBlock - Unified return block.
583  JumpDest ReturnBlock;
584
585  /// ReturnValue - The temporary alloca to hold the return value. This is null
586  /// iff the function has no return value.
587  llvm::Value *ReturnValue;
588
589  /// AllocaInsertPoint - This is an instruction in the entry block before which
590  /// we prefer to insert allocas.
591  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
592
593  /// BoundsChecking - Emit run-time bounds checks. Higher values mean
594  /// potentially higher performance penalties.
595  unsigned char BoundsChecking;
596
597  /// \brief Whether any type-checking sanitizers are enabled. If \c false,
598  /// calls to EmitTypeCheck can be skipped.
599  bool SanitizePerformTypeCheck;
600
601  /// \brief Sanitizer options to use for this function.
602  const SanitizerOptions *SanOpts;
603
604  /// In ARC, whether we should autorelease the return value.
605  bool AutoreleaseResult;
606
607  const CodeGen::CGBlockInfo *BlockInfo;
608  llvm::Value *BlockPointer;
609
610  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
611  FieldDecl *LambdaThisCaptureField;
612
613  /// \brief A mapping from NRVO variables to the flags used to indicate
614  /// when the NRVO has been applied to this variable.
615  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
616
617  EHScopeStack EHStack;
618
619  /// i32s containing the indexes of the cleanup destinations.
620  llvm::AllocaInst *NormalCleanupDest;
621
622  unsigned NextCleanupDestIndex;
623
624  /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
625  CGBlockInfo *FirstBlockInfo;
626
627  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
628  llvm::BasicBlock *EHResumeBlock;
629
630  /// The exception slot.  All landing pads write the current exception pointer
631  /// into this alloca.
632  llvm::Value *ExceptionSlot;
633
634  /// The selector slot.  Under the MandatoryCleanup model, all landing pads
635  /// write the current selector value into this alloca.
636  llvm::AllocaInst *EHSelectorSlot;
637
638  /// Emits a landing pad for the current EH stack.
639  llvm::BasicBlock *EmitLandingPad();
640
641  llvm::BasicBlock *getInvokeDestImpl();
642
643  template <class T>
644  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
645    return DominatingValue<T>::save(*this, value);
646  }
647
648public:
649  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
650  /// rethrows.
651  SmallVector<llvm::Value*, 8> ObjCEHValueStack;
652
653  /// A class controlling the emission of a finally block.
654  class FinallyInfo {
655    /// Where the catchall's edge through the cleanup should go.
656    JumpDest RethrowDest;
657
658    /// A function to call to enter the catch.
659    llvm::Constant *BeginCatchFn;
660
661    /// An i1 variable indicating whether or not the @finally is
662    /// running for an exception.
663    llvm::AllocaInst *ForEHVar;
664
665    /// An i8* variable into which the exception pointer to rethrow
666    /// has been saved.
667    llvm::AllocaInst *SavedExnVar;
668
669  public:
670    void enter(CodeGenFunction &CGF, const Stmt *Finally,
671               llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
672               llvm::Constant *rethrowFn);
673    void exit(CodeGenFunction &CGF);
674  };
675
676  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
677  /// current full-expression.  Safe against the possibility that
678  /// we're currently inside a conditionally-evaluated expression.
679  template <class T, class A0>
680  void pushFullExprCleanup(CleanupKind kind, A0 a0) {
681    // If we're not in a conditional branch, or if none of the
682    // arguments requires saving, then use the unconditional cleanup.
683    if (!isInConditionalBranch())
684      return EHStack.pushCleanup<T>(kind, a0);
685
686    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
687
688    typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
689    EHStack.pushCleanup<CleanupType>(kind, a0_saved);
690    initFullExprCleanup();
691  }
692
693  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
694  /// current full-expression.  Safe against the possibility that
695  /// we're currently inside a conditionally-evaluated expression.
696  template <class T, class A0, class A1>
697  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
698    // If we're not in a conditional branch, or if none of the
699    // arguments requires saving, then use the unconditional cleanup.
700    if (!isInConditionalBranch())
701      return EHStack.pushCleanup<T>(kind, a0, a1);
702
703    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
704    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
705
706    typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
707    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
708    initFullExprCleanup();
709  }
710
711  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
712  /// current full-expression.  Safe against the possibility that
713  /// we're currently inside a conditionally-evaluated expression.
714  template <class T, class A0, class A1, class A2>
715  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
716    // If we're not in a conditional branch, or if none of the
717    // arguments requires saving, then use the unconditional cleanup.
718    if (!isInConditionalBranch()) {
719      return EHStack.pushCleanup<T>(kind, a0, a1, a2);
720    }
721
722    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
723    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
724    typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
725
726    typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
727    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
728    initFullExprCleanup();
729  }
730
731  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
732  /// current full-expression.  Safe against the possibility that
733  /// we're currently inside a conditionally-evaluated expression.
734  template <class T, class A0, class A1, class A2, class A3>
735  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
736    // If we're not in a conditional branch, or if none of the
737    // arguments requires saving, then use the unconditional cleanup.
738    if (!isInConditionalBranch()) {
739      return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
740    }
741
742    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
743    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
744    typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
745    typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
746
747    typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
748    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
749                                     a2_saved, a3_saved);
750    initFullExprCleanup();
751  }
752
753  /// Set up the last cleaup that was pushed as a conditional
754  /// full-expression cleanup.
755  void initFullExprCleanup();
756
757  /// PushDestructorCleanup - Push a cleanup to call the
758  /// complete-object destructor of an object of the given type at the
759  /// given address.  Does nothing if T is not a C++ class type with a
760  /// non-trivial destructor.
761  void PushDestructorCleanup(QualType T, llvm::Value *Addr);
762
763  /// PushDestructorCleanup - Push a cleanup to call the
764  /// complete-object variant of the given destructor on the object at
765  /// the given address.
766  void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
767                             llvm::Value *Addr);
768
769  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
770  /// process all branch fixups.
771  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
772
773  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
774  /// The block cannot be reactivated.  Pops it if it's the top of the
775  /// stack.
776  ///
777  /// \param DominatingIP - An instruction which is known to
778  ///   dominate the current IP (if set) and which lies along
779  ///   all paths of execution between the current IP and the
780  ///   the point at which the cleanup comes into scope.
781  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
782                              llvm::Instruction *DominatingIP);
783
784  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
785  /// Cannot be used to resurrect a deactivated cleanup.
786  ///
787  /// \param DominatingIP - An instruction which is known to
788  ///   dominate the current IP (if set) and which lies along
789  ///   all paths of execution between the current IP and the
790  ///   the point at which the cleanup comes into scope.
791  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
792                            llvm::Instruction *DominatingIP);
793
794  /// \brief Enters a new scope for capturing cleanups, all of which
795  /// will be executed once the scope is exited.
796  class RunCleanupsScope {
797    EHScopeStack::stable_iterator CleanupStackDepth;
798    bool OldDidCallStackSave;
799  protected:
800    bool PerformCleanup;
801  private:
802
803    RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
804    void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
805
806  protected:
807    CodeGenFunction& CGF;
808
809  public:
810    /// \brief Enter a new cleanup scope.
811    explicit RunCleanupsScope(CodeGenFunction &CGF)
812      : PerformCleanup(true), CGF(CGF)
813    {
814      CleanupStackDepth = CGF.EHStack.stable_begin();
815      OldDidCallStackSave = CGF.DidCallStackSave;
816      CGF.DidCallStackSave = false;
817    }
818
819    /// \brief Exit this cleanup scope, emitting any accumulated
820    /// cleanups.
821    ~RunCleanupsScope() {
822      if (PerformCleanup) {
823        CGF.DidCallStackSave = OldDidCallStackSave;
824        CGF.PopCleanupBlocks(CleanupStackDepth);
825      }
826    }
827
828    /// \brief Determine whether this scope requires any cleanups.
829    bool requiresCleanups() const {
830      return CGF.EHStack.stable_begin() != CleanupStackDepth;
831    }
832
833    /// \brief Force the emission of cleanups now, instead of waiting
834    /// until this object is destroyed.
835    void ForceCleanup() {
836      assert(PerformCleanup && "Already forced cleanup");
837      CGF.DidCallStackSave = OldDidCallStackSave;
838      CGF.PopCleanupBlocks(CleanupStackDepth);
839      PerformCleanup = false;
840    }
841  };
842
843  class LexicalScope: protected RunCleanupsScope {
844    SourceRange Range;
845
846    LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION;
847    void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION;
848
849  public:
850    /// \brief Enter a new cleanup scope.
851    explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
852      : RunCleanupsScope(CGF), Range(Range) {
853      if (CGDebugInfo *DI = CGF.getDebugInfo())
854        DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
855    }
856
857    /// \brief Exit this cleanup scope, emitting any accumulated
858    /// cleanups.
859    ~LexicalScope() {
860      if (PerformCleanup) endLexicalScope();
861    }
862
863    /// \brief Force the emission of cleanups now, instead of waiting
864    /// until this object is destroyed.
865    void ForceCleanup() {
866      RunCleanupsScope::ForceCleanup();
867      endLexicalScope();
868    }
869
870  private:
871    void endLexicalScope() {
872      if (CGDebugInfo *DI = CGF.getDebugInfo())
873        DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
874    }
875  };
876
877
878  /// PopCleanupBlocks - Takes the old cleanup stack size and emits
879  /// the cleanup blocks that have been added.
880  void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
881
882  void ResolveBranchFixups(llvm::BasicBlock *Target);
883
884  /// The given basic block lies in the current EH scope, but may be a
885  /// target of a potentially scope-crossing jump; get a stable handle
886  /// to which we can perform this jump later.
887  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
888    return JumpDest(Target,
889                    EHStack.getInnermostNormalCleanup(),
890                    NextCleanupDestIndex++);
891  }
892
893  /// The given basic block lies in the current EH scope, but may be a
894  /// target of a potentially scope-crossing jump; get a stable handle
895  /// to which we can perform this jump later.
896  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
897    return getJumpDestInCurrentScope(createBasicBlock(Name));
898  }
899
900  /// EmitBranchThroughCleanup - Emit a branch from the current insert
901  /// block through the normal cleanup handling code (if any) and then
902  /// on to \arg Dest.
903  void EmitBranchThroughCleanup(JumpDest Dest);
904
905  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
906  /// specified destination obviously has no cleanups to run.  'false' is always
907  /// a conservatively correct answer for this method.
908  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
909
910  /// popCatchScope - Pops the catch scope at the top of the EHScope
911  /// stack, emitting any required code (other than the catch handlers
912  /// themselves).
913  void popCatchScope();
914
915  llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
916  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
917
918  /// An object to manage conditionally-evaluated expressions.
919  class ConditionalEvaluation {
920    llvm::BasicBlock *StartBB;
921
922  public:
923    ConditionalEvaluation(CodeGenFunction &CGF)
924      : StartBB(CGF.Builder.GetInsertBlock()) {}
925
926    void begin(CodeGenFunction &CGF) {
927      assert(CGF.OutermostConditional != this);
928      if (!CGF.OutermostConditional)
929        CGF.OutermostConditional = this;
930    }
931
932    void end(CodeGenFunction &CGF) {
933      assert(CGF.OutermostConditional != 0);
934      if (CGF.OutermostConditional == this)
935        CGF.OutermostConditional = 0;
936    }
937
938    /// Returns a block which will be executed prior to each
939    /// evaluation of the conditional code.
940    llvm::BasicBlock *getStartingBlock() const {
941      return StartBB;
942    }
943  };
944
945  /// isInConditionalBranch - Return true if we're currently emitting
946  /// one branch or the other of a conditional expression.
947  bool isInConditionalBranch() const { return OutermostConditional != 0; }
948
949  void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
950    assert(isInConditionalBranch());
951    llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
952    new llvm::StoreInst(value, addr, &block->back());
953  }
954
955  /// An RAII object to record that we're evaluating a statement
956  /// expression.
957  class StmtExprEvaluation {
958    CodeGenFunction &CGF;
959
960    /// We have to save the outermost conditional: cleanups in a
961    /// statement expression aren't conditional just because the
962    /// StmtExpr is.
963    ConditionalEvaluation *SavedOutermostConditional;
964
965  public:
966    StmtExprEvaluation(CodeGenFunction &CGF)
967      : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
968      CGF.OutermostConditional = 0;
969    }
970
971    ~StmtExprEvaluation() {
972      CGF.OutermostConditional = SavedOutermostConditional;
973      CGF.EnsureInsertPoint();
974    }
975  };
976
977  /// An object which temporarily prevents a value from being
978  /// destroyed by aggressive peephole optimizations that assume that
979  /// all uses of a value have been realized in the IR.
980  class PeepholeProtection {
981    llvm::Instruction *Inst;
982    friend class CodeGenFunction;
983
984  public:
985    PeepholeProtection() : Inst(0) {}
986  };
987
988  /// A non-RAII class containing all the information about a bound
989  /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
990  /// this which makes individual mappings very simple; using this
991  /// class directly is useful when you have a variable number of
992  /// opaque values or don't want the RAII functionality for some
993  /// reason.
994  class OpaqueValueMappingData {
995    const OpaqueValueExpr *OpaqueValue;
996    bool BoundLValue;
997    CodeGenFunction::PeepholeProtection Protection;
998
999    OpaqueValueMappingData(const OpaqueValueExpr *ov,
1000                           bool boundLValue)
1001      : OpaqueValue(ov), BoundLValue(boundLValue) {}
1002  public:
1003    OpaqueValueMappingData() : OpaqueValue(0) {}
1004
1005    static bool shouldBindAsLValue(const Expr *expr) {
1006      // gl-values should be bound as l-values for obvious reasons.
1007      // Records should be bound as l-values because IR generation
1008      // always keeps them in memory.  Expressions of function type
1009      // act exactly like l-values but are formally required to be
1010      // r-values in C.
1011      return expr->isGLValue() ||
1012             expr->getType()->isRecordType() ||
1013             expr->getType()->isFunctionType();
1014    }
1015
1016    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1017                                       const OpaqueValueExpr *ov,
1018                                       const Expr *e) {
1019      if (shouldBindAsLValue(ov))
1020        return bind(CGF, ov, CGF.EmitLValue(e));
1021      return bind(CGF, ov, CGF.EmitAnyExpr(e));
1022    }
1023
1024    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1025                                       const OpaqueValueExpr *ov,
1026                                       const LValue &lv) {
1027      assert(shouldBindAsLValue(ov));
1028      CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1029      return OpaqueValueMappingData(ov, true);
1030    }
1031
1032    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1033                                       const OpaqueValueExpr *ov,
1034                                       const RValue &rv) {
1035      assert(!shouldBindAsLValue(ov));
1036      CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1037
1038      OpaqueValueMappingData data(ov, false);
1039
1040      // Work around an extremely aggressive peephole optimization in
1041      // EmitScalarConversion which assumes that all other uses of a
1042      // value are extant.
1043      data.Protection = CGF.protectFromPeepholes(rv);
1044
1045      return data;
1046    }
1047
1048    bool isValid() const { return OpaqueValue != 0; }
1049    void clear() { OpaqueValue = 0; }
1050
1051    void unbind(CodeGenFunction &CGF) {
1052      assert(OpaqueValue && "no data to unbind!");
1053
1054      if (BoundLValue) {
1055        CGF.OpaqueLValues.erase(OpaqueValue);
1056      } else {
1057        CGF.OpaqueRValues.erase(OpaqueValue);
1058        CGF.unprotectFromPeepholes(Protection);
1059      }
1060    }
1061  };
1062
1063  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1064  class OpaqueValueMapping {
1065    CodeGenFunction &CGF;
1066    OpaqueValueMappingData Data;
1067
1068  public:
1069    static bool shouldBindAsLValue(const Expr *expr) {
1070      return OpaqueValueMappingData::shouldBindAsLValue(expr);
1071    }
1072
1073    /// Build the opaque value mapping for the given conditional
1074    /// operator if it's the GNU ?: extension.  This is a common
1075    /// enough pattern that the convenience operator is really
1076    /// helpful.
1077    ///
1078    OpaqueValueMapping(CodeGenFunction &CGF,
1079                       const AbstractConditionalOperator *op) : CGF(CGF) {
1080      if (isa<ConditionalOperator>(op))
1081        // Leave Data empty.
1082        return;
1083
1084      const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1085      Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1086                                          e->getCommon());
1087    }
1088
1089    OpaqueValueMapping(CodeGenFunction &CGF,
1090                       const OpaqueValueExpr *opaqueValue,
1091                       LValue lvalue)
1092      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1093    }
1094
1095    OpaqueValueMapping(CodeGenFunction &CGF,
1096                       const OpaqueValueExpr *opaqueValue,
1097                       RValue rvalue)
1098      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1099    }
1100
1101    void pop() {
1102      Data.unbind(CGF);
1103      Data.clear();
1104    }
1105
1106    ~OpaqueValueMapping() {
1107      if (Data.isValid()) Data.unbind(CGF);
1108    }
1109  };
1110
1111  /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
1112  /// number that holds the value.
1113  unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
1114
1115  /// BuildBlockByrefAddress - Computes address location of the
1116  /// variable which is declared as __block.
1117  llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
1118                                      const VarDecl *V);
1119private:
1120  CGDebugInfo *DebugInfo;
1121  bool DisableDebugInfo;
1122
1123  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1124  /// calling llvm.stacksave for multiple VLAs in the same scope.
1125  bool DidCallStackSave;
1126
1127  /// IndirectBranch - The first time an indirect goto is seen we create a block
1128  /// with an indirect branch.  Every time we see the address of a label taken,
1129  /// we add the label to the indirect goto.  Every subsequent indirect goto is
1130  /// codegen'd as a jump to the IndirectBranch's basic block.
1131  llvm::IndirectBrInst *IndirectBranch;
1132
1133  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1134  /// decls.
1135  typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
1136  DeclMapTy LocalDeclMap;
1137
1138  /// LabelMap - This keeps track of the LLVM basic block for each C label.
1139  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1140
1141  // BreakContinueStack - This keeps track of where break and continue
1142  // statements should jump to.
1143  struct BreakContinue {
1144    BreakContinue(JumpDest Break, JumpDest Continue)
1145      : BreakBlock(Break), ContinueBlock(Continue) {}
1146
1147    JumpDest BreakBlock;
1148    JumpDest ContinueBlock;
1149  };
1150  SmallVector<BreakContinue, 8> BreakContinueStack;
1151
1152  /// SwitchInsn - This is nearest current switch instruction. It is null if
1153  /// current context is not in a switch.
1154  llvm::SwitchInst *SwitchInsn;
1155
1156  /// CaseRangeBlock - This block holds if condition check for last case
1157  /// statement range in current switch instruction.
1158  llvm::BasicBlock *CaseRangeBlock;
1159
1160  /// OpaqueLValues - Keeps track of the current set of opaque value
1161  /// expressions.
1162  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1163  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1164
1165  // VLASizeMap - This keeps track of the associated size for each VLA type.
1166  // We track this by the size expression rather than the type itself because
1167  // in certain situations, like a const qualifier applied to an VLA typedef,
1168  // multiple VLA types can share the same size expression.
1169  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1170  // enter/leave scopes.
1171  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1172
1173  /// A block containing a single 'unreachable' instruction.  Created
1174  /// lazily by getUnreachableBlock().
1175  llvm::BasicBlock *UnreachableBlock;
1176
1177  /// CXXThisDecl - When generating code for a C++ member function,
1178  /// this will hold the implicit 'this' declaration.
1179  ImplicitParamDecl *CXXABIThisDecl;
1180  llvm::Value *CXXABIThisValue;
1181  llvm::Value *CXXThisValue;
1182
1183  /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1184  /// destructor, this will hold the implicit argument (e.g. VTT).
1185  ImplicitParamDecl *CXXStructorImplicitParamDecl;
1186  llvm::Value *CXXStructorImplicitParamValue;
1187
1188  /// OutermostConditional - Points to the outermost active
1189  /// conditional control.  This is used so that we know if a
1190  /// temporary should be destroyed conditionally.
1191  ConditionalEvaluation *OutermostConditional;
1192
1193
1194  /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1195  /// type as well as the field number that contains the actual data.
1196  llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
1197                                              unsigned> > ByRefValueInfo;
1198
1199  llvm::BasicBlock *TerminateLandingPad;
1200  llvm::BasicBlock *TerminateHandler;
1201  llvm::BasicBlock *TrapBB;
1202
1203  /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
1204  /// In the kernel metadata node, reference the kernel function and metadata
1205  /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
1206  /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
1207  ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
1208  /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
1209  ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
1210  void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1211                                llvm::Function *Fn);
1212
1213public:
1214  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1215  ~CodeGenFunction();
1216
1217  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1218  ASTContext &getContext() const { return CGM.getContext(); }
1219  /// Returns true if DebugInfo is actually initialized.
1220  bool maybeInitializeDebugInfo() {
1221    if (CGM.getModuleDebugInfo()) {
1222      DebugInfo = CGM.getModuleDebugInfo();
1223      return true;
1224    }
1225    return false;
1226  }
1227  CGDebugInfo *getDebugInfo() {
1228    if (DisableDebugInfo)
1229      return NULL;
1230    return DebugInfo;
1231  }
1232  void disableDebugInfo() { DisableDebugInfo = true; }
1233  void enableDebugInfo() { DisableDebugInfo = false; }
1234
1235  bool shouldUseFusedARCCalls() {
1236    return CGM.getCodeGenOpts().OptimizationLevel == 0;
1237  }
1238
1239  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1240
1241  /// Returns a pointer to the function's exception object and selector slot,
1242  /// which is assigned in every landing pad.
1243  llvm::Value *getExceptionSlot();
1244  llvm::Value *getEHSelectorSlot();
1245
1246  /// Returns the contents of the function's exception object and selector
1247  /// slots.
1248  llvm::Value *getExceptionFromSlot();
1249  llvm::Value *getSelectorFromSlot();
1250
1251  llvm::Value *getNormalCleanupDestSlot();
1252
1253  llvm::BasicBlock *getUnreachableBlock() {
1254    if (!UnreachableBlock) {
1255      UnreachableBlock = createBasicBlock("unreachable");
1256      new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1257    }
1258    return UnreachableBlock;
1259  }
1260
1261  llvm::BasicBlock *getInvokeDest() {
1262    if (!EHStack.requiresLandingPad()) return 0;
1263    return getInvokeDestImpl();
1264  }
1265
1266  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1267
1268  //===--------------------------------------------------------------------===//
1269  //                                  Cleanups
1270  //===--------------------------------------------------------------------===//
1271
1272  typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1273
1274  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1275                                        llvm::Value *arrayEndPointer,
1276                                        QualType elementType,
1277                                        Destroyer *destroyer);
1278  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1279                                      llvm::Value *arrayEnd,
1280                                      QualType elementType,
1281                                      Destroyer *destroyer);
1282
1283  void pushDestroy(QualType::DestructionKind dtorKind,
1284                   llvm::Value *addr, QualType type);
1285  void pushEHDestroy(QualType::DestructionKind dtorKind,
1286                     llvm::Value *addr, QualType type);
1287  void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1288                   Destroyer *destroyer, bool useEHCleanupForArray);
1289  void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1290                   bool useEHCleanupForArray);
1291  llvm::Function *generateDestroyHelper(llvm::Constant *addr,
1292                                        QualType type,
1293                                        Destroyer *destroyer,
1294                                        bool useEHCleanupForArray);
1295  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1296                        QualType type, Destroyer *destroyer,
1297                        bool checkZeroLength, bool useEHCleanup);
1298
1299  Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1300
1301  /// Determines whether an EH cleanup is required to destroy a type
1302  /// with the given destruction kind.
1303  bool needsEHCleanup(QualType::DestructionKind kind) {
1304    switch (kind) {
1305    case QualType::DK_none:
1306      return false;
1307    case QualType::DK_cxx_destructor:
1308    case QualType::DK_objc_weak_lifetime:
1309      return getLangOpts().Exceptions;
1310    case QualType::DK_objc_strong_lifetime:
1311      return getLangOpts().Exceptions &&
1312             CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1313    }
1314    llvm_unreachable("bad destruction kind");
1315  }
1316
1317  CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1318    return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1319  }
1320
1321  //===--------------------------------------------------------------------===//
1322  //                                  Objective-C
1323  //===--------------------------------------------------------------------===//
1324
1325  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1326
1327  void StartObjCMethod(const ObjCMethodDecl *MD,
1328                       const ObjCContainerDecl *CD,
1329                       SourceLocation StartLoc);
1330
1331  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1332  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1333                          const ObjCPropertyImplDecl *PID);
1334  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1335                              const ObjCPropertyImplDecl *propImpl,
1336                              const ObjCMethodDecl *GetterMothodDecl,
1337                              llvm::Constant *AtomicHelperFn);
1338
1339  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1340                                  ObjCMethodDecl *MD, bool ctor);
1341
1342  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1343  /// for the given property.
1344  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1345                          const ObjCPropertyImplDecl *PID);
1346  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1347                              const ObjCPropertyImplDecl *propImpl,
1348                              llvm::Constant *AtomicHelperFn);
1349  bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1350  bool IvarTypeWithAggrGCObjects(QualType Ty);
1351
1352  //===--------------------------------------------------------------------===//
1353  //                                  Block Bits
1354  //===--------------------------------------------------------------------===//
1355
1356  llvm::Value *EmitBlockLiteral(const BlockExpr *);
1357  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1358  static void destroyBlockInfos(CGBlockInfo *info);
1359  llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1360                                           const CGBlockInfo &Info,
1361                                           llvm::StructType *,
1362                                           llvm::Constant *BlockVarLayout);
1363
1364  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1365                                        const CGBlockInfo &Info,
1366                                        const Decl *OuterFuncDecl,
1367                                        const DeclMapTy &ldm,
1368                                        bool IsLambdaConversionToBlock);
1369
1370  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1371  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1372  llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1373                                             const ObjCPropertyImplDecl *PID);
1374  llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1375                                             const ObjCPropertyImplDecl *PID);
1376  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1377
1378  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1379
1380  class AutoVarEmission;
1381
1382  void emitByrefStructureInit(const AutoVarEmission &emission);
1383  void enterByrefCleanup(const AutoVarEmission &emission);
1384
1385  llvm::Value *LoadBlockStruct() {
1386    assert(BlockPointer && "no block pointer set!");
1387    return BlockPointer;
1388  }
1389
1390  void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1391  void AllocateBlockDecl(const DeclRefExpr *E);
1392  llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1393  llvm::Type *BuildByRefType(const VarDecl *var);
1394
1395  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1396                    const CGFunctionInfo &FnInfo);
1397  void StartFunction(GlobalDecl GD, QualType RetTy,
1398                     llvm::Function *Fn,
1399                     const CGFunctionInfo &FnInfo,
1400                     const FunctionArgList &Args,
1401                     SourceLocation StartLoc);
1402
1403  void EmitConstructorBody(FunctionArgList &Args);
1404  void EmitDestructorBody(FunctionArgList &Args);
1405  void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1406  void EmitFunctionBody(FunctionArgList &Args);
1407
1408  void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda,
1409                                  CallArgList &CallArgs);
1410  void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1411  void EmitLambdaBlockInvokeBody();
1412  void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1413  void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1414
1415  /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1416  /// emission when possible.
1417  void EmitReturnBlock();
1418
1419  /// FinishFunction - Complete IR generation of the current function. It is
1420  /// legal to call this function even if there is no current insertion point.
1421  void FinishFunction(SourceLocation EndLoc=SourceLocation());
1422
1423  /// GenerateThunk - Generate a thunk for the given method.
1424  void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1425                     GlobalDecl GD, const ThunkInfo &Thunk);
1426
1427  void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1428                            GlobalDecl GD, const ThunkInfo &Thunk);
1429
1430  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1431                        FunctionArgList &Args);
1432
1433  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1434                               ArrayRef<VarDecl *> ArrayIndexes);
1435
1436  /// InitializeVTablePointer - Initialize the vtable pointer of the given
1437  /// subobject.
1438  ///
1439  void InitializeVTablePointer(BaseSubobject Base,
1440                               const CXXRecordDecl *NearestVBase,
1441                               CharUnits OffsetFromNearestVBase,
1442                               llvm::Constant *VTable,
1443                               const CXXRecordDecl *VTableClass);
1444
1445  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1446  void InitializeVTablePointers(BaseSubobject Base,
1447                                const CXXRecordDecl *NearestVBase,
1448                                CharUnits OffsetFromNearestVBase,
1449                                bool BaseIsNonVirtualPrimaryBase,
1450                                llvm::Constant *VTable,
1451                                const CXXRecordDecl *VTableClass,
1452                                VisitedVirtualBasesSetTy& VBases);
1453
1454  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1455
1456  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1457  /// to by This.
1458  llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1459
1460  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1461  /// given phase of destruction for a destructor.  The end result
1462  /// should call destructors on members and base classes in reverse
1463  /// order of their construction.
1464  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1465
1466  /// ShouldInstrumentFunction - Return true if the current function should be
1467  /// instrumented with __cyg_profile_func_* calls
1468  bool ShouldInstrumentFunction();
1469
1470  /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1471  /// instrumentation function with the current function and the call site, if
1472  /// function instrumentation is enabled.
1473  void EmitFunctionInstrumentation(const char *Fn);
1474
1475  /// EmitMCountInstrumentation - Emit call to .mcount.
1476  void EmitMCountInstrumentation();
1477
1478  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1479  /// arguments for the given function. This is also responsible for naming the
1480  /// LLVM function arguments.
1481  void EmitFunctionProlog(const CGFunctionInfo &FI,
1482                          llvm::Function *Fn,
1483                          const FunctionArgList &Args);
1484
1485  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1486  /// given temporary.
1487  void EmitFunctionEpilog(const CGFunctionInfo &FI);
1488
1489  /// EmitStartEHSpec - Emit the start of the exception spec.
1490  void EmitStartEHSpec(const Decl *D);
1491
1492  /// EmitEndEHSpec - Emit the end of the exception spec.
1493  void EmitEndEHSpec(const Decl *D);
1494
1495  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1496  llvm::BasicBlock *getTerminateLandingPad();
1497
1498  /// getTerminateHandler - Return a handler (not a landing pad, just
1499  /// a catch handler) that just calls terminate.  This is used when
1500  /// a terminate scope encloses a try.
1501  llvm::BasicBlock *getTerminateHandler();
1502
1503  llvm::Type *ConvertTypeForMem(QualType T);
1504  llvm::Type *ConvertType(QualType T);
1505  llvm::Type *ConvertType(const TypeDecl *T) {
1506    return ConvertType(getContext().getTypeDeclType(T));
1507  }
1508
1509  /// LoadObjCSelf - Load the value of self. This function is only valid while
1510  /// generating code for an Objective-C method.
1511  llvm::Value *LoadObjCSelf();
1512
1513  /// TypeOfSelfObject - Return type of object that this self represents.
1514  QualType TypeOfSelfObject();
1515
1516  /// hasAggregateLLVMType - Return true if the specified AST type will map into
1517  /// an aggregate LLVM type or is void.
1518  static bool hasAggregateLLVMType(QualType T);
1519
1520  /// createBasicBlock - Create an LLVM basic block.
1521  llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1522                                     llvm::Function *parent = 0,
1523                                     llvm::BasicBlock *before = 0) {
1524#ifdef NDEBUG
1525    return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1526#else
1527    return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1528#endif
1529  }
1530
1531  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1532  /// label maps to.
1533  JumpDest getJumpDestForLabel(const LabelDecl *S);
1534
1535  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1536  /// another basic block, simplify it. This assumes that no other code could
1537  /// potentially reference the basic block.
1538  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1539
1540  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1541  /// adding a fall-through branch from the current insert block if
1542  /// necessary. It is legal to call this function even if there is no current
1543  /// insertion point.
1544  ///
1545  /// IsFinished - If true, indicates that the caller has finished emitting
1546  /// branches to the given block and does not expect to emit code into it. This
1547  /// means the block can be ignored if it is unreachable.
1548  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1549
1550  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1551  /// near its uses, and leave the insertion point in it.
1552  void EmitBlockAfterUses(llvm::BasicBlock *BB);
1553
1554  /// EmitBranch - Emit a branch to the specified basic block from the current
1555  /// insert block, taking care to avoid creation of branches from dummy
1556  /// blocks. It is legal to call this function even if there is no current
1557  /// insertion point.
1558  ///
1559  /// This function clears the current insertion point. The caller should follow
1560  /// calls to this function with calls to Emit*Block prior to generation new
1561  /// code.
1562  void EmitBranch(llvm::BasicBlock *Block);
1563
1564  /// HaveInsertPoint - True if an insertion point is defined. If not, this
1565  /// indicates that the current code being emitted is unreachable.
1566  bool HaveInsertPoint() const {
1567    return Builder.GetInsertBlock() != 0;
1568  }
1569
1570  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1571  /// emitted IR has a place to go. Note that by definition, if this function
1572  /// creates a block then that block is unreachable; callers may do better to
1573  /// detect when no insertion point is defined and simply skip IR generation.
1574  void EnsureInsertPoint() {
1575    if (!HaveInsertPoint())
1576      EmitBlock(createBasicBlock());
1577  }
1578
1579  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1580  /// specified stmt yet.
1581  void ErrorUnsupported(const Stmt *S, const char *Type,
1582                        bool OmitOnError=false);
1583
1584  //===--------------------------------------------------------------------===//
1585  //                                  Helpers
1586  //===--------------------------------------------------------------------===//
1587
1588  LValue MakeAddrLValue(llvm::Value *V, QualType T,
1589                        CharUnits Alignment = CharUnits()) {
1590    return LValue::MakeAddr(V, T, Alignment, getContext(),
1591                            CGM.getTBAAInfo(T));
1592  }
1593
1594  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
1595    CharUnits Alignment;
1596    if (!T->isIncompleteType())
1597      Alignment = getContext().getTypeAlignInChars(T);
1598    return LValue::MakeAddr(V, T, Alignment, getContext(),
1599                            CGM.getTBAAInfo(T));
1600  }
1601
1602  /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1603  /// block. The caller is responsible for setting an appropriate alignment on
1604  /// the alloca.
1605  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1606                                     const Twine &Name = "tmp");
1607
1608  /// InitTempAlloca - Provide an initial value for the given alloca.
1609  void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1610
1611  /// CreateIRTemp - Create a temporary IR object of the given type, with
1612  /// appropriate alignment. This routine should only be used when an temporary
1613  /// value needs to be stored into an alloca (for example, to avoid explicit
1614  /// PHI construction), but the type is the IR type, not the type appropriate
1615  /// for storing in memory.
1616  llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1617
1618  /// CreateMemTemp - Create a temporary memory object of the given type, with
1619  /// appropriate alignment.
1620  llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1621
1622  /// CreateAggTemp - Create a temporary memory object for the given
1623  /// aggregate type.
1624  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1625    CharUnits Alignment = getContext().getTypeAlignInChars(T);
1626    return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1627                                 T.getQualifiers(),
1628                                 AggValueSlot::IsNotDestructed,
1629                                 AggValueSlot::DoesNotNeedGCBarriers,
1630                                 AggValueSlot::IsNotAliased);
1631  }
1632
1633  /// Emit a cast to void* in the appropriate address space.
1634  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1635
1636  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1637  /// expression and compare the result against zero, returning an Int1Ty value.
1638  llvm::Value *EvaluateExprAsBool(const Expr *E);
1639
1640  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1641  void EmitIgnoredExpr(const Expr *E);
1642
1643  /// EmitAnyExpr - Emit code to compute the specified expression which can have
1644  /// any type.  The result is returned as an RValue struct.  If this is an
1645  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1646  /// the result should be returned.
1647  ///
1648  /// \param ignoreResult True if the resulting value isn't used.
1649  RValue EmitAnyExpr(const Expr *E,
1650                     AggValueSlot aggSlot = AggValueSlot::ignored(),
1651                     bool ignoreResult = false);
1652
1653  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1654  // or the value of the expression, depending on how va_list is defined.
1655  llvm::Value *EmitVAListRef(const Expr *E);
1656
1657  /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1658  /// always be accessible even if no aggregate location is provided.
1659  RValue EmitAnyExprToTemp(const Expr *E);
1660
1661  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1662  /// arbitrary expression into the given memory location.
1663  void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1664                        Qualifiers Quals, bool IsInitializer);
1665
1666  /// EmitExprAsInit - Emits the code necessary to initialize a
1667  /// location in memory with the given initializer.
1668  void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1669                      LValue lvalue, bool capturedByInit);
1670
1671  /// hasVolatileMember - returns true if aggregate type has a volatile
1672  /// member.
1673  bool hasVolatileMember(QualType T) {
1674    if (const RecordType *RT = T->getAs<RecordType>()) {
1675      const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1676      return RD->hasVolatileMember();
1677    }
1678    return false;
1679  }
1680  /// EmitAggregateCopy - Emit an aggregate assignment.
1681  ///
1682  /// The difference to EmitAggregateCopy is that tail padding is not copied.
1683  /// This is required for correctness when assigning non-POD structures in C++.
1684  void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1685                           QualType EltTy) {
1686    bool IsVolatile = hasVolatileMember(EltTy);
1687    EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(),
1688                      true);
1689  }
1690
1691  /// EmitAggregateCopy - Emit an aggregate copy.
1692  ///
1693  /// \param isVolatile - True iff either the source or the destination is
1694  /// volatile.
1695  /// \param isAssignment - If false, allow padding to be copied.  This often
1696  /// yields more efficient.
1697  void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1698                         QualType EltTy, bool isVolatile=false,
1699                         CharUnits Alignment = CharUnits::Zero(),
1700                         bool isAssignment = false);
1701
1702  /// StartBlock - Start new block named N. If insert block is a dummy block
1703  /// then reuse it.
1704  void StartBlock(const char *N);
1705
1706  /// GetAddrOfLocalVar - Return the address of a local variable.
1707  llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1708    llvm::Value *Res = LocalDeclMap[VD];
1709    assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1710    return Res;
1711  }
1712
1713  /// getOpaqueLValueMapping - Given an opaque value expression (which
1714  /// must be mapped to an l-value), return its mapping.
1715  const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1716    assert(OpaqueValueMapping::shouldBindAsLValue(e));
1717
1718    llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1719      it = OpaqueLValues.find(e);
1720    assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1721    return it->second;
1722  }
1723
1724  /// getOpaqueRValueMapping - Given an opaque value expression (which
1725  /// must be mapped to an r-value), return its mapping.
1726  const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1727    assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1728
1729    llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1730      it = OpaqueRValues.find(e);
1731    assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1732    return it->second;
1733  }
1734
1735  /// getAccessedFieldNo - Given an encoded value and a result number, return
1736  /// the input field number being accessed.
1737  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1738
1739  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1740  llvm::BasicBlock *GetIndirectGotoBlock();
1741
1742  /// EmitNullInitialization - Generate code to set a value of the given type to
1743  /// null, If the type contains data member pointers, they will be initialized
1744  /// to -1 in accordance with the Itanium C++ ABI.
1745  void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1746
1747  // EmitVAArg - Generate code to get an argument from the passed in pointer
1748  // and update it accordingly. The return value is a pointer to the argument.
1749  // FIXME: We should be able to get rid of this method and use the va_arg
1750  // instruction in LLVM instead once it works well enough.
1751  llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1752
1753  /// emitArrayLength - Compute the length of an array, even if it's a
1754  /// VLA, and drill down to the base element type.
1755  llvm::Value *emitArrayLength(const ArrayType *arrayType,
1756                               QualType &baseType,
1757                               llvm::Value *&addr);
1758
1759  /// EmitVLASize - Capture all the sizes for the VLA expressions in
1760  /// the given variably-modified type and store them in the VLASizeMap.
1761  ///
1762  /// This function can be called with a null (unreachable) insert point.
1763  void EmitVariablyModifiedType(QualType Ty);
1764
1765  /// getVLASize - Returns an LLVM value that corresponds to the size,
1766  /// in non-variably-sized elements, of a variable length array type,
1767  /// plus that largest non-variably-sized element type.  Assumes that
1768  /// the type has already been emitted with EmitVariablyModifiedType.
1769  std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1770  std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1771
1772  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1773  /// generating code for an C++ member function.
1774  llvm::Value *LoadCXXThis() {
1775    assert(CXXThisValue && "no 'this' value for this function");
1776    return CXXThisValue;
1777  }
1778
1779  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1780  /// virtual bases.
1781  // FIXME: Every place that calls LoadCXXVTT is something
1782  // that needs to be abstracted properly.
1783  llvm::Value *LoadCXXVTT() {
1784    assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1785    return CXXStructorImplicitParamValue;
1786  }
1787
1788  /// LoadCXXStructorImplicitParam - Load the implicit parameter
1789  /// for a constructor/destructor.
1790  llvm::Value *LoadCXXStructorImplicitParam() {
1791    assert(CXXStructorImplicitParamValue &&
1792           "no implicit argument value for this function");
1793    return CXXStructorImplicitParamValue;
1794  }
1795
1796  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1797  /// complete class to the given direct base.
1798  llvm::Value *
1799  GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1800                                        const CXXRecordDecl *Derived,
1801                                        const CXXRecordDecl *Base,
1802                                        bool BaseIsVirtual);
1803
1804  /// GetAddressOfBaseClass - This function will add the necessary delta to the
1805  /// load of 'this' and returns address of the base class.
1806  llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1807                                     const CXXRecordDecl *Derived,
1808                                     CastExpr::path_const_iterator PathBegin,
1809                                     CastExpr::path_const_iterator PathEnd,
1810                                     bool NullCheckValue);
1811
1812  llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1813                                        const CXXRecordDecl *Derived,
1814                                        CastExpr::path_const_iterator PathBegin,
1815                                        CastExpr::path_const_iterator PathEnd,
1816                                        bool NullCheckValue);
1817
1818  llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
1819                                         const CXXRecordDecl *ClassDecl,
1820                                         const CXXRecordDecl *BaseClassDecl);
1821
1822  /// GetVTTParameter - Return the VTT parameter that should be passed to a
1823  /// base constructor/destructor with virtual bases.
1824  /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1825  /// to ItaniumCXXABI.cpp together with all the references to VTT.
1826  llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1827                               bool Delegating);
1828
1829  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1830                                      CXXCtorType CtorType,
1831                                      const FunctionArgList &Args);
1832  // It's important not to confuse this and the previous function. Delegating
1833  // constructors are the C++0x feature. The constructor delegate optimization
1834  // is used to reduce duplication in the base and complete consturctors where
1835  // they are substantially the same.
1836  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1837                                        const FunctionArgList &Args);
1838  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1839                              bool ForVirtualBase, bool Delegating,
1840                              llvm::Value *This,
1841                              CallExpr::const_arg_iterator ArgBeg,
1842                              CallExpr::const_arg_iterator ArgEnd);
1843
1844  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1845                              llvm::Value *This, llvm::Value *Src,
1846                              CallExpr::const_arg_iterator ArgBeg,
1847                              CallExpr::const_arg_iterator ArgEnd);
1848
1849  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1850                                  const ConstantArrayType *ArrayTy,
1851                                  llvm::Value *ArrayPtr,
1852                                  CallExpr::const_arg_iterator ArgBeg,
1853                                  CallExpr::const_arg_iterator ArgEnd,
1854                                  bool ZeroInitialization = false);
1855
1856  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1857                                  llvm::Value *NumElements,
1858                                  llvm::Value *ArrayPtr,
1859                                  CallExpr::const_arg_iterator ArgBeg,
1860                                  CallExpr::const_arg_iterator ArgEnd,
1861                                  bool ZeroInitialization = false);
1862
1863  static Destroyer destroyCXXObject;
1864
1865  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1866                             bool ForVirtualBase, bool Delegating,
1867                             llvm::Value *This);
1868
1869  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1870                               llvm::Value *NewPtr, llvm::Value *NumElements);
1871
1872  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1873                        llvm::Value *Ptr);
1874
1875  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1876  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1877
1878  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1879                      QualType DeleteTy);
1880
1881  llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1882  llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1883  llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1884
1885  void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init);
1886  void EmitStdInitializerListCleanup(llvm::Value *loc,
1887                                     const InitListExpr *init);
1888
1889  /// \brief Situations in which we might emit a check for the suitability of a
1890  ///        pointer or glvalue.
1891  enum TypeCheckKind {
1892    /// Checking the operand of a load. Must be suitably sized and aligned.
1893    TCK_Load,
1894    /// Checking the destination of a store. Must be suitably sized and aligned.
1895    TCK_Store,
1896    /// Checking the bound value in a reference binding. Must be suitably sized
1897    /// and aligned, but is not required to refer to an object (until the
1898    /// reference is used), per core issue 453.
1899    TCK_ReferenceBinding,
1900    /// Checking the object expression in a non-static data member access. Must
1901    /// be an object within its lifetime.
1902    TCK_MemberAccess,
1903    /// Checking the 'this' pointer for a call to a non-static member function.
1904    /// Must be an object within its lifetime.
1905    TCK_MemberCall,
1906    /// Checking the 'this' pointer for a constructor call.
1907    TCK_ConstructorCall,
1908    /// Checking the operand of a static_cast to a derived pointer type. Must be
1909    /// null or an object within its lifetime.
1910    TCK_DowncastPointer,
1911    /// Checking the operand of a static_cast to a derived reference type. Must
1912    /// be an object within its lifetime.
1913    TCK_DowncastReference
1914  };
1915
1916  /// \brief Emit a check that \p V is the address of storage of the
1917  /// appropriate size and alignment for an object of type \p Type.
1918  void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1919                     QualType Type, CharUnits Alignment = CharUnits::Zero());
1920
1921  /// \brief Emit a check that \p Base points into an array object, which
1922  /// we can access at index \p Index. \p Accessed should be \c false if we
1923  /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
1924  void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
1925                       QualType IndexType, bool Accessed);
1926
1927  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1928                                       bool isInc, bool isPre);
1929  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1930                                         bool isInc, bool isPre);
1931  //===--------------------------------------------------------------------===//
1932  //                            Declaration Emission
1933  //===--------------------------------------------------------------------===//
1934
1935  /// EmitDecl - Emit a declaration.
1936  ///
1937  /// This function can be called with a null (unreachable) insert point.
1938  void EmitDecl(const Decl &D);
1939
1940  /// EmitVarDecl - Emit a local variable declaration.
1941  ///
1942  /// This function can be called with a null (unreachable) insert point.
1943  void EmitVarDecl(const VarDecl &D);
1944
1945  void EmitScalarInit(const Expr *init, const ValueDecl *D,
1946                      LValue lvalue, bool capturedByInit);
1947  void EmitScalarInit(llvm::Value *init, LValue lvalue);
1948
1949  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1950                             llvm::Value *Address);
1951
1952  /// EmitAutoVarDecl - Emit an auto variable declaration.
1953  ///
1954  /// This function can be called with a null (unreachable) insert point.
1955  void EmitAutoVarDecl(const VarDecl &D);
1956
1957  class AutoVarEmission {
1958    friend class CodeGenFunction;
1959
1960    const VarDecl *Variable;
1961
1962    /// The alignment of the variable.
1963    CharUnits Alignment;
1964
1965    /// The address of the alloca.  Null if the variable was emitted
1966    /// as a global constant.
1967    llvm::Value *Address;
1968
1969    llvm::Value *NRVOFlag;
1970
1971    /// True if the variable is a __block variable.
1972    bool IsByRef;
1973
1974    /// True if the variable is of aggregate type and has a constant
1975    /// initializer.
1976    bool IsConstantAggregate;
1977
1978    struct Invalid {};
1979    AutoVarEmission(Invalid) : Variable(0) {}
1980
1981    AutoVarEmission(const VarDecl &variable)
1982      : Variable(&variable), Address(0), NRVOFlag(0),
1983        IsByRef(false), IsConstantAggregate(false) {}
1984
1985    bool wasEmittedAsGlobal() const { return Address == 0; }
1986
1987  public:
1988    static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1989
1990    /// Returns the address of the object within this declaration.
1991    /// Note that this does not chase the forwarding pointer for
1992    /// __block decls.
1993    llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1994      if (!IsByRef) return Address;
1995
1996      return CGF.Builder.CreateStructGEP(Address,
1997                                         CGF.getByRefValueLLVMField(Variable),
1998                                         Variable->getNameAsString());
1999    }
2000  };
2001  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
2002  void EmitAutoVarInit(const AutoVarEmission &emission);
2003  void EmitAutoVarCleanups(const AutoVarEmission &emission);
2004  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
2005                              QualType::DestructionKind dtorKind);
2006
2007  void EmitStaticVarDecl(const VarDecl &D,
2008                         llvm::GlobalValue::LinkageTypes Linkage);
2009
2010  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
2011  void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
2012
2013  /// protectFromPeepholes - Protect a value that we're intending to
2014  /// store to the side, but which will probably be used later, from
2015  /// aggressive peepholing optimizations that might delete it.
2016  ///
2017  /// Pass the result to unprotectFromPeepholes to declare that
2018  /// protection is no longer required.
2019  ///
2020  /// There's no particular reason why this shouldn't apply to
2021  /// l-values, it's just that no existing peepholes work on pointers.
2022  PeepholeProtection protectFromPeepholes(RValue rvalue);
2023  void unprotectFromPeepholes(PeepholeProtection protection);
2024
2025  //===--------------------------------------------------------------------===//
2026  //                             Statement Emission
2027  //===--------------------------------------------------------------------===//
2028
2029  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2030  void EmitStopPoint(const Stmt *S);
2031
2032  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2033  /// this function even if there is no current insertion point.
2034  ///
2035  /// This function may clear the current insertion point; callers should use
2036  /// EnsureInsertPoint if they wish to subsequently generate code without first
2037  /// calling EmitBlock, EmitBranch, or EmitStmt.
2038  void EmitStmt(const Stmt *S);
2039
2040  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2041  /// necessarily require an insertion point or debug information; typically
2042  /// because the statement amounts to a jump or a container of other
2043  /// statements.
2044  ///
2045  /// \return True if the statement was handled.
2046  bool EmitSimpleStmt(const Stmt *S);
2047
2048  RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2049                          AggValueSlot AVS = AggValueSlot::ignored());
2050  RValue EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2051                                      bool GetLast = false, AggValueSlot AVS =
2052                                          AggValueSlot::ignored());
2053
2054  /// EmitLabel - Emit the block for the given label. It is legal to call this
2055  /// function even if there is no current insertion point.
2056  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2057
2058  void EmitLabelStmt(const LabelStmt &S);
2059  void EmitAttributedStmt(const AttributedStmt &S);
2060  void EmitGotoStmt(const GotoStmt &S);
2061  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2062  void EmitIfStmt(const IfStmt &S);
2063  void EmitWhileStmt(const WhileStmt &S);
2064  void EmitDoStmt(const DoStmt &S);
2065  void EmitForStmt(const ForStmt &S);
2066  void EmitReturnStmt(const ReturnStmt &S);
2067  void EmitDeclStmt(const DeclStmt &S);
2068  void EmitBreakStmt(const BreakStmt &S);
2069  void EmitContinueStmt(const ContinueStmt &S);
2070  void EmitSwitchStmt(const SwitchStmt &S);
2071  void EmitDefaultStmt(const DefaultStmt &S);
2072  void EmitCaseStmt(const CaseStmt &S);
2073  void EmitCaseStmtRange(const CaseStmt &S);
2074  void EmitAsmStmt(const AsmStmt &S);
2075
2076  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2077  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2078  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2079  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2080  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2081
2082  llvm::Constant *getUnwindResumeFn();
2083  llvm::Constant *getUnwindResumeOrRethrowFn();
2084  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2085  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2086
2087  void EmitCXXTryStmt(const CXXTryStmt &S);
2088  void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
2089
2090  //===--------------------------------------------------------------------===//
2091  //                         LValue Expression Emission
2092  //===--------------------------------------------------------------------===//
2093
2094  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2095  RValue GetUndefRValue(QualType Ty);
2096
2097  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2098  /// and issue an ErrorUnsupported style diagnostic (using the
2099  /// provided Name).
2100  RValue EmitUnsupportedRValue(const Expr *E,
2101                               const char *Name);
2102
2103  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2104  /// an ErrorUnsupported style diagnostic (using the provided Name).
2105  LValue EmitUnsupportedLValue(const Expr *E,
2106                               const char *Name);
2107
2108  /// EmitLValue - Emit code to compute a designator that specifies the location
2109  /// of the expression.
2110  ///
2111  /// This can return one of two things: a simple address or a bitfield
2112  /// reference.  In either case, the LLVM Value* in the LValue structure is
2113  /// guaranteed to be an LLVM pointer type.
2114  ///
2115  /// If this returns a bitfield reference, nothing about the pointee type of
2116  /// the LLVM value is known: For example, it may not be a pointer to an
2117  /// integer.
2118  ///
2119  /// If this returns a normal address, and if the lvalue's C type is fixed
2120  /// size, this method guarantees that the returned pointer type will point to
2121  /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2122  /// variable length type, this is not possible.
2123  ///
2124  LValue EmitLValue(const Expr *E);
2125
2126  /// \brief Same as EmitLValue but additionally we generate checking code to
2127  /// guard against undefined behavior.  This is only suitable when we know
2128  /// that the address will be used to access the object.
2129  LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2130
2131  /// EmitToMemory - Change a scalar value from its value
2132  /// representation to its in-memory representation.
2133  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2134
2135  /// EmitFromMemory - Change a scalar value from its memory
2136  /// representation to its value representation.
2137  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2138
2139  /// EmitLoadOfScalar - Load a scalar value from an address, taking
2140  /// care to appropriately convert from the memory representation to
2141  /// the LLVM value representation.
2142  llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
2143                                unsigned Alignment, QualType Ty,
2144                                llvm::MDNode *TBAAInfo = 0);
2145
2146  /// EmitLoadOfScalar - Load a scalar value from an address, taking
2147  /// care to appropriately convert from the memory representation to
2148  /// the LLVM value representation.  The l-value must be a simple
2149  /// l-value.
2150  llvm::Value *EmitLoadOfScalar(LValue lvalue);
2151
2152  /// EmitStoreOfScalar - Store a scalar value to an address, taking
2153  /// care to appropriately convert from the memory representation to
2154  /// the LLVM value representation.
2155  void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
2156                         bool Volatile, unsigned Alignment, QualType Ty,
2157                         llvm::MDNode *TBAAInfo = 0, bool isInit=false);
2158
2159  /// EmitStoreOfScalar - Store a scalar value to an address, taking
2160  /// care to appropriately convert from the memory representation to
2161  /// the LLVM value representation.  The l-value must be a simple
2162  /// l-value.  The isInit flag indicates whether this is an initialization.
2163  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2164  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2165
2166  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2167  /// this method emits the address of the lvalue, then loads the result as an
2168  /// rvalue, returning the rvalue.
2169  RValue EmitLoadOfLValue(LValue V);
2170  RValue EmitLoadOfExtVectorElementLValue(LValue V);
2171  RValue EmitLoadOfBitfieldLValue(LValue LV);
2172
2173  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2174  /// lvalue, where both are guaranteed to the have the same type, and that type
2175  /// is 'Ty'.
2176  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false);
2177  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2178
2179  /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
2180  /// EmitStoreThroughLValue.
2181  ///
2182  /// \param Result [out] - If non-null, this will be set to a Value* for the
2183  /// bit-field contents after the store, appropriate for use as the result of
2184  /// an assignment to the bit-field.
2185  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2186                                      llvm::Value **Result=0);
2187
2188  /// Emit an l-value for an assignment (simple or compound) of complex type.
2189  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2190  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2191
2192  // Note: only available for agg return types
2193  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2194  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2195  // Note: only available for agg return types
2196  LValue EmitCallExprLValue(const CallExpr *E);
2197  // Note: only available for agg return types
2198  LValue EmitVAArgExprLValue(const VAArgExpr *E);
2199  LValue EmitDeclRefLValue(const DeclRefExpr *E);
2200  LValue EmitStringLiteralLValue(const StringLiteral *E);
2201  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2202  LValue EmitPredefinedLValue(const PredefinedExpr *E);
2203  LValue EmitUnaryOpLValue(const UnaryOperator *E);
2204  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2205                                bool Accessed = false);
2206  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2207  LValue EmitMemberExpr(const MemberExpr *E);
2208  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2209  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2210  LValue EmitInitListLValue(const InitListExpr *E);
2211  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2212  LValue EmitCastLValue(const CastExpr *E);
2213  LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
2214  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2215  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2216
2217  RValue EmitRValueForField(LValue LV, const FieldDecl *FD);
2218
2219  class ConstantEmission {
2220    llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2221    ConstantEmission(llvm::Constant *C, bool isReference)
2222      : ValueAndIsReference(C, isReference) {}
2223  public:
2224    ConstantEmission() {}
2225    static ConstantEmission forReference(llvm::Constant *C) {
2226      return ConstantEmission(C, true);
2227    }
2228    static ConstantEmission forValue(llvm::Constant *C) {
2229      return ConstantEmission(C, false);
2230    }
2231
2232    operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; }
2233
2234    bool isReference() const { return ValueAndIsReference.getInt(); }
2235    LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2236      assert(isReference());
2237      return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2238                                            refExpr->getType());
2239    }
2240
2241    llvm::Constant *getValue() const {
2242      assert(!isReference());
2243      return ValueAndIsReference.getPointer();
2244    }
2245  };
2246
2247  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2248
2249  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2250                                AggValueSlot slot = AggValueSlot::ignored());
2251  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2252
2253  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2254                              const ObjCIvarDecl *Ivar);
2255  LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2256
2257  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2258  /// if the Field is a reference, this will return the address of the reference
2259  /// and not the address of the value stored in the reference.
2260  LValue EmitLValueForFieldInitialization(LValue Base,
2261                                          const FieldDecl* Field);
2262
2263  LValue EmitLValueForIvar(QualType ObjectTy,
2264                           llvm::Value* Base, const ObjCIvarDecl *Ivar,
2265                           unsigned CVRQualifiers);
2266
2267  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2268  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2269  LValue EmitLambdaLValue(const LambdaExpr *E);
2270  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2271  LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2272
2273  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2274  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2275  LValue EmitStmtExprLValue(const StmtExpr *E);
2276  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2277  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2278  void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2279
2280  //===--------------------------------------------------------------------===//
2281  //                         Scalar Expression Emission
2282  //===--------------------------------------------------------------------===//
2283
2284  /// EmitCall - Generate a call of the given function, expecting the given
2285  /// result type, and using the given argument list which specifies both the
2286  /// LLVM arguments and the types they were derived from.
2287  ///
2288  /// \param TargetDecl - If given, the decl of the function in a direct call;
2289  /// used to set attributes on the call (noreturn, etc.).
2290  RValue EmitCall(const CGFunctionInfo &FnInfo,
2291                  llvm::Value *Callee,
2292                  ReturnValueSlot ReturnValue,
2293                  const CallArgList &Args,
2294                  const Decl *TargetDecl = 0,
2295                  llvm::Instruction **callOrInvoke = 0);
2296
2297  RValue EmitCall(QualType FnType, llvm::Value *Callee,
2298                  ReturnValueSlot ReturnValue,
2299                  CallExpr::const_arg_iterator ArgBeg,
2300                  CallExpr::const_arg_iterator ArgEnd,
2301                  const Decl *TargetDecl = 0);
2302  RValue EmitCallExpr(const CallExpr *E,
2303                      ReturnValueSlot ReturnValue = ReturnValueSlot());
2304
2305  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2306                                  const Twine &name = "");
2307  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2308                                  ArrayRef<llvm::Value*> args,
2309                                  const Twine &name = "");
2310  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2311                                          const Twine &name = "");
2312  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2313                                          ArrayRef<llvm::Value*> args,
2314                                          const Twine &name = "");
2315
2316  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2317                                  ArrayRef<llvm::Value *> Args,
2318                                  const Twine &Name = "");
2319  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2320                                  const Twine &Name = "");
2321  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2322                                         ArrayRef<llvm::Value*> args,
2323                                         const Twine &name = "");
2324  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2325                                         const Twine &name = "");
2326  void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2327                                       ArrayRef<llvm::Value*> args);
2328
2329  llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
2330                                llvm::Type *Ty);
2331  llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
2332                                llvm::Value *This, llvm::Type *Ty);
2333  llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2334                                         NestedNameSpecifier *Qual,
2335                                         llvm::Type *Ty);
2336
2337  llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2338                                                   CXXDtorType Type,
2339                                                   const CXXRecordDecl *RD);
2340
2341  RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2342                           SourceLocation CallLoc,
2343                           llvm::Value *Callee,
2344                           ReturnValueSlot ReturnValue,
2345                           llvm::Value *This,
2346                           llvm::Value *ImplicitParam,
2347                           QualType ImplicitParamTy,
2348                           CallExpr::const_arg_iterator ArgBeg,
2349                           CallExpr::const_arg_iterator ArgEnd);
2350  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2351                               ReturnValueSlot ReturnValue);
2352  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2353                                      ReturnValueSlot ReturnValue);
2354
2355  llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2356                                           const CXXMethodDecl *MD,
2357                                           llvm::Value *This);
2358  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2359                                       const CXXMethodDecl *MD,
2360                                       ReturnValueSlot ReturnValue);
2361
2362  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2363                                ReturnValueSlot ReturnValue);
2364
2365
2366  RValue EmitBuiltinExpr(const FunctionDecl *FD,
2367                         unsigned BuiltinID, const CallExpr *E);
2368
2369  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2370
2371  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2372  /// is unhandled by the current target.
2373  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2374
2375  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2376  llvm::Value *EmitNeonCall(llvm::Function *F,
2377                            SmallVectorImpl<llvm::Value*> &O,
2378                            const char *name,
2379                            unsigned shift = 0, bool rightshift = false);
2380  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2381  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2382                                   bool negateForRightShift);
2383
2384  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2385  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2386  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2387
2388  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2389  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2390  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2391  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2392  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2393  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2394                                const ObjCMethodDecl *MethodWithObjects);
2395  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2396  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2397                             ReturnValueSlot Return = ReturnValueSlot());
2398
2399  /// Retrieves the default cleanup kind for an ARC cleanup.
2400  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2401  CleanupKind getARCCleanupKind() {
2402    return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2403             ? NormalAndEHCleanup : NormalCleanup;
2404  }
2405
2406  // ARC primitives.
2407  void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2408  void EmitARCDestroyWeak(llvm::Value *addr);
2409  llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2410  llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2411  llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2412                                bool ignored);
2413  void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2414  void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2415  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2416  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2417  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2418                                  bool ignored);
2419  llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2420                                      bool ignored);
2421  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2422  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2423  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2424  void EmitARCDestroyStrong(llvm::Value *addr, bool precise);
2425  void EmitARCRelease(llvm::Value *value, bool precise);
2426  llvm::Value *EmitARCAutorelease(llvm::Value *value);
2427  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2428  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2429  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2430
2431  std::pair<LValue,llvm::Value*>
2432  EmitARCStoreAutoreleasing(const BinaryOperator *e);
2433  std::pair<LValue,llvm::Value*>
2434  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2435
2436  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2437
2438  llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2439  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2440  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2441
2442  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2443  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2444  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2445
2446  static Destroyer destroyARCStrongImprecise;
2447  static Destroyer destroyARCStrongPrecise;
2448  static Destroyer destroyARCWeak;
2449
2450  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2451  llvm::Value *EmitObjCAutoreleasePoolPush();
2452  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2453  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2454  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2455
2456  /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
2457  /// expression. Will emit a temporary variable if E is not an LValue.
2458  RValue EmitReferenceBindingToExpr(const Expr* E,
2459                                    const NamedDecl *InitializedDecl);
2460
2461  //===--------------------------------------------------------------------===//
2462  //                           Expression Emission
2463  //===--------------------------------------------------------------------===//
2464
2465  // Expressions are broken into three classes: scalar, complex, aggregate.
2466
2467  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2468  /// scalar type, returning the result.
2469  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2470
2471  /// EmitScalarConversion - Emit a conversion from the specified type to the
2472  /// specified destination type, both of which are LLVM scalar types.
2473  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2474                                    QualType DstTy);
2475
2476  /// EmitComplexToScalarConversion - Emit a conversion from the specified
2477  /// complex type to the specified destination type, where the destination type
2478  /// is an LLVM scalar type.
2479  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2480                                             QualType DstTy);
2481
2482
2483  /// EmitAggExpr - Emit the computation of the specified expression
2484  /// of aggregate type.  The result is computed into the given slot,
2485  /// which may be null to indicate that the value is not needed.
2486  void EmitAggExpr(const Expr *E, AggValueSlot AS);
2487
2488  /// EmitAggExprToLValue - Emit the computation of the specified expression of
2489  /// aggregate type into a temporary LValue.
2490  LValue EmitAggExprToLValue(const Expr *E);
2491
2492  /// EmitGCMemmoveCollectable - Emit special API for structs with object
2493  /// pointers.
2494  void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2495                                QualType Ty);
2496
2497  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2498  /// make sure it survives garbage collection until this point.
2499  void EmitExtendGCLifetime(llvm::Value *object);
2500
2501  /// EmitComplexExpr - Emit the computation of the specified expression of
2502  /// complex type, returning the result.
2503  ComplexPairTy EmitComplexExpr(const Expr *E,
2504                                bool IgnoreReal = false,
2505                                bool IgnoreImag = false);
2506
2507  /// EmitComplexExprIntoAddr - Emit the computation of the specified expression
2508  /// of complex type, storing into the specified Value*.
2509  void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
2510                               bool DestIsVolatile);
2511
2512  /// StoreComplexToAddr - Store a complex number into the specified address.
2513  void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
2514                          bool DestIsVolatile);
2515  /// LoadComplexFromAddr - Load a complex number from the specified address.
2516  ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
2517
2518  /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2519  /// a static local variable.
2520  llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2521                                            const char *Separator,
2522                                       llvm::GlobalValue::LinkageTypes Linkage);
2523
2524  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2525  /// global variable that has already been created for it.  If the initializer
2526  /// has a different type than GV does, this may free GV and return a different
2527  /// one.  Otherwise it just returns GV.
2528  llvm::GlobalVariable *
2529  AddInitializerToStaticVarDecl(const VarDecl &D,
2530                                llvm::GlobalVariable *GV);
2531
2532
2533  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2534  /// variable with global storage.
2535  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2536                                bool PerformInit);
2537
2538  /// Call atexit() with a function that passes the given argument to
2539  /// the given function.
2540  void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr);
2541
2542  /// Emit code in this function to perform a guarded variable
2543  /// initialization.  Guarded initializations are used when it's not
2544  /// possible to prove that an initialization will be done exactly
2545  /// once, e.g. with a static local variable or a static data member
2546  /// of a class template.
2547  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2548                          bool PerformInit);
2549
2550  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2551  /// variables.
2552  void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2553                                 llvm::Constant **Decls,
2554                                 unsigned NumDecls);
2555
2556  /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2557  /// variables.
2558  void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2559                                  const std::vector<std::pair<llvm::WeakVH,
2560                                  llvm::Constant*> > &DtorsAndObjects);
2561
2562  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2563                                        const VarDecl *D,
2564                                        llvm::GlobalVariable *Addr,
2565                                        bool PerformInit);
2566
2567  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2568
2569  void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2570                                  const Expr *Exp);
2571
2572  void enterFullExpression(const ExprWithCleanups *E) {
2573    if (E->getNumObjects() == 0) return;
2574    enterNonTrivialFullExpression(E);
2575  }
2576  void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2577
2578  void EmitCXXThrowExpr(const CXXThrowExpr *E);
2579
2580  void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2581
2582  RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
2583
2584  //===--------------------------------------------------------------------===//
2585  //                         Annotations Emission
2586  //===--------------------------------------------------------------------===//
2587
2588  /// Emit an annotation call (intrinsic or builtin).
2589  llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2590                                  llvm::Value *AnnotatedVal,
2591                                  StringRef AnnotationStr,
2592                                  SourceLocation Location);
2593
2594  /// Emit local annotations for the local variable V, declared by D.
2595  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2596
2597  /// Emit field annotations for the given field & value. Returns the
2598  /// annotation result.
2599  llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2600
2601  //===--------------------------------------------------------------------===//
2602  //                             Internal Helpers
2603  //===--------------------------------------------------------------------===//
2604
2605  /// ContainsLabel - Return true if the statement contains a label in it.  If
2606  /// this statement is not executed normally, it not containing a label means
2607  /// that we can just remove the code.
2608  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2609
2610  /// containsBreak - Return true if the statement contains a break out of it.
2611  /// If the statement (recursively) contains a switch or loop with a break
2612  /// inside of it, this is fine.
2613  static bool containsBreak(const Stmt *S);
2614
2615  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2616  /// to a constant, or if it does but contains a label, return false.  If it
2617  /// constant folds return true and set the boolean result in Result.
2618  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2619
2620  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2621  /// to a constant, or if it does but contains a label, return false.  If it
2622  /// constant folds return true and set the folded value.
2623  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2624
2625  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2626  /// if statement) to the specified blocks.  Based on the condition, this might
2627  /// try to simplify the codegen of the conditional based on the branch.
2628  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2629                            llvm::BasicBlock *FalseBlock);
2630
2631  /// \brief Emit a description of a type in a format suitable for passing to
2632  /// a runtime sanitizer handler.
2633  llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2634
2635  /// \brief Convert a value into a format suitable for passing to a runtime
2636  /// sanitizer handler.
2637  llvm::Value *EmitCheckValue(llvm::Value *V);
2638
2639  /// \brief Emit a description of a source location in a format suitable for
2640  /// passing to a runtime sanitizer handler.
2641  llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
2642
2643  /// \brief Specify under what conditions this check can be recovered
2644  enum CheckRecoverableKind {
2645    /// Always terminate program execution if this check fails
2646    CRK_Unrecoverable,
2647    /// Check supports recovering, allows user to specify which
2648    CRK_Recoverable,
2649    /// Runtime conditionally aborts, always need to support recovery.
2650    CRK_AlwaysRecoverable
2651  };
2652
2653  /// \brief Create a basic block that will call a handler function in a
2654  /// sanitizer runtime with the provided arguments, and create a conditional
2655  /// branch to it.
2656  void EmitCheck(llvm::Value *Checked, StringRef CheckName,
2657                 ArrayRef<llvm::Constant *> StaticArgs,
2658                 ArrayRef<llvm::Value *> DynamicArgs,
2659                 CheckRecoverableKind Recoverable);
2660
2661  /// \brief Create a basic block that will call the trap intrinsic, and emit a
2662  /// conditional branch to it, for the -ftrapv checks.
2663  void EmitTrapCheck(llvm::Value *Checked);
2664
2665  /// EmitCallArg - Emit a single call argument.
2666  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2667
2668  /// EmitDelegateCallArg - We are performing a delegate call; that
2669  /// is, the current function is delegating to another one.  Produce
2670  /// a r-value suitable for passing the given parameter.
2671  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
2672
2673  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2674  /// point operation, expressed as the maximum relative error in ulp.
2675  void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2676
2677private:
2678  llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2679  void EmitReturnOfRValue(RValue RV, QualType Ty);
2680
2681  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2682  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2683  ///
2684  /// \param AI - The first function argument of the expansion.
2685  /// \return The argument following the last expanded function
2686  /// argument.
2687  llvm::Function::arg_iterator
2688  ExpandTypeFromArgs(QualType Ty, LValue Dst,
2689                     llvm::Function::arg_iterator AI);
2690
2691  /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2692  /// Ty, into individual arguments on the provided vector \arg Args. See
2693  /// ABIArgInfo::Expand.
2694  void ExpandTypeToArgs(QualType Ty, RValue Src,
2695                        SmallVector<llvm::Value*, 16> &Args,
2696                        llvm::FunctionType *IRFuncTy);
2697
2698  llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2699                            const Expr *InputExpr, std::string &ConstraintStr);
2700
2701  llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2702                                  LValue InputValue, QualType InputType,
2703                                  std::string &ConstraintStr);
2704
2705  /// EmitCallArgs - Emit call arguments for a function.
2706  /// The CallArgTypeInfo parameter is used for iterating over the known
2707  /// argument types of the function being called.
2708  template<typename T>
2709  void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2710                    CallExpr::const_arg_iterator ArgBeg,
2711                    CallExpr::const_arg_iterator ArgEnd) {
2712      CallExpr::const_arg_iterator Arg = ArgBeg;
2713
2714    // First, use the argument types that the type info knows about
2715    if (CallArgTypeInfo) {
2716      for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2717           E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2718        assert(Arg != ArgEnd && "Running over edge of argument list!");
2719        QualType ArgType = *I;
2720#ifndef NDEBUG
2721        QualType ActualArgType = Arg->getType();
2722        if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2723          QualType ActualBaseType =
2724            ActualArgType->getAs<PointerType>()->getPointeeType();
2725          QualType ArgBaseType =
2726            ArgType->getAs<PointerType>()->getPointeeType();
2727          if (ArgBaseType->isVariableArrayType()) {
2728            if (const VariableArrayType *VAT =
2729                getContext().getAsVariableArrayType(ActualBaseType)) {
2730              if (!VAT->getSizeExpr())
2731                ActualArgType = ArgType;
2732            }
2733          }
2734        }
2735        assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2736               getTypePtr() ==
2737               getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2738               "type mismatch in call argument!");
2739#endif
2740        EmitCallArg(Args, *Arg, ArgType);
2741      }
2742
2743      // Either we've emitted all the call args, or we have a call to a
2744      // variadic function.
2745      assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2746             "Extra arguments in non-variadic function!");
2747
2748    }
2749
2750    // If we still have any arguments, emit them using the type of the argument.
2751    for (; Arg != ArgEnd; ++Arg)
2752      EmitCallArg(Args, *Arg, Arg->getType());
2753  }
2754
2755  const TargetCodeGenInfo &getTargetHooks() const {
2756    return CGM.getTargetCodeGenInfo();
2757  }
2758
2759  void EmitDeclMetadata();
2760
2761  CodeGenModule::ByrefHelpers *
2762  buildByrefHelpers(llvm::StructType &byrefType,
2763                    const AutoVarEmission &emission);
2764
2765  void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
2766
2767  /// GetPointeeAlignment - Given an expression with a pointer type, emit the
2768  /// value and compute our best estimate of the alignment of the pointee.
2769  std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
2770};
2771
2772/// Helper class with most of the code for saving a value for a
2773/// conditional expression cleanup.
2774struct DominatingLLVMValue {
2775  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2776
2777  /// Answer whether the given value needs extra work to be saved.
2778  static bool needsSaving(llvm::Value *value) {
2779    // If it's not an instruction, we don't need to save.
2780    if (!isa<llvm::Instruction>(value)) return false;
2781
2782    // If it's an instruction in the entry block, we don't need to save.
2783    llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2784    return (block != &block->getParent()->getEntryBlock());
2785  }
2786
2787  /// Try to save the given value.
2788  static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2789    if (!needsSaving(value)) return saved_type(value, false);
2790
2791    // Otherwise we need an alloca.
2792    llvm::Value *alloca =
2793      CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2794    CGF.Builder.CreateStore(value, alloca);
2795
2796    return saved_type(alloca, true);
2797  }
2798
2799  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2800    if (!value.getInt()) return value.getPointer();
2801    return CGF.Builder.CreateLoad(value.getPointer());
2802  }
2803};
2804
2805/// A partial specialization of DominatingValue for llvm::Values that
2806/// might be llvm::Instructions.
2807template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2808  typedef T *type;
2809  static type restore(CodeGenFunction &CGF, saved_type value) {
2810    return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2811  }
2812};
2813
2814/// A specialization of DominatingValue for RValue.
2815template <> struct DominatingValue<RValue> {
2816  typedef RValue type;
2817  class saved_type {
2818    enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2819                AggregateAddress, ComplexAddress };
2820
2821    llvm::Value *Value;
2822    Kind K;
2823    saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2824
2825  public:
2826    static bool needsSaving(RValue value);
2827    static saved_type save(CodeGenFunction &CGF, RValue value);
2828    RValue restore(CodeGenFunction &CGF);
2829
2830    // implementations in CGExprCXX.cpp
2831  };
2832
2833  static bool needsSaving(type value) {
2834    return saved_type::needsSaving(value);
2835  }
2836  static saved_type save(CodeGenFunction &CGF, type value) {
2837    return saved_type::save(CGF, value);
2838  }
2839  static type restore(CodeGenFunction &CGF, saved_type value) {
2840    return value.restore(CGF);
2841  }
2842};
2843
2844}  // end namespace CodeGen
2845}  // end namespace clang
2846
2847#endif
2848