CodeGenFunction.h revision 85af7cecadbf5d4b905d6b3b4b1b6fa684183aff
1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the internal per-function state used for llvm translation.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15#define CLANG_CODEGEN_CODEGENFUNCTION_H
16
17#include "CGBuilder.h"
18#include "CGCleanup.h"
19#include "CGDebugInfo.h"
20#include "CGValue.h"
21#include "CodeGenModule.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/Type.h"
26#include "clang/Basic/ABI.h"
27#include "clang/Basic/CapturedStmt.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Frontend/CodeGenOptions.h"
30#include "llvm/ADT/ArrayRef.h"
31#include "llvm/ADT/DenseMap.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ValueHandle.h"
35
36namespace llvm {
37  class BasicBlock;
38  class LLVMContext;
39  class MDNode;
40  class Module;
41  class SwitchInst;
42  class Twine;
43  class Value;
44  class CallSite;
45}
46
47namespace clang {
48  class ASTContext;
49  class BlockDecl;
50  class CXXDestructorDecl;
51  class CXXForRangeStmt;
52  class CXXTryStmt;
53  class Decl;
54  class LabelDecl;
55  class EnumConstantDecl;
56  class FunctionDecl;
57  class FunctionProtoType;
58  class LabelStmt;
59  class ObjCContainerDecl;
60  class ObjCInterfaceDecl;
61  class ObjCIvarDecl;
62  class ObjCMethodDecl;
63  class ObjCImplementationDecl;
64  class ObjCPropertyImplDecl;
65  class TargetInfo;
66  class TargetCodeGenInfo;
67  class VarDecl;
68  class ObjCForCollectionStmt;
69  class ObjCAtTryStmt;
70  class ObjCAtThrowStmt;
71  class ObjCAtSynchronizedStmt;
72  class ObjCAutoreleasePoolStmt;
73
74namespace CodeGen {
75  class CodeGenTypes;
76  class CGFunctionInfo;
77  class CGRecordLayout;
78  class CGBlockInfo;
79  class CGCXXABI;
80  class BlockFlags;
81  class BlockFieldFlags;
82
83/// The kind of evaluation to perform on values of a particular
84/// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
85/// CGExprAgg?
86///
87/// TODO: should vectors maybe be split out into their own thing?
88enum TypeEvaluationKind {
89  TEK_Scalar,
90  TEK_Complex,
91  TEK_Aggregate
92};
93
94/// CodeGenFunction - This class organizes the per-function state that is used
95/// while generating LLVM code.
96class CodeGenFunction : public CodeGenTypeCache {
97  CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
98  void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
99
100  friend class CGCXXABI;
101public:
102  /// A jump destination is an abstract label, branching to which may
103  /// require a jump out through normal cleanups.
104  struct JumpDest {
105    JumpDest() : Block(0), ScopeDepth(), Index(0) {}
106    JumpDest(llvm::BasicBlock *Block,
107             EHScopeStack::stable_iterator Depth,
108             unsigned Index)
109      : Block(Block), ScopeDepth(Depth), Index(Index) {}
110
111    bool isValid() const { return Block != 0; }
112    llvm::BasicBlock *getBlock() const { return Block; }
113    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
114    unsigned getDestIndex() const { return Index; }
115
116    // This should be used cautiously.
117    void setScopeDepth(EHScopeStack::stable_iterator depth) {
118      ScopeDepth = depth;
119    }
120
121  private:
122    llvm::BasicBlock *Block;
123    EHScopeStack::stable_iterator ScopeDepth;
124    unsigned Index;
125  };
126
127  CodeGenModule &CGM;  // Per-module state.
128  const TargetInfo &Target;
129
130  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
131  CGBuilderTy Builder;
132
133  /// CurFuncDecl - Holds the Decl for the current outermost
134  /// non-closure context.
135  const Decl *CurFuncDecl;
136  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
137  const Decl *CurCodeDecl;
138  const CGFunctionInfo *CurFnInfo;
139  QualType FnRetTy;
140  llvm::Function *CurFn;
141
142  /// CurGD - The GlobalDecl for the current function being compiled.
143  GlobalDecl CurGD;
144
145  /// PrologueCleanupDepth - The cleanup depth enclosing all the
146  /// cleanups associated with the parameters.
147  EHScopeStack::stable_iterator PrologueCleanupDepth;
148
149  /// ReturnBlock - Unified return block.
150  JumpDest ReturnBlock;
151
152  /// ReturnValue - The temporary alloca to hold the return value. This is null
153  /// iff the function has no return value.
154  llvm::Value *ReturnValue;
155
156  /// AllocaInsertPoint - This is an instruction in the entry block before which
157  /// we prefer to insert allocas.
158  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
159
160  /// \brief API for captured statement code generation.
161  class CGCapturedStmtInfo {
162  public:
163    explicit CGCapturedStmtInfo(const CapturedStmt &S,
164                                CapturedRegionKind K = CR_Default)
165      : Kind(K), ThisValue(0), CXXThisFieldDecl(0) {
166
167      RecordDecl::field_iterator Field =
168        S.getCapturedRecordDecl()->field_begin();
169      for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
170                                                E = S.capture_end();
171           I != E; ++I, ++Field) {
172        if (I->capturesThis())
173          CXXThisFieldDecl = *Field;
174        else
175          CaptureFields[I->getCapturedVar()] = *Field;
176      }
177    }
178
179    virtual ~CGCapturedStmtInfo();
180
181    CapturedRegionKind getKind() const { return Kind; }
182
183    void setContextValue(llvm::Value *V) { ThisValue = V; }
184    // \brief Retrieve the value of the context parameter.
185    llvm::Value *getContextValue() const { return ThisValue; }
186
187    /// \brief Lookup the captured field decl for a variable.
188    const FieldDecl *lookup(const VarDecl *VD) const {
189      return CaptureFields.lookup(VD);
190    }
191
192    bool isCXXThisExprCaptured() const { return CXXThisFieldDecl != 0; }
193    FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
194
195    /// \brief Emit the captured statement body.
196    virtual void EmitBody(CodeGenFunction &CGF, Stmt *S) {
197      CGF.EmitStmt(S);
198    }
199
200    /// \brief Get the name of the capture helper.
201    virtual StringRef getHelperName() const { return "__captured_stmt"; }
202
203  private:
204    /// \brief The kind of captured statement being generated.
205    CapturedRegionKind Kind;
206
207    /// \brief Keep the map between VarDecl and FieldDecl.
208    llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
209
210    /// \brief The base address of the captured record, passed in as the first
211    /// argument of the parallel region function.
212    llvm::Value *ThisValue;
213
214    /// \brief Captured 'this' type.
215    FieldDecl *CXXThisFieldDecl;
216  };
217  CGCapturedStmtInfo *CapturedStmtInfo;
218
219  /// BoundsChecking - Emit run-time bounds checks. Higher values mean
220  /// potentially higher performance penalties.
221  unsigned char BoundsChecking;
222
223  /// \brief Whether any type-checking sanitizers are enabled. If \c false,
224  /// calls to EmitTypeCheck can be skipped.
225  bool SanitizePerformTypeCheck;
226
227  /// \brief Sanitizer options to use for this function.
228  const SanitizerOptions *SanOpts;
229
230  /// In ARC, whether we should autorelease the return value.
231  bool AutoreleaseResult;
232
233  const CodeGen::CGBlockInfo *BlockInfo;
234  llvm::Value *BlockPointer;
235
236  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
237  FieldDecl *LambdaThisCaptureField;
238
239  /// \brief A mapping from NRVO variables to the flags used to indicate
240  /// when the NRVO has been applied to this variable.
241  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
242
243  EHScopeStack EHStack;
244  llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
245
246  /// Header for data within LifetimeExtendedCleanupStack.
247  struct LifetimeExtendedCleanupHeader {
248    /// The size of the following cleanup object.
249    size_t Size : 29;
250    /// The kind of cleanup to push: a value from the CleanupKind enumeration.
251    unsigned Kind : 3;
252
253    size_t getSize() const { return Size; }
254    CleanupKind getKind() const { return static_cast<CleanupKind>(Kind); }
255  };
256
257  /// i32s containing the indexes of the cleanup destinations.
258  llvm::AllocaInst *NormalCleanupDest;
259
260  unsigned NextCleanupDestIndex;
261
262  /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
263  CGBlockInfo *FirstBlockInfo;
264
265  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
266  llvm::BasicBlock *EHResumeBlock;
267
268  /// The exception slot.  All landing pads write the current exception pointer
269  /// into this alloca.
270  llvm::Value *ExceptionSlot;
271
272  /// The selector slot.  Under the MandatoryCleanup model, all landing pads
273  /// write the current selector value into this alloca.
274  llvm::AllocaInst *EHSelectorSlot;
275
276  /// Emits a landing pad for the current EH stack.
277  llvm::BasicBlock *EmitLandingPad();
278
279  llvm::BasicBlock *getInvokeDestImpl();
280
281  template <class T>
282  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
283    return DominatingValue<T>::save(*this, value);
284  }
285
286public:
287  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
288  /// rethrows.
289  SmallVector<llvm::Value*, 8> ObjCEHValueStack;
290
291  /// A class controlling the emission of a finally block.
292  class FinallyInfo {
293    /// Where the catchall's edge through the cleanup should go.
294    JumpDest RethrowDest;
295
296    /// A function to call to enter the catch.
297    llvm::Constant *BeginCatchFn;
298
299    /// An i1 variable indicating whether or not the @finally is
300    /// running for an exception.
301    llvm::AllocaInst *ForEHVar;
302
303    /// An i8* variable into which the exception pointer to rethrow
304    /// has been saved.
305    llvm::AllocaInst *SavedExnVar;
306
307  public:
308    void enter(CodeGenFunction &CGF, const Stmt *Finally,
309               llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
310               llvm::Constant *rethrowFn);
311    void exit(CodeGenFunction &CGF);
312  };
313
314  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
315  /// current full-expression.  Safe against the possibility that
316  /// we're currently inside a conditionally-evaluated expression.
317  template <class T, class A0>
318  void pushFullExprCleanup(CleanupKind kind, A0 a0) {
319    // If we're not in a conditional branch, or if none of the
320    // arguments requires saving, then use the unconditional cleanup.
321    if (!isInConditionalBranch())
322      return EHStack.pushCleanup<T>(kind, a0);
323
324    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
325
326    typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
327    EHStack.pushCleanup<CleanupType>(kind, a0_saved);
328    initFullExprCleanup();
329  }
330
331  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
332  /// current full-expression.  Safe against the possibility that
333  /// we're currently inside a conditionally-evaluated expression.
334  template <class T, class A0, class A1>
335  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
336    // If we're not in a conditional branch, or if none of the
337    // arguments requires saving, then use the unconditional cleanup.
338    if (!isInConditionalBranch())
339      return EHStack.pushCleanup<T>(kind, a0, a1);
340
341    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
342    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
343
344    typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
345    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
346    initFullExprCleanup();
347  }
348
349  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
350  /// current full-expression.  Safe against the possibility that
351  /// we're currently inside a conditionally-evaluated expression.
352  template <class T, class A0, class A1, class A2>
353  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
354    // If we're not in a conditional branch, or if none of the
355    // arguments requires saving, then use the unconditional cleanup.
356    if (!isInConditionalBranch()) {
357      return EHStack.pushCleanup<T>(kind, a0, a1, a2);
358    }
359
360    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
361    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
362    typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
363
364    typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
365    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
366    initFullExprCleanup();
367  }
368
369  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
370  /// current full-expression.  Safe against the possibility that
371  /// we're currently inside a conditionally-evaluated expression.
372  template <class T, class A0, class A1, class A2, class A3>
373  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
374    // If we're not in a conditional branch, or if none of the
375    // arguments requires saving, then use the unconditional cleanup.
376    if (!isInConditionalBranch()) {
377      return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
378    }
379
380    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
381    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
382    typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
383    typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
384
385    typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
386    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
387                                     a2_saved, a3_saved);
388    initFullExprCleanup();
389  }
390
391  /// \brief Queue a cleanup to be pushed after finishing the current
392  /// full-expression.
393  template <class T, class A0, class A1, class A2, class A3>
394  void pushCleanupAfterFullExpr(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
395    assert(!isInConditionalBranch() && "can't defer conditional cleanup");
396
397    LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
398
399    size_t OldSize = LifetimeExtendedCleanupStack.size();
400    LifetimeExtendedCleanupStack.resize(
401        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
402
403    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
404    new (Buffer) LifetimeExtendedCleanupHeader(Header);
405    new (Buffer + sizeof(Header)) T(a0, a1, a2, a3);
406  }
407
408  /// Set up the last cleaup that was pushed as a conditional
409  /// full-expression cleanup.
410  void initFullExprCleanup();
411
412  /// PushDestructorCleanup - Push a cleanup to call the
413  /// complete-object destructor of an object of the given type at the
414  /// given address.  Does nothing if T is not a C++ class type with a
415  /// non-trivial destructor.
416  void PushDestructorCleanup(QualType T, llvm::Value *Addr);
417
418  /// PushDestructorCleanup - Push a cleanup to call the
419  /// complete-object variant of the given destructor on the object at
420  /// the given address.
421  void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
422                             llvm::Value *Addr);
423
424  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
425  /// process all branch fixups.
426  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
427
428  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
429  /// The block cannot be reactivated.  Pops it if it's the top of the
430  /// stack.
431  ///
432  /// \param DominatingIP - An instruction which is known to
433  ///   dominate the current IP (if set) and which lies along
434  ///   all paths of execution between the current IP and the
435  ///   the point at which the cleanup comes into scope.
436  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
437                              llvm::Instruction *DominatingIP);
438
439  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
440  /// Cannot be used to resurrect a deactivated cleanup.
441  ///
442  /// \param DominatingIP - An instruction which is known to
443  ///   dominate the current IP (if set) and which lies along
444  ///   all paths of execution between the current IP and the
445  ///   the point at which the cleanup comes into scope.
446  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
447                            llvm::Instruction *DominatingIP);
448
449  /// \brief Enters a new scope for capturing cleanups, all of which
450  /// will be executed once the scope is exited.
451  class RunCleanupsScope {
452    EHScopeStack::stable_iterator CleanupStackDepth;
453    size_t LifetimeExtendedCleanupStackSize;
454    bool OldDidCallStackSave;
455  protected:
456    bool PerformCleanup;
457  private:
458
459    RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
460    void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
461
462  protected:
463    CodeGenFunction& CGF;
464
465  public:
466    /// \brief Enter a new cleanup scope.
467    explicit RunCleanupsScope(CodeGenFunction &CGF)
468      : PerformCleanup(true), CGF(CGF)
469    {
470      CleanupStackDepth = CGF.EHStack.stable_begin();
471      LifetimeExtendedCleanupStackSize =
472          CGF.LifetimeExtendedCleanupStack.size();
473      OldDidCallStackSave = CGF.DidCallStackSave;
474      CGF.DidCallStackSave = false;
475    }
476
477    /// \brief Exit this cleanup scope, emitting any accumulated
478    /// cleanups.
479    ~RunCleanupsScope() {
480      if (PerformCleanup) {
481        CGF.DidCallStackSave = OldDidCallStackSave;
482        CGF.PopCleanupBlocks(CleanupStackDepth,
483                             LifetimeExtendedCleanupStackSize);
484      }
485    }
486
487    /// \brief Determine whether this scope requires any cleanups.
488    bool requiresCleanups() const {
489      return CGF.EHStack.stable_begin() != CleanupStackDepth;
490    }
491
492    /// \brief Force the emission of cleanups now, instead of waiting
493    /// until this object is destroyed.
494    void ForceCleanup() {
495      assert(PerformCleanup && "Already forced cleanup");
496      CGF.DidCallStackSave = OldDidCallStackSave;
497      CGF.PopCleanupBlocks(CleanupStackDepth,
498                           LifetimeExtendedCleanupStackSize);
499      PerformCleanup = false;
500    }
501  };
502
503  class LexicalScope: protected RunCleanupsScope {
504    SourceRange Range;
505    SmallVector<const LabelDecl*, 4> Labels;
506    LexicalScope *ParentScope;
507
508    LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION;
509    void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION;
510
511  public:
512    /// \brief Enter a new cleanup scope.
513    explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
514      : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
515      CGF.CurLexicalScope = this;
516      if (CGDebugInfo *DI = CGF.getDebugInfo())
517        DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
518    }
519
520    void addLabel(const LabelDecl *label) {
521      assert(PerformCleanup && "adding label to dead scope?");
522      Labels.push_back(label);
523    }
524
525    /// \brief Exit this cleanup scope, emitting any accumulated
526    /// cleanups.
527    ~LexicalScope() {
528      if (CGDebugInfo *DI = CGF.getDebugInfo())
529        DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
530
531      // If we should perform a cleanup, force them now.  Note that
532      // this ends the cleanup scope before rescoping any labels.
533      if (PerformCleanup) ForceCleanup();
534    }
535
536    /// \brief Force the emission of cleanups now, instead of waiting
537    /// until this object is destroyed.
538    void ForceCleanup() {
539      CGF.CurLexicalScope = ParentScope;
540      RunCleanupsScope::ForceCleanup();
541
542      if (!Labels.empty())
543        rescopeLabels();
544    }
545
546    void rescopeLabels();
547  };
548
549
550  /// \brief Takes the old cleanup stack size and emits the cleanup blocks
551  /// that have been added.
552  void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
553
554  /// \brief Takes the old cleanup stack size and emits the cleanup blocks
555  /// that have been added, then adds all lifetime-extended cleanups from
556  /// the given position to the stack.
557  void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
558                        size_t OldLifetimeExtendedStackSize);
559
560  void ResolveBranchFixups(llvm::BasicBlock *Target);
561
562  /// The given basic block lies in the current EH scope, but may be a
563  /// target of a potentially scope-crossing jump; get a stable handle
564  /// to which we can perform this jump later.
565  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
566    return JumpDest(Target,
567                    EHStack.getInnermostNormalCleanup(),
568                    NextCleanupDestIndex++);
569  }
570
571  /// The given basic block lies in the current EH scope, but may be a
572  /// target of a potentially scope-crossing jump; get a stable handle
573  /// to which we can perform this jump later.
574  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
575    return getJumpDestInCurrentScope(createBasicBlock(Name));
576  }
577
578  /// EmitBranchThroughCleanup - Emit a branch from the current insert
579  /// block through the normal cleanup handling code (if any) and then
580  /// on to \arg Dest.
581  void EmitBranchThroughCleanup(JumpDest Dest);
582
583  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
584  /// specified destination obviously has no cleanups to run.  'false' is always
585  /// a conservatively correct answer for this method.
586  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
587
588  /// popCatchScope - Pops the catch scope at the top of the EHScope
589  /// stack, emitting any required code (other than the catch handlers
590  /// themselves).
591  void popCatchScope();
592
593  llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
594  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
595
596  /// An object to manage conditionally-evaluated expressions.
597  class ConditionalEvaluation {
598    llvm::BasicBlock *StartBB;
599
600  public:
601    ConditionalEvaluation(CodeGenFunction &CGF)
602      : StartBB(CGF.Builder.GetInsertBlock()) {}
603
604    void begin(CodeGenFunction &CGF) {
605      assert(CGF.OutermostConditional != this);
606      if (!CGF.OutermostConditional)
607        CGF.OutermostConditional = this;
608    }
609
610    void end(CodeGenFunction &CGF) {
611      assert(CGF.OutermostConditional != 0);
612      if (CGF.OutermostConditional == this)
613        CGF.OutermostConditional = 0;
614    }
615
616    /// Returns a block which will be executed prior to each
617    /// evaluation of the conditional code.
618    llvm::BasicBlock *getStartingBlock() const {
619      return StartBB;
620    }
621  };
622
623  /// isInConditionalBranch - Return true if we're currently emitting
624  /// one branch or the other of a conditional expression.
625  bool isInConditionalBranch() const { return OutermostConditional != 0; }
626
627  void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
628    assert(isInConditionalBranch());
629    llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
630    new llvm::StoreInst(value, addr, &block->back());
631  }
632
633  /// An RAII object to record that we're evaluating a statement
634  /// expression.
635  class StmtExprEvaluation {
636    CodeGenFunction &CGF;
637
638    /// We have to save the outermost conditional: cleanups in a
639    /// statement expression aren't conditional just because the
640    /// StmtExpr is.
641    ConditionalEvaluation *SavedOutermostConditional;
642
643  public:
644    StmtExprEvaluation(CodeGenFunction &CGF)
645      : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
646      CGF.OutermostConditional = 0;
647    }
648
649    ~StmtExprEvaluation() {
650      CGF.OutermostConditional = SavedOutermostConditional;
651      CGF.EnsureInsertPoint();
652    }
653  };
654
655  /// An object which temporarily prevents a value from being
656  /// destroyed by aggressive peephole optimizations that assume that
657  /// all uses of a value have been realized in the IR.
658  class PeepholeProtection {
659    llvm::Instruction *Inst;
660    friend class CodeGenFunction;
661
662  public:
663    PeepholeProtection() : Inst(0) {}
664  };
665
666  /// A non-RAII class containing all the information about a bound
667  /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
668  /// this which makes individual mappings very simple; using this
669  /// class directly is useful when you have a variable number of
670  /// opaque values or don't want the RAII functionality for some
671  /// reason.
672  class OpaqueValueMappingData {
673    const OpaqueValueExpr *OpaqueValue;
674    bool BoundLValue;
675    CodeGenFunction::PeepholeProtection Protection;
676
677    OpaqueValueMappingData(const OpaqueValueExpr *ov,
678                           bool boundLValue)
679      : OpaqueValue(ov), BoundLValue(boundLValue) {}
680  public:
681    OpaqueValueMappingData() : OpaqueValue(0) {}
682
683    static bool shouldBindAsLValue(const Expr *expr) {
684      // gl-values should be bound as l-values for obvious reasons.
685      // Records should be bound as l-values because IR generation
686      // always keeps them in memory.  Expressions of function type
687      // act exactly like l-values but are formally required to be
688      // r-values in C.
689      return expr->isGLValue() ||
690             expr->getType()->isRecordType() ||
691             expr->getType()->isFunctionType();
692    }
693
694    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
695                                       const OpaqueValueExpr *ov,
696                                       const Expr *e) {
697      if (shouldBindAsLValue(ov))
698        return bind(CGF, ov, CGF.EmitLValue(e));
699      return bind(CGF, ov, CGF.EmitAnyExpr(e));
700    }
701
702    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
703                                       const OpaqueValueExpr *ov,
704                                       const LValue &lv) {
705      assert(shouldBindAsLValue(ov));
706      CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
707      return OpaqueValueMappingData(ov, true);
708    }
709
710    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
711                                       const OpaqueValueExpr *ov,
712                                       const RValue &rv) {
713      assert(!shouldBindAsLValue(ov));
714      CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
715
716      OpaqueValueMappingData data(ov, false);
717
718      // Work around an extremely aggressive peephole optimization in
719      // EmitScalarConversion which assumes that all other uses of a
720      // value are extant.
721      data.Protection = CGF.protectFromPeepholes(rv);
722
723      return data;
724    }
725
726    bool isValid() const { return OpaqueValue != 0; }
727    void clear() { OpaqueValue = 0; }
728
729    void unbind(CodeGenFunction &CGF) {
730      assert(OpaqueValue && "no data to unbind!");
731
732      if (BoundLValue) {
733        CGF.OpaqueLValues.erase(OpaqueValue);
734      } else {
735        CGF.OpaqueRValues.erase(OpaqueValue);
736        CGF.unprotectFromPeepholes(Protection);
737      }
738    }
739  };
740
741  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
742  class OpaqueValueMapping {
743    CodeGenFunction &CGF;
744    OpaqueValueMappingData Data;
745
746  public:
747    static bool shouldBindAsLValue(const Expr *expr) {
748      return OpaqueValueMappingData::shouldBindAsLValue(expr);
749    }
750
751    /// Build the opaque value mapping for the given conditional
752    /// operator if it's the GNU ?: extension.  This is a common
753    /// enough pattern that the convenience operator is really
754    /// helpful.
755    ///
756    OpaqueValueMapping(CodeGenFunction &CGF,
757                       const AbstractConditionalOperator *op) : CGF(CGF) {
758      if (isa<ConditionalOperator>(op))
759        // Leave Data empty.
760        return;
761
762      const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
763      Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
764                                          e->getCommon());
765    }
766
767    OpaqueValueMapping(CodeGenFunction &CGF,
768                       const OpaqueValueExpr *opaqueValue,
769                       LValue lvalue)
770      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
771    }
772
773    OpaqueValueMapping(CodeGenFunction &CGF,
774                       const OpaqueValueExpr *opaqueValue,
775                       RValue rvalue)
776      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
777    }
778
779    void pop() {
780      Data.unbind(CGF);
781      Data.clear();
782    }
783
784    ~OpaqueValueMapping() {
785      if (Data.isValid()) Data.unbind(CGF);
786    }
787  };
788
789  /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
790  /// number that holds the value.
791  unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
792
793  /// BuildBlockByrefAddress - Computes address location of the
794  /// variable which is declared as __block.
795  llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
796                                      const VarDecl *V);
797private:
798  CGDebugInfo *DebugInfo;
799  bool DisableDebugInfo;
800
801  /// If the current function returns 'this', use the field to keep track of
802  /// the callee that returns 'this'.
803  llvm::Value *CalleeWithThisReturn;
804
805  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
806  /// calling llvm.stacksave for multiple VLAs in the same scope.
807  bool DidCallStackSave;
808
809  /// IndirectBranch - The first time an indirect goto is seen we create a block
810  /// with an indirect branch.  Every time we see the address of a label taken,
811  /// we add the label to the indirect goto.  Every subsequent indirect goto is
812  /// codegen'd as a jump to the IndirectBranch's basic block.
813  llvm::IndirectBrInst *IndirectBranch;
814
815  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
816  /// decls.
817  typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
818  DeclMapTy LocalDeclMap;
819
820  /// LabelMap - This keeps track of the LLVM basic block for each C label.
821  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
822
823  // BreakContinueStack - This keeps track of where break and continue
824  // statements should jump to.
825  struct BreakContinue {
826    BreakContinue(JumpDest Break, JumpDest Continue)
827      : BreakBlock(Break), ContinueBlock(Continue) {}
828
829    JumpDest BreakBlock;
830    JumpDest ContinueBlock;
831  };
832  SmallVector<BreakContinue, 8> BreakContinueStack;
833
834  /// SwitchInsn - This is nearest current switch instruction. It is null if
835  /// current context is not in a switch.
836  llvm::SwitchInst *SwitchInsn;
837
838  /// CaseRangeBlock - This block holds if condition check for last case
839  /// statement range in current switch instruction.
840  llvm::BasicBlock *CaseRangeBlock;
841
842  /// OpaqueLValues - Keeps track of the current set of opaque value
843  /// expressions.
844  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
845  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
846
847  // VLASizeMap - This keeps track of the associated size for each VLA type.
848  // We track this by the size expression rather than the type itself because
849  // in certain situations, like a const qualifier applied to an VLA typedef,
850  // multiple VLA types can share the same size expression.
851  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
852  // enter/leave scopes.
853  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
854
855  /// A block containing a single 'unreachable' instruction.  Created
856  /// lazily by getUnreachableBlock().
857  llvm::BasicBlock *UnreachableBlock;
858
859  /// Counts of the number return expressions in the function.
860  unsigned NumReturnExprs;
861
862  /// Count the number of simple (constant) return expressions in the function.
863  unsigned NumSimpleReturnExprs;
864
865  /// The last regular (non-return) debug location (breakpoint) in the function.
866  SourceLocation LastStopPoint;
867
868public:
869  /// A scope within which we are constructing the fields of an object which
870  /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
871  /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
872  class FieldConstructionScope {
873  public:
874    FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This)
875        : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
876      CGF.CXXDefaultInitExprThis = This;
877    }
878    ~FieldConstructionScope() {
879      CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
880    }
881
882  private:
883    CodeGenFunction &CGF;
884    llvm::Value *OldCXXDefaultInitExprThis;
885  };
886
887  /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
888  /// is overridden to be the object under construction.
889  class CXXDefaultInitExprScope {
890  public:
891    CXXDefaultInitExprScope(CodeGenFunction &CGF)
892        : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) {
893      CGF.CXXThisValue = CGF.CXXDefaultInitExprThis;
894    }
895    ~CXXDefaultInitExprScope() {
896      CGF.CXXThisValue = OldCXXThisValue;
897    }
898
899  public:
900    CodeGenFunction &CGF;
901    llvm::Value *OldCXXThisValue;
902  };
903
904private:
905  /// CXXThisDecl - When generating code for a C++ member function,
906  /// this will hold the implicit 'this' declaration.
907  ImplicitParamDecl *CXXABIThisDecl;
908  llvm::Value *CXXABIThisValue;
909  llvm::Value *CXXThisValue;
910
911  /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
912  /// this expression.
913  llvm::Value *CXXDefaultInitExprThis;
914
915  /// CXXStructorImplicitParamDecl - When generating code for a constructor or
916  /// destructor, this will hold the implicit argument (e.g. VTT).
917  ImplicitParamDecl *CXXStructorImplicitParamDecl;
918  llvm::Value *CXXStructorImplicitParamValue;
919
920  /// OutermostConditional - Points to the outermost active
921  /// conditional control.  This is used so that we know if a
922  /// temporary should be destroyed conditionally.
923  ConditionalEvaluation *OutermostConditional;
924
925  /// The current lexical scope.
926  LexicalScope *CurLexicalScope;
927
928  /// The current source location that should be used for exception
929  /// handling code.
930  SourceLocation CurEHLocation;
931
932  /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
933  /// type as well as the field number that contains the actual data.
934  llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
935                                              unsigned> > ByRefValueInfo;
936
937  llvm::BasicBlock *TerminateLandingPad;
938  llvm::BasicBlock *TerminateHandler;
939  llvm::BasicBlock *TrapBB;
940
941  /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
942  /// In the kernel metadata node, reference the kernel function and metadata
943  /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
944  /// - A node for the vec_type_hint(<type>) qualifier contains string
945  ///   "vec_type_hint", an undefined value of the <type> data type,
946  ///   and a Boolean that is true if the <type> is integer and signed.
947  /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
948  ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
949  /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
950  ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
951  void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
952                                llvm::Function *Fn);
953
954public:
955  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
956  ~CodeGenFunction();
957
958  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
959  ASTContext &getContext() const { return CGM.getContext(); }
960  /// Returns true if DebugInfo is actually initialized.
961  bool maybeInitializeDebugInfo() {
962    if (CGM.getModuleDebugInfo()) {
963      DebugInfo = CGM.getModuleDebugInfo();
964      return true;
965    }
966    return false;
967  }
968  CGDebugInfo *getDebugInfo() {
969    if (DisableDebugInfo)
970      return NULL;
971    return DebugInfo;
972  }
973  void disableDebugInfo() { DisableDebugInfo = true; }
974  void enableDebugInfo() { DisableDebugInfo = false; }
975
976  bool shouldUseFusedARCCalls() {
977    return CGM.getCodeGenOpts().OptimizationLevel == 0;
978  }
979
980  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
981
982  /// Returns a pointer to the function's exception object and selector slot,
983  /// which is assigned in every landing pad.
984  llvm::Value *getExceptionSlot();
985  llvm::Value *getEHSelectorSlot();
986
987  /// Returns the contents of the function's exception object and selector
988  /// slots.
989  llvm::Value *getExceptionFromSlot();
990  llvm::Value *getSelectorFromSlot();
991
992  llvm::Value *getNormalCleanupDestSlot();
993
994  llvm::BasicBlock *getUnreachableBlock() {
995    if (!UnreachableBlock) {
996      UnreachableBlock = createBasicBlock("unreachable");
997      new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
998    }
999    return UnreachableBlock;
1000  }
1001
1002  llvm::BasicBlock *getInvokeDest() {
1003    if (!EHStack.requiresLandingPad()) return 0;
1004    return getInvokeDestImpl();
1005  }
1006
1007  const TargetInfo &getTarget() const { return Target; }
1008  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1009
1010  //===--------------------------------------------------------------------===//
1011  //                                  Cleanups
1012  //===--------------------------------------------------------------------===//
1013
1014  typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1015
1016  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1017                                        llvm::Value *arrayEndPointer,
1018                                        QualType elementType,
1019                                        Destroyer *destroyer);
1020  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1021                                      llvm::Value *arrayEnd,
1022                                      QualType elementType,
1023                                      Destroyer *destroyer);
1024
1025  void pushDestroy(QualType::DestructionKind dtorKind,
1026                   llvm::Value *addr, QualType type);
1027  void pushEHDestroy(QualType::DestructionKind dtorKind,
1028                     llvm::Value *addr, QualType type);
1029  void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1030                   Destroyer *destroyer, bool useEHCleanupForArray);
1031  void pushLifetimeExtendedDestroy(CleanupKind kind, llvm::Value *addr,
1032                                   QualType type, Destroyer *destroyer,
1033                                   bool useEHCleanupForArray);
1034  void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1035                   bool useEHCleanupForArray);
1036  llvm::Function *generateDestroyHelper(llvm::Constant *addr,
1037                                        QualType type,
1038                                        Destroyer *destroyer,
1039                                        bool useEHCleanupForArray);
1040  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1041                        QualType type, Destroyer *destroyer,
1042                        bool checkZeroLength, bool useEHCleanup);
1043
1044  Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1045
1046  /// Determines whether an EH cleanup is required to destroy a type
1047  /// with the given destruction kind.
1048  bool needsEHCleanup(QualType::DestructionKind kind) {
1049    switch (kind) {
1050    case QualType::DK_none:
1051      return false;
1052    case QualType::DK_cxx_destructor:
1053    case QualType::DK_objc_weak_lifetime:
1054      return getLangOpts().Exceptions;
1055    case QualType::DK_objc_strong_lifetime:
1056      return getLangOpts().Exceptions &&
1057             CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1058    }
1059    llvm_unreachable("bad destruction kind");
1060  }
1061
1062  CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1063    return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1064  }
1065
1066  //===--------------------------------------------------------------------===//
1067  //                                  Objective-C
1068  //===--------------------------------------------------------------------===//
1069
1070  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1071
1072  void StartObjCMethod(const ObjCMethodDecl *MD,
1073                       const ObjCContainerDecl *CD,
1074                       SourceLocation StartLoc);
1075
1076  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1077  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1078                          const ObjCPropertyImplDecl *PID);
1079  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1080                              const ObjCPropertyImplDecl *propImpl,
1081                              const ObjCMethodDecl *GetterMothodDecl,
1082                              llvm::Constant *AtomicHelperFn);
1083
1084  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1085                                  ObjCMethodDecl *MD, bool ctor);
1086
1087  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1088  /// for the given property.
1089  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1090                          const ObjCPropertyImplDecl *PID);
1091  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1092                              const ObjCPropertyImplDecl *propImpl,
1093                              llvm::Constant *AtomicHelperFn);
1094  bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1095  bool IvarTypeWithAggrGCObjects(QualType Ty);
1096
1097  //===--------------------------------------------------------------------===//
1098  //                                  Block Bits
1099  //===--------------------------------------------------------------------===//
1100
1101  llvm::Value *EmitBlockLiteral(const BlockExpr *);
1102  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1103  static void destroyBlockInfos(CGBlockInfo *info);
1104  llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1105                                           const CGBlockInfo &Info,
1106                                           llvm::StructType *,
1107                                           llvm::Constant *BlockVarLayout);
1108
1109  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1110                                        const CGBlockInfo &Info,
1111                                        const DeclMapTy &ldm,
1112                                        bool IsLambdaConversionToBlock);
1113
1114  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1115  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1116  llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1117                                             const ObjCPropertyImplDecl *PID);
1118  llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1119                                             const ObjCPropertyImplDecl *PID);
1120  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1121
1122  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1123
1124  class AutoVarEmission;
1125
1126  void emitByrefStructureInit(const AutoVarEmission &emission);
1127  void enterByrefCleanup(const AutoVarEmission &emission);
1128
1129  llvm::Value *LoadBlockStruct() {
1130    assert(BlockPointer && "no block pointer set!");
1131    return BlockPointer;
1132  }
1133
1134  void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1135  void AllocateBlockDecl(const DeclRefExpr *E);
1136  llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1137  llvm::Type *BuildByRefType(const VarDecl *var);
1138
1139  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1140                    const CGFunctionInfo &FnInfo);
1141  void StartFunction(GlobalDecl GD,
1142                     QualType RetTy,
1143                     llvm::Function *Fn,
1144                     const CGFunctionInfo &FnInfo,
1145                     const FunctionArgList &Args,
1146                     SourceLocation StartLoc);
1147
1148  void EmitConstructorBody(FunctionArgList &Args);
1149  void EmitDestructorBody(FunctionArgList &Args);
1150  void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
1151  void EmitFunctionBody(FunctionArgList &Args);
1152
1153  void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda,
1154                                  CallArgList &CallArgs);
1155  void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1156  void EmitLambdaBlockInvokeBody();
1157  void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1158  void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1159
1160  /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1161  /// emission when possible.
1162  void EmitReturnBlock();
1163
1164  /// FinishFunction - Complete IR generation of the current function. It is
1165  /// legal to call this function even if there is no current insertion point.
1166  void FinishFunction(SourceLocation EndLoc=SourceLocation());
1167
1168  /// GenerateThunk - Generate a thunk for the given method.
1169  void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1170                     GlobalDecl GD, const ThunkInfo &Thunk);
1171
1172  void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1173                            GlobalDecl GD, const ThunkInfo &Thunk);
1174
1175  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1176                        FunctionArgList &Args);
1177
1178  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1179                               ArrayRef<VarDecl *> ArrayIndexes);
1180
1181  /// InitializeVTablePointer - Initialize the vtable pointer of the given
1182  /// subobject.
1183  ///
1184  void InitializeVTablePointer(BaseSubobject Base,
1185                               const CXXRecordDecl *NearestVBase,
1186                               CharUnits OffsetFromNearestVBase,
1187                               llvm::Constant *VTable,
1188                               const CXXRecordDecl *VTableClass);
1189
1190  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1191  void InitializeVTablePointers(BaseSubobject Base,
1192                                const CXXRecordDecl *NearestVBase,
1193                                CharUnits OffsetFromNearestVBase,
1194                                bool BaseIsNonVirtualPrimaryBase,
1195                                llvm::Constant *VTable,
1196                                const CXXRecordDecl *VTableClass,
1197                                VisitedVirtualBasesSetTy& VBases);
1198
1199  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1200
1201  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1202  /// to by This.
1203  llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1204
1205  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1206  /// given phase of destruction for a destructor.  The end result
1207  /// should call destructors on members and base classes in reverse
1208  /// order of their construction.
1209  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1210
1211  /// ShouldInstrumentFunction - Return true if the current function should be
1212  /// instrumented with __cyg_profile_func_* calls
1213  bool ShouldInstrumentFunction();
1214
1215  /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1216  /// instrumentation function with the current function and the call site, if
1217  /// function instrumentation is enabled.
1218  void EmitFunctionInstrumentation(const char *Fn);
1219
1220  /// EmitMCountInstrumentation - Emit call to .mcount.
1221  void EmitMCountInstrumentation();
1222
1223  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1224  /// arguments for the given function. This is also responsible for naming the
1225  /// LLVM function arguments.
1226  void EmitFunctionProlog(const CGFunctionInfo &FI,
1227                          llvm::Function *Fn,
1228                          const FunctionArgList &Args);
1229
1230  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1231  /// given temporary.
1232  void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc);
1233
1234  /// EmitStartEHSpec - Emit the start of the exception spec.
1235  void EmitStartEHSpec(const Decl *D);
1236
1237  /// EmitEndEHSpec - Emit the end of the exception spec.
1238  void EmitEndEHSpec(const Decl *D);
1239
1240  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1241  llvm::BasicBlock *getTerminateLandingPad();
1242
1243  /// getTerminateHandler - Return a handler (not a landing pad, just
1244  /// a catch handler) that just calls terminate.  This is used when
1245  /// a terminate scope encloses a try.
1246  llvm::BasicBlock *getTerminateHandler();
1247
1248  llvm::Type *ConvertTypeForMem(QualType T);
1249  llvm::Type *ConvertType(QualType T);
1250  llvm::Type *ConvertType(const TypeDecl *T) {
1251    return ConvertType(getContext().getTypeDeclType(T));
1252  }
1253
1254  /// LoadObjCSelf - Load the value of self. This function is only valid while
1255  /// generating code for an Objective-C method.
1256  llvm::Value *LoadObjCSelf();
1257
1258  /// TypeOfSelfObject - Return type of object that this self represents.
1259  QualType TypeOfSelfObject();
1260
1261  /// hasAggregateLLVMType - Return true if the specified AST type will map into
1262  /// an aggregate LLVM type or is void.
1263  static TypeEvaluationKind getEvaluationKind(QualType T);
1264
1265  static bool hasScalarEvaluationKind(QualType T) {
1266    return getEvaluationKind(T) == TEK_Scalar;
1267  }
1268
1269  static bool hasAggregateEvaluationKind(QualType T) {
1270    return getEvaluationKind(T) == TEK_Aggregate;
1271  }
1272
1273  /// createBasicBlock - Create an LLVM basic block.
1274  llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1275                                     llvm::Function *parent = 0,
1276                                     llvm::BasicBlock *before = 0) {
1277#ifdef NDEBUG
1278    return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1279#else
1280    return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1281#endif
1282  }
1283
1284  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1285  /// label maps to.
1286  JumpDest getJumpDestForLabel(const LabelDecl *S);
1287
1288  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1289  /// another basic block, simplify it. This assumes that no other code could
1290  /// potentially reference the basic block.
1291  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1292
1293  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1294  /// adding a fall-through branch from the current insert block if
1295  /// necessary. It is legal to call this function even if there is no current
1296  /// insertion point.
1297  ///
1298  /// IsFinished - If true, indicates that the caller has finished emitting
1299  /// branches to the given block and does not expect to emit code into it. This
1300  /// means the block can be ignored if it is unreachable.
1301  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1302
1303  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1304  /// near its uses, and leave the insertion point in it.
1305  void EmitBlockAfterUses(llvm::BasicBlock *BB);
1306
1307  /// EmitBranch - Emit a branch to the specified basic block from the current
1308  /// insert block, taking care to avoid creation of branches from dummy
1309  /// blocks. It is legal to call this function even if there is no current
1310  /// insertion point.
1311  ///
1312  /// This function clears the current insertion point. The caller should follow
1313  /// calls to this function with calls to Emit*Block prior to generation new
1314  /// code.
1315  void EmitBranch(llvm::BasicBlock *Block);
1316
1317  /// HaveInsertPoint - True if an insertion point is defined. If not, this
1318  /// indicates that the current code being emitted is unreachable.
1319  bool HaveInsertPoint() const {
1320    return Builder.GetInsertBlock() != 0;
1321  }
1322
1323  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1324  /// emitted IR has a place to go. Note that by definition, if this function
1325  /// creates a block then that block is unreachable; callers may do better to
1326  /// detect when no insertion point is defined and simply skip IR generation.
1327  void EnsureInsertPoint() {
1328    if (!HaveInsertPoint())
1329      EmitBlock(createBasicBlock());
1330  }
1331
1332  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1333  /// specified stmt yet.
1334  void ErrorUnsupported(const Stmt *S, const char *Type,
1335                        bool OmitOnError=false);
1336
1337  //===--------------------------------------------------------------------===//
1338  //                                  Helpers
1339  //===--------------------------------------------------------------------===//
1340
1341  LValue MakeAddrLValue(llvm::Value *V, QualType T,
1342                        CharUnits Alignment = CharUnits()) {
1343    return LValue::MakeAddr(V, T, Alignment, getContext(),
1344                            CGM.getTBAAInfo(T));
1345  }
1346
1347  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
1348    CharUnits Alignment;
1349    if (!T->isIncompleteType())
1350      Alignment = getContext().getTypeAlignInChars(T);
1351    return LValue::MakeAddr(V, T, Alignment, getContext(),
1352                            CGM.getTBAAInfo(T));
1353  }
1354
1355  /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1356  /// block. The caller is responsible for setting an appropriate alignment on
1357  /// the alloca.
1358  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1359                                     const Twine &Name = "tmp");
1360
1361  /// InitTempAlloca - Provide an initial value for the given alloca.
1362  void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1363
1364  /// CreateIRTemp - Create a temporary IR object of the given type, with
1365  /// appropriate alignment. This routine should only be used when an temporary
1366  /// value needs to be stored into an alloca (for example, to avoid explicit
1367  /// PHI construction), but the type is the IR type, not the type appropriate
1368  /// for storing in memory.
1369  llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1370
1371  /// CreateMemTemp - Create a temporary memory object of the given type, with
1372  /// appropriate alignment.
1373  llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1374
1375  /// CreateAggTemp - Create a temporary memory object for the given
1376  /// aggregate type.
1377  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1378    CharUnits Alignment = getContext().getTypeAlignInChars(T);
1379    return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1380                                 T.getQualifiers(),
1381                                 AggValueSlot::IsNotDestructed,
1382                                 AggValueSlot::DoesNotNeedGCBarriers,
1383                                 AggValueSlot::IsNotAliased);
1384  }
1385
1386  /// Emit a cast to void* in the appropriate address space.
1387  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1388
1389  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1390  /// expression and compare the result against zero, returning an Int1Ty value.
1391  llvm::Value *EvaluateExprAsBool(const Expr *E);
1392
1393  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1394  void EmitIgnoredExpr(const Expr *E);
1395
1396  /// EmitAnyExpr - Emit code to compute the specified expression which can have
1397  /// any type.  The result is returned as an RValue struct.  If this is an
1398  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1399  /// the result should be returned.
1400  ///
1401  /// \param ignoreResult True if the resulting value isn't used.
1402  RValue EmitAnyExpr(const Expr *E,
1403                     AggValueSlot aggSlot = AggValueSlot::ignored(),
1404                     bool ignoreResult = false);
1405
1406  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1407  // or the value of the expression, depending on how va_list is defined.
1408  llvm::Value *EmitVAListRef(const Expr *E);
1409
1410  /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1411  /// always be accessible even if no aggregate location is provided.
1412  RValue EmitAnyExprToTemp(const Expr *E);
1413
1414  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1415  /// arbitrary expression into the given memory location.
1416  void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1417                        Qualifiers Quals, bool IsInitializer);
1418
1419  /// EmitExprAsInit - Emits the code necessary to initialize a
1420  /// location in memory with the given initializer.
1421  void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1422                      LValue lvalue, bool capturedByInit);
1423
1424  /// hasVolatileMember - returns true if aggregate type has a volatile
1425  /// member.
1426  bool hasVolatileMember(QualType T) {
1427    if (const RecordType *RT = T->getAs<RecordType>()) {
1428      const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1429      return RD->hasVolatileMember();
1430    }
1431    return false;
1432  }
1433  /// EmitAggregateCopy - Emit an aggregate assignment.
1434  ///
1435  /// The difference to EmitAggregateCopy is that tail padding is not copied.
1436  /// This is required for correctness when assigning non-POD structures in C++.
1437  void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1438                           QualType EltTy) {
1439    bool IsVolatile = hasVolatileMember(EltTy);
1440    EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(),
1441                      true);
1442  }
1443
1444  /// EmitAggregateCopy - Emit an aggregate copy.
1445  ///
1446  /// \param isVolatile - True iff either the source or the destination is
1447  /// volatile.
1448  /// \param isAssignment - If false, allow padding to be copied.  This often
1449  /// yields more efficient.
1450  void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1451                         QualType EltTy, bool isVolatile=false,
1452                         CharUnits Alignment = CharUnits::Zero(),
1453                         bool isAssignment = false);
1454
1455  /// StartBlock - Start new block named N. If insert block is a dummy block
1456  /// then reuse it.
1457  void StartBlock(const char *N);
1458
1459  /// GetAddrOfLocalVar - Return the address of a local variable.
1460  llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1461    llvm::Value *Res = LocalDeclMap[VD];
1462    assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1463    return Res;
1464  }
1465
1466  /// getOpaqueLValueMapping - Given an opaque value expression (which
1467  /// must be mapped to an l-value), return its mapping.
1468  const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1469    assert(OpaqueValueMapping::shouldBindAsLValue(e));
1470
1471    llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1472      it = OpaqueLValues.find(e);
1473    assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1474    return it->second;
1475  }
1476
1477  /// getOpaqueRValueMapping - Given an opaque value expression (which
1478  /// must be mapped to an r-value), return its mapping.
1479  const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1480    assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1481
1482    llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1483      it = OpaqueRValues.find(e);
1484    assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1485    return it->second;
1486  }
1487
1488  /// getAccessedFieldNo - Given an encoded value and a result number, return
1489  /// the input field number being accessed.
1490  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1491
1492  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1493  llvm::BasicBlock *GetIndirectGotoBlock();
1494
1495  /// EmitNullInitialization - Generate code to set a value of the given type to
1496  /// null, If the type contains data member pointers, they will be initialized
1497  /// to -1 in accordance with the Itanium C++ ABI.
1498  void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1499
1500  // EmitVAArg - Generate code to get an argument from the passed in pointer
1501  // and update it accordingly. The return value is a pointer to the argument.
1502  // FIXME: We should be able to get rid of this method and use the va_arg
1503  // instruction in LLVM instead once it works well enough.
1504  llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1505
1506  /// emitArrayLength - Compute the length of an array, even if it's a
1507  /// VLA, and drill down to the base element type.
1508  llvm::Value *emitArrayLength(const ArrayType *arrayType,
1509                               QualType &baseType,
1510                               llvm::Value *&addr);
1511
1512  /// EmitVLASize - Capture all the sizes for the VLA expressions in
1513  /// the given variably-modified type and store them in the VLASizeMap.
1514  ///
1515  /// This function can be called with a null (unreachable) insert point.
1516  void EmitVariablyModifiedType(QualType Ty);
1517
1518  /// getVLASize - Returns an LLVM value that corresponds to the size,
1519  /// in non-variably-sized elements, of a variable length array type,
1520  /// plus that largest non-variably-sized element type.  Assumes that
1521  /// the type has already been emitted with EmitVariablyModifiedType.
1522  std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1523  std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1524
1525  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1526  /// generating code for an C++ member function.
1527  llvm::Value *LoadCXXThis() {
1528    assert(CXXThisValue && "no 'this' value for this function");
1529    return CXXThisValue;
1530  }
1531
1532  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1533  /// virtual bases.
1534  // FIXME: Every place that calls LoadCXXVTT is something
1535  // that needs to be abstracted properly.
1536  llvm::Value *LoadCXXVTT() {
1537    assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1538    return CXXStructorImplicitParamValue;
1539  }
1540
1541  /// LoadCXXStructorImplicitParam - Load the implicit parameter
1542  /// for a constructor/destructor.
1543  llvm::Value *LoadCXXStructorImplicitParam() {
1544    assert(CXXStructorImplicitParamValue &&
1545           "no implicit argument value for this function");
1546    return CXXStructorImplicitParamValue;
1547  }
1548
1549  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1550  /// complete class to the given direct base.
1551  llvm::Value *
1552  GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1553                                        const CXXRecordDecl *Derived,
1554                                        const CXXRecordDecl *Base,
1555                                        bool BaseIsVirtual);
1556
1557  /// GetAddressOfBaseClass - This function will add the necessary delta to the
1558  /// load of 'this' and returns address of the base class.
1559  llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1560                                     const CXXRecordDecl *Derived,
1561                                     CastExpr::path_const_iterator PathBegin,
1562                                     CastExpr::path_const_iterator PathEnd,
1563                                     bool NullCheckValue);
1564
1565  llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1566                                        const CXXRecordDecl *Derived,
1567                                        CastExpr::path_const_iterator PathBegin,
1568                                        CastExpr::path_const_iterator PathEnd,
1569                                        bool NullCheckValue);
1570
1571  /// GetVTTParameter - Return the VTT parameter that should be passed to a
1572  /// base constructor/destructor with virtual bases.
1573  /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
1574  /// to ItaniumCXXABI.cpp together with all the references to VTT.
1575  llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
1576                               bool Delegating);
1577
1578  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1579                                      CXXCtorType CtorType,
1580                                      const FunctionArgList &Args);
1581  // It's important not to confuse this and the previous function. Delegating
1582  // constructors are the C++0x feature. The constructor delegate optimization
1583  // is used to reduce duplication in the base and complete consturctors where
1584  // they are substantially the same.
1585  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1586                                        const FunctionArgList &Args);
1587  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1588                              bool ForVirtualBase, bool Delegating,
1589                              llvm::Value *This,
1590                              CallExpr::const_arg_iterator ArgBeg,
1591                              CallExpr::const_arg_iterator ArgEnd);
1592
1593  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1594                              llvm::Value *This, llvm::Value *Src,
1595                              CallExpr::const_arg_iterator ArgBeg,
1596                              CallExpr::const_arg_iterator ArgEnd);
1597
1598  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1599                                  const ConstantArrayType *ArrayTy,
1600                                  llvm::Value *ArrayPtr,
1601                                  CallExpr::const_arg_iterator ArgBeg,
1602                                  CallExpr::const_arg_iterator ArgEnd,
1603                                  bool ZeroInitialization = false);
1604
1605  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1606                                  llvm::Value *NumElements,
1607                                  llvm::Value *ArrayPtr,
1608                                  CallExpr::const_arg_iterator ArgBeg,
1609                                  CallExpr::const_arg_iterator ArgEnd,
1610                                  bool ZeroInitialization = false);
1611
1612  static Destroyer destroyCXXObject;
1613
1614  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1615                             bool ForVirtualBase, bool Delegating,
1616                             llvm::Value *This);
1617
1618  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1619                               llvm::Value *NewPtr, llvm::Value *NumElements);
1620
1621  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1622                        llvm::Value *Ptr);
1623
1624  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1625  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1626
1627  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1628                      QualType DeleteTy);
1629
1630  llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1631  llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1632  llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1633
1634  void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init);
1635  void EmitStdInitializerListCleanup(llvm::Value *loc,
1636                                     const InitListExpr *init);
1637
1638  /// \brief Situations in which we might emit a check for the suitability of a
1639  ///        pointer or glvalue.
1640  enum TypeCheckKind {
1641    /// Checking the operand of a load. Must be suitably sized and aligned.
1642    TCK_Load,
1643    /// Checking the destination of a store. Must be suitably sized and aligned.
1644    TCK_Store,
1645    /// Checking the bound value in a reference binding. Must be suitably sized
1646    /// and aligned, but is not required to refer to an object (until the
1647    /// reference is used), per core issue 453.
1648    TCK_ReferenceBinding,
1649    /// Checking the object expression in a non-static data member access. Must
1650    /// be an object within its lifetime.
1651    TCK_MemberAccess,
1652    /// Checking the 'this' pointer for a call to a non-static member function.
1653    /// Must be an object within its lifetime.
1654    TCK_MemberCall,
1655    /// Checking the 'this' pointer for a constructor call.
1656    TCK_ConstructorCall,
1657    /// Checking the operand of a static_cast to a derived pointer type. Must be
1658    /// null or an object within its lifetime.
1659    TCK_DowncastPointer,
1660    /// Checking the operand of a static_cast to a derived reference type. Must
1661    /// be an object within its lifetime.
1662    TCK_DowncastReference
1663  };
1664
1665  /// \brief Emit a check that \p V is the address of storage of the
1666  /// appropriate size and alignment for an object of type \p Type.
1667  void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1668                     QualType Type, CharUnits Alignment = CharUnits::Zero());
1669
1670  /// \brief Emit a check that \p Base points into an array object, which
1671  /// we can access at index \p Index. \p Accessed should be \c false if we
1672  /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
1673  void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
1674                       QualType IndexType, bool Accessed);
1675
1676  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1677                                       bool isInc, bool isPre);
1678  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1679                                         bool isInc, bool isPre);
1680  //===--------------------------------------------------------------------===//
1681  //                            Declaration Emission
1682  //===--------------------------------------------------------------------===//
1683
1684  /// EmitDecl - Emit a declaration.
1685  ///
1686  /// This function can be called with a null (unreachable) insert point.
1687  void EmitDecl(const Decl &D);
1688
1689  /// EmitVarDecl - Emit a local variable declaration.
1690  ///
1691  /// This function can be called with a null (unreachable) insert point.
1692  void EmitVarDecl(const VarDecl &D);
1693
1694  void EmitScalarInit(const Expr *init, const ValueDecl *D,
1695                      LValue lvalue, bool capturedByInit);
1696  void EmitScalarInit(llvm::Value *init, LValue lvalue);
1697
1698  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1699                             llvm::Value *Address);
1700
1701  /// EmitAutoVarDecl - Emit an auto variable declaration.
1702  ///
1703  /// This function can be called with a null (unreachable) insert point.
1704  void EmitAutoVarDecl(const VarDecl &D);
1705
1706  class AutoVarEmission {
1707    friend class CodeGenFunction;
1708
1709    const VarDecl *Variable;
1710
1711    /// The alignment of the variable.
1712    CharUnits Alignment;
1713
1714    /// The address of the alloca.  Null if the variable was emitted
1715    /// as a global constant.
1716    llvm::Value *Address;
1717
1718    llvm::Value *NRVOFlag;
1719
1720    /// True if the variable is a __block variable.
1721    bool IsByRef;
1722
1723    /// True if the variable is of aggregate type and has a constant
1724    /// initializer.
1725    bool IsConstantAggregate;
1726
1727    /// Non-null if we should use lifetime annotations.
1728    llvm::Value *SizeForLifetimeMarkers;
1729
1730    struct Invalid {};
1731    AutoVarEmission(Invalid) : Variable(0) {}
1732
1733    AutoVarEmission(const VarDecl &variable)
1734      : Variable(&variable), Address(0), NRVOFlag(0),
1735        IsByRef(false), IsConstantAggregate(false),
1736        SizeForLifetimeMarkers(0) {}
1737
1738    bool wasEmittedAsGlobal() const { return Address == 0; }
1739
1740  public:
1741    static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1742
1743    bool useLifetimeMarkers() const { return SizeForLifetimeMarkers != 0; }
1744    llvm::Value *getSizeForLifetimeMarkers() const {
1745      assert(useLifetimeMarkers());
1746      return SizeForLifetimeMarkers;
1747    }
1748
1749    /// Returns the raw, allocated address, which is not necessarily
1750    /// the address of the object itself.
1751    llvm::Value *getAllocatedAddress() const {
1752      return Address;
1753    }
1754
1755    /// Returns the address of the object within this declaration.
1756    /// Note that this does not chase the forwarding pointer for
1757    /// __block decls.
1758    llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1759      if (!IsByRef) return Address;
1760
1761      return CGF.Builder.CreateStructGEP(Address,
1762                                         CGF.getByRefValueLLVMField(Variable),
1763                                         Variable->getNameAsString());
1764    }
1765  };
1766  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1767  void EmitAutoVarInit(const AutoVarEmission &emission);
1768  void EmitAutoVarCleanups(const AutoVarEmission &emission);
1769  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1770                              QualType::DestructionKind dtorKind);
1771
1772  void EmitStaticVarDecl(const VarDecl &D,
1773                         llvm::GlobalValue::LinkageTypes Linkage);
1774
1775  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1776  void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
1777
1778  /// protectFromPeepholes - Protect a value that we're intending to
1779  /// store to the side, but which will probably be used later, from
1780  /// aggressive peepholing optimizations that might delete it.
1781  ///
1782  /// Pass the result to unprotectFromPeepholes to declare that
1783  /// protection is no longer required.
1784  ///
1785  /// There's no particular reason why this shouldn't apply to
1786  /// l-values, it's just that no existing peepholes work on pointers.
1787  PeepholeProtection protectFromPeepholes(RValue rvalue);
1788  void unprotectFromPeepholes(PeepholeProtection protection);
1789
1790  //===--------------------------------------------------------------------===//
1791  //                             Statement Emission
1792  //===--------------------------------------------------------------------===//
1793
1794  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1795  void EmitStopPoint(const Stmt *S);
1796
1797  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1798  /// this function even if there is no current insertion point.
1799  ///
1800  /// This function may clear the current insertion point; callers should use
1801  /// EnsureInsertPoint if they wish to subsequently generate code without first
1802  /// calling EmitBlock, EmitBranch, or EmitStmt.
1803  void EmitStmt(const Stmt *S);
1804
1805  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1806  /// necessarily require an insertion point or debug information; typically
1807  /// because the statement amounts to a jump or a container of other
1808  /// statements.
1809  ///
1810  /// \return True if the statement was handled.
1811  bool EmitSimpleStmt(const Stmt *S);
1812
1813  llvm::Value *EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1814                                AggValueSlot AVS = AggValueSlot::ignored());
1815  llvm::Value *EmitCompoundStmtWithoutScope(const CompoundStmt &S,
1816                                            bool GetLast = false,
1817                                            AggValueSlot AVS =
1818                                                AggValueSlot::ignored());
1819
1820  /// EmitLabel - Emit the block for the given label. It is legal to call this
1821  /// function even if there is no current insertion point.
1822  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1823
1824  void EmitLabelStmt(const LabelStmt &S);
1825  void EmitAttributedStmt(const AttributedStmt &S);
1826  void EmitGotoStmt(const GotoStmt &S);
1827  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1828  void EmitIfStmt(const IfStmt &S);
1829  void EmitWhileStmt(const WhileStmt &S);
1830  void EmitDoStmt(const DoStmt &S);
1831  void EmitForStmt(const ForStmt &S);
1832  void EmitReturnStmt(const ReturnStmt &S);
1833  void EmitDeclStmt(const DeclStmt &S);
1834  void EmitBreakStmt(const BreakStmt &S);
1835  void EmitContinueStmt(const ContinueStmt &S);
1836  void EmitSwitchStmt(const SwitchStmt &S);
1837  void EmitDefaultStmt(const DefaultStmt &S);
1838  void EmitCaseStmt(const CaseStmt &S);
1839  void EmitCaseStmtRange(const CaseStmt &S);
1840  void EmitAsmStmt(const AsmStmt &S);
1841
1842  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1843  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1844  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1845  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1846  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
1847
1848  llvm::Constant *getUnwindResumeFn();
1849  llvm::Constant *getUnwindResumeOrRethrowFn();
1850  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1851  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1852
1853  void EmitCXXTryStmt(const CXXTryStmt &S);
1854  void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
1855
1856  llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
1857  llvm::Function *GenerateCapturedStmtFunction(const CapturedDecl *CD,
1858                                               const RecordDecl *RD);
1859
1860  //===--------------------------------------------------------------------===//
1861  //                         LValue Expression Emission
1862  //===--------------------------------------------------------------------===//
1863
1864  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
1865  RValue GetUndefRValue(QualType Ty);
1866
1867  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
1868  /// and issue an ErrorUnsupported style diagnostic (using the
1869  /// provided Name).
1870  RValue EmitUnsupportedRValue(const Expr *E,
1871                               const char *Name);
1872
1873  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
1874  /// an ErrorUnsupported style diagnostic (using the provided Name).
1875  LValue EmitUnsupportedLValue(const Expr *E,
1876                               const char *Name);
1877
1878  /// EmitLValue - Emit code to compute a designator that specifies the location
1879  /// of the expression.
1880  ///
1881  /// This can return one of two things: a simple address or a bitfield
1882  /// reference.  In either case, the LLVM Value* in the LValue structure is
1883  /// guaranteed to be an LLVM pointer type.
1884  ///
1885  /// If this returns a bitfield reference, nothing about the pointee type of
1886  /// the LLVM value is known: For example, it may not be a pointer to an
1887  /// integer.
1888  ///
1889  /// If this returns a normal address, and if the lvalue's C type is fixed
1890  /// size, this method guarantees that the returned pointer type will point to
1891  /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
1892  /// variable length type, this is not possible.
1893  ///
1894  LValue EmitLValue(const Expr *E);
1895
1896  /// \brief Same as EmitLValue but additionally we generate checking code to
1897  /// guard against undefined behavior.  This is only suitable when we know
1898  /// that the address will be used to access the object.
1899  LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
1900
1901  RValue convertTempToRValue(llvm::Value *addr, QualType type);
1902
1903  void EmitAtomicInit(Expr *E, LValue lvalue);
1904
1905  RValue EmitAtomicLoad(LValue lvalue,
1906                        AggValueSlot slot = AggValueSlot::ignored());
1907
1908  void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
1909
1910  /// EmitToMemory - Change a scalar value from its value
1911  /// representation to its in-memory representation.
1912  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
1913
1914  /// EmitFromMemory - Change a scalar value from its memory
1915  /// representation to its value representation.
1916  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
1917
1918  /// EmitLoadOfScalar - Load a scalar value from an address, taking
1919  /// care to appropriately convert from the memory representation to
1920  /// the LLVM value representation.
1921  llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1922                                unsigned Alignment, QualType Ty,
1923                                llvm::MDNode *TBAAInfo = 0,
1924                                QualType TBAABaseTy = QualType(),
1925                                uint64_t TBAAOffset = 0);
1926
1927  /// EmitLoadOfScalar - Load a scalar value from an address, taking
1928  /// care to appropriately convert from the memory representation to
1929  /// the LLVM value representation.  The l-value must be a simple
1930  /// l-value.
1931  llvm::Value *EmitLoadOfScalar(LValue lvalue);
1932
1933  /// EmitStoreOfScalar - Store a scalar value to an address, taking
1934  /// care to appropriately convert from the memory representation to
1935  /// the LLVM value representation.
1936  void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1937                         bool Volatile, unsigned Alignment, QualType Ty,
1938                         llvm::MDNode *TBAAInfo = 0, bool isInit = false,
1939                         QualType TBAABaseTy = QualType(),
1940                         uint64_t TBAAOffset = 0);
1941
1942  /// EmitStoreOfScalar - Store a scalar value to an address, taking
1943  /// care to appropriately convert from the memory representation to
1944  /// the LLVM value representation.  The l-value must be a simple
1945  /// l-value.  The isInit flag indicates whether this is an initialization.
1946  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
1947  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
1948
1949  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
1950  /// this method emits the address of the lvalue, then loads the result as an
1951  /// rvalue, returning the rvalue.
1952  RValue EmitLoadOfLValue(LValue V);
1953  RValue EmitLoadOfExtVectorElementLValue(LValue V);
1954  RValue EmitLoadOfBitfieldLValue(LValue LV);
1955
1956  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1957  /// lvalue, where both are guaranteed to the have the same type, and that type
1958  /// is 'Ty'.
1959  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false);
1960  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
1961
1962  /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
1963  /// EmitStoreThroughLValue.
1964  ///
1965  /// \param Result [out] - If non-null, this will be set to a Value* for the
1966  /// bit-field contents after the store, appropriate for use as the result of
1967  /// an assignment to the bit-field.
1968  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1969                                      llvm::Value **Result=0);
1970
1971  /// Emit an l-value for an assignment (simple or compound) of complex type.
1972  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
1973  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
1974
1975  // Note: only available for agg return types
1976  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
1977  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
1978  // Note: only available for agg return types
1979  LValue EmitCallExprLValue(const CallExpr *E);
1980  // Note: only available for agg return types
1981  LValue EmitVAArgExprLValue(const VAArgExpr *E);
1982  LValue EmitDeclRefLValue(const DeclRefExpr *E);
1983  LValue EmitStringLiteralLValue(const StringLiteral *E);
1984  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
1985  LValue EmitPredefinedLValue(const PredefinedExpr *E);
1986  LValue EmitUnaryOpLValue(const UnaryOperator *E);
1987  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
1988                                bool Accessed = false);
1989  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
1990  LValue EmitMemberExpr(const MemberExpr *E);
1991  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
1992  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
1993  LValue EmitInitListLValue(const InitListExpr *E);
1994  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
1995  LValue EmitCastLValue(const CastExpr *E);
1996  LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
1997  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
1998  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
1999
2000  RValue EmitRValueForField(LValue LV, const FieldDecl *FD);
2001
2002  class ConstantEmission {
2003    llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2004    ConstantEmission(llvm::Constant *C, bool isReference)
2005      : ValueAndIsReference(C, isReference) {}
2006  public:
2007    ConstantEmission() {}
2008    static ConstantEmission forReference(llvm::Constant *C) {
2009      return ConstantEmission(C, true);
2010    }
2011    static ConstantEmission forValue(llvm::Constant *C) {
2012      return ConstantEmission(C, false);
2013    }
2014
2015    LLVM_EXPLICIT operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; }
2016
2017    bool isReference() const { return ValueAndIsReference.getInt(); }
2018    LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2019      assert(isReference());
2020      return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2021                                            refExpr->getType());
2022    }
2023
2024    llvm::Constant *getValue() const {
2025      assert(!isReference());
2026      return ValueAndIsReference.getPointer();
2027    }
2028  };
2029
2030  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2031
2032  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2033                                AggValueSlot slot = AggValueSlot::ignored());
2034  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2035
2036  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2037                              const ObjCIvarDecl *Ivar);
2038  LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2039  LValue EmitLValueForLambdaField(const FieldDecl *Field);
2040
2041  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2042  /// if the Field is a reference, this will return the address of the reference
2043  /// and not the address of the value stored in the reference.
2044  LValue EmitLValueForFieldInitialization(LValue Base,
2045                                          const FieldDecl* Field);
2046
2047  LValue EmitLValueForIvar(QualType ObjectTy,
2048                           llvm::Value* Base, const ObjCIvarDecl *Ivar,
2049                           unsigned CVRQualifiers);
2050
2051  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2052  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2053  LValue EmitLambdaLValue(const LambdaExpr *E);
2054  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2055  LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2056
2057  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2058  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2059  LValue EmitStmtExprLValue(const StmtExpr *E);
2060  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2061  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2062  void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2063
2064  //===--------------------------------------------------------------------===//
2065  //                         Scalar Expression Emission
2066  //===--------------------------------------------------------------------===//
2067
2068  /// EmitCall - Generate a call of the given function, expecting the given
2069  /// result type, and using the given argument list which specifies both the
2070  /// LLVM arguments and the types they were derived from.
2071  ///
2072  /// \param TargetDecl - If given, the decl of the function in a direct call;
2073  /// used to set attributes on the call (noreturn, etc.).
2074  RValue EmitCall(const CGFunctionInfo &FnInfo,
2075                  llvm::Value *Callee,
2076                  ReturnValueSlot ReturnValue,
2077                  const CallArgList &Args,
2078                  const Decl *TargetDecl = 0,
2079                  llvm::Instruction **callOrInvoke = 0);
2080
2081  RValue EmitCall(QualType FnType, llvm::Value *Callee,
2082                  ReturnValueSlot ReturnValue,
2083                  CallExpr::const_arg_iterator ArgBeg,
2084                  CallExpr::const_arg_iterator ArgEnd,
2085                  const Decl *TargetDecl = 0);
2086  RValue EmitCallExpr(const CallExpr *E,
2087                      ReturnValueSlot ReturnValue = ReturnValueSlot());
2088
2089  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2090                                  const Twine &name = "");
2091  llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
2092                                  ArrayRef<llvm::Value*> args,
2093                                  const Twine &name = "");
2094  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2095                                          const Twine &name = "");
2096  llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
2097                                          ArrayRef<llvm::Value*> args,
2098                                          const Twine &name = "");
2099
2100  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2101                                  ArrayRef<llvm::Value *> Args,
2102                                  const Twine &Name = "");
2103  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2104                                  const Twine &Name = "");
2105  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2106                                         ArrayRef<llvm::Value*> args,
2107                                         const Twine &name = "");
2108  llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
2109                                         const Twine &name = "");
2110  void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2111                                       ArrayRef<llvm::Value*> args);
2112
2113  llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
2114                                llvm::Type *Ty);
2115  llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
2116                                llvm::Value *This, llvm::Type *Ty);
2117  llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2118                                         NestedNameSpecifier *Qual,
2119                                         llvm::Type *Ty);
2120
2121  llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2122                                                   CXXDtorType Type,
2123                                                   const CXXRecordDecl *RD);
2124
2125  RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2126                           SourceLocation CallLoc,
2127                           llvm::Value *Callee,
2128                           ReturnValueSlot ReturnValue,
2129                           llvm::Value *This,
2130                           llvm::Value *ImplicitParam,
2131                           QualType ImplicitParamTy,
2132                           CallExpr::const_arg_iterator ArgBeg,
2133                           CallExpr::const_arg_iterator ArgEnd);
2134  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2135                               ReturnValueSlot ReturnValue);
2136  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2137                                      ReturnValueSlot ReturnValue);
2138
2139  llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2140                                           const CXXMethodDecl *MD,
2141                                           llvm::Value *This);
2142  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2143                                       const CXXMethodDecl *MD,
2144                                       ReturnValueSlot ReturnValue);
2145
2146  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2147                                ReturnValueSlot ReturnValue);
2148
2149
2150  RValue EmitBuiltinExpr(const FunctionDecl *FD,
2151                         unsigned BuiltinID, const CallExpr *E);
2152
2153  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2154
2155  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2156  /// is unhandled by the current target.
2157  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2158
2159  llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2160  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2161  llvm::Value *EmitNeonCall(llvm::Function *F,
2162                            SmallVectorImpl<llvm::Value*> &O,
2163                            const char *name,
2164                            unsigned shift = 0, bool rightshift = false);
2165  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2166  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2167                                   bool negateForRightShift);
2168
2169  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2170  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2171  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2172
2173  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2174  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2175  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2176  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2177  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2178  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2179                                const ObjCMethodDecl *MethodWithObjects);
2180  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2181  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2182                             ReturnValueSlot Return = ReturnValueSlot());
2183
2184  /// Retrieves the default cleanup kind for an ARC cleanup.
2185  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2186  CleanupKind getARCCleanupKind() {
2187    return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2188             ? NormalAndEHCleanup : NormalCleanup;
2189  }
2190
2191  // ARC primitives.
2192  void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2193  void EmitARCDestroyWeak(llvm::Value *addr);
2194  llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2195  llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2196  llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2197                                bool ignored);
2198  void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2199  void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2200  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2201  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2202  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2203                                  bool resultIgnored);
2204  llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2205                                      bool resultIgnored);
2206  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2207  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2208  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2209  void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise);
2210  void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
2211  llvm::Value *EmitARCAutorelease(llvm::Value *value);
2212  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2213  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2214  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2215
2216  std::pair<LValue,llvm::Value*>
2217  EmitARCStoreAutoreleasing(const BinaryOperator *e);
2218  std::pair<LValue,llvm::Value*>
2219  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2220
2221  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2222
2223  llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2224  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2225  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2226
2227  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2228  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2229  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2230
2231  void EmitARCIntrinsicUse(llvm::ArrayRef<llvm::Value*> values);
2232
2233  static Destroyer destroyARCStrongImprecise;
2234  static Destroyer destroyARCStrongPrecise;
2235  static Destroyer destroyARCWeak;
2236
2237  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2238  llvm::Value *EmitObjCAutoreleasePoolPush();
2239  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2240  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2241  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2242
2243  /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
2244  /// expression. Will emit a temporary variable if E is not an LValue.
2245  RValue EmitReferenceBindingToExpr(const Expr* E,
2246                                    const NamedDecl *InitializedDecl);
2247
2248  //===--------------------------------------------------------------------===//
2249  //                           Expression Emission
2250  //===--------------------------------------------------------------------===//
2251
2252  // Expressions are broken into three classes: scalar, complex, aggregate.
2253
2254  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2255  /// scalar type, returning the result.
2256  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2257
2258  /// EmitScalarConversion - Emit a conversion from the specified type to the
2259  /// specified destination type, both of which are LLVM scalar types.
2260  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2261                                    QualType DstTy);
2262
2263  /// EmitComplexToScalarConversion - Emit a conversion from the specified
2264  /// complex type to the specified destination type, where the destination type
2265  /// is an LLVM scalar type.
2266  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2267                                             QualType DstTy);
2268
2269
2270  /// EmitAggExpr - Emit the computation of the specified expression
2271  /// of aggregate type.  The result is computed into the given slot,
2272  /// which may be null to indicate that the value is not needed.
2273  void EmitAggExpr(const Expr *E, AggValueSlot AS);
2274
2275  /// EmitAggExprToLValue - Emit the computation of the specified expression of
2276  /// aggregate type into a temporary LValue.
2277  LValue EmitAggExprToLValue(const Expr *E);
2278
2279  /// EmitGCMemmoveCollectable - Emit special API for structs with object
2280  /// pointers.
2281  void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2282                                QualType Ty);
2283
2284  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2285  /// make sure it survives garbage collection until this point.
2286  void EmitExtendGCLifetime(llvm::Value *object);
2287
2288  /// EmitComplexExpr - Emit the computation of the specified expression of
2289  /// complex type, returning the result.
2290  ComplexPairTy EmitComplexExpr(const Expr *E,
2291                                bool IgnoreReal = false,
2292                                bool IgnoreImag = false);
2293
2294  /// EmitComplexExprIntoLValue - Emit the given expression of complex
2295  /// type and place its result into the specified l-value.
2296  void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
2297
2298  /// EmitStoreOfComplex - Store a complex number into the specified l-value.
2299  void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
2300
2301  /// EmitLoadOfComplex - Load a complex number from the specified l-value.
2302  ComplexPairTy EmitLoadOfComplex(LValue src);
2303
2304  /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2305  /// a static local variable.
2306  llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2307                                            const char *Separator,
2308                                       llvm::GlobalValue::LinkageTypes Linkage);
2309
2310  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2311  /// global variable that has already been created for it.  If the initializer
2312  /// has a different type than GV does, this may free GV and return a different
2313  /// one.  Otherwise it just returns GV.
2314  llvm::GlobalVariable *
2315  AddInitializerToStaticVarDecl(const VarDecl &D,
2316                                llvm::GlobalVariable *GV);
2317
2318
2319  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2320  /// variable with global storage.
2321  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2322                                bool PerformInit);
2323
2324  /// Call atexit() with a function that passes the given argument to
2325  /// the given function.
2326  void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr);
2327
2328  /// Emit code in this function to perform a guarded variable
2329  /// initialization.  Guarded initializations are used when it's not
2330  /// possible to prove that an initialization will be done exactly
2331  /// once, e.g. with a static local variable or a static data member
2332  /// of a class template.
2333  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2334                          bool PerformInit);
2335
2336  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2337  /// variables.
2338  void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2339                                 ArrayRef<llvm::Constant *> Decls,
2340                                 llvm::GlobalVariable *Guard = 0);
2341
2342  /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2343  /// variables.
2344  void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2345                                  const std::vector<std::pair<llvm::WeakVH,
2346                                  llvm::Constant*> > &DtorsAndObjects);
2347
2348  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2349                                        const VarDecl *D,
2350                                        llvm::GlobalVariable *Addr,
2351                                        bool PerformInit);
2352
2353  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2354
2355  void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2356                                  const Expr *Exp);
2357
2358  void enterFullExpression(const ExprWithCleanups *E) {
2359    if (E->getNumObjects() == 0) return;
2360    enterNonTrivialFullExpression(E);
2361  }
2362  void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2363
2364  void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
2365
2366  void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2367
2368  RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
2369
2370  //===--------------------------------------------------------------------===//
2371  //                         Annotations Emission
2372  //===--------------------------------------------------------------------===//
2373
2374  /// Emit an annotation call (intrinsic or builtin).
2375  llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2376                                  llvm::Value *AnnotatedVal,
2377                                  StringRef AnnotationStr,
2378                                  SourceLocation Location);
2379
2380  /// Emit local annotations for the local variable V, declared by D.
2381  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2382
2383  /// Emit field annotations for the given field & value. Returns the
2384  /// annotation result.
2385  llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2386
2387  //===--------------------------------------------------------------------===//
2388  //                             Internal Helpers
2389  //===--------------------------------------------------------------------===//
2390
2391  /// ContainsLabel - Return true if the statement contains a label in it.  If
2392  /// this statement is not executed normally, it not containing a label means
2393  /// that we can just remove the code.
2394  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2395
2396  /// containsBreak - Return true if the statement contains a break out of it.
2397  /// If the statement (recursively) contains a switch or loop with a break
2398  /// inside of it, this is fine.
2399  static bool containsBreak(const Stmt *S);
2400
2401  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2402  /// to a constant, or if it does but contains a label, return false.  If it
2403  /// constant folds return true and set the boolean result in Result.
2404  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2405
2406  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2407  /// to a constant, or if it does but contains a label, return false.  If it
2408  /// constant folds return true and set the folded value.
2409  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2410
2411  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2412  /// if statement) to the specified blocks.  Based on the condition, this might
2413  /// try to simplify the codegen of the conditional based on the branch.
2414  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2415                            llvm::BasicBlock *FalseBlock);
2416
2417  /// \brief Emit a description of a type in a format suitable for passing to
2418  /// a runtime sanitizer handler.
2419  llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2420
2421  /// \brief Convert a value into a format suitable for passing to a runtime
2422  /// sanitizer handler.
2423  llvm::Value *EmitCheckValue(llvm::Value *V);
2424
2425  /// \brief Emit a description of a source location in a format suitable for
2426  /// passing to a runtime sanitizer handler.
2427  llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
2428
2429  /// \brief Specify under what conditions this check can be recovered
2430  enum CheckRecoverableKind {
2431    /// Always terminate program execution if this check fails
2432    CRK_Unrecoverable,
2433    /// Check supports recovering, allows user to specify which
2434    CRK_Recoverable,
2435    /// Runtime conditionally aborts, always need to support recovery.
2436    CRK_AlwaysRecoverable
2437  };
2438
2439  /// \brief Create a basic block that will call a handler function in a
2440  /// sanitizer runtime with the provided arguments, and create a conditional
2441  /// branch to it.
2442  void EmitCheck(llvm::Value *Checked, StringRef CheckName,
2443                 ArrayRef<llvm::Constant *> StaticArgs,
2444                 ArrayRef<llvm::Value *> DynamicArgs,
2445                 CheckRecoverableKind Recoverable);
2446
2447  /// \brief Create a basic block that will call the trap intrinsic, and emit a
2448  /// conditional branch to it, for the -ftrapv checks.
2449  void EmitTrapCheck(llvm::Value *Checked);
2450
2451  /// EmitCallArg - Emit a single call argument.
2452  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2453
2454  /// EmitDelegateCallArg - We are performing a delegate call; that
2455  /// is, the current function is delegating to another one.  Produce
2456  /// a r-value suitable for passing the given parameter.
2457  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
2458
2459  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2460  /// point operation, expressed as the maximum relative error in ulp.
2461  void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2462
2463private:
2464  llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2465  void EmitReturnOfRValue(RValue RV, QualType Ty);
2466
2467  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2468  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2469  ///
2470  /// \param AI - The first function argument of the expansion.
2471  /// \return The argument following the last expanded function
2472  /// argument.
2473  llvm::Function::arg_iterator
2474  ExpandTypeFromArgs(QualType Ty, LValue Dst,
2475                     llvm::Function::arg_iterator AI);
2476
2477  /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2478  /// Ty, into individual arguments on the provided vector \arg Args. See
2479  /// ABIArgInfo::Expand.
2480  void ExpandTypeToArgs(QualType Ty, RValue Src,
2481                        SmallVector<llvm::Value*, 16> &Args,
2482                        llvm::FunctionType *IRFuncTy);
2483
2484  llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2485                            const Expr *InputExpr, std::string &ConstraintStr);
2486
2487  llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2488                                  LValue InputValue, QualType InputType,
2489                                  std::string &ConstraintStr);
2490
2491  /// EmitCallArgs - Emit call arguments for a function.
2492  /// The CallArgTypeInfo parameter is used for iterating over the known
2493  /// argument types of the function being called.
2494  template<typename T>
2495  void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2496                    CallExpr::const_arg_iterator ArgBeg,
2497                    CallExpr::const_arg_iterator ArgEnd) {
2498      CallExpr::const_arg_iterator Arg = ArgBeg;
2499
2500    // First, use the argument types that the type info knows about
2501    if (CallArgTypeInfo) {
2502      for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2503           E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2504        assert(Arg != ArgEnd && "Running over edge of argument list!");
2505        QualType ArgType = *I;
2506#ifndef NDEBUG
2507        QualType ActualArgType = Arg->getType();
2508        if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2509          QualType ActualBaseType =
2510            ActualArgType->getAs<PointerType>()->getPointeeType();
2511          QualType ArgBaseType =
2512            ArgType->getAs<PointerType>()->getPointeeType();
2513          if (ArgBaseType->isVariableArrayType()) {
2514            if (const VariableArrayType *VAT =
2515                getContext().getAsVariableArrayType(ActualBaseType)) {
2516              if (!VAT->getSizeExpr())
2517                ActualArgType = ArgType;
2518            }
2519          }
2520        }
2521        assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2522               getTypePtr() ==
2523               getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2524               "type mismatch in call argument!");
2525#endif
2526        EmitCallArg(Args, *Arg, ArgType);
2527      }
2528
2529      // Either we've emitted all the call args, or we have a call to a
2530      // variadic function.
2531      assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2532             "Extra arguments in non-variadic function!");
2533
2534    }
2535
2536    // If we still have any arguments, emit them using the type of the argument.
2537    for (; Arg != ArgEnd; ++Arg)
2538      EmitCallArg(Args, *Arg, Arg->getType());
2539  }
2540
2541  const TargetCodeGenInfo &getTargetHooks() const {
2542    return CGM.getTargetCodeGenInfo();
2543  }
2544
2545  void EmitDeclMetadata();
2546
2547  CodeGenModule::ByrefHelpers *
2548  buildByrefHelpers(llvm::StructType &byrefType,
2549                    const AutoVarEmission &emission);
2550
2551  void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
2552
2553  /// GetPointeeAlignment - Given an expression with a pointer type, emit the
2554  /// value and compute our best estimate of the alignment of the pointee.
2555  std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
2556};
2557
2558/// Helper class with most of the code for saving a value for a
2559/// conditional expression cleanup.
2560struct DominatingLLVMValue {
2561  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2562
2563  /// Answer whether the given value needs extra work to be saved.
2564  static bool needsSaving(llvm::Value *value) {
2565    // If it's not an instruction, we don't need to save.
2566    if (!isa<llvm::Instruction>(value)) return false;
2567
2568    // If it's an instruction in the entry block, we don't need to save.
2569    llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2570    return (block != &block->getParent()->getEntryBlock());
2571  }
2572
2573  /// Try to save the given value.
2574  static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2575    if (!needsSaving(value)) return saved_type(value, false);
2576
2577    // Otherwise we need an alloca.
2578    llvm::Value *alloca =
2579      CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2580    CGF.Builder.CreateStore(value, alloca);
2581
2582    return saved_type(alloca, true);
2583  }
2584
2585  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2586    if (!value.getInt()) return value.getPointer();
2587    return CGF.Builder.CreateLoad(value.getPointer());
2588  }
2589};
2590
2591/// A partial specialization of DominatingValue for llvm::Values that
2592/// might be llvm::Instructions.
2593template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2594  typedef T *type;
2595  static type restore(CodeGenFunction &CGF, saved_type value) {
2596    return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2597  }
2598};
2599
2600/// A specialization of DominatingValue for RValue.
2601template <> struct DominatingValue<RValue> {
2602  typedef RValue type;
2603  class saved_type {
2604    enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2605                AggregateAddress, ComplexAddress };
2606
2607    llvm::Value *Value;
2608    Kind K;
2609    saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2610
2611  public:
2612    static bool needsSaving(RValue value);
2613    static saved_type save(CodeGenFunction &CGF, RValue value);
2614    RValue restore(CodeGenFunction &CGF);
2615
2616    // implementations in CGExprCXX.cpp
2617  };
2618
2619  static bool needsSaving(type value) {
2620    return saved_type::needsSaving(value);
2621  }
2622  static saved_type save(CodeGenFunction &CGF, type value) {
2623    return saved_type::save(CGF, value);
2624  }
2625  static type restore(CodeGenFunction &CGF, saved_type value) {
2626    return value.restore(CGF);
2627  }
2628};
2629
2630}  // end namespace CodeGen
2631}  // end namespace clang
2632
2633#endif
2634