CodeGenFunction.h revision 7c2349be2d11143a2e59a167fd43362a3bf4585e
1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This is the internal per-function state used for llvm translation. 11// 12//===----------------------------------------------------------------------===// 13 14#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H 15#define CLANG_CODEGEN_CODEGENFUNCTION_H 16 17#include "clang/AST/Type.h" 18#include "clang/AST/ExprCXX.h" 19#include "clang/AST/ExprObjC.h" 20#include "clang/AST/CharUnits.h" 21#include "clang/Frontend/CodeGenOptions.h" 22#include "clang/Basic/ABI.h" 23#include "clang/Basic/TargetInfo.h" 24#include "llvm/ADT/ArrayRef.h" 25#include "llvm/ADT/DenseMap.h" 26#include "llvm/ADT/SmallVector.h" 27#include "llvm/Support/ValueHandle.h" 28#include "CodeGenModule.h" 29#include "CGBuilder.h" 30#include "CGValue.h" 31 32namespace llvm { 33 class BasicBlock; 34 class LLVMContext; 35 class MDNode; 36 class Module; 37 class SwitchInst; 38 class Twine; 39 class Value; 40 class CallSite; 41} 42 43namespace clang { 44 class APValue; 45 class ASTContext; 46 class CXXDestructorDecl; 47 class CXXForRangeStmt; 48 class CXXTryStmt; 49 class Decl; 50 class LabelDecl; 51 class EnumConstantDecl; 52 class FunctionDecl; 53 class FunctionProtoType; 54 class LabelStmt; 55 class ObjCContainerDecl; 56 class ObjCInterfaceDecl; 57 class ObjCIvarDecl; 58 class ObjCMethodDecl; 59 class ObjCImplementationDecl; 60 class ObjCPropertyImplDecl; 61 class TargetInfo; 62 class TargetCodeGenInfo; 63 class VarDecl; 64 class ObjCForCollectionStmt; 65 class ObjCAtTryStmt; 66 class ObjCAtThrowStmt; 67 class ObjCAtSynchronizedStmt; 68 class ObjCAutoreleasePoolStmt; 69 70namespace CodeGen { 71 class CodeGenTypes; 72 class CGDebugInfo; 73 class CGFunctionInfo; 74 class CGRecordLayout; 75 class CGBlockInfo; 76 class CGCXXABI; 77 class BlockFlags; 78 class BlockFieldFlags; 79 80/// A branch fixup. These are required when emitting a goto to a 81/// label which hasn't been emitted yet. The goto is optimistically 82/// emitted as a branch to the basic block for the label, and (if it 83/// occurs in a scope with non-trivial cleanups) a fixup is added to 84/// the innermost cleanup. When a (normal) cleanup is popped, any 85/// unresolved fixups in that scope are threaded through the cleanup. 86struct BranchFixup { 87 /// The block containing the terminator which needs to be modified 88 /// into a switch if this fixup is resolved into the current scope. 89 /// If null, LatestBranch points directly to the destination. 90 llvm::BasicBlock *OptimisticBranchBlock; 91 92 /// The ultimate destination of the branch. 93 /// 94 /// This can be set to null to indicate that this fixup was 95 /// successfully resolved. 96 llvm::BasicBlock *Destination; 97 98 /// The destination index value. 99 unsigned DestinationIndex; 100 101 /// The initial branch of the fixup. 102 llvm::BranchInst *InitialBranch; 103}; 104 105template <class T> struct InvariantValue { 106 typedef T type; 107 typedef T saved_type; 108 static bool needsSaving(type value) { return false; } 109 static saved_type save(CodeGenFunction &CGF, type value) { return value; } 110 static type restore(CodeGenFunction &CGF, saved_type value) { return value; } 111}; 112 113/// A metaprogramming class for ensuring that a value will dominate an 114/// arbitrary position in a function. 115template <class T> struct DominatingValue : InvariantValue<T> {}; 116 117template <class T, bool mightBeInstruction = 118 llvm::is_base_of<llvm::Value, T>::value && 119 !llvm::is_base_of<llvm::Constant, T>::value && 120 !llvm::is_base_of<llvm::BasicBlock, T>::value> 121struct DominatingPointer; 122template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {}; 123// template <class T> struct DominatingPointer<T,true> at end of file 124 125template <class T> struct DominatingValue<T*> : DominatingPointer<T> {}; 126 127enum CleanupKind { 128 EHCleanup = 0x1, 129 NormalCleanup = 0x2, 130 NormalAndEHCleanup = EHCleanup | NormalCleanup, 131 132 InactiveCleanup = 0x4, 133 InactiveEHCleanup = EHCleanup | InactiveCleanup, 134 InactiveNormalCleanup = NormalCleanup | InactiveCleanup, 135 InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup 136}; 137 138/// A stack of scopes which respond to exceptions, including cleanups 139/// and catch blocks. 140class EHScopeStack { 141public: 142 /// A saved depth on the scope stack. This is necessary because 143 /// pushing scopes onto the stack invalidates iterators. 144 class stable_iterator { 145 friend class EHScopeStack; 146 147 /// Offset from StartOfData to EndOfBuffer. 148 ptrdiff_t Size; 149 150 stable_iterator(ptrdiff_t Size) : Size(Size) {} 151 152 public: 153 static stable_iterator invalid() { return stable_iterator(-1); } 154 stable_iterator() : Size(-1) {} 155 156 bool isValid() const { return Size >= 0; } 157 158 /// Returns true if this scope encloses I. 159 /// Returns false if I is invalid. 160 /// This scope must be valid. 161 bool encloses(stable_iterator I) const { return Size <= I.Size; } 162 163 /// Returns true if this scope strictly encloses I: that is, 164 /// if it encloses I and is not I. 165 /// Returns false is I is invalid. 166 /// This scope must be valid. 167 bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; } 168 169 friend bool operator==(stable_iterator A, stable_iterator B) { 170 return A.Size == B.Size; 171 } 172 friend bool operator!=(stable_iterator A, stable_iterator B) { 173 return A.Size != B.Size; 174 } 175 }; 176 177 /// Information for lazily generating a cleanup. Subclasses must be 178 /// POD-like: cleanups will not be destructed, and they will be 179 /// allocated on the cleanup stack and freely copied and moved 180 /// around. 181 /// 182 /// Cleanup implementations should generally be declared in an 183 /// anonymous namespace. 184 class Cleanup { 185 // Anchor the construction vtable. 186 virtual void anchor(); 187 public: 188 /// Generation flags. 189 class Flags { 190 enum { 191 F_IsForEH = 0x1, 192 F_IsNormalCleanupKind = 0x2, 193 F_IsEHCleanupKind = 0x4 194 }; 195 unsigned flags; 196 197 public: 198 Flags() : flags(0) {} 199 200 /// isForEH - true if the current emission is for an EH cleanup. 201 bool isForEHCleanup() const { return flags & F_IsForEH; } 202 bool isForNormalCleanup() const { return !isForEHCleanup(); } 203 void setIsForEHCleanup() { flags |= F_IsForEH; } 204 205 bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; } 206 void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; } 207 208 /// isEHCleanupKind - true if the cleanup was pushed as an EH 209 /// cleanup. 210 bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; } 211 void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; } 212 }; 213 214 // Provide a virtual destructor to suppress a very common warning 215 // that unfortunately cannot be suppressed without this. Cleanups 216 // should not rely on this destructor ever being called. 217 virtual ~Cleanup() {} 218 219 /// Emit the cleanup. For normal cleanups, this is run in the 220 /// same EH context as when the cleanup was pushed, i.e. the 221 /// immediately-enclosing context of the cleanup scope. For 222 /// EH cleanups, this is run in a terminate context. 223 /// 224 // \param IsForEHCleanup true if this is for an EH cleanup, false 225 /// if for a normal cleanup. 226 virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0; 227 }; 228 229 /// ConditionalCleanupN stores the saved form of its N parameters, 230 /// then restores them and performs the cleanup. 231 template <class T, class A0> 232 class ConditionalCleanup1 : public Cleanup { 233 typedef typename DominatingValue<A0>::saved_type A0_saved; 234 A0_saved a0_saved; 235 236 void Emit(CodeGenFunction &CGF, Flags flags) { 237 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 238 T(a0).Emit(CGF, flags); 239 } 240 241 public: 242 ConditionalCleanup1(A0_saved a0) 243 : a0_saved(a0) {} 244 }; 245 246 template <class T, class A0, class A1> 247 class ConditionalCleanup2 : public Cleanup { 248 typedef typename DominatingValue<A0>::saved_type A0_saved; 249 typedef typename DominatingValue<A1>::saved_type A1_saved; 250 A0_saved a0_saved; 251 A1_saved a1_saved; 252 253 void Emit(CodeGenFunction &CGF, Flags flags) { 254 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 255 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 256 T(a0, a1).Emit(CGF, flags); 257 } 258 259 public: 260 ConditionalCleanup2(A0_saved a0, A1_saved a1) 261 : a0_saved(a0), a1_saved(a1) {} 262 }; 263 264 template <class T, class A0, class A1, class A2> 265 class ConditionalCleanup3 : public Cleanup { 266 typedef typename DominatingValue<A0>::saved_type A0_saved; 267 typedef typename DominatingValue<A1>::saved_type A1_saved; 268 typedef typename DominatingValue<A2>::saved_type A2_saved; 269 A0_saved a0_saved; 270 A1_saved a1_saved; 271 A2_saved a2_saved; 272 273 void Emit(CodeGenFunction &CGF, Flags flags) { 274 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 275 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 276 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 277 T(a0, a1, a2).Emit(CGF, flags); 278 } 279 280 public: 281 ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2) 282 : a0_saved(a0), a1_saved(a1), a2_saved(a2) {} 283 }; 284 285 template <class T, class A0, class A1, class A2, class A3> 286 class ConditionalCleanup4 : public Cleanup { 287 typedef typename DominatingValue<A0>::saved_type A0_saved; 288 typedef typename DominatingValue<A1>::saved_type A1_saved; 289 typedef typename DominatingValue<A2>::saved_type A2_saved; 290 typedef typename DominatingValue<A3>::saved_type A3_saved; 291 A0_saved a0_saved; 292 A1_saved a1_saved; 293 A2_saved a2_saved; 294 A3_saved a3_saved; 295 296 void Emit(CodeGenFunction &CGF, Flags flags) { 297 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 298 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 299 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 300 A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved); 301 T(a0, a1, a2, a3).Emit(CGF, flags); 302 } 303 304 public: 305 ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3) 306 : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {} 307 }; 308 309private: 310 // The implementation for this class is in CGException.h and 311 // CGException.cpp; the definition is here because it's used as a 312 // member of CodeGenFunction. 313 314 /// The start of the scope-stack buffer, i.e. the allocated pointer 315 /// for the buffer. All of these pointers are either simultaneously 316 /// null or simultaneously valid. 317 char *StartOfBuffer; 318 319 /// The end of the buffer. 320 char *EndOfBuffer; 321 322 /// The first valid entry in the buffer. 323 char *StartOfData; 324 325 /// The innermost normal cleanup on the stack. 326 stable_iterator InnermostNormalCleanup; 327 328 /// The innermost EH scope on the stack. 329 stable_iterator InnermostEHScope; 330 331 /// The current set of branch fixups. A branch fixup is a jump to 332 /// an as-yet unemitted label, i.e. a label for which we don't yet 333 /// know the EH stack depth. Whenever we pop a cleanup, we have 334 /// to thread all the current branch fixups through it. 335 /// 336 /// Fixups are recorded as the Use of the respective branch or 337 /// switch statement. The use points to the final destination. 338 /// When popping out of a cleanup, these uses are threaded through 339 /// the cleanup and adjusted to point to the new cleanup. 340 /// 341 /// Note that branches are allowed to jump into protected scopes 342 /// in certain situations; e.g. the following code is legal: 343 /// struct A { ~A(); }; // trivial ctor, non-trivial dtor 344 /// goto foo; 345 /// A a; 346 /// foo: 347 /// bar(); 348 SmallVector<BranchFixup, 8> BranchFixups; 349 350 char *allocate(size_t Size); 351 352 void *pushCleanup(CleanupKind K, size_t DataSize); 353 354public: 355 EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0), 356 InnermostNormalCleanup(stable_end()), 357 InnermostEHScope(stable_end()) {} 358 ~EHScopeStack() { delete[] StartOfBuffer; } 359 360 // Variadic templates would make this not terrible. 361 362 /// Push a lazily-created cleanup on the stack. 363 template <class T> 364 void pushCleanup(CleanupKind Kind) { 365 void *Buffer = pushCleanup(Kind, sizeof(T)); 366 Cleanup *Obj = new(Buffer) T(); 367 (void) Obj; 368 } 369 370 /// Push a lazily-created cleanup on the stack. 371 template <class T, class A0> 372 void pushCleanup(CleanupKind Kind, A0 a0) { 373 void *Buffer = pushCleanup(Kind, sizeof(T)); 374 Cleanup *Obj = new(Buffer) T(a0); 375 (void) Obj; 376 } 377 378 /// Push a lazily-created cleanup on the stack. 379 template <class T, class A0, class A1> 380 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) { 381 void *Buffer = pushCleanup(Kind, sizeof(T)); 382 Cleanup *Obj = new(Buffer) T(a0, a1); 383 (void) Obj; 384 } 385 386 /// Push a lazily-created cleanup on the stack. 387 template <class T, class A0, class A1, class A2> 388 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) { 389 void *Buffer = pushCleanup(Kind, sizeof(T)); 390 Cleanup *Obj = new(Buffer) T(a0, a1, a2); 391 (void) Obj; 392 } 393 394 /// Push a lazily-created cleanup on the stack. 395 template <class T, class A0, class A1, class A2, class A3> 396 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) { 397 void *Buffer = pushCleanup(Kind, sizeof(T)); 398 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3); 399 (void) Obj; 400 } 401 402 /// Push a lazily-created cleanup on the stack. 403 template <class T, class A0, class A1, class A2, class A3, class A4> 404 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) { 405 void *Buffer = pushCleanup(Kind, sizeof(T)); 406 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4); 407 (void) Obj; 408 } 409 410 // Feel free to add more variants of the following: 411 412 /// Push a cleanup with non-constant storage requirements on the 413 /// stack. The cleanup type must provide an additional static method: 414 /// static size_t getExtraSize(size_t); 415 /// The argument to this method will be the value N, which will also 416 /// be passed as the first argument to the constructor. 417 /// 418 /// The data stored in the extra storage must obey the same 419 /// restrictions as normal cleanup member data. 420 /// 421 /// The pointer returned from this method is valid until the cleanup 422 /// stack is modified. 423 template <class T, class A0, class A1, class A2> 424 T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) { 425 void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N)); 426 return new (Buffer) T(N, a0, a1, a2); 427 } 428 429 /// Pops a cleanup scope off the stack. This is private to CGCleanup.cpp. 430 void popCleanup(); 431 432 /// Push a set of catch handlers on the stack. The catch is 433 /// uninitialized and will need to have the given number of handlers 434 /// set on it. 435 class EHCatchScope *pushCatch(unsigned NumHandlers); 436 437 /// Pops a catch scope off the stack. This is private to CGException.cpp. 438 void popCatch(); 439 440 /// Push an exceptions filter on the stack. 441 class EHFilterScope *pushFilter(unsigned NumFilters); 442 443 /// Pops an exceptions filter off the stack. 444 void popFilter(); 445 446 /// Push a terminate handler on the stack. 447 void pushTerminate(); 448 449 /// Pops a terminate handler off the stack. 450 void popTerminate(); 451 452 /// Determines whether the exception-scopes stack is empty. 453 bool empty() const { return StartOfData == EndOfBuffer; } 454 455 bool requiresLandingPad() const { 456 return InnermostEHScope != stable_end(); 457 } 458 459 /// Determines whether there are any normal cleanups on the stack. 460 bool hasNormalCleanups() const { 461 return InnermostNormalCleanup != stable_end(); 462 } 463 464 /// Returns the innermost normal cleanup on the stack, or 465 /// stable_end() if there are no normal cleanups. 466 stable_iterator getInnermostNormalCleanup() const { 467 return InnermostNormalCleanup; 468 } 469 stable_iterator getInnermostActiveNormalCleanup() const; 470 471 stable_iterator getInnermostEHScope() const { 472 return InnermostEHScope; 473 } 474 475 stable_iterator getInnermostActiveEHScope() const; 476 477 /// An unstable reference to a scope-stack depth. Invalidated by 478 /// pushes but not pops. 479 class iterator; 480 481 /// Returns an iterator pointing to the innermost EH scope. 482 iterator begin() const; 483 484 /// Returns an iterator pointing to the outermost EH scope. 485 iterator end() const; 486 487 /// Create a stable reference to the top of the EH stack. The 488 /// returned reference is valid until that scope is popped off the 489 /// stack. 490 stable_iterator stable_begin() const { 491 return stable_iterator(EndOfBuffer - StartOfData); 492 } 493 494 /// Create a stable reference to the bottom of the EH stack. 495 static stable_iterator stable_end() { 496 return stable_iterator(0); 497 } 498 499 /// Translates an iterator into a stable_iterator. 500 stable_iterator stabilize(iterator it) const; 501 502 /// Turn a stable reference to a scope depth into a unstable pointer 503 /// to the EH stack. 504 iterator find(stable_iterator save) const; 505 506 /// Removes the cleanup pointed to by the given stable_iterator. 507 void removeCleanup(stable_iterator save); 508 509 /// Add a branch fixup to the current cleanup scope. 510 BranchFixup &addBranchFixup() { 511 assert(hasNormalCleanups() && "adding fixup in scope without cleanups"); 512 BranchFixups.push_back(BranchFixup()); 513 return BranchFixups.back(); 514 } 515 516 unsigned getNumBranchFixups() const { return BranchFixups.size(); } 517 BranchFixup &getBranchFixup(unsigned I) { 518 assert(I < getNumBranchFixups()); 519 return BranchFixups[I]; 520 } 521 522 /// Pops lazily-removed fixups from the end of the list. This 523 /// should only be called by procedures which have just popped a 524 /// cleanup or resolved one or more fixups. 525 void popNullFixups(); 526 527 /// Clears the branch-fixups list. This should only be called by 528 /// ResolveAllBranchFixups. 529 void clearFixups() { BranchFixups.clear(); } 530}; 531 532/// CodeGenFunction - This class organizes the per-function state that is used 533/// while generating LLVM code. 534class CodeGenFunction : public CodeGenTypeCache { 535 CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT 536 void operator=(const CodeGenFunction&); // DO NOT IMPLEMENT 537 538 friend class CGCXXABI; 539public: 540 /// A jump destination is an abstract label, branching to which may 541 /// require a jump out through normal cleanups. 542 struct JumpDest { 543 JumpDest() : Block(0), ScopeDepth(), Index(0) {} 544 JumpDest(llvm::BasicBlock *Block, 545 EHScopeStack::stable_iterator Depth, 546 unsigned Index) 547 : Block(Block), ScopeDepth(Depth), Index(Index) {} 548 549 bool isValid() const { return Block != 0; } 550 llvm::BasicBlock *getBlock() const { return Block; } 551 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 552 unsigned getDestIndex() const { return Index; } 553 554 private: 555 llvm::BasicBlock *Block; 556 EHScopeStack::stable_iterator ScopeDepth; 557 unsigned Index; 558 }; 559 560 CodeGenModule &CGM; // Per-module state. 561 const TargetInfo &Target; 562 563 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 564 CGBuilderTy Builder; 565 566 /// CurFuncDecl - Holds the Decl for the current function or ObjC method. 567 /// This excludes BlockDecls. 568 const Decl *CurFuncDecl; 569 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 570 const Decl *CurCodeDecl; 571 const CGFunctionInfo *CurFnInfo; 572 QualType FnRetTy; 573 llvm::Function *CurFn; 574 575 /// CurGD - The GlobalDecl for the current function being compiled. 576 GlobalDecl CurGD; 577 578 /// PrologueCleanupDepth - The cleanup depth enclosing all the 579 /// cleanups associated with the parameters. 580 EHScopeStack::stable_iterator PrologueCleanupDepth; 581 582 /// ReturnBlock - Unified return block. 583 JumpDest ReturnBlock; 584 585 /// ReturnValue - The temporary alloca to hold the return value. This is null 586 /// iff the function has no return value. 587 llvm::Value *ReturnValue; 588 589 /// AllocaInsertPoint - This is an instruction in the entry block before which 590 /// we prefer to insert allocas. 591 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 592 593 bool CatchUndefined; 594 595 /// In ARC, whether we should autorelease the return value. 596 bool AutoreleaseResult; 597 598 const CodeGen::CGBlockInfo *BlockInfo; 599 llvm::Value *BlockPointer; 600 601 /// \brief A mapping from NRVO variables to the flags used to indicate 602 /// when the NRVO has been applied to this variable. 603 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 604 605 EHScopeStack EHStack; 606 607 /// i32s containing the indexes of the cleanup destinations. 608 llvm::AllocaInst *NormalCleanupDest; 609 610 unsigned NextCleanupDestIndex; 611 612 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 613 llvm::BasicBlock *EHResumeBlock; 614 615 /// The exception slot. All landing pads write the current 616 /// exception pointer into this alloca. 617 llvm::Value *ExceptionSlot; 618 619 /// The selector slot. Under the MandatoryCleanup model, all 620 /// landing pads write the current selector value into this alloca. 621 llvm::AllocaInst *EHSelectorSlot; 622 623 /// Emits a landing pad for the current EH stack. 624 llvm::BasicBlock *EmitLandingPad(); 625 626 llvm::BasicBlock *getInvokeDestImpl(); 627 628 /// Set up the last cleaup that was pushed as a conditional 629 /// full-expression cleanup. 630 void initFullExprCleanup(); 631 632 template <class T> 633 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 634 return DominatingValue<T>::save(*this, value); 635 } 636 637public: 638 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 639 /// rethrows. 640 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 641 642 /// A class controlling the emission of a finally block. 643 class FinallyInfo { 644 /// Where the catchall's edge through the cleanup should go. 645 JumpDest RethrowDest; 646 647 /// A function to call to enter the catch. 648 llvm::Constant *BeginCatchFn; 649 650 /// An i1 variable indicating whether or not the @finally is 651 /// running for an exception. 652 llvm::AllocaInst *ForEHVar; 653 654 /// An i8* variable into which the exception pointer to rethrow 655 /// has been saved. 656 llvm::AllocaInst *SavedExnVar; 657 658 public: 659 void enter(CodeGenFunction &CGF, const Stmt *Finally, 660 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 661 llvm::Constant *rethrowFn); 662 void exit(CodeGenFunction &CGF); 663 }; 664 665 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 666 /// current full-expression. Safe against the possibility that 667 /// we're currently inside a conditionally-evaluated expression. 668 template <class T, class A0> 669 void pushFullExprCleanup(CleanupKind kind, A0 a0) { 670 // If we're not in a conditional branch, or if none of the 671 // arguments requires saving, then use the unconditional cleanup. 672 if (!isInConditionalBranch()) 673 return EHStack.pushCleanup<T>(kind, a0); 674 675 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 676 677 typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType; 678 EHStack.pushCleanup<CleanupType>(kind, a0_saved); 679 initFullExprCleanup(); 680 } 681 682 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 683 /// current full-expression. Safe against the possibility that 684 /// we're currently inside a conditionally-evaluated expression. 685 template <class T, class A0, class A1> 686 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) { 687 // If we're not in a conditional branch, or if none of the 688 // arguments requires saving, then use the unconditional cleanup. 689 if (!isInConditionalBranch()) 690 return EHStack.pushCleanup<T>(kind, a0, a1); 691 692 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 693 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 694 695 typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType; 696 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved); 697 initFullExprCleanup(); 698 } 699 700 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 701 /// current full-expression. Safe against the possibility that 702 /// we're currently inside a conditionally-evaluated expression. 703 template <class T, class A0, class A1, class A2> 704 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) { 705 // If we're not in a conditional branch, or if none of the 706 // arguments requires saving, then use the unconditional cleanup. 707 if (!isInConditionalBranch()) { 708 return EHStack.pushCleanup<T>(kind, a0, a1, a2); 709 } 710 711 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 712 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 713 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 714 715 typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType; 716 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved); 717 initFullExprCleanup(); 718 } 719 720 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 721 /// current full-expression. Safe against the possibility that 722 /// we're currently inside a conditionally-evaluated expression. 723 template <class T, class A0, class A1, class A2, class A3> 724 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) { 725 // If we're not in a conditional branch, or if none of the 726 // arguments requires saving, then use the unconditional cleanup. 727 if (!isInConditionalBranch()) { 728 return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3); 729 } 730 731 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 732 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 733 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 734 typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3); 735 736 typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType; 737 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, 738 a2_saved, a3_saved); 739 initFullExprCleanup(); 740 } 741 742 /// PushDestructorCleanup - Push a cleanup to call the 743 /// complete-object destructor of an object of the given type at the 744 /// given address. Does nothing if T is not a C++ class type with a 745 /// non-trivial destructor. 746 void PushDestructorCleanup(QualType T, llvm::Value *Addr); 747 748 /// PushDestructorCleanup - Push a cleanup to call the 749 /// complete-object variant of the given destructor on the object at 750 /// the given address. 751 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, 752 llvm::Value *Addr); 753 754 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 755 /// process all branch fixups. 756 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 757 758 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 759 /// The block cannot be reactivated. Pops it if it's the top of the 760 /// stack. 761 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup); 762 763 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 764 /// Cannot be used to resurrect a deactivated cleanup. 765 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup); 766 767 /// \brief Enters a new scope for capturing cleanups, all of which 768 /// will be executed once the scope is exited. 769 class RunCleanupsScope { 770 CodeGenFunction& CGF; 771 EHScopeStack::stable_iterator CleanupStackDepth; 772 bool OldDidCallStackSave; 773 bool PerformCleanup; 774 775 RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT 776 RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT 777 778 public: 779 /// \brief Enter a new cleanup scope. 780 explicit RunCleanupsScope(CodeGenFunction &CGF) 781 : CGF(CGF), PerformCleanup(true) 782 { 783 CleanupStackDepth = CGF.EHStack.stable_begin(); 784 OldDidCallStackSave = CGF.DidCallStackSave; 785 CGF.DidCallStackSave = false; 786 } 787 788 /// \brief Exit this cleanup scope, emitting any accumulated 789 /// cleanups. 790 ~RunCleanupsScope() { 791 if (PerformCleanup) { 792 CGF.DidCallStackSave = OldDidCallStackSave; 793 CGF.PopCleanupBlocks(CleanupStackDepth); 794 } 795 } 796 797 /// \brief Determine whether this scope requires any cleanups. 798 bool requiresCleanups() const { 799 return CGF.EHStack.stable_begin() != CleanupStackDepth; 800 } 801 802 /// \brief Force the emission of cleanups now, instead of waiting 803 /// until this object is destroyed. 804 void ForceCleanup() { 805 assert(PerformCleanup && "Already forced cleanup"); 806 CGF.DidCallStackSave = OldDidCallStackSave; 807 CGF.PopCleanupBlocks(CleanupStackDepth); 808 PerformCleanup = false; 809 } 810 }; 811 812 813 /// PopCleanupBlocks - Takes the old cleanup stack size and emits 814 /// the cleanup blocks that have been added. 815 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 816 817 void ResolveBranchFixups(llvm::BasicBlock *Target); 818 819 /// The given basic block lies in the current EH scope, but may be a 820 /// target of a potentially scope-crossing jump; get a stable handle 821 /// to which we can perform this jump later. 822 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 823 return JumpDest(Target, 824 EHStack.getInnermostNormalCleanup(), 825 NextCleanupDestIndex++); 826 } 827 828 /// The given basic block lies in the current EH scope, but may be a 829 /// target of a potentially scope-crossing jump; get a stable handle 830 /// to which we can perform this jump later. 831 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 832 return getJumpDestInCurrentScope(createBasicBlock(Name)); 833 } 834 835 /// EmitBranchThroughCleanup - Emit a branch from the current insert 836 /// block through the normal cleanup handling code (if any) and then 837 /// on to \arg Dest. 838 void EmitBranchThroughCleanup(JumpDest Dest); 839 840 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 841 /// specified destination obviously has no cleanups to run. 'false' is always 842 /// a conservatively correct answer for this method. 843 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 844 845 /// popCatchScope - Pops the catch scope at the top of the EHScope 846 /// stack, emitting any required code (other than the catch handlers 847 /// themselves). 848 void popCatchScope(); 849 850 llvm::BasicBlock *getEHResumeBlock(); 851 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 852 853 /// An object to manage conditionally-evaluated expressions. 854 class ConditionalEvaluation { 855 llvm::BasicBlock *StartBB; 856 857 public: 858 ConditionalEvaluation(CodeGenFunction &CGF) 859 : StartBB(CGF.Builder.GetInsertBlock()) {} 860 861 void begin(CodeGenFunction &CGF) { 862 assert(CGF.OutermostConditional != this); 863 if (!CGF.OutermostConditional) 864 CGF.OutermostConditional = this; 865 } 866 867 void end(CodeGenFunction &CGF) { 868 assert(CGF.OutermostConditional != 0); 869 if (CGF.OutermostConditional == this) 870 CGF.OutermostConditional = 0; 871 } 872 873 /// Returns a block which will be executed prior to each 874 /// evaluation of the conditional code. 875 llvm::BasicBlock *getStartingBlock() const { 876 return StartBB; 877 } 878 }; 879 880 /// isInConditionalBranch - Return true if we're currently emitting 881 /// one branch or the other of a conditional expression. 882 bool isInConditionalBranch() const { return OutermostConditional != 0; } 883 884 /// An RAII object to record that we're evaluating a statement 885 /// expression. 886 class StmtExprEvaluation { 887 CodeGenFunction &CGF; 888 889 /// We have to save the outermost conditional: cleanups in a 890 /// statement expression aren't conditional just because the 891 /// StmtExpr is. 892 ConditionalEvaluation *SavedOutermostConditional; 893 894 public: 895 StmtExprEvaluation(CodeGenFunction &CGF) 896 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 897 CGF.OutermostConditional = 0; 898 } 899 900 ~StmtExprEvaluation() { 901 CGF.OutermostConditional = SavedOutermostConditional; 902 CGF.EnsureInsertPoint(); 903 } 904 }; 905 906 /// An object which temporarily prevents a value from being 907 /// destroyed by aggressive peephole optimizations that assume that 908 /// all uses of a value have been realized in the IR. 909 class PeepholeProtection { 910 llvm::Instruction *Inst; 911 friend class CodeGenFunction; 912 913 public: 914 PeepholeProtection() : Inst(0) {} 915 }; 916 917 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 918 class OpaqueValueMapping { 919 CodeGenFunction &CGF; 920 const OpaqueValueExpr *OpaqueValue; 921 bool BoundLValue; 922 CodeGenFunction::PeepholeProtection Protection; 923 924 public: 925 static bool shouldBindAsLValue(const Expr *expr) { 926 return expr->isGLValue() || expr->getType()->isRecordType(); 927 } 928 929 /// Build the opaque value mapping for the given conditional 930 /// operator if it's the GNU ?: extension. This is a common 931 /// enough pattern that the convenience operator is really 932 /// helpful. 933 /// 934 OpaqueValueMapping(CodeGenFunction &CGF, 935 const AbstractConditionalOperator *op) : CGF(CGF) { 936 if (isa<ConditionalOperator>(op)) { 937 OpaqueValue = 0; 938 BoundLValue = false; 939 return; 940 } 941 942 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 943 init(e->getOpaqueValue(), e->getCommon()); 944 } 945 946 OpaqueValueMapping(CodeGenFunction &CGF, 947 const OpaqueValueExpr *opaqueValue, 948 LValue lvalue) 949 : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(true) { 950 assert(opaqueValue && "no opaque value expression!"); 951 assert(shouldBindAsLValue(opaqueValue)); 952 initLValue(lvalue); 953 } 954 955 OpaqueValueMapping(CodeGenFunction &CGF, 956 const OpaqueValueExpr *opaqueValue, 957 RValue rvalue) 958 : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(false) { 959 assert(opaqueValue && "no opaque value expression!"); 960 assert(!shouldBindAsLValue(opaqueValue)); 961 initRValue(rvalue); 962 } 963 964 void pop() { 965 assert(OpaqueValue && "mapping already popped!"); 966 popImpl(); 967 OpaqueValue = 0; 968 } 969 970 ~OpaqueValueMapping() { 971 if (OpaqueValue) popImpl(); 972 } 973 974 private: 975 void popImpl() { 976 if (BoundLValue) 977 CGF.OpaqueLValues.erase(OpaqueValue); 978 else { 979 CGF.OpaqueRValues.erase(OpaqueValue); 980 CGF.unprotectFromPeepholes(Protection); 981 } 982 } 983 984 void init(const OpaqueValueExpr *ov, const Expr *e) { 985 OpaqueValue = ov; 986 BoundLValue = shouldBindAsLValue(ov); 987 assert(BoundLValue == shouldBindAsLValue(e) 988 && "inconsistent expression value kinds!"); 989 if (BoundLValue) 990 initLValue(CGF.EmitLValue(e)); 991 else 992 initRValue(CGF.EmitAnyExpr(e)); 993 } 994 995 void initLValue(const LValue &lv) { 996 CGF.OpaqueLValues.insert(std::make_pair(OpaqueValue, lv)); 997 } 998 999 void initRValue(const RValue &rv) { 1000 // Work around an extremely aggressive peephole optimization in 1001 // EmitScalarConversion which assumes that all other uses of a 1002 // value are extant. 1003 Protection = CGF.protectFromPeepholes(rv); 1004 CGF.OpaqueRValues.insert(std::make_pair(OpaqueValue, rv)); 1005 } 1006 }; 1007 1008 /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field 1009 /// number that holds the value. 1010 unsigned getByRefValueLLVMField(const ValueDecl *VD) const; 1011 1012 /// BuildBlockByrefAddress - Computes address location of the 1013 /// variable which is declared as __block. 1014 llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr, 1015 const VarDecl *V); 1016private: 1017 CGDebugInfo *DebugInfo; 1018 bool DisableDebugInfo; 1019 1020 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1021 /// calling llvm.stacksave for multiple VLAs in the same scope. 1022 bool DidCallStackSave; 1023 1024 /// IndirectBranch - The first time an indirect goto is seen we create a block 1025 /// with an indirect branch. Every time we see the address of a label taken, 1026 /// we add the label to the indirect goto. Every subsequent indirect goto is 1027 /// codegen'd as a jump to the IndirectBranch's basic block. 1028 llvm::IndirectBrInst *IndirectBranch; 1029 1030 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1031 /// decls. 1032 typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy; 1033 DeclMapTy LocalDeclMap; 1034 1035 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1036 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1037 1038 // BreakContinueStack - This keeps track of where break and continue 1039 // statements should jump to. 1040 struct BreakContinue { 1041 BreakContinue(JumpDest Break, JumpDest Continue) 1042 : BreakBlock(Break), ContinueBlock(Continue) {} 1043 1044 JumpDest BreakBlock; 1045 JumpDest ContinueBlock; 1046 }; 1047 SmallVector<BreakContinue, 8> BreakContinueStack; 1048 1049 /// SwitchInsn - This is nearest current switch instruction. It is null if if 1050 /// current context is not in a switch. 1051 llvm::SwitchInst *SwitchInsn; 1052 1053 /// CaseRangeBlock - This block holds if condition check for last case 1054 /// statement range in current switch instruction. 1055 llvm::BasicBlock *CaseRangeBlock; 1056 1057 /// OpaqueLValues - Keeps track of the current set of opaque value 1058 /// expressions. 1059 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1060 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1061 1062 // VLASizeMap - This keeps track of the associated size for each VLA type. 1063 // We track this by the size expression rather than the type itself because 1064 // in certain situations, like a const qualifier applied to an VLA typedef, 1065 // multiple VLA types can share the same size expression. 1066 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1067 // enter/leave scopes. 1068 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1069 1070 /// A block containing a single 'unreachable' instruction. Created 1071 /// lazily by getUnreachableBlock(). 1072 llvm::BasicBlock *UnreachableBlock; 1073 1074 /// CXXThisDecl - When generating code for a C++ member function, 1075 /// this will hold the implicit 'this' declaration. 1076 ImplicitParamDecl *CXXThisDecl; 1077 llvm::Value *CXXThisValue; 1078 1079 /// CXXVTTDecl - When generating code for a base object constructor or 1080 /// base object destructor with virtual bases, this will hold the implicit 1081 /// VTT parameter. 1082 ImplicitParamDecl *CXXVTTDecl; 1083 llvm::Value *CXXVTTValue; 1084 1085 /// OutermostConditional - Points to the outermost active 1086 /// conditional control. This is used so that we know if a 1087 /// temporary should be destroyed conditionally. 1088 ConditionalEvaluation *OutermostConditional; 1089 1090 1091 /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM 1092 /// type as well as the field number that contains the actual data. 1093 llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *, 1094 unsigned> > ByRefValueInfo; 1095 1096 llvm::BasicBlock *TerminateLandingPad; 1097 llvm::BasicBlock *TerminateHandler; 1098 llvm::BasicBlock *TrapBB; 1099 1100public: 1101 CodeGenFunction(CodeGenModule &cgm); 1102 1103 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1104 ASTContext &getContext() const { return CGM.getContext(); } 1105 CGDebugInfo *getDebugInfo() { 1106 if (DisableDebugInfo) 1107 return NULL; 1108 return DebugInfo; 1109 } 1110 void disableDebugInfo() { DisableDebugInfo = true; } 1111 void enableDebugInfo() { DisableDebugInfo = false; } 1112 1113 bool shouldUseFusedARCCalls() { 1114 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1115 } 1116 1117 const LangOptions &getLangOptions() const { return CGM.getLangOptions(); } 1118 1119 /// Returns a pointer to the function's exception object slot, which 1120 /// is assigned in every landing pad. 1121 llvm::Value *getExceptionSlot(); 1122 llvm::Value *getEHSelectorSlot(); 1123 1124 llvm::Value *getNormalCleanupDestSlot(); 1125 1126 llvm::BasicBlock *getUnreachableBlock() { 1127 if (!UnreachableBlock) { 1128 UnreachableBlock = createBasicBlock("unreachable"); 1129 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1130 } 1131 return UnreachableBlock; 1132 } 1133 1134 llvm::BasicBlock *getInvokeDest() { 1135 if (!EHStack.requiresLandingPad()) return 0; 1136 return getInvokeDestImpl(); 1137 } 1138 1139 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1140 1141 //===--------------------------------------------------------------------===// 1142 // Cleanups 1143 //===--------------------------------------------------------------------===// 1144 1145 typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty); 1146 1147 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1148 llvm::Value *arrayEndPointer, 1149 QualType elementType, 1150 Destroyer &destroyer); 1151 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1152 llvm::Value *arrayEnd, 1153 QualType elementType, 1154 Destroyer &destroyer); 1155 1156 void pushDestroy(QualType::DestructionKind dtorKind, 1157 llvm::Value *addr, QualType type); 1158 void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type, 1159 Destroyer &destroyer, bool useEHCleanupForArray); 1160 void emitDestroy(llvm::Value *addr, QualType type, Destroyer &destroyer, 1161 bool useEHCleanupForArray); 1162 llvm::Function *generateDestroyHelper(llvm::Constant *addr, 1163 QualType type, 1164 Destroyer &destroyer, 1165 bool useEHCleanupForArray); 1166 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1167 QualType type, Destroyer &destroyer, 1168 bool checkZeroLength, bool useEHCleanup); 1169 1170 Destroyer &getDestroyer(QualType::DestructionKind destructionKind); 1171 1172 /// Determines whether an EH cleanup is required to destroy a type 1173 /// with the given destruction kind. 1174 bool needsEHCleanup(QualType::DestructionKind kind) { 1175 switch (kind) { 1176 case QualType::DK_none: 1177 return false; 1178 case QualType::DK_cxx_destructor: 1179 case QualType::DK_objc_weak_lifetime: 1180 return getLangOptions().Exceptions; 1181 case QualType::DK_objc_strong_lifetime: 1182 return getLangOptions().Exceptions && 1183 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1184 } 1185 llvm_unreachable("bad destruction kind"); 1186 } 1187 1188 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1189 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1190 } 1191 1192 //===--------------------------------------------------------------------===// 1193 // Objective-C 1194 //===--------------------------------------------------------------------===// 1195 1196 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1197 1198 void StartObjCMethod(const ObjCMethodDecl *MD, 1199 const ObjCContainerDecl *CD, 1200 SourceLocation StartLoc); 1201 1202 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1203 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1204 const ObjCPropertyImplDecl *PID); 1205 void GenerateObjCGetterBody(ObjCIvarDecl *Ivar, bool IsAtomic, bool IsStrong); 1206 void GenerateObjCAtomicSetterBody(ObjCMethodDecl *OMD, 1207 ObjCIvarDecl *Ivar); 1208 1209 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1210 ObjCMethodDecl *MD, bool ctor); 1211 1212 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1213 /// for the given property. 1214 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1215 const ObjCPropertyImplDecl *PID); 1216 bool IndirectObjCSetterArg(const CGFunctionInfo &FI); 1217 bool IvarTypeWithAggrGCObjects(QualType Ty); 1218 1219 //===--------------------------------------------------------------------===// 1220 // Block Bits 1221 //===--------------------------------------------------------------------===// 1222 1223 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1224 llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *, 1225 const CGBlockInfo &Info, 1226 llvm::StructType *, 1227 llvm::Constant *BlockVarLayout); 1228 1229 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1230 const CGBlockInfo &Info, 1231 const Decl *OuterFuncDecl, 1232 const DeclMapTy &ldm); 1233 1234 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1235 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1236 1237 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1238 1239 class AutoVarEmission; 1240 1241 void emitByrefStructureInit(const AutoVarEmission &emission); 1242 void enterByrefCleanup(const AutoVarEmission &emission); 1243 1244 llvm::Value *LoadBlockStruct() { 1245 assert(BlockPointer && "no block pointer set!"); 1246 return BlockPointer; 1247 } 1248 1249 void AllocateBlockCXXThisPointer(const CXXThisExpr *E); 1250 void AllocateBlockDecl(const BlockDeclRefExpr *E); 1251 llvm::Value *GetAddrOfBlockDecl(const BlockDeclRefExpr *E) { 1252 return GetAddrOfBlockDecl(E->getDecl(), E->isByRef()); 1253 } 1254 llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1255 llvm::Type *BuildByRefType(const VarDecl *var); 1256 1257 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1258 const CGFunctionInfo &FnInfo); 1259 void StartFunction(GlobalDecl GD, QualType RetTy, 1260 llvm::Function *Fn, 1261 const CGFunctionInfo &FnInfo, 1262 const FunctionArgList &Args, 1263 SourceLocation StartLoc); 1264 1265 void EmitConstructorBody(FunctionArgList &Args); 1266 void EmitDestructorBody(FunctionArgList &Args); 1267 void EmitFunctionBody(FunctionArgList &Args); 1268 1269 /// EmitReturnBlock - Emit the unified return block, trying to avoid its 1270 /// emission when possible. 1271 void EmitReturnBlock(); 1272 1273 /// FinishFunction - Complete IR generation of the current function. It is 1274 /// legal to call this function even if there is no current insertion point. 1275 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1276 1277 /// GenerateThunk - Generate a thunk for the given method. 1278 void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1279 GlobalDecl GD, const ThunkInfo &Thunk); 1280 1281 void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1282 GlobalDecl GD, const ThunkInfo &Thunk); 1283 1284 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1285 FunctionArgList &Args); 1286 1287 /// InitializeVTablePointer - Initialize the vtable pointer of the given 1288 /// subobject. 1289 /// 1290 void InitializeVTablePointer(BaseSubobject Base, 1291 const CXXRecordDecl *NearestVBase, 1292 CharUnits OffsetFromNearestVBase, 1293 llvm::Constant *VTable, 1294 const CXXRecordDecl *VTableClass); 1295 1296 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1297 void InitializeVTablePointers(BaseSubobject Base, 1298 const CXXRecordDecl *NearestVBase, 1299 CharUnits OffsetFromNearestVBase, 1300 bool BaseIsNonVirtualPrimaryBase, 1301 llvm::Constant *VTable, 1302 const CXXRecordDecl *VTableClass, 1303 VisitedVirtualBasesSetTy& VBases); 1304 1305 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1306 1307 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1308 /// to by This. 1309 llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty); 1310 1311 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1312 /// given phase of destruction for a destructor. The end result 1313 /// should call destructors on members and base classes in reverse 1314 /// order of their construction. 1315 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1316 1317 /// ShouldInstrumentFunction - Return true if the current function should be 1318 /// instrumented with __cyg_profile_func_* calls 1319 bool ShouldInstrumentFunction(); 1320 1321 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1322 /// instrumentation function with the current function and the call site, if 1323 /// function instrumentation is enabled. 1324 void EmitFunctionInstrumentation(const char *Fn); 1325 1326 /// EmitMCountInstrumentation - Emit call to .mcount. 1327 void EmitMCountInstrumentation(); 1328 1329 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1330 /// arguments for the given function. This is also responsible for naming the 1331 /// LLVM function arguments. 1332 void EmitFunctionProlog(const CGFunctionInfo &FI, 1333 llvm::Function *Fn, 1334 const FunctionArgList &Args); 1335 1336 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1337 /// given temporary. 1338 void EmitFunctionEpilog(const CGFunctionInfo &FI); 1339 1340 /// EmitStartEHSpec - Emit the start of the exception spec. 1341 void EmitStartEHSpec(const Decl *D); 1342 1343 /// EmitEndEHSpec - Emit the end of the exception spec. 1344 void EmitEndEHSpec(const Decl *D); 1345 1346 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1347 llvm::BasicBlock *getTerminateLandingPad(); 1348 1349 /// getTerminateHandler - Return a handler (not a landing pad, just 1350 /// a catch handler) that just calls terminate. This is used when 1351 /// a terminate scope encloses a try. 1352 llvm::BasicBlock *getTerminateHandler(); 1353 1354 llvm::Type *ConvertTypeForMem(QualType T); 1355 llvm::Type *ConvertType(QualType T); 1356 llvm::Type *ConvertType(const TypeDecl *T) { 1357 return ConvertType(getContext().getTypeDeclType(T)); 1358 } 1359 1360 /// LoadObjCSelf - Load the value of self. This function is only valid while 1361 /// generating code for an Objective-C method. 1362 llvm::Value *LoadObjCSelf(); 1363 1364 /// TypeOfSelfObject - Return type of object that this self represents. 1365 QualType TypeOfSelfObject(); 1366 1367 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1368 /// an aggregate LLVM type or is void. 1369 static bool hasAggregateLLVMType(QualType T); 1370 1371 /// createBasicBlock - Create an LLVM basic block. 1372 llvm::BasicBlock *createBasicBlock(StringRef name = "", 1373 llvm::Function *parent = 0, 1374 llvm::BasicBlock *before = 0) { 1375#ifdef NDEBUG 1376 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1377#else 1378 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1379#endif 1380 } 1381 1382 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1383 /// label maps to. 1384 JumpDest getJumpDestForLabel(const LabelDecl *S); 1385 1386 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1387 /// another basic block, simplify it. This assumes that no other code could 1388 /// potentially reference the basic block. 1389 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1390 1391 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1392 /// adding a fall-through branch from the current insert block if 1393 /// necessary. It is legal to call this function even if there is no current 1394 /// insertion point. 1395 /// 1396 /// IsFinished - If true, indicates that the caller has finished emitting 1397 /// branches to the given block and does not expect to emit code into it. This 1398 /// means the block can be ignored if it is unreachable. 1399 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1400 1401 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1402 /// near its uses, and leave the insertion point in it. 1403 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1404 1405 /// EmitBranch - Emit a branch to the specified basic block from the current 1406 /// insert block, taking care to avoid creation of branches from dummy 1407 /// blocks. It is legal to call this function even if there is no current 1408 /// insertion point. 1409 /// 1410 /// This function clears the current insertion point. The caller should follow 1411 /// calls to this function with calls to Emit*Block prior to generation new 1412 /// code. 1413 void EmitBranch(llvm::BasicBlock *Block); 1414 1415 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1416 /// indicates that the current code being emitted is unreachable. 1417 bool HaveInsertPoint() const { 1418 return Builder.GetInsertBlock() != 0; 1419 } 1420 1421 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1422 /// emitted IR has a place to go. Note that by definition, if this function 1423 /// creates a block then that block is unreachable; callers may do better to 1424 /// detect when no insertion point is defined and simply skip IR generation. 1425 void EnsureInsertPoint() { 1426 if (!HaveInsertPoint()) 1427 EmitBlock(createBasicBlock()); 1428 } 1429 1430 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1431 /// specified stmt yet. 1432 void ErrorUnsupported(const Stmt *S, const char *Type, 1433 bool OmitOnError=false); 1434 1435 //===--------------------------------------------------------------------===// 1436 // Helpers 1437 //===--------------------------------------------------------------------===// 1438 1439 LValue MakeAddrLValue(llvm::Value *V, QualType T, unsigned Alignment = 0) { 1440 return LValue::MakeAddr(V, T, Alignment, getContext(), 1441 CGM.getTBAAInfo(T)); 1442 } 1443 1444 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1445 /// block. The caller is responsible for setting an appropriate alignment on 1446 /// the alloca. 1447 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1448 const Twine &Name = "tmp"); 1449 1450 /// InitTempAlloca - Provide an initial value for the given alloca. 1451 void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value); 1452 1453 /// CreateIRTemp - Create a temporary IR object of the given type, with 1454 /// appropriate alignment. This routine should only be used when an temporary 1455 /// value needs to be stored into an alloca (for example, to avoid explicit 1456 /// PHI construction), but the type is the IR type, not the type appropriate 1457 /// for storing in memory. 1458 llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1459 1460 /// CreateMemTemp - Create a temporary memory object of the given type, with 1461 /// appropriate alignment. 1462 llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1463 1464 /// CreateAggTemp - Create a temporary memory object for the given 1465 /// aggregate type. 1466 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1467 return AggValueSlot::forAddr(CreateMemTemp(T, Name), T.getQualifiers(), 1468 AggValueSlot::IsNotDestructed, 1469 AggValueSlot::DoesNotNeedGCBarriers); 1470 } 1471 1472 /// Emit a cast to void* in the appropriate address space. 1473 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1474 1475 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1476 /// expression and compare the result against zero, returning an Int1Ty value. 1477 llvm::Value *EvaluateExprAsBool(const Expr *E); 1478 1479 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1480 void EmitIgnoredExpr(const Expr *E); 1481 1482 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1483 /// any type. The result is returned as an RValue struct. If this is an 1484 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1485 /// the result should be returned. 1486 /// 1487 /// \param IgnoreResult - True if the resulting value isn't used. 1488 RValue EmitAnyExpr(const Expr *E, 1489 AggValueSlot AggSlot = AggValueSlot::ignored(), 1490 bool IgnoreResult = false); 1491 1492 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1493 // or the value of the expression, depending on how va_list is defined. 1494 llvm::Value *EmitVAListRef(const Expr *E); 1495 1496 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1497 /// always be accessible even if no aggregate location is provided. 1498 RValue EmitAnyExprToTemp(const Expr *E); 1499 1500 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1501 /// arbitrary expression into the given memory location. 1502 void EmitAnyExprToMem(const Expr *E, llvm::Value *Location, 1503 Qualifiers Quals, bool IsInitializer); 1504 1505 /// EmitExprAsInit - Emits the code necessary to initialize a 1506 /// location in memory with the given initializer. 1507 void EmitExprAsInit(const Expr *init, const ValueDecl *D, 1508 LValue lvalue, bool capturedByInit); 1509 1510 /// EmitAggregateCopy - Emit an aggrate copy. 1511 /// 1512 /// \param isVolatile - True iff either the source or the destination is 1513 /// volatile. 1514 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1515 QualType EltTy, bool isVolatile=false); 1516 1517 /// StartBlock - Start new block named N. If insert block is a dummy block 1518 /// then reuse it. 1519 void StartBlock(const char *N); 1520 1521 /// GetAddrOfStaticLocalVar - Return the address of a static local variable. 1522 llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) { 1523 return cast<llvm::Constant>(GetAddrOfLocalVar(BVD)); 1524 } 1525 1526 /// GetAddrOfLocalVar - Return the address of a local variable. 1527 llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) { 1528 llvm::Value *Res = LocalDeclMap[VD]; 1529 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1530 return Res; 1531 } 1532 1533 /// getOpaqueLValueMapping - Given an opaque value expression (which 1534 /// must be mapped to an l-value), return its mapping. 1535 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1536 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1537 1538 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1539 it = OpaqueLValues.find(e); 1540 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1541 return it->second; 1542 } 1543 1544 /// getOpaqueRValueMapping - Given an opaque value expression (which 1545 /// must be mapped to an r-value), return its mapping. 1546 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1547 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1548 1549 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1550 it = OpaqueRValues.find(e); 1551 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1552 return it->second; 1553 } 1554 1555 /// getAccessedFieldNo - Given an encoded value and a result number, return 1556 /// the input field number being accessed. 1557 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1558 1559 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1560 llvm::BasicBlock *GetIndirectGotoBlock(); 1561 1562 /// EmitNullInitialization - Generate code to set a value of the given type to 1563 /// null, If the type contains data member pointers, they will be initialized 1564 /// to -1 in accordance with the Itanium C++ ABI. 1565 void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty); 1566 1567 // EmitVAArg - Generate code to get an argument from the passed in pointer 1568 // and update it accordingly. The return value is a pointer to the argument. 1569 // FIXME: We should be able to get rid of this method and use the va_arg 1570 // instruction in LLVM instead once it works well enough. 1571 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty); 1572 1573 /// emitArrayLength - Compute the length of an array, even if it's a 1574 /// VLA, and drill down to the base element type. 1575 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1576 QualType &baseType, 1577 llvm::Value *&addr); 1578 1579 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1580 /// the given variably-modified type and store them in the VLASizeMap. 1581 /// 1582 /// This function can be called with a null (unreachable) insert point. 1583 void EmitVariablyModifiedType(QualType Ty); 1584 1585 /// getVLASize - Returns an LLVM value that corresponds to the size, 1586 /// in non-variably-sized elements, of a variable length array type, 1587 /// plus that largest non-variably-sized element type. Assumes that 1588 /// the type has already been emitted with EmitVariablyModifiedType. 1589 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1590 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1591 1592 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1593 /// generating code for an C++ member function. 1594 llvm::Value *LoadCXXThis() { 1595 assert(CXXThisValue && "no 'this' value for this function"); 1596 return CXXThisValue; 1597 } 1598 1599 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1600 /// virtual bases. 1601 llvm::Value *LoadCXXVTT() { 1602 assert(CXXVTTValue && "no VTT value for this function"); 1603 return CXXVTTValue; 1604 } 1605 1606 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1607 /// complete class to the given direct base. 1608 llvm::Value * 1609 GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value, 1610 const CXXRecordDecl *Derived, 1611 const CXXRecordDecl *Base, 1612 bool BaseIsVirtual); 1613 1614 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1615 /// load of 'this' and returns address of the base class. 1616 llvm::Value *GetAddressOfBaseClass(llvm::Value *Value, 1617 const CXXRecordDecl *Derived, 1618 CastExpr::path_const_iterator PathBegin, 1619 CastExpr::path_const_iterator PathEnd, 1620 bool NullCheckValue); 1621 1622 llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value, 1623 const CXXRecordDecl *Derived, 1624 CastExpr::path_const_iterator PathBegin, 1625 CastExpr::path_const_iterator PathEnd, 1626 bool NullCheckValue); 1627 1628 llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This, 1629 const CXXRecordDecl *ClassDecl, 1630 const CXXRecordDecl *BaseClassDecl); 1631 1632 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1633 CXXCtorType CtorType, 1634 const FunctionArgList &Args); 1635 // It's important not to confuse this and the previous function. Delegating 1636 // constructors are the C++0x feature. The constructor delegate optimization 1637 // is used to reduce duplication in the base and complete consturctors where 1638 // they are substantially the same. 1639 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1640 const FunctionArgList &Args); 1641 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1642 bool ForVirtualBase, llvm::Value *This, 1643 CallExpr::const_arg_iterator ArgBeg, 1644 CallExpr::const_arg_iterator ArgEnd); 1645 1646 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1647 llvm::Value *This, llvm::Value *Src, 1648 CallExpr::const_arg_iterator ArgBeg, 1649 CallExpr::const_arg_iterator ArgEnd); 1650 1651 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1652 const ConstantArrayType *ArrayTy, 1653 llvm::Value *ArrayPtr, 1654 CallExpr::const_arg_iterator ArgBeg, 1655 CallExpr::const_arg_iterator ArgEnd, 1656 bool ZeroInitialization = false); 1657 1658 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1659 llvm::Value *NumElements, 1660 llvm::Value *ArrayPtr, 1661 CallExpr::const_arg_iterator ArgBeg, 1662 CallExpr::const_arg_iterator ArgEnd, 1663 bool ZeroInitialization = false); 1664 1665 static Destroyer destroyCXXObject; 1666 1667 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1668 bool ForVirtualBase, llvm::Value *This); 1669 1670 void EmitNewArrayInitializer(const CXXNewExpr *E, llvm::Value *NewPtr, 1671 llvm::Value *NumElements); 1672 1673 void EmitCXXTemporary(const CXXTemporary *Temporary, llvm::Value *Ptr); 1674 1675 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1676 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1677 1678 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1679 QualType DeleteTy); 1680 1681 llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1682 llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE); 1683 1684 void EmitCheck(llvm::Value *, unsigned Size); 1685 1686 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1687 bool isInc, bool isPre); 1688 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1689 bool isInc, bool isPre); 1690 //===--------------------------------------------------------------------===// 1691 // Declaration Emission 1692 //===--------------------------------------------------------------------===// 1693 1694 /// EmitDecl - Emit a declaration. 1695 /// 1696 /// This function can be called with a null (unreachable) insert point. 1697 void EmitDecl(const Decl &D); 1698 1699 /// EmitVarDecl - Emit a local variable declaration. 1700 /// 1701 /// This function can be called with a null (unreachable) insert point. 1702 void EmitVarDecl(const VarDecl &D); 1703 1704 void EmitScalarInit(const Expr *init, const ValueDecl *D, 1705 LValue lvalue, bool capturedByInit); 1706 void EmitScalarInit(llvm::Value *init, LValue lvalue); 1707 1708 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1709 llvm::Value *Address); 1710 1711 /// EmitAutoVarDecl - Emit an auto variable declaration. 1712 /// 1713 /// This function can be called with a null (unreachable) insert point. 1714 void EmitAutoVarDecl(const VarDecl &D); 1715 1716 class AutoVarEmission { 1717 friend class CodeGenFunction; 1718 1719 const VarDecl *Variable; 1720 1721 /// The alignment of the variable. 1722 CharUnits Alignment; 1723 1724 /// The address of the alloca. Null if the variable was emitted 1725 /// as a global constant. 1726 llvm::Value *Address; 1727 1728 llvm::Value *NRVOFlag; 1729 1730 /// True if the variable is a __block variable. 1731 bool IsByRef; 1732 1733 /// True if the variable is of aggregate type and has a constant 1734 /// initializer. 1735 bool IsConstantAggregate; 1736 1737 struct Invalid {}; 1738 AutoVarEmission(Invalid) : Variable(0) {} 1739 1740 AutoVarEmission(const VarDecl &variable) 1741 : Variable(&variable), Address(0), NRVOFlag(0), 1742 IsByRef(false), IsConstantAggregate(false) {} 1743 1744 bool wasEmittedAsGlobal() const { return Address == 0; } 1745 1746 public: 1747 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 1748 1749 /// Returns the address of the object within this declaration. 1750 /// Note that this does not chase the forwarding pointer for 1751 /// __block decls. 1752 llvm::Value *getObjectAddress(CodeGenFunction &CGF) const { 1753 if (!IsByRef) return Address; 1754 1755 return CGF.Builder.CreateStructGEP(Address, 1756 CGF.getByRefValueLLVMField(Variable), 1757 Variable->getNameAsString()); 1758 } 1759 }; 1760 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 1761 void EmitAutoVarInit(const AutoVarEmission &emission); 1762 void EmitAutoVarCleanups(const AutoVarEmission &emission); 1763 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 1764 QualType::DestructionKind dtorKind); 1765 1766 void EmitStaticVarDecl(const VarDecl &D, 1767 llvm::GlobalValue::LinkageTypes Linkage); 1768 1769 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 1770 void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo); 1771 1772 /// protectFromPeepholes - Protect a value that we're intending to 1773 /// store to the side, but which will probably be used later, from 1774 /// aggressive peepholing optimizations that might delete it. 1775 /// 1776 /// Pass the result to unprotectFromPeepholes to declare that 1777 /// protection is no longer required. 1778 /// 1779 /// There's no particular reason why this shouldn't apply to 1780 /// l-values, it's just that no existing peepholes work on pointers. 1781 PeepholeProtection protectFromPeepholes(RValue rvalue); 1782 void unprotectFromPeepholes(PeepholeProtection protection); 1783 1784 //===--------------------------------------------------------------------===// 1785 // Statement Emission 1786 //===--------------------------------------------------------------------===// 1787 1788 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 1789 void EmitStopPoint(const Stmt *S); 1790 1791 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 1792 /// this function even if there is no current insertion point. 1793 /// 1794 /// This function may clear the current insertion point; callers should use 1795 /// EnsureInsertPoint if they wish to subsequently generate code without first 1796 /// calling EmitBlock, EmitBranch, or EmitStmt. 1797 void EmitStmt(const Stmt *S); 1798 1799 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 1800 /// necessarily require an insertion point or debug information; typically 1801 /// because the statement amounts to a jump or a container of other 1802 /// statements. 1803 /// 1804 /// \return True if the statement was handled. 1805 bool EmitSimpleStmt(const Stmt *S); 1806 1807 RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 1808 AggValueSlot AVS = AggValueSlot::ignored()); 1809 1810 /// EmitLabel - Emit the block for the given label. It is legal to call this 1811 /// function even if there is no current insertion point. 1812 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 1813 1814 void EmitLabelStmt(const LabelStmt &S); 1815 void EmitGotoStmt(const GotoStmt &S); 1816 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 1817 void EmitIfStmt(const IfStmt &S); 1818 void EmitWhileStmt(const WhileStmt &S); 1819 void EmitDoStmt(const DoStmt &S); 1820 void EmitForStmt(const ForStmt &S); 1821 void EmitReturnStmt(const ReturnStmt &S); 1822 void EmitDeclStmt(const DeclStmt &S); 1823 void EmitBreakStmt(const BreakStmt &S); 1824 void EmitContinueStmt(const ContinueStmt &S); 1825 void EmitSwitchStmt(const SwitchStmt &S); 1826 void EmitDefaultStmt(const DefaultStmt &S); 1827 void EmitCaseStmt(const CaseStmt &S); 1828 void EmitCaseStmtRange(const CaseStmt &S); 1829 void EmitAsmStmt(const AsmStmt &S); 1830 1831 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 1832 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 1833 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 1834 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 1835 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 1836 1837 llvm::Constant *getUnwindResumeFn(); 1838 llvm::Constant *getUnwindResumeOrRethrowFn(); 1839 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1840 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1841 1842 void EmitCXXTryStmt(const CXXTryStmt &S); 1843 void EmitCXXForRangeStmt(const CXXForRangeStmt &S); 1844 1845 //===--------------------------------------------------------------------===// 1846 // LValue Expression Emission 1847 //===--------------------------------------------------------------------===// 1848 1849 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 1850 RValue GetUndefRValue(QualType Ty); 1851 1852 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 1853 /// and issue an ErrorUnsupported style diagnostic (using the 1854 /// provided Name). 1855 RValue EmitUnsupportedRValue(const Expr *E, 1856 const char *Name); 1857 1858 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 1859 /// an ErrorUnsupported style diagnostic (using the provided Name). 1860 LValue EmitUnsupportedLValue(const Expr *E, 1861 const char *Name); 1862 1863 /// EmitLValue - Emit code to compute a designator that specifies the location 1864 /// of the expression. 1865 /// 1866 /// This can return one of two things: a simple address or a bitfield 1867 /// reference. In either case, the LLVM Value* in the LValue structure is 1868 /// guaranteed to be an LLVM pointer type. 1869 /// 1870 /// If this returns a bitfield reference, nothing about the pointee type of 1871 /// the LLVM value is known: For example, it may not be a pointer to an 1872 /// integer. 1873 /// 1874 /// If this returns a normal address, and if the lvalue's C type is fixed 1875 /// size, this method guarantees that the returned pointer type will point to 1876 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 1877 /// variable length type, this is not possible. 1878 /// 1879 LValue EmitLValue(const Expr *E); 1880 1881 /// EmitCheckedLValue - Same as EmitLValue but additionally we generate 1882 /// checking code to guard against undefined behavior. This is only 1883 /// suitable when we know that the address will be used to access the 1884 /// object. 1885 LValue EmitCheckedLValue(const Expr *E); 1886 1887 /// EmitToMemory - Change a scalar value from its value 1888 /// representation to its in-memory representation. 1889 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 1890 1891 /// EmitFromMemory - Change a scalar value from its memory 1892 /// representation to its value representation. 1893 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 1894 1895 /// EmitLoadOfScalar - Load a scalar value from an address, taking 1896 /// care to appropriately convert from the memory representation to 1897 /// the LLVM value representation. 1898 llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 1899 unsigned Alignment, QualType Ty, 1900 llvm::MDNode *TBAAInfo = 0); 1901 1902 /// EmitLoadOfScalar - Load a scalar value from an address, taking 1903 /// care to appropriately convert from the memory representation to 1904 /// the LLVM value representation. The l-value must be a simple 1905 /// l-value. 1906 llvm::Value *EmitLoadOfScalar(LValue lvalue); 1907 1908 /// EmitStoreOfScalar - Store a scalar value to an address, taking 1909 /// care to appropriately convert from the memory representation to 1910 /// the LLVM value representation. 1911 void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1912 bool Volatile, unsigned Alignment, QualType Ty, 1913 llvm::MDNode *TBAAInfo = 0); 1914 1915 /// EmitStoreOfScalar - Store a scalar value to an address, taking 1916 /// care to appropriately convert from the memory representation to 1917 /// the LLVM value representation. The l-value must be a simple 1918 /// l-value. 1919 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue); 1920 1921 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 1922 /// this method emits the address of the lvalue, then loads the result as an 1923 /// rvalue, returning the rvalue. 1924 RValue EmitLoadOfLValue(LValue V); 1925 RValue EmitLoadOfExtVectorElementLValue(LValue V); 1926 RValue EmitLoadOfBitfieldLValue(LValue LV); 1927 RValue EmitLoadOfPropertyRefLValue(LValue LV, 1928 ReturnValueSlot Return = ReturnValueSlot()); 1929 1930 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1931 /// lvalue, where both are guaranteed to the have the same type, and that type 1932 /// is 'Ty'. 1933 void EmitStoreThroughLValue(RValue Src, LValue Dst); 1934 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 1935 void EmitStoreThroughPropertyRefLValue(RValue Src, LValue Dst); 1936 1937 /// EmitStoreThroughLValue - Store Src into Dst with same constraints as 1938 /// EmitStoreThroughLValue. 1939 /// 1940 /// \param Result [out] - If non-null, this will be set to a Value* for the 1941 /// bit-field contents after the store, appropriate for use as the result of 1942 /// an assignment to the bit-field. 1943 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1944 llvm::Value **Result=0); 1945 1946 /// Emit an l-value for an assignment (simple or compound) of complex type. 1947 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 1948 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 1949 1950 // Note: only available for agg return types 1951 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 1952 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 1953 // Note: only available for agg return types 1954 LValue EmitCallExprLValue(const CallExpr *E); 1955 // Note: only available for agg return types 1956 LValue EmitVAArgExprLValue(const VAArgExpr *E); 1957 LValue EmitDeclRefLValue(const DeclRefExpr *E); 1958 LValue EmitStringLiteralLValue(const StringLiteral *E); 1959 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 1960 LValue EmitPredefinedLValue(const PredefinedExpr *E); 1961 LValue EmitUnaryOpLValue(const UnaryOperator *E); 1962 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E); 1963 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 1964 LValue EmitMemberExpr(const MemberExpr *E); 1965 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 1966 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 1967 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 1968 LValue EmitCastLValue(const CastExpr *E); 1969 LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E); 1970 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 1971 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 1972 1973 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 1974 const ObjCIvarDecl *Ivar); 1975 LValue EmitLValueForAnonRecordField(llvm::Value* Base, 1976 const IndirectFieldDecl* Field, 1977 unsigned CVRQualifiers); 1978 LValue EmitLValueForField(llvm::Value* Base, const FieldDecl* Field, 1979 unsigned CVRQualifiers); 1980 1981 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 1982 /// if the Field is a reference, this will return the address of the reference 1983 /// and not the address of the value stored in the reference. 1984 LValue EmitLValueForFieldInitialization(llvm::Value* Base, 1985 const FieldDecl* Field, 1986 unsigned CVRQualifiers); 1987 1988 LValue EmitLValueForIvar(QualType ObjectTy, 1989 llvm::Value* Base, const ObjCIvarDecl *Ivar, 1990 unsigned CVRQualifiers); 1991 1992 LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field, 1993 unsigned CVRQualifiers); 1994 1995 LValue EmitBlockDeclRefLValue(const BlockDeclRefExpr *E); 1996 1997 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 1998 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 1999 LValue EmitExprWithCleanupsLValue(const ExprWithCleanups *E); 2000 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2001 2002 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2003 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2004 LValue EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E); 2005 LValue EmitStmtExprLValue(const StmtExpr *E); 2006 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2007 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2008 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 2009 2010 //===--------------------------------------------------------------------===// 2011 // Scalar Expression Emission 2012 //===--------------------------------------------------------------------===// 2013 2014 /// EmitCall - Generate a call of the given function, expecting the given 2015 /// result type, and using the given argument list which specifies both the 2016 /// LLVM arguments and the types they were derived from. 2017 /// 2018 /// \param TargetDecl - If given, the decl of the function in a direct call; 2019 /// used to set attributes on the call (noreturn, etc.). 2020 RValue EmitCall(const CGFunctionInfo &FnInfo, 2021 llvm::Value *Callee, 2022 ReturnValueSlot ReturnValue, 2023 const CallArgList &Args, 2024 const Decl *TargetDecl = 0, 2025 llvm::Instruction **callOrInvoke = 0); 2026 2027 RValue EmitCall(QualType FnType, llvm::Value *Callee, 2028 ReturnValueSlot ReturnValue, 2029 CallExpr::const_arg_iterator ArgBeg, 2030 CallExpr::const_arg_iterator ArgEnd, 2031 const Decl *TargetDecl = 0); 2032 RValue EmitCallExpr(const CallExpr *E, 2033 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2034 2035 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2036 ArrayRef<llvm::Value *> Args, 2037 const Twine &Name = ""); 2038 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2039 const Twine &Name = ""); 2040 2041 llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This, 2042 llvm::Type *Ty); 2043 llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type, 2044 llvm::Value *This, llvm::Type *Ty); 2045 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2046 NestedNameSpecifier *Qual, 2047 llvm::Type *Ty); 2048 2049 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2050 CXXDtorType Type, 2051 const CXXRecordDecl *RD); 2052 2053 RValue EmitCXXMemberCall(const CXXMethodDecl *MD, 2054 llvm::Value *Callee, 2055 ReturnValueSlot ReturnValue, 2056 llvm::Value *This, 2057 llvm::Value *VTT, 2058 CallExpr::const_arg_iterator ArgBeg, 2059 CallExpr::const_arg_iterator ArgEnd); 2060 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2061 ReturnValueSlot ReturnValue); 2062 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2063 ReturnValueSlot ReturnValue); 2064 2065 llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E, 2066 const CXXMethodDecl *MD, 2067 llvm::Value *This); 2068 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2069 const CXXMethodDecl *MD, 2070 ReturnValueSlot ReturnValue); 2071 2072 2073 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2074 unsigned BuiltinID, const CallExpr *E); 2075 2076 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2077 2078 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2079 /// is unhandled by the current target. 2080 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2081 2082 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2083 llvm::Value *EmitNeonCall(llvm::Function *F, 2084 SmallVectorImpl<llvm::Value*> &O, 2085 const char *name, 2086 unsigned shift = 0, bool rightshift = false); 2087 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2088 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 2089 bool negateForRightShift); 2090 2091 llvm::Value *BuildVector(const SmallVectorImpl<llvm::Value*> &Ops); 2092 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2093 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2094 2095 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2096 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2097 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2098 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2099 ReturnValueSlot Return = ReturnValueSlot()); 2100 2101 /// Retrieves the default cleanup kind for an ARC cleanup. 2102 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 2103 CleanupKind getARCCleanupKind() { 2104 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 2105 ? NormalAndEHCleanup : NormalCleanup; 2106 } 2107 2108 // ARC primitives. 2109 void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr); 2110 void EmitARCDestroyWeak(llvm::Value *addr); 2111 llvm::Value *EmitARCLoadWeak(llvm::Value *addr); 2112 llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr); 2113 llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr, 2114 bool ignored); 2115 void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src); 2116 void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src); 2117 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 2118 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 2119 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 2120 bool ignored); 2121 llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value, 2122 bool ignored); 2123 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 2124 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 2125 llvm::Value *EmitARCRetainBlock(llvm::Value *value); 2126 void EmitARCRelease(llvm::Value *value, bool precise); 2127 llvm::Value *EmitARCAutorelease(llvm::Value *value); 2128 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 2129 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 2130 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 2131 2132 std::pair<LValue,llvm::Value*> 2133 EmitARCStoreAutoreleasing(const BinaryOperator *e); 2134 std::pair<LValue,llvm::Value*> 2135 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 2136 2137 llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr); 2138 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 2139 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 2140 2141 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 2142 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 2143 2144 static Destroyer destroyARCStrongImprecise; 2145 static Destroyer destroyARCStrongPrecise; 2146 static Destroyer destroyARCWeak; 2147 2148 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 2149 llvm::Value *EmitObjCAutoreleasePoolPush(); 2150 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 2151 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 2152 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 2153 2154 /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in 2155 /// expression. Will emit a temporary variable if E is not an LValue. 2156 RValue EmitReferenceBindingToExpr(const Expr* E, 2157 const NamedDecl *InitializedDecl); 2158 2159 //===--------------------------------------------------------------------===// 2160 // Expression Emission 2161 //===--------------------------------------------------------------------===// 2162 2163 // Expressions are broken into three classes: scalar, complex, aggregate. 2164 2165 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 2166 /// scalar type, returning the result. 2167 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 2168 2169 /// EmitScalarConversion - Emit a conversion from the specified type to the 2170 /// specified destination type, both of which are LLVM scalar types. 2171 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 2172 QualType DstTy); 2173 2174 /// EmitComplexToScalarConversion - Emit a conversion from the specified 2175 /// complex type to the specified destination type, where the destination type 2176 /// is an LLVM scalar type. 2177 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 2178 QualType DstTy); 2179 2180 2181 /// EmitAggExpr - Emit the computation of the specified expression 2182 /// of aggregate type. The result is computed into the given slot, 2183 /// which may be null to indicate that the value is not needed. 2184 void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false); 2185 2186 /// EmitAggExprToLValue - Emit the computation of the specified expression of 2187 /// aggregate type into a temporary LValue. 2188 LValue EmitAggExprToLValue(const Expr *E); 2189 2190 /// EmitGCMemmoveCollectable - Emit special API for structs with object 2191 /// pointers. 2192 void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr, 2193 QualType Ty); 2194 2195 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2196 /// make sure it survives garbage collection until this point. 2197 void EmitExtendGCLifetime(llvm::Value *object); 2198 2199 /// EmitComplexExpr - Emit the computation of the specified expression of 2200 /// complex type, returning the result. 2201 ComplexPairTy EmitComplexExpr(const Expr *E, 2202 bool IgnoreReal = false, 2203 bool IgnoreImag = false); 2204 2205 /// EmitComplexExprIntoAddr - Emit the computation of the specified expression 2206 /// of complex type, storing into the specified Value*. 2207 void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr, 2208 bool DestIsVolatile); 2209 2210 /// StoreComplexToAddr - Store a complex number into the specified address. 2211 void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr, 2212 bool DestIsVolatile); 2213 /// LoadComplexFromAddr - Load a complex number from the specified address. 2214 ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile); 2215 2216 /// CreateStaticVarDecl - Create a zero-initialized LLVM global for 2217 /// a static local variable. 2218 llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D, 2219 const char *Separator, 2220 llvm::GlobalValue::LinkageTypes Linkage); 2221 2222 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2223 /// global variable that has already been created for it. If the initializer 2224 /// has a different type than GV does, this may free GV and return a different 2225 /// one. Otherwise it just returns GV. 2226 llvm::GlobalVariable * 2227 AddInitializerToStaticVarDecl(const VarDecl &D, 2228 llvm::GlobalVariable *GV); 2229 2230 2231 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2232 /// variable with global storage. 2233 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr); 2234 2235 /// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr 2236 /// with the C++ runtime so that its destructor will be called at exit. 2237 void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn, 2238 llvm::Constant *DeclPtr); 2239 2240 /// Emit code in this function to perform a guarded variable 2241 /// initialization. Guarded initializations are used when it's not 2242 /// possible to prove that an initialization will be done exactly 2243 /// once, e.g. with a static local variable or a static data member 2244 /// of a class template. 2245 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr); 2246 2247 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2248 /// variables. 2249 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2250 llvm::Constant **Decls, 2251 unsigned NumDecls); 2252 2253 /// GenerateCXXGlobalDtorFunc - Generates code for destroying global 2254 /// variables. 2255 void GenerateCXXGlobalDtorFunc(llvm::Function *Fn, 2256 const std::vector<std::pair<llvm::WeakVH, 2257 llvm::Constant*> > &DtorsAndObjects); 2258 2259 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2260 const VarDecl *D, 2261 llvm::GlobalVariable *Addr); 2262 2263 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2264 2265 void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, 2266 const Expr *Exp); 2267 2268 RValue EmitExprWithCleanups(const ExprWithCleanups *E, 2269 AggValueSlot Slot =AggValueSlot::ignored()); 2270 2271 void EmitCXXThrowExpr(const CXXThrowExpr *E); 2272 2273 //===--------------------------------------------------------------------===// 2274 // Internal Helpers 2275 //===--------------------------------------------------------------------===// 2276 2277 /// ContainsLabel - Return true if the statement contains a label in it. If 2278 /// this statement is not executed normally, it not containing a label means 2279 /// that we can just remove the code. 2280 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 2281 2282 /// containsBreak - Return true if the statement contains a break out of it. 2283 /// If the statement (recursively) contains a switch or loop with a break 2284 /// inside of it, this is fine. 2285 static bool containsBreak(const Stmt *S); 2286 2287 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2288 /// to a constant, or if it does but contains a label, return false. If it 2289 /// constant folds return true and set the boolean result in Result. 2290 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 2291 2292 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2293 /// to a constant, or if it does but contains a label, return false. If it 2294 /// constant folds return true and set the folded value. 2295 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result); 2296 2297 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 2298 /// if statement) to the specified blocks. Based on the condition, this might 2299 /// try to simplify the codegen of the conditional based on the branch. 2300 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 2301 llvm::BasicBlock *FalseBlock); 2302 2303 /// getTrapBB - Create a basic block that will call the trap intrinsic. We'll 2304 /// generate a branch around the created basic block as necessary. 2305 llvm::BasicBlock *getTrapBB(); 2306 2307 /// EmitCallArg - Emit a single call argument. 2308 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 2309 2310 /// EmitDelegateCallArg - We are performing a delegate call; that 2311 /// is, the current function is delegating to another one. Produce 2312 /// a r-value suitable for passing the given parameter. 2313 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param); 2314 2315private: 2316 void EmitReturnOfRValue(RValue RV, QualType Ty); 2317 2318 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 2319 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 2320 /// 2321 /// \param AI - The first function argument of the expansion. 2322 /// \return The argument following the last expanded function 2323 /// argument. 2324 llvm::Function::arg_iterator 2325 ExpandTypeFromArgs(QualType Ty, LValue Dst, 2326 llvm::Function::arg_iterator AI); 2327 2328 /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg 2329 /// Ty, into individual arguments on the provided vector \arg Args. See 2330 /// ABIArgInfo::Expand. 2331 void ExpandTypeToArgs(QualType Ty, RValue Src, 2332 SmallVector<llvm::Value*, 16> &Args, 2333 llvm::FunctionType *IRFuncTy); 2334 2335 llvm::Value* EmitAsmInput(const AsmStmt &S, 2336 const TargetInfo::ConstraintInfo &Info, 2337 const Expr *InputExpr, std::string &ConstraintStr); 2338 2339 llvm::Value* EmitAsmInputLValue(const AsmStmt &S, 2340 const TargetInfo::ConstraintInfo &Info, 2341 LValue InputValue, QualType InputType, 2342 std::string &ConstraintStr); 2343 2344 /// EmitCallArgs - Emit call arguments for a function. 2345 /// The CallArgTypeInfo parameter is used for iterating over the known 2346 /// argument types of the function being called. 2347 template<typename T> 2348 void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo, 2349 CallExpr::const_arg_iterator ArgBeg, 2350 CallExpr::const_arg_iterator ArgEnd) { 2351 CallExpr::const_arg_iterator Arg = ArgBeg; 2352 2353 // First, use the argument types that the type info knows about 2354 if (CallArgTypeInfo) { 2355 for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(), 2356 E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) { 2357 assert(Arg != ArgEnd && "Running over edge of argument list!"); 2358 QualType ArgType = *I; 2359#ifndef NDEBUG 2360 QualType ActualArgType = Arg->getType(); 2361 if (ArgType->isPointerType() && ActualArgType->isPointerType()) { 2362 QualType ActualBaseType = 2363 ActualArgType->getAs<PointerType>()->getPointeeType(); 2364 QualType ArgBaseType = 2365 ArgType->getAs<PointerType>()->getPointeeType(); 2366 if (ArgBaseType->isVariableArrayType()) { 2367 if (const VariableArrayType *VAT = 2368 getContext().getAsVariableArrayType(ActualBaseType)) { 2369 if (!VAT->getSizeExpr()) 2370 ActualArgType = ArgType; 2371 } 2372 } 2373 } 2374 assert(getContext().getCanonicalType(ArgType.getNonReferenceType()). 2375 getTypePtr() == 2376 getContext().getCanonicalType(ActualArgType).getTypePtr() && 2377 "type mismatch in call argument!"); 2378#endif 2379 EmitCallArg(Args, *Arg, ArgType); 2380 } 2381 2382 // Either we've emitted all the call args, or we have a call to a 2383 // variadic function. 2384 assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) && 2385 "Extra arguments in non-variadic function!"); 2386 2387 } 2388 2389 // If we still have any arguments, emit them using the type of the argument. 2390 for (; Arg != ArgEnd; ++Arg) 2391 EmitCallArg(Args, *Arg, Arg->getType()); 2392 } 2393 2394 const TargetCodeGenInfo &getTargetHooks() const { 2395 return CGM.getTargetCodeGenInfo(); 2396 } 2397 2398 void EmitDeclMetadata(); 2399 2400 CodeGenModule::ByrefHelpers * 2401 buildByrefHelpers(llvm::StructType &byrefType, 2402 const AutoVarEmission &emission); 2403}; 2404 2405/// Helper class with most of the code for saving a value for a 2406/// conditional expression cleanup. 2407struct DominatingLLVMValue { 2408 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 2409 2410 /// Answer whether the given value needs extra work to be saved. 2411 static bool needsSaving(llvm::Value *value) { 2412 // If it's not an instruction, we don't need to save. 2413 if (!isa<llvm::Instruction>(value)) return false; 2414 2415 // If it's an instruction in the entry block, we don't need to save. 2416 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 2417 return (block != &block->getParent()->getEntryBlock()); 2418 } 2419 2420 /// Try to save the given value. 2421 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 2422 if (!needsSaving(value)) return saved_type(value, false); 2423 2424 // Otherwise we need an alloca. 2425 llvm::Value *alloca = 2426 CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save"); 2427 CGF.Builder.CreateStore(value, alloca); 2428 2429 return saved_type(alloca, true); 2430 } 2431 2432 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 2433 if (!value.getInt()) return value.getPointer(); 2434 return CGF.Builder.CreateLoad(value.getPointer()); 2435 } 2436}; 2437 2438/// A partial specialization of DominatingValue for llvm::Values that 2439/// might be llvm::Instructions. 2440template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 2441 typedef T *type; 2442 static type restore(CodeGenFunction &CGF, saved_type value) { 2443 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 2444 } 2445}; 2446 2447/// A specialization of DominatingValue for RValue. 2448template <> struct DominatingValue<RValue> { 2449 typedef RValue type; 2450 class saved_type { 2451 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 2452 AggregateAddress, ComplexAddress }; 2453 2454 llvm::Value *Value; 2455 Kind K; 2456 saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {} 2457 2458 public: 2459 static bool needsSaving(RValue value); 2460 static saved_type save(CodeGenFunction &CGF, RValue value); 2461 RValue restore(CodeGenFunction &CGF); 2462 2463 // implementations in CGExprCXX.cpp 2464 }; 2465 2466 static bool needsSaving(type value) { 2467 return saved_type::needsSaving(value); 2468 } 2469 static saved_type save(CodeGenFunction &CGF, type value) { 2470 return saved_type::save(CGF, value); 2471 } 2472 static type restore(CodeGenFunction &CGF, saved_type value) { 2473 return value.restore(CGF); 2474 } 2475}; 2476 2477} // end namespace CodeGen 2478} // end namespace clang 2479 2480#endif 2481