CodeGenFunction.h revision 57b3b6a60856eaec30fd876a8a3face8f7e3ad7b
1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the internal per-function state used for llvm translation.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15#define CLANG_CODEGEN_CODEGENFUNCTION_H
16
17#include "clang/AST/Type.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/Basic/ABI.h"
22#include "clang/Basic/TargetInfo.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/ValueHandle.h"
26#include "CodeGenModule.h"
27#include "CGBuilder.h"
28#include "CGCall.h"
29#include "CGValue.h"
30
31namespace llvm {
32  class BasicBlock;
33  class LLVMContext;
34  class MDNode;
35  class Module;
36  class SwitchInst;
37  class Twine;
38  class Value;
39  class CallSite;
40}
41
42namespace clang {
43  class APValue;
44  class ASTContext;
45  class CXXDestructorDecl;
46  class CXXTryStmt;
47  class Decl;
48  class LabelDecl;
49  class EnumConstantDecl;
50  class FunctionDecl;
51  class FunctionProtoType;
52  class LabelStmt;
53  class ObjCContainerDecl;
54  class ObjCInterfaceDecl;
55  class ObjCIvarDecl;
56  class ObjCMethodDecl;
57  class ObjCImplementationDecl;
58  class ObjCPropertyImplDecl;
59  class TargetInfo;
60  class TargetCodeGenInfo;
61  class VarDecl;
62  class ObjCForCollectionStmt;
63  class ObjCAtTryStmt;
64  class ObjCAtThrowStmt;
65  class ObjCAtSynchronizedStmt;
66
67namespace CodeGen {
68  class CodeGenTypes;
69  class CGDebugInfo;
70  class CGFunctionInfo;
71  class CGRecordLayout;
72  class CGBlockInfo;
73  class CGCXXABI;
74  class BlockFlags;
75  class BlockFieldFlags;
76
77/// A branch fixup.  These are required when emitting a goto to a
78/// label which hasn't been emitted yet.  The goto is optimistically
79/// emitted as a branch to the basic block for the label, and (if it
80/// occurs in a scope with non-trivial cleanups) a fixup is added to
81/// the innermost cleanup.  When a (normal) cleanup is popped, any
82/// unresolved fixups in that scope are threaded through the cleanup.
83struct BranchFixup {
84  /// The block containing the terminator which needs to be modified
85  /// into a switch if this fixup is resolved into the current scope.
86  /// If null, LatestBranch points directly to the destination.
87  llvm::BasicBlock *OptimisticBranchBlock;
88
89  /// The ultimate destination of the branch.
90  ///
91  /// This can be set to null to indicate that this fixup was
92  /// successfully resolved.
93  llvm::BasicBlock *Destination;
94
95  /// The destination index value.
96  unsigned DestinationIndex;
97
98  /// The initial branch of the fixup.
99  llvm::BranchInst *InitialBranch;
100};
101
102template <class T> struct InvariantValue {
103  typedef T type;
104  typedef T saved_type;
105  static bool needsSaving(type value) { return false; }
106  static saved_type save(CodeGenFunction &CGF, type value) { return value; }
107  static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
108};
109
110/// A metaprogramming class for ensuring that a value will dominate an
111/// arbitrary position in a function.
112template <class T> struct DominatingValue : InvariantValue<T> {};
113
114template <class T, bool mightBeInstruction =
115            llvm::is_base_of<llvm::Value, T>::value &&
116            !llvm::is_base_of<llvm::Constant, T>::value &&
117            !llvm::is_base_of<llvm::BasicBlock, T>::value>
118struct DominatingPointer;
119template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
120// template <class T> struct DominatingPointer<T,true> at end of file
121
122template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
123
124enum CleanupKind {
125  EHCleanup = 0x1,
126  NormalCleanup = 0x2,
127  NormalAndEHCleanup = EHCleanup | NormalCleanup,
128
129  InactiveCleanup = 0x4,
130  InactiveEHCleanup = EHCleanup | InactiveCleanup,
131  InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
132  InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
133};
134
135/// A stack of scopes which respond to exceptions, including cleanups
136/// and catch blocks.
137class EHScopeStack {
138public:
139  /// A saved depth on the scope stack.  This is necessary because
140  /// pushing scopes onto the stack invalidates iterators.
141  class stable_iterator {
142    friend class EHScopeStack;
143
144    /// Offset from StartOfData to EndOfBuffer.
145    ptrdiff_t Size;
146
147    stable_iterator(ptrdiff_t Size) : Size(Size) {}
148
149  public:
150    static stable_iterator invalid() { return stable_iterator(-1); }
151    stable_iterator() : Size(-1) {}
152
153    bool isValid() const { return Size >= 0; }
154
155    /// Returns true if this scope encloses I.
156    /// Returns false if I is invalid.
157    /// This scope must be valid.
158    bool encloses(stable_iterator I) const { return Size <= I.Size; }
159
160    /// Returns true if this scope strictly encloses I: that is,
161    /// if it encloses I and is not I.
162    /// Returns false is I is invalid.
163    /// This scope must be valid.
164    bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
165
166    friend bool operator==(stable_iterator A, stable_iterator B) {
167      return A.Size == B.Size;
168    }
169    friend bool operator!=(stable_iterator A, stable_iterator B) {
170      return A.Size != B.Size;
171    }
172  };
173
174  /// Information for lazily generating a cleanup.  Subclasses must be
175  /// POD-like: cleanups will not be destructed, and they will be
176  /// allocated on the cleanup stack and freely copied and moved
177  /// around.
178  ///
179  /// Cleanup implementations should generally be declared in an
180  /// anonymous namespace.
181  class Cleanup {
182  public:
183    // Anchor the construction vtable.  We use the destructor because
184    // gcc gives an obnoxious warning if there are virtual methods
185    // with an accessible non-virtual destructor.  Unfortunately,
186    // declaring this destructor makes it non-trivial, but there
187    // doesn't seem to be any other way around this warning.
188    //
189    // This destructor will never be called.
190    virtual ~Cleanup();
191
192    /// Emit the cleanup.  For normal cleanups, this is run in the
193    /// same EH context as when the cleanup was pushed, i.e. the
194    /// immediately-enclosing context of the cleanup scope.  For
195    /// EH cleanups, this is run in a terminate context.
196    ///
197    // \param IsForEHCleanup true if this is for an EH cleanup, false
198    ///  if for a normal cleanup.
199    virtual void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) = 0;
200  };
201
202  /// UnconditionalCleanupN stores its N parameters and just passes
203  /// them to the real cleanup function.
204  template <class T, class A0>
205  class UnconditionalCleanup1 : public Cleanup {
206    A0 a0;
207  public:
208    UnconditionalCleanup1(A0 a0) : a0(a0) {}
209    void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
210      T::Emit(CGF, IsForEHCleanup, a0);
211    }
212  };
213
214  template <class T, class A0, class A1>
215  class UnconditionalCleanup2 : public Cleanup {
216    A0 a0; A1 a1;
217  public:
218    UnconditionalCleanup2(A0 a0, A1 a1) : a0(a0), a1(a1) {}
219    void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
220      T::Emit(CGF, IsForEHCleanup, a0, a1);
221    }
222  };
223
224  /// ConditionalCleanupN stores the saved form of its N parameters,
225  /// then restores them and performs the cleanup.
226  template <class T, class A0>
227  class ConditionalCleanup1 : public Cleanup {
228    typedef typename DominatingValue<A0>::saved_type A0_saved;
229    A0_saved a0_saved;
230
231    void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
232      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
233      T::Emit(CGF, IsForEHCleanup, a0);
234    }
235
236  public:
237    ConditionalCleanup1(A0_saved a0)
238      : a0_saved(a0) {}
239  };
240
241  template <class T, class A0, class A1>
242  class ConditionalCleanup2 : public Cleanup {
243    typedef typename DominatingValue<A0>::saved_type A0_saved;
244    typedef typename DominatingValue<A1>::saved_type A1_saved;
245    A0_saved a0_saved;
246    A1_saved a1_saved;
247
248    void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
249      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
250      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
251      T::Emit(CGF, IsForEHCleanup, a0, a1);
252    }
253
254  public:
255    ConditionalCleanup2(A0_saved a0, A1_saved a1)
256      : a0_saved(a0), a1_saved(a1) {}
257  };
258
259private:
260  // The implementation for this class is in CGException.h and
261  // CGException.cpp; the definition is here because it's used as a
262  // member of CodeGenFunction.
263
264  /// The start of the scope-stack buffer, i.e. the allocated pointer
265  /// for the buffer.  All of these pointers are either simultaneously
266  /// null or simultaneously valid.
267  char *StartOfBuffer;
268
269  /// The end of the buffer.
270  char *EndOfBuffer;
271
272  /// The first valid entry in the buffer.
273  char *StartOfData;
274
275  /// The innermost normal cleanup on the stack.
276  stable_iterator InnermostNormalCleanup;
277
278  /// The innermost EH cleanup on the stack.
279  stable_iterator InnermostEHCleanup;
280
281  /// The number of catches on the stack.
282  unsigned CatchDepth;
283
284  /// The current EH destination index.  Reset to FirstCatchIndex
285  /// whenever the last EH cleanup is popped.
286  unsigned NextEHDestIndex;
287  enum { FirstEHDestIndex = 1 };
288
289  /// The current set of branch fixups.  A branch fixup is a jump to
290  /// an as-yet unemitted label, i.e. a label for which we don't yet
291  /// know the EH stack depth.  Whenever we pop a cleanup, we have
292  /// to thread all the current branch fixups through it.
293  ///
294  /// Fixups are recorded as the Use of the respective branch or
295  /// switch statement.  The use points to the final destination.
296  /// When popping out of a cleanup, these uses are threaded through
297  /// the cleanup and adjusted to point to the new cleanup.
298  ///
299  /// Note that branches are allowed to jump into protected scopes
300  /// in certain situations;  e.g. the following code is legal:
301  ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
302  ///     goto foo;
303  ///     A a;
304  ///    foo:
305  ///     bar();
306  llvm::SmallVector<BranchFixup, 8> BranchFixups;
307
308  char *allocate(size_t Size);
309
310  void *pushCleanup(CleanupKind K, size_t DataSize);
311
312public:
313  EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
314                   InnermostNormalCleanup(stable_end()),
315                   InnermostEHCleanup(stable_end()),
316                   CatchDepth(0), NextEHDestIndex(FirstEHDestIndex) {}
317  ~EHScopeStack() { delete[] StartOfBuffer; }
318
319  // Variadic templates would make this not terrible.
320
321  /// Push a lazily-created cleanup on the stack.
322  template <class T>
323  void pushCleanup(CleanupKind Kind) {
324    void *Buffer = pushCleanup(Kind, sizeof(T));
325    Cleanup *Obj = new(Buffer) T();
326    (void) Obj;
327  }
328
329  /// Push a lazily-created cleanup on the stack.
330  template <class T, class A0>
331  void pushCleanup(CleanupKind Kind, A0 a0) {
332    void *Buffer = pushCleanup(Kind, sizeof(T));
333    Cleanup *Obj = new(Buffer) T(a0);
334    (void) Obj;
335  }
336
337  /// Push a lazily-created cleanup on the stack.
338  template <class T, class A0, class A1>
339  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
340    void *Buffer = pushCleanup(Kind, sizeof(T));
341    Cleanup *Obj = new(Buffer) T(a0, a1);
342    (void) Obj;
343  }
344
345  /// Push a lazily-created cleanup on the stack.
346  template <class T, class A0, class A1, class A2>
347  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
348    void *Buffer = pushCleanup(Kind, sizeof(T));
349    Cleanup *Obj = new(Buffer) T(a0, a1, a2);
350    (void) Obj;
351  }
352
353  /// Push a lazily-created cleanup on the stack.
354  template <class T, class A0, class A1, class A2, class A3>
355  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
356    void *Buffer = pushCleanup(Kind, sizeof(T));
357    Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
358    (void) Obj;
359  }
360
361  /// Push a lazily-created cleanup on the stack.
362  template <class T, class A0, class A1, class A2, class A3, class A4>
363  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
364    void *Buffer = pushCleanup(Kind, sizeof(T));
365    Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
366    (void) Obj;
367  }
368
369  // Feel free to add more variants of the following:
370
371  /// Push a cleanup with non-constant storage requirements on the
372  /// stack.  The cleanup type must provide an additional static method:
373  ///   static size_t getExtraSize(size_t);
374  /// The argument to this method will be the value N, which will also
375  /// be passed as the first argument to the constructor.
376  ///
377  /// The data stored in the extra storage must obey the same
378  /// restrictions as normal cleanup member data.
379  ///
380  /// The pointer returned from this method is valid until the cleanup
381  /// stack is modified.
382  template <class T, class A0, class A1, class A2>
383  T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
384    void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
385    return new (Buffer) T(N, a0, a1, a2);
386  }
387
388  /// Pops a cleanup scope off the stack.  This should only be called
389  /// by CodeGenFunction::PopCleanupBlock.
390  void popCleanup();
391
392  /// Push a set of catch handlers on the stack.  The catch is
393  /// uninitialized and will need to have the given number of handlers
394  /// set on it.
395  class EHCatchScope *pushCatch(unsigned NumHandlers);
396
397  /// Pops a catch scope off the stack.
398  void popCatch();
399
400  /// Push an exceptions filter on the stack.
401  class EHFilterScope *pushFilter(unsigned NumFilters);
402
403  /// Pops an exceptions filter off the stack.
404  void popFilter();
405
406  /// Push a terminate handler on the stack.
407  void pushTerminate();
408
409  /// Pops a terminate handler off the stack.
410  void popTerminate();
411
412  /// Determines whether the exception-scopes stack is empty.
413  bool empty() const { return StartOfData == EndOfBuffer; }
414
415  bool requiresLandingPad() const {
416    return (CatchDepth || hasEHCleanups());
417  }
418
419  /// Determines whether there are any normal cleanups on the stack.
420  bool hasNormalCleanups() const {
421    return InnermostNormalCleanup != stable_end();
422  }
423
424  /// Returns the innermost normal cleanup on the stack, or
425  /// stable_end() if there are no normal cleanups.
426  stable_iterator getInnermostNormalCleanup() const {
427    return InnermostNormalCleanup;
428  }
429  stable_iterator getInnermostActiveNormalCleanup() const; // CGException.h
430
431  /// Determines whether there are any EH cleanups on the stack.
432  bool hasEHCleanups() const {
433    return InnermostEHCleanup != stable_end();
434  }
435
436  /// Returns the innermost EH cleanup on the stack, or stable_end()
437  /// if there are no EH cleanups.
438  stable_iterator getInnermostEHCleanup() const {
439    return InnermostEHCleanup;
440  }
441  stable_iterator getInnermostActiveEHCleanup() const; // CGException.h
442
443  /// An unstable reference to a scope-stack depth.  Invalidated by
444  /// pushes but not pops.
445  class iterator;
446
447  /// Returns an iterator pointing to the innermost EH scope.
448  iterator begin() const;
449
450  /// Returns an iterator pointing to the outermost EH scope.
451  iterator end() const;
452
453  /// Create a stable reference to the top of the EH stack.  The
454  /// returned reference is valid until that scope is popped off the
455  /// stack.
456  stable_iterator stable_begin() const {
457    return stable_iterator(EndOfBuffer - StartOfData);
458  }
459
460  /// Create a stable reference to the bottom of the EH stack.
461  static stable_iterator stable_end() {
462    return stable_iterator(0);
463  }
464
465  /// Translates an iterator into a stable_iterator.
466  stable_iterator stabilize(iterator it) const;
467
468  /// Finds the nearest cleanup enclosing the given iterator.
469  /// Returns stable_iterator::invalid() if there are no such cleanups.
470  stable_iterator getEnclosingEHCleanup(iterator it) const;
471
472  /// Turn a stable reference to a scope depth into a unstable pointer
473  /// to the EH stack.
474  iterator find(stable_iterator save) const;
475
476  /// Removes the cleanup pointed to by the given stable_iterator.
477  void removeCleanup(stable_iterator save);
478
479  /// Add a branch fixup to the current cleanup scope.
480  BranchFixup &addBranchFixup() {
481    assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
482    BranchFixups.push_back(BranchFixup());
483    return BranchFixups.back();
484  }
485
486  unsigned getNumBranchFixups() const { return BranchFixups.size(); }
487  BranchFixup &getBranchFixup(unsigned I) {
488    assert(I < getNumBranchFixups());
489    return BranchFixups[I];
490  }
491
492  /// Pops lazily-removed fixups from the end of the list.  This
493  /// should only be called by procedures which have just popped a
494  /// cleanup or resolved one or more fixups.
495  void popNullFixups();
496
497  /// Clears the branch-fixups list.  This should only be called by
498  /// ResolveAllBranchFixups.
499  void clearFixups() { BranchFixups.clear(); }
500
501  /// Gets the next EH destination index.
502  unsigned getNextEHDestIndex() { return NextEHDestIndex++; }
503};
504
505/// CodeGenFunction - This class organizes the per-function state that is used
506/// while generating LLVM code.
507class CodeGenFunction : public CodeGenTypeCache {
508  CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT
509  void operator=(const CodeGenFunction&);  // DO NOT IMPLEMENT
510
511  friend class CGCXXABI;
512public:
513  /// A jump destination is an abstract label, branching to which may
514  /// require a jump out through normal cleanups.
515  struct JumpDest {
516    JumpDest() : Block(0), ScopeDepth(), Index(0) {}
517    JumpDest(llvm::BasicBlock *Block,
518             EHScopeStack::stable_iterator Depth,
519             unsigned Index)
520      : Block(Block), ScopeDepth(Depth), Index(Index) {}
521
522    bool isValid() const { return Block != 0; }
523    llvm::BasicBlock *getBlock() const { return Block; }
524    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
525    unsigned getDestIndex() const { return Index; }
526
527  private:
528    llvm::BasicBlock *Block;
529    EHScopeStack::stable_iterator ScopeDepth;
530    unsigned Index;
531  };
532
533  /// An unwind destination is an abstract label, branching to which
534  /// may require a jump out through EH cleanups.
535  struct UnwindDest {
536    UnwindDest() : Block(0), ScopeDepth(), Index(0) {}
537    UnwindDest(llvm::BasicBlock *Block,
538               EHScopeStack::stable_iterator Depth,
539               unsigned Index)
540      : Block(Block), ScopeDepth(Depth), Index(Index) {}
541
542    bool isValid() const { return Block != 0; }
543    llvm::BasicBlock *getBlock() const { return Block; }
544    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
545    unsigned getDestIndex() const { return Index; }
546
547  private:
548    llvm::BasicBlock *Block;
549    EHScopeStack::stable_iterator ScopeDepth;
550    unsigned Index;
551  };
552
553  CodeGenModule &CGM;  // Per-module state.
554  const TargetInfo &Target;
555
556  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
557  CGBuilderTy Builder;
558
559  /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
560  /// This excludes BlockDecls.
561  const Decl *CurFuncDecl;
562  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
563  const Decl *CurCodeDecl;
564  const CGFunctionInfo *CurFnInfo;
565  QualType FnRetTy;
566  llvm::Function *CurFn;
567
568  /// CurGD - The GlobalDecl for the current function being compiled.
569  GlobalDecl CurGD;
570
571  /// ReturnBlock - Unified return block.
572  JumpDest ReturnBlock;
573
574  /// ReturnValue - The temporary alloca to hold the return value. This is null
575  /// iff the function has no return value.
576  llvm::Value *ReturnValue;
577
578  /// RethrowBlock - Unified rethrow block.
579  UnwindDest RethrowBlock;
580
581  /// AllocaInsertPoint - This is an instruction in the entry block before which
582  /// we prefer to insert allocas.
583  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
584
585  bool CatchUndefined;
586
587  const CodeGen::CGBlockInfo *BlockInfo;
588  llvm::Value *BlockPointer;
589
590  /// \brief A mapping from NRVO variables to the flags used to indicate
591  /// when the NRVO has been applied to this variable.
592  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
593
594  EHScopeStack EHStack;
595
596  /// i32s containing the indexes of the cleanup destinations.
597  llvm::AllocaInst *NormalCleanupDest;
598  llvm::AllocaInst *EHCleanupDest;
599
600  unsigned NextCleanupDestIndex;
601
602  /// The exception slot.  All landing pads write the current
603  /// exception pointer into this alloca.
604  llvm::Value *ExceptionSlot;
605
606  /// Emits a landing pad for the current EH stack.
607  llvm::BasicBlock *EmitLandingPad();
608
609  llvm::BasicBlock *getInvokeDestImpl();
610
611  /// Set up the last cleaup that was pushed as a conditional
612  /// full-expression cleanup.
613  void initFullExprCleanup();
614
615  template <class T>
616  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
617    return DominatingValue<T>::save(*this, value);
618  }
619
620public:
621  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
622  /// rethrows.
623  llvm::SmallVector<llvm::Value*, 8> ObjCEHValueStack;
624
625  // A struct holding information about a finally block's IR
626  // generation.  For now, doesn't actually hold anything.
627  struct FinallyInfo {
628  };
629
630  FinallyInfo EnterFinallyBlock(const Stmt *Stmt,
631                                llvm::Constant *BeginCatchFn,
632                                llvm::Constant *EndCatchFn,
633                                llvm::Constant *RethrowFn);
634  void ExitFinallyBlock(FinallyInfo &FinallyInfo);
635
636  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
637  /// current full-expression.  Safe against the possibility that
638  /// we're currently inside a conditionally-evaluated expression.
639  template <class T, class A0>
640  void pushFullExprCleanup(CleanupKind kind, A0 a0) {
641    // If we're not in a conditional branch, or if none of the
642    // arguments requires saving, then use the unconditional cleanup.
643    if (!isInConditionalBranch()) {
644      typedef EHScopeStack::UnconditionalCleanup1<T, A0> CleanupType;
645      return EHStack.pushCleanup<CleanupType>(kind, a0);
646    }
647
648    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
649
650    typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
651    EHStack.pushCleanup<CleanupType>(kind, a0_saved);
652    initFullExprCleanup();
653  }
654
655  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
656  /// current full-expression.  Safe against the possibility that
657  /// we're currently inside a conditionally-evaluated expression.
658  template <class T, class A0, class A1>
659  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
660    // If we're not in a conditional branch, or if none of the
661    // arguments requires saving, then use the unconditional cleanup.
662    if (!isInConditionalBranch()) {
663      typedef EHScopeStack::UnconditionalCleanup2<T, A0, A1> CleanupType;
664      return EHStack.pushCleanup<CleanupType>(kind, a0, a1);
665    }
666
667    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
668    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
669
670    typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
671    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
672    initFullExprCleanup();
673  }
674
675  /// PushDestructorCleanup - Push a cleanup to call the
676  /// complete-object destructor of an object of the given type at the
677  /// given address.  Does nothing if T is not a C++ class type with a
678  /// non-trivial destructor.
679  void PushDestructorCleanup(QualType T, llvm::Value *Addr);
680
681  /// PushDestructorCleanup - Push a cleanup to call the
682  /// complete-object variant of the given destructor on the object at
683  /// the given address.
684  void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
685                             llvm::Value *Addr);
686
687  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
688  /// process all branch fixups.
689  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
690
691  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
692  /// The block cannot be reactivated.  Pops it if it's the top of the
693  /// stack.
694  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup);
695
696  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
697  /// Cannot be used to resurrect a deactivated cleanup.
698  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup);
699
700  /// \brief Enters a new scope for capturing cleanups, all of which
701  /// will be executed once the scope is exited.
702  class RunCleanupsScope {
703    CodeGenFunction& CGF;
704    EHScopeStack::stable_iterator CleanupStackDepth;
705    bool OldDidCallStackSave;
706    bool PerformCleanup;
707
708    RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT
709    RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT
710
711  public:
712    /// \brief Enter a new cleanup scope.
713    explicit RunCleanupsScope(CodeGenFunction &CGF)
714      : CGF(CGF), PerformCleanup(true)
715    {
716      CleanupStackDepth = CGF.EHStack.stable_begin();
717      OldDidCallStackSave = CGF.DidCallStackSave;
718      CGF.DidCallStackSave = false;
719    }
720
721    /// \brief Exit this cleanup scope, emitting any accumulated
722    /// cleanups.
723    ~RunCleanupsScope() {
724      if (PerformCleanup) {
725        CGF.DidCallStackSave = OldDidCallStackSave;
726        CGF.PopCleanupBlocks(CleanupStackDepth);
727      }
728    }
729
730    /// \brief Determine whether this scope requires any cleanups.
731    bool requiresCleanups() const {
732      return CGF.EHStack.stable_begin() != CleanupStackDepth;
733    }
734
735    /// \brief Force the emission of cleanups now, instead of waiting
736    /// until this object is destroyed.
737    void ForceCleanup() {
738      assert(PerformCleanup && "Already forced cleanup");
739      CGF.DidCallStackSave = OldDidCallStackSave;
740      CGF.PopCleanupBlocks(CleanupStackDepth);
741      PerformCleanup = false;
742    }
743  };
744
745
746  /// PopCleanupBlocks - Takes the old cleanup stack size and emits
747  /// the cleanup blocks that have been added.
748  void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
749
750  void ResolveBranchFixups(llvm::BasicBlock *Target);
751
752  /// The given basic block lies in the current EH scope, but may be a
753  /// target of a potentially scope-crossing jump; get a stable handle
754  /// to which we can perform this jump later.
755  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
756    return JumpDest(Target,
757                    EHStack.getInnermostNormalCleanup(),
758                    NextCleanupDestIndex++);
759  }
760
761  /// The given basic block lies in the current EH scope, but may be a
762  /// target of a potentially scope-crossing jump; get a stable handle
763  /// to which we can perform this jump later.
764  JumpDest getJumpDestInCurrentScope(llvm::StringRef Name = llvm::StringRef()) {
765    return getJumpDestInCurrentScope(createBasicBlock(Name));
766  }
767
768  /// EmitBranchThroughCleanup - Emit a branch from the current insert
769  /// block through the normal cleanup handling code (if any) and then
770  /// on to \arg Dest.
771  void EmitBranchThroughCleanup(JumpDest Dest);
772
773  /// EmitBranchThroughEHCleanup - Emit a branch from the current
774  /// insert block through the EH cleanup handling code (if any) and
775  /// then on to \arg Dest.
776  void EmitBranchThroughEHCleanup(UnwindDest Dest);
777
778  /// getRethrowDest - Returns the unified outermost-scope rethrow
779  /// destination.
780  UnwindDest getRethrowDest();
781
782  /// An object to manage conditionally-evaluated expressions.
783  class ConditionalEvaluation {
784    llvm::BasicBlock *StartBB;
785
786  public:
787    ConditionalEvaluation(CodeGenFunction &CGF)
788      : StartBB(CGF.Builder.GetInsertBlock()) {}
789
790    void begin(CodeGenFunction &CGF) {
791      assert(CGF.OutermostConditional != this);
792      if (!CGF.OutermostConditional)
793        CGF.OutermostConditional = this;
794    }
795
796    void end(CodeGenFunction &CGF) {
797      assert(CGF.OutermostConditional != 0);
798      if (CGF.OutermostConditional == this)
799        CGF.OutermostConditional = 0;
800    }
801
802    /// Returns a block which will be executed prior to each
803    /// evaluation of the conditional code.
804    llvm::BasicBlock *getStartingBlock() const {
805      return StartBB;
806    }
807  };
808
809  /// isInConditionalBranch - Return true if we're currently emitting
810  /// one branch or the other of a conditional expression.
811  bool isInConditionalBranch() const { return OutermostConditional != 0; }
812
813  /// An RAII object to record that we're evaluating a statement
814  /// expression.
815  class StmtExprEvaluation {
816    CodeGenFunction &CGF;
817
818    /// We have to save the outermost conditional: cleanups in a
819    /// statement expression aren't conditional just because the
820    /// StmtExpr is.
821    ConditionalEvaluation *SavedOutermostConditional;
822
823  public:
824    StmtExprEvaluation(CodeGenFunction &CGF)
825      : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
826      CGF.OutermostConditional = 0;
827    }
828
829    ~StmtExprEvaluation() {
830      CGF.OutermostConditional = SavedOutermostConditional;
831      CGF.EnsureInsertPoint();
832    }
833  };
834
835  /// An object which temporarily prevents a value from being
836  /// destroyed by aggressive peephole optimizations that assume that
837  /// all uses of a value have been realized in the IR.
838  class PeepholeProtection {
839    llvm::Instruction *Inst;
840    friend class CodeGenFunction;
841
842  public:
843    PeepholeProtection() : Inst(0) {}
844  };
845
846  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
847  class OpaqueValueMapping {
848    CodeGenFunction &CGF;
849    const OpaqueValueExpr *OpaqueValue;
850    bool BoundLValue;
851    CodeGenFunction::PeepholeProtection Protection;
852
853  public:
854    static bool shouldBindAsLValue(const Expr *expr) {
855      return expr->isGLValue() || expr->getType()->isRecordType();
856    }
857
858    /// Build the opaque value mapping for the given conditional
859    /// operator if it's the GNU ?: extension.  This is a common
860    /// enough pattern that the convenience operator is really
861    /// helpful.
862    ///
863    OpaqueValueMapping(CodeGenFunction &CGF,
864                       const AbstractConditionalOperator *op) : CGF(CGF) {
865      if (isa<ConditionalOperator>(op)) {
866        OpaqueValue = 0;
867        BoundLValue = false;
868        return;
869      }
870
871      const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
872      init(e->getOpaqueValue(), e->getCommon());
873    }
874
875    OpaqueValueMapping(CodeGenFunction &CGF,
876                       const OpaqueValueExpr *opaqueValue,
877                       LValue lvalue)
878      : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(true) {
879      assert(opaqueValue && "no opaque value expression!");
880      assert(shouldBindAsLValue(opaqueValue));
881      initLValue(lvalue);
882    }
883
884    OpaqueValueMapping(CodeGenFunction &CGF,
885                       const OpaqueValueExpr *opaqueValue,
886                       RValue rvalue)
887      : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(false) {
888      assert(opaqueValue && "no opaque value expression!");
889      assert(!shouldBindAsLValue(opaqueValue));
890      initRValue(rvalue);
891    }
892
893    void pop() {
894      assert(OpaqueValue && "mapping already popped!");
895      popImpl();
896      OpaqueValue = 0;
897    }
898
899    ~OpaqueValueMapping() {
900      if (OpaqueValue) popImpl();
901    }
902
903  private:
904    void popImpl() {
905      if (BoundLValue)
906        CGF.OpaqueLValues.erase(OpaqueValue);
907      else {
908        CGF.OpaqueRValues.erase(OpaqueValue);
909        CGF.unprotectFromPeepholes(Protection);
910      }
911    }
912
913    void init(const OpaqueValueExpr *ov, const Expr *e) {
914      OpaqueValue = ov;
915      BoundLValue = shouldBindAsLValue(ov);
916      assert(BoundLValue == shouldBindAsLValue(e)
917             && "inconsistent expression value kinds!");
918      if (BoundLValue)
919        initLValue(CGF.EmitLValue(e));
920      else
921        initRValue(CGF.EmitAnyExpr(e));
922    }
923
924    void initLValue(const LValue &lv) {
925      CGF.OpaqueLValues.insert(std::make_pair(OpaqueValue, lv));
926    }
927
928    void initRValue(const RValue &rv) {
929      // Work around an extremely aggressive peephole optimization in
930      // EmitScalarConversion which assumes that all other uses of a
931      // value are extant.
932      Protection = CGF.protectFromPeepholes(rv);
933      CGF.OpaqueRValues.insert(std::make_pair(OpaqueValue, rv));
934    }
935  };
936
937  /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
938  /// number that holds the value.
939  unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
940
941  /// BuildBlockByrefAddress - Computes address location of the
942  /// variable which is declared as __block.
943  llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
944                                      const VarDecl *V);
945private:
946  CGDebugInfo *DebugInfo;
947
948  /// IndirectBranch - The first time an indirect goto is seen we create a block
949  /// with an indirect branch.  Every time we see the address of a label taken,
950  /// we add the label to the indirect goto.  Every subsequent indirect goto is
951  /// codegen'd as a jump to the IndirectBranch's basic block.
952  llvm::IndirectBrInst *IndirectBranch;
953
954  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
955  /// decls.
956  typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
957  DeclMapTy LocalDeclMap;
958
959  /// LabelMap - This keeps track of the LLVM basic block for each C label.
960  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
961
962  // BreakContinueStack - This keeps track of where break and continue
963  // statements should jump to.
964  struct BreakContinue {
965    BreakContinue(JumpDest Break, JumpDest Continue)
966      : BreakBlock(Break), ContinueBlock(Continue) {}
967
968    JumpDest BreakBlock;
969    JumpDest ContinueBlock;
970  };
971  llvm::SmallVector<BreakContinue, 8> BreakContinueStack;
972
973  /// SwitchInsn - This is nearest current switch instruction. It is null if if
974  /// current context is not in a switch.
975  llvm::SwitchInst *SwitchInsn;
976
977  /// CaseRangeBlock - This block holds if condition check for last case
978  /// statement range in current switch instruction.
979  llvm::BasicBlock *CaseRangeBlock;
980
981  /// OpaqueLValues - Keeps track of the current set of opaque value
982  /// expressions.
983  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
984  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
985
986  // VLASizeMap - This keeps track of the associated size for each VLA type.
987  // We track this by the size expression rather than the type itself because
988  // in certain situations, like a const qualifier applied to an VLA typedef,
989  // multiple VLA types can share the same size expression.
990  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
991  // enter/leave scopes.
992  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
993
994  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
995  /// calling llvm.stacksave for multiple VLAs in the same scope.
996  bool DidCallStackSave;
997
998  /// A block containing a single 'unreachable' instruction.  Created
999  /// lazily by getUnreachableBlock().
1000  llvm::BasicBlock *UnreachableBlock;
1001
1002  /// CXXThisDecl - When generating code for a C++ member function,
1003  /// this will hold the implicit 'this' declaration.
1004  ImplicitParamDecl *CXXThisDecl;
1005  llvm::Value *CXXThisValue;
1006
1007  /// CXXVTTDecl - When generating code for a base object constructor or
1008  /// base object destructor with virtual bases, this will hold the implicit
1009  /// VTT parameter.
1010  ImplicitParamDecl *CXXVTTDecl;
1011  llvm::Value *CXXVTTValue;
1012
1013  /// OutermostConditional - Points to the outermost active
1014  /// conditional control.  This is used so that we know if a
1015  /// temporary should be destroyed conditionally.
1016  ConditionalEvaluation *OutermostConditional;
1017
1018
1019  /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1020  /// type as well as the field number that contains the actual data.
1021  llvm::DenseMap<const ValueDecl *, std::pair<const llvm::Type *,
1022                                              unsigned> > ByRefValueInfo;
1023
1024  llvm::BasicBlock *TerminateLandingPad;
1025  llvm::BasicBlock *TerminateHandler;
1026  llvm::BasicBlock *TrapBB;
1027
1028public:
1029  CodeGenFunction(CodeGenModule &cgm);
1030
1031  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1032  ASTContext &getContext() const;
1033  CGDebugInfo *getDebugInfo() { return DebugInfo; }
1034
1035  const LangOptions &getLangOptions() const { return CGM.getLangOptions(); }
1036
1037  /// Returns a pointer to the function's exception object slot, which
1038  /// is assigned in every landing pad.
1039  llvm::Value *getExceptionSlot();
1040
1041  llvm::Value *getNormalCleanupDestSlot();
1042  llvm::Value *getEHCleanupDestSlot();
1043
1044  llvm::BasicBlock *getUnreachableBlock() {
1045    if (!UnreachableBlock) {
1046      UnreachableBlock = createBasicBlock("unreachable");
1047      new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1048    }
1049    return UnreachableBlock;
1050  }
1051
1052  llvm::BasicBlock *getInvokeDest() {
1053    if (!EHStack.requiresLandingPad()) return 0;
1054    return getInvokeDestImpl();
1055  }
1056
1057  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1058
1059  //===--------------------------------------------------------------------===//
1060  //                                  Objective-C
1061  //===--------------------------------------------------------------------===//
1062
1063  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1064
1065  void StartObjCMethod(const ObjCMethodDecl *MD,
1066                       const ObjCContainerDecl *CD);
1067
1068  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1069  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1070                          const ObjCPropertyImplDecl *PID);
1071  void GenerateObjCGetterBody(ObjCIvarDecl *Ivar, bool IsAtomic, bool IsStrong);
1072  void GenerateObjCAtomicSetterBody(ObjCMethodDecl *OMD,
1073                                    ObjCIvarDecl *Ivar);
1074
1075  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1076                                  ObjCMethodDecl *MD, bool ctor);
1077
1078  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1079  /// for the given property.
1080  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1081                          const ObjCPropertyImplDecl *PID);
1082  bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1083  bool IvarTypeWithAggrGCObjects(QualType Ty);
1084
1085  //===--------------------------------------------------------------------===//
1086  //                                  Block Bits
1087  //===--------------------------------------------------------------------===//
1088
1089  llvm::Value *EmitBlockLiteral(const BlockExpr *);
1090  llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1091                                           const CGBlockInfo &Info,
1092                                           const llvm::StructType *,
1093                                           llvm::Constant *BlockVarLayout);
1094
1095  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1096                                        const CGBlockInfo &Info,
1097                                        const Decl *OuterFuncDecl,
1098                                        const DeclMapTy &ldm);
1099
1100  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1101  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1102
1103  llvm::Constant *GeneratebyrefCopyHelperFunction(const llvm::Type *,
1104                                                  BlockFieldFlags flags,
1105                                                  const VarDecl *BD);
1106  llvm::Constant *GeneratebyrefDestroyHelperFunction(const llvm::Type *T,
1107                                                     BlockFieldFlags flags,
1108                                                     const VarDecl *BD);
1109
1110  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1111
1112  llvm::Value *LoadBlockStruct() {
1113    assert(BlockPointer && "no block pointer set!");
1114    return BlockPointer;
1115  }
1116
1117  void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1118  void AllocateBlockDecl(const BlockDeclRefExpr *E);
1119  llvm::Value *GetAddrOfBlockDecl(const BlockDeclRefExpr *E) {
1120    return GetAddrOfBlockDecl(E->getDecl(), E->isByRef());
1121  }
1122  llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1123  const llvm::Type *BuildByRefType(const VarDecl *var);
1124
1125  void GenerateCode(GlobalDecl GD, llvm::Function *Fn);
1126  void StartFunction(GlobalDecl GD, QualType RetTy,
1127                     llvm::Function *Fn,
1128                     const FunctionArgList &Args,
1129                     SourceLocation StartLoc);
1130
1131  void EmitConstructorBody(FunctionArgList &Args);
1132  void EmitDestructorBody(FunctionArgList &Args);
1133  void EmitFunctionBody(FunctionArgList &Args);
1134
1135  /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1136  /// emission when possible.
1137  void EmitReturnBlock();
1138
1139  /// FinishFunction - Complete IR generation of the current function. It is
1140  /// legal to call this function even if there is no current insertion point.
1141  void FinishFunction(SourceLocation EndLoc=SourceLocation());
1142
1143  /// GenerateThunk - Generate a thunk for the given method.
1144  void GenerateThunk(llvm::Function *Fn, GlobalDecl GD, const ThunkInfo &Thunk);
1145
1146  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1147                        FunctionArgList &Args);
1148
1149  /// InitializeVTablePointer - Initialize the vtable pointer of the given
1150  /// subobject.
1151  ///
1152  void InitializeVTablePointer(BaseSubobject Base,
1153                               const CXXRecordDecl *NearestVBase,
1154                               uint64_t OffsetFromNearestVBase,
1155                               llvm::Constant *VTable,
1156                               const CXXRecordDecl *VTableClass);
1157
1158  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1159  void InitializeVTablePointers(BaseSubobject Base,
1160                                const CXXRecordDecl *NearestVBase,
1161                                uint64_t OffsetFromNearestVBase,
1162                                bool BaseIsNonVirtualPrimaryBase,
1163                                llvm::Constant *VTable,
1164                                const CXXRecordDecl *VTableClass,
1165                                VisitedVirtualBasesSetTy& VBases);
1166
1167  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1168
1169  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1170  /// to by This.
1171  llvm::Value *GetVTablePtr(llvm::Value *This, const llvm::Type *Ty);
1172
1173  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1174  /// given phase of destruction for a destructor.  The end result
1175  /// should call destructors on members and base classes in reverse
1176  /// order of their construction.
1177  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1178
1179  /// ShouldInstrumentFunction - Return true if the current function should be
1180  /// instrumented with __cyg_profile_func_* calls
1181  bool ShouldInstrumentFunction();
1182
1183  /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1184  /// instrumentation function with the current function and the call site, if
1185  /// function instrumentation is enabled.
1186  void EmitFunctionInstrumentation(const char *Fn);
1187
1188  /// EmitMCountInstrumentation - Emit call to .mcount.
1189  void EmitMCountInstrumentation();
1190
1191  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1192  /// arguments for the given function. This is also responsible for naming the
1193  /// LLVM function arguments.
1194  void EmitFunctionProlog(const CGFunctionInfo &FI,
1195                          llvm::Function *Fn,
1196                          const FunctionArgList &Args);
1197
1198  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1199  /// given temporary.
1200  void EmitFunctionEpilog(const CGFunctionInfo &FI);
1201
1202  /// EmitStartEHSpec - Emit the start of the exception spec.
1203  void EmitStartEHSpec(const Decl *D);
1204
1205  /// EmitEndEHSpec - Emit the end of the exception spec.
1206  void EmitEndEHSpec(const Decl *D);
1207
1208  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1209  llvm::BasicBlock *getTerminateLandingPad();
1210
1211  /// getTerminateHandler - Return a handler (not a landing pad, just
1212  /// a catch handler) that just calls terminate.  This is used when
1213  /// a terminate scope encloses a try.
1214  llvm::BasicBlock *getTerminateHandler();
1215
1216  const llvm::Type *ConvertTypeForMem(QualType T);
1217  const llvm::Type *ConvertType(QualType T);
1218  const llvm::Type *ConvertType(const TypeDecl *T) {
1219    return ConvertType(getContext().getTypeDeclType(T));
1220  }
1221
1222  /// LoadObjCSelf - Load the value of self. This function is only valid while
1223  /// generating code for an Objective-C method.
1224  llvm::Value *LoadObjCSelf();
1225
1226  /// TypeOfSelfObject - Return type of object that this self represents.
1227  QualType TypeOfSelfObject();
1228
1229  /// hasAggregateLLVMType - Return true if the specified AST type will map into
1230  /// an aggregate LLVM type or is void.
1231  static bool hasAggregateLLVMType(QualType T);
1232
1233  /// createBasicBlock - Create an LLVM basic block.
1234  llvm::BasicBlock *createBasicBlock(llvm::StringRef name = "",
1235                                     llvm::Function *parent = 0,
1236                                     llvm::BasicBlock *before = 0) {
1237#ifdef NDEBUG
1238    return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1239#else
1240    return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1241#endif
1242  }
1243
1244  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1245  /// label maps to.
1246  JumpDest getJumpDestForLabel(const LabelDecl *S);
1247
1248  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1249  /// another basic block, simplify it. This assumes that no other code could
1250  /// potentially reference the basic block.
1251  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1252
1253  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1254  /// adding a fall-through branch from the current insert block if
1255  /// necessary. It is legal to call this function even if there is no current
1256  /// insertion point.
1257  ///
1258  /// IsFinished - If true, indicates that the caller has finished emitting
1259  /// branches to the given block and does not expect to emit code into it. This
1260  /// means the block can be ignored if it is unreachable.
1261  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1262
1263  /// EmitBranch - Emit a branch to the specified basic block from the current
1264  /// insert block, taking care to avoid creation of branches from dummy
1265  /// blocks. It is legal to call this function even if there is no current
1266  /// insertion point.
1267  ///
1268  /// This function clears the current insertion point. The caller should follow
1269  /// calls to this function with calls to Emit*Block prior to generation new
1270  /// code.
1271  void EmitBranch(llvm::BasicBlock *Block);
1272
1273  /// HaveInsertPoint - True if an insertion point is defined. If not, this
1274  /// indicates that the current code being emitted is unreachable.
1275  bool HaveInsertPoint() const {
1276    return Builder.GetInsertBlock() != 0;
1277  }
1278
1279  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1280  /// emitted IR has a place to go. Note that by definition, if this function
1281  /// creates a block then that block is unreachable; callers may do better to
1282  /// detect when no insertion point is defined and simply skip IR generation.
1283  void EnsureInsertPoint() {
1284    if (!HaveInsertPoint())
1285      EmitBlock(createBasicBlock());
1286  }
1287
1288  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1289  /// specified stmt yet.
1290  void ErrorUnsupported(const Stmt *S, const char *Type,
1291                        bool OmitOnError=false);
1292
1293  //===--------------------------------------------------------------------===//
1294  //                                  Helpers
1295  //===--------------------------------------------------------------------===//
1296
1297  LValue MakeAddrLValue(llvm::Value *V, QualType T, unsigned Alignment = 0) {
1298    return LValue::MakeAddr(V, T, Alignment, getContext(),
1299                            CGM.getTBAAInfo(T));
1300  }
1301
1302  /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1303  /// block. The caller is responsible for setting an appropriate alignment on
1304  /// the alloca.
1305  llvm::AllocaInst *CreateTempAlloca(const llvm::Type *Ty,
1306                                     const llvm::Twine &Name = "tmp");
1307
1308  /// InitTempAlloca - Provide an initial value for the given alloca.
1309  void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1310
1311  /// CreateIRTemp - Create a temporary IR object of the given type, with
1312  /// appropriate alignment. This routine should only be used when an temporary
1313  /// value needs to be stored into an alloca (for example, to avoid explicit
1314  /// PHI construction), but the type is the IR type, not the type appropriate
1315  /// for storing in memory.
1316  llvm::AllocaInst *CreateIRTemp(QualType T, const llvm::Twine &Name = "tmp");
1317
1318  /// CreateMemTemp - Create a temporary memory object of the given type, with
1319  /// appropriate alignment.
1320  llvm::AllocaInst *CreateMemTemp(QualType T, const llvm::Twine &Name = "tmp");
1321
1322  /// CreateAggTemp - Create a temporary memory object for the given
1323  /// aggregate type.
1324  AggValueSlot CreateAggTemp(QualType T, const llvm::Twine &Name = "tmp") {
1325    return AggValueSlot::forAddr(CreateMemTemp(T, Name), false, false);
1326  }
1327
1328  /// Emit a cast to void* in the appropriate address space.
1329  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1330
1331  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1332  /// expression and compare the result against zero, returning an Int1Ty value.
1333  llvm::Value *EvaluateExprAsBool(const Expr *E);
1334
1335  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1336  void EmitIgnoredExpr(const Expr *E);
1337
1338  /// EmitAnyExpr - Emit code to compute the specified expression which can have
1339  /// any type.  The result is returned as an RValue struct.  If this is an
1340  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1341  /// the result should be returned.
1342  ///
1343  /// \param IgnoreResult - True if the resulting value isn't used.
1344  RValue EmitAnyExpr(const Expr *E,
1345                     AggValueSlot AggSlot = AggValueSlot::ignored(),
1346                     bool IgnoreResult = false);
1347
1348  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1349  // or the value of the expression, depending on how va_list is defined.
1350  llvm::Value *EmitVAListRef(const Expr *E);
1351
1352  /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1353  /// always be accessible even if no aggregate location is provided.
1354  RValue EmitAnyExprToTemp(const Expr *E);
1355
1356  /// EmitsAnyExprToMem - Emits the code necessary to evaluate an
1357  /// arbitrary expression into the given memory location.
1358  void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1359                        bool IsLocationVolatile,
1360                        bool IsInitializer);
1361
1362  /// EmitAggregateCopy - Emit an aggrate copy.
1363  ///
1364  /// \param isVolatile - True iff either the source or the destination is
1365  /// volatile.
1366  void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1367                         QualType EltTy, bool isVolatile=false);
1368
1369  /// StartBlock - Start new block named N. If insert block is a dummy block
1370  /// then reuse it.
1371  void StartBlock(const char *N);
1372
1373  /// GetAddrOfStaticLocalVar - Return the address of a static local variable.
1374  llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) {
1375    return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
1376  }
1377
1378  /// GetAddrOfLocalVar - Return the address of a local variable.
1379  llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1380    llvm::Value *Res = LocalDeclMap[VD];
1381    assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1382    return Res;
1383  }
1384
1385  /// getOpaqueLValueMapping - Given an opaque value expression (which
1386  /// must be mapped to an l-value), return its mapping.
1387  const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1388    assert(OpaqueValueMapping::shouldBindAsLValue(e));
1389
1390    llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1391      it = OpaqueLValues.find(e);
1392    assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1393    return it->second;
1394  }
1395
1396  /// getOpaqueRValueMapping - Given an opaque value expression (which
1397  /// must be mapped to an r-value), return its mapping.
1398  const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1399    assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1400
1401    llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1402      it = OpaqueRValues.find(e);
1403    assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1404    return it->second;
1405  }
1406
1407  /// getAccessedFieldNo - Given an encoded value and a result number, return
1408  /// the input field number being accessed.
1409  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1410
1411  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1412  llvm::BasicBlock *GetIndirectGotoBlock();
1413
1414  /// EmitNullInitialization - Generate code to set a value of the given type to
1415  /// null, If the type contains data member pointers, they will be initialized
1416  /// to -1 in accordance with the Itanium C++ ABI.
1417  void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1418
1419  // EmitVAArg - Generate code to get an argument from the passed in pointer
1420  // and update it accordingly. The return value is a pointer to the argument.
1421  // FIXME: We should be able to get rid of this method and use the va_arg
1422  // instruction in LLVM instead once it works well enough.
1423  llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1424
1425  /// EmitVLASize - Generate code for any VLA size expressions that might occur
1426  /// in a variably modified type. If Ty is a VLA, will return the value that
1427  /// corresponds to the size in bytes of the VLA type. Will return 0 otherwise.
1428  ///
1429  /// This function can be called with a null (unreachable) insert point.
1430  llvm::Value *EmitVLASize(QualType Ty);
1431
1432  // GetVLASize - Returns an LLVM value that corresponds to the size in bytes
1433  // of a variable length array type.
1434  llvm::Value *GetVLASize(const VariableArrayType *);
1435
1436  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1437  /// generating code for an C++ member function.
1438  llvm::Value *LoadCXXThis() {
1439    assert(CXXThisValue && "no 'this' value for this function");
1440    return CXXThisValue;
1441  }
1442
1443  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1444  /// virtual bases.
1445  llvm::Value *LoadCXXVTT() {
1446    assert(CXXVTTValue && "no VTT value for this function");
1447    return CXXVTTValue;
1448  }
1449
1450  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1451  /// complete class to the given direct base.
1452  llvm::Value *
1453  GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1454                                        const CXXRecordDecl *Derived,
1455                                        const CXXRecordDecl *Base,
1456                                        bool BaseIsVirtual);
1457
1458  /// GetAddressOfBaseClass - This function will add the necessary delta to the
1459  /// load of 'this' and returns address of the base class.
1460  llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1461                                     const CXXRecordDecl *Derived,
1462                                     CastExpr::path_const_iterator PathBegin,
1463                                     CastExpr::path_const_iterator PathEnd,
1464                                     bool NullCheckValue);
1465
1466  llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1467                                        const CXXRecordDecl *Derived,
1468                                        CastExpr::path_const_iterator PathBegin,
1469                                        CastExpr::path_const_iterator PathEnd,
1470                                        bool NullCheckValue);
1471
1472  llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
1473                                         const CXXRecordDecl *ClassDecl,
1474                                         const CXXRecordDecl *BaseClassDecl);
1475
1476  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1477                                      CXXCtorType CtorType,
1478                                      const FunctionArgList &Args);
1479  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1480                              bool ForVirtualBase, llvm::Value *This,
1481                              CallExpr::const_arg_iterator ArgBeg,
1482                              CallExpr::const_arg_iterator ArgEnd);
1483
1484  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1485                              llvm::Value *This, llvm::Value *Src,
1486                              CallExpr::const_arg_iterator ArgBeg,
1487                              CallExpr::const_arg_iterator ArgEnd);
1488
1489  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1490                                  const ConstantArrayType *ArrayTy,
1491                                  llvm::Value *ArrayPtr,
1492                                  CallExpr::const_arg_iterator ArgBeg,
1493                                  CallExpr::const_arg_iterator ArgEnd,
1494                                  bool ZeroInitialization = false);
1495
1496  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1497                                  llvm::Value *NumElements,
1498                                  llvm::Value *ArrayPtr,
1499                                  CallExpr::const_arg_iterator ArgBeg,
1500                                  CallExpr::const_arg_iterator ArgEnd,
1501                                  bool ZeroInitialization = false);
1502
1503  void EmitCXXAggrDestructorCall(const CXXDestructorDecl *D,
1504                                 const ArrayType *Array,
1505                                 llvm::Value *This);
1506
1507  void EmitCXXAggrDestructorCall(const CXXDestructorDecl *D,
1508                                 llvm::Value *NumElements,
1509                                 llvm::Value *This);
1510
1511  llvm::Function *GenerateCXXAggrDestructorHelper(const CXXDestructorDecl *D,
1512                                                  const ArrayType *Array,
1513                                                  llvm::Value *This);
1514
1515  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1516                             bool ForVirtualBase, llvm::Value *This);
1517
1518  void EmitNewArrayInitializer(const CXXNewExpr *E, llvm::Value *NewPtr,
1519                               llvm::Value *NumElements);
1520
1521  void EmitCXXTemporary(const CXXTemporary *Temporary, llvm::Value *Ptr);
1522
1523  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1524  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1525
1526  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1527                      QualType DeleteTy);
1528
1529  llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1530  llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1531
1532  void EmitCheck(llvm::Value *, unsigned Size);
1533
1534  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1535                                       bool isInc, bool isPre);
1536  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1537                                         bool isInc, bool isPre);
1538  //===--------------------------------------------------------------------===//
1539  //                            Declaration Emission
1540  //===--------------------------------------------------------------------===//
1541
1542  /// EmitDecl - Emit a declaration.
1543  ///
1544  /// This function can be called with a null (unreachable) insert point.
1545  void EmitDecl(const Decl &D);
1546
1547  /// EmitVarDecl - Emit a local variable declaration.
1548  ///
1549  /// This function can be called with a null (unreachable) insert point.
1550  void EmitVarDecl(const VarDecl &D);
1551
1552  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1553                             llvm::Value *Address);
1554
1555  /// EmitAutoVarDecl - Emit an auto variable declaration.
1556  ///
1557  /// This function can be called with a null (unreachable) insert point.
1558  void EmitAutoVarDecl(const VarDecl &D);
1559
1560  class AutoVarEmission {
1561    friend class CodeGenFunction;
1562
1563    const VarDecl *Variable;
1564
1565    /// The alignment of the variable.
1566    CharUnits Alignment;
1567
1568    /// The address of the alloca.  Null if the variable was emitted
1569    /// as a global constant.
1570    llvm::Value *Address;
1571
1572    llvm::Value *NRVOFlag;
1573
1574    /// True if the variable is a __block variable.
1575    bool IsByRef;
1576
1577    /// True if the variable is of aggregate type and has a constant
1578    /// initializer.
1579    bool IsConstantAggregate;
1580
1581    struct Invalid {};
1582    AutoVarEmission(Invalid) : Variable(0) {}
1583
1584    AutoVarEmission(const VarDecl &variable)
1585      : Variable(&variable), Address(0), NRVOFlag(0),
1586        IsByRef(false), IsConstantAggregate(false) {}
1587
1588    bool wasEmittedAsGlobal() const { return Address == 0; }
1589
1590  public:
1591    static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1592
1593    /// Returns the address of the object within this declaration.
1594    /// Note that this does not chase the forwarding pointer for
1595    /// __block decls.
1596    llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1597      if (!IsByRef) return Address;
1598
1599      return CGF.Builder.CreateStructGEP(Address,
1600                                         CGF.getByRefValueLLVMField(Variable),
1601                                         Variable->getNameAsString());
1602    }
1603  };
1604  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1605  void EmitAutoVarInit(const AutoVarEmission &emission);
1606  void EmitAutoVarCleanups(const AutoVarEmission &emission);
1607
1608  void EmitStaticVarDecl(const VarDecl &D,
1609                         llvm::GlobalValue::LinkageTypes Linkage);
1610
1611  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1612  void EmitParmDecl(const VarDecl &D, llvm::Value *Arg);
1613
1614  /// protectFromPeepholes - Protect a value that we're intending to
1615  /// store to the side, but which will probably be used later, from
1616  /// aggressive peepholing optimizations that might delete it.
1617  ///
1618  /// Pass the result to unprotectFromPeepholes to declare that
1619  /// protection is no longer required.
1620  ///
1621  /// There's no particular reason why this shouldn't apply to
1622  /// l-values, it's just that no existing peepholes work on pointers.
1623  PeepholeProtection protectFromPeepholes(RValue rvalue);
1624  void unprotectFromPeepholes(PeepholeProtection protection);
1625
1626  //===--------------------------------------------------------------------===//
1627  //                             Statement Emission
1628  //===--------------------------------------------------------------------===//
1629
1630  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1631  void EmitStopPoint(const Stmt *S);
1632
1633  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1634  /// this function even if there is no current insertion point.
1635  ///
1636  /// This function may clear the current insertion point; callers should use
1637  /// EnsureInsertPoint if they wish to subsequently generate code without first
1638  /// calling EmitBlock, EmitBranch, or EmitStmt.
1639  void EmitStmt(const Stmt *S);
1640
1641  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1642  /// necessarily require an insertion point or debug information; typically
1643  /// because the statement amounts to a jump or a container of other
1644  /// statements.
1645  ///
1646  /// \return True if the statement was handled.
1647  bool EmitSimpleStmt(const Stmt *S);
1648
1649  RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1650                          AggValueSlot AVS = AggValueSlot::ignored());
1651
1652  /// EmitLabel - Emit the block for the given label. It is legal to call this
1653  /// function even if there is no current insertion point.
1654  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1655
1656  void EmitLabelStmt(const LabelStmt &S);
1657  void EmitGotoStmt(const GotoStmt &S);
1658  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1659  void EmitIfStmt(const IfStmt &S);
1660  void EmitWhileStmt(const WhileStmt &S);
1661  void EmitDoStmt(const DoStmt &S);
1662  void EmitForStmt(const ForStmt &S);
1663  void EmitReturnStmt(const ReturnStmt &S);
1664  void EmitDeclStmt(const DeclStmt &S);
1665  void EmitBreakStmt(const BreakStmt &S);
1666  void EmitContinueStmt(const ContinueStmt &S);
1667  void EmitSwitchStmt(const SwitchStmt &S);
1668  void EmitDefaultStmt(const DefaultStmt &S);
1669  void EmitCaseStmt(const CaseStmt &S);
1670  void EmitCaseStmtRange(const CaseStmt &S);
1671  void EmitAsmStmt(const AsmStmt &S);
1672
1673  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1674  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1675  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1676  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1677
1678  llvm::Constant *getUnwindResumeOrRethrowFn();
1679  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1680  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1681
1682  void EmitCXXTryStmt(const CXXTryStmt &S);
1683
1684  //===--------------------------------------------------------------------===//
1685  //                         LValue Expression Emission
1686  //===--------------------------------------------------------------------===//
1687
1688  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
1689  RValue GetUndefRValue(QualType Ty);
1690
1691  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
1692  /// and issue an ErrorUnsupported style diagnostic (using the
1693  /// provided Name).
1694  RValue EmitUnsupportedRValue(const Expr *E,
1695                               const char *Name);
1696
1697  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
1698  /// an ErrorUnsupported style diagnostic (using the provided Name).
1699  LValue EmitUnsupportedLValue(const Expr *E,
1700                               const char *Name);
1701
1702  /// EmitLValue - Emit code to compute a designator that specifies the location
1703  /// of the expression.
1704  ///
1705  /// This can return one of two things: a simple address or a bitfield
1706  /// reference.  In either case, the LLVM Value* in the LValue structure is
1707  /// guaranteed to be an LLVM pointer type.
1708  ///
1709  /// If this returns a bitfield reference, nothing about the pointee type of
1710  /// the LLVM value is known: For example, it may not be a pointer to an
1711  /// integer.
1712  ///
1713  /// If this returns a normal address, and if the lvalue's C type is fixed
1714  /// size, this method guarantees that the returned pointer type will point to
1715  /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
1716  /// variable length type, this is not possible.
1717  ///
1718  LValue EmitLValue(const Expr *E);
1719
1720  /// EmitCheckedLValue - Same as EmitLValue but additionally we generate
1721  /// checking code to guard against undefined behavior.  This is only
1722  /// suitable when we know that the address will be used to access the
1723  /// object.
1724  LValue EmitCheckedLValue(const Expr *E);
1725
1726  /// EmitToMemory - Change a scalar value from its value
1727  /// representation to its in-memory representation.
1728  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
1729
1730  /// EmitFromMemory - Change a scalar value from its memory
1731  /// representation to its value representation.
1732  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
1733
1734  /// EmitLoadOfScalar - Load a scalar value from an address, taking
1735  /// care to appropriately convert from the memory representation to
1736  /// the LLVM value representation.
1737  llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1738                                unsigned Alignment, QualType Ty,
1739                                llvm::MDNode *TBAAInfo = 0);
1740
1741  /// EmitStoreOfScalar - Store a scalar value to an address, taking
1742  /// care to appropriately convert from the memory representation to
1743  /// the LLVM value representation.
1744  void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1745                         bool Volatile, unsigned Alignment, QualType Ty,
1746                         llvm::MDNode *TBAAInfo = 0);
1747
1748  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
1749  /// this method emits the address of the lvalue, then loads the result as an
1750  /// rvalue, returning the rvalue.
1751  RValue EmitLoadOfLValue(LValue V, QualType LVType);
1752  RValue EmitLoadOfExtVectorElementLValue(LValue V, QualType LVType);
1753  RValue EmitLoadOfBitfieldLValue(LValue LV, QualType ExprType);
1754  RValue EmitLoadOfPropertyRefLValue(LValue LV,
1755                                 ReturnValueSlot Return = ReturnValueSlot());
1756
1757  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1758  /// lvalue, where both are guaranteed to the have the same type, and that type
1759  /// is 'Ty'.
1760  void EmitStoreThroughLValue(RValue Src, LValue Dst, QualType Ty);
1761  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst,
1762                                                QualType Ty);
1763  void EmitStoreThroughPropertyRefLValue(RValue Src, LValue Dst);
1764
1765  /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
1766  /// EmitStoreThroughLValue.
1767  ///
1768  /// \param Result [out] - If non-null, this will be set to a Value* for the
1769  /// bit-field contents after the store, appropriate for use as the result of
1770  /// an assignment to the bit-field.
1771  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, QualType Ty,
1772                                      llvm::Value **Result=0);
1773
1774  /// Emit an l-value for an assignment (simple or compound) of complex type.
1775  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
1776  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
1777
1778  // Note: only availabe for agg return types
1779  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
1780  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
1781  // Note: only available for agg return types
1782  LValue EmitCallExprLValue(const CallExpr *E);
1783  // Note: only available for agg return types
1784  LValue EmitVAArgExprLValue(const VAArgExpr *E);
1785  LValue EmitDeclRefLValue(const DeclRefExpr *E);
1786  LValue EmitStringLiteralLValue(const StringLiteral *E);
1787  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
1788  LValue EmitPredefinedLValue(const PredefinedExpr *E);
1789  LValue EmitUnaryOpLValue(const UnaryOperator *E);
1790  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
1791  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
1792  LValue EmitMemberExpr(const MemberExpr *E);
1793  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
1794  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
1795  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
1796  LValue EmitCastLValue(const CastExpr *E);
1797  LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
1798  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
1799
1800  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
1801                              const ObjCIvarDecl *Ivar);
1802  LValue EmitLValueForAnonRecordField(llvm::Value* Base,
1803                                      const IndirectFieldDecl* Field,
1804                                      unsigned CVRQualifiers);
1805  LValue EmitLValueForField(llvm::Value* Base, const FieldDecl* Field,
1806                            unsigned CVRQualifiers);
1807
1808  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
1809  /// if the Field is a reference, this will return the address of the reference
1810  /// and not the address of the value stored in the reference.
1811  LValue EmitLValueForFieldInitialization(llvm::Value* Base,
1812                                          const FieldDecl* Field,
1813                                          unsigned CVRQualifiers);
1814
1815  LValue EmitLValueForIvar(QualType ObjectTy,
1816                           llvm::Value* Base, const ObjCIvarDecl *Ivar,
1817                           unsigned CVRQualifiers);
1818
1819  LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field,
1820                                unsigned CVRQualifiers);
1821
1822  LValue EmitBlockDeclRefLValue(const BlockDeclRefExpr *E);
1823
1824  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
1825  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
1826  LValue EmitExprWithCleanupsLValue(const ExprWithCleanups *E);
1827  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
1828
1829  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
1830  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
1831  LValue EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E);
1832  LValue EmitStmtExprLValue(const StmtExpr *E);
1833  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
1834  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
1835  void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
1836
1837  //===--------------------------------------------------------------------===//
1838  //                         Scalar Expression Emission
1839  //===--------------------------------------------------------------------===//
1840
1841  /// EmitCall - Generate a call of the given function, expecting the given
1842  /// result type, and using the given argument list which specifies both the
1843  /// LLVM arguments and the types they were derived from.
1844  ///
1845  /// \param TargetDecl - If given, the decl of the function in a direct call;
1846  /// used to set attributes on the call (noreturn, etc.).
1847  RValue EmitCall(const CGFunctionInfo &FnInfo,
1848                  llvm::Value *Callee,
1849                  ReturnValueSlot ReturnValue,
1850                  const CallArgList &Args,
1851                  const Decl *TargetDecl = 0,
1852                  llvm::Instruction **callOrInvoke = 0);
1853
1854  RValue EmitCall(QualType FnType, llvm::Value *Callee,
1855                  ReturnValueSlot ReturnValue,
1856                  CallExpr::const_arg_iterator ArgBeg,
1857                  CallExpr::const_arg_iterator ArgEnd,
1858                  const Decl *TargetDecl = 0);
1859  RValue EmitCallExpr(const CallExpr *E,
1860                      ReturnValueSlot ReturnValue = ReturnValueSlot());
1861
1862  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
1863                                  llvm::Value * const *ArgBegin,
1864                                  llvm::Value * const *ArgEnd,
1865                                  const llvm::Twine &Name = "");
1866
1867  llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
1868                                const llvm::Type *Ty);
1869  llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
1870                                llvm::Value *This, const llvm::Type *Ty);
1871  llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
1872                                         NestedNameSpecifier *Qual,
1873                                         const llvm::Type *Ty);
1874
1875  llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
1876                                                   CXXDtorType Type,
1877                                                   const CXXRecordDecl *RD);
1878
1879  RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
1880                           llvm::Value *Callee,
1881                           ReturnValueSlot ReturnValue,
1882                           llvm::Value *This,
1883                           llvm::Value *VTT,
1884                           CallExpr::const_arg_iterator ArgBeg,
1885                           CallExpr::const_arg_iterator ArgEnd);
1886  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
1887                               ReturnValueSlot ReturnValue);
1888  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
1889                                      ReturnValueSlot ReturnValue);
1890
1891  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
1892                                       const CXXMethodDecl *MD,
1893                                       ReturnValueSlot ReturnValue);
1894
1895
1896  RValue EmitBuiltinExpr(const FunctionDecl *FD,
1897                         unsigned BuiltinID, const CallExpr *E);
1898
1899  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
1900
1901  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
1902  /// is unhandled by the current target.
1903  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
1904
1905  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
1906  llvm::Value *EmitNeonCall(llvm::Function *F,
1907                            llvm::SmallVectorImpl<llvm::Value*> &O,
1908                            const char *name,
1909                            unsigned shift = 0, bool rightshift = false);
1910  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
1911  llvm::Value *EmitNeonShiftVector(llvm::Value *V, const llvm::Type *Ty,
1912                                   bool negateForRightShift);
1913
1914  llvm::Value *BuildVector(const llvm::SmallVectorImpl<llvm::Value*> &Ops);
1915  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
1916  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
1917
1918  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
1919  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
1920  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
1921  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
1922                             ReturnValueSlot Return = ReturnValueSlot());
1923
1924  /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
1925  /// expression. Will emit a temporary variable if E is not an LValue.
1926  RValue EmitReferenceBindingToExpr(const Expr* E,
1927                                    const NamedDecl *InitializedDecl);
1928
1929  //===--------------------------------------------------------------------===//
1930  //                           Expression Emission
1931  //===--------------------------------------------------------------------===//
1932
1933  // Expressions are broken into three classes: scalar, complex, aggregate.
1934
1935  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
1936  /// scalar type, returning the result.
1937  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
1938
1939  /// EmitScalarConversion - Emit a conversion from the specified type to the
1940  /// specified destination type, both of which are LLVM scalar types.
1941  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
1942                                    QualType DstTy);
1943
1944  /// EmitComplexToScalarConversion - Emit a conversion from the specified
1945  /// complex type to the specified destination type, where the destination type
1946  /// is an LLVM scalar type.
1947  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
1948                                             QualType DstTy);
1949
1950
1951  /// EmitAggExpr - Emit the computation of the specified expression
1952  /// of aggregate type.  The result is computed into the given slot,
1953  /// which may be null to indicate that the value is not needed.
1954  void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false);
1955
1956  /// EmitAggExprToLValue - Emit the computation of the specified expression of
1957  /// aggregate type into a temporary LValue.
1958  LValue EmitAggExprToLValue(const Expr *E);
1959
1960  /// EmitGCMemmoveCollectable - Emit special API for structs with object
1961  /// pointers.
1962  void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1963                                QualType Ty);
1964
1965  /// EmitComplexExpr - Emit the computation of the specified expression of
1966  /// complex type, returning the result.
1967  ComplexPairTy EmitComplexExpr(const Expr *E,
1968                                bool IgnoreReal = false,
1969                                bool IgnoreImag = false);
1970
1971  /// EmitComplexExprIntoAddr - Emit the computation of the specified expression
1972  /// of complex type, storing into the specified Value*.
1973  void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
1974                               bool DestIsVolatile);
1975
1976  /// StoreComplexToAddr - Store a complex number into the specified address.
1977  void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
1978                          bool DestIsVolatile);
1979  /// LoadComplexFromAddr - Load a complex number from the specified address.
1980  ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
1981
1982  /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
1983  /// a static local variable.
1984  llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
1985                                            const char *Separator,
1986                                       llvm::GlobalValue::LinkageTypes Linkage);
1987
1988  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
1989  /// global variable that has already been created for it.  If the initializer
1990  /// has a different type than GV does, this may free GV and return a different
1991  /// one.  Otherwise it just returns GV.
1992  llvm::GlobalVariable *
1993  AddInitializerToStaticVarDecl(const VarDecl &D,
1994                                llvm::GlobalVariable *GV);
1995
1996
1997  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
1998  /// variable with global storage.
1999  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr);
2000
2001  /// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr
2002  /// with the C++ runtime so that its destructor will be called at exit.
2003  void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn,
2004                                     llvm::Constant *DeclPtr);
2005
2006  /// Emit code in this function to perform a guarded variable
2007  /// initialization.  Guarded initializations are used when it's not
2008  /// possible to prove that an initialization will be done exactly
2009  /// once, e.g. with a static local variable or a static data member
2010  /// of a class template.
2011  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr);
2012
2013  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2014  /// variables.
2015  void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2016                                 llvm::Constant **Decls,
2017                                 unsigned NumDecls);
2018
2019  /// GenerateCXXGlobalDtorFunc - Generates code for destroying global
2020  /// variables.
2021  void GenerateCXXGlobalDtorFunc(llvm::Function *Fn,
2022                                 const std::vector<std::pair<llvm::WeakVH,
2023                                   llvm::Constant*> > &DtorsAndObjects);
2024
2025  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, const VarDecl *D,
2026                                        llvm::GlobalVariable *Addr);
2027
2028  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2029
2030  void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2031                                  const Expr *Exp);
2032
2033  RValue EmitExprWithCleanups(const ExprWithCleanups *E,
2034                              AggValueSlot Slot =AggValueSlot::ignored());
2035
2036  void EmitCXXThrowExpr(const CXXThrowExpr *E);
2037
2038  //===--------------------------------------------------------------------===//
2039  //                             Internal Helpers
2040  //===--------------------------------------------------------------------===//
2041
2042  /// ContainsLabel - Return true if the statement contains a label in it.  If
2043  /// this statement is not executed normally, it not containing a label means
2044  /// that we can just remove the code.
2045  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2046
2047  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2048  /// to a constant, or if it does but contains a label, return 0.  If it
2049  /// constant folds to 'true' and does not contain a label, return 1, if it
2050  /// constant folds to 'false' and does not contain a label, return -1.
2051  int ConstantFoldsToSimpleInteger(const Expr *Cond);
2052
2053  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2054  /// if statement) to the specified blocks.  Based on the condition, this might
2055  /// try to simplify the codegen of the conditional based on the branch.
2056  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2057                            llvm::BasicBlock *FalseBlock);
2058
2059  /// getTrapBB - Create a basic block that will call the trap intrinsic.  We'll
2060  /// generate a branch around the created basic block as necessary.
2061  llvm::BasicBlock *getTrapBB();
2062
2063  /// EmitCallArg - Emit a single call argument.
2064  RValue EmitCallArg(const Expr *E, QualType ArgType);
2065
2066  /// EmitDelegateCallArg - We are performing a delegate call; that
2067  /// is, the current function is delegating to another one.  Produce
2068  /// a r-value suitable for passing the given parameter.
2069  RValue EmitDelegateCallArg(const VarDecl *Param);
2070
2071private:
2072  void EmitReturnOfRValue(RValue RV, QualType Ty);
2073
2074  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2075  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2076  ///
2077  /// \param AI - The first function argument of the expansion.
2078  /// \return The argument following the last expanded function
2079  /// argument.
2080  llvm::Function::arg_iterator
2081  ExpandTypeFromArgs(QualType Ty, LValue Dst,
2082                     llvm::Function::arg_iterator AI);
2083
2084  /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2085  /// Ty, into individual arguments on the provided vector \arg Args. See
2086  /// ABIArgInfo::Expand.
2087  void ExpandTypeToArgs(QualType Ty, RValue Src,
2088                        llvm::SmallVector<llvm::Value*, 16> &Args);
2089
2090  llvm::Value* EmitAsmInput(const AsmStmt &S,
2091                            const TargetInfo::ConstraintInfo &Info,
2092                            const Expr *InputExpr, std::string &ConstraintStr);
2093
2094  llvm::Value* EmitAsmInputLValue(const AsmStmt &S,
2095                                  const TargetInfo::ConstraintInfo &Info,
2096                                  LValue InputValue, QualType InputType,
2097                                  std::string &ConstraintStr);
2098
2099  /// EmitCallArgs - Emit call arguments for a function.
2100  /// The CallArgTypeInfo parameter is used for iterating over the known
2101  /// argument types of the function being called.
2102  template<typename T>
2103  void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2104                    CallExpr::const_arg_iterator ArgBeg,
2105                    CallExpr::const_arg_iterator ArgEnd) {
2106      CallExpr::const_arg_iterator Arg = ArgBeg;
2107
2108    // First, use the argument types that the type info knows about
2109    if (CallArgTypeInfo) {
2110      for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2111           E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2112        assert(Arg != ArgEnd && "Running over edge of argument list!");
2113        QualType ArgType = *I;
2114#ifndef NDEBUG
2115        QualType ActualArgType = Arg->getType();
2116        if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2117          QualType ActualBaseType =
2118            ActualArgType->getAs<PointerType>()->getPointeeType();
2119          QualType ArgBaseType =
2120            ArgType->getAs<PointerType>()->getPointeeType();
2121          if (ArgBaseType->isVariableArrayType()) {
2122            if (const VariableArrayType *VAT =
2123                getContext().getAsVariableArrayType(ActualBaseType)) {
2124              if (!VAT->getSizeExpr())
2125                ActualArgType = ArgType;
2126            }
2127          }
2128        }
2129        assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2130               getTypePtr() ==
2131               getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2132               "type mismatch in call argument!");
2133#endif
2134        Args.push_back(std::make_pair(EmitCallArg(*Arg, ArgType),
2135                                      ArgType));
2136      }
2137
2138      // Either we've emitted all the call args, or we have a call to a
2139      // variadic function.
2140      assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2141             "Extra arguments in non-variadic function!");
2142
2143    }
2144
2145    // If we still have any arguments, emit them using the type of the argument.
2146    for (; Arg != ArgEnd; ++Arg) {
2147      QualType ArgType = Arg->getType();
2148      Args.push_back(std::make_pair(EmitCallArg(*Arg, ArgType),
2149                                    ArgType));
2150    }
2151  }
2152
2153  const TargetCodeGenInfo &getTargetHooks() const {
2154    return CGM.getTargetCodeGenInfo();
2155  }
2156
2157  void EmitDeclMetadata();
2158};
2159
2160/// Helper class with most of the code for saving a value for a
2161/// conditional expression cleanup.
2162struct DominatingLLVMValue {
2163  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2164
2165  /// Answer whether the given value needs extra work to be saved.
2166  static bool needsSaving(llvm::Value *value) {
2167    // If it's not an instruction, we don't need to save.
2168    if (!isa<llvm::Instruction>(value)) return false;
2169
2170    // If it's an instruction in the entry block, we don't need to save.
2171    llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2172    return (block != &block->getParent()->getEntryBlock());
2173  }
2174
2175  /// Try to save the given value.
2176  static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2177    if (!needsSaving(value)) return saved_type(value, false);
2178
2179    // Otherwise we need an alloca.
2180    llvm::Value *alloca =
2181      CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2182    CGF.Builder.CreateStore(value, alloca);
2183
2184    return saved_type(alloca, true);
2185  }
2186
2187  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2188    if (!value.getInt()) return value.getPointer();
2189    return CGF.Builder.CreateLoad(value.getPointer());
2190  }
2191};
2192
2193/// A partial specialization of DominatingValue for llvm::Values that
2194/// might be llvm::Instructions.
2195template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2196  typedef T *type;
2197  static type restore(CodeGenFunction &CGF, saved_type value) {
2198    return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2199  }
2200};
2201
2202/// A specialization of DominatingValue for RValue.
2203template <> struct DominatingValue<RValue> {
2204  typedef RValue type;
2205  class saved_type {
2206    enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2207                AggregateAddress, ComplexAddress };
2208
2209    llvm::Value *Value;
2210    Kind K;
2211    saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2212
2213  public:
2214    static bool needsSaving(RValue value);
2215    static saved_type save(CodeGenFunction &CGF, RValue value);
2216    RValue restore(CodeGenFunction &CGF);
2217
2218    // implementations in CGExprCXX.cpp
2219  };
2220
2221  static bool needsSaving(type value) {
2222    return saved_type::needsSaving(value);
2223  }
2224  static saved_type save(CodeGenFunction &CGF, type value) {
2225    return saved_type::save(CGF, value);
2226  }
2227  static type restore(CodeGenFunction &CGF, saved_type value) {
2228    return value.restore(CGF);
2229  }
2230};
2231
2232}  // end namespace CodeGen
2233}  // end namespace clang
2234
2235#endif
2236