CodeGenFunction.h revision 55fc873017f10f6f566b182b70f6fc22aefa3464
1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This is the internal per-function state used for llvm translation. 11// 12//===----------------------------------------------------------------------===// 13 14#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H 15#define CLANG_CODEGEN_CODEGENFUNCTION_H 16 17#include "CGBuilder.h" 18#include "CGDebugInfo.h" 19#include "CGValue.h" 20#include "CodeGenModule.h" 21#include "clang/AST/CharUnits.h" 22#include "clang/AST/ExprCXX.h" 23#include "clang/AST/ExprObjC.h" 24#include "clang/AST/Type.h" 25#include "clang/Basic/ABI.h" 26#include "clang/Basic/TargetInfo.h" 27#include "clang/Frontend/CodeGenOptions.h" 28#include "llvm/ADT/ArrayRef.h" 29#include "llvm/ADT/DenseMap.h" 30#include "llvm/ADT/SmallVector.h" 31#include "llvm/Support/Debug.h" 32#include "llvm/Support/ValueHandle.h" 33 34namespace llvm { 35 class BasicBlock; 36 class LLVMContext; 37 class MDNode; 38 class Module; 39 class SwitchInst; 40 class Twine; 41 class Value; 42 class CallSite; 43} 44 45namespace clang { 46 class ASTContext; 47 class BlockDecl; 48 class CXXDestructorDecl; 49 class CXXForRangeStmt; 50 class CXXTryStmt; 51 class Decl; 52 class LabelDecl; 53 class EnumConstantDecl; 54 class FunctionDecl; 55 class FunctionProtoType; 56 class LabelStmt; 57 class ObjCContainerDecl; 58 class ObjCInterfaceDecl; 59 class ObjCIvarDecl; 60 class ObjCMethodDecl; 61 class ObjCImplementationDecl; 62 class ObjCPropertyImplDecl; 63 class TargetInfo; 64 class TargetCodeGenInfo; 65 class VarDecl; 66 class ObjCForCollectionStmt; 67 class ObjCAtTryStmt; 68 class ObjCAtThrowStmt; 69 class ObjCAtSynchronizedStmt; 70 class ObjCAutoreleasePoolStmt; 71 72namespace CodeGen { 73 class CodeGenTypes; 74 class CGFunctionInfo; 75 class CGRecordLayout; 76 class CGBlockInfo; 77 class CGCXXABI; 78 class BlockFlags; 79 class BlockFieldFlags; 80 81/// A branch fixup. These are required when emitting a goto to a 82/// label which hasn't been emitted yet. The goto is optimistically 83/// emitted as a branch to the basic block for the label, and (if it 84/// occurs in a scope with non-trivial cleanups) a fixup is added to 85/// the innermost cleanup. When a (normal) cleanup is popped, any 86/// unresolved fixups in that scope are threaded through the cleanup. 87struct BranchFixup { 88 /// The block containing the terminator which needs to be modified 89 /// into a switch if this fixup is resolved into the current scope. 90 /// If null, LatestBranch points directly to the destination. 91 llvm::BasicBlock *OptimisticBranchBlock; 92 93 /// The ultimate destination of the branch. 94 /// 95 /// This can be set to null to indicate that this fixup was 96 /// successfully resolved. 97 llvm::BasicBlock *Destination; 98 99 /// The destination index value. 100 unsigned DestinationIndex; 101 102 /// The initial branch of the fixup. 103 llvm::BranchInst *InitialBranch; 104}; 105 106template <class T> struct InvariantValue { 107 typedef T type; 108 typedef T saved_type; 109 static bool needsSaving(type value) { return false; } 110 static saved_type save(CodeGenFunction &CGF, type value) { return value; } 111 static type restore(CodeGenFunction &CGF, saved_type value) { return value; } 112}; 113 114/// A metaprogramming class for ensuring that a value will dominate an 115/// arbitrary position in a function. 116template <class T> struct DominatingValue : InvariantValue<T> {}; 117 118template <class T, bool mightBeInstruction = 119 llvm::is_base_of<llvm::Value, T>::value && 120 !llvm::is_base_of<llvm::Constant, T>::value && 121 !llvm::is_base_of<llvm::BasicBlock, T>::value> 122struct DominatingPointer; 123template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {}; 124// template <class T> struct DominatingPointer<T,true> at end of file 125 126template <class T> struct DominatingValue<T*> : DominatingPointer<T> {}; 127 128enum CleanupKind { 129 EHCleanup = 0x1, 130 NormalCleanup = 0x2, 131 NormalAndEHCleanup = EHCleanup | NormalCleanup, 132 133 InactiveCleanup = 0x4, 134 InactiveEHCleanup = EHCleanup | InactiveCleanup, 135 InactiveNormalCleanup = NormalCleanup | InactiveCleanup, 136 InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup 137}; 138 139/// A stack of scopes which respond to exceptions, including cleanups 140/// and catch blocks. 141class EHScopeStack { 142public: 143 /// A saved depth on the scope stack. This is necessary because 144 /// pushing scopes onto the stack invalidates iterators. 145 class stable_iterator { 146 friend class EHScopeStack; 147 148 /// Offset from StartOfData to EndOfBuffer. 149 ptrdiff_t Size; 150 151 stable_iterator(ptrdiff_t Size) : Size(Size) {} 152 153 public: 154 static stable_iterator invalid() { return stable_iterator(-1); } 155 stable_iterator() : Size(-1) {} 156 157 bool isValid() const { return Size >= 0; } 158 159 /// Returns true if this scope encloses I. 160 /// Returns false if I is invalid. 161 /// This scope must be valid. 162 bool encloses(stable_iterator I) const { return Size <= I.Size; } 163 164 /// Returns true if this scope strictly encloses I: that is, 165 /// if it encloses I and is not I. 166 /// Returns false is I is invalid. 167 /// This scope must be valid. 168 bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; } 169 170 friend bool operator==(stable_iterator A, stable_iterator B) { 171 return A.Size == B.Size; 172 } 173 friend bool operator!=(stable_iterator A, stable_iterator B) { 174 return A.Size != B.Size; 175 } 176 }; 177 178 /// Information for lazily generating a cleanup. Subclasses must be 179 /// POD-like: cleanups will not be destructed, and they will be 180 /// allocated on the cleanup stack and freely copied and moved 181 /// around. 182 /// 183 /// Cleanup implementations should generally be declared in an 184 /// anonymous namespace. 185 class Cleanup { 186 // Anchor the construction vtable. 187 virtual void anchor(); 188 public: 189 /// Generation flags. 190 class Flags { 191 enum { 192 F_IsForEH = 0x1, 193 F_IsNormalCleanupKind = 0x2, 194 F_IsEHCleanupKind = 0x4 195 }; 196 unsigned flags; 197 198 public: 199 Flags() : flags(0) {} 200 201 /// isForEH - true if the current emission is for an EH cleanup. 202 bool isForEHCleanup() const { return flags & F_IsForEH; } 203 bool isForNormalCleanup() const { return !isForEHCleanup(); } 204 void setIsForEHCleanup() { flags |= F_IsForEH; } 205 206 bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; } 207 void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; } 208 209 /// isEHCleanupKind - true if the cleanup was pushed as an EH 210 /// cleanup. 211 bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; } 212 void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; } 213 }; 214 215 // Provide a virtual destructor to suppress a very common warning 216 // that unfortunately cannot be suppressed without this. Cleanups 217 // should not rely on this destructor ever being called. 218 virtual ~Cleanup() {} 219 220 /// Emit the cleanup. For normal cleanups, this is run in the 221 /// same EH context as when the cleanup was pushed, i.e. the 222 /// immediately-enclosing context of the cleanup scope. For 223 /// EH cleanups, this is run in a terminate context. 224 /// 225 // \param flags cleanup kind. 226 virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0; 227 }; 228 229 /// ConditionalCleanupN stores the saved form of its N parameters, 230 /// then restores them and performs the cleanup. 231 template <class T, class A0> 232 class ConditionalCleanup1 : public Cleanup { 233 typedef typename DominatingValue<A0>::saved_type A0_saved; 234 A0_saved a0_saved; 235 236 void Emit(CodeGenFunction &CGF, Flags flags) { 237 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 238 T(a0).Emit(CGF, flags); 239 } 240 241 public: 242 ConditionalCleanup1(A0_saved a0) 243 : a0_saved(a0) {} 244 }; 245 246 template <class T, class A0, class A1> 247 class ConditionalCleanup2 : public Cleanup { 248 typedef typename DominatingValue<A0>::saved_type A0_saved; 249 typedef typename DominatingValue<A1>::saved_type A1_saved; 250 A0_saved a0_saved; 251 A1_saved a1_saved; 252 253 void Emit(CodeGenFunction &CGF, Flags flags) { 254 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 255 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 256 T(a0, a1).Emit(CGF, flags); 257 } 258 259 public: 260 ConditionalCleanup2(A0_saved a0, A1_saved a1) 261 : a0_saved(a0), a1_saved(a1) {} 262 }; 263 264 template <class T, class A0, class A1, class A2> 265 class ConditionalCleanup3 : public Cleanup { 266 typedef typename DominatingValue<A0>::saved_type A0_saved; 267 typedef typename DominatingValue<A1>::saved_type A1_saved; 268 typedef typename DominatingValue<A2>::saved_type A2_saved; 269 A0_saved a0_saved; 270 A1_saved a1_saved; 271 A2_saved a2_saved; 272 273 void Emit(CodeGenFunction &CGF, Flags flags) { 274 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 275 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 276 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 277 T(a0, a1, a2).Emit(CGF, flags); 278 } 279 280 public: 281 ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2) 282 : a0_saved(a0), a1_saved(a1), a2_saved(a2) {} 283 }; 284 285 template <class T, class A0, class A1, class A2, class A3> 286 class ConditionalCleanup4 : public Cleanup { 287 typedef typename DominatingValue<A0>::saved_type A0_saved; 288 typedef typename DominatingValue<A1>::saved_type A1_saved; 289 typedef typename DominatingValue<A2>::saved_type A2_saved; 290 typedef typename DominatingValue<A3>::saved_type A3_saved; 291 A0_saved a0_saved; 292 A1_saved a1_saved; 293 A2_saved a2_saved; 294 A3_saved a3_saved; 295 296 void Emit(CodeGenFunction &CGF, Flags flags) { 297 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 298 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 299 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 300 A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved); 301 T(a0, a1, a2, a3).Emit(CGF, flags); 302 } 303 304 public: 305 ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3) 306 : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {} 307 }; 308 309private: 310 // The implementation for this class is in CGException.h and 311 // CGException.cpp; the definition is here because it's used as a 312 // member of CodeGenFunction. 313 314 /// The start of the scope-stack buffer, i.e. the allocated pointer 315 /// for the buffer. All of these pointers are either simultaneously 316 /// null or simultaneously valid. 317 char *StartOfBuffer; 318 319 /// The end of the buffer. 320 char *EndOfBuffer; 321 322 /// The first valid entry in the buffer. 323 char *StartOfData; 324 325 /// The innermost normal cleanup on the stack. 326 stable_iterator InnermostNormalCleanup; 327 328 /// The innermost EH scope on the stack. 329 stable_iterator InnermostEHScope; 330 331 /// The current set of branch fixups. A branch fixup is a jump to 332 /// an as-yet unemitted label, i.e. a label for which we don't yet 333 /// know the EH stack depth. Whenever we pop a cleanup, we have 334 /// to thread all the current branch fixups through it. 335 /// 336 /// Fixups are recorded as the Use of the respective branch or 337 /// switch statement. The use points to the final destination. 338 /// When popping out of a cleanup, these uses are threaded through 339 /// the cleanup and adjusted to point to the new cleanup. 340 /// 341 /// Note that branches are allowed to jump into protected scopes 342 /// in certain situations; e.g. the following code is legal: 343 /// struct A { ~A(); }; // trivial ctor, non-trivial dtor 344 /// goto foo; 345 /// A a; 346 /// foo: 347 /// bar(); 348 SmallVector<BranchFixup, 8> BranchFixups; 349 350 char *allocate(size_t Size); 351 352 void *pushCleanup(CleanupKind K, size_t DataSize); 353 354public: 355 EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0), 356 InnermostNormalCleanup(stable_end()), 357 InnermostEHScope(stable_end()) {} 358 ~EHScopeStack() { delete[] StartOfBuffer; } 359 360 // Variadic templates would make this not terrible. 361 362 /// Push a lazily-created cleanup on the stack. 363 template <class T> 364 void pushCleanup(CleanupKind Kind) { 365 void *Buffer = pushCleanup(Kind, sizeof(T)); 366 Cleanup *Obj = new(Buffer) T(); 367 (void) Obj; 368 } 369 370 /// Push a lazily-created cleanup on the stack. 371 template <class T, class A0> 372 void pushCleanup(CleanupKind Kind, A0 a0) { 373 void *Buffer = pushCleanup(Kind, sizeof(T)); 374 Cleanup *Obj = new(Buffer) T(a0); 375 (void) Obj; 376 } 377 378 /// Push a lazily-created cleanup on the stack. 379 template <class T, class A0, class A1> 380 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) { 381 void *Buffer = pushCleanup(Kind, sizeof(T)); 382 Cleanup *Obj = new(Buffer) T(a0, a1); 383 (void) Obj; 384 } 385 386 /// Push a lazily-created cleanup on the stack. 387 template <class T, class A0, class A1, class A2> 388 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) { 389 void *Buffer = pushCleanup(Kind, sizeof(T)); 390 Cleanup *Obj = new(Buffer) T(a0, a1, a2); 391 (void) Obj; 392 } 393 394 /// Push a lazily-created cleanup on the stack. 395 template <class T, class A0, class A1, class A2, class A3> 396 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) { 397 void *Buffer = pushCleanup(Kind, sizeof(T)); 398 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3); 399 (void) Obj; 400 } 401 402 /// Push a lazily-created cleanup on the stack. 403 template <class T, class A0, class A1, class A2, class A3, class A4> 404 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) { 405 void *Buffer = pushCleanup(Kind, sizeof(T)); 406 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4); 407 (void) Obj; 408 } 409 410 // Feel free to add more variants of the following: 411 412 /// Push a cleanup with non-constant storage requirements on the 413 /// stack. The cleanup type must provide an additional static method: 414 /// static size_t getExtraSize(size_t); 415 /// The argument to this method will be the value N, which will also 416 /// be passed as the first argument to the constructor. 417 /// 418 /// The data stored in the extra storage must obey the same 419 /// restrictions as normal cleanup member data. 420 /// 421 /// The pointer returned from this method is valid until the cleanup 422 /// stack is modified. 423 template <class T, class A0, class A1, class A2> 424 T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) { 425 void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N)); 426 return new (Buffer) T(N, a0, a1, a2); 427 } 428 429 /// Pops a cleanup scope off the stack. This is private to CGCleanup.cpp. 430 void popCleanup(); 431 432 /// Push a set of catch handlers on the stack. The catch is 433 /// uninitialized and will need to have the given number of handlers 434 /// set on it. 435 class EHCatchScope *pushCatch(unsigned NumHandlers); 436 437 /// Pops a catch scope off the stack. This is private to CGException.cpp. 438 void popCatch(); 439 440 /// Push an exceptions filter on the stack. 441 class EHFilterScope *pushFilter(unsigned NumFilters); 442 443 /// Pops an exceptions filter off the stack. 444 void popFilter(); 445 446 /// Push a terminate handler on the stack. 447 void pushTerminate(); 448 449 /// Pops a terminate handler off the stack. 450 void popTerminate(); 451 452 /// Determines whether the exception-scopes stack is empty. 453 bool empty() const { return StartOfData == EndOfBuffer; } 454 455 bool requiresLandingPad() const { 456 return InnermostEHScope != stable_end(); 457 } 458 459 /// Determines whether there are any normal cleanups on the stack. 460 bool hasNormalCleanups() const { 461 return InnermostNormalCleanup != stable_end(); 462 } 463 464 /// Returns the innermost normal cleanup on the stack, or 465 /// stable_end() if there are no normal cleanups. 466 stable_iterator getInnermostNormalCleanup() const { 467 return InnermostNormalCleanup; 468 } 469 stable_iterator getInnermostActiveNormalCleanup() const; 470 471 stable_iterator getInnermostEHScope() const { 472 return InnermostEHScope; 473 } 474 475 stable_iterator getInnermostActiveEHScope() const; 476 477 /// An unstable reference to a scope-stack depth. Invalidated by 478 /// pushes but not pops. 479 class iterator; 480 481 /// Returns an iterator pointing to the innermost EH scope. 482 iterator begin() const; 483 484 /// Returns an iterator pointing to the outermost EH scope. 485 iterator end() const; 486 487 /// Create a stable reference to the top of the EH stack. The 488 /// returned reference is valid until that scope is popped off the 489 /// stack. 490 stable_iterator stable_begin() const { 491 return stable_iterator(EndOfBuffer - StartOfData); 492 } 493 494 /// Create a stable reference to the bottom of the EH stack. 495 static stable_iterator stable_end() { 496 return stable_iterator(0); 497 } 498 499 /// Translates an iterator into a stable_iterator. 500 stable_iterator stabilize(iterator it) const; 501 502 /// Turn a stable reference to a scope depth into a unstable pointer 503 /// to the EH stack. 504 iterator find(stable_iterator save) const; 505 506 /// Removes the cleanup pointed to by the given stable_iterator. 507 void removeCleanup(stable_iterator save); 508 509 /// Add a branch fixup to the current cleanup scope. 510 BranchFixup &addBranchFixup() { 511 assert(hasNormalCleanups() && "adding fixup in scope without cleanups"); 512 BranchFixups.push_back(BranchFixup()); 513 return BranchFixups.back(); 514 } 515 516 unsigned getNumBranchFixups() const { return BranchFixups.size(); } 517 BranchFixup &getBranchFixup(unsigned I) { 518 assert(I < getNumBranchFixups()); 519 return BranchFixups[I]; 520 } 521 522 /// Pops lazily-removed fixups from the end of the list. This 523 /// should only be called by procedures which have just popped a 524 /// cleanup or resolved one or more fixups. 525 void popNullFixups(); 526 527 /// Clears the branch-fixups list. This should only be called by 528 /// ResolveAllBranchFixups. 529 void clearFixups() { BranchFixups.clear(); } 530}; 531 532/// CodeGenFunction - This class organizes the per-function state that is used 533/// while generating LLVM code. 534class CodeGenFunction : public CodeGenTypeCache { 535 CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION; 536 void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION; 537 538 friend class CGCXXABI; 539public: 540 /// A jump destination is an abstract label, branching to which may 541 /// require a jump out through normal cleanups. 542 struct JumpDest { 543 JumpDest() : Block(0), ScopeDepth(), Index(0) {} 544 JumpDest(llvm::BasicBlock *Block, 545 EHScopeStack::stable_iterator Depth, 546 unsigned Index) 547 : Block(Block), ScopeDepth(Depth), Index(Index) {} 548 549 bool isValid() const { return Block != 0; } 550 llvm::BasicBlock *getBlock() const { return Block; } 551 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 552 unsigned getDestIndex() const { return Index; } 553 554 private: 555 llvm::BasicBlock *Block; 556 EHScopeStack::stable_iterator ScopeDepth; 557 unsigned Index; 558 }; 559 560 CodeGenModule &CGM; // Per-module state. 561 const TargetInfo &Target; 562 563 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 564 CGBuilderTy Builder; 565 566 /// CurFuncDecl - Holds the Decl for the current function or ObjC method. 567 /// This excludes BlockDecls. 568 const Decl *CurFuncDecl; 569 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 570 const Decl *CurCodeDecl; 571 const CGFunctionInfo *CurFnInfo; 572 QualType FnRetTy; 573 llvm::Function *CurFn; 574 575 /// CurGD - The GlobalDecl for the current function being compiled. 576 GlobalDecl CurGD; 577 578 /// PrologueCleanupDepth - The cleanup depth enclosing all the 579 /// cleanups associated with the parameters. 580 EHScopeStack::stable_iterator PrologueCleanupDepth; 581 582 /// ReturnBlock - Unified return block. 583 JumpDest ReturnBlock; 584 585 /// ReturnValue - The temporary alloca to hold the return value. This is null 586 /// iff the function has no return value. 587 llvm::Value *ReturnValue; 588 589 /// AllocaInsertPoint - This is an instruction in the entry block before which 590 /// we prefer to insert allocas. 591 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 592 593 /// BoundsChecking - Emit run-time bounds checks. Higher values mean 594 /// potentially higher performance penalties. 595 unsigned char BoundsChecking; 596 597 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 598 /// calls to EmitTypeCheck can be skipped. 599 bool SanitizePerformTypeCheck; 600 601 /// In ARC, whether we should autorelease the return value. 602 bool AutoreleaseResult; 603 604 const CodeGen::CGBlockInfo *BlockInfo; 605 llvm::Value *BlockPointer; 606 607 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 608 FieldDecl *LambdaThisCaptureField; 609 610 /// \brief A mapping from NRVO variables to the flags used to indicate 611 /// when the NRVO has been applied to this variable. 612 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 613 614 EHScopeStack EHStack; 615 616 /// i32s containing the indexes of the cleanup destinations. 617 llvm::AllocaInst *NormalCleanupDest; 618 619 unsigned NextCleanupDestIndex; 620 621 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 622 CGBlockInfo *FirstBlockInfo; 623 624 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 625 llvm::BasicBlock *EHResumeBlock; 626 627 /// The exception slot. All landing pads write the current exception pointer 628 /// into this alloca. 629 llvm::Value *ExceptionSlot; 630 631 /// The selector slot. Under the MandatoryCleanup model, all landing pads 632 /// write the current selector value into this alloca. 633 llvm::AllocaInst *EHSelectorSlot; 634 635 /// Emits a landing pad for the current EH stack. 636 llvm::BasicBlock *EmitLandingPad(); 637 638 llvm::BasicBlock *getInvokeDestImpl(); 639 640 template <class T> 641 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 642 return DominatingValue<T>::save(*this, value); 643 } 644 645public: 646 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 647 /// rethrows. 648 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 649 650 /// A class controlling the emission of a finally block. 651 class FinallyInfo { 652 /// Where the catchall's edge through the cleanup should go. 653 JumpDest RethrowDest; 654 655 /// A function to call to enter the catch. 656 llvm::Constant *BeginCatchFn; 657 658 /// An i1 variable indicating whether or not the @finally is 659 /// running for an exception. 660 llvm::AllocaInst *ForEHVar; 661 662 /// An i8* variable into which the exception pointer to rethrow 663 /// has been saved. 664 llvm::AllocaInst *SavedExnVar; 665 666 public: 667 void enter(CodeGenFunction &CGF, const Stmt *Finally, 668 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 669 llvm::Constant *rethrowFn); 670 void exit(CodeGenFunction &CGF); 671 }; 672 673 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 674 /// current full-expression. Safe against the possibility that 675 /// we're currently inside a conditionally-evaluated expression. 676 template <class T, class A0> 677 void pushFullExprCleanup(CleanupKind kind, A0 a0) { 678 // If we're not in a conditional branch, or if none of the 679 // arguments requires saving, then use the unconditional cleanup. 680 if (!isInConditionalBranch()) 681 return EHStack.pushCleanup<T>(kind, a0); 682 683 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 684 685 typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType; 686 EHStack.pushCleanup<CleanupType>(kind, a0_saved); 687 initFullExprCleanup(); 688 } 689 690 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 691 /// current full-expression. Safe against the possibility that 692 /// we're currently inside a conditionally-evaluated expression. 693 template <class T, class A0, class A1> 694 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) { 695 // If we're not in a conditional branch, or if none of the 696 // arguments requires saving, then use the unconditional cleanup. 697 if (!isInConditionalBranch()) 698 return EHStack.pushCleanup<T>(kind, a0, a1); 699 700 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 701 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 702 703 typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType; 704 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved); 705 initFullExprCleanup(); 706 } 707 708 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 709 /// current full-expression. Safe against the possibility that 710 /// we're currently inside a conditionally-evaluated expression. 711 template <class T, class A0, class A1, class A2> 712 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) { 713 // If we're not in a conditional branch, or if none of the 714 // arguments requires saving, then use the unconditional cleanup. 715 if (!isInConditionalBranch()) { 716 return EHStack.pushCleanup<T>(kind, a0, a1, a2); 717 } 718 719 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 720 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 721 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 722 723 typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType; 724 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved); 725 initFullExprCleanup(); 726 } 727 728 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 729 /// current full-expression. Safe against the possibility that 730 /// we're currently inside a conditionally-evaluated expression. 731 template <class T, class A0, class A1, class A2, class A3> 732 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) { 733 // If we're not in a conditional branch, or if none of the 734 // arguments requires saving, then use the unconditional cleanup. 735 if (!isInConditionalBranch()) { 736 return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3); 737 } 738 739 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 740 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 741 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 742 typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3); 743 744 typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType; 745 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, 746 a2_saved, a3_saved); 747 initFullExprCleanup(); 748 } 749 750 /// Set up the last cleaup that was pushed as a conditional 751 /// full-expression cleanup. 752 void initFullExprCleanup(); 753 754 /// PushDestructorCleanup - Push a cleanup to call the 755 /// complete-object destructor of an object of the given type at the 756 /// given address. Does nothing if T is not a C++ class type with a 757 /// non-trivial destructor. 758 void PushDestructorCleanup(QualType T, llvm::Value *Addr); 759 760 /// PushDestructorCleanup - Push a cleanup to call the 761 /// complete-object variant of the given destructor on the object at 762 /// the given address. 763 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, 764 llvm::Value *Addr); 765 766 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 767 /// process all branch fixups. 768 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 769 770 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 771 /// The block cannot be reactivated. Pops it if it's the top of the 772 /// stack. 773 /// 774 /// \param DominatingIP - An instruction which is known to 775 /// dominate the current IP (if set) and which lies along 776 /// all paths of execution between the current IP and the 777 /// the point at which the cleanup comes into scope. 778 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 779 llvm::Instruction *DominatingIP); 780 781 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 782 /// Cannot be used to resurrect a deactivated cleanup. 783 /// 784 /// \param DominatingIP - An instruction which is known to 785 /// dominate the current IP (if set) and which lies along 786 /// all paths of execution between the current IP and the 787 /// the point at which the cleanup comes into scope. 788 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 789 llvm::Instruction *DominatingIP); 790 791 /// \brief Enters a new scope for capturing cleanups, all of which 792 /// will be executed once the scope is exited. 793 class RunCleanupsScope { 794 EHScopeStack::stable_iterator CleanupStackDepth; 795 bool OldDidCallStackSave; 796 bool PerformCleanup; 797 798 RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION; 799 void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION; 800 801 protected: 802 CodeGenFunction& CGF; 803 804 public: 805 /// \brief Enter a new cleanup scope. 806 explicit RunCleanupsScope(CodeGenFunction &CGF) 807 : PerformCleanup(true), CGF(CGF) 808 { 809 CleanupStackDepth = CGF.EHStack.stable_begin(); 810 OldDidCallStackSave = CGF.DidCallStackSave; 811 CGF.DidCallStackSave = false; 812 } 813 814 /// \brief Exit this cleanup scope, emitting any accumulated 815 /// cleanups. 816 ~RunCleanupsScope() { 817 if (PerformCleanup) { 818 CGF.DidCallStackSave = OldDidCallStackSave; 819 CGF.PopCleanupBlocks(CleanupStackDepth); 820 } 821 } 822 823 /// \brief Determine whether this scope requires any cleanups. 824 bool requiresCleanups() const { 825 return CGF.EHStack.stable_begin() != CleanupStackDepth; 826 } 827 828 /// \brief Force the emission of cleanups now, instead of waiting 829 /// until this object is destroyed. 830 void ForceCleanup() { 831 assert(PerformCleanup && "Already forced cleanup"); 832 CGF.DidCallStackSave = OldDidCallStackSave; 833 CGF.PopCleanupBlocks(CleanupStackDepth); 834 PerformCleanup = false; 835 } 836 }; 837 838 class LexicalScope: protected RunCleanupsScope { 839 SourceRange Range; 840 bool PopDebugStack; 841 842 LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION; 843 void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION; 844 845 public: 846 /// \brief Enter a new cleanup scope. 847 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 848 : RunCleanupsScope(CGF), Range(Range), PopDebugStack(true) { 849 if (CGDebugInfo *DI = CGF.getDebugInfo()) 850 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 851 } 852 853 /// \brief Exit this cleanup scope, emitting any accumulated 854 /// cleanups. 855 ~LexicalScope() { 856 if (PopDebugStack) { 857 CGDebugInfo *DI = CGF.getDebugInfo(); 858 if (DI) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 859 } 860 } 861 862 /// \brief Force the emission of cleanups now, instead of waiting 863 /// until this object is destroyed. 864 void ForceCleanup() { 865 RunCleanupsScope::ForceCleanup(); 866 if (CGDebugInfo *DI = CGF.getDebugInfo()) { 867 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 868 PopDebugStack = false; 869 } 870 } 871 }; 872 873 874 /// PopCleanupBlocks - Takes the old cleanup stack size and emits 875 /// the cleanup blocks that have been added. 876 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 877 878 void ResolveBranchFixups(llvm::BasicBlock *Target); 879 880 /// The given basic block lies in the current EH scope, but may be a 881 /// target of a potentially scope-crossing jump; get a stable handle 882 /// to which we can perform this jump later. 883 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 884 return JumpDest(Target, 885 EHStack.getInnermostNormalCleanup(), 886 NextCleanupDestIndex++); 887 } 888 889 /// The given basic block lies in the current EH scope, but may be a 890 /// target of a potentially scope-crossing jump; get a stable handle 891 /// to which we can perform this jump later. 892 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 893 return getJumpDestInCurrentScope(createBasicBlock(Name)); 894 } 895 896 /// EmitBranchThroughCleanup - Emit a branch from the current insert 897 /// block through the normal cleanup handling code (if any) and then 898 /// on to \arg Dest. 899 void EmitBranchThroughCleanup(JumpDest Dest); 900 901 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 902 /// specified destination obviously has no cleanups to run. 'false' is always 903 /// a conservatively correct answer for this method. 904 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 905 906 /// popCatchScope - Pops the catch scope at the top of the EHScope 907 /// stack, emitting any required code (other than the catch handlers 908 /// themselves). 909 void popCatchScope(); 910 911 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 912 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 913 914 /// An object to manage conditionally-evaluated expressions. 915 class ConditionalEvaluation { 916 llvm::BasicBlock *StartBB; 917 918 public: 919 ConditionalEvaluation(CodeGenFunction &CGF) 920 : StartBB(CGF.Builder.GetInsertBlock()) {} 921 922 void begin(CodeGenFunction &CGF) { 923 assert(CGF.OutermostConditional != this); 924 if (!CGF.OutermostConditional) 925 CGF.OutermostConditional = this; 926 } 927 928 void end(CodeGenFunction &CGF) { 929 assert(CGF.OutermostConditional != 0); 930 if (CGF.OutermostConditional == this) 931 CGF.OutermostConditional = 0; 932 } 933 934 /// Returns a block which will be executed prior to each 935 /// evaluation of the conditional code. 936 llvm::BasicBlock *getStartingBlock() const { 937 return StartBB; 938 } 939 }; 940 941 /// isInConditionalBranch - Return true if we're currently emitting 942 /// one branch or the other of a conditional expression. 943 bool isInConditionalBranch() const { return OutermostConditional != 0; } 944 945 void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) { 946 assert(isInConditionalBranch()); 947 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 948 new llvm::StoreInst(value, addr, &block->back()); 949 } 950 951 /// An RAII object to record that we're evaluating a statement 952 /// expression. 953 class StmtExprEvaluation { 954 CodeGenFunction &CGF; 955 956 /// We have to save the outermost conditional: cleanups in a 957 /// statement expression aren't conditional just because the 958 /// StmtExpr is. 959 ConditionalEvaluation *SavedOutermostConditional; 960 961 public: 962 StmtExprEvaluation(CodeGenFunction &CGF) 963 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 964 CGF.OutermostConditional = 0; 965 } 966 967 ~StmtExprEvaluation() { 968 CGF.OutermostConditional = SavedOutermostConditional; 969 CGF.EnsureInsertPoint(); 970 } 971 }; 972 973 /// An object which temporarily prevents a value from being 974 /// destroyed by aggressive peephole optimizations that assume that 975 /// all uses of a value have been realized in the IR. 976 class PeepholeProtection { 977 llvm::Instruction *Inst; 978 friend class CodeGenFunction; 979 980 public: 981 PeepholeProtection() : Inst(0) {} 982 }; 983 984 /// A non-RAII class containing all the information about a bound 985 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 986 /// this which makes individual mappings very simple; using this 987 /// class directly is useful when you have a variable number of 988 /// opaque values or don't want the RAII functionality for some 989 /// reason. 990 class OpaqueValueMappingData { 991 const OpaqueValueExpr *OpaqueValue; 992 bool BoundLValue; 993 CodeGenFunction::PeepholeProtection Protection; 994 995 OpaqueValueMappingData(const OpaqueValueExpr *ov, 996 bool boundLValue) 997 : OpaqueValue(ov), BoundLValue(boundLValue) {} 998 public: 999 OpaqueValueMappingData() : OpaqueValue(0) {} 1000 1001 static bool shouldBindAsLValue(const Expr *expr) { 1002 // gl-values should be bound as l-values for obvious reasons. 1003 // Records should be bound as l-values because IR generation 1004 // always keeps them in memory. Expressions of function type 1005 // act exactly like l-values but are formally required to be 1006 // r-values in C. 1007 return expr->isGLValue() || 1008 expr->getType()->isRecordType() || 1009 expr->getType()->isFunctionType(); 1010 } 1011 1012 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1013 const OpaqueValueExpr *ov, 1014 const Expr *e) { 1015 if (shouldBindAsLValue(ov)) 1016 return bind(CGF, ov, CGF.EmitLValue(e)); 1017 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1018 } 1019 1020 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1021 const OpaqueValueExpr *ov, 1022 const LValue &lv) { 1023 assert(shouldBindAsLValue(ov)); 1024 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1025 return OpaqueValueMappingData(ov, true); 1026 } 1027 1028 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1029 const OpaqueValueExpr *ov, 1030 const RValue &rv) { 1031 assert(!shouldBindAsLValue(ov)); 1032 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1033 1034 OpaqueValueMappingData data(ov, false); 1035 1036 // Work around an extremely aggressive peephole optimization in 1037 // EmitScalarConversion which assumes that all other uses of a 1038 // value are extant. 1039 data.Protection = CGF.protectFromPeepholes(rv); 1040 1041 return data; 1042 } 1043 1044 bool isValid() const { return OpaqueValue != 0; } 1045 void clear() { OpaqueValue = 0; } 1046 1047 void unbind(CodeGenFunction &CGF) { 1048 assert(OpaqueValue && "no data to unbind!"); 1049 1050 if (BoundLValue) { 1051 CGF.OpaqueLValues.erase(OpaqueValue); 1052 } else { 1053 CGF.OpaqueRValues.erase(OpaqueValue); 1054 CGF.unprotectFromPeepholes(Protection); 1055 } 1056 } 1057 }; 1058 1059 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1060 class OpaqueValueMapping { 1061 CodeGenFunction &CGF; 1062 OpaqueValueMappingData Data; 1063 1064 public: 1065 static bool shouldBindAsLValue(const Expr *expr) { 1066 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1067 } 1068 1069 /// Build the opaque value mapping for the given conditional 1070 /// operator if it's the GNU ?: extension. This is a common 1071 /// enough pattern that the convenience operator is really 1072 /// helpful. 1073 /// 1074 OpaqueValueMapping(CodeGenFunction &CGF, 1075 const AbstractConditionalOperator *op) : CGF(CGF) { 1076 if (isa<ConditionalOperator>(op)) 1077 // Leave Data empty. 1078 return; 1079 1080 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1081 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1082 e->getCommon()); 1083 } 1084 1085 OpaqueValueMapping(CodeGenFunction &CGF, 1086 const OpaqueValueExpr *opaqueValue, 1087 LValue lvalue) 1088 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1089 } 1090 1091 OpaqueValueMapping(CodeGenFunction &CGF, 1092 const OpaqueValueExpr *opaqueValue, 1093 RValue rvalue) 1094 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1095 } 1096 1097 void pop() { 1098 Data.unbind(CGF); 1099 Data.clear(); 1100 } 1101 1102 ~OpaqueValueMapping() { 1103 if (Data.isValid()) Data.unbind(CGF); 1104 } 1105 }; 1106 1107 /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field 1108 /// number that holds the value. 1109 unsigned getByRefValueLLVMField(const ValueDecl *VD) const; 1110 1111 /// BuildBlockByrefAddress - Computes address location of the 1112 /// variable which is declared as __block. 1113 llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr, 1114 const VarDecl *V); 1115private: 1116 CGDebugInfo *DebugInfo; 1117 bool DisableDebugInfo; 1118 1119 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1120 /// calling llvm.stacksave for multiple VLAs in the same scope. 1121 bool DidCallStackSave; 1122 1123 /// IndirectBranch - The first time an indirect goto is seen we create a block 1124 /// with an indirect branch. Every time we see the address of a label taken, 1125 /// we add the label to the indirect goto. Every subsequent indirect goto is 1126 /// codegen'd as a jump to the IndirectBranch's basic block. 1127 llvm::IndirectBrInst *IndirectBranch; 1128 1129 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1130 /// decls. 1131 typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy; 1132 DeclMapTy LocalDeclMap; 1133 1134 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1135 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1136 1137 // BreakContinueStack - This keeps track of where break and continue 1138 // statements should jump to. 1139 struct BreakContinue { 1140 BreakContinue(JumpDest Break, JumpDest Continue) 1141 : BreakBlock(Break), ContinueBlock(Continue) {} 1142 1143 JumpDest BreakBlock; 1144 JumpDest ContinueBlock; 1145 }; 1146 SmallVector<BreakContinue, 8> BreakContinueStack; 1147 1148 /// SwitchInsn - This is nearest current switch instruction. It is null if 1149 /// current context is not in a switch. 1150 llvm::SwitchInst *SwitchInsn; 1151 1152 /// CaseRangeBlock - This block holds if condition check for last case 1153 /// statement range in current switch instruction. 1154 llvm::BasicBlock *CaseRangeBlock; 1155 1156 /// OpaqueLValues - Keeps track of the current set of opaque value 1157 /// expressions. 1158 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1159 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1160 1161 // VLASizeMap - This keeps track of the associated size for each VLA type. 1162 // We track this by the size expression rather than the type itself because 1163 // in certain situations, like a const qualifier applied to an VLA typedef, 1164 // multiple VLA types can share the same size expression. 1165 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1166 // enter/leave scopes. 1167 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1168 1169 /// A block containing a single 'unreachable' instruction. Created 1170 /// lazily by getUnreachableBlock(). 1171 llvm::BasicBlock *UnreachableBlock; 1172 1173 /// CXXThisDecl - When generating code for a C++ member function, 1174 /// this will hold the implicit 'this' declaration. 1175 ImplicitParamDecl *CXXABIThisDecl; 1176 llvm::Value *CXXABIThisValue; 1177 llvm::Value *CXXThisValue; 1178 1179 /// CXXVTTDecl - When generating code for a base object constructor or 1180 /// base object destructor with virtual bases, this will hold the implicit 1181 /// VTT parameter. 1182 ImplicitParamDecl *CXXVTTDecl; 1183 llvm::Value *CXXVTTValue; 1184 1185 /// OutermostConditional - Points to the outermost active 1186 /// conditional control. This is used so that we know if a 1187 /// temporary should be destroyed conditionally. 1188 ConditionalEvaluation *OutermostConditional; 1189 1190 1191 /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM 1192 /// type as well as the field number that contains the actual data. 1193 llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *, 1194 unsigned> > ByRefValueInfo; 1195 1196 llvm::BasicBlock *TerminateLandingPad; 1197 llvm::BasicBlock *TerminateHandler; 1198 llvm::BasicBlock *TrapBB; 1199 1200 /// Add a kernel metadata node to the named metadata node 'opencl.kernels'. 1201 /// In the kernel metadata node, reference the kernel function and metadata 1202 /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2): 1203 /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string 1204 /// "work_group_size_hint", and three 32-bit integers X, Y and Z. 1205 /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string 1206 /// "reqd_work_group_size", and three 32-bit integers X, Y and Z. 1207 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1208 llvm::Function *Fn); 1209 1210public: 1211 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1212 ~CodeGenFunction(); 1213 1214 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1215 ASTContext &getContext() const { return CGM.getContext(); } 1216 /// Returns true if DebugInfo is actually initialized. 1217 bool maybeInitializeDebugInfo() { 1218 if (CGM.getModuleDebugInfo()) { 1219 DebugInfo = CGM.getModuleDebugInfo(); 1220 return true; 1221 } 1222 return false; 1223 } 1224 CGDebugInfo *getDebugInfo() { 1225 if (DisableDebugInfo) 1226 return NULL; 1227 return DebugInfo; 1228 } 1229 void disableDebugInfo() { DisableDebugInfo = true; } 1230 void enableDebugInfo() { DisableDebugInfo = false; } 1231 1232 bool shouldUseFusedARCCalls() { 1233 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1234 } 1235 1236 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1237 1238 /// Returns a pointer to the function's exception object and selector slot, 1239 /// which is assigned in every landing pad. 1240 llvm::Value *getExceptionSlot(); 1241 llvm::Value *getEHSelectorSlot(); 1242 1243 /// Returns the contents of the function's exception object and selector 1244 /// slots. 1245 llvm::Value *getExceptionFromSlot(); 1246 llvm::Value *getSelectorFromSlot(); 1247 1248 llvm::Value *getNormalCleanupDestSlot(); 1249 1250 llvm::BasicBlock *getUnreachableBlock() { 1251 if (!UnreachableBlock) { 1252 UnreachableBlock = createBasicBlock("unreachable"); 1253 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1254 } 1255 return UnreachableBlock; 1256 } 1257 1258 llvm::BasicBlock *getInvokeDest() { 1259 if (!EHStack.requiresLandingPad()) return 0; 1260 return getInvokeDestImpl(); 1261 } 1262 1263 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1264 1265 //===--------------------------------------------------------------------===// 1266 // Cleanups 1267 //===--------------------------------------------------------------------===// 1268 1269 typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty); 1270 1271 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1272 llvm::Value *arrayEndPointer, 1273 QualType elementType, 1274 Destroyer *destroyer); 1275 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1276 llvm::Value *arrayEnd, 1277 QualType elementType, 1278 Destroyer *destroyer); 1279 1280 void pushDestroy(QualType::DestructionKind dtorKind, 1281 llvm::Value *addr, QualType type); 1282 void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type, 1283 Destroyer *destroyer, bool useEHCleanupForArray); 1284 void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer, 1285 bool useEHCleanupForArray); 1286 llvm::Function *generateDestroyHelper(llvm::Constant *addr, 1287 QualType type, 1288 Destroyer *destroyer, 1289 bool useEHCleanupForArray); 1290 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1291 QualType type, Destroyer *destroyer, 1292 bool checkZeroLength, bool useEHCleanup); 1293 1294 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1295 1296 /// Determines whether an EH cleanup is required to destroy a type 1297 /// with the given destruction kind. 1298 bool needsEHCleanup(QualType::DestructionKind kind) { 1299 switch (kind) { 1300 case QualType::DK_none: 1301 return false; 1302 case QualType::DK_cxx_destructor: 1303 case QualType::DK_objc_weak_lifetime: 1304 return getLangOpts().Exceptions; 1305 case QualType::DK_objc_strong_lifetime: 1306 return getLangOpts().Exceptions && 1307 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1308 } 1309 llvm_unreachable("bad destruction kind"); 1310 } 1311 1312 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1313 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1314 } 1315 1316 //===--------------------------------------------------------------------===// 1317 // Objective-C 1318 //===--------------------------------------------------------------------===// 1319 1320 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1321 1322 void StartObjCMethod(const ObjCMethodDecl *MD, 1323 const ObjCContainerDecl *CD, 1324 SourceLocation StartLoc); 1325 1326 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1327 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1328 const ObjCPropertyImplDecl *PID); 1329 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1330 const ObjCPropertyImplDecl *propImpl, 1331 const ObjCMethodDecl *GetterMothodDecl, 1332 llvm::Constant *AtomicHelperFn); 1333 1334 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1335 ObjCMethodDecl *MD, bool ctor); 1336 1337 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1338 /// for the given property. 1339 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1340 const ObjCPropertyImplDecl *PID); 1341 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1342 const ObjCPropertyImplDecl *propImpl, 1343 llvm::Constant *AtomicHelperFn); 1344 bool IndirectObjCSetterArg(const CGFunctionInfo &FI); 1345 bool IvarTypeWithAggrGCObjects(QualType Ty); 1346 1347 //===--------------------------------------------------------------------===// 1348 // Block Bits 1349 //===--------------------------------------------------------------------===// 1350 1351 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1352 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 1353 static void destroyBlockInfos(CGBlockInfo *info); 1354 llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *, 1355 const CGBlockInfo &Info, 1356 llvm::StructType *, 1357 llvm::Constant *BlockVarLayout); 1358 1359 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1360 const CGBlockInfo &Info, 1361 const Decl *OuterFuncDecl, 1362 const DeclMapTy &ldm, 1363 bool IsLambdaConversionToBlock); 1364 1365 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1366 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1367 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1368 const ObjCPropertyImplDecl *PID); 1369 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1370 const ObjCPropertyImplDecl *PID); 1371 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1372 1373 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1374 1375 class AutoVarEmission; 1376 1377 void emitByrefStructureInit(const AutoVarEmission &emission); 1378 void enterByrefCleanup(const AutoVarEmission &emission); 1379 1380 llvm::Value *LoadBlockStruct() { 1381 assert(BlockPointer && "no block pointer set!"); 1382 return BlockPointer; 1383 } 1384 1385 void AllocateBlockCXXThisPointer(const CXXThisExpr *E); 1386 void AllocateBlockDecl(const DeclRefExpr *E); 1387 llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1388 llvm::Type *BuildByRefType(const VarDecl *var); 1389 1390 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1391 const CGFunctionInfo &FnInfo); 1392 void StartFunction(GlobalDecl GD, QualType RetTy, 1393 llvm::Function *Fn, 1394 const CGFunctionInfo &FnInfo, 1395 const FunctionArgList &Args, 1396 SourceLocation StartLoc); 1397 1398 void EmitConstructorBody(FunctionArgList &Args); 1399 void EmitDestructorBody(FunctionArgList &Args); 1400 void EmitFunctionBody(FunctionArgList &Args); 1401 1402 void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda, 1403 CallArgList &CallArgs); 1404 void EmitLambdaToBlockPointerBody(FunctionArgList &Args); 1405 void EmitLambdaBlockInvokeBody(); 1406 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1407 void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); 1408 1409 /// EmitReturnBlock - Emit the unified return block, trying to avoid its 1410 /// emission when possible. 1411 void EmitReturnBlock(); 1412 1413 /// FinishFunction - Complete IR generation of the current function. It is 1414 /// legal to call this function even if there is no current insertion point. 1415 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1416 1417 /// GenerateThunk - Generate a thunk for the given method. 1418 void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1419 GlobalDecl GD, const ThunkInfo &Thunk); 1420 1421 void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1422 GlobalDecl GD, const ThunkInfo &Thunk); 1423 1424 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1425 FunctionArgList &Args); 1426 1427 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init, 1428 ArrayRef<VarDecl *> ArrayIndexes); 1429 1430 /// InitializeVTablePointer - Initialize the vtable pointer of the given 1431 /// subobject. 1432 /// 1433 void InitializeVTablePointer(BaseSubobject Base, 1434 const CXXRecordDecl *NearestVBase, 1435 CharUnits OffsetFromNearestVBase, 1436 llvm::Constant *VTable, 1437 const CXXRecordDecl *VTableClass); 1438 1439 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1440 void InitializeVTablePointers(BaseSubobject Base, 1441 const CXXRecordDecl *NearestVBase, 1442 CharUnits OffsetFromNearestVBase, 1443 bool BaseIsNonVirtualPrimaryBase, 1444 llvm::Constant *VTable, 1445 const CXXRecordDecl *VTableClass, 1446 VisitedVirtualBasesSetTy& VBases); 1447 1448 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1449 1450 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1451 /// to by This. 1452 llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty); 1453 1454 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1455 /// given phase of destruction for a destructor. The end result 1456 /// should call destructors on members and base classes in reverse 1457 /// order of their construction. 1458 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1459 1460 /// ShouldInstrumentFunction - Return true if the current function should be 1461 /// instrumented with __cyg_profile_func_* calls 1462 bool ShouldInstrumentFunction(); 1463 1464 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1465 /// instrumentation function with the current function and the call site, if 1466 /// function instrumentation is enabled. 1467 void EmitFunctionInstrumentation(const char *Fn); 1468 1469 /// EmitMCountInstrumentation - Emit call to .mcount. 1470 void EmitMCountInstrumentation(); 1471 1472 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1473 /// arguments for the given function. This is also responsible for naming the 1474 /// LLVM function arguments. 1475 void EmitFunctionProlog(const CGFunctionInfo &FI, 1476 llvm::Function *Fn, 1477 const FunctionArgList &Args); 1478 1479 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1480 /// given temporary. 1481 void EmitFunctionEpilog(const CGFunctionInfo &FI); 1482 1483 /// EmitStartEHSpec - Emit the start of the exception spec. 1484 void EmitStartEHSpec(const Decl *D); 1485 1486 /// EmitEndEHSpec - Emit the end of the exception spec. 1487 void EmitEndEHSpec(const Decl *D); 1488 1489 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1490 llvm::BasicBlock *getTerminateLandingPad(); 1491 1492 /// getTerminateHandler - Return a handler (not a landing pad, just 1493 /// a catch handler) that just calls terminate. This is used when 1494 /// a terminate scope encloses a try. 1495 llvm::BasicBlock *getTerminateHandler(); 1496 1497 llvm::Type *ConvertTypeForMem(QualType T); 1498 llvm::Type *ConvertType(QualType T); 1499 llvm::Type *ConvertType(const TypeDecl *T) { 1500 return ConvertType(getContext().getTypeDeclType(T)); 1501 } 1502 1503 /// LoadObjCSelf - Load the value of self. This function is only valid while 1504 /// generating code for an Objective-C method. 1505 llvm::Value *LoadObjCSelf(); 1506 1507 /// TypeOfSelfObject - Return type of object that this self represents. 1508 QualType TypeOfSelfObject(); 1509 1510 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1511 /// an aggregate LLVM type or is void. 1512 static bool hasAggregateLLVMType(QualType T); 1513 1514 /// createBasicBlock - Create an LLVM basic block. 1515 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1516 llvm::Function *parent = 0, 1517 llvm::BasicBlock *before = 0) { 1518#ifdef NDEBUG 1519 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1520#else 1521 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1522#endif 1523 } 1524 1525 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1526 /// label maps to. 1527 JumpDest getJumpDestForLabel(const LabelDecl *S); 1528 1529 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1530 /// another basic block, simplify it. This assumes that no other code could 1531 /// potentially reference the basic block. 1532 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1533 1534 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1535 /// adding a fall-through branch from the current insert block if 1536 /// necessary. It is legal to call this function even if there is no current 1537 /// insertion point. 1538 /// 1539 /// IsFinished - If true, indicates that the caller has finished emitting 1540 /// branches to the given block and does not expect to emit code into it. This 1541 /// means the block can be ignored if it is unreachable. 1542 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1543 1544 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1545 /// near its uses, and leave the insertion point in it. 1546 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1547 1548 /// EmitBranch - Emit a branch to the specified basic block from the current 1549 /// insert block, taking care to avoid creation of branches from dummy 1550 /// blocks. It is legal to call this function even if there is no current 1551 /// insertion point. 1552 /// 1553 /// This function clears the current insertion point. The caller should follow 1554 /// calls to this function with calls to Emit*Block prior to generation new 1555 /// code. 1556 void EmitBranch(llvm::BasicBlock *Block); 1557 1558 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1559 /// indicates that the current code being emitted is unreachable. 1560 bool HaveInsertPoint() const { 1561 return Builder.GetInsertBlock() != 0; 1562 } 1563 1564 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1565 /// emitted IR has a place to go. Note that by definition, if this function 1566 /// creates a block then that block is unreachable; callers may do better to 1567 /// detect when no insertion point is defined and simply skip IR generation. 1568 void EnsureInsertPoint() { 1569 if (!HaveInsertPoint()) 1570 EmitBlock(createBasicBlock()); 1571 } 1572 1573 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1574 /// specified stmt yet. 1575 void ErrorUnsupported(const Stmt *S, const char *Type, 1576 bool OmitOnError=false); 1577 1578 //===--------------------------------------------------------------------===// 1579 // Helpers 1580 //===--------------------------------------------------------------------===// 1581 1582 LValue MakeAddrLValue(llvm::Value *V, QualType T, 1583 CharUnits Alignment = CharUnits()) { 1584 return LValue::MakeAddr(V, T, Alignment, getContext(), 1585 CGM.getTBAAInfo(T)); 1586 } 1587 1588 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 1589 CharUnits Alignment; 1590 if (!T->isIncompleteType()) 1591 Alignment = getContext().getTypeAlignInChars(T); 1592 return LValue::MakeAddr(V, T, Alignment, getContext(), 1593 CGM.getTBAAInfo(T)); 1594 } 1595 1596 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1597 /// block. The caller is responsible for setting an appropriate alignment on 1598 /// the alloca. 1599 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1600 const Twine &Name = "tmp"); 1601 1602 /// InitTempAlloca - Provide an initial value for the given alloca. 1603 void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value); 1604 1605 /// CreateIRTemp - Create a temporary IR object of the given type, with 1606 /// appropriate alignment. This routine should only be used when an temporary 1607 /// value needs to be stored into an alloca (for example, to avoid explicit 1608 /// PHI construction), but the type is the IR type, not the type appropriate 1609 /// for storing in memory. 1610 llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1611 1612 /// CreateMemTemp - Create a temporary memory object of the given type, with 1613 /// appropriate alignment. 1614 llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1615 1616 /// CreateAggTemp - Create a temporary memory object for the given 1617 /// aggregate type. 1618 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1619 CharUnits Alignment = getContext().getTypeAlignInChars(T); 1620 return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment, 1621 T.getQualifiers(), 1622 AggValueSlot::IsNotDestructed, 1623 AggValueSlot::DoesNotNeedGCBarriers, 1624 AggValueSlot::IsNotAliased); 1625 } 1626 1627 /// Emit a cast to void* in the appropriate address space. 1628 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1629 1630 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1631 /// expression and compare the result against zero, returning an Int1Ty value. 1632 llvm::Value *EvaluateExprAsBool(const Expr *E); 1633 1634 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1635 void EmitIgnoredExpr(const Expr *E); 1636 1637 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1638 /// any type. The result is returned as an RValue struct. If this is an 1639 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1640 /// the result should be returned. 1641 /// 1642 /// \param ignoreResult True if the resulting value isn't used. 1643 RValue EmitAnyExpr(const Expr *E, 1644 AggValueSlot aggSlot = AggValueSlot::ignored(), 1645 bool ignoreResult = false); 1646 1647 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1648 // or the value of the expression, depending on how va_list is defined. 1649 llvm::Value *EmitVAListRef(const Expr *E); 1650 1651 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1652 /// always be accessible even if no aggregate location is provided. 1653 RValue EmitAnyExprToTemp(const Expr *E); 1654 1655 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1656 /// arbitrary expression into the given memory location. 1657 void EmitAnyExprToMem(const Expr *E, llvm::Value *Location, 1658 Qualifiers Quals, bool IsInitializer); 1659 1660 /// EmitExprAsInit - Emits the code necessary to initialize a 1661 /// location in memory with the given initializer. 1662 void EmitExprAsInit(const Expr *init, const ValueDecl *D, 1663 LValue lvalue, bool capturedByInit); 1664 1665 /// EmitAggregateCopy - Emit an aggrate assignment. 1666 /// 1667 /// The difference to EmitAggregateCopy is that tail padding is not copied. 1668 /// This is required for correctness when assigning non-POD structures in C++. 1669 void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1670 QualType EltTy, bool isVolatile=false, 1671 CharUnits Alignment = CharUnits::Zero()) { 1672 EmitAggregateCopy(DestPtr, SrcPtr, EltTy, isVolatile, Alignment, true); 1673 } 1674 1675 /// EmitAggregateCopy - Emit an aggrate copy. 1676 /// 1677 /// \param isVolatile - True iff either the source or the destination is 1678 /// volatile. 1679 /// \param isAssignment - If false, allow padding to be copied. This often 1680 /// yields more efficient. 1681 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1682 QualType EltTy, bool isVolatile=false, 1683 CharUnits Alignment = CharUnits::Zero(), 1684 bool isAssignment = false); 1685 1686 /// StartBlock - Start new block named N. If insert block is a dummy block 1687 /// then reuse it. 1688 void StartBlock(const char *N); 1689 1690 /// GetAddrOfStaticLocalVar - Return the address of a static local variable. 1691 llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) { 1692 return cast<llvm::Constant>(GetAddrOfLocalVar(BVD)); 1693 } 1694 1695 /// GetAddrOfLocalVar - Return the address of a local variable. 1696 llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) { 1697 llvm::Value *Res = LocalDeclMap[VD]; 1698 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1699 return Res; 1700 } 1701 1702 /// getOpaqueLValueMapping - Given an opaque value expression (which 1703 /// must be mapped to an l-value), return its mapping. 1704 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1705 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1706 1707 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1708 it = OpaqueLValues.find(e); 1709 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1710 return it->second; 1711 } 1712 1713 /// getOpaqueRValueMapping - Given an opaque value expression (which 1714 /// must be mapped to an r-value), return its mapping. 1715 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1716 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1717 1718 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1719 it = OpaqueRValues.find(e); 1720 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1721 return it->second; 1722 } 1723 1724 /// getAccessedFieldNo - Given an encoded value and a result number, return 1725 /// the input field number being accessed. 1726 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1727 1728 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1729 llvm::BasicBlock *GetIndirectGotoBlock(); 1730 1731 /// EmitNullInitialization - Generate code to set a value of the given type to 1732 /// null, If the type contains data member pointers, they will be initialized 1733 /// to -1 in accordance with the Itanium C++ ABI. 1734 void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty); 1735 1736 // EmitVAArg - Generate code to get an argument from the passed in pointer 1737 // and update it accordingly. The return value is a pointer to the argument. 1738 // FIXME: We should be able to get rid of this method and use the va_arg 1739 // instruction in LLVM instead once it works well enough. 1740 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty); 1741 1742 /// emitArrayLength - Compute the length of an array, even if it's a 1743 /// VLA, and drill down to the base element type. 1744 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1745 QualType &baseType, 1746 llvm::Value *&addr); 1747 1748 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1749 /// the given variably-modified type and store them in the VLASizeMap. 1750 /// 1751 /// This function can be called with a null (unreachable) insert point. 1752 void EmitVariablyModifiedType(QualType Ty); 1753 1754 /// getVLASize - Returns an LLVM value that corresponds to the size, 1755 /// in non-variably-sized elements, of a variable length array type, 1756 /// plus that largest non-variably-sized element type. Assumes that 1757 /// the type has already been emitted with EmitVariablyModifiedType. 1758 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1759 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1760 1761 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1762 /// generating code for an C++ member function. 1763 llvm::Value *LoadCXXThis() { 1764 assert(CXXThisValue && "no 'this' value for this function"); 1765 return CXXThisValue; 1766 } 1767 1768 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1769 /// virtual bases. 1770 llvm::Value *LoadCXXVTT() { 1771 assert(CXXVTTValue && "no VTT value for this function"); 1772 return CXXVTTValue; 1773 } 1774 1775 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1776 /// complete class to the given direct base. 1777 llvm::Value * 1778 GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value, 1779 const CXXRecordDecl *Derived, 1780 const CXXRecordDecl *Base, 1781 bool BaseIsVirtual); 1782 1783 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1784 /// load of 'this' and returns address of the base class. 1785 llvm::Value *GetAddressOfBaseClass(llvm::Value *Value, 1786 const CXXRecordDecl *Derived, 1787 CastExpr::path_const_iterator PathBegin, 1788 CastExpr::path_const_iterator PathEnd, 1789 bool NullCheckValue); 1790 1791 llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value, 1792 const CXXRecordDecl *Derived, 1793 CastExpr::path_const_iterator PathBegin, 1794 CastExpr::path_const_iterator PathEnd, 1795 bool NullCheckValue); 1796 1797 llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This, 1798 const CXXRecordDecl *ClassDecl, 1799 const CXXRecordDecl *BaseClassDecl); 1800 1801 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1802 CXXCtorType CtorType, 1803 const FunctionArgList &Args); 1804 // It's important not to confuse this and the previous function. Delegating 1805 // constructors are the C++0x feature. The constructor delegate optimization 1806 // is used to reduce duplication in the base and complete consturctors where 1807 // they are substantially the same. 1808 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1809 const FunctionArgList &Args); 1810 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1811 bool ForVirtualBase, llvm::Value *This, 1812 CallExpr::const_arg_iterator ArgBeg, 1813 CallExpr::const_arg_iterator ArgEnd); 1814 1815 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1816 llvm::Value *This, llvm::Value *Src, 1817 CallExpr::const_arg_iterator ArgBeg, 1818 CallExpr::const_arg_iterator ArgEnd); 1819 1820 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1821 const ConstantArrayType *ArrayTy, 1822 llvm::Value *ArrayPtr, 1823 CallExpr::const_arg_iterator ArgBeg, 1824 CallExpr::const_arg_iterator ArgEnd, 1825 bool ZeroInitialization = false); 1826 1827 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1828 llvm::Value *NumElements, 1829 llvm::Value *ArrayPtr, 1830 CallExpr::const_arg_iterator ArgBeg, 1831 CallExpr::const_arg_iterator ArgEnd, 1832 bool ZeroInitialization = false); 1833 1834 static Destroyer destroyCXXObject; 1835 1836 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1837 bool ForVirtualBase, llvm::Value *This); 1838 1839 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 1840 llvm::Value *NewPtr, llvm::Value *NumElements); 1841 1842 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 1843 llvm::Value *Ptr); 1844 1845 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1846 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1847 1848 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1849 QualType DeleteTy); 1850 1851 llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1852 llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE); 1853 llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E); 1854 1855 void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init); 1856 void EmitStdInitializerListCleanup(llvm::Value *loc, 1857 const InitListExpr *init); 1858 1859 /// \brief Situations in which we might emit a check for the suitability of a 1860 /// pointer or glvalue. 1861 enum TypeCheckKind { 1862 /// Checking the operand of a load. Must be suitably sized and aligned. 1863 TCK_Load, 1864 /// Checking the destination of a store. Must be suitably sized and aligned. 1865 TCK_Store, 1866 /// Checking the bound value in a reference binding. Must be suitably sized 1867 /// and aligned, but is not required to refer to an object (until the 1868 /// reference is used), per core issue 453. 1869 TCK_ReferenceBinding, 1870 /// Checking the object expression in a non-static data member access. Must 1871 /// be an object within its lifetime. 1872 TCK_MemberAccess, 1873 /// Checking the 'this' pointer for a call to a non-static member function. 1874 /// Must be an object within its lifetime. 1875 TCK_MemberCall, 1876 /// Checking the 'this' pointer for a constructor call. 1877 TCK_ConstructorCall 1878 }; 1879 1880 /// \brief Emit a check that \p V is the address of storage of the 1881 /// appropriate size and alignment for an object of type \p Type. 1882 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 1883 QualType Type, CharUnits Alignment = CharUnits::Zero()); 1884 1885 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1886 bool isInc, bool isPre); 1887 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1888 bool isInc, bool isPre); 1889 //===--------------------------------------------------------------------===// 1890 // Declaration Emission 1891 //===--------------------------------------------------------------------===// 1892 1893 /// EmitDecl - Emit a declaration. 1894 /// 1895 /// This function can be called with a null (unreachable) insert point. 1896 void EmitDecl(const Decl &D); 1897 1898 /// EmitVarDecl - Emit a local variable declaration. 1899 /// 1900 /// This function can be called with a null (unreachable) insert point. 1901 void EmitVarDecl(const VarDecl &D); 1902 1903 void EmitScalarInit(const Expr *init, const ValueDecl *D, 1904 LValue lvalue, bool capturedByInit); 1905 void EmitScalarInit(llvm::Value *init, LValue lvalue); 1906 1907 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1908 llvm::Value *Address); 1909 1910 /// EmitAutoVarDecl - Emit an auto variable declaration. 1911 /// 1912 /// This function can be called with a null (unreachable) insert point. 1913 void EmitAutoVarDecl(const VarDecl &D); 1914 1915 class AutoVarEmission { 1916 friend class CodeGenFunction; 1917 1918 const VarDecl *Variable; 1919 1920 /// The alignment of the variable. 1921 CharUnits Alignment; 1922 1923 /// The address of the alloca. Null if the variable was emitted 1924 /// as a global constant. 1925 llvm::Value *Address; 1926 1927 llvm::Value *NRVOFlag; 1928 1929 /// True if the variable is a __block variable. 1930 bool IsByRef; 1931 1932 /// True if the variable is of aggregate type and has a constant 1933 /// initializer. 1934 bool IsConstantAggregate; 1935 1936 struct Invalid {}; 1937 AutoVarEmission(Invalid) : Variable(0) {} 1938 1939 AutoVarEmission(const VarDecl &variable) 1940 : Variable(&variable), Address(0), NRVOFlag(0), 1941 IsByRef(false), IsConstantAggregate(false) {} 1942 1943 bool wasEmittedAsGlobal() const { return Address == 0; } 1944 1945 public: 1946 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 1947 1948 /// Returns the address of the object within this declaration. 1949 /// Note that this does not chase the forwarding pointer for 1950 /// __block decls. 1951 llvm::Value *getObjectAddress(CodeGenFunction &CGF) const { 1952 if (!IsByRef) return Address; 1953 1954 return CGF.Builder.CreateStructGEP(Address, 1955 CGF.getByRefValueLLVMField(Variable), 1956 Variable->getNameAsString()); 1957 } 1958 }; 1959 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 1960 void EmitAutoVarInit(const AutoVarEmission &emission); 1961 void EmitAutoVarCleanups(const AutoVarEmission &emission); 1962 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 1963 QualType::DestructionKind dtorKind); 1964 1965 void EmitStaticVarDecl(const VarDecl &D, 1966 llvm::GlobalValue::LinkageTypes Linkage); 1967 1968 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 1969 void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo); 1970 1971 /// protectFromPeepholes - Protect a value that we're intending to 1972 /// store to the side, but which will probably be used later, from 1973 /// aggressive peepholing optimizations that might delete it. 1974 /// 1975 /// Pass the result to unprotectFromPeepholes to declare that 1976 /// protection is no longer required. 1977 /// 1978 /// There's no particular reason why this shouldn't apply to 1979 /// l-values, it's just that no existing peepholes work on pointers. 1980 PeepholeProtection protectFromPeepholes(RValue rvalue); 1981 void unprotectFromPeepholes(PeepholeProtection protection); 1982 1983 //===--------------------------------------------------------------------===// 1984 // Statement Emission 1985 //===--------------------------------------------------------------------===// 1986 1987 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 1988 void EmitStopPoint(const Stmt *S); 1989 1990 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 1991 /// this function even if there is no current insertion point. 1992 /// 1993 /// This function may clear the current insertion point; callers should use 1994 /// EnsureInsertPoint if they wish to subsequently generate code without first 1995 /// calling EmitBlock, EmitBranch, or EmitStmt. 1996 void EmitStmt(const Stmt *S); 1997 1998 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 1999 /// necessarily require an insertion point or debug information; typically 2000 /// because the statement amounts to a jump or a container of other 2001 /// statements. 2002 /// 2003 /// \return True if the statement was handled. 2004 bool EmitSimpleStmt(const Stmt *S); 2005 2006 RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2007 AggValueSlot AVS = AggValueSlot::ignored()); 2008 2009 /// EmitLabel - Emit the block for the given label. It is legal to call this 2010 /// function even if there is no current insertion point. 2011 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2012 2013 void EmitLabelStmt(const LabelStmt &S); 2014 void EmitAttributedStmt(const AttributedStmt &S); 2015 void EmitGotoStmt(const GotoStmt &S); 2016 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2017 void EmitIfStmt(const IfStmt &S); 2018 void EmitWhileStmt(const WhileStmt &S); 2019 void EmitDoStmt(const DoStmt &S); 2020 void EmitForStmt(const ForStmt &S); 2021 void EmitReturnStmt(const ReturnStmt &S); 2022 void EmitDeclStmt(const DeclStmt &S); 2023 void EmitBreakStmt(const BreakStmt &S); 2024 void EmitContinueStmt(const ContinueStmt &S); 2025 void EmitSwitchStmt(const SwitchStmt &S); 2026 void EmitDefaultStmt(const DefaultStmt &S); 2027 void EmitCaseStmt(const CaseStmt &S); 2028 void EmitCaseStmtRange(const CaseStmt &S); 2029 void EmitAsmStmt(const AsmStmt &S); 2030 2031 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2032 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2033 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2034 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2035 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2036 2037 llvm::Constant *getUnwindResumeFn(); 2038 llvm::Constant *getUnwindResumeOrRethrowFn(); 2039 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2040 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2041 2042 void EmitCXXTryStmt(const CXXTryStmt &S); 2043 void EmitCXXForRangeStmt(const CXXForRangeStmt &S); 2044 2045 //===--------------------------------------------------------------------===// 2046 // LValue Expression Emission 2047 //===--------------------------------------------------------------------===// 2048 2049 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 2050 RValue GetUndefRValue(QualType Ty); 2051 2052 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 2053 /// and issue an ErrorUnsupported style diagnostic (using the 2054 /// provided Name). 2055 RValue EmitUnsupportedRValue(const Expr *E, 2056 const char *Name); 2057 2058 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 2059 /// an ErrorUnsupported style diagnostic (using the provided Name). 2060 LValue EmitUnsupportedLValue(const Expr *E, 2061 const char *Name); 2062 2063 /// EmitLValue - Emit code to compute a designator that specifies the location 2064 /// of the expression. 2065 /// 2066 /// This can return one of two things: a simple address or a bitfield 2067 /// reference. In either case, the LLVM Value* in the LValue structure is 2068 /// guaranteed to be an LLVM pointer type. 2069 /// 2070 /// If this returns a bitfield reference, nothing about the pointee type of 2071 /// the LLVM value is known: For example, it may not be a pointer to an 2072 /// integer. 2073 /// 2074 /// If this returns a normal address, and if the lvalue's C type is fixed 2075 /// size, this method guarantees that the returned pointer type will point to 2076 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 2077 /// variable length type, this is not possible. 2078 /// 2079 LValue EmitLValue(const Expr *E); 2080 2081 /// \brief Same as EmitLValue but additionally we generate checking code to 2082 /// guard against undefined behavior. This is only suitable when we know 2083 /// that the address will be used to access the object. 2084 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 2085 2086 /// EmitToMemory - Change a scalar value from its value 2087 /// representation to its in-memory representation. 2088 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 2089 2090 /// EmitFromMemory - Change a scalar value from its memory 2091 /// representation to its value representation. 2092 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 2093 2094 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2095 /// care to appropriately convert from the memory representation to 2096 /// the LLVM value representation. 2097 llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 2098 unsigned Alignment, QualType Ty, 2099 llvm::MDNode *TBAAInfo = 0); 2100 2101 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2102 /// care to appropriately convert from the memory representation to 2103 /// the LLVM value representation. The l-value must be a simple 2104 /// l-value. 2105 llvm::Value *EmitLoadOfScalar(LValue lvalue); 2106 2107 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2108 /// care to appropriately convert from the memory representation to 2109 /// the LLVM value representation. 2110 void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 2111 bool Volatile, unsigned Alignment, QualType Ty, 2112 llvm::MDNode *TBAAInfo = 0, bool isInit=false); 2113 2114 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2115 /// care to appropriately convert from the memory representation to 2116 /// the LLVM value representation. The l-value must be a simple 2117 /// l-value. The isInit flag indicates whether this is an initialization. 2118 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 2119 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 2120 2121 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 2122 /// this method emits the address of the lvalue, then loads the result as an 2123 /// rvalue, returning the rvalue. 2124 RValue EmitLoadOfLValue(LValue V); 2125 RValue EmitLoadOfExtVectorElementLValue(LValue V); 2126 RValue EmitLoadOfBitfieldLValue(LValue LV); 2127 2128 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2129 /// lvalue, where both are guaranteed to the have the same type, and that type 2130 /// is 'Ty'. 2131 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false); 2132 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 2133 2134 /// EmitStoreThroughLValue - Store Src into Dst with same constraints as 2135 /// EmitStoreThroughLValue. 2136 /// 2137 /// \param Result [out] - If non-null, this will be set to a Value* for the 2138 /// bit-field contents after the store, appropriate for use as the result of 2139 /// an assignment to the bit-field. 2140 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2141 llvm::Value **Result=0); 2142 2143 /// Emit an l-value for an assignment (simple or compound) of complex type. 2144 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 2145 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 2146 2147 // Note: only available for agg return types 2148 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 2149 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 2150 // Note: only available for agg return types 2151 LValue EmitCallExprLValue(const CallExpr *E); 2152 // Note: only available for agg return types 2153 LValue EmitVAArgExprLValue(const VAArgExpr *E); 2154 LValue EmitDeclRefLValue(const DeclRefExpr *E); 2155 LValue EmitStringLiteralLValue(const StringLiteral *E); 2156 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 2157 LValue EmitPredefinedLValue(const PredefinedExpr *E); 2158 LValue EmitUnaryOpLValue(const UnaryOperator *E); 2159 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E); 2160 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 2161 LValue EmitMemberExpr(const MemberExpr *E); 2162 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 2163 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 2164 LValue EmitInitListLValue(const InitListExpr *E); 2165 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 2166 LValue EmitCastLValue(const CastExpr *E); 2167 LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E); 2168 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 2169 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 2170 2171 RValue EmitRValueForField(LValue LV, const FieldDecl *FD); 2172 2173 class ConstantEmission { 2174 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 2175 ConstantEmission(llvm::Constant *C, bool isReference) 2176 : ValueAndIsReference(C, isReference) {} 2177 public: 2178 ConstantEmission() {} 2179 static ConstantEmission forReference(llvm::Constant *C) { 2180 return ConstantEmission(C, true); 2181 } 2182 static ConstantEmission forValue(llvm::Constant *C) { 2183 return ConstantEmission(C, false); 2184 } 2185 2186 operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; } 2187 2188 bool isReference() const { return ValueAndIsReference.getInt(); } 2189 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 2190 assert(isReference()); 2191 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 2192 refExpr->getType()); 2193 } 2194 2195 llvm::Constant *getValue() const { 2196 assert(!isReference()); 2197 return ValueAndIsReference.getPointer(); 2198 } 2199 }; 2200 2201 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 2202 2203 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 2204 AggValueSlot slot = AggValueSlot::ignored()); 2205 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 2206 2207 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2208 const ObjCIvarDecl *Ivar); 2209 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 2210 2211 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 2212 /// if the Field is a reference, this will return the address of the reference 2213 /// and not the address of the value stored in the reference. 2214 LValue EmitLValueForFieldInitialization(LValue Base, 2215 const FieldDecl* Field); 2216 2217 LValue EmitLValueForIvar(QualType ObjectTy, 2218 llvm::Value* Base, const ObjCIvarDecl *Ivar, 2219 unsigned CVRQualifiers); 2220 2221 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 2222 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 2223 LValue EmitLambdaLValue(const LambdaExpr *E); 2224 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2225 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 2226 2227 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2228 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2229 LValue EmitStmtExprLValue(const StmtExpr *E); 2230 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2231 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2232 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 2233 2234 //===--------------------------------------------------------------------===// 2235 // Scalar Expression Emission 2236 //===--------------------------------------------------------------------===// 2237 2238 /// EmitCall - Generate a call of the given function, expecting the given 2239 /// result type, and using the given argument list which specifies both the 2240 /// LLVM arguments and the types they were derived from. 2241 /// 2242 /// \param TargetDecl - If given, the decl of the function in a direct call; 2243 /// used to set attributes on the call (noreturn, etc.). 2244 RValue EmitCall(const CGFunctionInfo &FnInfo, 2245 llvm::Value *Callee, 2246 ReturnValueSlot ReturnValue, 2247 const CallArgList &Args, 2248 const Decl *TargetDecl = 0, 2249 llvm::Instruction **callOrInvoke = 0); 2250 2251 RValue EmitCall(QualType FnType, llvm::Value *Callee, 2252 ReturnValueSlot ReturnValue, 2253 CallExpr::const_arg_iterator ArgBeg, 2254 CallExpr::const_arg_iterator ArgEnd, 2255 const Decl *TargetDecl = 0); 2256 RValue EmitCallExpr(const CallExpr *E, 2257 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2258 2259 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2260 ArrayRef<llvm::Value *> Args, 2261 const Twine &Name = ""); 2262 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2263 const Twine &Name = ""); 2264 2265 llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This, 2266 llvm::Type *Ty); 2267 llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type, 2268 llvm::Value *This, llvm::Type *Ty); 2269 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2270 NestedNameSpecifier *Qual, 2271 llvm::Type *Ty); 2272 2273 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2274 CXXDtorType Type, 2275 const CXXRecordDecl *RD); 2276 2277 RValue EmitCXXMemberCall(const CXXMethodDecl *MD, 2278 SourceLocation CallLoc, 2279 llvm::Value *Callee, 2280 ReturnValueSlot ReturnValue, 2281 llvm::Value *This, 2282 llvm::Value *VTT, 2283 CallExpr::const_arg_iterator ArgBeg, 2284 CallExpr::const_arg_iterator ArgEnd); 2285 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2286 ReturnValueSlot ReturnValue); 2287 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2288 ReturnValueSlot ReturnValue); 2289 2290 llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E, 2291 const CXXMethodDecl *MD, 2292 llvm::Value *This); 2293 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2294 const CXXMethodDecl *MD, 2295 ReturnValueSlot ReturnValue); 2296 2297 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 2298 ReturnValueSlot ReturnValue); 2299 2300 2301 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2302 unsigned BuiltinID, const CallExpr *E); 2303 2304 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2305 2306 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2307 /// is unhandled by the current target. 2308 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2309 2310 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2311 llvm::Value *EmitNeonCall(llvm::Function *F, 2312 SmallVectorImpl<llvm::Value*> &O, 2313 const char *name, 2314 unsigned shift = 0, bool rightshift = false); 2315 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2316 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 2317 bool negateForRightShift); 2318 2319 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 2320 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2321 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2322 2323 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2324 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2325 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 2326 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 2327 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 2328 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 2329 const ObjCMethodDecl *MethodWithObjects); 2330 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2331 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2332 ReturnValueSlot Return = ReturnValueSlot()); 2333 2334 /// Retrieves the default cleanup kind for an ARC cleanup. 2335 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 2336 CleanupKind getARCCleanupKind() { 2337 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 2338 ? NormalAndEHCleanup : NormalCleanup; 2339 } 2340 2341 // ARC primitives. 2342 void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr); 2343 void EmitARCDestroyWeak(llvm::Value *addr); 2344 llvm::Value *EmitARCLoadWeak(llvm::Value *addr); 2345 llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr); 2346 llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr, 2347 bool ignored); 2348 void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src); 2349 void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src); 2350 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 2351 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 2352 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 2353 bool ignored); 2354 llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value, 2355 bool ignored); 2356 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 2357 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 2358 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 2359 void EmitARCDestroyStrong(llvm::Value *addr, bool precise); 2360 void EmitARCRelease(llvm::Value *value, bool precise); 2361 llvm::Value *EmitARCAutorelease(llvm::Value *value); 2362 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 2363 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 2364 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 2365 2366 std::pair<LValue,llvm::Value*> 2367 EmitARCStoreAutoreleasing(const BinaryOperator *e); 2368 std::pair<LValue,llvm::Value*> 2369 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 2370 2371 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 2372 2373 llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr); 2374 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 2375 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 2376 2377 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 2378 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 2379 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 2380 2381 static Destroyer destroyARCStrongImprecise; 2382 static Destroyer destroyARCStrongPrecise; 2383 static Destroyer destroyARCWeak; 2384 2385 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 2386 llvm::Value *EmitObjCAutoreleasePoolPush(); 2387 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 2388 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 2389 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 2390 2391 /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in 2392 /// expression. Will emit a temporary variable if E is not an LValue. 2393 RValue EmitReferenceBindingToExpr(const Expr* E, 2394 const NamedDecl *InitializedDecl); 2395 2396 //===--------------------------------------------------------------------===// 2397 // Expression Emission 2398 //===--------------------------------------------------------------------===// 2399 2400 // Expressions are broken into three classes: scalar, complex, aggregate. 2401 2402 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 2403 /// scalar type, returning the result. 2404 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 2405 2406 /// EmitScalarConversion - Emit a conversion from the specified type to the 2407 /// specified destination type, both of which are LLVM scalar types. 2408 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 2409 QualType DstTy); 2410 2411 /// EmitComplexToScalarConversion - Emit a conversion from the specified 2412 /// complex type to the specified destination type, where the destination type 2413 /// is an LLVM scalar type. 2414 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 2415 QualType DstTy); 2416 2417 2418 /// EmitAggExpr - Emit the computation of the specified expression 2419 /// of aggregate type. The result is computed into the given slot, 2420 /// which may be null to indicate that the value is not needed. 2421 void EmitAggExpr(const Expr *E, AggValueSlot AS); 2422 2423 /// EmitAggExprToLValue - Emit the computation of the specified expression of 2424 /// aggregate type into a temporary LValue. 2425 LValue EmitAggExprToLValue(const Expr *E); 2426 2427 /// EmitGCMemmoveCollectable - Emit special API for structs with object 2428 /// pointers. 2429 void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr, 2430 QualType Ty); 2431 2432 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2433 /// make sure it survives garbage collection until this point. 2434 void EmitExtendGCLifetime(llvm::Value *object); 2435 2436 /// EmitComplexExpr - Emit the computation of the specified expression of 2437 /// complex type, returning the result. 2438 ComplexPairTy EmitComplexExpr(const Expr *E, 2439 bool IgnoreReal = false, 2440 bool IgnoreImag = false); 2441 2442 /// EmitComplexExprIntoAddr - Emit the computation of the specified expression 2443 /// of complex type, storing into the specified Value*. 2444 void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr, 2445 bool DestIsVolatile); 2446 2447 /// StoreComplexToAddr - Store a complex number into the specified address. 2448 void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr, 2449 bool DestIsVolatile); 2450 /// LoadComplexFromAddr - Load a complex number from the specified address. 2451 ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile); 2452 2453 /// CreateStaticVarDecl - Create a zero-initialized LLVM global for 2454 /// a static local variable. 2455 llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D, 2456 const char *Separator, 2457 llvm::GlobalValue::LinkageTypes Linkage); 2458 2459 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2460 /// global variable that has already been created for it. If the initializer 2461 /// has a different type than GV does, this may free GV and return a different 2462 /// one. Otherwise it just returns GV. 2463 llvm::GlobalVariable * 2464 AddInitializerToStaticVarDecl(const VarDecl &D, 2465 llvm::GlobalVariable *GV); 2466 2467 2468 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2469 /// variable with global storage. 2470 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 2471 bool PerformInit); 2472 2473 /// Call atexit() with a function that passes the given argument to 2474 /// the given function. 2475 void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr); 2476 2477 /// Emit code in this function to perform a guarded variable 2478 /// initialization. Guarded initializations are used when it's not 2479 /// possible to prove that an initialization will be done exactly 2480 /// once, e.g. with a static local variable or a static data member 2481 /// of a class template. 2482 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 2483 bool PerformInit); 2484 2485 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2486 /// variables. 2487 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2488 llvm::Constant **Decls, 2489 unsigned NumDecls); 2490 2491 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 2492 /// variables. 2493 void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn, 2494 const std::vector<std::pair<llvm::WeakVH, 2495 llvm::Constant*> > &DtorsAndObjects); 2496 2497 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2498 const VarDecl *D, 2499 llvm::GlobalVariable *Addr, 2500 bool PerformInit); 2501 2502 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2503 2504 void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, 2505 const Expr *Exp); 2506 2507 void enterFullExpression(const ExprWithCleanups *E) { 2508 if (E->getNumObjects() == 0) return; 2509 enterNonTrivialFullExpression(E); 2510 } 2511 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 2512 2513 void EmitCXXThrowExpr(const CXXThrowExpr *E); 2514 2515 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 2516 2517 RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0); 2518 2519 //===--------------------------------------------------------------------===// 2520 // Annotations Emission 2521 //===--------------------------------------------------------------------===// 2522 2523 /// Emit an annotation call (intrinsic or builtin). 2524 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 2525 llvm::Value *AnnotatedVal, 2526 llvm::StringRef AnnotationStr, 2527 SourceLocation Location); 2528 2529 /// Emit local annotations for the local variable V, declared by D. 2530 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 2531 2532 /// Emit field annotations for the given field & value. Returns the 2533 /// annotation result. 2534 llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V); 2535 2536 //===--------------------------------------------------------------------===// 2537 // Internal Helpers 2538 //===--------------------------------------------------------------------===// 2539 2540 /// ContainsLabel - Return true if the statement contains a label in it. If 2541 /// this statement is not executed normally, it not containing a label means 2542 /// that we can just remove the code. 2543 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 2544 2545 /// containsBreak - Return true if the statement contains a break out of it. 2546 /// If the statement (recursively) contains a switch or loop with a break 2547 /// inside of it, this is fine. 2548 static bool containsBreak(const Stmt *S); 2549 2550 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2551 /// to a constant, or if it does but contains a label, return false. If it 2552 /// constant folds return true and set the boolean result in Result. 2553 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 2554 2555 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2556 /// to a constant, or if it does but contains a label, return false. If it 2557 /// constant folds return true and set the folded value. 2558 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result); 2559 2560 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 2561 /// if statement) to the specified blocks. Based on the condition, this might 2562 /// try to simplify the codegen of the conditional based on the branch. 2563 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 2564 llvm::BasicBlock *FalseBlock); 2565 2566 /// \brief Emit a description of a type in a format suitable for passing to 2567 /// a runtime sanitizer handler. 2568 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 2569 2570 /// \brief Convert a value into a format suitable for passing to a runtime 2571 /// sanitizer handler. 2572 llvm::Value *EmitCheckValue(llvm::Value *V); 2573 2574 /// \brief Emit a description of a source location in a format suitable for 2575 /// passing to a runtime sanitizer handler. 2576 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 2577 2578 /// \brief Specify under what conditions this check can be recovered 2579 enum CheckRecoverableKind { 2580 /// Always terminate program execution if this check fails 2581 CRK_Unrecoverable, 2582 /// Check supports recovering, allows user to specify which 2583 CRK_Recoverable, 2584 /// Runtime conditionally aborts, always need to support recovery. 2585 CRK_AlwaysRecoverable 2586 }; 2587 2588 /// \brief Create a basic block that will call a handler function in a 2589 /// sanitizer runtime with the provided arguments, and create a conditional 2590 /// branch to it. 2591 void EmitCheck(llvm::Value *Checked, StringRef CheckName, 2592 llvm::ArrayRef<llvm::Constant *> StaticArgs, 2593 llvm::ArrayRef<llvm::Value *> DynamicArgs, 2594 CheckRecoverableKind Recoverable); 2595 2596 /// \brief Create a basic block that will call the trap intrinsic, and emit a 2597 /// conditional branch to it, for the -ftrapv checks. 2598 void EmitTrapvCheck(llvm::Value *Checked); 2599 2600 /// EmitCallArg - Emit a single call argument. 2601 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 2602 2603 /// EmitDelegateCallArg - We are performing a delegate call; that 2604 /// is, the current function is delegating to another one. Produce 2605 /// a r-value suitable for passing the given parameter. 2606 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param); 2607 2608 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 2609 /// point operation, expressed as the maximum relative error in ulp. 2610 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 2611 2612private: 2613 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 2614 void EmitReturnOfRValue(RValue RV, QualType Ty); 2615 2616 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 2617 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 2618 /// 2619 /// \param AI - The first function argument of the expansion. 2620 /// \return The argument following the last expanded function 2621 /// argument. 2622 llvm::Function::arg_iterator 2623 ExpandTypeFromArgs(QualType Ty, LValue Dst, 2624 llvm::Function::arg_iterator AI); 2625 2626 /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg 2627 /// Ty, into individual arguments on the provided vector \arg Args. See 2628 /// ABIArgInfo::Expand. 2629 void ExpandTypeToArgs(QualType Ty, RValue Src, 2630 SmallVector<llvm::Value*, 16> &Args, 2631 llvm::FunctionType *IRFuncTy); 2632 2633 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 2634 const Expr *InputExpr, std::string &ConstraintStr); 2635 2636 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 2637 LValue InputValue, QualType InputType, 2638 std::string &ConstraintStr); 2639 2640 /// EmitCallArgs - Emit call arguments for a function. 2641 /// The CallArgTypeInfo parameter is used for iterating over the known 2642 /// argument types of the function being called. 2643 template<typename T> 2644 void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo, 2645 CallExpr::const_arg_iterator ArgBeg, 2646 CallExpr::const_arg_iterator ArgEnd) { 2647 CallExpr::const_arg_iterator Arg = ArgBeg; 2648 2649 // First, use the argument types that the type info knows about 2650 if (CallArgTypeInfo) { 2651 for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(), 2652 E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) { 2653 assert(Arg != ArgEnd && "Running over edge of argument list!"); 2654 QualType ArgType = *I; 2655#ifndef NDEBUG 2656 QualType ActualArgType = Arg->getType(); 2657 if (ArgType->isPointerType() && ActualArgType->isPointerType()) { 2658 QualType ActualBaseType = 2659 ActualArgType->getAs<PointerType>()->getPointeeType(); 2660 QualType ArgBaseType = 2661 ArgType->getAs<PointerType>()->getPointeeType(); 2662 if (ArgBaseType->isVariableArrayType()) { 2663 if (const VariableArrayType *VAT = 2664 getContext().getAsVariableArrayType(ActualBaseType)) { 2665 if (!VAT->getSizeExpr()) 2666 ActualArgType = ArgType; 2667 } 2668 } 2669 } 2670 assert(getContext().getCanonicalType(ArgType.getNonReferenceType()). 2671 getTypePtr() == 2672 getContext().getCanonicalType(ActualArgType).getTypePtr() && 2673 "type mismatch in call argument!"); 2674#endif 2675 EmitCallArg(Args, *Arg, ArgType); 2676 } 2677 2678 // Either we've emitted all the call args, or we have a call to a 2679 // variadic function. 2680 assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) && 2681 "Extra arguments in non-variadic function!"); 2682 2683 } 2684 2685 // If we still have any arguments, emit them using the type of the argument. 2686 for (; Arg != ArgEnd; ++Arg) 2687 EmitCallArg(Args, *Arg, Arg->getType()); 2688 } 2689 2690 const TargetCodeGenInfo &getTargetHooks() const { 2691 return CGM.getTargetCodeGenInfo(); 2692 } 2693 2694 void EmitDeclMetadata(); 2695 2696 CodeGenModule::ByrefHelpers * 2697 buildByrefHelpers(llvm::StructType &byrefType, 2698 const AutoVarEmission &emission); 2699 2700 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 2701 2702 /// GetPointeeAlignment - Given an expression with a pointer type, emit the 2703 /// value and compute our best estimate of the alignment of the pointee. 2704 std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr); 2705}; 2706 2707/// Helper class with most of the code for saving a value for a 2708/// conditional expression cleanup. 2709struct DominatingLLVMValue { 2710 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 2711 2712 /// Answer whether the given value needs extra work to be saved. 2713 static bool needsSaving(llvm::Value *value) { 2714 // If it's not an instruction, we don't need to save. 2715 if (!isa<llvm::Instruction>(value)) return false; 2716 2717 // If it's an instruction in the entry block, we don't need to save. 2718 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 2719 return (block != &block->getParent()->getEntryBlock()); 2720 } 2721 2722 /// Try to save the given value. 2723 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 2724 if (!needsSaving(value)) return saved_type(value, false); 2725 2726 // Otherwise we need an alloca. 2727 llvm::Value *alloca = 2728 CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save"); 2729 CGF.Builder.CreateStore(value, alloca); 2730 2731 return saved_type(alloca, true); 2732 } 2733 2734 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 2735 if (!value.getInt()) return value.getPointer(); 2736 return CGF.Builder.CreateLoad(value.getPointer()); 2737 } 2738}; 2739 2740/// A partial specialization of DominatingValue for llvm::Values that 2741/// might be llvm::Instructions. 2742template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 2743 typedef T *type; 2744 static type restore(CodeGenFunction &CGF, saved_type value) { 2745 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 2746 } 2747}; 2748 2749/// A specialization of DominatingValue for RValue. 2750template <> struct DominatingValue<RValue> { 2751 typedef RValue type; 2752 class saved_type { 2753 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 2754 AggregateAddress, ComplexAddress }; 2755 2756 llvm::Value *Value; 2757 Kind K; 2758 saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {} 2759 2760 public: 2761 static bool needsSaving(RValue value); 2762 static saved_type save(CodeGenFunction &CGF, RValue value); 2763 RValue restore(CodeGenFunction &CGF); 2764 2765 // implementations in CGExprCXX.cpp 2766 }; 2767 2768 static bool needsSaving(type value) { 2769 return saved_type::needsSaving(value); 2770 } 2771 static saved_type save(CodeGenFunction &CGF, type value) { 2772 return saved_type::save(CGF, value); 2773 } 2774 static type restore(CodeGenFunction &CGF, saved_type value) { 2775 return value.restore(CGF); 2776 } 2777}; 2778 2779} // end namespace CodeGen 2780} // end namespace clang 2781 2782#endif 2783