CodeGenFunction.h revision 4def70d3040e73707c738f7c366737a986135edf
1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the internal per-function state used for llvm translation.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15#define CLANG_CODEGEN_CODEGENFUNCTION_H
16
17#include "clang/AST/Type.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/Frontend/CodeGenOptions.h"
22#include "clang/Basic/ABI.h"
23#include "clang/Basic/TargetInfo.h"
24#include "llvm/ADT/ArrayRef.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/Support/ValueHandle.h"
28#include "llvm/Support/Debug.h"
29#include "CodeGenModule.h"
30#include "CGBuilder.h"
31#include "CGDebugInfo.h"
32#include "CGValue.h"
33
34namespace llvm {
35  class BasicBlock;
36  class LLVMContext;
37  class MDNode;
38  class Module;
39  class SwitchInst;
40  class Twine;
41  class Value;
42  class CallSite;
43}
44
45namespace clang {
46  class ASTContext;
47  class BlockDecl;
48  class CXXDestructorDecl;
49  class CXXForRangeStmt;
50  class CXXTryStmt;
51  class Decl;
52  class LabelDecl;
53  class EnumConstantDecl;
54  class FunctionDecl;
55  class FunctionProtoType;
56  class LabelStmt;
57  class ObjCContainerDecl;
58  class ObjCInterfaceDecl;
59  class ObjCIvarDecl;
60  class ObjCMethodDecl;
61  class ObjCImplementationDecl;
62  class ObjCPropertyImplDecl;
63  class TargetInfo;
64  class TargetCodeGenInfo;
65  class VarDecl;
66  class ObjCForCollectionStmt;
67  class ObjCAtTryStmt;
68  class ObjCAtThrowStmt;
69  class ObjCAtSynchronizedStmt;
70  class ObjCAutoreleasePoolStmt;
71
72namespace CodeGen {
73  class CodeGenTypes;
74  class CGFunctionInfo;
75  class CGRecordLayout;
76  class CGBlockInfo;
77  class CGCXXABI;
78  class BlockFlags;
79  class BlockFieldFlags;
80
81/// A branch fixup.  These are required when emitting a goto to a
82/// label which hasn't been emitted yet.  The goto is optimistically
83/// emitted as a branch to the basic block for the label, and (if it
84/// occurs in a scope with non-trivial cleanups) a fixup is added to
85/// the innermost cleanup.  When a (normal) cleanup is popped, any
86/// unresolved fixups in that scope are threaded through the cleanup.
87struct BranchFixup {
88  /// The block containing the terminator which needs to be modified
89  /// into a switch if this fixup is resolved into the current scope.
90  /// If null, LatestBranch points directly to the destination.
91  llvm::BasicBlock *OptimisticBranchBlock;
92
93  /// The ultimate destination of the branch.
94  ///
95  /// This can be set to null to indicate that this fixup was
96  /// successfully resolved.
97  llvm::BasicBlock *Destination;
98
99  /// The destination index value.
100  unsigned DestinationIndex;
101
102  /// The initial branch of the fixup.
103  llvm::BranchInst *InitialBranch;
104};
105
106template <class T> struct InvariantValue {
107  typedef T type;
108  typedef T saved_type;
109  static bool needsSaving(type value) { return false; }
110  static saved_type save(CodeGenFunction &CGF, type value) { return value; }
111  static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
112};
113
114/// A metaprogramming class for ensuring that a value will dominate an
115/// arbitrary position in a function.
116template <class T> struct DominatingValue : InvariantValue<T> {};
117
118template <class T, bool mightBeInstruction =
119            llvm::is_base_of<llvm::Value, T>::value &&
120            !llvm::is_base_of<llvm::Constant, T>::value &&
121            !llvm::is_base_of<llvm::BasicBlock, T>::value>
122struct DominatingPointer;
123template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
124// template <class T> struct DominatingPointer<T,true> at end of file
125
126template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
127
128enum CleanupKind {
129  EHCleanup = 0x1,
130  NormalCleanup = 0x2,
131  NormalAndEHCleanup = EHCleanup | NormalCleanup,
132
133  InactiveCleanup = 0x4,
134  InactiveEHCleanup = EHCleanup | InactiveCleanup,
135  InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
136  InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
137};
138
139/// A stack of scopes which respond to exceptions, including cleanups
140/// and catch blocks.
141class EHScopeStack {
142public:
143  /// A saved depth on the scope stack.  This is necessary because
144  /// pushing scopes onto the stack invalidates iterators.
145  class stable_iterator {
146    friend class EHScopeStack;
147
148    /// Offset from StartOfData to EndOfBuffer.
149    ptrdiff_t Size;
150
151    stable_iterator(ptrdiff_t Size) : Size(Size) {}
152
153  public:
154    static stable_iterator invalid() { return stable_iterator(-1); }
155    stable_iterator() : Size(-1) {}
156
157    bool isValid() const { return Size >= 0; }
158
159    /// Returns true if this scope encloses I.
160    /// Returns false if I is invalid.
161    /// This scope must be valid.
162    bool encloses(stable_iterator I) const { return Size <= I.Size; }
163
164    /// Returns true if this scope strictly encloses I: that is,
165    /// if it encloses I and is not I.
166    /// Returns false is I is invalid.
167    /// This scope must be valid.
168    bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
169
170    friend bool operator==(stable_iterator A, stable_iterator B) {
171      return A.Size == B.Size;
172    }
173    friend bool operator!=(stable_iterator A, stable_iterator B) {
174      return A.Size != B.Size;
175    }
176  };
177
178  /// Information for lazily generating a cleanup.  Subclasses must be
179  /// POD-like: cleanups will not be destructed, and they will be
180  /// allocated on the cleanup stack and freely copied and moved
181  /// around.
182  ///
183  /// Cleanup implementations should generally be declared in an
184  /// anonymous namespace.
185  class Cleanup {
186    // Anchor the construction vtable.
187    virtual void anchor();
188  public:
189    /// Generation flags.
190    class Flags {
191      enum {
192        F_IsForEH             = 0x1,
193        F_IsNormalCleanupKind = 0x2,
194        F_IsEHCleanupKind     = 0x4
195      };
196      unsigned flags;
197
198    public:
199      Flags() : flags(0) {}
200
201      /// isForEH - true if the current emission is for an EH cleanup.
202      bool isForEHCleanup() const { return flags & F_IsForEH; }
203      bool isForNormalCleanup() const { return !isForEHCleanup(); }
204      void setIsForEHCleanup() { flags |= F_IsForEH; }
205
206      bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; }
207      void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; }
208
209      /// isEHCleanupKind - true if the cleanup was pushed as an EH
210      /// cleanup.
211      bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; }
212      void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; }
213    };
214
215    // Provide a virtual destructor to suppress a very common warning
216    // that unfortunately cannot be suppressed without this.  Cleanups
217    // should not rely on this destructor ever being called.
218    virtual ~Cleanup() {}
219
220    /// Emit the cleanup.  For normal cleanups, this is run in the
221    /// same EH context as when the cleanup was pushed, i.e. the
222    /// immediately-enclosing context of the cleanup scope.  For
223    /// EH cleanups, this is run in a terminate context.
224    ///
225    // \param flags cleanup kind.
226    virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0;
227  };
228
229  /// ConditionalCleanupN stores the saved form of its N parameters,
230  /// then restores them and performs the cleanup.
231  template <class T, class A0>
232  class ConditionalCleanup1 : public Cleanup {
233    typedef typename DominatingValue<A0>::saved_type A0_saved;
234    A0_saved a0_saved;
235
236    void Emit(CodeGenFunction &CGF, Flags flags) {
237      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
238      T(a0).Emit(CGF, flags);
239    }
240
241  public:
242    ConditionalCleanup1(A0_saved a0)
243      : a0_saved(a0) {}
244  };
245
246  template <class T, class A0, class A1>
247  class ConditionalCleanup2 : public Cleanup {
248    typedef typename DominatingValue<A0>::saved_type A0_saved;
249    typedef typename DominatingValue<A1>::saved_type A1_saved;
250    A0_saved a0_saved;
251    A1_saved a1_saved;
252
253    void Emit(CodeGenFunction &CGF, Flags flags) {
254      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
255      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
256      T(a0, a1).Emit(CGF, flags);
257    }
258
259  public:
260    ConditionalCleanup2(A0_saved a0, A1_saved a1)
261      : a0_saved(a0), a1_saved(a1) {}
262  };
263
264  template <class T, class A0, class A1, class A2>
265  class ConditionalCleanup3 : public Cleanup {
266    typedef typename DominatingValue<A0>::saved_type A0_saved;
267    typedef typename DominatingValue<A1>::saved_type A1_saved;
268    typedef typename DominatingValue<A2>::saved_type A2_saved;
269    A0_saved a0_saved;
270    A1_saved a1_saved;
271    A2_saved a2_saved;
272
273    void Emit(CodeGenFunction &CGF, Flags flags) {
274      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
275      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
276      A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
277      T(a0, a1, a2).Emit(CGF, flags);
278    }
279
280  public:
281    ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2)
282      : a0_saved(a0), a1_saved(a1), a2_saved(a2) {}
283  };
284
285  template <class T, class A0, class A1, class A2, class A3>
286  class ConditionalCleanup4 : public Cleanup {
287    typedef typename DominatingValue<A0>::saved_type A0_saved;
288    typedef typename DominatingValue<A1>::saved_type A1_saved;
289    typedef typename DominatingValue<A2>::saved_type A2_saved;
290    typedef typename DominatingValue<A3>::saved_type A3_saved;
291    A0_saved a0_saved;
292    A1_saved a1_saved;
293    A2_saved a2_saved;
294    A3_saved a3_saved;
295
296    void Emit(CodeGenFunction &CGF, Flags flags) {
297      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
298      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
299      A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
300      A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved);
301      T(a0, a1, a2, a3).Emit(CGF, flags);
302    }
303
304  public:
305    ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3)
306      : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {}
307  };
308
309private:
310  // The implementation for this class is in CGException.h and
311  // CGException.cpp; the definition is here because it's used as a
312  // member of CodeGenFunction.
313
314  /// The start of the scope-stack buffer, i.e. the allocated pointer
315  /// for the buffer.  All of these pointers are either simultaneously
316  /// null or simultaneously valid.
317  char *StartOfBuffer;
318
319  /// The end of the buffer.
320  char *EndOfBuffer;
321
322  /// The first valid entry in the buffer.
323  char *StartOfData;
324
325  /// The innermost normal cleanup on the stack.
326  stable_iterator InnermostNormalCleanup;
327
328  /// The innermost EH scope on the stack.
329  stable_iterator InnermostEHScope;
330
331  /// The current set of branch fixups.  A branch fixup is a jump to
332  /// an as-yet unemitted label, i.e. a label for which we don't yet
333  /// know the EH stack depth.  Whenever we pop a cleanup, we have
334  /// to thread all the current branch fixups through it.
335  ///
336  /// Fixups are recorded as the Use of the respective branch or
337  /// switch statement.  The use points to the final destination.
338  /// When popping out of a cleanup, these uses are threaded through
339  /// the cleanup and adjusted to point to the new cleanup.
340  ///
341  /// Note that branches are allowed to jump into protected scopes
342  /// in certain situations;  e.g. the following code is legal:
343  ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
344  ///     goto foo;
345  ///     A a;
346  ///    foo:
347  ///     bar();
348  SmallVector<BranchFixup, 8> BranchFixups;
349
350  char *allocate(size_t Size);
351
352  void *pushCleanup(CleanupKind K, size_t DataSize);
353
354public:
355  EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
356                   InnermostNormalCleanup(stable_end()),
357                   InnermostEHScope(stable_end()) {}
358  ~EHScopeStack() { delete[] StartOfBuffer; }
359
360  // Variadic templates would make this not terrible.
361
362  /// Push a lazily-created cleanup on the stack.
363  template <class T>
364  void pushCleanup(CleanupKind Kind) {
365    void *Buffer = pushCleanup(Kind, sizeof(T));
366    Cleanup *Obj = new(Buffer) T();
367    (void) Obj;
368  }
369
370  /// Push a lazily-created cleanup on the stack.
371  template <class T, class A0>
372  void pushCleanup(CleanupKind Kind, A0 a0) {
373    void *Buffer = pushCleanup(Kind, sizeof(T));
374    Cleanup *Obj = new(Buffer) T(a0);
375    (void) Obj;
376  }
377
378  /// Push a lazily-created cleanup on the stack.
379  template <class T, class A0, class A1>
380  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
381    void *Buffer = pushCleanup(Kind, sizeof(T));
382    Cleanup *Obj = new(Buffer) T(a0, a1);
383    (void) Obj;
384  }
385
386  /// Push a lazily-created cleanup on the stack.
387  template <class T, class A0, class A1, class A2>
388  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
389    void *Buffer = pushCleanup(Kind, sizeof(T));
390    Cleanup *Obj = new(Buffer) T(a0, a1, a2);
391    (void) Obj;
392  }
393
394  /// Push a lazily-created cleanup on the stack.
395  template <class T, class A0, class A1, class A2, class A3>
396  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
397    void *Buffer = pushCleanup(Kind, sizeof(T));
398    Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
399    (void) Obj;
400  }
401
402  /// Push a lazily-created cleanup on the stack.
403  template <class T, class A0, class A1, class A2, class A3, class A4>
404  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
405    void *Buffer = pushCleanup(Kind, sizeof(T));
406    Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
407    (void) Obj;
408  }
409
410  // Feel free to add more variants of the following:
411
412  /// Push a cleanup with non-constant storage requirements on the
413  /// stack.  The cleanup type must provide an additional static method:
414  ///   static size_t getExtraSize(size_t);
415  /// The argument to this method will be the value N, which will also
416  /// be passed as the first argument to the constructor.
417  ///
418  /// The data stored in the extra storage must obey the same
419  /// restrictions as normal cleanup member data.
420  ///
421  /// The pointer returned from this method is valid until the cleanup
422  /// stack is modified.
423  template <class T, class A0, class A1, class A2>
424  T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
425    void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
426    return new (Buffer) T(N, a0, a1, a2);
427  }
428
429  /// Pops a cleanup scope off the stack.  This is private to CGCleanup.cpp.
430  void popCleanup();
431
432  /// Push a set of catch handlers on the stack.  The catch is
433  /// uninitialized and will need to have the given number of handlers
434  /// set on it.
435  class EHCatchScope *pushCatch(unsigned NumHandlers);
436
437  /// Pops a catch scope off the stack.  This is private to CGException.cpp.
438  void popCatch();
439
440  /// Push an exceptions filter on the stack.
441  class EHFilterScope *pushFilter(unsigned NumFilters);
442
443  /// Pops an exceptions filter off the stack.
444  void popFilter();
445
446  /// Push a terminate handler on the stack.
447  void pushTerminate();
448
449  /// Pops a terminate handler off the stack.
450  void popTerminate();
451
452  /// Determines whether the exception-scopes stack is empty.
453  bool empty() const { return StartOfData == EndOfBuffer; }
454
455  bool requiresLandingPad() const {
456    return InnermostEHScope != stable_end();
457  }
458
459  /// Determines whether there are any normal cleanups on the stack.
460  bool hasNormalCleanups() const {
461    return InnermostNormalCleanup != stable_end();
462  }
463
464  /// Returns the innermost normal cleanup on the stack, or
465  /// stable_end() if there are no normal cleanups.
466  stable_iterator getInnermostNormalCleanup() const {
467    return InnermostNormalCleanup;
468  }
469  stable_iterator getInnermostActiveNormalCleanup() const;
470
471  stable_iterator getInnermostEHScope() const {
472    return InnermostEHScope;
473  }
474
475  stable_iterator getInnermostActiveEHScope() const;
476
477  /// An unstable reference to a scope-stack depth.  Invalidated by
478  /// pushes but not pops.
479  class iterator;
480
481  /// Returns an iterator pointing to the innermost EH scope.
482  iterator begin() const;
483
484  /// Returns an iterator pointing to the outermost EH scope.
485  iterator end() const;
486
487  /// Create a stable reference to the top of the EH stack.  The
488  /// returned reference is valid until that scope is popped off the
489  /// stack.
490  stable_iterator stable_begin() const {
491    return stable_iterator(EndOfBuffer - StartOfData);
492  }
493
494  /// Create a stable reference to the bottom of the EH stack.
495  static stable_iterator stable_end() {
496    return stable_iterator(0);
497  }
498
499  /// Translates an iterator into a stable_iterator.
500  stable_iterator stabilize(iterator it) const;
501
502  /// Turn a stable reference to a scope depth into a unstable pointer
503  /// to the EH stack.
504  iterator find(stable_iterator save) const;
505
506  /// Removes the cleanup pointed to by the given stable_iterator.
507  void removeCleanup(stable_iterator save);
508
509  /// Add a branch fixup to the current cleanup scope.
510  BranchFixup &addBranchFixup() {
511    assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
512    BranchFixups.push_back(BranchFixup());
513    return BranchFixups.back();
514  }
515
516  unsigned getNumBranchFixups() const { return BranchFixups.size(); }
517  BranchFixup &getBranchFixup(unsigned I) {
518    assert(I < getNumBranchFixups());
519    return BranchFixups[I];
520  }
521
522  /// Pops lazily-removed fixups from the end of the list.  This
523  /// should only be called by procedures which have just popped a
524  /// cleanup or resolved one or more fixups.
525  void popNullFixups();
526
527  /// Clears the branch-fixups list.  This should only be called by
528  /// ResolveAllBranchFixups.
529  void clearFixups() { BranchFixups.clear(); }
530};
531
532/// CodeGenFunction - This class organizes the per-function state that is used
533/// while generating LLVM code.
534class CodeGenFunction : public CodeGenTypeCache {
535  CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
536  void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
537
538  friend class CGCXXABI;
539public:
540  /// A jump destination is an abstract label, branching to which may
541  /// require a jump out through normal cleanups.
542  struct JumpDest {
543    JumpDest() : Block(0), ScopeDepth(), Index(0) {}
544    JumpDest(llvm::BasicBlock *Block,
545             EHScopeStack::stable_iterator Depth,
546             unsigned Index)
547      : Block(Block), ScopeDepth(Depth), Index(Index) {}
548
549    bool isValid() const { return Block != 0; }
550    llvm::BasicBlock *getBlock() const { return Block; }
551    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
552    unsigned getDestIndex() const { return Index; }
553
554  private:
555    llvm::BasicBlock *Block;
556    EHScopeStack::stable_iterator ScopeDepth;
557    unsigned Index;
558  };
559
560  CodeGenModule &CGM;  // Per-module state.
561  const TargetInfo &Target;
562
563  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
564  CGBuilderTy Builder;
565
566  /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
567  /// This excludes BlockDecls.
568  const Decl *CurFuncDecl;
569  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
570  const Decl *CurCodeDecl;
571  const CGFunctionInfo *CurFnInfo;
572  QualType FnRetTy;
573  llvm::Function *CurFn;
574
575  /// CurGD - The GlobalDecl for the current function being compiled.
576  GlobalDecl CurGD;
577
578  /// PrologueCleanupDepth - The cleanup depth enclosing all the
579  /// cleanups associated with the parameters.
580  EHScopeStack::stable_iterator PrologueCleanupDepth;
581
582  /// ReturnBlock - Unified return block.
583  JumpDest ReturnBlock;
584
585  /// ReturnValue - The temporary alloca to hold the return value. This is null
586  /// iff the function has no return value.
587  llvm::Value *ReturnValue;
588
589  /// AllocaInsertPoint - This is an instruction in the entry block before which
590  /// we prefer to insert allocas.
591  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
592
593  /// BoundsChecking - Emit run-time bounds checks. Higher values mean
594  /// potentially higher performance penalties.
595  unsigned char BoundsChecking;
596
597  /// CatchUndefined - Emit run-time checks to catch undefined behaviors.
598  bool CatchUndefined;
599
600  /// In ARC, whether we should autorelease the return value.
601  bool AutoreleaseResult;
602
603  const CodeGen::CGBlockInfo *BlockInfo;
604  llvm::Value *BlockPointer;
605
606  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
607  FieldDecl *LambdaThisCaptureField;
608
609  /// \brief A mapping from NRVO variables to the flags used to indicate
610  /// when the NRVO has been applied to this variable.
611  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
612
613  EHScopeStack EHStack;
614
615  /// i32s containing the indexes of the cleanup destinations.
616  llvm::AllocaInst *NormalCleanupDest;
617
618  unsigned NextCleanupDestIndex;
619
620  /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
621  CGBlockInfo *FirstBlockInfo;
622
623  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
624  llvm::BasicBlock *EHResumeBlock;
625
626  /// The exception slot.  All landing pads write the current exception pointer
627  /// into this alloca.
628  llvm::Value *ExceptionSlot;
629
630  /// The selector slot.  Under the MandatoryCleanup model, all landing pads
631  /// write the current selector value into this alloca.
632  llvm::AllocaInst *EHSelectorSlot;
633
634  /// Emits a landing pad for the current EH stack.
635  llvm::BasicBlock *EmitLandingPad();
636
637  llvm::BasicBlock *getInvokeDestImpl();
638
639  template <class T>
640  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
641    return DominatingValue<T>::save(*this, value);
642  }
643
644public:
645  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
646  /// rethrows.
647  SmallVector<llvm::Value*, 8> ObjCEHValueStack;
648
649  /// A class controlling the emission of a finally block.
650  class FinallyInfo {
651    /// Where the catchall's edge through the cleanup should go.
652    JumpDest RethrowDest;
653
654    /// A function to call to enter the catch.
655    llvm::Constant *BeginCatchFn;
656
657    /// An i1 variable indicating whether or not the @finally is
658    /// running for an exception.
659    llvm::AllocaInst *ForEHVar;
660
661    /// An i8* variable into which the exception pointer to rethrow
662    /// has been saved.
663    llvm::AllocaInst *SavedExnVar;
664
665  public:
666    void enter(CodeGenFunction &CGF, const Stmt *Finally,
667               llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
668               llvm::Constant *rethrowFn);
669    void exit(CodeGenFunction &CGF);
670  };
671
672  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
673  /// current full-expression.  Safe against the possibility that
674  /// we're currently inside a conditionally-evaluated expression.
675  template <class T, class A0>
676  void pushFullExprCleanup(CleanupKind kind, A0 a0) {
677    // If we're not in a conditional branch, or if none of the
678    // arguments requires saving, then use the unconditional cleanup.
679    if (!isInConditionalBranch())
680      return EHStack.pushCleanup<T>(kind, a0);
681
682    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
683
684    typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
685    EHStack.pushCleanup<CleanupType>(kind, a0_saved);
686    initFullExprCleanup();
687  }
688
689  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
690  /// current full-expression.  Safe against the possibility that
691  /// we're currently inside a conditionally-evaluated expression.
692  template <class T, class A0, class A1>
693  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
694    // If we're not in a conditional branch, or if none of the
695    // arguments requires saving, then use the unconditional cleanup.
696    if (!isInConditionalBranch())
697      return EHStack.pushCleanup<T>(kind, a0, a1);
698
699    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
700    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
701
702    typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
703    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
704    initFullExprCleanup();
705  }
706
707  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
708  /// current full-expression.  Safe against the possibility that
709  /// we're currently inside a conditionally-evaluated expression.
710  template <class T, class A0, class A1, class A2>
711  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
712    // If we're not in a conditional branch, or if none of the
713    // arguments requires saving, then use the unconditional cleanup.
714    if (!isInConditionalBranch()) {
715      return EHStack.pushCleanup<T>(kind, a0, a1, a2);
716    }
717
718    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
719    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
720    typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
721
722    typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
723    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
724    initFullExprCleanup();
725  }
726
727  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
728  /// current full-expression.  Safe against the possibility that
729  /// we're currently inside a conditionally-evaluated expression.
730  template <class T, class A0, class A1, class A2, class A3>
731  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
732    // If we're not in a conditional branch, or if none of the
733    // arguments requires saving, then use the unconditional cleanup.
734    if (!isInConditionalBranch()) {
735      return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
736    }
737
738    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
739    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
740    typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
741    typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
742
743    typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
744    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
745                                     a2_saved, a3_saved);
746    initFullExprCleanup();
747  }
748
749  /// Set up the last cleaup that was pushed as a conditional
750  /// full-expression cleanup.
751  void initFullExprCleanup();
752
753  /// PushDestructorCleanup - Push a cleanup to call the
754  /// complete-object destructor of an object of the given type at the
755  /// given address.  Does nothing if T is not a C++ class type with a
756  /// non-trivial destructor.
757  void PushDestructorCleanup(QualType T, llvm::Value *Addr);
758
759  /// PushDestructorCleanup - Push a cleanup to call the
760  /// complete-object variant of the given destructor on the object at
761  /// the given address.
762  void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
763                             llvm::Value *Addr);
764
765  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
766  /// process all branch fixups.
767  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
768
769  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
770  /// The block cannot be reactivated.  Pops it if it's the top of the
771  /// stack.
772  ///
773  /// \param DominatingIP - An instruction which is known to
774  ///   dominate the current IP (if set) and which lies along
775  ///   all paths of execution between the current IP and the
776  ///   the point at which the cleanup comes into scope.
777  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
778                              llvm::Instruction *DominatingIP);
779
780  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
781  /// Cannot be used to resurrect a deactivated cleanup.
782  ///
783  /// \param DominatingIP - An instruction which is known to
784  ///   dominate the current IP (if set) and which lies along
785  ///   all paths of execution between the current IP and the
786  ///   the point at which the cleanup comes into scope.
787  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
788                            llvm::Instruction *DominatingIP);
789
790  /// \brief Enters a new scope for capturing cleanups, all of which
791  /// will be executed once the scope is exited.
792  class RunCleanupsScope {
793    EHScopeStack::stable_iterator CleanupStackDepth;
794    bool OldDidCallStackSave;
795    bool PerformCleanup;
796
797    RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
798    void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
799
800  protected:
801    CodeGenFunction& CGF;
802
803  public:
804    /// \brief Enter a new cleanup scope.
805    explicit RunCleanupsScope(CodeGenFunction &CGF)
806      : PerformCleanup(true), CGF(CGF)
807    {
808      CleanupStackDepth = CGF.EHStack.stable_begin();
809      OldDidCallStackSave = CGF.DidCallStackSave;
810      CGF.DidCallStackSave = false;
811    }
812
813    /// \brief Exit this cleanup scope, emitting any accumulated
814    /// cleanups.
815    ~RunCleanupsScope() {
816      if (PerformCleanup) {
817        CGF.DidCallStackSave = OldDidCallStackSave;
818        CGF.PopCleanupBlocks(CleanupStackDepth);
819      }
820    }
821
822    /// \brief Determine whether this scope requires any cleanups.
823    bool requiresCleanups() const {
824      return CGF.EHStack.stable_begin() != CleanupStackDepth;
825    }
826
827    /// \brief Force the emission of cleanups now, instead of waiting
828    /// until this object is destroyed.
829    void ForceCleanup() {
830      assert(PerformCleanup && "Already forced cleanup");
831      CGF.DidCallStackSave = OldDidCallStackSave;
832      CGF.PopCleanupBlocks(CleanupStackDepth);
833      PerformCleanup = false;
834    }
835  };
836
837  class LexicalScope: protected RunCleanupsScope {
838    SourceRange Range;
839    bool PopDebugStack;
840
841    LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION;
842    void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION;
843
844  public:
845    /// \brief Enter a new cleanup scope.
846    explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
847      : RunCleanupsScope(CGF), Range(Range), PopDebugStack(true) {
848      if (CGDebugInfo *DI = CGF.getDebugInfo())
849        DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
850    }
851
852    /// \brief Exit this cleanup scope, emitting any accumulated
853    /// cleanups.
854    ~LexicalScope() {
855      if (PopDebugStack) {
856        CGDebugInfo *DI = CGF.getDebugInfo();
857        if (DI) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
858      }
859    }
860
861    /// \brief Force the emission of cleanups now, instead of waiting
862    /// until this object is destroyed.
863    void ForceCleanup() {
864      RunCleanupsScope::ForceCleanup();
865      if (CGDebugInfo *DI = CGF.getDebugInfo()) {
866        DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
867        PopDebugStack = false;
868      }
869    }
870  };
871
872
873  /// PopCleanupBlocks - Takes the old cleanup stack size and emits
874  /// the cleanup blocks that have been added.
875  void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
876
877  void ResolveBranchFixups(llvm::BasicBlock *Target);
878
879  /// The given basic block lies in the current EH scope, but may be a
880  /// target of a potentially scope-crossing jump; get a stable handle
881  /// to which we can perform this jump later.
882  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
883    return JumpDest(Target,
884                    EHStack.getInnermostNormalCleanup(),
885                    NextCleanupDestIndex++);
886  }
887
888  /// The given basic block lies in the current EH scope, but may be a
889  /// target of a potentially scope-crossing jump; get a stable handle
890  /// to which we can perform this jump later.
891  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
892    return getJumpDestInCurrentScope(createBasicBlock(Name));
893  }
894
895  /// EmitBranchThroughCleanup - Emit a branch from the current insert
896  /// block through the normal cleanup handling code (if any) and then
897  /// on to \arg Dest.
898  void EmitBranchThroughCleanup(JumpDest Dest);
899
900  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
901  /// specified destination obviously has no cleanups to run.  'false' is always
902  /// a conservatively correct answer for this method.
903  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
904
905  /// popCatchScope - Pops the catch scope at the top of the EHScope
906  /// stack, emitting any required code (other than the catch handlers
907  /// themselves).
908  void popCatchScope();
909
910  llvm::BasicBlock *getEHResumeBlock();
911  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
912
913  /// An object to manage conditionally-evaluated expressions.
914  class ConditionalEvaluation {
915    llvm::BasicBlock *StartBB;
916
917  public:
918    ConditionalEvaluation(CodeGenFunction &CGF)
919      : StartBB(CGF.Builder.GetInsertBlock()) {}
920
921    void begin(CodeGenFunction &CGF) {
922      assert(CGF.OutermostConditional != this);
923      if (!CGF.OutermostConditional)
924        CGF.OutermostConditional = this;
925    }
926
927    void end(CodeGenFunction &CGF) {
928      assert(CGF.OutermostConditional != 0);
929      if (CGF.OutermostConditional == this)
930        CGF.OutermostConditional = 0;
931    }
932
933    /// Returns a block which will be executed prior to each
934    /// evaluation of the conditional code.
935    llvm::BasicBlock *getStartingBlock() const {
936      return StartBB;
937    }
938  };
939
940  /// isInConditionalBranch - Return true if we're currently emitting
941  /// one branch or the other of a conditional expression.
942  bool isInConditionalBranch() const { return OutermostConditional != 0; }
943
944  void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
945    assert(isInConditionalBranch());
946    llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
947    new llvm::StoreInst(value, addr, &block->back());
948  }
949
950  /// An RAII object to record that we're evaluating a statement
951  /// expression.
952  class StmtExprEvaluation {
953    CodeGenFunction &CGF;
954
955    /// We have to save the outermost conditional: cleanups in a
956    /// statement expression aren't conditional just because the
957    /// StmtExpr is.
958    ConditionalEvaluation *SavedOutermostConditional;
959
960  public:
961    StmtExprEvaluation(CodeGenFunction &CGF)
962      : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
963      CGF.OutermostConditional = 0;
964    }
965
966    ~StmtExprEvaluation() {
967      CGF.OutermostConditional = SavedOutermostConditional;
968      CGF.EnsureInsertPoint();
969    }
970  };
971
972  /// An object which temporarily prevents a value from being
973  /// destroyed by aggressive peephole optimizations that assume that
974  /// all uses of a value have been realized in the IR.
975  class PeepholeProtection {
976    llvm::Instruction *Inst;
977    friend class CodeGenFunction;
978
979  public:
980    PeepholeProtection() : Inst(0) {}
981  };
982
983  /// A non-RAII class containing all the information about a bound
984  /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
985  /// this which makes individual mappings very simple; using this
986  /// class directly is useful when you have a variable number of
987  /// opaque values or don't want the RAII functionality for some
988  /// reason.
989  class OpaqueValueMappingData {
990    const OpaqueValueExpr *OpaqueValue;
991    bool BoundLValue;
992    CodeGenFunction::PeepholeProtection Protection;
993
994    OpaqueValueMappingData(const OpaqueValueExpr *ov,
995                           bool boundLValue)
996      : OpaqueValue(ov), BoundLValue(boundLValue) {}
997  public:
998    OpaqueValueMappingData() : OpaqueValue(0) {}
999
1000    static bool shouldBindAsLValue(const Expr *expr) {
1001      // gl-values should be bound as l-values for obvious reasons.
1002      // Records should be bound as l-values because IR generation
1003      // always keeps them in memory.  Expressions of function type
1004      // act exactly like l-values but are formally required to be
1005      // r-values in C.
1006      return expr->isGLValue() ||
1007             expr->getType()->isRecordType() ||
1008             expr->getType()->isFunctionType();
1009    }
1010
1011    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1012                                       const OpaqueValueExpr *ov,
1013                                       const Expr *e) {
1014      if (shouldBindAsLValue(ov))
1015        return bind(CGF, ov, CGF.EmitLValue(e));
1016      return bind(CGF, ov, CGF.EmitAnyExpr(e));
1017    }
1018
1019    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1020                                       const OpaqueValueExpr *ov,
1021                                       const LValue &lv) {
1022      assert(shouldBindAsLValue(ov));
1023      CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1024      return OpaqueValueMappingData(ov, true);
1025    }
1026
1027    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1028                                       const OpaqueValueExpr *ov,
1029                                       const RValue &rv) {
1030      assert(!shouldBindAsLValue(ov));
1031      CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1032
1033      OpaqueValueMappingData data(ov, false);
1034
1035      // Work around an extremely aggressive peephole optimization in
1036      // EmitScalarConversion which assumes that all other uses of a
1037      // value are extant.
1038      data.Protection = CGF.protectFromPeepholes(rv);
1039
1040      return data;
1041    }
1042
1043    bool isValid() const { return OpaqueValue != 0; }
1044    void clear() { OpaqueValue = 0; }
1045
1046    void unbind(CodeGenFunction &CGF) {
1047      assert(OpaqueValue && "no data to unbind!");
1048
1049      if (BoundLValue) {
1050        CGF.OpaqueLValues.erase(OpaqueValue);
1051      } else {
1052        CGF.OpaqueRValues.erase(OpaqueValue);
1053        CGF.unprotectFromPeepholes(Protection);
1054      }
1055    }
1056  };
1057
1058  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1059  class OpaqueValueMapping {
1060    CodeGenFunction &CGF;
1061    OpaqueValueMappingData Data;
1062
1063  public:
1064    static bool shouldBindAsLValue(const Expr *expr) {
1065      return OpaqueValueMappingData::shouldBindAsLValue(expr);
1066    }
1067
1068    /// Build the opaque value mapping for the given conditional
1069    /// operator if it's the GNU ?: extension.  This is a common
1070    /// enough pattern that the convenience operator is really
1071    /// helpful.
1072    ///
1073    OpaqueValueMapping(CodeGenFunction &CGF,
1074                       const AbstractConditionalOperator *op) : CGF(CGF) {
1075      if (isa<ConditionalOperator>(op))
1076        // Leave Data empty.
1077        return;
1078
1079      const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1080      Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1081                                          e->getCommon());
1082    }
1083
1084    OpaqueValueMapping(CodeGenFunction &CGF,
1085                       const OpaqueValueExpr *opaqueValue,
1086                       LValue lvalue)
1087      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1088    }
1089
1090    OpaqueValueMapping(CodeGenFunction &CGF,
1091                       const OpaqueValueExpr *opaqueValue,
1092                       RValue rvalue)
1093      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1094    }
1095
1096    void pop() {
1097      Data.unbind(CGF);
1098      Data.clear();
1099    }
1100
1101    ~OpaqueValueMapping() {
1102      if (Data.isValid()) Data.unbind(CGF);
1103    }
1104  };
1105
1106  /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
1107  /// number that holds the value.
1108  unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
1109
1110  /// BuildBlockByrefAddress - Computes address location of the
1111  /// variable which is declared as __block.
1112  llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
1113                                      const VarDecl *V);
1114private:
1115  CGDebugInfo *DebugInfo;
1116  bool DisableDebugInfo;
1117
1118  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1119  /// calling llvm.stacksave for multiple VLAs in the same scope.
1120  bool DidCallStackSave;
1121
1122  /// IndirectBranch - The first time an indirect goto is seen we create a block
1123  /// with an indirect branch.  Every time we see the address of a label taken,
1124  /// we add the label to the indirect goto.  Every subsequent indirect goto is
1125  /// codegen'd as a jump to the IndirectBranch's basic block.
1126  llvm::IndirectBrInst *IndirectBranch;
1127
1128  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1129  /// decls.
1130  typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
1131  DeclMapTy LocalDeclMap;
1132
1133  /// LabelMap - This keeps track of the LLVM basic block for each C label.
1134  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1135
1136  // BreakContinueStack - This keeps track of where break and continue
1137  // statements should jump to.
1138  struct BreakContinue {
1139    BreakContinue(JumpDest Break, JumpDest Continue)
1140      : BreakBlock(Break), ContinueBlock(Continue) {}
1141
1142    JumpDest BreakBlock;
1143    JumpDest ContinueBlock;
1144  };
1145  SmallVector<BreakContinue, 8> BreakContinueStack;
1146
1147  /// SwitchInsn - This is nearest current switch instruction. It is null if
1148  /// current context is not in a switch.
1149  llvm::SwitchInst *SwitchInsn;
1150
1151  /// CaseRangeBlock - This block holds if condition check for last case
1152  /// statement range in current switch instruction.
1153  llvm::BasicBlock *CaseRangeBlock;
1154
1155  /// OpaqueLValues - Keeps track of the current set of opaque value
1156  /// expressions.
1157  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1158  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1159
1160  // VLASizeMap - This keeps track of the associated size for each VLA type.
1161  // We track this by the size expression rather than the type itself because
1162  // in certain situations, like a const qualifier applied to an VLA typedef,
1163  // multiple VLA types can share the same size expression.
1164  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1165  // enter/leave scopes.
1166  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1167
1168  /// A block containing a single 'unreachable' instruction.  Created
1169  /// lazily by getUnreachableBlock().
1170  llvm::BasicBlock *UnreachableBlock;
1171
1172  /// CXXThisDecl - When generating code for a C++ member function,
1173  /// this will hold the implicit 'this' declaration.
1174  ImplicitParamDecl *CXXABIThisDecl;
1175  llvm::Value *CXXABIThisValue;
1176  llvm::Value *CXXThisValue;
1177
1178  /// CXXVTTDecl - When generating code for a base object constructor or
1179  /// base object destructor with virtual bases, this will hold the implicit
1180  /// VTT parameter.
1181  ImplicitParamDecl *CXXVTTDecl;
1182  llvm::Value *CXXVTTValue;
1183
1184  /// OutermostConditional - Points to the outermost active
1185  /// conditional control.  This is used so that we know if a
1186  /// temporary should be destroyed conditionally.
1187  ConditionalEvaluation *OutermostConditional;
1188
1189
1190  /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1191  /// type as well as the field number that contains the actual data.
1192  llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
1193                                              unsigned> > ByRefValueInfo;
1194
1195  llvm::BasicBlock *TerminateLandingPad;
1196  llvm::BasicBlock *TerminateHandler;
1197  llvm::BasicBlock *TrapBB;
1198
1199  /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
1200  /// In the kernel metadata node, reference the kernel function and metadata
1201  /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
1202  /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
1203  ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
1204  /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
1205  ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
1206  void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1207                                llvm::Function *Fn);
1208
1209public:
1210  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1211  ~CodeGenFunction();
1212
1213  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1214  ASTContext &getContext() const { return CGM.getContext(); }
1215  CGDebugInfo *getDebugInfo() {
1216    if (DisableDebugInfo)
1217      return NULL;
1218    return DebugInfo;
1219  }
1220  void disableDebugInfo() { DisableDebugInfo = true; }
1221  void enableDebugInfo() { DisableDebugInfo = false; }
1222
1223  bool shouldUseFusedARCCalls() {
1224    return CGM.getCodeGenOpts().OptimizationLevel == 0;
1225  }
1226
1227  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1228
1229  /// Returns a pointer to the function's exception object and selector slot,
1230  /// which is assigned in every landing pad.
1231  llvm::Value *getExceptionSlot();
1232  llvm::Value *getEHSelectorSlot();
1233
1234  /// Returns the contents of the function's exception object and selector
1235  /// slots.
1236  llvm::Value *getExceptionFromSlot();
1237  llvm::Value *getSelectorFromSlot();
1238
1239  llvm::Value *getNormalCleanupDestSlot();
1240
1241  llvm::BasicBlock *getUnreachableBlock() {
1242    if (!UnreachableBlock) {
1243      UnreachableBlock = createBasicBlock("unreachable");
1244      new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1245    }
1246    return UnreachableBlock;
1247  }
1248
1249  llvm::BasicBlock *getInvokeDest() {
1250    if (!EHStack.requiresLandingPad()) return 0;
1251    return getInvokeDestImpl();
1252  }
1253
1254  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1255
1256  //===--------------------------------------------------------------------===//
1257  //                                  Cleanups
1258  //===--------------------------------------------------------------------===//
1259
1260  typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1261
1262  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1263                                        llvm::Value *arrayEndPointer,
1264                                        QualType elementType,
1265                                        Destroyer *destroyer);
1266  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1267                                      llvm::Value *arrayEnd,
1268                                      QualType elementType,
1269                                      Destroyer *destroyer);
1270
1271  void pushDestroy(QualType::DestructionKind dtorKind,
1272                   llvm::Value *addr, QualType type);
1273  void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1274                   Destroyer *destroyer, bool useEHCleanupForArray);
1275  void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1276                   bool useEHCleanupForArray);
1277  llvm::Function *generateDestroyHelper(llvm::Constant *addr,
1278                                        QualType type,
1279                                        Destroyer *destroyer,
1280                                        bool useEHCleanupForArray);
1281  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1282                        QualType type, Destroyer *destroyer,
1283                        bool checkZeroLength, bool useEHCleanup);
1284
1285  Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1286
1287  /// Determines whether an EH cleanup is required to destroy a type
1288  /// with the given destruction kind.
1289  bool needsEHCleanup(QualType::DestructionKind kind) {
1290    switch (kind) {
1291    case QualType::DK_none:
1292      return false;
1293    case QualType::DK_cxx_destructor:
1294    case QualType::DK_objc_weak_lifetime:
1295      return getLangOpts().Exceptions;
1296    case QualType::DK_objc_strong_lifetime:
1297      return getLangOpts().Exceptions &&
1298             CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1299    }
1300    llvm_unreachable("bad destruction kind");
1301  }
1302
1303  CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1304    return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1305  }
1306
1307  //===--------------------------------------------------------------------===//
1308  //                                  Objective-C
1309  //===--------------------------------------------------------------------===//
1310
1311  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1312
1313  void StartObjCMethod(const ObjCMethodDecl *MD,
1314                       const ObjCContainerDecl *CD,
1315                       SourceLocation StartLoc);
1316
1317  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1318  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1319                          const ObjCPropertyImplDecl *PID);
1320  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1321                              const ObjCPropertyImplDecl *propImpl,
1322                              const ObjCMethodDecl *GetterMothodDecl,
1323                              llvm::Constant *AtomicHelperFn);
1324
1325  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1326                                  ObjCMethodDecl *MD, bool ctor);
1327
1328  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1329  /// for the given property.
1330  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1331                          const ObjCPropertyImplDecl *PID);
1332  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1333                              const ObjCPropertyImplDecl *propImpl,
1334                              llvm::Constant *AtomicHelperFn);
1335  bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1336  bool IvarTypeWithAggrGCObjects(QualType Ty);
1337
1338  //===--------------------------------------------------------------------===//
1339  //                                  Block Bits
1340  //===--------------------------------------------------------------------===//
1341
1342  llvm::Value *EmitBlockLiteral(const BlockExpr *);
1343  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1344  static void destroyBlockInfos(CGBlockInfo *info);
1345  llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1346                                           const CGBlockInfo &Info,
1347                                           llvm::StructType *,
1348                                           llvm::Constant *BlockVarLayout);
1349
1350  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1351                                        const CGBlockInfo &Info,
1352                                        const Decl *OuterFuncDecl,
1353                                        const DeclMapTy &ldm,
1354                                        bool IsLambdaConversionToBlock);
1355
1356  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1357  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1358  llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1359                                             const ObjCPropertyImplDecl *PID);
1360  llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1361                                             const ObjCPropertyImplDecl *PID);
1362  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1363
1364  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1365
1366  class AutoVarEmission;
1367
1368  void emitByrefStructureInit(const AutoVarEmission &emission);
1369  void enterByrefCleanup(const AutoVarEmission &emission);
1370
1371  llvm::Value *LoadBlockStruct() {
1372    assert(BlockPointer && "no block pointer set!");
1373    return BlockPointer;
1374  }
1375
1376  void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1377  void AllocateBlockDecl(const DeclRefExpr *E);
1378  llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1379  llvm::Type *BuildByRefType(const VarDecl *var);
1380
1381  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1382                    const CGFunctionInfo &FnInfo);
1383  void StartFunction(GlobalDecl GD, QualType RetTy,
1384                     llvm::Function *Fn,
1385                     const CGFunctionInfo &FnInfo,
1386                     const FunctionArgList &Args,
1387                     SourceLocation StartLoc);
1388
1389  void EmitConstructorBody(FunctionArgList &Args);
1390  void EmitDestructorBody(FunctionArgList &Args);
1391  void EmitFunctionBody(FunctionArgList &Args);
1392
1393  void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda,
1394                                  CallArgList &CallArgs);
1395  void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1396  void EmitLambdaBlockInvokeBody();
1397  void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1398  void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1399
1400  /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1401  /// emission when possible.
1402  void EmitReturnBlock();
1403
1404  /// FinishFunction - Complete IR generation of the current function. It is
1405  /// legal to call this function even if there is no current insertion point.
1406  void FinishFunction(SourceLocation EndLoc=SourceLocation());
1407
1408  /// GenerateThunk - Generate a thunk for the given method.
1409  void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1410                     GlobalDecl GD, const ThunkInfo &Thunk);
1411
1412  void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1413                            GlobalDecl GD, const ThunkInfo &Thunk);
1414
1415  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1416                        FunctionArgList &Args);
1417
1418  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1419                               ArrayRef<VarDecl *> ArrayIndexes);
1420
1421  /// InitializeVTablePointer - Initialize the vtable pointer of the given
1422  /// subobject.
1423  ///
1424  void InitializeVTablePointer(BaseSubobject Base,
1425                               const CXXRecordDecl *NearestVBase,
1426                               CharUnits OffsetFromNearestVBase,
1427                               llvm::Constant *VTable,
1428                               const CXXRecordDecl *VTableClass);
1429
1430  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1431  void InitializeVTablePointers(BaseSubobject Base,
1432                                const CXXRecordDecl *NearestVBase,
1433                                CharUnits OffsetFromNearestVBase,
1434                                bool BaseIsNonVirtualPrimaryBase,
1435                                llvm::Constant *VTable,
1436                                const CXXRecordDecl *VTableClass,
1437                                VisitedVirtualBasesSetTy& VBases);
1438
1439  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1440
1441  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1442  /// to by This.
1443  llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1444
1445  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1446  /// given phase of destruction for a destructor.  The end result
1447  /// should call destructors on members and base classes in reverse
1448  /// order of their construction.
1449  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1450
1451  /// ShouldInstrumentFunction - Return true if the current function should be
1452  /// instrumented with __cyg_profile_func_* calls
1453  bool ShouldInstrumentFunction();
1454
1455  /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1456  /// instrumentation function with the current function and the call site, if
1457  /// function instrumentation is enabled.
1458  void EmitFunctionInstrumentation(const char *Fn);
1459
1460  /// EmitMCountInstrumentation - Emit call to .mcount.
1461  void EmitMCountInstrumentation();
1462
1463  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1464  /// arguments for the given function. This is also responsible for naming the
1465  /// LLVM function arguments.
1466  void EmitFunctionProlog(const CGFunctionInfo &FI,
1467                          llvm::Function *Fn,
1468                          const FunctionArgList &Args);
1469
1470  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1471  /// given temporary.
1472  void EmitFunctionEpilog(const CGFunctionInfo &FI);
1473
1474  /// EmitStartEHSpec - Emit the start of the exception spec.
1475  void EmitStartEHSpec(const Decl *D);
1476
1477  /// EmitEndEHSpec - Emit the end of the exception spec.
1478  void EmitEndEHSpec(const Decl *D);
1479
1480  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1481  llvm::BasicBlock *getTerminateLandingPad();
1482
1483  /// getTerminateHandler - Return a handler (not a landing pad, just
1484  /// a catch handler) that just calls terminate.  This is used when
1485  /// a terminate scope encloses a try.
1486  llvm::BasicBlock *getTerminateHandler();
1487
1488  llvm::Type *ConvertTypeForMem(QualType T);
1489  llvm::Type *ConvertType(QualType T);
1490  llvm::Type *ConvertType(const TypeDecl *T) {
1491    return ConvertType(getContext().getTypeDeclType(T));
1492  }
1493
1494  /// LoadObjCSelf - Load the value of self. This function is only valid while
1495  /// generating code for an Objective-C method.
1496  llvm::Value *LoadObjCSelf();
1497
1498  /// TypeOfSelfObject - Return type of object that this self represents.
1499  QualType TypeOfSelfObject();
1500
1501  /// hasAggregateLLVMType - Return true if the specified AST type will map into
1502  /// an aggregate LLVM type or is void.
1503  static bool hasAggregateLLVMType(QualType T);
1504
1505  /// createBasicBlock - Create an LLVM basic block.
1506  llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1507                                     llvm::Function *parent = 0,
1508                                     llvm::BasicBlock *before = 0) {
1509#ifdef NDEBUG
1510    return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1511#else
1512    return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1513#endif
1514  }
1515
1516  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1517  /// label maps to.
1518  JumpDest getJumpDestForLabel(const LabelDecl *S);
1519
1520  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1521  /// another basic block, simplify it. This assumes that no other code could
1522  /// potentially reference the basic block.
1523  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1524
1525  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1526  /// adding a fall-through branch from the current insert block if
1527  /// necessary. It is legal to call this function even if there is no current
1528  /// insertion point.
1529  ///
1530  /// IsFinished - If true, indicates that the caller has finished emitting
1531  /// branches to the given block and does not expect to emit code into it. This
1532  /// means the block can be ignored if it is unreachable.
1533  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1534
1535  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1536  /// near its uses, and leave the insertion point in it.
1537  void EmitBlockAfterUses(llvm::BasicBlock *BB);
1538
1539  /// EmitBranch - Emit a branch to the specified basic block from the current
1540  /// insert block, taking care to avoid creation of branches from dummy
1541  /// blocks. It is legal to call this function even if there is no current
1542  /// insertion point.
1543  ///
1544  /// This function clears the current insertion point. The caller should follow
1545  /// calls to this function with calls to Emit*Block prior to generation new
1546  /// code.
1547  void EmitBranch(llvm::BasicBlock *Block);
1548
1549  /// HaveInsertPoint - True if an insertion point is defined. If not, this
1550  /// indicates that the current code being emitted is unreachable.
1551  bool HaveInsertPoint() const {
1552    return Builder.GetInsertBlock() != 0;
1553  }
1554
1555  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1556  /// emitted IR has a place to go. Note that by definition, if this function
1557  /// creates a block then that block is unreachable; callers may do better to
1558  /// detect when no insertion point is defined and simply skip IR generation.
1559  void EnsureInsertPoint() {
1560    if (!HaveInsertPoint())
1561      EmitBlock(createBasicBlock());
1562  }
1563
1564  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1565  /// specified stmt yet.
1566  void ErrorUnsupported(const Stmt *S, const char *Type,
1567                        bool OmitOnError=false);
1568
1569  //===--------------------------------------------------------------------===//
1570  //                                  Helpers
1571  //===--------------------------------------------------------------------===//
1572
1573  LValue MakeAddrLValue(llvm::Value *V, QualType T,
1574                        CharUnits Alignment = CharUnits()) {
1575    return LValue::MakeAddr(V, T, Alignment, getContext(),
1576                            CGM.getTBAAInfo(T));
1577  }
1578
1579  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
1580    CharUnits Alignment;
1581    if (!T->isIncompleteType())
1582      Alignment = getContext().getTypeAlignInChars(T);
1583    return LValue::MakeAddr(V, T, Alignment, getContext(),
1584                            CGM.getTBAAInfo(T));
1585  }
1586
1587  /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1588  /// block. The caller is responsible for setting an appropriate alignment on
1589  /// the alloca.
1590  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1591                                     const Twine &Name = "tmp");
1592
1593  /// InitTempAlloca - Provide an initial value for the given alloca.
1594  void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1595
1596  /// CreateIRTemp - Create a temporary IR object of the given type, with
1597  /// appropriate alignment. This routine should only be used when an temporary
1598  /// value needs to be stored into an alloca (for example, to avoid explicit
1599  /// PHI construction), but the type is the IR type, not the type appropriate
1600  /// for storing in memory.
1601  llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1602
1603  /// CreateMemTemp - Create a temporary memory object of the given type, with
1604  /// appropriate alignment.
1605  llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1606
1607  /// CreateAggTemp - Create a temporary memory object for the given
1608  /// aggregate type.
1609  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1610    CharUnits Alignment = getContext().getTypeAlignInChars(T);
1611    return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1612                                 T.getQualifiers(),
1613                                 AggValueSlot::IsNotDestructed,
1614                                 AggValueSlot::DoesNotNeedGCBarriers,
1615                                 AggValueSlot::IsNotAliased);
1616  }
1617
1618  /// Emit a cast to void* in the appropriate address space.
1619  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1620
1621  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1622  /// expression and compare the result against zero, returning an Int1Ty value.
1623  llvm::Value *EvaluateExprAsBool(const Expr *E);
1624
1625  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1626  void EmitIgnoredExpr(const Expr *E);
1627
1628  /// EmitAnyExpr - Emit code to compute the specified expression which can have
1629  /// any type.  The result is returned as an RValue struct.  If this is an
1630  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1631  /// the result should be returned.
1632  ///
1633  /// \param ignoreResult True if the resulting value isn't used.
1634  RValue EmitAnyExpr(const Expr *E,
1635                     AggValueSlot aggSlot = AggValueSlot::ignored(),
1636                     bool ignoreResult = false);
1637
1638  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1639  // or the value of the expression, depending on how va_list is defined.
1640  llvm::Value *EmitVAListRef(const Expr *E);
1641
1642  /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1643  /// always be accessible even if no aggregate location is provided.
1644  RValue EmitAnyExprToTemp(const Expr *E);
1645
1646  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1647  /// arbitrary expression into the given memory location.
1648  void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1649                        Qualifiers Quals, bool IsInitializer);
1650
1651  /// EmitExprAsInit - Emits the code necessary to initialize a
1652  /// location in memory with the given initializer.
1653  void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1654                      LValue lvalue, bool capturedByInit);
1655
1656  /// EmitAggregateCopy - Emit an aggrate assignment.
1657  ///
1658  /// The difference to EmitAggregateCopy is that tail padding is not copied.
1659  /// This is required for correctness when assigning non-POD structures in C++.
1660  void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1661                           QualType EltTy, bool isVolatile=false,
1662                           CharUnits Alignment = CharUnits::Zero()) {
1663    EmitAggregateCopy(DestPtr, SrcPtr, EltTy, isVolatile, Alignment, true);
1664  }
1665
1666  /// EmitAggregateCopy - Emit an aggrate copy.
1667  ///
1668  /// \param isVolatile - True iff either the source or the destination is
1669  /// volatile.
1670  /// \param isAssignment - If false, allow padding to be copied.  This often
1671  /// yields more efficient.
1672  void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1673                         QualType EltTy, bool isVolatile=false,
1674                         CharUnits Alignment = CharUnits::Zero(),
1675                         bool isAssignment = false);
1676
1677  /// StartBlock - Start new block named N. If insert block is a dummy block
1678  /// then reuse it.
1679  void StartBlock(const char *N);
1680
1681  /// GetAddrOfStaticLocalVar - Return the address of a static local variable.
1682  llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) {
1683    return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
1684  }
1685
1686  /// GetAddrOfLocalVar - Return the address of a local variable.
1687  llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1688    llvm::Value *Res = LocalDeclMap[VD];
1689    assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1690    return Res;
1691  }
1692
1693  /// getOpaqueLValueMapping - Given an opaque value expression (which
1694  /// must be mapped to an l-value), return its mapping.
1695  const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1696    assert(OpaqueValueMapping::shouldBindAsLValue(e));
1697
1698    llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1699      it = OpaqueLValues.find(e);
1700    assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1701    return it->second;
1702  }
1703
1704  /// getOpaqueRValueMapping - Given an opaque value expression (which
1705  /// must be mapped to an r-value), return its mapping.
1706  const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1707    assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1708
1709    llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1710      it = OpaqueRValues.find(e);
1711    assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1712    return it->second;
1713  }
1714
1715  /// getAccessedFieldNo - Given an encoded value and a result number, return
1716  /// the input field number being accessed.
1717  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1718
1719  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1720  llvm::BasicBlock *GetIndirectGotoBlock();
1721
1722  /// EmitNullInitialization - Generate code to set a value of the given type to
1723  /// null, If the type contains data member pointers, they will be initialized
1724  /// to -1 in accordance with the Itanium C++ ABI.
1725  void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1726
1727  // EmitVAArg - Generate code to get an argument from the passed in pointer
1728  // and update it accordingly. The return value is a pointer to the argument.
1729  // FIXME: We should be able to get rid of this method and use the va_arg
1730  // instruction in LLVM instead once it works well enough.
1731  llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1732
1733  /// emitArrayLength - Compute the length of an array, even if it's a
1734  /// VLA, and drill down to the base element type.
1735  llvm::Value *emitArrayLength(const ArrayType *arrayType,
1736                               QualType &baseType,
1737                               llvm::Value *&addr);
1738
1739  /// EmitVLASize - Capture all the sizes for the VLA expressions in
1740  /// the given variably-modified type and store them in the VLASizeMap.
1741  ///
1742  /// This function can be called with a null (unreachable) insert point.
1743  void EmitVariablyModifiedType(QualType Ty);
1744
1745  /// getVLASize - Returns an LLVM value that corresponds to the size,
1746  /// in non-variably-sized elements, of a variable length array type,
1747  /// plus that largest non-variably-sized element type.  Assumes that
1748  /// the type has already been emitted with EmitVariablyModifiedType.
1749  std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1750  std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1751
1752  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1753  /// generating code for an C++ member function.
1754  llvm::Value *LoadCXXThis() {
1755    assert(CXXThisValue && "no 'this' value for this function");
1756    return CXXThisValue;
1757  }
1758
1759  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1760  /// virtual bases.
1761  llvm::Value *LoadCXXVTT() {
1762    assert(CXXVTTValue && "no VTT value for this function");
1763    return CXXVTTValue;
1764  }
1765
1766  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1767  /// complete class to the given direct base.
1768  llvm::Value *
1769  GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1770                                        const CXXRecordDecl *Derived,
1771                                        const CXXRecordDecl *Base,
1772                                        bool BaseIsVirtual);
1773
1774  /// GetAddressOfBaseClass - This function will add the necessary delta to the
1775  /// load of 'this' and returns address of the base class.
1776  llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1777                                     const CXXRecordDecl *Derived,
1778                                     CastExpr::path_const_iterator PathBegin,
1779                                     CastExpr::path_const_iterator PathEnd,
1780                                     bool NullCheckValue);
1781
1782  llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1783                                        const CXXRecordDecl *Derived,
1784                                        CastExpr::path_const_iterator PathBegin,
1785                                        CastExpr::path_const_iterator PathEnd,
1786                                        bool NullCheckValue);
1787
1788  llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
1789                                         const CXXRecordDecl *ClassDecl,
1790                                         const CXXRecordDecl *BaseClassDecl);
1791
1792  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1793                                      CXXCtorType CtorType,
1794                                      const FunctionArgList &Args);
1795  // It's important not to confuse this and the previous function. Delegating
1796  // constructors are the C++0x feature. The constructor delegate optimization
1797  // is used to reduce duplication in the base and complete consturctors where
1798  // they are substantially the same.
1799  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1800                                        const FunctionArgList &Args);
1801  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1802                              bool ForVirtualBase, llvm::Value *This,
1803                              CallExpr::const_arg_iterator ArgBeg,
1804                              CallExpr::const_arg_iterator ArgEnd);
1805
1806  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1807                              llvm::Value *This, llvm::Value *Src,
1808                              CallExpr::const_arg_iterator ArgBeg,
1809                              CallExpr::const_arg_iterator ArgEnd);
1810
1811  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1812                                  const ConstantArrayType *ArrayTy,
1813                                  llvm::Value *ArrayPtr,
1814                                  CallExpr::const_arg_iterator ArgBeg,
1815                                  CallExpr::const_arg_iterator ArgEnd,
1816                                  bool ZeroInitialization = false);
1817
1818  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1819                                  llvm::Value *NumElements,
1820                                  llvm::Value *ArrayPtr,
1821                                  CallExpr::const_arg_iterator ArgBeg,
1822                                  CallExpr::const_arg_iterator ArgEnd,
1823                                  bool ZeroInitialization = false);
1824
1825  static Destroyer destroyCXXObject;
1826
1827  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1828                             bool ForVirtualBase, llvm::Value *This);
1829
1830  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1831                               llvm::Value *NewPtr, llvm::Value *NumElements);
1832
1833  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1834                        llvm::Value *Ptr);
1835
1836  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1837  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1838
1839  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1840                      QualType DeleteTy);
1841
1842  llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1843  llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1844
1845  void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init);
1846  void EmitStdInitializerListCleanup(llvm::Value *loc,
1847                                     const InitListExpr *init);
1848
1849  /// \brief Situations in which we might emit a check for the suitability of a
1850  ///        pointer or glvalue.
1851  enum TypeCheckKind {
1852    /// Checking the operand of a load. Must be suitably sized and aligned.
1853    TCK_Load,
1854    /// Checking the destination of a store. Must be suitably sized and aligned.
1855    TCK_Store,
1856    /// Checking the bound value in a reference binding. Must be suitably sized
1857    /// and aligned, but is not required to refer to an object (until the
1858    /// reference is used), per core issue 453.
1859    TCK_ReferenceBinding,
1860    /// Checking the object expression in a non-static data member access. Must
1861    /// be an object within its lifetime.
1862    TCK_MemberAccess,
1863    /// Checking the 'this' pointer for a call to a non-static member function.
1864    /// Must be an object within its lifetime.
1865    TCK_MemberCall
1866  };
1867
1868  /// \brief Emit a check that \p V is the address of storage of the
1869  /// appropriate size and alignment for an object of type \p Type.
1870  void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1871                     QualType Type, CharUnits Alignment = CharUnits::Zero());
1872
1873  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1874                                       bool isInc, bool isPre);
1875  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1876                                         bool isInc, bool isPre);
1877  //===--------------------------------------------------------------------===//
1878  //                            Declaration Emission
1879  //===--------------------------------------------------------------------===//
1880
1881  /// EmitDecl - Emit a declaration.
1882  ///
1883  /// This function can be called with a null (unreachable) insert point.
1884  void EmitDecl(const Decl &D);
1885
1886  /// EmitVarDecl - Emit a local variable declaration.
1887  ///
1888  /// This function can be called with a null (unreachable) insert point.
1889  void EmitVarDecl(const VarDecl &D);
1890
1891  void EmitScalarInit(const Expr *init, const ValueDecl *D,
1892                      LValue lvalue, bool capturedByInit);
1893  void EmitScalarInit(llvm::Value *init, LValue lvalue);
1894
1895  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1896                             llvm::Value *Address);
1897
1898  /// EmitAutoVarDecl - Emit an auto variable declaration.
1899  ///
1900  /// This function can be called with a null (unreachable) insert point.
1901  void EmitAutoVarDecl(const VarDecl &D);
1902
1903  class AutoVarEmission {
1904    friend class CodeGenFunction;
1905
1906    const VarDecl *Variable;
1907
1908    /// The alignment of the variable.
1909    CharUnits Alignment;
1910
1911    /// The address of the alloca.  Null if the variable was emitted
1912    /// as a global constant.
1913    llvm::Value *Address;
1914
1915    llvm::Value *NRVOFlag;
1916
1917    /// True if the variable is a __block variable.
1918    bool IsByRef;
1919
1920    /// True if the variable is of aggregate type and has a constant
1921    /// initializer.
1922    bool IsConstantAggregate;
1923
1924    struct Invalid {};
1925    AutoVarEmission(Invalid) : Variable(0) {}
1926
1927    AutoVarEmission(const VarDecl &variable)
1928      : Variable(&variable), Address(0), NRVOFlag(0),
1929        IsByRef(false), IsConstantAggregate(false) {}
1930
1931    bool wasEmittedAsGlobal() const { return Address == 0; }
1932
1933  public:
1934    static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1935
1936    /// Returns the address of the object within this declaration.
1937    /// Note that this does not chase the forwarding pointer for
1938    /// __block decls.
1939    llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1940      if (!IsByRef) return Address;
1941
1942      return CGF.Builder.CreateStructGEP(Address,
1943                                         CGF.getByRefValueLLVMField(Variable),
1944                                         Variable->getNameAsString());
1945    }
1946  };
1947  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1948  void EmitAutoVarInit(const AutoVarEmission &emission);
1949  void EmitAutoVarCleanups(const AutoVarEmission &emission);
1950  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1951                              QualType::DestructionKind dtorKind);
1952
1953  void EmitStaticVarDecl(const VarDecl &D,
1954                         llvm::GlobalValue::LinkageTypes Linkage);
1955
1956  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1957  void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
1958
1959  /// protectFromPeepholes - Protect a value that we're intending to
1960  /// store to the side, but which will probably be used later, from
1961  /// aggressive peepholing optimizations that might delete it.
1962  ///
1963  /// Pass the result to unprotectFromPeepholes to declare that
1964  /// protection is no longer required.
1965  ///
1966  /// There's no particular reason why this shouldn't apply to
1967  /// l-values, it's just that no existing peepholes work on pointers.
1968  PeepholeProtection protectFromPeepholes(RValue rvalue);
1969  void unprotectFromPeepholes(PeepholeProtection protection);
1970
1971  //===--------------------------------------------------------------------===//
1972  //                             Statement Emission
1973  //===--------------------------------------------------------------------===//
1974
1975  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1976  void EmitStopPoint(const Stmt *S);
1977
1978  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1979  /// this function even if there is no current insertion point.
1980  ///
1981  /// This function may clear the current insertion point; callers should use
1982  /// EnsureInsertPoint if they wish to subsequently generate code without first
1983  /// calling EmitBlock, EmitBranch, or EmitStmt.
1984  void EmitStmt(const Stmt *S);
1985
1986  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1987  /// necessarily require an insertion point or debug information; typically
1988  /// because the statement amounts to a jump or a container of other
1989  /// statements.
1990  ///
1991  /// \return True if the statement was handled.
1992  bool EmitSimpleStmt(const Stmt *S);
1993
1994  RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1995                          AggValueSlot AVS = AggValueSlot::ignored());
1996
1997  /// EmitLabel - Emit the block for the given label. It is legal to call this
1998  /// function even if there is no current insertion point.
1999  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2000
2001  void EmitLabelStmt(const LabelStmt &S);
2002  void EmitAttributedStmt(const AttributedStmt &S);
2003  void EmitGotoStmt(const GotoStmt &S);
2004  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2005  void EmitIfStmt(const IfStmt &S);
2006  void EmitWhileStmt(const WhileStmt &S);
2007  void EmitDoStmt(const DoStmt &S);
2008  void EmitForStmt(const ForStmt &S);
2009  void EmitReturnStmt(const ReturnStmt &S);
2010  void EmitDeclStmt(const DeclStmt &S);
2011  void EmitBreakStmt(const BreakStmt &S);
2012  void EmitContinueStmt(const ContinueStmt &S);
2013  void EmitSwitchStmt(const SwitchStmt &S);
2014  void EmitDefaultStmt(const DefaultStmt &S);
2015  void EmitCaseStmt(const CaseStmt &S);
2016  void EmitCaseStmtRange(const CaseStmt &S);
2017  void EmitAsmStmt(const AsmStmt &S);
2018
2019  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2020  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2021  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2022  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2023  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2024
2025  llvm::Constant *getUnwindResumeFn();
2026  llvm::Constant *getUnwindResumeOrRethrowFn();
2027  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2028  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2029
2030  void EmitCXXTryStmt(const CXXTryStmt &S);
2031  void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
2032
2033  //===--------------------------------------------------------------------===//
2034  //                         LValue Expression Emission
2035  //===--------------------------------------------------------------------===//
2036
2037  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2038  RValue GetUndefRValue(QualType Ty);
2039
2040  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2041  /// and issue an ErrorUnsupported style diagnostic (using the
2042  /// provided Name).
2043  RValue EmitUnsupportedRValue(const Expr *E,
2044                               const char *Name);
2045
2046  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2047  /// an ErrorUnsupported style diagnostic (using the provided Name).
2048  LValue EmitUnsupportedLValue(const Expr *E,
2049                               const char *Name);
2050
2051  /// EmitLValue - Emit code to compute a designator that specifies the location
2052  /// of the expression.
2053  ///
2054  /// This can return one of two things: a simple address or a bitfield
2055  /// reference.  In either case, the LLVM Value* in the LValue structure is
2056  /// guaranteed to be an LLVM pointer type.
2057  ///
2058  /// If this returns a bitfield reference, nothing about the pointee type of
2059  /// the LLVM value is known: For example, it may not be a pointer to an
2060  /// integer.
2061  ///
2062  /// If this returns a normal address, and if the lvalue's C type is fixed
2063  /// size, this method guarantees that the returned pointer type will point to
2064  /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2065  /// variable length type, this is not possible.
2066  ///
2067  LValue EmitLValue(const Expr *E);
2068
2069  /// \brief Same as EmitLValue but additionally we generate checking code to
2070  /// guard against undefined behavior.  This is only suitable when we know
2071  /// that the address will be used to access the object.
2072  LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2073
2074  /// EmitToMemory - Change a scalar value from its value
2075  /// representation to its in-memory representation.
2076  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2077
2078  /// EmitFromMemory - Change a scalar value from its memory
2079  /// representation to its value representation.
2080  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2081
2082  /// EmitLoadOfScalar - Load a scalar value from an address, taking
2083  /// care to appropriately convert from the memory representation to
2084  /// the LLVM value representation.
2085  llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
2086                                unsigned Alignment, QualType Ty,
2087                                llvm::MDNode *TBAAInfo = 0);
2088
2089  /// EmitLoadOfScalar - Load a scalar value from an address, taking
2090  /// care to appropriately convert from the memory representation to
2091  /// the LLVM value representation.  The l-value must be a simple
2092  /// l-value.
2093  llvm::Value *EmitLoadOfScalar(LValue lvalue);
2094
2095  /// EmitStoreOfScalar - Store a scalar value to an address, taking
2096  /// care to appropriately convert from the memory representation to
2097  /// the LLVM value representation.
2098  void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
2099                         bool Volatile, unsigned Alignment, QualType Ty,
2100                         llvm::MDNode *TBAAInfo = 0, bool isInit=false);
2101
2102  /// EmitStoreOfScalar - Store a scalar value to an address, taking
2103  /// care to appropriately convert from the memory representation to
2104  /// the LLVM value representation.  The l-value must be a simple
2105  /// l-value.  The isInit flag indicates whether this is an initialization.
2106  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2107  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2108
2109  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2110  /// this method emits the address of the lvalue, then loads the result as an
2111  /// rvalue, returning the rvalue.
2112  RValue EmitLoadOfLValue(LValue V);
2113  RValue EmitLoadOfExtVectorElementLValue(LValue V);
2114  RValue EmitLoadOfBitfieldLValue(LValue LV);
2115
2116  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2117  /// lvalue, where both are guaranteed to the have the same type, and that type
2118  /// is 'Ty'.
2119  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false);
2120  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2121
2122  /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
2123  /// EmitStoreThroughLValue.
2124  ///
2125  /// \param Result [out] - If non-null, this will be set to a Value* for the
2126  /// bit-field contents after the store, appropriate for use as the result of
2127  /// an assignment to the bit-field.
2128  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2129                                      llvm::Value **Result=0);
2130
2131  /// Emit an l-value for an assignment (simple or compound) of complex type.
2132  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2133  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2134
2135  // Note: only available for agg return types
2136  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2137  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2138  // Note: only available for agg return types
2139  LValue EmitCallExprLValue(const CallExpr *E);
2140  // Note: only available for agg return types
2141  LValue EmitVAArgExprLValue(const VAArgExpr *E);
2142  LValue EmitDeclRefLValue(const DeclRefExpr *E);
2143  LValue EmitStringLiteralLValue(const StringLiteral *E);
2144  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2145  LValue EmitPredefinedLValue(const PredefinedExpr *E);
2146  LValue EmitUnaryOpLValue(const UnaryOperator *E);
2147  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
2148  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2149  LValue EmitMemberExpr(const MemberExpr *E);
2150  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2151  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2152  LValue EmitInitListLValue(const InitListExpr *E);
2153  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2154  LValue EmitCastLValue(const CastExpr *E);
2155  LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
2156  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2157  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2158
2159  RValue EmitRValueForField(LValue LV, const FieldDecl *FD);
2160
2161  class ConstantEmission {
2162    llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2163    ConstantEmission(llvm::Constant *C, bool isReference)
2164      : ValueAndIsReference(C, isReference) {}
2165  public:
2166    ConstantEmission() {}
2167    static ConstantEmission forReference(llvm::Constant *C) {
2168      return ConstantEmission(C, true);
2169    }
2170    static ConstantEmission forValue(llvm::Constant *C) {
2171      return ConstantEmission(C, false);
2172    }
2173
2174    operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; }
2175
2176    bool isReference() const { return ValueAndIsReference.getInt(); }
2177    LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2178      assert(isReference());
2179      return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2180                                            refExpr->getType());
2181    }
2182
2183    llvm::Constant *getValue() const {
2184      assert(!isReference());
2185      return ValueAndIsReference.getPointer();
2186    }
2187  };
2188
2189  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2190
2191  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2192                                AggValueSlot slot = AggValueSlot::ignored());
2193  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2194
2195  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2196                              const ObjCIvarDecl *Ivar);
2197  LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2198
2199  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2200  /// if the Field is a reference, this will return the address of the reference
2201  /// and not the address of the value stored in the reference.
2202  LValue EmitLValueForFieldInitialization(LValue Base,
2203                                          const FieldDecl* Field);
2204
2205  LValue EmitLValueForIvar(QualType ObjectTy,
2206                           llvm::Value* Base, const ObjCIvarDecl *Ivar,
2207                           unsigned CVRQualifiers);
2208
2209  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2210  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2211  LValue EmitLambdaLValue(const LambdaExpr *E);
2212  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2213
2214  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2215  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2216  LValue EmitStmtExprLValue(const StmtExpr *E);
2217  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2218  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2219  void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2220
2221  //===--------------------------------------------------------------------===//
2222  //                         Scalar Expression Emission
2223  //===--------------------------------------------------------------------===//
2224
2225  /// EmitCall - Generate a call of the given function, expecting the given
2226  /// result type, and using the given argument list which specifies both the
2227  /// LLVM arguments and the types they were derived from.
2228  ///
2229  /// \param TargetDecl - If given, the decl of the function in a direct call;
2230  /// used to set attributes on the call (noreturn, etc.).
2231  RValue EmitCall(const CGFunctionInfo &FnInfo,
2232                  llvm::Value *Callee,
2233                  ReturnValueSlot ReturnValue,
2234                  const CallArgList &Args,
2235                  const Decl *TargetDecl = 0,
2236                  llvm::Instruction **callOrInvoke = 0);
2237
2238  RValue EmitCall(QualType FnType, llvm::Value *Callee,
2239                  ReturnValueSlot ReturnValue,
2240                  CallExpr::const_arg_iterator ArgBeg,
2241                  CallExpr::const_arg_iterator ArgEnd,
2242                  const Decl *TargetDecl = 0);
2243  RValue EmitCallExpr(const CallExpr *E,
2244                      ReturnValueSlot ReturnValue = ReturnValueSlot());
2245
2246  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2247                                  ArrayRef<llvm::Value *> Args,
2248                                  const Twine &Name = "");
2249  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2250                                  const Twine &Name = "");
2251
2252  llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
2253                                llvm::Type *Ty);
2254  llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
2255                                llvm::Value *This, llvm::Type *Ty);
2256  llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2257                                         NestedNameSpecifier *Qual,
2258                                         llvm::Type *Ty);
2259
2260  llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2261                                                   CXXDtorType Type,
2262                                                   const CXXRecordDecl *RD);
2263
2264  RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2265                           SourceLocation CallLoc,
2266                           llvm::Value *Callee,
2267                           ReturnValueSlot ReturnValue,
2268                           llvm::Value *This,
2269                           llvm::Value *VTT,
2270                           CallExpr::const_arg_iterator ArgBeg,
2271                           CallExpr::const_arg_iterator ArgEnd);
2272  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2273                               ReturnValueSlot ReturnValue);
2274  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2275                                      ReturnValueSlot ReturnValue);
2276
2277  llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2278                                           const CXXMethodDecl *MD,
2279                                           llvm::Value *This);
2280  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2281                                       const CXXMethodDecl *MD,
2282                                       ReturnValueSlot ReturnValue);
2283
2284  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2285                                ReturnValueSlot ReturnValue);
2286
2287
2288  RValue EmitBuiltinExpr(const FunctionDecl *FD,
2289                         unsigned BuiltinID, const CallExpr *E);
2290
2291  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2292
2293  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2294  /// is unhandled by the current target.
2295  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2296
2297  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2298  llvm::Value *EmitNeonCall(llvm::Function *F,
2299                            SmallVectorImpl<llvm::Value*> &O,
2300                            const char *name,
2301                            unsigned shift = 0, bool rightshift = false);
2302  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2303  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2304                                   bool negateForRightShift);
2305
2306  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2307  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2308  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2309
2310  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2311  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2312  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2313  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2314  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2315  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2316                                const ObjCMethodDecl *MethodWithObjects);
2317  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2318  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2319                             ReturnValueSlot Return = ReturnValueSlot());
2320
2321  /// Retrieves the default cleanup kind for an ARC cleanup.
2322  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2323  CleanupKind getARCCleanupKind() {
2324    return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2325             ? NormalAndEHCleanup : NormalCleanup;
2326  }
2327
2328  // ARC primitives.
2329  void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2330  void EmitARCDestroyWeak(llvm::Value *addr);
2331  llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2332  llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2333  llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2334                                bool ignored);
2335  void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2336  void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2337  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2338  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2339  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2340                                  bool ignored);
2341  llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2342                                      bool ignored);
2343  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2344  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2345  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2346  void EmitARCRelease(llvm::Value *value, bool precise);
2347  llvm::Value *EmitARCAutorelease(llvm::Value *value);
2348  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2349  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2350  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2351
2352  std::pair<LValue,llvm::Value*>
2353  EmitARCStoreAutoreleasing(const BinaryOperator *e);
2354  std::pair<LValue,llvm::Value*>
2355  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2356
2357  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2358
2359  llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2360  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2361  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2362
2363  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2364  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2365  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2366
2367  static Destroyer destroyARCStrongImprecise;
2368  static Destroyer destroyARCStrongPrecise;
2369  static Destroyer destroyARCWeak;
2370
2371  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2372  llvm::Value *EmitObjCAutoreleasePoolPush();
2373  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2374  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2375  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2376
2377  /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
2378  /// expression. Will emit a temporary variable if E is not an LValue.
2379  RValue EmitReferenceBindingToExpr(const Expr* E,
2380                                    const NamedDecl *InitializedDecl);
2381
2382  //===--------------------------------------------------------------------===//
2383  //                           Expression Emission
2384  //===--------------------------------------------------------------------===//
2385
2386  // Expressions are broken into three classes: scalar, complex, aggregate.
2387
2388  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2389  /// scalar type, returning the result.
2390  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2391
2392  /// EmitScalarConversion - Emit a conversion from the specified type to the
2393  /// specified destination type, both of which are LLVM scalar types.
2394  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2395                                    QualType DstTy);
2396
2397  /// EmitComplexToScalarConversion - Emit a conversion from the specified
2398  /// complex type to the specified destination type, where the destination type
2399  /// is an LLVM scalar type.
2400  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2401                                             QualType DstTy);
2402
2403
2404  /// EmitAggExpr - Emit the computation of the specified expression
2405  /// of aggregate type.  The result is computed into the given slot,
2406  /// which may be null to indicate that the value is not needed.
2407  void EmitAggExpr(const Expr *E, AggValueSlot AS);
2408
2409  /// EmitAggExprToLValue - Emit the computation of the specified expression of
2410  /// aggregate type into a temporary LValue.
2411  LValue EmitAggExprToLValue(const Expr *E);
2412
2413  /// EmitGCMemmoveCollectable - Emit special API for structs with object
2414  /// pointers.
2415  void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2416                                QualType Ty);
2417
2418  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2419  /// make sure it survives garbage collection until this point.
2420  void EmitExtendGCLifetime(llvm::Value *object);
2421
2422  /// EmitComplexExpr - Emit the computation of the specified expression of
2423  /// complex type, returning the result.
2424  ComplexPairTy EmitComplexExpr(const Expr *E,
2425                                bool IgnoreReal = false,
2426                                bool IgnoreImag = false);
2427
2428  /// EmitComplexExprIntoAddr - Emit the computation of the specified expression
2429  /// of complex type, storing into the specified Value*.
2430  void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
2431                               bool DestIsVolatile);
2432
2433  /// StoreComplexToAddr - Store a complex number into the specified address.
2434  void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
2435                          bool DestIsVolatile);
2436  /// LoadComplexFromAddr - Load a complex number from the specified address.
2437  ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
2438
2439  /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2440  /// a static local variable.
2441  llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2442                                            const char *Separator,
2443                                       llvm::GlobalValue::LinkageTypes Linkage);
2444
2445  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2446  /// global variable that has already been created for it.  If the initializer
2447  /// has a different type than GV does, this may free GV and return a different
2448  /// one.  Otherwise it just returns GV.
2449  llvm::GlobalVariable *
2450  AddInitializerToStaticVarDecl(const VarDecl &D,
2451                                llvm::GlobalVariable *GV);
2452
2453
2454  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2455  /// variable with global storage.
2456  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2457                                bool PerformInit);
2458
2459  /// Call atexit() with a function that passes the given argument to
2460  /// the given function.
2461  void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr);
2462
2463  /// Emit code in this function to perform a guarded variable
2464  /// initialization.  Guarded initializations are used when it's not
2465  /// possible to prove that an initialization will be done exactly
2466  /// once, e.g. with a static local variable or a static data member
2467  /// of a class template.
2468  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2469                          bool PerformInit);
2470
2471  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2472  /// variables.
2473  void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2474                                 llvm::Constant **Decls,
2475                                 unsigned NumDecls);
2476
2477  /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2478  /// variables.
2479  void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2480                                  const std::vector<std::pair<llvm::WeakVH,
2481                                  llvm::Constant*> > &DtorsAndObjects);
2482
2483  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2484                                        const VarDecl *D,
2485                                        llvm::GlobalVariable *Addr,
2486                                        bool PerformInit);
2487
2488  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2489
2490  void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2491                                  const Expr *Exp);
2492
2493  void enterFullExpression(const ExprWithCleanups *E) {
2494    if (E->getNumObjects() == 0) return;
2495    enterNonTrivialFullExpression(E);
2496  }
2497  void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2498
2499  void EmitCXXThrowExpr(const CXXThrowExpr *E);
2500
2501  void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2502
2503  RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
2504
2505  //===--------------------------------------------------------------------===//
2506  //                         Annotations Emission
2507  //===--------------------------------------------------------------------===//
2508
2509  /// Emit an annotation call (intrinsic or builtin).
2510  llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2511                                  llvm::Value *AnnotatedVal,
2512                                  llvm::StringRef AnnotationStr,
2513                                  SourceLocation Location);
2514
2515  /// Emit local annotations for the local variable V, declared by D.
2516  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2517
2518  /// Emit field annotations for the given field & value. Returns the
2519  /// annotation result.
2520  llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2521
2522  //===--------------------------------------------------------------------===//
2523  //                             Internal Helpers
2524  //===--------------------------------------------------------------------===//
2525
2526  /// ContainsLabel - Return true if the statement contains a label in it.  If
2527  /// this statement is not executed normally, it not containing a label means
2528  /// that we can just remove the code.
2529  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2530
2531  /// containsBreak - Return true if the statement contains a break out of it.
2532  /// If the statement (recursively) contains a switch or loop with a break
2533  /// inside of it, this is fine.
2534  static bool containsBreak(const Stmt *S);
2535
2536  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2537  /// to a constant, or if it does but contains a label, return false.  If it
2538  /// constant folds return true and set the boolean result in Result.
2539  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2540
2541  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2542  /// to a constant, or if it does but contains a label, return false.  If it
2543  /// constant folds return true and set the folded value.
2544  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2545
2546  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2547  /// if statement) to the specified blocks.  Based on the condition, this might
2548  /// try to simplify the codegen of the conditional based on the branch.
2549  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2550                            llvm::BasicBlock *FalseBlock);
2551
2552  /// \brief Emit a description of a type in a format suitable for passing to
2553  /// a runtime sanitizer handler.
2554  llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2555
2556  /// \brief Convert a value into a format suitable for passing to a runtime
2557  /// sanitizer handler.
2558  llvm::Value *EmitCheckValue(llvm::Value *V);
2559
2560  /// \brief Emit a description of a source location in a format suitable for
2561  /// passing to a runtime sanitizer handler.
2562  llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
2563
2564  /// \brief Create a basic block that will call the trap intrinsic, and emit a
2565  /// conditional branch to it.
2566  void EmitCheck(llvm::Value *Checked, StringRef CheckName,
2567                 llvm::ArrayRef<llvm::Constant *> StaticArgs,
2568                 llvm::ArrayRef<llvm::Value *> DynamicArgs);
2569
2570  /// EmitCallArg - Emit a single call argument.
2571  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2572
2573  /// EmitDelegateCallArg - We are performing a delegate call; that
2574  /// is, the current function is delegating to another one.  Produce
2575  /// a r-value suitable for passing the given parameter.
2576  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
2577
2578  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2579  /// point operation, expressed as the maximum relative error in ulp.
2580  void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2581
2582private:
2583  llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2584  void EmitReturnOfRValue(RValue RV, QualType Ty);
2585
2586  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2587  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2588  ///
2589  /// \param AI - The first function argument of the expansion.
2590  /// \return The argument following the last expanded function
2591  /// argument.
2592  llvm::Function::arg_iterator
2593  ExpandTypeFromArgs(QualType Ty, LValue Dst,
2594                     llvm::Function::arg_iterator AI);
2595
2596  /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2597  /// Ty, into individual arguments on the provided vector \arg Args. See
2598  /// ABIArgInfo::Expand.
2599  void ExpandTypeToArgs(QualType Ty, RValue Src,
2600                        SmallVector<llvm::Value*, 16> &Args,
2601                        llvm::FunctionType *IRFuncTy);
2602
2603  llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2604                            const Expr *InputExpr, std::string &ConstraintStr);
2605
2606  llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2607                                  LValue InputValue, QualType InputType,
2608                                  std::string &ConstraintStr);
2609
2610  /// EmitCallArgs - Emit call arguments for a function.
2611  /// The CallArgTypeInfo parameter is used for iterating over the known
2612  /// argument types of the function being called.
2613  template<typename T>
2614  void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2615                    CallExpr::const_arg_iterator ArgBeg,
2616                    CallExpr::const_arg_iterator ArgEnd) {
2617      CallExpr::const_arg_iterator Arg = ArgBeg;
2618
2619    // First, use the argument types that the type info knows about
2620    if (CallArgTypeInfo) {
2621      for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2622           E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2623        assert(Arg != ArgEnd && "Running over edge of argument list!");
2624        QualType ArgType = *I;
2625#ifndef NDEBUG
2626        QualType ActualArgType = Arg->getType();
2627        if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2628          QualType ActualBaseType =
2629            ActualArgType->getAs<PointerType>()->getPointeeType();
2630          QualType ArgBaseType =
2631            ArgType->getAs<PointerType>()->getPointeeType();
2632          if (ArgBaseType->isVariableArrayType()) {
2633            if (const VariableArrayType *VAT =
2634                getContext().getAsVariableArrayType(ActualBaseType)) {
2635              if (!VAT->getSizeExpr())
2636                ActualArgType = ArgType;
2637            }
2638          }
2639        }
2640        assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2641               getTypePtr() ==
2642               getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2643               "type mismatch in call argument!");
2644#endif
2645        EmitCallArg(Args, *Arg, ArgType);
2646      }
2647
2648      // Either we've emitted all the call args, or we have a call to a
2649      // variadic function.
2650      assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2651             "Extra arguments in non-variadic function!");
2652
2653    }
2654
2655    // If we still have any arguments, emit them using the type of the argument.
2656    for (; Arg != ArgEnd; ++Arg)
2657      EmitCallArg(Args, *Arg, Arg->getType());
2658  }
2659
2660  const TargetCodeGenInfo &getTargetHooks() const {
2661    return CGM.getTargetCodeGenInfo();
2662  }
2663
2664  void EmitDeclMetadata();
2665
2666  CodeGenModule::ByrefHelpers *
2667  buildByrefHelpers(llvm::StructType &byrefType,
2668                    const AutoVarEmission &emission);
2669
2670  void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
2671
2672  /// GetPointeeAlignment - Given an expression with a pointer type, emit the
2673  /// value and compute our best estimate of the alignment of the pointee.
2674  std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
2675};
2676
2677/// Helper class with most of the code for saving a value for a
2678/// conditional expression cleanup.
2679struct DominatingLLVMValue {
2680  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2681
2682  /// Answer whether the given value needs extra work to be saved.
2683  static bool needsSaving(llvm::Value *value) {
2684    // If it's not an instruction, we don't need to save.
2685    if (!isa<llvm::Instruction>(value)) return false;
2686
2687    // If it's an instruction in the entry block, we don't need to save.
2688    llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2689    return (block != &block->getParent()->getEntryBlock());
2690  }
2691
2692  /// Try to save the given value.
2693  static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2694    if (!needsSaving(value)) return saved_type(value, false);
2695
2696    // Otherwise we need an alloca.
2697    llvm::Value *alloca =
2698      CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2699    CGF.Builder.CreateStore(value, alloca);
2700
2701    return saved_type(alloca, true);
2702  }
2703
2704  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2705    if (!value.getInt()) return value.getPointer();
2706    return CGF.Builder.CreateLoad(value.getPointer());
2707  }
2708};
2709
2710/// A partial specialization of DominatingValue for llvm::Values that
2711/// might be llvm::Instructions.
2712template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2713  typedef T *type;
2714  static type restore(CodeGenFunction &CGF, saved_type value) {
2715    return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2716  }
2717};
2718
2719/// A specialization of DominatingValue for RValue.
2720template <> struct DominatingValue<RValue> {
2721  typedef RValue type;
2722  class saved_type {
2723    enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2724                AggregateAddress, ComplexAddress };
2725
2726    llvm::Value *Value;
2727    Kind K;
2728    saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2729
2730  public:
2731    static bool needsSaving(RValue value);
2732    static saved_type save(CodeGenFunction &CGF, RValue value);
2733    RValue restore(CodeGenFunction &CGF);
2734
2735    // implementations in CGExprCXX.cpp
2736  };
2737
2738  static bool needsSaving(type value) {
2739    return saved_type::needsSaving(value);
2740  }
2741  static saved_type save(CodeGenFunction &CGF, type value) {
2742    return saved_type::save(CGF, value);
2743  }
2744  static type restore(CodeGenFunction &CGF, saved_type value) {
2745    return value.restore(CGF);
2746  }
2747};
2748
2749}  // end namespace CodeGen
2750}  // end namespace clang
2751
2752#endif
2753