CodeGenFunction.h revision 811bf3669f4d82c57fe3cd3c49050fdbc95d0aff
1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This is the internal per-function state used for llvm translation. 11// 12//===----------------------------------------------------------------------===// 13 14#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H 15#define CLANG_CODEGEN_CODEGENFUNCTION_H 16 17#include "clang/AST/Type.h" 18#include "clang/AST/ExprCXX.h" 19#include "clang/AST/ExprObjC.h" 20#include "clang/AST/CharUnits.h" 21#include "clang/Frontend/CodeGenOptions.h" 22#include "clang/Basic/ABI.h" 23#include "clang/Basic/TargetInfo.h" 24#include "llvm/ADT/DenseMap.h" 25#include "llvm/ADT/SmallVector.h" 26#include "llvm/Support/ValueHandle.h" 27#include "CodeGenModule.h" 28#include "CGBuilder.h" 29#include "CGValue.h" 30 31namespace llvm { 32 class BasicBlock; 33 class LLVMContext; 34 class MDNode; 35 class Module; 36 class SwitchInst; 37 class Twine; 38 class Value; 39 class CallSite; 40} 41 42namespace clang { 43 class APValue; 44 class ASTContext; 45 class CXXDestructorDecl; 46 class CXXForRangeStmt; 47 class CXXTryStmt; 48 class Decl; 49 class LabelDecl; 50 class EnumConstantDecl; 51 class FunctionDecl; 52 class FunctionProtoType; 53 class LabelStmt; 54 class ObjCContainerDecl; 55 class ObjCInterfaceDecl; 56 class ObjCIvarDecl; 57 class ObjCMethodDecl; 58 class ObjCImplementationDecl; 59 class ObjCPropertyImplDecl; 60 class TargetInfo; 61 class TargetCodeGenInfo; 62 class VarDecl; 63 class ObjCForCollectionStmt; 64 class ObjCAtTryStmt; 65 class ObjCAtThrowStmt; 66 class ObjCAtSynchronizedStmt; 67 class ObjCAutoreleasePoolStmt; 68 69namespace CodeGen { 70 class CodeGenTypes; 71 class CGDebugInfo; 72 class CGFunctionInfo; 73 class CGRecordLayout; 74 class CGBlockInfo; 75 class CGCXXABI; 76 class BlockFlags; 77 class BlockFieldFlags; 78 79/// A branch fixup. These are required when emitting a goto to a 80/// label which hasn't been emitted yet. The goto is optimistically 81/// emitted as a branch to the basic block for the label, and (if it 82/// occurs in a scope with non-trivial cleanups) a fixup is added to 83/// the innermost cleanup. When a (normal) cleanup is popped, any 84/// unresolved fixups in that scope are threaded through the cleanup. 85struct BranchFixup { 86 /// The block containing the terminator which needs to be modified 87 /// into a switch if this fixup is resolved into the current scope. 88 /// If null, LatestBranch points directly to the destination. 89 llvm::BasicBlock *OptimisticBranchBlock; 90 91 /// The ultimate destination of the branch. 92 /// 93 /// This can be set to null to indicate that this fixup was 94 /// successfully resolved. 95 llvm::BasicBlock *Destination; 96 97 /// The destination index value. 98 unsigned DestinationIndex; 99 100 /// The initial branch of the fixup. 101 llvm::BranchInst *InitialBranch; 102}; 103 104template <class T> struct InvariantValue { 105 typedef T type; 106 typedef T saved_type; 107 static bool needsSaving(type value) { return false; } 108 static saved_type save(CodeGenFunction &CGF, type value) { return value; } 109 static type restore(CodeGenFunction &CGF, saved_type value) { return value; } 110}; 111 112/// A metaprogramming class for ensuring that a value will dominate an 113/// arbitrary position in a function. 114template <class T> struct DominatingValue : InvariantValue<T> {}; 115 116template <class T, bool mightBeInstruction = 117 llvm::is_base_of<llvm::Value, T>::value && 118 !llvm::is_base_of<llvm::Constant, T>::value && 119 !llvm::is_base_of<llvm::BasicBlock, T>::value> 120struct DominatingPointer; 121template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {}; 122// template <class T> struct DominatingPointer<T,true> at end of file 123 124template <class T> struct DominatingValue<T*> : DominatingPointer<T> {}; 125 126enum CleanupKind { 127 EHCleanup = 0x1, 128 NormalCleanup = 0x2, 129 NormalAndEHCleanup = EHCleanup | NormalCleanup, 130 131 InactiveCleanup = 0x4, 132 InactiveEHCleanup = EHCleanup | InactiveCleanup, 133 InactiveNormalCleanup = NormalCleanup | InactiveCleanup, 134 InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup 135}; 136 137/// A stack of scopes which respond to exceptions, including cleanups 138/// and catch blocks. 139class EHScopeStack { 140public: 141 /// A saved depth on the scope stack. This is necessary because 142 /// pushing scopes onto the stack invalidates iterators. 143 class stable_iterator { 144 friend class EHScopeStack; 145 146 /// Offset from StartOfData to EndOfBuffer. 147 ptrdiff_t Size; 148 149 stable_iterator(ptrdiff_t Size) : Size(Size) {} 150 151 public: 152 static stable_iterator invalid() { return stable_iterator(-1); } 153 stable_iterator() : Size(-1) {} 154 155 bool isValid() const { return Size >= 0; } 156 157 /// Returns true if this scope encloses I. 158 /// Returns false if I is invalid. 159 /// This scope must be valid. 160 bool encloses(stable_iterator I) const { return Size <= I.Size; } 161 162 /// Returns true if this scope strictly encloses I: that is, 163 /// if it encloses I and is not I. 164 /// Returns false is I is invalid. 165 /// This scope must be valid. 166 bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; } 167 168 friend bool operator==(stable_iterator A, stable_iterator B) { 169 return A.Size == B.Size; 170 } 171 friend bool operator!=(stable_iterator A, stable_iterator B) { 172 return A.Size != B.Size; 173 } 174 }; 175 176 /// Information for lazily generating a cleanup. Subclasses must be 177 /// POD-like: cleanups will not be destructed, and they will be 178 /// allocated on the cleanup stack and freely copied and moved 179 /// around. 180 /// 181 /// Cleanup implementations should generally be declared in an 182 /// anonymous namespace. 183 class Cleanup { 184 // Anchor the construction vtable. 185 virtual void anchor(); 186 public: 187 // Provide a virtual destructor to suppress a very common warning 188 // that unfortunately cannot be suppressed without this. Cleanups 189 // should not rely on this destructor ever being called. 190 virtual ~Cleanup() {} 191 192 /// Emit the cleanup. For normal cleanups, this is run in the 193 /// same EH context as when the cleanup was pushed, i.e. the 194 /// immediately-enclosing context of the cleanup scope. For 195 /// EH cleanups, this is run in a terminate context. 196 /// 197 // \param IsForEHCleanup true if this is for an EH cleanup, false 198 /// if for a normal cleanup. 199 virtual void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) = 0; 200 }; 201 202 /// ConditionalCleanupN stores the saved form of its N parameters, 203 /// then restores them and performs the cleanup. 204 template <class T, class A0> 205 class ConditionalCleanup1 : public Cleanup { 206 typedef typename DominatingValue<A0>::saved_type A0_saved; 207 A0_saved a0_saved; 208 209 void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) { 210 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 211 T(a0).Emit(CGF, IsForEHCleanup); 212 } 213 214 public: 215 ConditionalCleanup1(A0_saved a0) 216 : a0_saved(a0) {} 217 }; 218 219 template <class T, class A0, class A1> 220 class ConditionalCleanup2 : public Cleanup { 221 typedef typename DominatingValue<A0>::saved_type A0_saved; 222 typedef typename DominatingValue<A1>::saved_type A1_saved; 223 A0_saved a0_saved; 224 A1_saved a1_saved; 225 226 void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) { 227 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 228 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 229 T(a0, a1).Emit(CGF, IsForEHCleanup); 230 } 231 232 public: 233 ConditionalCleanup2(A0_saved a0, A1_saved a1) 234 : a0_saved(a0), a1_saved(a1) {} 235 }; 236 237 template <class T, class A0, class A1, class A2> 238 class ConditionalCleanup3 : public Cleanup { 239 typedef typename DominatingValue<A0>::saved_type A0_saved; 240 typedef typename DominatingValue<A1>::saved_type A1_saved; 241 typedef typename DominatingValue<A2>::saved_type A2_saved; 242 A0_saved a0_saved; 243 A1_saved a1_saved; 244 A2_saved a2_saved; 245 246 void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) { 247 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 248 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 249 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 250 T(a0, a1, a2).Emit(CGF, IsForEHCleanup); 251 } 252 253 public: 254 ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2) 255 : a0_saved(a0), a1_saved(a1), a2_saved(a2) {} 256 }; 257 258private: 259 // The implementation for this class is in CGException.h and 260 // CGException.cpp; the definition is here because it's used as a 261 // member of CodeGenFunction. 262 263 /// The start of the scope-stack buffer, i.e. the allocated pointer 264 /// for the buffer. All of these pointers are either simultaneously 265 /// null or simultaneously valid. 266 char *StartOfBuffer; 267 268 /// The end of the buffer. 269 char *EndOfBuffer; 270 271 /// The first valid entry in the buffer. 272 char *StartOfData; 273 274 /// The innermost normal cleanup on the stack. 275 stable_iterator InnermostNormalCleanup; 276 277 /// The innermost EH cleanup on the stack. 278 stable_iterator InnermostEHCleanup; 279 280 /// The number of catches on the stack. 281 unsigned CatchDepth; 282 283 /// The current EH destination index. Reset to FirstCatchIndex 284 /// whenever the last EH cleanup is popped. 285 unsigned NextEHDestIndex; 286 enum { FirstEHDestIndex = 1 }; 287 288 /// The current set of branch fixups. A branch fixup is a jump to 289 /// an as-yet unemitted label, i.e. a label for which we don't yet 290 /// know the EH stack depth. Whenever we pop a cleanup, we have 291 /// to thread all the current branch fixups through it. 292 /// 293 /// Fixups are recorded as the Use of the respective branch or 294 /// switch statement. The use points to the final destination. 295 /// When popping out of a cleanup, these uses are threaded through 296 /// the cleanup and adjusted to point to the new cleanup. 297 /// 298 /// Note that branches are allowed to jump into protected scopes 299 /// in certain situations; e.g. the following code is legal: 300 /// struct A { ~A(); }; // trivial ctor, non-trivial dtor 301 /// goto foo; 302 /// A a; 303 /// foo: 304 /// bar(); 305 llvm::SmallVector<BranchFixup, 8> BranchFixups; 306 307 char *allocate(size_t Size); 308 309 void *pushCleanup(CleanupKind K, size_t DataSize); 310 311public: 312 EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0), 313 InnermostNormalCleanup(stable_end()), 314 InnermostEHCleanup(stable_end()), 315 CatchDepth(0), NextEHDestIndex(FirstEHDestIndex) {} 316 ~EHScopeStack() { delete[] StartOfBuffer; } 317 318 // Variadic templates would make this not terrible. 319 320 /// Push a lazily-created cleanup on the stack. 321 template <class T> 322 void pushCleanup(CleanupKind Kind) { 323 void *Buffer = pushCleanup(Kind, sizeof(T)); 324 Cleanup *Obj = new(Buffer) T(); 325 (void) Obj; 326 } 327 328 /// Push a lazily-created cleanup on the stack. 329 template <class T, class A0> 330 void pushCleanup(CleanupKind Kind, A0 a0) { 331 void *Buffer = pushCleanup(Kind, sizeof(T)); 332 Cleanup *Obj = new(Buffer) T(a0); 333 (void) Obj; 334 } 335 336 /// Push a lazily-created cleanup on the stack. 337 template <class T, class A0, class A1> 338 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) { 339 void *Buffer = pushCleanup(Kind, sizeof(T)); 340 Cleanup *Obj = new(Buffer) T(a0, a1); 341 (void) Obj; 342 } 343 344 /// Push a lazily-created cleanup on the stack. 345 template <class T, class A0, class A1, class A2> 346 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) { 347 void *Buffer = pushCleanup(Kind, sizeof(T)); 348 Cleanup *Obj = new(Buffer) T(a0, a1, a2); 349 (void) Obj; 350 } 351 352 /// Push a lazily-created cleanup on the stack. 353 template <class T, class A0, class A1, class A2, class A3> 354 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) { 355 void *Buffer = pushCleanup(Kind, sizeof(T)); 356 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3); 357 (void) Obj; 358 } 359 360 /// Push a lazily-created cleanup on the stack. 361 template <class T, class A0, class A1, class A2, class A3, class A4> 362 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) { 363 void *Buffer = pushCleanup(Kind, sizeof(T)); 364 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4); 365 (void) Obj; 366 } 367 368 // Feel free to add more variants of the following: 369 370 /// Push a cleanup with non-constant storage requirements on the 371 /// stack. The cleanup type must provide an additional static method: 372 /// static size_t getExtraSize(size_t); 373 /// The argument to this method will be the value N, which will also 374 /// be passed as the first argument to the constructor. 375 /// 376 /// The data stored in the extra storage must obey the same 377 /// restrictions as normal cleanup member data. 378 /// 379 /// The pointer returned from this method is valid until the cleanup 380 /// stack is modified. 381 template <class T, class A0, class A1, class A2> 382 T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) { 383 void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N)); 384 return new (Buffer) T(N, a0, a1, a2); 385 } 386 387 /// Pops a cleanup scope off the stack. This should only be called 388 /// by CodeGenFunction::PopCleanupBlock. 389 void popCleanup(); 390 391 /// Push a set of catch handlers on the stack. The catch is 392 /// uninitialized and will need to have the given number of handlers 393 /// set on it. 394 class EHCatchScope *pushCatch(unsigned NumHandlers); 395 396 /// Pops a catch scope off the stack. 397 void popCatch(); 398 399 /// Push an exceptions filter on the stack. 400 class EHFilterScope *pushFilter(unsigned NumFilters); 401 402 /// Pops an exceptions filter off the stack. 403 void popFilter(); 404 405 /// Push a terminate handler on the stack. 406 void pushTerminate(); 407 408 /// Pops a terminate handler off the stack. 409 void popTerminate(); 410 411 /// Determines whether the exception-scopes stack is empty. 412 bool empty() const { return StartOfData == EndOfBuffer; } 413 414 bool requiresLandingPad() const { 415 return (CatchDepth || hasEHCleanups()); 416 } 417 418 /// Determines whether there are any normal cleanups on the stack. 419 bool hasNormalCleanups() const { 420 return InnermostNormalCleanup != stable_end(); 421 } 422 423 /// Returns the innermost normal cleanup on the stack, or 424 /// stable_end() if there are no normal cleanups. 425 stable_iterator getInnermostNormalCleanup() const { 426 return InnermostNormalCleanup; 427 } 428 stable_iterator getInnermostActiveNormalCleanup() const; // CGException.h 429 430 /// Determines whether there are any EH cleanups on the stack. 431 bool hasEHCleanups() const { 432 return InnermostEHCleanup != stable_end(); 433 } 434 435 /// Returns the innermost EH cleanup on the stack, or stable_end() 436 /// if there are no EH cleanups. 437 stable_iterator getInnermostEHCleanup() const { 438 return InnermostEHCleanup; 439 } 440 stable_iterator getInnermostActiveEHCleanup() const; // CGException.h 441 442 /// An unstable reference to a scope-stack depth. Invalidated by 443 /// pushes but not pops. 444 class iterator; 445 446 /// Returns an iterator pointing to the innermost EH scope. 447 iterator begin() const; 448 449 /// Returns an iterator pointing to the outermost EH scope. 450 iterator end() const; 451 452 /// Create a stable reference to the top of the EH stack. The 453 /// returned reference is valid until that scope is popped off the 454 /// stack. 455 stable_iterator stable_begin() const { 456 return stable_iterator(EndOfBuffer - StartOfData); 457 } 458 459 /// Create a stable reference to the bottom of the EH stack. 460 static stable_iterator stable_end() { 461 return stable_iterator(0); 462 } 463 464 /// Translates an iterator into a stable_iterator. 465 stable_iterator stabilize(iterator it) const; 466 467 /// Finds the nearest cleanup enclosing the given iterator. 468 /// Returns stable_iterator::invalid() if there are no such cleanups. 469 stable_iterator getEnclosingEHCleanup(iterator it) const; 470 471 /// Turn a stable reference to a scope depth into a unstable pointer 472 /// to the EH stack. 473 iterator find(stable_iterator save) const; 474 475 /// Removes the cleanup pointed to by the given stable_iterator. 476 void removeCleanup(stable_iterator save); 477 478 /// Add a branch fixup to the current cleanup scope. 479 BranchFixup &addBranchFixup() { 480 assert(hasNormalCleanups() && "adding fixup in scope without cleanups"); 481 BranchFixups.push_back(BranchFixup()); 482 return BranchFixups.back(); 483 } 484 485 unsigned getNumBranchFixups() const { return BranchFixups.size(); } 486 BranchFixup &getBranchFixup(unsigned I) { 487 assert(I < getNumBranchFixups()); 488 return BranchFixups[I]; 489 } 490 491 /// Pops lazily-removed fixups from the end of the list. This 492 /// should only be called by procedures which have just popped a 493 /// cleanup or resolved one or more fixups. 494 void popNullFixups(); 495 496 /// Clears the branch-fixups list. This should only be called by 497 /// ResolveAllBranchFixups. 498 void clearFixups() { BranchFixups.clear(); } 499 500 /// Gets the next EH destination index. 501 unsigned getNextEHDestIndex() { return NextEHDestIndex++; } 502}; 503 504/// CodeGenFunction - This class organizes the per-function state that is used 505/// while generating LLVM code. 506class CodeGenFunction : public CodeGenTypeCache { 507 CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT 508 void operator=(const CodeGenFunction&); // DO NOT IMPLEMENT 509 510 friend class CGCXXABI; 511public: 512 /// A jump destination is an abstract label, branching to which may 513 /// require a jump out through normal cleanups. 514 struct JumpDest { 515 JumpDest() : Block(0), ScopeDepth(), Index(0) {} 516 JumpDest(llvm::BasicBlock *Block, 517 EHScopeStack::stable_iterator Depth, 518 unsigned Index) 519 : Block(Block), ScopeDepth(Depth), Index(Index) {} 520 521 bool isValid() const { return Block != 0; } 522 llvm::BasicBlock *getBlock() const { return Block; } 523 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 524 unsigned getDestIndex() const { return Index; } 525 526 private: 527 llvm::BasicBlock *Block; 528 EHScopeStack::stable_iterator ScopeDepth; 529 unsigned Index; 530 }; 531 532 /// An unwind destination is an abstract label, branching to which 533 /// may require a jump out through EH cleanups. 534 struct UnwindDest { 535 UnwindDest() : Block(0), ScopeDepth(), Index(0) {} 536 UnwindDest(llvm::BasicBlock *Block, 537 EHScopeStack::stable_iterator Depth, 538 unsigned Index) 539 : Block(Block), ScopeDepth(Depth), Index(Index) {} 540 541 bool isValid() const { return Block != 0; } 542 llvm::BasicBlock *getBlock() const { return Block; } 543 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 544 unsigned getDestIndex() const { return Index; } 545 546 private: 547 llvm::BasicBlock *Block; 548 EHScopeStack::stable_iterator ScopeDepth; 549 unsigned Index; 550 }; 551 552 CodeGenModule &CGM; // Per-module state. 553 const TargetInfo &Target; 554 555 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 556 CGBuilderTy Builder; 557 558 /// CurFuncDecl - Holds the Decl for the current function or ObjC method. 559 /// This excludes BlockDecls. 560 const Decl *CurFuncDecl; 561 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 562 const Decl *CurCodeDecl; 563 const CGFunctionInfo *CurFnInfo; 564 QualType FnRetTy; 565 llvm::Function *CurFn; 566 567 /// CurGD - The GlobalDecl for the current function being compiled. 568 GlobalDecl CurGD; 569 570 /// PrologueCleanupDepth - The cleanup depth enclosing all the 571 /// cleanups associated with the parameters. 572 EHScopeStack::stable_iterator PrologueCleanupDepth; 573 574 /// ReturnBlock - Unified return block. 575 JumpDest ReturnBlock; 576 577 /// ReturnValue - The temporary alloca to hold the return value. This is null 578 /// iff the function has no return value. 579 llvm::Value *ReturnValue; 580 581 /// RethrowBlock - Unified rethrow block. 582 UnwindDest RethrowBlock; 583 584 /// AllocaInsertPoint - This is an instruction in the entry block before which 585 /// we prefer to insert allocas. 586 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 587 588 bool CatchUndefined; 589 590 /// In ARC, whether we should autorelease the return value. 591 bool AutoreleaseResult; 592 593 const CodeGen::CGBlockInfo *BlockInfo; 594 llvm::Value *BlockPointer; 595 596 /// \brief A mapping from NRVO variables to the flags used to indicate 597 /// when the NRVO has been applied to this variable. 598 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 599 600 EHScopeStack EHStack; 601 602 /// i32s containing the indexes of the cleanup destinations. 603 llvm::AllocaInst *NormalCleanupDest; 604 llvm::AllocaInst *EHCleanupDest; 605 606 unsigned NextCleanupDestIndex; 607 608 /// The exception slot. All landing pads write the current 609 /// exception pointer into this alloca. 610 llvm::Value *ExceptionSlot; 611 612 /// The selector slot. Under the MandatoryCleanup model, all 613 /// landing pads write the current selector value into this alloca. 614 llvm::AllocaInst *EHSelectorSlot; 615 616 /// Emits a landing pad for the current EH stack. 617 llvm::BasicBlock *EmitLandingPad(); 618 619 llvm::BasicBlock *getInvokeDestImpl(); 620 621 /// Set up the last cleaup that was pushed as a conditional 622 /// full-expression cleanup. 623 void initFullExprCleanup(); 624 625 template <class T> 626 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 627 return DominatingValue<T>::save(*this, value); 628 } 629 630public: 631 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 632 /// rethrows. 633 llvm::SmallVector<llvm::Value*, 8> ObjCEHValueStack; 634 635 /// A class controlling the emission of a finally block. 636 class FinallyInfo { 637 /// Where the catchall's edge through the cleanup should go. 638 JumpDest RethrowDest; 639 640 /// A function to call to enter the catch. 641 llvm::Constant *BeginCatchFn; 642 643 /// An i1 variable indicating whether or not the @finally is 644 /// running for an exception. 645 llvm::AllocaInst *ForEHVar; 646 647 /// An i8* variable into which the exception pointer to rethrow 648 /// has been saved. 649 llvm::AllocaInst *SavedExnVar; 650 651 public: 652 void enter(CodeGenFunction &CGF, const Stmt *Finally, 653 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 654 llvm::Constant *rethrowFn); 655 void exit(CodeGenFunction &CGF); 656 }; 657 658 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 659 /// current full-expression. Safe against the possibility that 660 /// we're currently inside a conditionally-evaluated expression. 661 template <class T, class A0> 662 void pushFullExprCleanup(CleanupKind kind, A0 a0) { 663 // If we're not in a conditional branch, or if none of the 664 // arguments requires saving, then use the unconditional cleanup. 665 if (!isInConditionalBranch()) 666 return EHStack.pushCleanup<T>(kind, a0); 667 668 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 669 670 typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType; 671 EHStack.pushCleanup<CleanupType>(kind, a0_saved); 672 initFullExprCleanup(); 673 } 674 675 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 676 /// current full-expression. Safe against the possibility that 677 /// we're currently inside a conditionally-evaluated expression. 678 template <class T, class A0, class A1> 679 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) { 680 // If we're not in a conditional branch, or if none of the 681 // arguments requires saving, then use the unconditional cleanup. 682 if (!isInConditionalBranch()) 683 return EHStack.pushCleanup<T>(kind, a0, a1); 684 685 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 686 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 687 688 typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType; 689 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved); 690 initFullExprCleanup(); 691 } 692 693 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 694 /// current full-expression. Safe against the possibility that 695 /// we're currently inside a conditionally-evaluated expression. 696 template <class T, class A0, class A1, class A2> 697 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) { 698 // If we're not in a conditional branch, or if none of the 699 // arguments requires saving, then use the unconditional cleanup. 700 if (!isInConditionalBranch()) { 701 return EHStack.pushCleanup<T>(kind, a0, a1, a2); 702 } 703 704 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 705 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 706 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 707 708 typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType; 709 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved); 710 initFullExprCleanup(); 711 } 712 713 /// PushDestructorCleanup - Push a cleanup to call the 714 /// complete-object destructor of an object of the given type at the 715 /// given address. Does nothing if T is not a C++ class type with a 716 /// non-trivial destructor. 717 void PushDestructorCleanup(QualType T, llvm::Value *Addr); 718 719 /// PushDestructorCleanup - Push a cleanup to call the 720 /// complete-object variant of the given destructor on the object at 721 /// the given address. 722 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, 723 llvm::Value *Addr); 724 725 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 726 /// process all branch fixups. 727 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 728 729 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 730 /// The block cannot be reactivated. Pops it if it's the top of the 731 /// stack. 732 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup); 733 734 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 735 /// Cannot be used to resurrect a deactivated cleanup. 736 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup); 737 738 /// \brief Enters a new scope for capturing cleanups, all of which 739 /// will be executed once the scope is exited. 740 class RunCleanupsScope { 741 CodeGenFunction& CGF; 742 EHScopeStack::stable_iterator CleanupStackDepth; 743 bool OldDidCallStackSave; 744 bool PerformCleanup; 745 746 RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT 747 RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT 748 749 public: 750 /// \brief Enter a new cleanup scope. 751 explicit RunCleanupsScope(CodeGenFunction &CGF) 752 : CGF(CGF), PerformCleanup(true) 753 { 754 CleanupStackDepth = CGF.EHStack.stable_begin(); 755 OldDidCallStackSave = CGF.DidCallStackSave; 756 CGF.DidCallStackSave = false; 757 } 758 759 /// \brief Exit this cleanup scope, emitting any accumulated 760 /// cleanups. 761 ~RunCleanupsScope() { 762 if (PerformCleanup) { 763 CGF.DidCallStackSave = OldDidCallStackSave; 764 CGF.PopCleanupBlocks(CleanupStackDepth); 765 } 766 } 767 768 /// \brief Determine whether this scope requires any cleanups. 769 bool requiresCleanups() const { 770 return CGF.EHStack.stable_begin() != CleanupStackDepth; 771 } 772 773 /// \brief Force the emission of cleanups now, instead of waiting 774 /// until this object is destroyed. 775 void ForceCleanup() { 776 assert(PerformCleanup && "Already forced cleanup"); 777 CGF.DidCallStackSave = OldDidCallStackSave; 778 CGF.PopCleanupBlocks(CleanupStackDepth); 779 PerformCleanup = false; 780 } 781 }; 782 783 784 /// PopCleanupBlocks - Takes the old cleanup stack size and emits 785 /// the cleanup blocks that have been added. 786 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 787 788 void ResolveBranchFixups(llvm::BasicBlock *Target); 789 790 /// The given basic block lies in the current EH scope, but may be a 791 /// target of a potentially scope-crossing jump; get a stable handle 792 /// to which we can perform this jump later. 793 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 794 return JumpDest(Target, 795 EHStack.getInnermostNormalCleanup(), 796 NextCleanupDestIndex++); 797 } 798 799 /// The given basic block lies in the current EH scope, but may be a 800 /// target of a potentially scope-crossing jump; get a stable handle 801 /// to which we can perform this jump later. 802 JumpDest getJumpDestInCurrentScope(llvm::StringRef Name = llvm::StringRef()) { 803 return getJumpDestInCurrentScope(createBasicBlock(Name)); 804 } 805 806 /// EmitBranchThroughCleanup - Emit a branch from the current insert 807 /// block through the normal cleanup handling code (if any) and then 808 /// on to \arg Dest. 809 void EmitBranchThroughCleanup(JumpDest Dest); 810 811 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 812 /// specified destination obviously has no cleanups to run. 'false' is always 813 /// a conservatively correct answer for this method. 814 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 815 816 /// EmitBranchThroughEHCleanup - Emit a branch from the current 817 /// insert block through the EH cleanup handling code (if any) and 818 /// then on to \arg Dest. 819 void EmitBranchThroughEHCleanup(UnwindDest Dest); 820 821 /// getRethrowDest - Returns the unified outermost-scope rethrow 822 /// destination. 823 UnwindDest getRethrowDest(); 824 825 /// An object to manage conditionally-evaluated expressions. 826 class ConditionalEvaluation { 827 llvm::BasicBlock *StartBB; 828 829 public: 830 ConditionalEvaluation(CodeGenFunction &CGF) 831 : StartBB(CGF.Builder.GetInsertBlock()) {} 832 833 void begin(CodeGenFunction &CGF) { 834 assert(CGF.OutermostConditional != this); 835 if (!CGF.OutermostConditional) 836 CGF.OutermostConditional = this; 837 } 838 839 void end(CodeGenFunction &CGF) { 840 assert(CGF.OutermostConditional != 0); 841 if (CGF.OutermostConditional == this) 842 CGF.OutermostConditional = 0; 843 } 844 845 /// Returns a block which will be executed prior to each 846 /// evaluation of the conditional code. 847 llvm::BasicBlock *getStartingBlock() const { 848 return StartBB; 849 } 850 }; 851 852 /// isInConditionalBranch - Return true if we're currently emitting 853 /// one branch or the other of a conditional expression. 854 bool isInConditionalBranch() const { return OutermostConditional != 0; } 855 856 /// An RAII object to record that we're evaluating a statement 857 /// expression. 858 class StmtExprEvaluation { 859 CodeGenFunction &CGF; 860 861 /// We have to save the outermost conditional: cleanups in a 862 /// statement expression aren't conditional just because the 863 /// StmtExpr is. 864 ConditionalEvaluation *SavedOutermostConditional; 865 866 public: 867 StmtExprEvaluation(CodeGenFunction &CGF) 868 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 869 CGF.OutermostConditional = 0; 870 } 871 872 ~StmtExprEvaluation() { 873 CGF.OutermostConditional = SavedOutermostConditional; 874 CGF.EnsureInsertPoint(); 875 } 876 }; 877 878 /// An object which temporarily prevents a value from being 879 /// destroyed by aggressive peephole optimizations that assume that 880 /// all uses of a value have been realized in the IR. 881 class PeepholeProtection { 882 llvm::Instruction *Inst; 883 friend class CodeGenFunction; 884 885 public: 886 PeepholeProtection() : Inst(0) {} 887 }; 888 889 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 890 class OpaqueValueMapping { 891 CodeGenFunction &CGF; 892 const OpaqueValueExpr *OpaqueValue; 893 bool BoundLValue; 894 CodeGenFunction::PeepholeProtection Protection; 895 896 public: 897 static bool shouldBindAsLValue(const Expr *expr) { 898 return expr->isGLValue() || expr->getType()->isRecordType(); 899 } 900 901 /// Build the opaque value mapping for the given conditional 902 /// operator if it's the GNU ?: extension. This is a common 903 /// enough pattern that the convenience operator is really 904 /// helpful. 905 /// 906 OpaqueValueMapping(CodeGenFunction &CGF, 907 const AbstractConditionalOperator *op) : CGF(CGF) { 908 if (isa<ConditionalOperator>(op)) { 909 OpaqueValue = 0; 910 BoundLValue = false; 911 return; 912 } 913 914 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 915 init(e->getOpaqueValue(), e->getCommon()); 916 } 917 918 OpaqueValueMapping(CodeGenFunction &CGF, 919 const OpaqueValueExpr *opaqueValue, 920 LValue lvalue) 921 : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(true) { 922 assert(opaqueValue && "no opaque value expression!"); 923 assert(shouldBindAsLValue(opaqueValue)); 924 initLValue(lvalue); 925 } 926 927 OpaqueValueMapping(CodeGenFunction &CGF, 928 const OpaqueValueExpr *opaqueValue, 929 RValue rvalue) 930 : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(false) { 931 assert(opaqueValue && "no opaque value expression!"); 932 assert(!shouldBindAsLValue(opaqueValue)); 933 initRValue(rvalue); 934 } 935 936 void pop() { 937 assert(OpaqueValue && "mapping already popped!"); 938 popImpl(); 939 OpaqueValue = 0; 940 } 941 942 ~OpaqueValueMapping() { 943 if (OpaqueValue) popImpl(); 944 } 945 946 private: 947 void popImpl() { 948 if (BoundLValue) 949 CGF.OpaqueLValues.erase(OpaqueValue); 950 else { 951 CGF.OpaqueRValues.erase(OpaqueValue); 952 CGF.unprotectFromPeepholes(Protection); 953 } 954 } 955 956 void init(const OpaqueValueExpr *ov, const Expr *e) { 957 OpaqueValue = ov; 958 BoundLValue = shouldBindAsLValue(ov); 959 assert(BoundLValue == shouldBindAsLValue(e) 960 && "inconsistent expression value kinds!"); 961 if (BoundLValue) 962 initLValue(CGF.EmitLValue(e)); 963 else 964 initRValue(CGF.EmitAnyExpr(e)); 965 } 966 967 void initLValue(const LValue &lv) { 968 CGF.OpaqueLValues.insert(std::make_pair(OpaqueValue, lv)); 969 } 970 971 void initRValue(const RValue &rv) { 972 // Work around an extremely aggressive peephole optimization in 973 // EmitScalarConversion which assumes that all other uses of a 974 // value are extant. 975 Protection = CGF.protectFromPeepholes(rv); 976 CGF.OpaqueRValues.insert(std::make_pair(OpaqueValue, rv)); 977 } 978 }; 979 980 /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field 981 /// number that holds the value. 982 unsigned getByRefValueLLVMField(const ValueDecl *VD) const; 983 984 /// BuildBlockByrefAddress - Computes address location of the 985 /// variable which is declared as __block. 986 llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr, 987 const VarDecl *V); 988private: 989 CGDebugInfo *DebugInfo; 990 bool DisableDebugInfo; 991 992 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 993 /// calling llvm.stacksave for multiple VLAs in the same scope. 994 bool DidCallStackSave; 995 996 /// IndirectBranch - The first time an indirect goto is seen we create a block 997 /// with an indirect branch. Every time we see the address of a label taken, 998 /// we add the label to the indirect goto. Every subsequent indirect goto is 999 /// codegen'd as a jump to the IndirectBranch's basic block. 1000 llvm::IndirectBrInst *IndirectBranch; 1001 1002 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1003 /// decls. 1004 typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy; 1005 DeclMapTy LocalDeclMap; 1006 1007 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1008 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1009 1010 // BreakContinueStack - This keeps track of where break and continue 1011 // statements should jump to. 1012 struct BreakContinue { 1013 BreakContinue(JumpDest Break, JumpDest Continue) 1014 : BreakBlock(Break), ContinueBlock(Continue) {} 1015 1016 JumpDest BreakBlock; 1017 JumpDest ContinueBlock; 1018 }; 1019 llvm::SmallVector<BreakContinue, 8> BreakContinueStack; 1020 1021 /// SwitchInsn - This is nearest current switch instruction. It is null if if 1022 /// current context is not in a switch. 1023 llvm::SwitchInst *SwitchInsn; 1024 1025 /// CaseRangeBlock - This block holds if condition check for last case 1026 /// statement range in current switch instruction. 1027 llvm::BasicBlock *CaseRangeBlock; 1028 1029 /// OpaqueLValues - Keeps track of the current set of opaque value 1030 /// expressions. 1031 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1032 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1033 1034 // VLASizeMap - This keeps track of the associated size for each VLA type. 1035 // We track this by the size expression rather than the type itself because 1036 // in certain situations, like a const qualifier applied to an VLA typedef, 1037 // multiple VLA types can share the same size expression. 1038 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1039 // enter/leave scopes. 1040 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1041 1042 /// A block containing a single 'unreachable' instruction. Created 1043 /// lazily by getUnreachableBlock(). 1044 llvm::BasicBlock *UnreachableBlock; 1045 1046 /// CXXThisDecl - When generating code for a C++ member function, 1047 /// this will hold the implicit 'this' declaration. 1048 ImplicitParamDecl *CXXThisDecl; 1049 llvm::Value *CXXThisValue; 1050 1051 /// CXXVTTDecl - When generating code for a base object constructor or 1052 /// base object destructor with virtual bases, this will hold the implicit 1053 /// VTT parameter. 1054 ImplicitParamDecl *CXXVTTDecl; 1055 llvm::Value *CXXVTTValue; 1056 1057 /// OutermostConditional - Points to the outermost active 1058 /// conditional control. This is used so that we know if a 1059 /// temporary should be destroyed conditionally. 1060 ConditionalEvaluation *OutermostConditional; 1061 1062 1063 /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM 1064 /// type as well as the field number that contains the actual data. 1065 llvm::DenseMap<const ValueDecl *, std::pair<const llvm::Type *, 1066 unsigned> > ByRefValueInfo; 1067 1068 llvm::BasicBlock *TerminateLandingPad; 1069 llvm::BasicBlock *TerminateHandler; 1070 llvm::BasicBlock *TrapBB; 1071 1072public: 1073 CodeGenFunction(CodeGenModule &cgm); 1074 1075 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1076 ASTContext &getContext() const { return CGM.getContext(); } 1077 CGDebugInfo *getDebugInfo() { 1078 if (DisableDebugInfo) 1079 return NULL; 1080 return DebugInfo; 1081 } 1082 void disableDebugInfo() { DisableDebugInfo = true; } 1083 void enableDebugInfo() { DisableDebugInfo = false; } 1084 1085 bool shouldUseFusedARCCalls() { 1086 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1087 } 1088 1089 const LangOptions &getLangOptions() const { return CGM.getLangOptions(); } 1090 1091 /// Returns a pointer to the function's exception object slot, which 1092 /// is assigned in every landing pad. 1093 llvm::Value *getExceptionSlot(); 1094 llvm::Value *getEHSelectorSlot(); 1095 1096 llvm::Value *getNormalCleanupDestSlot(); 1097 llvm::Value *getEHCleanupDestSlot(); 1098 1099 llvm::BasicBlock *getUnreachableBlock() { 1100 if (!UnreachableBlock) { 1101 UnreachableBlock = createBasicBlock("unreachable"); 1102 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1103 } 1104 return UnreachableBlock; 1105 } 1106 1107 llvm::BasicBlock *getInvokeDest() { 1108 if (!EHStack.requiresLandingPad()) return 0; 1109 return getInvokeDestImpl(); 1110 } 1111 1112 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1113 1114 //===--------------------------------------------------------------------===// 1115 // Cleanups 1116 //===--------------------------------------------------------------------===// 1117 1118 typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty); 1119 1120 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1121 llvm::Value *arrayEndPointer, 1122 QualType elementType, 1123 Destroyer &destroyer); 1124 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1125 llvm::Value *arrayEnd, 1126 QualType elementType, 1127 Destroyer &destroyer); 1128 1129 Destroyer &getDestroyer(QualType::DestructionKind destructionKind); 1130 void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type, 1131 Destroyer &destroyer, bool useEHCleanupForArray); 1132 void emitDestroy(llvm::Value *addr, QualType type, Destroyer &destroyer, 1133 bool useEHCleanupForArray); 1134 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1135 QualType type, Destroyer &destroyer, 1136 bool useEHCleanup); 1137 1138 /// Determines whether an EH cleanup is required to destroy a type 1139 /// with the given destruction kind. 1140 bool needsEHCleanup(QualType::DestructionKind kind) { 1141 switch (kind) { 1142 case QualType::DK_none: 1143 return false; 1144 case QualType::DK_cxx_destructor: 1145 case QualType::DK_objc_weak_lifetime: 1146 return getLangOptions().Exceptions; 1147 case QualType::DK_objc_strong_lifetime: 1148 return getLangOptions().Exceptions && 1149 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1150 } 1151 llvm_unreachable("bad destruction kind"); 1152 } 1153 1154 //===--------------------------------------------------------------------===// 1155 // Objective-C 1156 //===--------------------------------------------------------------------===// 1157 1158 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1159 1160 void StartObjCMethod(const ObjCMethodDecl *MD, 1161 const ObjCContainerDecl *CD, 1162 SourceLocation StartLoc); 1163 1164 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1165 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1166 const ObjCPropertyImplDecl *PID); 1167 void GenerateObjCGetterBody(ObjCIvarDecl *Ivar, bool IsAtomic, bool IsStrong); 1168 void GenerateObjCAtomicSetterBody(ObjCMethodDecl *OMD, 1169 ObjCIvarDecl *Ivar); 1170 1171 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1172 ObjCMethodDecl *MD, bool ctor); 1173 1174 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1175 /// for the given property. 1176 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1177 const ObjCPropertyImplDecl *PID); 1178 bool IndirectObjCSetterArg(const CGFunctionInfo &FI); 1179 bool IvarTypeWithAggrGCObjects(QualType Ty); 1180 1181 //===--------------------------------------------------------------------===// 1182 // Block Bits 1183 //===--------------------------------------------------------------------===// 1184 1185 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1186 llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *, 1187 const CGBlockInfo &Info, 1188 const llvm::StructType *, 1189 llvm::Constant *BlockVarLayout); 1190 1191 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1192 const CGBlockInfo &Info, 1193 const Decl *OuterFuncDecl, 1194 const DeclMapTy &ldm); 1195 1196 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1197 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1198 1199 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1200 1201 class AutoVarEmission; 1202 1203 void emitByrefStructureInit(const AutoVarEmission &emission); 1204 void enterByrefCleanup(const AutoVarEmission &emission); 1205 1206 llvm::Value *LoadBlockStruct() { 1207 assert(BlockPointer && "no block pointer set!"); 1208 return BlockPointer; 1209 } 1210 1211 void AllocateBlockCXXThisPointer(const CXXThisExpr *E); 1212 void AllocateBlockDecl(const BlockDeclRefExpr *E); 1213 llvm::Value *GetAddrOfBlockDecl(const BlockDeclRefExpr *E) { 1214 return GetAddrOfBlockDecl(E->getDecl(), E->isByRef()); 1215 } 1216 llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1217 const llvm::Type *BuildByRefType(const VarDecl *var); 1218 1219 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1220 const CGFunctionInfo &FnInfo); 1221 void StartFunction(GlobalDecl GD, QualType RetTy, 1222 llvm::Function *Fn, 1223 const CGFunctionInfo &FnInfo, 1224 const FunctionArgList &Args, 1225 SourceLocation StartLoc); 1226 1227 void EmitConstructorBody(FunctionArgList &Args); 1228 void EmitDestructorBody(FunctionArgList &Args); 1229 void EmitFunctionBody(FunctionArgList &Args); 1230 1231 /// EmitReturnBlock - Emit the unified return block, trying to avoid its 1232 /// emission when possible. 1233 void EmitReturnBlock(); 1234 1235 /// FinishFunction - Complete IR generation of the current function. It is 1236 /// legal to call this function even if there is no current insertion point. 1237 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1238 1239 /// GenerateThunk - Generate a thunk for the given method. 1240 void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1241 GlobalDecl GD, const ThunkInfo &Thunk); 1242 1243 void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1244 GlobalDecl GD, const ThunkInfo &Thunk); 1245 1246 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1247 FunctionArgList &Args); 1248 1249 /// InitializeVTablePointer - Initialize the vtable pointer of the given 1250 /// subobject. 1251 /// 1252 void InitializeVTablePointer(BaseSubobject Base, 1253 const CXXRecordDecl *NearestVBase, 1254 CharUnits OffsetFromNearestVBase, 1255 llvm::Constant *VTable, 1256 const CXXRecordDecl *VTableClass); 1257 1258 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1259 void InitializeVTablePointers(BaseSubobject Base, 1260 const CXXRecordDecl *NearestVBase, 1261 CharUnits OffsetFromNearestVBase, 1262 bool BaseIsNonVirtualPrimaryBase, 1263 llvm::Constant *VTable, 1264 const CXXRecordDecl *VTableClass, 1265 VisitedVirtualBasesSetTy& VBases); 1266 1267 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1268 1269 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1270 /// to by This. 1271 llvm::Value *GetVTablePtr(llvm::Value *This, const llvm::Type *Ty); 1272 1273 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1274 /// given phase of destruction for a destructor. The end result 1275 /// should call destructors on members and base classes in reverse 1276 /// order of their construction. 1277 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1278 1279 /// ShouldInstrumentFunction - Return true if the current function should be 1280 /// instrumented with __cyg_profile_func_* calls 1281 bool ShouldInstrumentFunction(); 1282 1283 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1284 /// instrumentation function with the current function and the call site, if 1285 /// function instrumentation is enabled. 1286 void EmitFunctionInstrumentation(const char *Fn); 1287 1288 /// EmitMCountInstrumentation - Emit call to .mcount. 1289 void EmitMCountInstrumentation(); 1290 1291 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1292 /// arguments for the given function. This is also responsible for naming the 1293 /// LLVM function arguments. 1294 void EmitFunctionProlog(const CGFunctionInfo &FI, 1295 llvm::Function *Fn, 1296 const FunctionArgList &Args); 1297 1298 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1299 /// given temporary. 1300 void EmitFunctionEpilog(const CGFunctionInfo &FI); 1301 1302 /// EmitStartEHSpec - Emit the start of the exception spec. 1303 void EmitStartEHSpec(const Decl *D); 1304 1305 /// EmitEndEHSpec - Emit the end of the exception spec. 1306 void EmitEndEHSpec(const Decl *D); 1307 1308 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1309 llvm::BasicBlock *getTerminateLandingPad(); 1310 1311 /// getTerminateHandler - Return a handler (not a landing pad, just 1312 /// a catch handler) that just calls terminate. This is used when 1313 /// a terminate scope encloses a try. 1314 llvm::BasicBlock *getTerminateHandler(); 1315 1316 llvm::Type *ConvertTypeForMem(QualType T); 1317 llvm::Type *ConvertType(QualType T); 1318 llvm::Type *ConvertType(const TypeDecl *T) { 1319 return ConvertType(getContext().getTypeDeclType(T)); 1320 } 1321 1322 /// LoadObjCSelf - Load the value of self. This function is only valid while 1323 /// generating code for an Objective-C method. 1324 llvm::Value *LoadObjCSelf(); 1325 1326 /// TypeOfSelfObject - Return type of object that this self represents. 1327 QualType TypeOfSelfObject(); 1328 1329 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1330 /// an aggregate LLVM type or is void. 1331 static bool hasAggregateLLVMType(QualType T); 1332 1333 /// createBasicBlock - Create an LLVM basic block. 1334 llvm::BasicBlock *createBasicBlock(llvm::StringRef name = "", 1335 llvm::Function *parent = 0, 1336 llvm::BasicBlock *before = 0) { 1337#ifdef NDEBUG 1338 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1339#else 1340 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1341#endif 1342 } 1343 1344 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1345 /// label maps to. 1346 JumpDest getJumpDestForLabel(const LabelDecl *S); 1347 1348 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1349 /// another basic block, simplify it. This assumes that no other code could 1350 /// potentially reference the basic block. 1351 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1352 1353 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1354 /// adding a fall-through branch from the current insert block if 1355 /// necessary. It is legal to call this function even if there is no current 1356 /// insertion point. 1357 /// 1358 /// IsFinished - If true, indicates that the caller has finished emitting 1359 /// branches to the given block and does not expect to emit code into it. This 1360 /// means the block can be ignored if it is unreachable. 1361 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1362 1363 /// EmitBranch - Emit a branch to the specified basic block from the current 1364 /// insert block, taking care to avoid creation of branches from dummy 1365 /// blocks. It is legal to call this function even if there is no current 1366 /// insertion point. 1367 /// 1368 /// This function clears the current insertion point. The caller should follow 1369 /// calls to this function with calls to Emit*Block prior to generation new 1370 /// code. 1371 void EmitBranch(llvm::BasicBlock *Block); 1372 1373 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1374 /// indicates that the current code being emitted is unreachable. 1375 bool HaveInsertPoint() const { 1376 return Builder.GetInsertBlock() != 0; 1377 } 1378 1379 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1380 /// emitted IR has a place to go. Note that by definition, if this function 1381 /// creates a block then that block is unreachable; callers may do better to 1382 /// detect when no insertion point is defined and simply skip IR generation. 1383 void EnsureInsertPoint() { 1384 if (!HaveInsertPoint()) 1385 EmitBlock(createBasicBlock()); 1386 } 1387 1388 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1389 /// specified stmt yet. 1390 void ErrorUnsupported(const Stmt *S, const char *Type, 1391 bool OmitOnError=false); 1392 1393 //===--------------------------------------------------------------------===// 1394 // Helpers 1395 //===--------------------------------------------------------------------===// 1396 1397 LValue MakeAddrLValue(llvm::Value *V, QualType T, unsigned Alignment = 0) { 1398 return LValue::MakeAddr(V, T, Alignment, getContext(), 1399 CGM.getTBAAInfo(T)); 1400 } 1401 1402 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1403 /// block. The caller is responsible for setting an appropriate alignment on 1404 /// the alloca. 1405 llvm::AllocaInst *CreateTempAlloca(const llvm::Type *Ty, 1406 const llvm::Twine &Name = "tmp"); 1407 1408 /// InitTempAlloca - Provide an initial value for the given alloca. 1409 void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value); 1410 1411 /// CreateIRTemp - Create a temporary IR object of the given type, with 1412 /// appropriate alignment. This routine should only be used when an temporary 1413 /// value needs to be stored into an alloca (for example, to avoid explicit 1414 /// PHI construction), but the type is the IR type, not the type appropriate 1415 /// for storing in memory. 1416 llvm::AllocaInst *CreateIRTemp(QualType T, const llvm::Twine &Name = "tmp"); 1417 1418 /// CreateMemTemp - Create a temporary memory object of the given type, with 1419 /// appropriate alignment. 1420 llvm::AllocaInst *CreateMemTemp(QualType T, const llvm::Twine &Name = "tmp"); 1421 1422 /// CreateAggTemp - Create a temporary memory object for the given 1423 /// aggregate type. 1424 AggValueSlot CreateAggTemp(QualType T, const llvm::Twine &Name = "tmp") { 1425 return AggValueSlot::forAddr(CreateMemTemp(T, Name), T.getQualifiers(), 1426 false); 1427 } 1428 1429 /// Emit a cast to void* in the appropriate address space. 1430 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1431 1432 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1433 /// expression and compare the result against zero, returning an Int1Ty value. 1434 llvm::Value *EvaluateExprAsBool(const Expr *E); 1435 1436 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1437 void EmitIgnoredExpr(const Expr *E); 1438 1439 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1440 /// any type. The result is returned as an RValue struct. If this is an 1441 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1442 /// the result should be returned. 1443 /// 1444 /// \param IgnoreResult - True if the resulting value isn't used. 1445 RValue EmitAnyExpr(const Expr *E, 1446 AggValueSlot AggSlot = AggValueSlot::ignored(), 1447 bool IgnoreResult = false); 1448 1449 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1450 // or the value of the expression, depending on how va_list is defined. 1451 llvm::Value *EmitVAListRef(const Expr *E); 1452 1453 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1454 /// always be accessible even if no aggregate location is provided. 1455 RValue EmitAnyExprToTemp(const Expr *E); 1456 1457 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1458 /// arbitrary expression into the given memory location. 1459 void EmitAnyExprToMem(const Expr *E, llvm::Value *Location, 1460 Qualifiers Quals, bool IsInitializer); 1461 1462 /// EmitExprAsInit - Emits the code necessary to initialize a 1463 /// location in memory with the given initializer. 1464 void EmitExprAsInit(const Expr *init, const ValueDecl *D, 1465 LValue lvalue, bool capturedByInit); 1466 1467 /// EmitAggregateCopy - Emit an aggrate copy. 1468 /// 1469 /// \param isVolatile - True iff either the source or the destination is 1470 /// volatile. 1471 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1472 QualType EltTy, bool isVolatile=false); 1473 1474 /// StartBlock - Start new block named N. If insert block is a dummy block 1475 /// then reuse it. 1476 void StartBlock(const char *N); 1477 1478 /// GetAddrOfStaticLocalVar - Return the address of a static local variable. 1479 llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) { 1480 return cast<llvm::Constant>(GetAddrOfLocalVar(BVD)); 1481 } 1482 1483 /// GetAddrOfLocalVar - Return the address of a local variable. 1484 llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) { 1485 llvm::Value *Res = LocalDeclMap[VD]; 1486 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1487 return Res; 1488 } 1489 1490 /// getOpaqueLValueMapping - Given an opaque value expression (which 1491 /// must be mapped to an l-value), return its mapping. 1492 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1493 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1494 1495 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1496 it = OpaqueLValues.find(e); 1497 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1498 return it->second; 1499 } 1500 1501 /// getOpaqueRValueMapping - Given an opaque value expression (which 1502 /// must be mapped to an r-value), return its mapping. 1503 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1504 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1505 1506 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1507 it = OpaqueRValues.find(e); 1508 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1509 return it->second; 1510 } 1511 1512 /// getAccessedFieldNo - Given an encoded value and a result number, return 1513 /// the input field number being accessed. 1514 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1515 1516 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1517 llvm::BasicBlock *GetIndirectGotoBlock(); 1518 1519 /// EmitNullInitialization - Generate code to set a value of the given type to 1520 /// null, If the type contains data member pointers, they will be initialized 1521 /// to -1 in accordance with the Itanium C++ ABI. 1522 void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty); 1523 1524 // EmitVAArg - Generate code to get an argument from the passed in pointer 1525 // and update it accordingly. The return value is a pointer to the argument. 1526 // FIXME: We should be able to get rid of this method and use the va_arg 1527 // instruction in LLVM instead once it works well enough. 1528 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty); 1529 1530 /// emitArrayLength - Compute the length of an array, even if it's a 1531 /// VLA, and drill down to the base element type. 1532 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1533 QualType &baseType, 1534 llvm::Value *&addr); 1535 1536 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1537 /// the given variably-modified type and store them in the VLASizeMap. 1538 /// 1539 /// This function can be called with a null (unreachable) insert point. 1540 void EmitVariablyModifiedType(QualType Ty); 1541 1542 /// getVLASize - Returns an LLVM value that corresponds to the size, 1543 /// in non-variably-sized elements, of a variable length array type, 1544 /// plus that largest non-variably-sized element type. Assumes that 1545 /// the type has already been emitted with EmitVariablyModifiedType. 1546 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1547 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1548 1549 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1550 /// generating code for an C++ member function. 1551 llvm::Value *LoadCXXThis() { 1552 assert(CXXThisValue && "no 'this' value for this function"); 1553 return CXXThisValue; 1554 } 1555 1556 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1557 /// virtual bases. 1558 llvm::Value *LoadCXXVTT() { 1559 assert(CXXVTTValue && "no VTT value for this function"); 1560 return CXXVTTValue; 1561 } 1562 1563 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1564 /// complete class to the given direct base. 1565 llvm::Value * 1566 GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value, 1567 const CXXRecordDecl *Derived, 1568 const CXXRecordDecl *Base, 1569 bool BaseIsVirtual); 1570 1571 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1572 /// load of 'this' and returns address of the base class. 1573 llvm::Value *GetAddressOfBaseClass(llvm::Value *Value, 1574 const CXXRecordDecl *Derived, 1575 CastExpr::path_const_iterator PathBegin, 1576 CastExpr::path_const_iterator PathEnd, 1577 bool NullCheckValue); 1578 1579 llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value, 1580 const CXXRecordDecl *Derived, 1581 CastExpr::path_const_iterator PathBegin, 1582 CastExpr::path_const_iterator PathEnd, 1583 bool NullCheckValue); 1584 1585 llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This, 1586 const CXXRecordDecl *ClassDecl, 1587 const CXXRecordDecl *BaseClassDecl); 1588 1589 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1590 CXXCtorType CtorType, 1591 const FunctionArgList &Args); 1592 // It's important not to confuse this and the previous function. Delegating 1593 // constructors are the C++0x feature. The constructor delegate optimization 1594 // is used to reduce duplication in the base and complete consturctors where 1595 // they are substantially the same. 1596 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1597 const FunctionArgList &Args); 1598 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1599 bool ForVirtualBase, llvm::Value *This, 1600 CallExpr::const_arg_iterator ArgBeg, 1601 CallExpr::const_arg_iterator ArgEnd); 1602 1603 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1604 llvm::Value *This, llvm::Value *Src, 1605 CallExpr::const_arg_iterator ArgBeg, 1606 CallExpr::const_arg_iterator ArgEnd); 1607 1608 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1609 const ConstantArrayType *ArrayTy, 1610 llvm::Value *ArrayPtr, 1611 CallExpr::const_arg_iterator ArgBeg, 1612 CallExpr::const_arg_iterator ArgEnd, 1613 bool ZeroInitialization = false); 1614 1615 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1616 llvm::Value *NumElements, 1617 llvm::Value *ArrayPtr, 1618 CallExpr::const_arg_iterator ArgBeg, 1619 CallExpr::const_arg_iterator ArgEnd, 1620 bool ZeroInitialization = false); 1621 1622 void EmitCXXAggrDestructorCall(const CXXDestructorDecl *D, 1623 const ArrayType *Array, 1624 llvm::Value *This); 1625 1626 static Destroyer destroyCXXObject; 1627 1628 void EmitCXXAggrDestructorCall(const CXXDestructorDecl *D, 1629 llvm::Value *NumElements, 1630 llvm::Value *This); 1631 1632 llvm::Function *GenerateCXXAggrDestructorHelper(const CXXDestructorDecl *D, 1633 const ArrayType *Array, 1634 llvm::Value *This); 1635 1636 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1637 bool ForVirtualBase, llvm::Value *This); 1638 1639 void EmitNewArrayInitializer(const CXXNewExpr *E, llvm::Value *NewPtr, 1640 llvm::Value *NumElements); 1641 1642 void EmitCXXTemporary(const CXXTemporary *Temporary, llvm::Value *Ptr); 1643 1644 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1645 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1646 1647 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1648 QualType DeleteTy); 1649 1650 llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1651 llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE); 1652 1653 void EmitCheck(llvm::Value *, unsigned Size); 1654 1655 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1656 bool isInc, bool isPre); 1657 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1658 bool isInc, bool isPre); 1659 //===--------------------------------------------------------------------===// 1660 // Declaration Emission 1661 //===--------------------------------------------------------------------===// 1662 1663 /// EmitDecl - Emit a declaration. 1664 /// 1665 /// This function can be called with a null (unreachable) insert point. 1666 void EmitDecl(const Decl &D); 1667 1668 /// EmitVarDecl - Emit a local variable declaration. 1669 /// 1670 /// This function can be called with a null (unreachable) insert point. 1671 void EmitVarDecl(const VarDecl &D); 1672 1673 void EmitScalarInit(const Expr *init, const ValueDecl *D, 1674 LValue lvalue, bool capturedByInit); 1675 void EmitScalarInit(llvm::Value *init, LValue lvalue); 1676 1677 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1678 llvm::Value *Address); 1679 1680 /// EmitAutoVarDecl - Emit an auto variable declaration. 1681 /// 1682 /// This function can be called with a null (unreachable) insert point. 1683 void EmitAutoVarDecl(const VarDecl &D); 1684 1685 class AutoVarEmission { 1686 friend class CodeGenFunction; 1687 1688 const VarDecl *Variable; 1689 1690 /// The alignment of the variable. 1691 CharUnits Alignment; 1692 1693 /// The address of the alloca. Null if the variable was emitted 1694 /// as a global constant. 1695 llvm::Value *Address; 1696 1697 llvm::Value *NRVOFlag; 1698 1699 /// True if the variable is a __block variable. 1700 bool IsByRef; 1701 1702 /// True if the variable is of aggregate type and has a constant 1703 /// initializer. 1704 bool IsConstantAggregate; 1705 1706 struct Invalid {}; 1707 AutoVarEmission(Invalid) : Variable(0) {} 1708 1709 AutoVarEmission(const VarDecl &variable) 1710 : Variable(&variable), Address(0), NRVOFlag(0), 1711 IsByRef(false), IsConstantAggregate(false) {} 1712 1713 bool wasEmittedAsGlobal() const { return Address == 0; } 1714 1715 public: 1716 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 1717 1718 /// Returns the address of the object within this declaration. 1719 /// Note that this does not chase the forwarding pointer for 1720 /// __block decls. 1721 llvm::Value *getObjectAddress(CodeGenFunction &CGF) const { 1722 if (!IsByRef) return Address; 1723 1724 return CGF.Builder.CreateStructGEP(Address, 1725 CGF.getByRefValueLLVMField(Variable), 1726 Variable->getNameAsString()); 1727 } 1728 }; 1729 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 1730 void EmitAutoVarInit(const AutoVarEmission &emission); 1731 void EmitAutoVarCleanups(const AutoVarEmission &emission); 1732 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 1733 QualType::DestructionKind dtorKind); 1734 1735 void EmitStaticVarDecl(const VarDecl &D, 1736 llvm::GlobalValue::LinkageTypes Linkage); 1737 1738 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 1739 void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo); 1740 1741 /// protectFromPeepholes - Protect a value that we're intending to 1742 /// store to the side, but which will probably be used later, from 1743 /// aggressive peepholing optimizations that might delete it. 1744 /// 1745 /// Pass the result to unprotectFromPeepholes to declare that 1746 /// protection is no longer required. 1747 /// 1748 /// There's no particular reason why this shouldn't apply to 1749 /// l-values, it's just that no existing peepholes work on pointers. 1750 PeepholeProtection protectFromPeepholes(RValue rvalue); 1751 void unprotectFromPeepholes(PeepholeProtection protection); 1752 1753 //===--------------------------------------------------------------------===// 1754 // Statement Emission 1755 //===--------------------------------------------------------------------===// 1756 1757 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 1758 void EmitStopPoint(const Stmt *S); 1759 1760 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 1761 /// this function even if there is no current insertion point. 1762 /// 1763 /// This function may clear the current insertion point; callers should use 1764 /// EnsureInsertPoint if they wish to subsequently generate code without first 1765 /// calling EmitBlock, EmitBranch, or EmitStmt. 1766 void EmitStmt(const Stmt *S); 1767 1768 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 1769 /// necessarily require an insertion point or debug information; typically 1770 /// because the statement amounts to a jump or a container of other 1771 /// statements. 1772 /// 1773 /// \return True if the statement was handled. 1774 bool EmitSimpleStmt(const Stmt *S); 1775 1776 RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 1777 AggValueSlot AVS = AggValueSlot::ignored()); 1778 1779 /// EmitLabel - Emit the block for the given label. It is legal to call this 1780 /// function even if there is no current insertion point. 1781 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 1782 1783 void EmitLabelStmt(const LabelStmt &S); 1784 void EmitGotoStmt(const GotoStmt &S); 1785 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 1786 void EmitIfStmt(const IfStmt &S); 1787 void EmitWhileStmt(const WhileStmt &S); 1788 void EmitDoStmt(const DoStmt &S); 1789 void EmitForStmt(const ForStmt &S); 1790 void EmitReturnStmt(const ReturnStmt &S); 1791 void EmitDeclStmt(const DeclStmt &S); 1792 void EmitBreakStmt(const BreakStmt &S); 1793 void EmitContinueStmt(const ContinueStmt &S); 1794 void EmitSwitchStmt(const SwitchStmt &S); 1795 void EmitDefaultStmt(const DefaultStmt &S); 1796 void EmitCaseStmt(const CaseStmt &S); 1797 void EmitCaseStmtRange(const CaseStmt &S); 1798 void EmitAsmStmt(const AsmStmt &S); 1799 1800 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 1801 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 1802 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 1803 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 1804 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 1805 1806 llvm::Constant *getUnwindResumeFn(); 1807 llvm::Constant *getUnwindResumeOrRethrowFn(); 1808 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1809 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1810 1811 void EmitCXXTryStmt(const CXXTryStmt &S); 1812 void EmitCXXForRangeStmt(const CXXForRangeStmt &S); 1813 1814 //===--------------------------------------------------------------------===// 1815 // LValue Expression Emission 1816 //===--------------------------------------------------------------------===// 1817 1818 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 1819 RValue GetUndefRValue(QualType Ty); 1820 1821 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 1822 /// and issue an ErrorUnsupported style diagnostic (using the 1823 /// provided Name). 1824 RValue EmitUnsupportedRValue(const Expr *E, 1825 const char *Name); 1826 1827 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 1828 /// an ErrorUnsupported style diagnostic (using the provided Name). 1829 LValue EmitUnsupportedLValue(const Expr *E, 1830 const char *Name); 1831 1832 /// EmitLValue - Emit code to compute a designator that specifies the location 1833 /// of the expression. 1834 /// 1835 /// This can return one of two things: a simple address or a bitfield 1836 /// reference. In either case, the LLVM Value* in the LValue structure is 1837 /// guaranteed to be an LLVM pointer type. 1838 /// 1839 /// If this returns a bitfield reference, nothing about the pointee type of 1840 /// the LLVM value is known: For example, it may not be a pointer to an 1841 /// integer. 1842 /// 1843 /// If this returns a normal address, and if the lvalue's C type is fixed 1844 /// size, this method guarantees that the returned pointer type will point to 1845 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 1846 /// variable length type, this is not possible. 1847 /// 1848 LValue EmitLValue(const Expr *E); 1849 1850 /// EmitCheckedLValue - Same as EmitLValue but additionally we generate 1851 /// checking code to guard against undefined behavior. This is only 1852 /// suitable when we know that the address will be used to access the 1853 /// object. 1854 LValue EmitCheckedLValue(const Expr *E); 1855 1856 /// EmitToMemory - Change a scalar value from its value 1857 /// representation to its in-memory representation. 1858 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 1859 1860 /// EmitFromMemory - Change a scalar value from its memory 1861 /// representation to its value representation. 1862 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 1863 1864 /// EmitLoadOfScalar - Load a scalar value from an address, taking 1865 /// care to appropriately convert from the memory representation to 1866 /// the LLVM value representation. 1867 llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 1868 unsigned Alignment, QualType Ty, 1869 llvm::MDNode *TBAAInfo = 0); 1870 1871 /// EmitLoadOfScalar - Load a scalar value from an address, taking 1872 /// care to appropriately convert from the memory representation to 1873 /// the LLVM value representation. The l-value must be a simple 1874 /// l-value. 1875 llvm::Value *EmitLoadOfScalar(LValue lvalue); 1876 1877 /// EmitStoreOfScalar - Store a scalar value to an address, taking 1878 /// care to appropriately convert from the memory representation to 1879 /// the LLVM value representation. 1880 void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1881 bool Volatile, unsigned Alignment, QualType Ty, 1882 llvm::MDNode *TBAAInfo = 0); 1883 1884 /// EmitStoreOfScalar - Store a scalar value to an address, taking 1885 /// care to appropriately convert from the memory representation to 1886 /// the LLVM value representation. The l-value must be a simple 1887 /// l-value. 1888 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue); 1889 1890 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 1891 /// this method emits the address of the lvalue, then loads the result as an 1892 /// rvalue, returning the rvalue. 1893 RValue EmitLoadOfLValue(LValue V); 1894 RValue EmitLoadOfExtVectorElementLValue(LValue V); 1895 RValue EmitLoadOfBitfieldLValue(LValue LV); 1896 RValue EmitLoadOfPropertyRefLValue(LValue LV, 1897 ReturnValueSlot Return = ReturnValueSlot()); 1898 1899 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1900 /// lvalue, where both are guaranteed to the have the same type, and that type 1901 /// is 'Ty'. 1902 void EmitStoreThroughLValue(RValue Src, LValue Dst); 1903 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 1904 void EmitStoreThroughPropertyRefLValue(RValue Src, LValue Dst); 1905 1906 /// EmitStoreThroughLValue - Store Src into Dst with same constraints as 1907 /// EmitStoreThroughLValue. 1908 /// 1909 /// \param Result [out] - If non-null, this will be set to a Value* for the 1910 /// bit-field contents after the store, appropriate for use as the result of 1911 /// an assignment to the bit-field. 1912 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1913 llvm::Value **Result=0); 1914 1915 /// Emit an l-value for an assignment (simple or compound) of complex type. 1916 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 1917 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 1918 1919 // Note: only available for agg return types 1920 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 1921 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 1922 // Note: only available for agg return types 1923 LValue EmitCallExprLValue(const CallExpr *E); 1924 // Note: only available for agg return types 1925 LValue EmitVAArgExprLValue(const VAArgExpr *E); 1926 LValue EmitDeclRefLValue(const DeclRefExpr *E); 1927 LValue EmitStringLiteralLValue(const StringLiteral *E); 1928 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 1929 LValue EmitPredefinedLValue(const PredefinedExpr *E); 1930 LValue EmitUnaryOpLValue(const UnaryOperator *E); 1931 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E); 1932 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 1933 LValue EmitMemberExpr(const MemberExpr *E); 1934 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 1935 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 1936 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 1937 LValue EmitCastLValue(const CastExpr *E); 1938 LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E); 1939 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 1940 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 1941 1942 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 1943 const ObjCIvarDecl *Ivar); 1944 LValue EmitLValueForAnonRecordField(llvm::Value* Base, 1945 const IndirectFieldDecl* Field, 1946 unsigned CVRQualifiers); 1947 LValue EmitLValueForField(llvm::Value* Base, const FieldDecl* Field, 1948 unsigned CVRQualifiers); 1949 1950 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 1951 /// if the Field is a reference, this will return the address of the reference 1952 /// and not the address of the value stored in the reference. 1953 LValue EmitLValueForFieldInitialization(llvm::Value* Base, 1954 const FieldDecl* Field, 1955 unsigned CVRQualifiers); 1956 1957 LValue EmitLValueForIvar(QualType ObjectTy, 1958 llvm::Value* Base, const ObjCIvarDecl *Ivar, 1959 unsigned CVRQualifiers); 1960 1961 LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field, 1962 unsigned CVRQualifiers); 1963 1964 LValue EmitBlockDeclRefLValue(const BlockDeclRefExpr *E); 1965 1966 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 1967 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 1968 LValue EmitExprWithCleanupsLValue(const ExprWithCleanups *E); 1969 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 1970 1971 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 1972 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 1973 LValue EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E); 1974 LValue EmitStmtExprLValue(const StmtExpr *E); 1975 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 1976 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 1977 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 1978 1979 //===--------------------------------------------------------------------===// 1980 // Scalar Expression Emission 1981 //===--------------------------------------------------------------------===// 1982 1983 /// EmitCall - Generate a call of the given function, expecting the given 1984 /// result type, and using the given argument list which specifies both the 1985 /// LLVM arguments and the types they were derived from. 1986 /// 1987 /// \param TargetDecl - If given, the decl of the function in a direct call; 1988 /// used to set attributes on the call (noreturn, etc.). 1989 RValue EmitCall(const CGFunctionInfo &FnInfo, 1990 llvm::Value *Callee, 1991 ReturnValueSlot ReturnValue, 1992 const CallArgList &Args, 1993 const Decl *TargetDecl = 0, 1994 llvm::Instruction **callOrInvoke = 0); 1995 1996 RValue EmitCall(QualType FnType, llvm::Value *Callee, 1997 ReturnValueSlot ReturnValue, 1998 CallExpr::const_arg_iterator ArgBeg, 1999 CallExpr::const_arg_iterator ArgEnd, 2000 const Decl *TargetDecl = 0); 2001 RValue EmitCallExpr(const CallExpr *E, 2002 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2003 2004 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2005 llvm::Value * const *ArgBegin, 2006 llvm::Value * const *ArgEnd, 2007 const llvm::Twine &Name = ""); 2008 2009 llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This, 2010 const llvm::Type *Ty); 2011 llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type, 2012 llvm::Value *This, const llvm::Type *Ty); 2013 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2014 NestedNameSpecifier *Qual, 2015 const llvm::Type *Ty); 2016 2017 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2018 CXXDtorType Type, 2019 const CXXRecordDecl *RD); 2020 2021 RValue EmitCXXMemberCall(const CXXMethodDecl *MD, 2022 llvm::Value *Callee, 2023 ReturnValueSlot ReturnValue, 2024 llvm::Value *This, 2025 llvm::Value *VTT, 2026 CallExpr::const_arg_iterator ArgBeg, 2027 CallExpr::const_arg_iterator ArgEnd); 2028 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2029 ReturnValueSlot ReturnValue); 2030 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2031 ReturnValueSlot ReturnValue); 2032 2033 llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E, 2034 const CXXMethodDecl *MD, 2035 llvm::Value *This); 2036 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2037 const CXXMethodDecl *MD, 2038 ReturnValueSlot ReturnValue); 2039 2040 2041 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2042 unsigned BuiltinID, const CallExpr *E); 2043 2044 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2045 2046 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2047 /// is unhandled by the current target. 2048 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2049 2050 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2051 llvm::Value *EmitNeonCall(llvm::Function *F, 2052 llvm::SmallVectorImpl<llvm::Value*> &O, 2053 const char *name, 2054 unsigned shift = 0, bool rightshift = false); 2055 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2056 llvm::Value *EmitNeonShiftVector(llvm::Value *V, const llvm::Type *Ty, 2057 bool negateForRightShift); 2058 2059 llvm::Value *BuildVector(const llvm::SmallVectorImpl<llvm::Value*> &Ops); 2060 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2061 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2062 2063 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2064 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2065 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2066 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2067 ReturnValueSlot Return = ReturnValueSlot()); 2068 2069 /// Retrieves the default cleanup kind for an ARC cleanup. 2070 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 2071 CleanupKind getARCCleanupKind() { 2072 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 2073 ? NormalAndEHCleanup : NormalCleanup; 2074 } 2075 2076 // ARC primitives. 2077 void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr); 2078 void EmitARCDestroyWeak(llvm::Value *addr); 2079 llvm::Value *EmitARCLoadWeak(llvm::Value *addr); 2080 llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr); 2081 llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr, 2082 bool ignored); 2083 void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src); 2084 void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src); 2085 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 2086 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 2087 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 2088 bool ignored); 2089 llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value, 2090 bool ignored); 2091 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 2092 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 2093 llvm::Value *EmitARCRetainBlock(llvm::Value *value); 2094 void EmitARCRelease(llvm::Value *value, bool precise); 2095 llvm::Value *EmitARCAutorelease(llvm::Value *value); 2096 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 2097 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 2098 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 2099 2100 std::pair<LValue,llvm::Value*> 2101 EmitARCStoreAutoreleasing(const BinaryOperator *e); 2102 std::pair<LValue,llvm::Value*> 2103 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 2104 2105 llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr); 2106 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 2107 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 2108 2109 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 2110 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 2111 2112 void PushARCReleaseCleanup(CleanupKind kind, QualType type, 2113 llvm::Value *addr, bool precise, 2114 bool forFullExpr = false); 2115 void PushARCArrayReleaseCleanup(CleanupKind kind, QualType elementType, 2116 llvm::Value *addr, 2117 llvm::Value *countOrCountPtr, 2118 bool precise, bool forFullExpr = false); 2119 void PushARCWeakReleaseCleanup(CleanupKind kind, QualType type, 2120 llvm::Value *addr, bool forFullExpr = false); 2121 void PushARCArrayWeakReleaseCleanup(CleanupKind kind, QualType elementType, 2122 llvm::Value *addr, 2123 llvm::Value *countOrCountPtr, 2124 bool forFullExpr = false); 2125 static Destroyer destroyARCStrongImprecise; 2126 static Destroyer destroyARCStrongPrecise; 2127 static Destroyer destroyARCWeak; 2128 2129 void PushARCFieldReleaseCleanup(CleanupKind cleanupKind, 2130 const FieldDecl *Field); 2131 void PushARCFieldWeakReleaseCleanup(CleanupKind cleanupKind, 2132 const FieldDecl *Field); 2133 2134 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 2135 llvm::Value *EmitObjCAutoreleasePoolPush(); 2136 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 2137 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 2138 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 2139 2140 /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in 2141 /// expression. Will emit a temporary variable if E is not an LValue. 2142 RValue EmitReferenceBindingToExpr(const Expr* E, 2143 const NamedDecl *InitializedDecl); 2144 2145 //===--------------------------------------------------------------------===// 2146 // Expression Emission 2147 //===--------------------------------------------------------------------===// 2148 2149 // Expressions are broken into three classes: scalar, complex, aggregate. 2150 2151 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 2152 /// scalar type, returning the result. 2153 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 2154 2155 /// EmitScalarConversion - Emit a conversion from the specified type to the 2156 /// specified destination type, both of which are LLVM scalar types. 2157 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 2158 QualType DstTy); 2159 2160 /// EmitComplexToScalarConversion - Emit a conversion from the specified 2161 /// complex type to the specified destination type, where the destination type 2162 /// is an LLVM scalar type. 2163 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 2164 QualType DstTy); 2165 2166 2167 /// EmitAggExpr - Emit the computation of the specified expression 2168 /// of aggregate type. The result is computed into the given slot, 2169 /// which may be null to indicate that the value is not needed. 2170 void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false); 2171 2172 /// EmitAggExprToLValue - Emit the computation of the specified expression of 2173 /// aggregate type into a temporary LValue. 2174 LValue EmitAggExprToLValue(const Expr *E); 2175 2176 /// EmitGCMemmoveCollectable - Emit special API for structs with object 2177 /// pointers. 2178 void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr, 2179 QualType Ty); 2180 2181 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2182 /// make sure it survives garbage collection until this point. 2183 void EmitExtendGCLifetime(llvm::Value *object); 2184 2185 /// EmitComplexExpr - Emit the computation of the specified expression of 2186 /// complex type, returning the result. 2187 ComplexPairTy EmitComplexExpr(const Expr *E, 2188 bool IgnoreReal = false, 2189 bool IgnoreImag = false); 2190 2191 /// EmitComplexExprIntoAddr - Emit the computation of the specified expression 2192 /// of complex type, storing into the specified Value*. 2193 void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr, 2194 bool DestIsVolatile); 2195 2196 /// StoreComplexToAddr - Store a complex number into the specified address. 2197 void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr, 2198 bool DestIsVolatile); 2199 /// LoadComplexFromAddr - Load a complex number from the specified address. 2200 ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile); 2201 2202 /// CreateStaticVarDecl - Create a zero-initialized LLVM global for 2203 /// a static local variable. 2204 llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D, 2205 const char *Separator, 2206 llvm::GlobalValue::LinkageTypes Linkage); 2207 2208 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2209 /// global variable that has already been created for it. If the initializer 2210 /// has a different type than GV does, this may free GV and return a different 2211 /// one. Otherwise it just returns GV. 2212 llvm::GlobalVariable * 2213 AddInitializerToStaticVarDecl(const VarDecl &D, 2214 llvm::GlobalVariable *GV); 2215 2216 2217 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2218 /// variable with global storage. 2219 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr); 2220 2221 /// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr 2222 /// with the C++ runtime so that its destructor will be called at exit. 2223 void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn, 2224 llvm::Constant *DeclPtr); 2225 2226 /// Emit code in this function to perform a guarded variable 2227 /// initialization. Guarded initializations are used when it's not 2228 /// possible to prove that an initialization will be done exactly 2229 /// once, e.g. with a static local variable or a static data member 2230 /// of a class template. 2231 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr); 2232 2233 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2234 /// variables. 2235 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2236 llvm::Constant **Decls, 2237 unsigned NumDecls); 2238 2239 /// GenerateCXXGlobalDtorFunc - Generates code for destroying global 2240 /// variables. 2241 void GenerateCXXGlobalDtorFunc(llvm::Function *Fn, 2242 const std::vector<std::pair<llvm::WeakVH, 2243 llvm::Constant*> > &DtorsAndObjects); 2244 2245 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2246 const VarDecl *D, 2247 llvm::GlobalVariable *Addr); 2248 2249 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2250 2251 void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, 2252 const Expr *Exp); 2253 2254 RValue EmitExprWithCleanups(const ExprWithCleanups *E, 2255 AggValueSlot Slot =AggValueSlot::ignored()); 2256 2257 void EmitCXXThrowExpr(const CXXThrowExpr *E); 2258 2259 //===--------------------------------------------------------------------===// 2260 // Internal Helpers 2261 //===--------------------------------------------------------------------===// 2262 2263 /// ContainsLabel - Return true if the statement contains a label in it. If 2264 /// this statement is not executed normally, it not containing a label means 2265 /// that we can just remove the code. 2266 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 2267 2268 /// containsBreak - Return true if the statement contains a break out of it. 2269 /// If the statement (recursively) contains a switch or loop with a break 2270 /// inside of it, this is fine. 2271 static bool containsBreak(const Stmt *S); 2272 2273 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2274 /// to a constant, or if it does but contains a label, return false. If it 2275 /// constant folds return true and set the boolean result in Result. 2276 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 2277 2278 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2279 /// to a constant, or if it does but contains a label, return false. If it 2280 /// constant folds return true and set the folded value. 2281 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result); 2282 2283 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 2284 /// if statement) to the specified blocks. Based on the condition, this might 2285 /// try to simplify the codegen of the conditional based on the branch. 2286 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 2287 llvm::BasicBlock *FalseBlock); 2288 2289 /// getTrapBB - Create a basic block that will call the trap intrinsic. We'll 2290 /// generate a branch around the created basic block as necessary. 2291 llvm::BasicBlock *getTrapBB(); 2292 2293 /// EmitCallArg - Emit a single call argument. 2294 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 2295 2296 /// EmitDelegateCallArg - We are performing a delegate call; that 2297 /// is, the current function is delegating to another one. Produce 2298 /// a r-value suitable for passing the given parameter. 2299 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param); 2300 2301private: 2302 void EmitReturnOfRValue(RValue RV, QualType Ty); 2303 2304 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 2305 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 2306 /// 2307 /// \param AI - The first function argument of the expansion. 2308 /// \return The argument following the last expanded function 2309 /// argument. 2310 llvm::Function::arg_iterator 2311 ExpandTypeFromArgs(QualType Ty, LValue Dst, 2312 llvm::Function::arg_iterator AI); 2313 2314 /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg 2315 /// Ty, into individual arguments on the provided vector \arg Args. See 2316 /// ABIArgInfo::Expand. 2317 void ExpandTypeToArgs(QualType Ty, RValue Src, 2318 llvm::SmallVector<llvm::Value*, 16> &Args, 2319 llvm::FunctionType *IRFuncTy); 2320 2321 llvm::Value* EmitAsmInput(const AsmStmt &S, 2322 const TargetInfo::ConstraintInfo &Info, 2323 const Expr *InputExpr, std::string &ConstraintStr); 2324 2325 llvm::Value* EmitAsmInputLValue(const AsmStmt &S, 2326 const TargetInfo::ConstraintInfo &Info, 2327 LValue InputValue, QualType InputType, 2328 std::string &ConstraintStr); 2329 2330 /// EmitCallArgs - Emit call arguments for a function. 2331 /// The CallArgTypeInfo parameter is used for iterating over the known 2332 /// argument types of the function being called. 2333 template<typename T> 2334 void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo, 2335 CallExpr::const_arg_iterator ArgBeg, 2336 CallExpr::const_arg_iterator ArgEnd) { 2337 CallExpr::const_arg_iterator Arg = ArgBeg; 2338 2339 // First, use the argument types that the type info knows about 2340 if (CallArgTypeInfo) { 2341 for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(), 2342 E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) { 2343 assert(Arg != ArgEnd && "Running over edge of argument list!"); 2344 QualType ArgType = *I; 2345#ifndef NDEBUG 2346 QualType ActualArgType = Arg->getType(); 2347 if (ArgType->isPointerType() && ActualArgType->isPointerType()) { 2348 QualType ActualBaseType = 2349 ActualArgType->getAs<PointerType>()->getPointeeType(); 2350 QualType ArgBaseType = 2351 ArgType->getAs<PointerType>()->getPointeeType(); 2352 if (ArgBaseType->isVariableArrayType()) { 2353 if (const VariableArrayType *VAT = 2354 getContext().getAsVariableArrayType(ActualBaseType)) { 2355 if (!VAT->getSizeExpr()) 2356 ActualArgType = ArgType; 2357 } 2358 } 2359 } 2360 assert(getContext().getCanonicalType(ArgType.getNonReferenceType()). 2361 getTypePtr() == 2362 getContext().getCanonicalType(ActualArgType).getTypePtr() && 2363 "type mismatch in call argument!"); 2364#endif 2365 EmitCallArg(Args, *Arg, ArgType); 2366 } 2367 2368 // Either we've emitted all the call args, or we have a call to a 2369 // variadic function. 2370 assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) && 2371 "Extra arguments in non-variadic function!"); 2372 2373 } 2374 2375 // If we still have any arguments, emit them using the type of the argument. 2376 for (; Arg != ArgEnd; ++Arg) 2377 EmitCallArg(Args, *Arg, Arg->getType()); 2378 } 2379 2380 const TargetCodeGenInfo &getTargetHooks() const { 2381 return CGM.getTargetCodeGenInfo(); 2382 } 2383 2384 void EmitDeclMetadata(); 2385 2386 CodeGenModule::ByrefHelpers * 2387 buildByrefHelpers(const llvm::StructType &byrefType, 2388 const AutoVarEmission &emission); 2389}; 2390 2391/// Helper class with most of the code for saving a value for a 2392/// conditional expression cleanup. 2393struct DominatingLLVMValue { 2394 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 2395 2396 /// Answer whether the given value needs extra work to be saved. 2397 static bool needsSaving(llvm::Value *value) { 2398 // If it's not an instruction, we don't need to save. 2399 if (!isa<llvm::Instruction>(value)) return false; 2400 2401 // If it's an instruction in the entry block, we don't need to save. 2402 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 2403 return (block != &block->getParent()->getEntryBlock()); 2404 } 2405 2406 /// Try to save the given value. 2407 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 2408 if (!needsSaving(value)) return saved_type(value, false); 2409 2410 // Otherwise we need an alloca. 2411 llvm::Value *alloca = 2412 CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save"); 2413 CGF.Builder.CreateStore(value, alloca); 2414 2415 return saved_type(alloca, true); 2416 } 2417 2418 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 2419 if (!value.getInt()) return value.getPointer(); 2420 return CGF.Builder.CreateLoad(value.getPointer()); 2421 } 2422}; 2423 2424/// A partial specialization of DominatingValue for llvm::Values that 2425/// might be llvm::Instructions. 2426template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 2427 typedef T *type; 2428 static type restore(CodeGenFunction &CGF, saved_type value) { 2429 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 2430 } 2431}; 2432 2433/// A specialization of DominatingValue for RValue. 2434template <> struct DominatingValue<RValue> { 2435 typedef RValue type; 2436 class saved_type { 2437 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 2438 AggregateAddress, ComplexAddress }; 2439 2440 llvm::Value *Value; 2441 Kind K; 2442 saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {} 2443 2444 public: 2445 static bool needsSaving(RValue value); 2446 static saved_type save(CodeGenFunction &CGF, RValue value); 2447 RValue restore(CodeGenFunction &CGF); 2448 2449 // implementations in CGExprCXX.cpp 2450 }; 2451 2452 static bool needsSaving(type value) { 2453 return saved_type::needsSaving(value); 2454 } 2455 static saved_type save(CodeGenFunction &CGF, type value) { 2456 return saved_type::save(CGF, value); 2457 } 2458 static type restore(CodeGenFunction &CGF, saved_type value) { 2459 return value.restore(CGF); 2460 } 2461}; 2462 2463} // end namespace CodeGen 2464} // end namespace clang 2465 2466#endif 2467