CodeGenFunction.h revision 811bf3669f4d82c57fe3cd3c49050fdbc95d0aff
1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the internal per-function state used for llvm translation.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15#define CLANG_CODEGEN_CODEGENFUNCTION_H
16
17#include "clang/AST/Type.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/Frontend/CodeGenOptions.h"
22#include "clang/Basic/ABI.h"
23#include "clang/Basic/TargetInfo.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/Support/ValueHandle.h"
27#include "CodeGenModule.h"
28#include "CGBuilder.h"
29#include "CGValue.h"
30
31namespace llvm {
32  class BasicBlock;
33  class LLVMContext;
34  class MDNode;
35  class Module;
36  class SwitchInst;
37  class Twine;
38  class Value;
39  class CallSite;
40}
41
42namespace clang {
43  class APValue;
44  class ASTContext;
45  class CXXDestructorDecl;
46  class CXXForRangeStmt;
47  class CXXTryStmt;
48  class Decl;
49  class LabelDecl;
50  class EnumConstantDecl;
51  class FunctionDecl;
52  class FunctionProtoType;
53  class LabelStmt;
54  class ObjCContainerDecl;
55  class ObjCInterfaceDecl;
56  class ObjCIvarDecl;
57  class ObjCMethodDecl;
58  class ObjCImplementationDecl;
59  class ObjCPropertyImplDecl;
60  class TargetInfo;
61  class TargetCodeGenInfo;
62  class VarDecl;
63  class ObjCForCollectionStmt;
64  class ObjCAtTryStmt;
65  class ObjCAtThrowStmt;
66  class ObjCAtSynchronizedStmt;
67  class ObjCAutoreleasePoolStmt;
68
69namespace CodeGen {
70  class CodeGenTypes;
71  class CGDebugInfo;
72  class CGFunctionInfo;
73  class CGRecordLayout;
74  class CGBlockInfo;
75  class CGCXXABI;
76  class BlockFlags;
77  class BlockFieldFlags;
78
79/// A branch fixup.  These are required when emitting a goto to a
80/// label which hasn't been emitted yet.  The goto is optimistically
81/// emitted as a branch to the basic block for the label, and (if it
82/// occurs in a scope with non-trivial cleanups) a fixup is added to
83/// the innermost cleanup.  When a (normal) cleanup is popped, any
84/// unresolved fixups in that scope are threaded through the cleanup.
85struct BranchFixup {
86  /// The block containing the terminator which needs to be modified
87  /// into a switch if this fixup is resolved into the current scope.
88  /// If null, LatestBranch points directly to the destination.
89  llvm::BasicBlock *OptimisticBranchBlock;
90
91  /// The ultimate destination of the branch.
92  ///
93  /// This can be set to null to indicate that this fixup was
94  /// successfully resolved.
95  llvm::BasicBlock *Destination;
96
97  /// The destination index value.
98  unsigned DestinationIndex;
99
100  /// The initial branch of the fixup.
101  llvm::BranchInst *InitialBranch;
102};
103
104template <class T> struct InvariantValue {
105  typedef T type;
106  typedef T saved_type;
107  static bool needsSaving(type value) { return false; }
108  static saved_type save(CodeGenFunction &CGF, type value) { return value; }
109  static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
110};
111
112/// A metaprogramming class for ensuring that a value will dominate an
113/// arbitrary position in a function.
114template <class T> struct DominatingValue : InvariantValue<T> {};
115
116template <class T, bool mightBeInstruction =
117            llvm::is_base_of<llvm::Value, T>::value &&
118            !llvm::is_base_of<llvm::Constant, T>::value &&
119            !llvm::is_base_of<llvm::BasicBlock, T>::value>
120struct DominatingPointer;
121template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
122// template <class T> struct DominatingPointer<T,true> at end of file
123
124template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
125
126enum CleanupKind {
127  EHCleanup = 0x1,
128  NormalCleanup = 0x2,
129  NormalAndEHCleanup = EHCleanup | NormalCleanup,
130
131  InactiveCleanup = 0x4,
132  InactiveEHCleanup = EHCleanup | InactiveCleanup,
133  InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
134  InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
135};
136
137/// A stack of scopes which respond to exceptions, including cleanups
138/// and catch blocks.
139class EHScopeStack {
140public:
141  /// A saved depth on the scope stack.  This is necessary because
142  /// pushing scopes onto the stack invalidates iterators.
143  class stable_iterator {
144    friend class EHScopeStack;
145
146    /// Offset from StartOfData to EndOfBuffer.
147    ptrdiff_t Size;
148
149    stable_iterator(ptrdiff_t Size) : Size(Size) {}
150
151  public:
152    static stable_iterator invalid() { return stable_iterator(-1); }
153    stable_iterator() : Size(-1) {}
154
155    bool isValid() const { return Size >= 0; }
156
157    /// Returns true if this scope encloses I.
158    /// Returns false if I is invalid.
159    /// This scope must be valid.
160    bool encloses(stable_iterator I) const { return Size <= I.Size; }
161
162    /// Returns true if this scope strictly encloses I: that is,
163    /// if it encloses I and is not I.
164    /// Returns false is I is invalid.
165    /// This scope must be valid.
166    bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
167
168    friend bool operator==(stable_iterator A, stable_iterator B) {
169      return A.Size == B.Size;
170    }
171    friend bool operator!=(stable_iterator A, stable_iterator B) {
172      return A.Size != B.Size;
173    }
174  };
175
176  /// Information for lazily generating a cleanup.  Subclasses must be
177  /// POD-like: cleanups will not be destructed, and they will be
178  /// allocated on the cleanup stack and freely copied and moved
179  /// around.
180  ///
181  /// Cleanup implementations should generally be declared in an
182  /// anonymous namespace.
183  class Cleanup {
184    // Anchor the construction vtable.
185    virtual void anchor();
186  public:
187    // Provide a virtual destructor to suppress a very common warning
188    // that unfortunately cannot be suppressed without this.  Cleanups
189    // should not rely on this destructor ever being called.
190    virtual ~Cleanup() {}
191
192    /// Emit the cleanup.  For normal cleanups, this is run in the
193    /// same EH context as when the cleanup was pushed, i.e. the
194    /// immediately-enclosing context of the cleanup scope.  For
195    /// EH cleanups, this is run in a terminate context.
196    ///
197    // \param IsForEHCleanup true if this is for an EH cleanup, false
198    ///  if for a normal cleanup.
199    virtual void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) = 0;
200  };
201
202  /// ConditionalCleanupN stores the saved form of its N parameters,
203  /// then restores them and performs the cleanup.
204  template <class T, class A0>
205  class ConditionalCleanup1 : public Cleanup {
206    typedef typename DominatingValue<A0>::saved_type A0_saved;
207    A0_saved a0_saved;
208
209    void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
210      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
211      T(a0).Emit(CGF, IsForEHCleanup);
212    }
213
214  public:
215    ConditionalCleanup1(A0_saved a0)
216      : a0_saved(a0) {}
217  };
218
219  template <class T, class A0, class A1>
220  class ConditionalCleanup2 : public Cleanup {
221    typedef typename DominatingValue<A0>::saved_type A0_saved;
222    typedef typename DominatingValue<A1>::saved_type A1_saved;
223    A0_saved a0_saved;
224    A1_saved a1_saved;
225
226    void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
227      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
228      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
229      T(a0, a1).Emit(CGF, IsForEHCleanup);
230    }
231
232  public:
233    ConditionalCleanup2(A0_saved a0, A1_saved a1)
234      : a0_saved(a0), a1_saved(a1) {}
235  };
236
237  template <class T, class A0, class A1, class A2>
238  class ConditionalCleanup3 : public Cleanup {
239    typedef typename DominatingValue<A0>::saved_type A0_saved;
240    typedef typename DominatingValue<A1>::saved_type A1_saved;
241    typedef typename DominatingValue<A2>::saved_type A2_saved;
242    A0_saved a0_saved;
243    A1_saved a1_saved;
244    A2_saved a2_saved;
245
246    void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
247      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
248      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
249      A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
250      T(a0, a1, a2).Emit(CGF, IsForEHCleanup);
251    }
252
253  public:
254    ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2)
255      : a0_saved(a0), a1_saved(a1), a2_saved(a2) {}
256  };
257
258private:
259  // The implementation for this class is in CGException.h and
260  // CGException.cpp; the definition is here because it's used as a
261  // member of CodeGenFunction.
262
263  /// The start of the scope-stack buffer, i.e. the allocated pointer
264  /// for the buffer.  All of these pointers are either simultaneously
265  /// null or simultaneously valid.
266  char *StartOfBuffer;
267
268  /// The end of the buffer.
269  char *EndOfBuffer;
270
271  /// The first valid entry in the buffer.
272  char *StartOfData;
273
274  /// The innermost normal cleanup on the stack.
275  stable_iterator InnermostNormalCleanup;
276
277  /// The innermost EH cleanup on the stack.
278  stable_iterator InnermostEHCleanup;
279
280  /// The number of catches on the stack.
281  unsigned CatchDepth;
282
283  /// The current EH destination index.  Reset to FirstCatchIndex
284  /// whenever the last EH cleanup is popped.
285  unsigned NextEHDestIndex;
286  enum { FirstEHDestIndex = 1 };
287
288  /// The current set of branch fixups.  A branch fixup is a jump to
289  /// an as-yet unemitted label, i.e. a label for which we don't yet
290  /// know the EH stack depth.  Whenever we pop a cleanup, we have
291  /// to thread all the current branch fixups through it.
292  ///
293  /// Fixups are recorded as the Use of the respective branch or
294  /// switch statement.  The use points to the final destination.
295  /// When popping out of a cleanup, these uses are threaded through
296  /// the cleanup and adjusted to point to the new cleanup.
297  ///
298  /// Note that branches are allowed to jump into protected scopes
299  /// in certain situations;  e.g. the following code is legal:
300  ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
301  ///     goto foo;
302  ///     A a;
303  ///    foo:
304  ///     bar();
305  llvm::SmallVector<BranchFixup, 8> BranchFixups;
306
307  char *allocate(size_t Size);
308
309  void *pushCleanup(CleanupKind K, size_t DataSize);
310
311public:
312  EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
313                   InnermostNormalCleanup(stable_end()),
314                   InnermostEHCleanup(stable_end()),
315                   CatchDepth(0), NextEHDestIndex(FirstEHDestIndex) {}
316  ~EHScopeStack() { delete[] StartOfBuffer; }
317
318  // Variadic templates would make this not terrible.
319
320  /// Push a lazily-created cleanup on the stack.
321  template <class T>
322  void pushCleanup(CleanupKind Kind) {
323    void *Buffer = pushCleanup(Kind, sizeof(T));
324    Cleanup *Obj = new(Buffer) T();
325    (void) Obj;
326  }
327
328  /// Push a lazily-created cleanup on the stack.
329  template <class T, class A0>
330  void pushCleanup(CleanupKind Kind, A0 a0) {
331    void *Buffer = pushCleanup(Kind, sizeof(T));
332    Cleanup *Obj = new(Buffer) T(a0);
333    (void) Obj;
334  }
335
336  /// Push a lazily-created cleanup on the stack.
337  template <class T, class A0, class A1>
338  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
339    void *Buffer = pushCleanup(Kind, sizeof(T));
340    Cleanup *Obj = new(Buffer) T(a0, a1);
341    (void) Obj;
342  }
343
344  /// Push a lazily-created cleanup on the stack.
345  template <class T, class A0, class A1, class A2>
346  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
347    void *Buffer = pushCleanup(Kind, sizeof(T));
348    Cleanup *Obj = new(Buffer) T(a0, a1, a2);
349    (void) Obj;
350  }
351
352  /// Push a lazily-created cleanup on the stack.
353  template <class T, class A0, class A1, class A2, class A3>
354  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
355    void *Buffer = pushCleanup(Kind, sizeof(T));
356    Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
357    (void) Obj;
358  }
359
360  /// Push a lazily-created cleanup on the stack.
361  template <class T, class A0, class A1, class A2, class A3, class A4>
362  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
363    void *Buffer = pushCleanup(Kind, sizeof(T));
364    Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
365    (void) Obj;
366  }
367
368  // Feel free to add more variants of the following:
369
370  /// Push a cleanup with non-constant storage requirements on the
371  /// stack.  The cleanup type must provide an additional static method:
372  ///   static size_t getExtraSize(size_t);
373  /// The argument to this method will be the value N, which will also
374  /// be passed as the first argument to the constructor.
375  ///
376  /// The data stored in the extra storage must obey the same
377  /// restrictions as normal cleanup member data.
378  ///
379  /// The pointer returned from this method is valid until the cleanup
380  /// stack is modified.
381  template <class T, class A0, class A1, class A2>
382  T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
383    void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
384    return new (Buffer) T(N, a0, a1, a2);
385  }
386
387  /// Pops a cleanup scope off the stack.  This should only be called
388  /// by CodeGenFunction::PopCleanupBlock.
389  void popCleanup();
390
391  /// Push a set of catch handlers on the stack.  The catch is
392  /// uninitialized and will need to have the given number of handlers
393  /// set on it.
394  class EHCatchScope *pushCatch(unsigned NumHandlers);
395
396  /// Pops a catch scope off the stack.
397  void popCatch();
398
399  /// Push an exceptions filter on the stack.
400  class EHFilterScope *pushFilter(unsigned NumFilters);
401
402  /// Pops an exceptions filter off the stack.
403  void popFilter();
404
405  /// Push a terminate handler on the stack.
406  void pushTerminate();
407
408  /// Pops a terminate handler off the stack.
409  void popTerminate();
410
411  /// Determines whether the exception-scopes stack is empty.
412  bool empty() const { return StartOfData == EndOfBuffer; }
413
414  bool requiresLandingPad() const {
415    return (CatchDepth || hasEHCleanups());
416  }
417
418  /// Determines whether there are any normal cleanups on the stack.
419  bool hasNormalCleanups() const {
420    return InnermostNormalCleanup != stable_end();
421  }
422
423  /// Returns the innermost normal cleanup on the stack, or
424  /// stable_end() if there are no normal cleanups.
425  stable_iterator getInnermostNormalCleanup() const {
426    return InnermostNormalCleanup;
427  }
428  stable_iterator getInnermostActiveNormalCleanup() const; // CGException.h
429
430  /// Determines whether there are any EH cleanups on the stack.
431  bool hasEHCleanups() const {
432    return InnermostEHCleanup != stable_end();
433  }
434
435  /// Returns the innermost EH cleanup on the stack, or stable_end()
436  /// if there are no EH cleanups.
437  stable_iterator getInnermostEHCleanup() const {
438    return InnermostEHCleanup;
439  }
440  stable_iterator getInnermostActiveEHCleanup() const; // CGException.h
441
442  /// An unstable reference to a scope-stack depth.  Invalidated by
443  /// pushes but not pops.
444  class iterator;
445
446  /// Returns an iterator pointing to the innermost EH scope.
447  iterator begin() const;
448
449  /// Returns an iterator pointing to the outermost EH scope.
450  iterator end() const;
451
452  /// Create a stable reference to the top of the EH stack.  The
453  /// returned reference is valid until that scope is popped off the
454  /// stack.
455  stable_iterator stable_begin() const {
456    return stable_iterator(EndOfBuffer - StartOfData);
457  }
458
459  /// Create a stable reference to the bottom of the EH stack.
460  static stable_iterator stable_end() {
461    return stable_iterator(0);
462  }
463
464  /// Translates an iterator into a stable_iterator.
465  stable_iterator stabilize(iterator it) const;
466
467  /// Finds the nearest cleanup enclosing the given iterator.
468  /// Returns stable_iterator::invalid() if there are no such cleanups.
469  stable_iterator getEnclosingEHCleanup(iterator it) const;
470
471  /// Turn a stable reference to a scope depth into a unstable pointer
472  /// to the EH stack.
473  iterator find(stable_iterator save) const;
474
475  /// Removes the cleanup pointed to by the given stable_iterator.
476  void removeCleanup(stable_iterator save);
477
478  /// Add a branch fixup to the current cleanup scope.
479  BranchFixup &addBranchFixup() {
480    assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
481    BranchFixups.push_back(BranchFixup());
482    return BranchFixups.back();
483  }
484
485  unsigned getNumBranchFixups() const { return BranchFixups.size(); }
486  BranchFixup &getBranchFixup(unsigned I) {
487    assert(I < getNumBranchFixups());
488    return BranchFixups[I];
489  }
490
491  /// Pops lazily-removed fixups from the end of the list.  This
492  /// should only be called by procedures which have just popped a
493  /// cleanup or resolved one or more fixups.
494  void popNullFixups();
495
496  /// Clears the branch-fixups list.  This should only be called by
497  /// ResolveAllBranchFixups.
498  void clearFixups() { BranchFixups.clear(); }
499
500  /// Gets the next EH destination index.
501  unsigned getNextEHDestIndex() { return NextEHDestIndex++; }
502};
503
504/// CodeGenFunction - This class organizes the per-function state that is used
505/// while generating LLVM code.
506class CodeGenFunction : public CodeGenTypeCache {
507  CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT
508  void operator=(const CodeGenFunction&);  // DO NOT IMPLEMENT
509
510  friend class CGCXXABI;
511public:
512  /// A jump destination is an abstract label, branching to which may
513  /// require a jump out through normal cleanups.
514  struct JumpDest {
515    JumpDest() : Block(0), ScopeDepth(), Index(0) {}
516    JumpDest(llvm::BasicBlock *Block,
517             EHScopeStack::stable_iterator Depth,
518             unsigned Index)
519      : Block(Block), ScopeDepth(Depth), Index(Index) {}
520
521    bool isValid() const { return Block != 0; }
522    llvm::BasicBlock *getBlock() const { return Block; }
523    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
524    unsigned getDestIndex() const { return Index; }
525
526  private:
527    llvm::BasicBlock *Block;
528    EHScopeStack::stable_iterator ScopeDepth;
529    unsigned Index;
530  };
531
532  /// An unwind destination is an abstract label, branching to which
533  /// may require a jump out through EH cleanups.
534  struct UnwindDest {
535    UnwindDest() : Block(0), ScopeDepth(), Index(0) {}
536    UnwindDest(llvm::BasicBlock *Block,
537               EHScopeStack::stable_iterator Depth,
538               unsigned Index)
539      : Block(Block), ScopeDepth(Depth), Index(Index) {}
540
541    bool isValid() const { return Block != 0; }
542    llvm::BasicBlock *getBlock() const { return Block; }
543    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
544    unsigned getDestIndex() const { return Index; }
545
546  private:
547    llvm::BasicBlock *Block;
548    EHScopeStack::stable_iterator ScopeDepth;
549    unsigned Index;
550  };
551
552  CodeGenModule &CGM;  // Per-module state.
553  const TargetInfo &Target;
554
555  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
556  CGBuilderTy Builder;
557
558  /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
559  /// This excludes BlockDecls.
560  const Decl *CurFuncDecl;
561  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
562  const Decl *CurCodeDecl;
563  const CGFunctionInfo *CurFnInfo;
564  QualType FnRetTy;
565  llvm::Function *CurFn;
566
567  /// CurGD - The GlobalDecl for the current function being compiled.
568  GlobalDecl CurGD;
569
570  /// PrologueCleanupDepth - The cleanup depth enclosing all the
571  /// cleanups associated with the parameters.
572  EHScopeStack::stable_iterator PrologueCleanupDepth;
573
574  /// ReturnBlock - Unified return block.
575  JumpDest ReturnBlock;
576
577  /// ReturnValue - The temporary alloca to hold the return value. This is null
578  /// iff the function has no return value.
579  llvm::Value *ReturnValue;
580
581  /// RethrowBlock - Unified rethrow block.
582  UnwindDest RethrowBlock;
583
584  /// AllocaInsertPoint - This is an instruction in the entry block before which
585  /// we prefer to insert allocas.
586  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
587
588  bool CatchUndefined;
589
590  /// In ARC, whether we should autorelease the return value.
591  bool AutoreleaseResult;
592
593  const CodeGen::CGBlockInfo *BlockInfo;
594  llvm::Value *BlockPointer;
595
596  /// \brief A mapping from NRVO variables to the flags used to indicate
597  /// when the NRVO has been applied to this variable.
598  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
599
600  EHScopeStack EHStack;
601
602  /// i32s containing the indexes of the cleanup destinations.
603  llvm::AllocaInst *NormalCleanupDest;
604  llvm::AllocaInst *EHCleanupDest;
605
606  unsigned NextCleanupDestIndex;
607
608  /// The exception slot.  All landing pads write the current
609  /// exception pointer into this alloca.
610  llvm::Value *ExceptionSlot;
611
612  /// The selector slot.  Under the MandatoryCleanup model, all
613  /// landing pads write the current selector value into this alloca.
614  llvm::AllocaInst *EHSelectorSlot;
615
616  /// Emits a landing pad for the current EH stack.
617  llvm::BasicBlock *EmitLandingPad();
618
619  llvm::BasicBlock *getInvokeDestImpl();
620
621  /// Set up the last cleaup that was pushed as a conditional
622  /// full-expression cleanup.
623  void initFullExprCleanup();
624
625  template <class T>
626  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
627    return DominatingValue<T>::save(*this, value);
628  }
629
630public:
631  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
632  /// rethrows.
633  llvm::SmallVector<llvm::Value*, 8> ObjCEHValueStack;
634
635  /// A class controlling the emission of a finally block.
636  class FinallyInfo {
637    /// Where the catchall's edge through the cleanup should go.
638    JumpDest RethrowDest;
639
640    /// A function to call to enter the catch.
641    llvm::Constant *BeginCatchFn;
642
643    /// An i1 variable indicating whether or not the @finally is
644    /// running for an exception.
645    llvm::AllocaInst *ForEHVar;
646
647    /// An i8* variable into which the exception pointer to rethrow
648    /// has been saved.
649    llvm::AllocaInst *SavedExnVar;
650
651  public:
652    void enter(CodeGenFunction &CGF, const Stmt *Finally,
653               llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
654               llvm::Constant *rethrowFn);
655    void exit(CodeGenFunction &CGF);
656  };
657
658  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
659  /// current full-expression.  Safe against the possibility that
660  /// we're currently inside a conditionally-evaluated expression.
661  template <class T, class A0>
662  void pushFullExprCleanup(CleanupKind kind, A0 a0) {
663    // If we're not in a conditional branch, or if none of the
664    // arguments requires saving, then use the unconditional cleanup.
665    if (!isInConditionalBranch())
666      return EHStack.pushCleanup<T>(kind, a0);
667
668    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
669
670    typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
671    EHStack.pushCleanup<CleanupType>(kind, a0_saved);
672    initFullExprCleanup();
673  }
674
675  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
676  /// current full-expression.  Safe against the possibility that
677  /// we're currently inside a conditionally-evaluated expression.
678  template <class T, class A0, class A1>
679  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
680    // If we're not in a conditional branch, or if none of the
681    // arguments requires saving, then use the unconditional cleanup.
682    if (!isInConditionalBranch())
683      return EHStack.pushCleanup<T>(kind, a0, a1);
684
685    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
686    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
687
688    typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
689    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
690    initFullExprCleanup();
691  }
692
693  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
694  /// current full-expression.  Safe against the possibility that
695  /// we're currently inside a conditionally-evaluated expression.
696  template <class T, class A0, class A1, class A2>
697  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
698    // If we're not in a conditional branch, or if none of the
699    // arguments requires saving, then use the unconditional cleanup.
700    if (!isInConditionalBranch()) {
701      return EHStack.pushCleanup<T>(kind, a0, a1, a2);
702    }
703
704    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
705    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
706    typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
707
708    typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
709    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
710    initFullExprCleanup();
711  }
712
713  /// PushDestructorCleanup - Push a cleanup to call the
714  /// complete-object destructor of an object of the given type at the
715  /// given address.  Does nothing if T is not a C++ class type with a
716  /// non-trivial destructor.
717  void PushDestructorCleanup(QualType T, llvm::Value *Addr);
718
719  /// PushDestructorCleanup - Push a cleanup to call the
720  /// complete-object variant of the given destructor on the object at
721  /// the given address.
722  void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
723                             llvm::Value *Addr);
724
725  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
726  /// process all branch fixups.
727  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
728
729  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
730  /// The block cannot be reactivated.  Pops it if it's the top of the
731  /// stack.
732  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup);
733
734  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
735  /// Cannot be used to resurrect a deactivated cleanup.
736  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup);
737
738  /// \brief Enters a new scope for capturing cleanups, all of which
739  /// will be executed once the scope is exited.
740  class RunCleanupsScope {
741    CodeGenFunction& CGF;
742    EHScopeStack::stable_iterator CleanupStackDepth;
743    bool OldDidCallStackSave;
744    bool PerformCleanup;
745
746    RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT
747    RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT
748
749  public:
750    /// \brief Enter a new cleanup scope.
751    explicit RunCleanupsScope(CodeGenFunction &CGF)
752      : CGF(CGF), PerformCleanup(true)
753    {
754      CleanupStackDepth = CGF.EHStack.stable_begin();
755      OldDidCallStackSave = CGF.DidCallStackSave;
756      CGF.DidCallStackSave = false;
757    }
758
759    /// \brief Exit this cleanup scope, emitting any accumulated
760    /// cleanups.
761    ~RunCleanupsScope() {
762      if (PerformCleanup) {
763        CGF.DidCallStackSave = OldDidCallStackSave;
764        CGF.PopCleanupBlocks(CleanupStackDepth);
765      }
766    }
767
768    /// \brief Determine whether this scope requires any cleanups.
769    bool requiresCleanups() const {
770      return CGF.EHStack.stable_begin() != CleanupStackDepth;
771    }
772
773    /// \brief Force the emission of cleanups now, instead of waiting
774    /// until this object is destroyed.
775    void ForceCleanup() {
776      assert(PerformCleanup && "Already forced cleanup");
777      CGF.DidCallStackSave = OldDidCallStackSave;
778      CGF.PopCleanupBlocks(CleanupStackDepth);
779      PerformCleanup = false;
780    }
781  };
782
783
784  /// PopCleanupBlocks - Takes the old cleanup stack size and emits
785  /// the cleanup blocks that have been added.
786  void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
787
788  void ResolveBranchFixups(llvm::BasicBlock *Target);
789
790  /// The given basic block lies in the current EH scope, but may be a
791  /// target of a potentially scope-crossing jump; get a stable handle
792  /// to which we can perform this jump later.
793  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
794    return JumpDest(Target,
795                    EHStack.getInnermostNormalCleanup(),
796                    NextCleanupDestIndex++);
797  }
798
799  /// The given basic block lies in the current EH scope, but may be a
800  /// target of a potentially scope-crossing jump; get a stable handle
801  /// to which we can perform this jump later.
802  JumpDest getJumpDestInCurrentScope(llvm::StringRef Name = llvm::StringRef()) {
803    return getJumpDestInCurrentScope(createBasicBlock(Name));
804  }
805
806  /// EmitBranchThroughCleanup - Emit a branch from the current insert
807  /// block through the normal cleanup handling code (if any) and then
808  /// on to \arg Dest.
809  void EmitBranchThroughCleanup(JumpDest Dest);
810
811  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
812  /// specified destination obviously has no cleanups to run.  'false' is always
813  /// a conservatively correct answer for this method.
814  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
815
816  /// EmitBranchThroughEHCleanup - Emit a branch from the current
817  /// insert block through the EH cleanup handling code (if any) and
818  /// then on to \arg Dest.
819  void EmitBranchThroughEHCleanup(UnwindDest Dest);
820
821  /// getRethrowDest - Returns the unified outermost-scope rethrow
822  /// destination.
823  UnwindDest getRethrowDest();
824
825  /// An object to manage conditionally-evaluated expressions.
826  class ConditionalEvaluation {
827    llvm::BasicBlock *StartBB;
828
829  public:
830    ConditionalEvaluation(CodeGenFunction &CGF)
831      : StartBB(CGF.Builder.GetInsertBlock()) {}
832
833    void begin(CodeGenFunction &CGF) {
834      assert(CGF.OutermostConditional != this);
835      if (!CGF.OutermostConditional)
836        CGF.OutermostConditional = this;
837    }
838
839    void end(CodeGenFunction &CGF) {
840      assert(CGF.OutermostConditional != 0);
841      if (CGF.OutermostConditional == this)
842        CGF.OutermostConditional = 0;
843    }
844
845    /// Returns a block which will be executed prior to each
846    /// evaluation of the conditional code.
847    llvm::BasicBlock *getStartingBlock() const {
848      return StartBB;
849    }
850  };
851
852  /// isInConditionalBranch - Return true if we're currently emitting
853  /// one branch or the other of a conditional expression.
854  bool isInConditionalBranch() const { return OutermostConditional != 0; }
855
856  /// An RAII object to record that we're evaluating a statement
857  /// expression.
858  class StmtExprEvaluation {
859    CodeGenFunction &CGF;
860
861    /// We have to save the outermost conditional: cleanups in a
862    /// statement expression aren't conditional just because the
863    /// StmtExpr is.
864    ConditionalEvaluation *SavedOutermostConditional;
865
866  public:
867    StmtExprEvaluation(CodeGenFunction &CGF)
868      : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
869      CGF.OutermostConditional = 0;
870    }
871
872    ~StmtExprEvaluation() {
873      CGF.OutermostConditional = SavedOutermostConditional;
874      CGF.EnsureInsertPoint();
875    }
876  };
877
878  /// An object which temporarily prevents a value from being
879  /// destroyed by aggressive peephole optimizations that assume that
880  /// all uses of a value have been realized in the IR.
881  class PeepholeProtection {
882    llvm::Instruction *Inst;
883    friend class CodeGenFunction;
884
885  public:
886    PeepholeProtection() : Inst(0) {}
887  };
888
889  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
890  class OpaqueValueMapping {
891    CodeGenFunction &CGF;
892    const OpaqueValueExpr *OpaqueValue;
893    bool BoundLValue;
894    CodeGenFunction::PeepholeProtection Protection;
895
896  public:
897    static bool shouldBindAsLValue(const Expr *expr) {
898      return expr->isGLValue() || expr->getType()->isRecordType();
899    }
900
901    /// Build the opaque value mapping for the given conditional
902    /// operator if it's the GNU ?: extension.  This is a common
903    /// enough pattern that the convenience operator is really
904    /// helpful.
905    ///
906    OpaqueValueMapping(CodeGenFunction &CGF,
907                       const AbstractConditionalOperator *op) : CGF(CGF) {
908      if (isa<ConditionalOperator>(op)) {
909        OpaqueValue = 0;
910        BoundLValue = false;
911        return;
912      }
913
914      const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
915      init(e->getOpaqueValue(), e->getCommon());
916    }
917
918    OpaqueValueMapping(CodeGenFunction &CGF,
919                       const OpaqueValueExpr *opaqueValue,
920                       LValue lvalue)
921      : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(true) {
922      assert(opaqueValue && "no opaque value expression!");
923      assert(shouldBindAsLValue(opaqueValue));
924      initLValue(lvalue);
925    }
926
927    OpaqueValueMapping(CodeGenFunction &CGF,
928                       const OpaqueValueExpr *opaqueValue,
929                       RValue rvalue)
930      : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(false) {
931      assert(opaqueValue && "no opaque value expression!");
932      assert(!shouldBindAsLValue(opaqueValue));
933      initRValue(rvalue);
934    }
935
936    void pop() {
937      assert(OpaqueValue && "mapping already popped!");
938      popImpl();
939      OpaqueValue = 0;
940    }
941
942    ~OpaqueValueMapping() {
943      if (OpaqueValue) popImpl();
944    }
945
946  private:
947    void popImpl() {
948      if (BoundLValue)
949        CGF.OpaqueLValues.erase(OpaqueValue);
950      else {
951        CGF.OpaqueRValues.erase(OpaqueValue);
952        CGF.unprotectFromPeepholes(Protection);
953      }
954    }
955
956    void init(const OpaqueValueExpr *ov, const Expr *e) {
957      OpaqueValue = ov;
958      BoundLValue = shouldBindAsLValue(ov);
959      assert(BoundLValue == shouldBindAsLValue(e)
960             && "inconsistent expression value kinds!");
961      if (BoundLValue)
962        initLValue(CGF.EmitLValue(e));
963      else
964        initRValue(CGF.EmitAnyExpr(e));
965    }
966
967    void initLValue(const LValue &lv) {
968      CGF.OpaqueLValues.insert(std::make_pair(OpaqueValue, lv));
969    }
970
971    void initRValue(const RValue &rv) {
972      // Work around an extremely aggressive peephole optimization in
973      // EmitScalarConversion which assumes that all other uses of a
974      // value are extant.
975      Protection = CGF.protectFromPeepholes(rv);
976      CGF.OpaqueRValues.insert(std::make_pair(OpaqueValue, rv));
977    }
978  };
979
980  /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
981  /// number that holds the value.
982  unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
983
984  /// BuildBlockByrefAddress - Computes address location of the
985  /// variable which is declared as __block.
986  llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
987                                      const VarDecl *V);
988private:
989  CGDebugInfo *DebugInfo;
990  bool DisableDebugInfo;
991
992  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
993  /// calling llvm.stacksave for multiple VLAs in the same scope.
994  bool DidCallStackSave;
995
996  /// IndirectBranch - The first time an indirect goto is seen we create a block
997  /// with an indirect branch.  Every time we see the address of a label taken,
998  /// we add the label to the indirect goto.  Every subsequent indirect goto is
999  /// codegen'd as a jump to the IndirectBranch's basic block.
1000  llvm::IndirectBrInst *IndirectBranch;
1001
1002  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1003  /// decls.
1004  typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
1005  DeclMapTy LocalDeclMap;
1006
1007  /// LabelMap - This keeps track of the LLVM basic block for each C label.
1008  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1009
1010  // BreakContinueStack - This keeps track of where break and continue
1011  // statements should jump to.
1012  struct BreakContinue {
1013    BreakContinue(JumpDest Break, JumpDest Continue)
1014      : BreakBlock(Break), ContinueBlock(Continue) {}
1015
1016    JumpDest BreakBlock;
1017    JumpDest ContinueBlock;
1018  };
1019  llvm::SmallVector<BreakContinue, 8> BreakContinueStack;
1020
1021  /// SwitchInsn - This is nearest current switch instruction. It is null if if
1022  /// current context is not in a switch.
1023  llvm::SwitchInst *SwitchInsn;
1024
1025  /// CaseRangeBlock - This block holds if condition check for last case
1026  /// statement range in current switch instruction.
1027  llvm::BasicBlock *CaseRangeBlock;
1028
1029  /// OpaqueLValues - Keeps track of the current set of opaque value
1030  /// expressions.
1031  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1032  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1033
1034  // VLASizeMap - This keeps track of the associated size for each VLA type.
1035  // We track this by the size expression rather than the type itself because
1036  // in certain situations, like a const qualifier applied to an VLA typedef,
1037  // multiple VLA types can share the same size expression.
1038  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1039  // enter/leave scopes.
1040  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1041
1042  /// A block containing a single 'unreachable' instruction.  Created
1043  /// lazily by getUnreachableBlock().
1044  llvm::BasicBlock *UnreachableBlock;
1045
1046  /// CXXThisDecl - When generating code for a C++ member function,
1047  /// this will hold the implicit 'this' declaration.
1048  ImplicitParamDecl *CXXThisDecl;
1049  llvm::Value *CXXThisValue;
1050
1051  /// CXXVTTDecl - When generating code for a base object constructor or
1052  /// base object destructor with virtual bases, this will hold the implicit
1053  /// VTT parameter.
1054  ImplicitParamDecl *CXXVTTDecl;
1055  llvm::Value *CXXVTTValue;
1056
1057  /// OutermostConditional - Points to the outermost active
1058  /// conditional control.  This is used so that we know if a
1059  /// temporary should be destroyed conditionally.
1060  ConditionalEvaluation *OutermostConditional;
1061
1062
1063  /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1064  /// type as well as the field number that contains the actual data.
1065  llvm::DenseMap<const ValueDecl *, std::pair<const llvm::Type *,
1066                                              unsigned> > ByRefValueInfo;
1067
1068  llvm::BasicBlock *TerminateLandingPad;
1069  llvm::BasicBlock *TerminateHandler;
1070  llvm::BasicBlock *TrapBB;
1071
1072public:
1073  CodeGenFunction(CodeGenModule &cgm);
1074
1075  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1076  ASTContext &getContext() const { return CGM.getContext(); }
1077  CGDebugInfo *getDebugInfo() {
1078    if (DisableDebugInfo)
1079      return NULL;
1080    return DebugInfo;
1081  }
1082  void disableDebugInfo() { DisableDebugInfo = true; }
1083  void enableDebugInfo() { DisableDebugInfo = false; }
1084
1085  bool shouldUseFusedARCCalls() {
1086    return CGM.getCodeGenOpts().OptimizationLevel == 0;
1087  }
1088
1089  const LangOptions &getLangOptions() const { return CGM.getLangOptions(); }
1090
1091  /// Returns a pointer to the function's exception object slot, which
1092  /// is assigned in every landing pad.
1093  llvm::Value *getExceptionSlot();
1094  llvm::Value *getEHSelectorSlot();
1095
1096  llvm::Value *getNormalCleanupDestSlot();
1097  llvm::Value *getEHCleanupDestSlot();
1098
1099  llvm::BasicBlock *getUnreachableBlock() {
1100    if (!UnreachableBlock) {
1101      UnreachableBlock = createBasicBlock("unreachable");
1102      new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1103    }
1104    return UnreachableBlock;
1105  }
1106
1107  llvm::BasicBlock *getInvokeDest() {
1108    if (!EHStack.requiresLandingPad()) return 0;
1109    return getInvokeDestImpl();
1110  }
1111
1112  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1113
1114  //===--------------------------------------------------------------------===//
1115  //                                  Cleanups
1116  //===--------------------------------------------------------------------===//
1117
1118  typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1119
1120  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1121                                        llvm::Value *arrayEndPointer,
1122                                        QualType elementType,
1123                                        Destroyer &destroyer);
1124  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1125                                      llvm::Value *arrayEnd,
1126                                      QualType elementType,
1127                                      Destroyer &destroyer);
1128
1129  Destroyer &getDestroyer(QualType::DestructionKind destructionKind);
1130  void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1131                   Destroyer &destroyer, bool useEHCleanupForArray);
1132  void emitDestroy(llvm::Value *addr, QualType type, Destroyer &destroyer,
1133                   bool useEHCleanupForArray);
1134  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1135                        QualType type, Destroyer &destroyer,
1136                        bool useEHCleanup);
1137
1138  /// Determines whether an EH cleanup is required to destroy a type
1139  /// with the given destruction kind.
1140  bool needsEHCleanup(QualType::DestructionKind kind) {
1141    switch (kind) {
1142    case QualType::DK_none:
1143      return false;
1144    case QualType::DK_cxx_destructor:
1145    case QualType::DK_objc_weak_lifetime:
1146      return getLangOptions().Exceptions;
1147    case QualType::DK_objc_strong_lifetime:
1148      return getLangOptions().Exceptions &&
1149             CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1150    }
1151    llvm_unreachable("bad destruction kind");
1152  }
1153
1154  //===--------------------------------------------------------------------===//
1155  //                                  Objective-C
1156  //===--------------------------------------------------------------------===//
1157
1158  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1159
1160  void StartObjCMethod(const ObjCMethodDecl *MD,
1161                       const ObjCContainerDecl *CD,
1162                       SourceLocation StartLoc);
1163
1164  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1165  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1166                          const ObjCPropertyImplDecl *PID);
1167  void GenerateObjCGetterBody(ObjCIvarDecl *Ivar, bool IsAtomic, bool IsStrong);
1168  void GenerateObjCAtomicSetterBody(ObjCMethodDecl *OMD,
1169                                    ObjCIvarDecl *Ivar);
1170
1171  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1172                                  ObjCMethodDecl *MD, bool ctor);
1173
1174  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1175  /// for the given property.
1176  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1177                          const ObjCPropertyImplDecl *PID);
1178  bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1179  bool IvarTypeWithAggrGCObjects(QualType Ty);
1180
1181  //===--------------------------------------------------------------------===//
1182  //                                  Block Bits
1183  //===--------------------------------------------------------------------===//
1184
1185  llvm::Value *EmitBlockLiteral(const BlockExpr *);
1186  llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1187                                           const CGBlockInfo &Info,
1188                                           const llvm::StructType *,
1189                                           llvm::Constant *BlockVarLayout);
1190
1191  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1192                                        const CGBlockInfo &Info,
1193                                        const Decl *OuterFuncDecl,
1194                                        const DeclMapTy &ldm);
1195
1196  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1197  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1198
1199  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1200
1201  class AutoVarEmission;
1202
1203  void emitByrefStructureInit(const AutoVarEmission &emission);
1204  void enterByrefCleanup(const AutoVarEmission &emission);
1205
1206  llvm::Value *LoadBlockStruct() {
1207    assert(BlockPointer && "no block pointer set!");
1208    return BlockPointer;
1209  }
1210
1211  void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1212  void AllocateBlockDecl(const BlockDeclRefExpr *E);
1213  llvm::Value *GetAddrOfBlockDecl(const BlockDeclRefExpr *E) {
1214    return GetAddrOfBlockDecl(E->getDecl(), E->isByRef());
1215  }
1216  llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1217  const llvm::Type *BuildByRefType(const VarDecl *var);
1218
1219  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1220                    const CGFunctionInfo &FnInfo);
1221  void StartFunction(GlobalDecl GD, QualType RetTy,
1222                     llvm::Function *Fn,
1223                     const CGFunctionInfo &FnInfo,
1224                     const FunctionArgList &Args,
1225                     SourceLocation StartLoc);
1226
1227  void EmitConstructorBody(FunctionArgList &Args);
1228  void EmitDestructorBody(FunctionArgList &Args);
1229  void EmitFunctionBody(FunctionArgList &Args);
1230
1231  /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1232  /// emission when possible.
1233  void EmitReturnBlock();
1234
1235  /// FinishFunction - Complete IR generation of the current function. It is
1236  /// legal to call this function even if there is no current insertion point.
1237  void FinishFunction(SourceLocation EndLoc=SourceLocation());
1238
1239  /// GenerateThunk - Generate a thunk for the given method.
1240  void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1241                     GlobalDecl GD, const ThunkInfo &Thunk);
1242
1243  void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1244                            GlobalDecl GD, const ThunkInfo &Thunk);
1245
1246  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1247                        FunctionArgList &Args);
1248
1249  /// InitializeVTablePointer - Initialize the vtable pointer of the given
1250  /// subobject.
1251  ///
1252  void InitializeVTablePointer(BaseSubobject Base,
1253                               const CXXRecordDecl *NearestVBase,
1254                               CharUnits OffsetFromNearestVBase,
1255                               llvm::Constant *VTable,
1256                               const CXXRecordDecl *VTableClass);
1257
1258  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1259  void InitializeVTablePointers(BaseSubobject Base,
1260                                const CXXRecordDecl *NearestVBase,
1261                                CharUnits OffsetFromNearestVBase,
1262                                bool BaseIsNonVirtualPrimaryBase,
1263                                llvm::Constant *VTable,
1264                                const CXXRecordDecl *VTableClass,
1265                                VisitedVirtualBasesSetTy& VBases);
1266
1267  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1268
1269  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1270  /// to by This.
1271  llvm::Value *GetVTablePtr(llvm::Value *This, const llvm::Type *Ty);
1272
1273  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1274  /// given phase of destruction for a destructor.  The end result
1275  /// should call destructors on members and base classes in reverse
1276  /// order of their construction.
1277  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1278
1279  /// ShouldInstrumentFunction - Return true if the current function should be
1280  /// instrumented with __cyg_profile_func_* calls
1281  bool ShouldInstrumentFunction();
1282
1283  /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1284  /// instrumentation function with the current function and the call site, if
1285  /// function instrumentation is enabled.
1286  void EmitFunctionInstrumentation(const char *Fn);
1287
1288  /// EmitMCountInstrumentation - Emit call to .mcount.
1289  void EmitMCountInstrumentation();
1290
1291  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1292  /// arguments for the given function. This is also responsible for naming the
1293  /// LLVM function arguments.
1294  void EmitFunctionProlog(const CGFunctionInfo &FI,
1295                          llvm::Function *Fn,
1296                          const FunctionArgList &Args);
1297
1298  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1299  /// given temporary.
1300  void EmitFunctionEpilog(const CGFunctionInfo &FI);
1301
1302  /// EmitStartEHSpec - Emit the start of the exception spec.
1303  void EmitStartEHSpec(const Decl *D);
1304
1305  /// EmitEndEHSpec - Emit the end of the exception spec.
1306  void EmitEndEHSpec(const Decl *D);
1307
1308  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1309  llvm::BasicBlock *getTerminateLandingPad();
1310
1311  /// getTerminateHandler - Return a handler (not a landing pad, just
1312  /// a catch handler) that just calls terminate.  This is used when
1313  /// a terminate scope encloses a try.
1314  llvm::BasicBlock *getTerminateHandler();
1315
1316  llvm::Type *ConvertTypeForMem(QualType T);
1317  llvm::Type *ConvertType(QualType T);
1318  llvm::Type *ConvertType(const TypeDecl *T) {
1319    return ConvertType(getContext().getTypeDeclType(T));
1320  }
1321
1322  /// LoadObjCSelf - Load the value of self. This function is only valid while
1323  /// generating code for an Objective-C method.
1324  llvm::Value *LoadObjCSelf();
1325
1326  /// TypeOfSelfObject - Return type of object that this self represents.
1327  QualType TypeOfSelfObject();
1328
1329  /// hasAggregateLLVMType - Return true if the specified AST type will map into
1330  /// an aggregate LLVM type or is void.
1331  static bool hasAggregateLLVMType(QualType T);
1332
1333  /// createBasicBlock - Create an LLVM basic block.
1334  llvm::BasicBlock *createBasicBlock(llvm::StringRef name = "",
1335                                     llvm::Function *parent = 0,
1336                                     llvm::BasicBlock *before = 0) {
1337#ifdef NDEBUG
1338    return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1339#else
1340    return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1341#endif
1342  }
1343
1344  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1345  /// label maps to.
1346  JumpDest getJumpDestForLabel(const LabelDecl *S);
1347
1348  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1349  /// another basic block, simplify it. This assumes that no other code could
1350  /// potentially reference the basic block.
1351  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1352
1353  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1354  /// adding a fall-through branch from the current insert block if
1355  /// necessary. It is legal to call this function even if there is no current
1356  /// insertion point.
1357  ///
1358  /// IsFinished - If true, indicates that the caller has finished emitting
1359  /// branches to the given block and does not expect to emit code into it. This
1360  /// means the block can be ignored if it is unreachable.
1361  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1362
1363  /// EmitBranch - Emit a branch to the specified basic block from the current
1364  /// insert block, taking care to avoid creation of branches from dummy
1365  /// blocks. It is legal to call this function even if there is no current
1366  /// insertion point.
1367  ///
1368  /// This function clears the current insertion point. The caller should follow
1369  /// calls to this function with calls to Emit*Block prior to generation new
1370  /// code.
1371  void EmitBranch(llvm::BasicBlock *Block);
1372
1373  /// HaveInsertPoint - True if an insertion point is defined. If not, this
1374  /// indicates that the current code being emitted is unreachable.
1375  bool HaveInsertPoint() const {
1376    return Builder.GetInsertBlock() != 0;
1377  }
1378
1379  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1380  /// emitted IR has a place to go. Note that by definition, if this function
1381  /// creates a block then that block is unreachable; callers may do better to
1382  /// detect when no insertion point is defined and simply skip IR generation.
1383  void EnsureInsertPoint() {
1384    if (!HaveInsertPoint())
1385      EmitBlock(createBasicBlock());
1386  }
1387
1388  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1389  /// specified stmt yet.
1390  void ErrorUnsupported(const Stmt *S, const char *Type,
1391                        bool OmitOnError=false);
1392
1393  //===--------------------------------------------------------------------===//
1394  //                                  Helpers
1395  //===--------------------------------------------------------------------===//
1396
1397  LValue MakeAddrLValue(llvm::Value *V, QualType T, unsigned Alignment = 0) {
1398    return LValue::MakeAddr(V, T, Alignment, getContext(),
1399                            CGM.getTBAAInfo(T));
1400  }
1401
1402  /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1403  /// block. The caller is responsible for setting an appropriate alignment on
1404  /// the alloca.
1405  llvm::AllocaInst *CreateTempAlloca(const llvm::Type *Ty,
1406                                     const llvm::Twine &Name = "tmp");
1407
1408  /// InitTempAlloca - Provide an initial value for the given alloca.
1409  void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1410
1411  /// CreateIRTemp - Create a temporary IR object of the given type, with
1412  /// appropriate alignment. This routine should only be used when an temporary
1413  /// value needs to be stored into an alloca (for example, to avoid explicit
1414  /// PHI construction), but the type is the IR type, not the type appropriate
1415  /// for storing in memory.
1416  llvm::AllocaInst *CreateIRTemp(QualType T, const llvm::Twine &Name = "tmp");
1417
1418  /// CreateMemTemp - Create a temporary memory object of the given type, with
1419  /// appropriate alignment.
1420  llvm::AllocaInst *CreateMemTemp(QualType T, const llvm::Twine &Name = "tmp");
1421
1422  /// CreateAggTemp - Create a temporary memory object for the given
1423  /// aggregate type.
1424  AggValueSlot CreateAggTemp(QualType T, const llvm::Twine &Name = "tmp") {
1425    return AggValueSlot::forAddr(CreateMemTemp(T, Name), T.getQualifiers(),
1426                                 false);
1427  }
1428
1429  /// Emit a cast to void* in the appropriate address space.
1430  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1431
1432  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1433  /// expression and compare the result against zero, returning an Int1Ty value.
1434  llvm::Value *EvaluateExprAsBool(const Expr *E);
1435
1436  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1437  void EmitIgnoredExpr(const Expr *E);
1438
1439  /// EmitAnyExpr - Emit code to compute the specified expression which can have
1440  /// any type.  The result is returned as an RValue struct.  If this is an
1441  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1442  /// the result should be returned.
1443  ///
1444  /// \param IgnoreResult - True if the resulting value isn't used.
1445  RValue EmitAnyExpr(const Expr *E,
1446                     AggValueSlot AggSlot = AggValueSlot::ignored(),
1447                     bool IgnoreResult = false);
1448
1449  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1450  // or the value of the expression, depending on how va_list is defined.
1451  llvm::Value *EmitVAListRef(const Expr *E);
1452
1453  /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1454  /// always be accessible even if no aggregate location is provided.
1455  RValue EmitAnyExprToTemp(const Expr *E);
1456
1457  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1458  /// arbitrary expression into the given memory location.
1459  void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1460                        Qualifiers Quals, bool IsInitializer);
1461
1462  /// EmitExprAsInit - Emits the code necessary to initialize a
1463  /// location in memory with the given initializer.
1464  void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1465                      LValue lvalue, bool capturedByInit);
1466
1467  /// EmitAggregateCopy - Emit an aggrate copy.
1468  ///
1469  /// \param isVolatile - True iff either the source or the destination is
1470  /// volatile.
1471  void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1472                         QualType EltTy, bool isVolatile=false);
1473
1474  /// StartBlock - Start new block named N. If insert block is a dummy block
1475  /// then reuse it.
1476  void StartBlock(const char *N);
1477
1478  /// GetAddrOfStaticLocalVar - Return the address of a static local variable.
1479  llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) {
1480    return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
1481  }
1482
1483  /// GetAddrOfLocalVar - Return the address of a local variable.
1484  llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1485    llvm::Value *Res = LocalDeclMap[VD];
1486    assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1487    return Res;
1488  }
1489
1490  /// getOpaqueLValueMapping - Given an opaque value expression (which
1491  /// must be mapped to an l-value), return its mapping.
1492  const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1493    assert(OpaqueValueMapping::shouldBindAsLValue(e));
1494
1495    llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1496      it = OpaqueLValues.find(e);
1497    assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1498    return it->second;
1499  }
1500
1501  /// getOpaqueRValueMapping - Given an opaque value expression (which
1502  /// must be mapped to an r-value), return its mapping.
1503  const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1504    assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1505
1506    llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1507      it = OpaqueRValues.find(e);
1508    assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1509    return it->second;
1510  }
1511
1512  /// getAccessedFieldNo - Given an encoded value and a result number, return
1513  /// the input field number being accessed.
1514  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1515
1516  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1517  llvm::BasicBlock *GetIndirectGotoBlock();
1518
1519  /// EmitNullInitialization - Generate code to set a value of the given type to
1520  /// null, If the type contains data member pointers, they will be initialized
1521  /// to -1 in accordance with the Itanium C++ ABI.
1522  void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1523
1524  // EmitVAArg - Generate code to get an argument from the passed in pointer
1525  // and update it accordingly. The return value is a pointer to the argument.
1526  // FIXME: We should be able to get rid of this method and use the va_arg
1527  // instruction in LLVM instead once it works well enough.
1528  llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1529
1530  /// emitArrayLength - Compute the length of an array, even if it's a
1531  /// VLA, and drill down to the base element type.
1532  llvm::Value *emitArrayLength(const ArrayType *arrayType,
1533                               QualType &baseType,
1534                               llvm::Value *&addr);
1535
1536  /// EmitVLASize - Capture all the sizes for the VLA expressions in
1537  /// the given variably-modified type and store them in the VLASizeMap.
1538  ///
1539  /// This function can be called with a null (unreachable) insert point.
1540  void EmitVariablyModifiedType(QualType Ty);
1541
1542  /// getVLASize - Returns an LLVM value that corresponds to the size,
1543  /// in non-variably-sized elements, of a variable length array type,
1544  /// plus that largest non-variably-sized element type.  Assumes that
1545  /// the type has already been emitted with EmitVariablyModifiedType.
1546  std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1547  std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1548
1549  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1550  /// generating code for an C++ member function.
1551  llvm::Value *LoadCXXThis() {
1552    assert(CXXThisValue && "no 'this' value for this function");
1553    return CXXThisValue;
1554  }
1555
1556  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1557  /// virtual bases.
1558  llvm::Value *LoadCXXVTT() {
1559    assert(CXXVTTValue && "no VTT value for this function");
1560    return CXXVTTValue;
1561  }
1562
1563  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1564  /// complete class to the given direct base.
1565  llvm::Value *
1566  GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1567                                        const CXXRecordDecl *Derived,
1568                                        const CXXRecordDecl *Base,
1569                                        bool BaseIsVirtual);
1570
1571  /// GetAddressOfBaseClass - This function will add the necessary delta to the
1572  /// load of 'this' and returns address of the base class.
1573  llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1574                                     const CXXRecordDecl *Derived,
1575                                     CastExpr::path_const_iterator PathBegin,
1576                                     CastExpr::path_const_iterator PathEnd,
1577                                     bool NullCheckValue);
1578
1579  llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1580                                        const CXXRecordDecl *Derived,
1581                                        CastExpr::path_const_iterator PathBegin,
1582                                        CastExpr::path_const_iterator PathEnd,
1583                                        bool NullCheckValue);
1584
1585  llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
1586                                         const CXXRecordDecl *ClassDecl,
1587                                         const CXXRecordDecl *BaseClassDecl);
1588
1589  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1590                                      CXXCtorType CtorType,
1591                                      const FunctionArgList &Args);
1592  // It's important not to confuse this and the previous function. Delegating
1593  // constructors are the C++0x feature. The constructor delegate optimization
1594  // is used to reduce duplication in the base and complete consturctors where
1595  // they are substantially the same.
1596  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1597                                        const FunctionArgList &Args);
1598  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1599                              bool ForVirtualBase, llvm::Value *This,
1600                              CallExpr::const_arg_iterator ArgBeg,
1601                              CallExpr::const_arg_iterator ArgEnd);
1602
1603  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1604                              llvm::Value *This, llvm::Value *Src,
1605                              CallExpr::const_arg_iterator ArgBeg,
1606                              CallExpr::const_arg_iterator ArgEnd);
1607
1608  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1609                                  const ConstantArrayType *ArrayTy,
1610                                  llvm::Value *ArrayPtr,
1611                                  CallExpr::const_arg_iterator ArgBeg,
1612                                  CallExpr::const_arg_iterator ArgEnd,
1613                                  bool ZeroInitialization = false);
1614
1615  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1616                                  llvm::Value *NumElements,
1617                                  llvm::Value *ArrayPtr,
1618                                  CallExpr::const_arg_iterator ArgBeg,
1619                                  CallExpr::const_arg_iterator ArgEnd,
1620                                  bool ZeroInitialization = false);
1621
1622  void EmitCXXAggrDestructorCall(const CXXDestructorDecl *D,
1623                                 const ArrayType *Array,
1624                                 llvm::Value *This);
1625
1626  static Destroyer destroyCXXObject;
1627
1628  void EmitCXXAggrDestructorCall(const CXXDestructorDecl *D,
1629                                 llvm::Value *NumElements,
1630                                 llvm::Value *This);
1631
1632  llvm::Function *GenerateCXXAggrDestructorHelper(const CXXDestructorDecl *D,
1633                                                  const ArrayType *Array,
1634                                                  llvm::Value *This);
1635
1636  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1637                             bool ForVirtualBase, llvm::Value *This);
1638
1639  void EmitNewArrayInitializer(const CXXNewExpr *E, llvm::Value *NewPtr,
1640                               llvm::Value *NumElements);
1641
1642  void EmitCXXTemporary(const CXXTemporary *Temporary, llvm::Value *Ptr);
1643
1644  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1645  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1646
1647  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1648                      QualType DeleteTy);
1649
1650  llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1651  llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1652
1653  void EmitCheck(llvm::Value *, unsigned Size);
1654
1655  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1656                                       bool isInc, bool isPre);
1657  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1658                                         bool isInc, bool isPre);
1659  //===--------------------------------------------------------------------===//
1660  //                            Declaration Emission
1661  //===--------------------------------------------------------------------===//
1662
1663  /// EmitDecl - Emit a declaration.
1664  ///
1665  /// This function can be called with a null (unreachable) insert point.
1666  void EmitDecl(const Decl &D);
1667
1668  /// EmitVarDecl - Emit a local variable declaration.
1669  ///
1670  /// This function can be called with a null (unreachable) insert point.
1671  void EmitVarDecl(const VarDecl &D);
1672
1673  void EmitScalarInit(const Expr *init, const ValueDecl *D,
1674                      LValue lvalue, bool capturedByInit);
1675  void EmitScalarInit(llvm::Value *init, LValue lvalue);
1676
1677  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1678                             llvm::Value *Address);
1679
1680  /// EmitAutoVarDecl - Emit an auto variable declaration.
1681  ///
1682  /// This function can be called with a null (unreachable) insert point.
1683  void EmitAutoVarDecl(const VarDecl &D);
1684
1685  class AutoVarEmission {
1686    friend class CodeGenFunction;
1687
1688    const VarDecl *Variable;
1689
1690    /// The alignment of the variable.
1691    CharUnits Alignment;
1692
1693    /// The address of the alloca.  Null if the variable was emitted
1694    /// as a global constant.
1695    llvm::Value *Address;
1696
1697    llvm::Value *NRVOFlag;
1698
1699    /// True if the variable is a __block variable.
1700    bool IsByRef;
1701
1702    /// True if the variable is of aggregate type and has a constant
1703    /// initializer.
1704    bool IsConstantAggregate;
1705
1706    struct Invalid {};
1707    AutoVarEmission(Invalid) : Variable(0) {}
1708
1709    AutoVarEmission(const VarDecl &variable)
1710      : Variable(&variable), Address(0), NRVOFlag(0),
1711        IsByRef(false), IsConstantAggregate(false) {}
1712
1713    bool wasEmittedAsGlobal() const { return Address == 0; }
1714
1715  public:
1716    static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1717
1718    /// Returns the address of the object within this declaration.
1719    /// Note that this does not chase the forwarding pointer for
1720    /// __block decls.
1721    llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1722      if (!IsByRef) return Address;
1723
1724      return CGF.Builder.CreateStructGEP(Address,
1725                                         CGF.getByRefValueLLVMField(Variable),
1726                                         Variable->getNameAsString());
1727    }
1728  };
1729  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1730  void EmitAutoVarInit(const AutoVarEmission &emission);
1731  void EmitAutoVarCleanups(const AutoVarEmission &emission);
1732  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1733                              QualType::DestructionKind dtorKind);
1734
1735  void EmitStaticVarDecl(const VarDecl &D,
1736                         llvm::GlobalValue::LinkageTypes Linkage);
1737
1738  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1739  void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
1740
1741  /// protectFromPeepholes - Protect a value that we're intending to
1742  /// store to the side, but which will probably be used later, from
1743  /// aggressive peepholing optimizations that might delete it.
1744  ///
1745  /// Pass the result to unprotectFromPeepholes to declare that
1746  /// protection is no longer required.
1747  ///
1748  /// There's no particular reason why this shouldn't apply to
1749  /// l-values, it's just that no existing peepholes work on pointers.
1750  PeepholeProtection protectFromPeepholes(RValue rvalue);
1751  void unprotectFromPeepholes(PeepholeProtection protection);
1752
1753  //===--------------------------------------------------------------------===//
1754  //                             Statement Emission
1755  //===--------------------------------------------------------------------===//
1756
1757  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1758  void EmitStopPoint(const Stmt *S);
1759
1760  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1761  /// this function even if there is no current insertion point.
1762  ///
1763  /// This function may clear the current insertion point; callers should use
1764  /// EnsureInsertPoint if they wish to subsequently generate code without first
1765  /// calling EmitBlock, EmitBranch, or EmitStmt.
1766  void EmitStmt(const Stmt *S);
1767
1768  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1769  /// necessarily require an insertion point or debug information; typically
1770  /// because the statement amounts to a jump or a container of other
1771  /// statements.
1772  ///
1773  /// \return True if the statement was handled.
1774  bool EmitSimpleStmt(const Stmt *S);
1775
1776  RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1777                          AggValueSlot AVS = AggValueSlot::ignored());
1778
1779  /// EmitLabel - Emit the block for the given label. It is legal to call this
1780  /// function even if there is no current insertion point.
1781  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1782
1783  void EmitLabelStmt(const LabelStmt &S);
1784  void EmitGotoStmt(const GotoStmt &S);
1785  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1786  void EmitIfStmt(const IfStmt &S);
1787  void EmitWhileStmt(const WhileStmt &S);
1788  void EmitDoStmt(const DoStmt &S);
1789  void EmitForStmt(const ForStmt &S);
1790  void EmitReturnStmt(const ReturnStmt &S);
1791  void EmitDeclStmt(const DeclStmt &S);
1792  void EmitBreakStmt(const BreakStmt &S);
1793  void EmitContinueStmt(const ContinueStmt &S);
1794  void EmitSwitchStmt(const SwitchStmt &S);
1795  void EmitDefaultStmt(const DefaultStmt &S);
1796  void EmitCaseStmt(const CaseStmt &S);
1797  void EmitCaseStmtRange(const CaseStmt &S);
1798  void EmitAsmStmt(const AsmStmt &S);
1799
1800  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1801  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1802  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1803  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1804  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
1805
1806  llvm::Constant *getUnwindResumeFn();
1807  llvm::Constant *getUnwindResumeOrRethrowFn();
1808  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1809  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1810
1811  void EmitCXXTryStmt(const CXXTryStmt &S);
1812  void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
1813
1814  //===--------------------------------------------------------------------===//
1815  //                         LValue Expression Emission
1816  //===--------------------------------------------------------------------===//
1817
1818  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
1819  RValue GetUndefRValue(QualType Ty);
1820
1821  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
1822  /// and issue an ErrorUnsupported style diagnostic (using the
1823  /// provided Name).
1824  RValue EmitUnsupportedRValue(const Expr *E,
1825                               const char *Name);
1826
1827  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
1828  /// an ErrorUnsupported style diagnostic (using the provided Name).
1829  LValue EmitUnsupportedLValue(const Expr *E,
1830                               const char *Name);
1831
1832  /// EmitLValue - Emit code to compute a designator that specifies the location
1833  /// of the expression.
1834  ///
1835  /// This can return one of two things: a simple address or a bitfield
1836  /// reference.  In either case, the LLVM Value* in the LValue structure is
1837  /// guaranteed to be an LLVM pointer type.
1838  ///
1839  /// If this returns a bitfield reference, nothing about the pointee type of
1840  /// the LLVM value is known: For example, it may not be a pointer to an
1841  /// integer.
1842  ///
1843  /// If this returns a normal address, and if the lvalue's C type is fixed
1844  /// size, this method guarantees that the returned pointer type will point to
1845  /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
1846  /// variable length type, this is not possible.
1847  ///
1848  LValue EmitLValue(const Expr *E);
1849
1850  /// EmitCheckedLValue - Same as EmitLValue but additionally we generate
1851  /// checking code to guard against undefined behavior.  This is only
1852  /// suitable when we know that the address will be used to access the
1853  /// object.
1854  LValue EmitCheckedLValue(const Expr *E);
1855
1856  /// EmitToMemory - Change a scalar value from its value
1857  /// representation to its in-memory representation.
1858  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
1859
1860  /// EmitFromMemory - Change a scalar value from its memory
1861  /// representation to its value representation.
1862  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
1863
1864  /// EmitLoadOfScalar - Load a scalar value from an address, taking
1865  /// care to appropriately convert from the memory representation to
1866  /// the LLVM value representation.
1867  llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1868                                unsigned Alignment, QualType Ty,
1869                                llvm::MDNode *TBAAInfo = 0);
1870
1871  /// EmitLoadOfScalar - Load a scalar value from an address, taking
1872  /// care to appropriately convert from the memory representation to
1873  /// the LLVM value representation.  The l-value must be a simple
1874  /// l-value.
1875  llvm::Value *EmitLoadOfScalar(LValue lvalue);
1876
1877  /// EmitStoreOfScalar - Store a scalar value to an address, taking
1878  /// care to appropriately convert from the memory representation to
1879  /// the LLVM value representation.
1880  void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1881                         bool Volatile, unsigned Alignment, QualType Ty,
1882                         llvm::MDNode *TBAAInfo = 0);
1883
1884  /// EmitStoreOfScalar - Store a scalar value to an address, taking
1885  /// care to appropriately convert from the memory representation to
1886  /// the LLVM value representation.  The l-value must be a simple
1887  /// l-value.
1888  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue);
1889
1890  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
1891  /// this method emits the address of the lvalue, then loads the result as an
1892  /// rvalue, returning the rvalue.
1893  RValue EmitLoadOfLValue(LValue V);
1894  RValue EmitLoadOfExtVectorElementLValue(LValue V);
1895  RValue EmitLoadOfBitfieldLValue(LValue LV);
1896  RValue EmitLoadOfPropertyRefLValue(LValue LV,
1897                                 ReturnValueSlot Return = ReturnValueSlot());
1898
1899  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1900  /// lvalue, where both are guaranteed to the have the same type, and that type
1901  /// is 'Ty'.
1902  void EmitStoreThroughLValue(RValue Src, LValue Dst);
1903  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
1904  void EmitStoreThroughPropertyRefLValue(RValue Src, LValue Dst);
1905
1906  /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
1907  /// EmitStoreThroughLValue.
1908  ///
1909  /// \param Result [out] - If non-null, this will be set to a Value* for the
1910  /// bit-field contents after the store, appropriate for use as the result of
1911  /// an assignment to the bit-field.
1912  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1913                                      llvm::Value **Result=0);
1914
1915  /// Emit an l-value for an assignment (simple or compound) of complex type.
1916  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
1917  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
1918
1919  // Note: only available for agg return types
1920  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
1921  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
1922  // Note: only available for agg return types
1923  LValue EmitCallExprLValue(const CallExpr *E);
1924  // Note: only available for agg return types
1925  LValue EmitVAArgExprLValue(const VAArgExpr *E);
1926  LValue EmitDeclRefLValue(const DeclRefExpr *E);
1927  LValue EmitStringLiteralLValue(const StringLiteral *E);
1928  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
1929  LValue EmitPredefinedLValue(const PredefinedExpr *E);
1930  LValue EmitUnaryOpLValue(const UnaryOperator *E);
1931  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
1932  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
1933  LValue EmitMemberExpr(const MemberExpr *E);
1934  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
1935  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
1936  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
1937  LValue EmitCastLValue(const CastExpr *E);
1938  LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
1939  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
1940  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
1941
1942  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
1943                              const ObjCIvarDecl *Ivar);
1944  LValue EmitLValueForAnonRecordField(llvm::Value* Base,
1945                                      const IndirectFieldDecl* Field,
1946                                      unsigned CVRQualifiers);
1947  LValue EmitLValueForField(llvm::Value* Base, const FieldDecl* Field,
1948                            unsigned CVRQualifiers);
1949
1950  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
1951  /// if the Field is a reference, this will return the address of the reference
1952  /// and not the address of the value stored in the reference.
1953  LValue EmitLValueForFieldInitialization(llvm::Value* Base,
1954                                          const FieldDecl* Field,
1955                                          unsigned CVRQualifiers);
1956
1957  LValue EmitLValueForIvar(QualType ObjectTy,
1958                           llvm::Value* Base, const ObjCIvarDecl *Ivar,
1959                           unsigned CVRQualifiers);
1960
1961  LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field,
1962                                unsigned CVRQualifiers);
1963
1964  LValue EmitBlockDeclRefLValue(const BlockDeclRefExpr *E);
1965
1966  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
1967  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
1968  LValue EmitExprWithCleanupsLValue(const ExprWithCleanups *E);
1969  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
1970
1971  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
1972  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
1973  LValue EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E);
1974  LValue EmitStmtExprLValue(const StmtExpr *E);
1975  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
1976  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
1977  void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
1978
1979  //===--------------------------------------------------------------------===//
1980  //                         Scalar Expression Emission
1981  //===--------------------------------------------------------------------===//
1982
1983  /// EmitCall - Generate a call of the given function, expecting the given
1984  /// result type, and using the given argument list which specifies both the
1985  /// LLVM arguments and the types they were derived from.
1986  ///
1987  /// \param TargetDecl - If given, the decl of the function in a direct call;
1988  /// used to set attributes on the call (noreturn, etc.).
1989  RValue EmitCall(const CGFunctionInfo &FnInfo,
1990                  llvm::Value *Callee,
1991                  ReturnValueSlot ReturnValue,
1992                  const CallArgList &Args,
1993                  const Decl *TargetDecl = 0,
1994                  llvm::Instruction **callOrInvoke = 0);
1995
1996  RValue EmitCall(QualType FnType, llvm::Value *Callee,
1997                  ReturnValueSlot ReturnValue,
1998                  CallExpr::const_arg_iterator ArgBeg,
1999                  CallExpr::const_arg_iterator ArgEnd,
2000                  const Decl *TargetDecl = 0);
2001  RValue EmitCallExpr(const CallExpr *E,
2002                      ReturnValueSlot ReturnValue = ReturnValueSlot());
2003
2004  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2005                                  llvm::Value * const *ArgBegin,
2006                                  llvm::Value * const *ArgEnd,
2007                                  const llvm::Twine &Name = "");
2008
2009  llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
2010                                const llvm::Type *Ty);
2011  llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
2012                                llvm::Value *This, const llvm::Type *Ty);
2013  llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2014                                         NestedNameSpecifier *Qual,
2015                                         const llvm::Type *Ty);
2016
2017  llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2018                                                   CXXDtorType Type,
2019                                                   const CXXRecordDecl *RD);
2020
2021  RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2022                           llvm::Value *Callee,
2023                           ReturnValueSlot ReturnValue,
2024                           llvm::Value *This,
2025                           llvm::Value *VTT,
2026                           CallExpr::const_arg_iterator ArgBeg,
2027                           CallExpr::const_arg_iterator ArgEnd);
2028  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2029                               ReturnValueSlot ReturnValue);
2030  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2031                                      ReturnValueSlot ReturnValue);
2032
2033  llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2034                                           const CXXMethodDecl *MD,
2035                                           llvm::Value *This);
2036  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2037                                       const CXXMethodDecl *MD,
2038                                       ReturnValueSlot ReturnValue);
2039
2040
2041  RValue EmitBuiltinExpr(const FunctionDecl *FD,
2042                         unsigned BuiltinID, const CallExpr *E);
2043
2044  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2045
2046  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2047  /// is unhandled by the current target.
2048  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2049
2050  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2051  llvm::Value *EmitNeonCall(llvm::Function *F,
2052                            llvm::SmallVectorImpl<llvm::Value*> &O,
2053                            const char *name,
2054                            unsigned shift = 0, bool rightshift = false);
2055  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2056  llvm::Value *EmitNeonShiftVector(llvm::Value *V, const llvm::Type *Ty,
2057                                   bool negateForRightShift);
2058
2059  llvm::Value *BuildVector(const llvm::SmallVectorImpl<llvm::Value*> &Ops);
2060  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2061  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2062
2063  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2064  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2065  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2066  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2067                             ReturnValueSlot Return = ReturnValueSlot());
2068
2069  /// Retrieves the default cleanup kind for an ARC cleanup.
2070  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2071  CleanupKind getARCCleanupKind() {
2072    return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2073             ? NormalAndEHCleanup : NormalCleanup;
2074  }
2075
2076  // ARC primitives.
2077  void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2078  void EmitARCDestroyWeak(llvm::Value *addr);
2079  llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2080  llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2081  llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2082                                bool ignored);
2083  void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2084  void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2085  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2086  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2087  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2088                                  bool ignored);
2089  llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2090                                      bool ignored);
2091  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2092  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2093  llvm::Value *EmitARCRetainBlock(llvm::Value *value);
2094  void EmitARCRelease(llvm::Value *value, bool precise);
2095  llvm::Value *EmitARCAutorelease(llvm::Value *value);
2096  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2097  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2098  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2099
2100  std::pair<LValue,llvm::Value*>
2101  EmitARCStoreAutoreleasing(const BinaryOperator *e);
2102  std::pair<LValue,llvm::Value*>
2103  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2104
2105  llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2106  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2107  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2108
2109  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2110  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2111
2112  void PushARCReleaseCleanup(CleanupKind kind, QualType type,
2113                             llvm::Value *addr, bool precise,
2114                             bool forFullExpr = false);
2115  void PushARCArrayReleaseCleanup(CleanupKind kind, QualType elementType,
2116                                  llvm::Value *addr,
2117                                  llvm::Value *countOrCountPtr,
2118                                  bool precise, bool forFullExpr = false);
2119  void PushARCWeakReleaseCleanup(CleanupKind kind, QualType type,
2120                                 llvm::Value *addr, bool forFullExpr = false);
2121  void PushARCArrayWeakReleaseCleanup(CleanupKind kind, QualType elementType,
2122                                      llvm::Value *addr,
2123                                      llvm::Value *countOrCountPtr,
2124                                      bool forFullExpr = false);
2125  static Destroyer destroyARCStrongImprecise;
2126  static Destroyer destroyARCStrongPrecise;
2127  static Destroyer destroyARCWeak;
2128
2129  void PushARCFieldReleaseCleanup(CleanupKind cleanupKind,
2130                                  const FieldDecl *Field);
2131  void PushARCFieldWeakReleaseCleanup(CleanupKind cleanupKind,
2132                                      const FieldDecl *Field);
2133
2134  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2135  llvm::Value *EmitObjCAutoreleasePoolPush();
2136  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2137  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2138  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2139
2140  /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
2141  /// expression. Will emit a temporary variable if E is not an LValue.
2142  RValue EmitReferenceBindingToExpr(const Expr* E,
2143                                    const NamedDecl *InitializedDecl);
2144
2145  //===--------------------------------------------------------------------===//
2146  //                           Expression Emission
2147  //===--------------------------------------------------------------------===//
2148
2149  // Expressions are broken into three classes: scalar, complex, aggregate.
2150
2151  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2152  /// scalar type, returning the result.
2153  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2154
2155  /// EmitScalarConversion - Emit a conversion from the specified type to the
2156  /// specified destination type, both of which are LLVM scalar types.
2157  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2158                                    QualType DstTy);
2159
2160  /// EmitComplexToScalarConversion - Emit a conversion from the specified
2161  /// complex type to the specified destination type, where the destination type
2162  /// is an LLVM scalar type.
2163  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2164                                             QualType DstTy);
2165
2166
2167  /// EmitAggExpr - Emit the computation of the specified expression
2168  /// of aggregate type.  The result is computed into the given slot,
2169  /// which may be null to indicate that the value is not needed.
2170  void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false);
2171
2172  /// EmitAggExprToLValue - Emit the computation of the specified expression of
2173  /// aggregate type into a temporary LValue.
2174  LValue EmitAggExprToLValue(const Expr *E);
2175
2176  /// EmitGCMemmoveCollectable - Emit special API for structs with object
2177  /// pointers.
2178  void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2179                                QualType Ty);
2180
2181  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2182  /// make sure it survives garbage collection until this point.
2183  void EmitExtendGCLifetime(llvm::Value *object);
2184
2185  /// EmitComplexExpr - Emit the computation of the specified expression of
2186  /// complex type, returning the result.
2187  ComplexPairTy EmitComplexExpr(const Expr *E,
2188                                bool IgnoreReal = false,
2189                                bool IgnoreImag = false);
2190
2191  /// EmitComplexExprIntoAddr - Emit the computation of the specified expression
2192  /// of complex type, storing into the specified Value*.
2193  void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
2194                               bool DestIsVolatile);
2195
2196  /// StoreComplexToAddr - Store a complex number into the specified address.
2197  void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
2198                          bool DestIsVolatile);
2199  /// LoadComplexFromAddr - Load a complex number from the specified address.
2200  ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
2201
2202  /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2203  /// a static local variable.
2204  llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2205                                            const char *Separator,
2206                                       llvm::GlobalValue::LinkageTypes Linkage);
2207
2208  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2209  /// global variable that has already been created for it.  If the initializer
2210  /// has a different type than GV does, this may free GV and return a different
2211  /// one.  Otherwise it just returns GV.
2212  llvm::GlobalVariable *
2213  AddInitializerToStaticVarDecl(const VarDecl &D,
2214                                llvm::GlobalVariable *GV);
2215
2216
2217  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2218  /// variable with global storage.
2219  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr);
2220
2221  /// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr
2222  /// with the C++ runtime so that its destructor will be called at exit.
2223  void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn,
2224                                     llvm::Constant *DeclPtr);
2225
2226  /// Emit code in this function to perform a guarded variable
2227  /// initialization.  Guarded initializations are used when it's not
2228  /// possible to prove that an initialization will be done exactly
2229  /// once, e.g. with a static local variable or a static data member
2230  /// of a class template.
2231  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr);
2232
2233  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2234  /// variables.
2235  void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2236                                 llvm::Constant **Decls,
2237                                 unsigned NumDecls);
2238
2239  /// GenerateCXXGlobalDtorFunc - Generates code for destroying global
2240  /// variables.
2241  void GenerateCXXGlobalDtorFunc(llvm::Function *Fn,
2242                                 const std::vector<std::pair<llvm::WeakVH,
2243                                   llvm::Constant*> > &DtorsAndObjects);
2244
2245  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2246                                        const VarDecl *D,
2247                                        llvm::GlobalVariable *Addr);
2248
2249  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2250
2251  void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2252                                  const Expr *Exp);
2253
2254  RValue EmitExprWithCleanups(const ExprWithCleanups *E,
2255                              AggValueSlot Slot =AggValueSlot::ignored());
2256
2257  void EmitCXXThrowExpr(const CXXThrowExpr *E);
2258
2259  //===--------------------------------------------------------------------===//
2260  //                             Internal Helpers
2261  //===--------------------------------------------------------------------===//
2262
2263  /// ContainsLabel - Return true if the statement contains a label in it.  If
2264  /// this statement is not executed normally, it not containing a label means
2265  /// that we can just remove the code.
2266  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2267
2268  /// containsBreak - Return true if the statement contains a break out of it.
2269  /// If the statement (recursively) contains a switch or loop with a break
2270  /// inside of it, this is fine.
2271  static bool containsBreak(const Stmt *S);
2272
2273  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2274  /// to a constant, or if it does but contains a label, return false.  If it
2275  /// constant folds return true and set the boolean result in Result.
2276  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2277
2278  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2279  /// to a constant, or if it does but contains a label, return false.  If it
2280  /// constant folds return true and set the folded value.
2281  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result);
2282
2283  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2284  /// if statement) to the specified blocks.  Based on the condition, this might
2285  /// try to simplify the codegen of the conditional based on the branch.
2286  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2287                            llvm::BasicBlock *FalseBlock);
2288
2289  /// getTrapBB - Create a basic block that will call the trap intrinsic.  We'll
2290  /// generate a branch around the created basic block as necessary.
2291  llvm::BasicBlock *getTrapBB();
2292
2293  /// EmitCallArg - Emit a single call argument.
2294  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2295
2296  /// EmitDelegateCallArg - We are performing a delegate call; that
2297  /// is, the current function is delegating to another one.  Produce
2298  /// a r-value suitable for passing the given parameter.
2299  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
2300
2301private:
2302  void EmitReturnOfRValue(RValue RV, QualType Ty);
2303
2304  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2305  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2306  ///
2307  /// \param AI - The first function argument of the expansion.
2308  /// \return The argument following the last expanded function
2309  /// argument.
2310  llvm::Function::arg_iterator
2311  ExpandTypeFromArgs(QualType Ty, LValue Dst,
2312                     llvm::Function::arg_iterator AI);
2313
2314  /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2315  /// Ty, into individual arguments on the provided vector \arg Args. See
2316  /// ABIArgInfo::Expand.
2317  void ExpandTypeToArgs(QualType Ty, RValue Src,
2318                        llvm::SmallVector<llvm::Value*, 16> &Args,
2319                        llvm::FunctionType *IRFuncTy);
2320
2321  llvm::Value* EmitAsmInput(const AsmStmt &S,
2322                            const TargetInfo::ConstraintInfo &Info,
2323                            const Expr *InputExpr, std::string &ConstraintStr);
2324
2325  llvm::Value* EmitAsmInputLValue(const AsmStmt &S,
2326                                  const TargetInfo::ConstraintInfo &Info,
2327                                  LValue InputValue, QualType InputType,
2328                                  std::string &ConstraintStr);
2329
2330  /// EmitCallArgs - Emit call arguments for a function.
2331  /// The CallArgTypeInfo parameter is used for iterating over the known
2332  /// argument types of the function being called.
2333  template<typename T>
2334  void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2335                    CallExpr::const_arg_iterator ArgBeg,
2336                    CallExpr::const_arg_iterator ArgEnd) {
2337      CallExpr::const_arg_iterator Arg = ArgBeg;
2338
2339    // First, use the argument types that the type info knows about
2340    if (CallArgTypeInfo) {
2341      for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2342           E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2343        assert(Arg != ArgEnd && "Running over edge of argument list!");
2344        QualType ArgType = *I;
2345#ifndef NDEBUG
2346        QualType ActualArgType = Arg->getType();
2347        if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2348          QualType ActualBaseType =
2349            ActualArgType->getAs<PointerType>()->getPointeeType();
2350          QualType ArgBaseType =
2351            ArgType->getAs<PointerType>()->getPointeeType();
2352          if (ArgBaseType->isVariableArrayType()) {
2353            if (const VariableArrayType *VAT =
2354                getContext().getAsVariableArrayType(ActualBaseType)) {
2355              if (!VAT->getSizeExpr())
2356                ActualArgType = ArgType;
2357            }
2358          }
2359        }
2360        assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2361               getTypePtr() ==
2362               getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2363               "type mismatch in call argument!");
2364#endif
2365        EmitCallArg(Args, *Arg, ArgType);
2366      }
2367
2368      // Either we've emitted all the call args, or we have a call to a
2369      // variadic function.
2370      assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2371             "Extra arguments in non-variadic function!");
2372
2373    }
2374
2375    // If we still have any arguments, emit them using the type of the argument.
2376    for (; Arg != ArgEnd; ++Arg)
2377      EmitCallArg(Args, *Arg, Arg->getType());
2378  }
2379
2380  const TargetCodeGenInfo &getTargetHooks() const {
2381    return CGM.getTargetCodeGenInfo();
2382  }
2383
2384  void EmitDeclMetadata();
2385
2386  CodeGenModule::ByrefHelpers *
2387  buildByrefHelpers(const llvm::StructType &byrefType,
2388                    const AutoVarEmission &emission);
2389};
2390
2391/// Helper class with most of the code for saving a value for a
2392/// conditional expression cleanup.
2393struct DominatingLLVMValue {
2394  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2395
2396  /// Answer whether the given value needs extra work to be saved.
2397  static bool needsSaving(llvm::Value *value) {
2398    // If it's not an instruction, we don't need to save.
2399    if (!isa<llvm::Instruction>(value)) return false;
2400
2401    // If it's an instruction in the entry block, we don't need to save.
2402    llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2403    return (block != &block->getParent()->getEntryBlock());
2404  }
2405
2406  /// Try to save the given value.
2407  static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2408    if (!needsSaving(value)) return saved_type(value, false);
2409
2410    // Otherwise we need an alloca.
2411    llvm::Value *alloca =
2412      CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2413    CGF.Builder.CreateStore(value, alloca);
2414
2415    return saved_type(alloca, true);
2416  }
2417
2418  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2419    if (!value.getInt()) return value.getPointer();
2420    return CGF.Builder.CreateLoad(value.getPointer());
2421  }
2422};
2423
2424/// A partial specialization of DominatingValue for llvm::Values that
2425/// might be llvm::Instructions.
2426template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2427  typedef T *type;
2428  static type restore(CodeGenFunction &CGF, saved_type value) {
2429    return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2430  }
2431};
2432
2433/// A specialization of DominatingValue for RValue.
2434template <> struct DominatingValue<RValue> {
2435  typedef RValue type;
2436  class saved_type {
2437    enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2438                AggregateAddress, ComplexAddress };
2439
2440    llvm::Value *Value;
2441    Kind K;
2442    saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2443
2444  public:
2445    static bool needsSaving(RValue value);
2446    static saved_type save(CodeGenFunction &CGF, RValue value);
2447    RValue restore(CodeGenFunction &CGF);
2448
2449    // implementations in CGExprCXX.cpp
2450  };
2451
2452  static bool needsSaving(type value) {
2453    return saved_type::needsSaving(value);
2454  }
2455  static saved_type save(CodeGenFunction &CGF, type value) {
2456    return saved_type::save(CGF, value);
2457  }
2458  static type restore(CodeGenFunction &CGF, saved_type value) {
2459    return value.restore(CGF);
2460  }
2461};
2462
2463}  // end namespace CodeGen
2464}  // end namespace clang
2465
2466#endif
2467