CodeGenFunction.h revision 85af7cecadbf5d4b905d6b3b4b1b6fa684183aff
1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This is the internal per-function state used for llvm translation. 11// 12//===----------------------------------------------------------------------===// 13 14#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H 15#define CLANG_CODEGEN_CODEGENFUNCTION_H 16 17#include "CGBuilder.h" 18#include "CGCleanup.h" 19#include "CGDebugInfo.h" 20#include "CGValue.h" 21#include "CodeGenModule.h" 22#include "clang/AST/CharUnits.h" 23#include "clang/AST/ExprCXX.h" 24#include "clang/AST/ExprObjC.h" 25#include "clang/AST/Type.h" 26#include "clang/Basic/ABI.h" 27#include "clang/Basic/CapturedStmt.h" 28#include "clang/Basic/TargetInfo.h" 29#include "clang/Frontend/CodeGenOptions.h" 30#include "llvm/ADT/ArrayRef.h" 31#include "llvm/ADT/DenseMap.h" 32#include "llvm/ADT/SmallVector.h" 33#include "llvm/Support/Debug.h" 34#include "llvm/Support/ValueHandle.h" 35 36namespace llvm { 37 class BasicBlock; 38 class LLVMContext; 39 class MDNode; 40 class Module; 41 class SwitchInst; 42 class Twine; 43 class Value; 44 class CallSite; 45} 46 47namespace clang { 48 class ASTContext; 49 class BlockDecl; 50 class CXXDestructorDecl; 51 class CXXForRangeStmt; 52 class CXXTryStmt; 53 class Decl; 54 class LabelDecl; 55 class EnumConstantDecl; 56 class FunctionDecl; 57 class FunctionProtoType; 58 class LabelStmt; 59 class ObjCContainerDecl; 60 class ObjCInterfaceDecl; 61 class ObjCIvarDecl; 62 class ObjCMethodDecl; 63 class ObjCImplementationDecl; 64 class ObjCPropertyImplDecl; 65 class TargetInfo; 66 class TargetCodeGenInfo; 67 class VarDecl; 68 class ObjCForCollectionStmt; 69 class ObjCAtTryStmt; 70 class ObjCAtThrowStmt; 71 class ObjCAtSynchronizedStmt; 72 class ObjCAutoreleasePoolStmt; 73 74namespace CodeGen { 75 class CodeGenTypes; 76 class CGFunctionInfo; 77 class CGRecordLayout; 78 class CGBlockInfo; 79 class CGCXXABI; 80 class BlockFlags; 81 class BlockFieldFlags; 82 83/// The kind of evaluation to perform on values of a particular 84/// type. Basically, is the code in CGExprScalar, CGExprComplex, or 85/// CGExprAgg? 86/// 87/// TODO: should vectors maybe be split out into their own thing? 88enum TypeEvaluationKind { 89 TEK_Scalar, 90 TEK_Complex, 91 TEK_Aggregate 92}; 93 94/// CodeGenFunction - This class organizes the per-function state that is used 95/// while generating LLVM code. 96class CodeGenFunction : public CodeGenTypeCache { 97 CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION; 98 void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION; 99 100 friend class CGCXXABI; 101public: 102 /// A jump destination is an abstract label, branching to which may 103 /// require a jump out through normal cleanups. 104 struct JumpDest { 105 JumpDest() : Block(0), ScopeDepth(), Index(0) {} 106 JumpDest(llvm::BasicBlock *Block, 107 EHScopeStack::stable_iterator Depth, 108 unsigned Index) 109 : Block(Block), ScopeDepth(Depth), Index(Index) {} 110 111 bool isValid() const { return Block != 0; } 112 llvm::BasicBlock *getBlock() const { return Block; } 113 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 114 unsigned getDestIndex() const { return Index; } 115 116 // This should be used cautiously. 117 void setScopeDepth(EHScopeStack::stable_iterator depth) { 118 ScopeDepth = depth; 119 } 120 121 private: 122 llvm::BasicBlock *Block; 123 EHScopeStack::stable_iterator ScopeDepth; 124 unsigned Index; 125 }; 126 127 CodeGenModule &CGM; // Per-module state. 128 const TargetInfo &Target; 129 130 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 131 CGBuilderTy Builder; 132 133 /// CurFuncDecl - Holds the Decl for the current outermost 134 /// non-closure context. 135 const Decl *CurFuncDecl; 136 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 137 const Decl *CurCodeDecl; 138 const CGFunctionInfo *CurFnInfo; 139 QualType FnRetTy; 140 llvm::Function *CurFn; 141 142 /// CurGD - The GlobalDecl for the current function being compiled. 143 GlobalDecl CurGD; 144 145 /// PrologueCleanupDepth - The cleanup depth enclosing all the 146 /// cleanups associated with the parameters. 147 EHScopeStack::stable_iterator PrologueCleanupDepth; 148 149 /// ReturnBlock - Unified return block. 150 JumpDest ReturnBlock; 151 152 /// ReturnValue - The temporary alloca to hold the return value. This is null 153 /// iff the function has no return value. 154 llvm::Value *ReturnValue; 155 156 /// AllocaInsertPoint - This is an instruction in the entry block before which 157 /// we prefer to insert allocas. 158 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 159 160 /// \brief API for captured statement code generation. 161 class CGCapturedStmtInfo { 162 public: 163 explicit CGCapturedStmtInfo(const CapturedStmt &S, 164 CapturedRegionKind K = CR_Default) 165 : Kind(K), ThisValue(0), CXXThisFieldDecl(0) { 166 167 RecordDecl::field_iterator Field = 168 S.getCapturedRecordDecl()->field_begin(); 169 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 170 E = S.capture_end(); 171 I != E; ++I, ++Field) { 172 if (I->capturesThis()) 173 CXXThisFieldDecl = *Field; 174 else 175 CaptureFields[I->getCapturedVar()] = *Field; 176 } 177 } 178 179 virtual ~CGCapturedStmtInfo(); 180 181 CapturedRegionKind getKind() const { return Kind; } 182 183 void setContextValue(llvm::Value *V) { ThisValue = V; } 184 // \brief Retrieve the value of the context parameter. 185 llvm::Value *getContextValue() const { return ThisValue; } 186 187 /// \brief Lookup the captured field decl for a variable. 188 const FieldDecl *lookup(const VarDecl *VD) const { 189 return CaptureFields.lookup(VD); 190 } 191 192 bool isCXXThisExprCaptured() const { return CXXThisFieldDecl != 0; } 193 FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 194 195 /// \brief Emit the captured statement body. 196 virtual void EmitBody(CodeGenFunction &CGF, Stmt *S) { 197 CGF.EmitStmt(S); 198 } 199 200 /// \brief Get the name of the capture helper. 201 virtual StringRef getHelperName() const { return "__captured_stmt"; } 202 203 private: 204 /// \brief The kind of captured statement being generated. 205 CapturedRegionKind Kind; 206 207 /// \brief Keep the map between VarDecl and FieldDecl. 208 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 209 210 /// \brief The base address of the captured record, passed in as the first 211 /// argument of the parallel region function. 212 llvm::Value *ThisValue; 213 214 /// \brief Captured 'this' type. 215 FieldDecl *CXXThisFieldDecl; 216 }; 217 CGCapturedStmtInfo *CapturedStmtInfo; 218 219 /// BoundsChecking - Emit run-time bounds checks. Higher values mean 220 /// potentially higher performance penalties. 221 unsigned char BoundsChecking; 222 223 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 224 /// calls to EmitTypeCheck can be skipped. 225 bool SanitizePerformTypeCheck; 226 227 /// \brief Sanitizer options to use for this function. 228 const SanitizerOptions *SanOpts; 229 230 /// In ARC, whether we should autorelease the return value. 231 bool AutoreleaseResult; 232 233 const CodeGen::CGBlockInfo *BlockInfo; 234 llvm::Value *BlockPointer; 235 236 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 237 FieldDecl *LambdaThisCaptureField; 238 239 /// \brief A mapping from NRVO variables to the flags used to indicate 240 /// when the NRVO has been applied to this variable. 241 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 242 243 EHScopeStack EHStack; 244 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 245 246 /// Header for data within LifetimeExtendedCleanupStack. 247 struct LifetimeExtendedCleanupHeader { 248 /// The size of the following cleanup object. 249 size_t Size : 29; 250 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 251 unsigned Kind : 3; 252 253 size_t getSize() const { return Size; } 254 CleanupKind getKind() const { return static_cast<CleanupKind>(Kind); } 255 }; 256 257 /// i32s containing the indexes of the cleanup destinations. 258 llvm::AllocaInst *NormalCleanupDest; 259 260 unsigned NextCleanupDestIndex; 261 262 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 263 CGBlockInfo *FirstBlockInfo; 264 265 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 266 llvm::BasicBlock *EHResumeBlock; 267 268 /// The exception slot. All landing pads write the current exception pointer 269 /// into this alloca. 270 llvm::Value *ExceptionSlot; 271 272 /// The selector slot. Under the MandatoryCleanup model, all landing pads 273 /// write the current selector value into this alloca. 274 llvm::AllocaInst *EHSelectorSlot; 275 276 /// Emits a landing pad for the current EH stack. 277 llvm::BasicBlock *EmitLandingPad(); 278 279 llvm::BasicBlock *getInvokeDestImpl(); 280 281 template <class T> 282 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 283 return DominatingValue<T>::save(*this, value); 284 } 285 286public: 287 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 288 /// rethrows. 289 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 290 291 /// A class controlling the emission of a finally block. 292 class FinallyInfo { 293 /// Where the catchall's edge through the cleanup should go. 294 JumpDest RethrowDest; 295 296 /// A function to call to enter the catch. 297 llvm::Constant *BeginCatchFn; 298 299 /// An i1 variable indicating whether or not the @finally is 300 /// running for an exception. 301 llvm::AllocaInst *ForEHVar; 302 303 /// An i8* variable into which the exception pointer to rethrow 304 /// has been saved. 305 llvm::AllocaInst *SavedExnVar; 306 307 public: 308 void enter(CodeGenFunction &CGF, const Stmt *Finally, 309 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 310 llvm::Constant *rethrowFn); 311 void exit(CodeGenFunction &CGF); 312 }; 313 314 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 315 /// current full-expression. Safe against the possibility that 316 /// we're currently inside a conditionally-evaluated expression. 317 template <class T, class A0> 318 void pushFullExprCleanup(CleanupKind kind, A0 a0) { 319 // If we're not in a conditional branch, or if none of the 320 // arguments requires saving, then use the unconditional cleanup. 321 if (!isInConditionalBranch()) 322 return EHStack.pushCleanup<T>(kind, a0); 323 324 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 325 326 typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType; 327 EHStack.pushCleanup<CleanupType>(kind, a0_saved); 328 initFullExprCleanup(); 329 } 330 331 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 332 /// current full-expression. Safe against the possibility that 333 /// we're currently inside a conditionally-evaluated expression. 334 template <class T, class A0, class A1> 335 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) { 336 // If we're not in a conditional branch, or if none of the 337 // arguments requires saving, then use the unconditional cleanup. 338 if (!isInConditionalBranch()) 339 return EHStack.pushCleanup<T>(kind, a0, a1); 340 341 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 342 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 343 344 typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType; 345 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved); 346 initFullExprCleanup(); 347 } 348 349 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 350 /// current full-expression. Safe against the possibility that 351 /// we're currently inside a conditionally-evaluated expression. 352 template <class T, class A0, class A1, class A2> 353 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) { 354 // If we're not in a conditional branch, or if none of the 355 // arguments requires saving, then use the unconditional cleanup. 356 if (!isInConditionalBranch()) { 357 return EHStack.pushCleanup<T>(kind, a0, a1, a2); 358 } 359 360 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 361 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 362 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 363 364 typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType; 365 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved); 366 initFullExprCleanup(); 367 } 368 369 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 370 /// current full-expression. Safe against the possibility that 371 /// we're currently inside a conditionally-evaluated expression. 372 template <class T, class A0, class A1, class A2, class A3> 373 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) { 374 // If we're not in a conditional branch, or if none of the 375 // arguments requires saving, then use the unconditional cleanup. 376 if (!isInConditionalBranch()) { 377 return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3); 378 } 379 380 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 381 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 382 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 383 typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3); 384 385 typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType; 386 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, 387 a2_saved, a3_saved); 388 initFullExprCleanup(); 389 } 390 391 /// \brief Queue a cleanup to be pushed after finishing the current 392 /// full-expression. 393 template <class T, class A0, class A1, class A2, class A3> 394 void pushCleanupAfterFullExpr(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) { 395 assert(!isInConditionalBranch() && "can't defer conditional cleanup"); 396 397 LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; 398 399 size_t OldSize = LifetimeExtendedCleanupStack.size(); 400 LifetimeExtendedCleanupStack.resize( 401 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); 402 403 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 404 new (Buffer) LifetimeExtendedCleanupHeader(Header); 405 new (Buffer + sizeof(Header)) T(a0, a1, a2, a3); 406 } 407 408 /// Set up the last cleaup that was pushed as a conditional 409 /// full-expression cleanup. 410 void initFullExprCleanup(); 411 412 /// PushDestructorCleanup - Push a cleanup to call the 413 /// complete-object destructor of an object of the given type at the 414 /// given address. Does nothing if T is not a C++ class type with a 415 /// non-trivial destructor. 416 void PushDestructorCleanup(QualType T, llvm::Value *Addr); 417 418 /// PushDestructorCleanup - Push a cleanup to call the 419 /// complete-object variant of the given destructor on the object at 420 /// the given address. 421 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, 422 llvm::Value *Addr); 423 424 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 425 /// process all branch fixups. 426 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 427 428 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 429 /// The block cannot be reactivated. Pops it if it's the top of the 430 /// stack. 431 /// 432 /// \param DominatingIP - An instruction which is known to 433 /// dominate the current IP (if set) and which lies along 434 /// all paths of execution between the current IP and the 435 /// the point at which the cleanup comes into scope. 436 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 437 llvm::Instruction *DominatingIP); 438 439 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 440 /// Cannot be used to resurrect a deactivated cleanup. 441 /// 442 /// \param DominatingIP - An instruction which is known to 443 /// dominate the current IP (if set) and which lies along 444 /// all paths of execution between the current IP and the 445 /// the point at which the cleanup comes into scope. 446 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 447 llvm::Instruction *DominatingIP); 448 449 /// \brief Enters a new scope for capturing cleanups, all of which 450 /// will be executed once the scope is exited. 451 class RunCleanupsScope { 452 EHScopeStack::stable_iterator CleanupStackDepth; 453 size_t LifetimeExtendedCleanupStackSize; 454 bool OldDidCallStackSave; 455 protected: 456 bool PerformCleanup; 457 private: 458 459 RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION; 460 void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION; 461 462 protected: 463 CodeGenFunction& CGF; 464 465 public: 466 /// \brief Enter a new cleanup scope. 467 explicit RunCleanupsScope(CodeGenFunction &CGF) 468 : PerformCleanup(true), CGF(CGF) 469 { 470 CleanupStackDepth = CGF.EHStack.stable_begin(); 471 LifetimeExtendedCleanupStackSize = 472 CGF.LifetimeExtendedCleanupStack.size(); 473 OldDidCallStackSave = CGF.DidCallStackSave; 474 CGF.DidCallStackSave = false; 475 } 476 477 /// \brief Exit this cleanup scope, emitting any accumulated 478 /// cleanups. 479 ~RunCleanupsScope() { 480 if (PerformCleanup) { 481 CGF.DidCallStackSave = OldDidCallStackSave; 482 CGF.PopCleanupBlocks(CleanupStackDepth, 483 LifetimeExtendedCleanupStackSize); 484 } 485 } 486 487 /// \brief Determine whether this scope requires any cleanups. 488 bool requiresCleanups() const { 489 return CGF.EHStack.stable_begin() != CleanupStackDepth; 490 } 491 492 /// \brief Force the emission of cleanups now, instead of waiting 493 /// until this object is destroyed. 494 void ForceCleanup() { 495 assert(PerformCleanup && "Already forced cleanup"); 496 CGF.DidCallStackSave = OldDidCallStackSave; 497 CGF.PopCleanupBlocks(CleanupStackDepth, 498 LifetimeExtendedCleanupStackSize); 499 PerformCleanup = false; 500 } 501 }; 502 503 class LexicalScope: protected RunCleanupsScope { 504 SourceRange Range; 505 SmallVector<const LabelDecl*, 4> Labels; 506 LexicalScope *ParentScope; 507 508 LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION; 509 void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION; 510 511 public: 512 /// \brief Enter a new cleanup scope. 513 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 514 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 515 CGF.CurLexicalScope = this; 516 if (CGDebugInfo *DI = CGF.getDebugInfo()) 517 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 518 } 519 520 void addLabel(const LabelDecl *label) { 521 assert(PerformCleanup && "adding label to dead scope?"); 522 Labels.push_back(label); 523 } 524 525 /// \brief Exit this cleanup scope, emitting any accumulated 526 /// cleanups. 527 ~LexicalScope() { 528 if (CGDebugInfo *DI = CGF.getDebugInfo()) 529 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 530 531 // If we should perform a cleanup, force them now. Note that 532 // this ends the cleanup scope before rescoping any labels. 533 if (PerformCleanup) ForceCleanup(); 534 } 535 536 /// \brief Force the emission of cleanups now, instead of waiting 537 /// until this object is destroyed. 538 void ForceCleanup() { 539 CGF.CurLexicalScope = ParentScope; 540 RunCleanupsScope::ForceCleanup(); 541 542 if (!Labels.empty()) 543 rescopeLabels(); 544 } 545 546 void rescopeLabels(); 547 }; 548 549 550 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 551 /// that have been added. 552 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 553 554 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 555 /// that have been added, then adds all lifetime-extended cleanups from 556 /// the given position to the stack. 557 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 558 size_t OldLifetimeExtendedStackSize); 559 560 void ResolveBranchFixups(llvm::BasicBlock *Target); 561 562 /// The given basic block lies in the current EH scope, but may be a 563 /// target of a potentially scope-crossing jump; get a stable handle 564 /// to which we can perform this jump later. 565 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 566 return JumpDest(Target, 567 EHStack.getInnermostNormalCleanup(), 568 NextCleanupDestIndex++); 569 } 570 571 /// The given basic block lies in the current EH scope, but may be a 572 /// target of a potentially scope-crossing jump; get a stable handle 573 /// to which we can perform this jump later. 574 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 575 return getJumpDestInCurrentScope(createBasicBlock(Name)); 576 } 577 578 /// EmitBranchThroughCleanup - Emit a branch from the current insert 579 /// block through the normal cleanup handling code (if any) and then 580 /// on to \arg Dest. 581 void EmitBranchThroughCleanup(JumpDest Dest); 582 583 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 584 /// specified destination obviously has no cleanups to run. 'false' is always 585 /// a conservatively correct answer for this method. 586 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 587 588 /// popCatchScope - Pops the catch scope at the top of the EHScope 589 /// stack, emitting any required code (other than the catch handlers 590 /// themselves). 591 void popCatchScope(); 592 593 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 594 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 595 596 /// An object to manage conditionally-evaluated expressions. 597 class ConditionalEvaluation { 598 llvm::BasicBlock *StartBB; 599 600 public: 601 ConditionalEvaluation(CodeGenFunction &CGF) 602 : StartBB(CGF.Builder.GetInsertBlock()) {} 603 604 void begin(CodeGenFunction &CGF) { 605 assert(CGF.OutermostConditional != this); 606 if (!CGF.OutermostConditional) 607 CGF.OutermostConditional = this; 608 } 609 610 void end(CodeGenFunction &CGF) { 611 assert(CGF.OutermostConditional != 0); 612 if (CGF.OutermostConditional == this) 613 CGF.OutermostConditional = 0; 614 } 615 616 /// Returns a block which will be executed prior to each 617 /// evaluation of the conditional code. 618 llvm::BasicBlock *getStartingBlock() const { 619 return StartBB; 620 } 621 }; 622 623 /// isInConditionalBranch - Return true if we're currently emitting 624 /// one branch or the other of a conditional expression. 625 bool isInConditionalBranch() const { return OutermostConditional != 0; } 626 627 void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) { 628 assert(isInConditionalBranch()); 629 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 630 new llvm::StoreInst(value, addr, &block->back()); 631 } 632 633 /// An RAII object to record that we're evaluating a statement 634 /// expression. 635 class StmtExprEvaluation { 636 CodeGenFunction &CGF; 637 638 /// We have to save the outermost conditional: cleanups in a 639 /// statement expression aren't conditional just because the 640 /// StmtExpr is. 641 ConditionalEvaluation *SavedOutermostConditional; 642 643 public: 644 StmtExprEvaluation(CodeGenFunction &CGF) 645 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 646 CGF.OutermostConditional = 0; 647 } 648 649 ~StmtExprEvaluation() { 650 CGF.OutermostConditional = SavedOutermostConditional; 651 CGF.EnsureInsertPoint(); 652 } 653 }; 654 655 /// An object which temporarily prevents a value from being 656 /// destroyed by aggressive peephole optimizations that assume that 657 /// all uses of a value have been realized in the IR. 658 class PeepholeProtection { 659 llvm::Instruction *Inst; 660 friend class CodeGenFunction; 661 662 public: 663 PeepholeProtection() : Inst(0) {} 664 }; 665 666 /// A non-RAII class containing all the information about a bound 667 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 668 /// this which makes individual mappings very simple; using this 669 /// class directly is useful when you have a variable number of 670 /// opaque values or don't want the RAII functionality for some 671 /// reason. 672 class OpaqueValueMappingData { 673 const OpaqueValueExpr *OpaqueValue; 674 bool BoundLValue; 675 CodeGenFunction::PeepholeProtection Protection; 676 677 OpaqueValueMappingData(const OpaqueValueExpr *ov, 678 bool boundLValue) 679 : OpaqueValue(ov), BoundLValue(boundLValue) {} 680 public: 681 OpaqueValueMappingData() : OpaqueValue(0) {} 682 683 static bool shouldBindAsLValue(const Expr *expr) { 684 // gl-values should be bound as l-values for obvious reasons. 685 // Records should be bound as l-values because IR generation 686 // always keeps them in memory. Expressions of function type 687 // act exactly like l-values but are formally required to be 688 // r-values in C. 689 return expr->isGLValue() || 690 expr->getType()->isRecordType() || 691 expr->getType()->isFunctionType(); 692 } 693 694 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 695 const OpaqueValueExpr *ov, 696 const Expr *e) { 697 if (shouldBindAsLValue(ov)) 698 return bind(CGF, ov, CGF.EmitLValue(e)); 699 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 700 } 701 702 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 703 const OpaqueValueExpr *ov, 704 const LValue &lv) { 705 assert(shouldBindAsLValue(ov)); 706 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 707 return OpaqueValueMappingData(ov, true); 708 } 709 710 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 711 const OpaqueValueExpr *ov, 712 const RValue &rv) { 713 assert(!shouldBindAsLValue(ov)); 714 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 715 716 OpaqueValueMappingData data(ov, false); 717 718 // Work around an extremely aggressive peephole optimization in 719 // EmitScalarConversion which assumes that all other uses of a 720 // value are extant. 721 data.Protection = CGF.protectFromPeepholes(rv); 722 723 return data; 724 } 725 726 bool isValid() const { return OpaqueValue != 0; } 727 void clear() { OpaqueValue = 0; } 728 729 void unbind(CodeGenFunction &CGF) { 730 assert(OpaqueValue && "no data to unbind!"); 731 732 if (BoundLValue) { 733 CGF.OpaqueLValues.erase(OpaqueValue); 734 } else { 735 CGF.OpaqueRValues.erase(OpaqueValue); 736 CGF.unprotectFromPeepholes(Protection); 737 } 738 } 739 }; 740 741 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 742 class OpaqueValueMapping { 743 CodeGenFunction &CGF; 744 OpaqueValueMappingData Data; 745 746 public: 747 static bool shouldBindAsLValue(const Expr *expr) { 748 return OpaqueValueMappingData::shouldBindAsLValue(expr); 749 } 750 751 /// Build the opaque value mapping for the given conditional 752 /// operator if it's the GNU ?: extension. This is a common 753 /// enough pattern that the convenience operator is really 754 /// helpful. 755 /// 756 OpaqueValueMapping(CodeGenFunction &CGF, 757 const AbstractConditionalOperator *op) : CGF(CGF) { 758 if (isa<ConditionalOperator>(op)) 759 // Leave Data empty. 760 return; 761 762 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 763 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 764 e->getCommon()); 765 } 766 767 OpaqueValueMapping(CodeGenFunction &CGF, 768 const OpaqueValueExpr *opaqueValue, 769 LValue lvalue) 770 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 771 } 772 773 OpaqueValueMapping(CodeGenFunction &CGF, 774 const OpaqueValueExpr *opaqueValue, 775 RValue rvalue) 776 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 777 } 778 779 void pop() { 780 Data.unbind(CGF); 781 Data.clear(); 782 } 783 784 ~OpaqueValueMapping() { 785 if (Data.isValid()) Data.unbind(CGF); 786 } 787 }; 788 789 /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field 790 /// number that holds the value. 791 unsigned getByRefValueLLVMField(const ValueDecl *VD) const; 792 793 /// BuildBlockByrefAddress - Computes address location of the 794 /// variable which is declared as __block. 795 llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr, 796 const VarDecl *V); 797private: 798 CGDebugInfo *DebugInfo; 799 bool DisableDebugInfo; 800 801 /// If the current function returns 'this', use the field to keep track of 802 /// the callee that returns 'this'. 803 llvm::Value *CalleeWithThisReturn; 804 805 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 806 /// calling llvm.stacksave for multiple VLAs in the same scope. 807 bool DidCallStackSave; 808 809 /// IndirectBranch - The first time an indirect goto is seen we create a block 810 /// with an indirect branch. Every time we see the address of a label taken, 811 /// we add the label to the indirect goto. Every subsequent indirect goto is 812 /// codegen'd as a jump to the IndirectBranch's basic block. 813 llvm::IndirectBrInst *IndirectBranch; 814 815 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 816 /// decls. 817 typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy; 818 DeclMapTy LocalDeclMap; 819 820 /// LabelMap - This keeps track of the LLVM basic block for each C label. 821 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 822 823 // BreakContinueStack - This keeps track of where break and continue 824 // statements should jump to. 825 struct BreakContinue { 826 BreakContinue(JumpDest Break, JumpDest Continue) 827 : BreakBlock(Break), ContinueBlock(Continue) {} 828 829 JumpDest BreakBlock; 830 JumpDest ContinueBlock; 831 }; 832 SmallVector<BreakContinue, 8> BreakContinueStack; 833 834 /// SwitchInsn - This is nearest current switch instruction. It is null if 835 /// current context is not in a switch. 836 llvm::SwitchInst *SwitchInsn; 837 838 /// CaseRangeBlock - This block holds if condition check for last case 839 /// statement range in current switch instruction. 840 llvm::BasicBlock *CaseRangeBlock; 841 842 /// OpaqueLValues - Keeps track of the current set of opaque value 843 /// expressions. 844 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 845 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 846 847 // VLASizeMap - This keeps track of the associated size for each VLA type. 848 // We track this by the size expression rather than the type itself because 849 // in certain situations, like a const qualifier applied to an VLA typedef, 850 // multiple VLA types can share the same size expression. 851 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 852 // enter/leave scopes. 853 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 854 855 /// A block containing a single 'unreachable' instruction. Created 856 /// lazily by getUnreachableBlock(). 857 llvm::BasicBlock *UnreachableBlock; 858 859 /// Counts of the number return expressions in the function. 860 unsigned NumReturnExprs; 861 862 /// Count the number of simple (constant) return expressions in the function. 863 unsigned NumSimpleReturnExprs; 864 865 /// The last regular (non-return) debug location (breakpoint) in the function. 866 SourceLocation LastStopPoint; 867 868public: 869 /// A scope within which we are constructing the fields of an object which 870 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 871 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 872 class FieldConstructionScope { 873 public: 874 FieldConstructionScope(CodeGenFunction &CGF, llvm::Value *This) 875 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 876 CGF.CXXDefaultInitExprThis = This; 877 } 878 ~FieldConstructionScope() { 879 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 880 } 881 882 private: 883 CodeGenFunction &CGF; 884 llvm::Value *OldCXXDefaultInitExprThis; 885 }; 886 887 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 888 /// is overridden to be the object under construction. 889 class CXXDefaultInitExprScope { 890 public: 891 CXXDefaultInitExprScope(CodeGenFunction &CGF) 892 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue) { 893 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis; 894 } 895 ~CXXDefaultInitExprScope() { 896 CGF.CXXThisValue = OldCXXThisValue; 897 } 898 899 public: 900 CodeGenFunction &CGF; 901 llvm::Value *OldCXXThisValue; 902 }; 903 904private: 905 /// CXXThisDecl - When generating code for a C++ member function, 906 /// this will hold the implicit 'this' declaration. 907 ImplicitParamDecl *CXXABIThisDecl; 908 llvm::Value *CXXABIThisValue; 909 llvm::Value *CXXThisValue; 910 911 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 912 /// this expression. 913 llvm::Value *CXXDefaultInitExprThis; 914 915 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 916 /// destructor, this will hold the implicit argument (e.g. VTT). 917 ImplicitParamDecl *CXXStructorImplicitParamDecl; 918 llvm::Value *CXXStructorImplicitParamValue; 919 920 /// OutermostConditional - Points to the outermost active 921 /// conditional control. This is used so that we know if a 922 /// temporary should be destroyed conditionally. 923 ConditionalEvaluation *OutermostConditional; 924 925 /// The current lexical scope. 926 LexicalScope *CurLexicalScope; 927 928 /// The current source location that should be used for exception 929 /// handling code. 930 SourceLocation CurEHLocation; 931 932 /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM 933 /// type as well as the field number that contains the actual data. 934 llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *, 935 unsigned> > ByRefValueInfo; 936 937 llvm::BasicBlock *TerminateLandingPad; 938 llvm::BasicBlock *TerminateHandler; 939 llvm::BasicBlock *TrapBB; 940 941 /// Add a kernel metadata node to the named metadata node 'opencl.kernels'. 942 /// In the kernel metadata node, reference the kernel function and metadata 943 /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2): 944 /// - A node for the vec_type_hint(<type>) qualifier contains string 945 /// "vec_type_hint", an undefined value of the <type> data type, 946 /// and a Boolean that is true if the <type> is integer and signed. 947 /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string 948 /// "work_group_size_hint", and three 32-bit integers X, Y and Z. 949 /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string 950 /// "reqd_work_group_size", and three 32-bit integers X, Y and Z. 951 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 952 llvm::Function *Fn); 953 954public: 955 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 956 ~CodeGenFunction(); 957 958 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 959 ASTContext &getContext() const { return CGM.getContext(); } 960 /// Returns true if DebugInfo is actually initialized. 961 bool maybeInitializeDebugInfo() { 962 if (CGM.getModuleDebugInfo()) { 963 DebugInfo = CGM.getModuleDebugInfo(); 964 return true; 965 } 966 return false; 967 } 968 CGDebugInfo *getDebugInfo() { 969 if (DisableDebugInfo) 970 return NULL; 971 return DebugInfo; 972 } 973 void disableDebugInfo() { DisableDebugInfo = true; } 974 void enableDebugInfo() { DisableDebugInfo = false; } 975 976 bool shouldUseFusedARCCalls() { 977 return CGM.getCodeGenOpts().OptimizationLevel == 0; 978 } 979 980 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 981 982 /// Returns a pointer to the function's exception object and selector slot, 983 /// which is assigned in every landing pad. 984 llvm::Value *getExceptionSlot(); 985 llvm::Value *getEHSelectorSlot(); 986 987 /// Returns the contents of the function's exception object and selector 988 /// slots. 989 llvm::Value *getExceptionFromSlot(); 990 llvm::Value *getSelectorFromSlot(); 991 992 llvm::Value *getNormalCleanupDestSlot(); 993 994 llvm::BasicBlock *getUnreachableBlock() { 995 if (!UnreachableBlock) { 996 UnreachableBlock = createBasicBlock("unreachable"); 997 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 998 } 999 return UnreachableBlock; 1000 } 1001 1002 llvm::BasicBlock *getInvokeDest() { 1003 if (!EHStack.requiresLandingPad()) return 0; 1004 return getInvokeDestImpl(); 1005 } 1006 1007 const TargetInfo &getTarget() const { return Target; } 1008 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1009 1010 //===--------------------------------------------------------------------===// 1011 // Cleanups 1012 //===--------------------------------------------------------------------===// 1013 1014 typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty); 1015 1016 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1017 llvm::Value *arrayEndPointer, 1018 QualType elementType, 1019 Destroyer *destroyer); 1020 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1021 llvm::Value *arrayEnd, 1022 QualType elementType, 1023 Destroyer *destroyer); 1024 1025 void pushDestroy(QualType::DestructionKind dtorKind, 1026 llvm::Value *addr, QualType type); 1027 void pushEHDestroy(QualType::DestructionKind dtorKind, 1028 llvm::Value *addr, QualType type); 1029 void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type, 1030 Destroyer *destroyer, bool useEHCleanupForArray); 1031 void pushLifetimeExtendedDestroy(CleanupKind kind, llvm::Value *addr, 1032 QualType type, Destroyer *destroyer, 1033 bool useEHCleanupForArray); 1034 void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer, 1035 bool useEHCleanupForArray); 1036 llvm::Function *generateDestroyHelper(llvm::Constant *addr, 1037 QualType type, 1038 Destroyer *destroyer, 1039 bool useEHCleanupForArray); 1040 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1041 QualType type, Destroyer *destroyer, 1042 bool checkZeroLength, bool useEHCleanup); 1043 1044 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1045 1046 /// Determines whether an EH cleanup is required to destroy a type 1047 /// with the given destruction kind. 1048 bool needsEHCleanup(QualType::DestructionKind kind) { 1049 switch (kind) { 1050 case QualType::DK_none: 1051 return false; 1052 case QualType::DK_cxx_destructor: 1053 case QualType::DK_objc_weak_lifetime: 1054 return getLangOpts().Exceptions; 1055 case QualType::DK_objc_strong_lifetime: 1056 return getLangOpts().Exceptions && 1057 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1058 } 1059 llvm_unreachable("bad destruction kind"); 1060 } 1061 1062 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1063 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1064 } 1065 1066 //===--------------------------------------------------------------------===// 1067 // Objective-C 1068 //===--------------------------------------------------------------------===// 1069 1070 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1071 1072 void StartObjCMethod(const ObjCMethodDecl *MD, 1073 const ObjCContainerDecl *CD, 1074 SourceLocation StartLoc); 1075 1076 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1077 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1078 const ObjCPropertyImplDecl *PID); 1079 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1080 const ObjCPropertyImplDecl *propImpl, 1081 const ObjCMethodDecl *GetterMothodDecl, 1082 llvm::Constant *AtomicHelperFn); 1083 1084 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1085 ObjCMethodDecl *MD, bool ctor); 1086 1087 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1088 /// for the given property. 1089 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1090 const ObjCPropertyImplDecl *PID); 1091 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1092 const ObjCPropertyImplDecl *propImpl, 1093 llvm::Constant *AtomicHelperFn); 1094 bool IndirectObjCSetterArg(const CGFunctionInfo &FI); 1095 bool IvarTypeWithAggrGCObjects(QualType Ty); 1096 1097 //===--------------------------------------------------------------------===// 1098 // Block Bits 1099 //===--------------------------------------------------------------------===// 1100 1101 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1102 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 1103 static void destroyBlockInfos(CGBlockInfo *info); 1104 llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *, 1105 const CGBlockInfo &Info, 1106 llvm::StructType *, 1107 llvm::Constant *BlockVarLayout); 1108 1109 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1110 const CGBlockInfo &Info, 1111 const DeclMapTy &ldm, 1112 bool IsLambdaConversionToBlock); 1113 1114 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1115 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1116 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1117 const ObjCPropertyImplDecl *PID); 1118 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1119 const ObjCPropertyImplDecl *PID); 1120 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1121 1122 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1123 1124 class AutoVarEmission; 1125 1126 void emitByrefStructureInit(const AutoVarEmission &emission); 1127 void enterByrefCleanup(const AutoVarEmission &emission); 1128 1129 llvm::Value *LoadBlockStruct() { 1130 assert(BlockPointer && "no block pointer set!"); 1131 return BlockPointer; 1132 } 1133 1134 void AllocateBlockCXXThisPointer(const CXXThisExpr *E); 1135 void AllocateBlockDecl(const DeclRefExpr *E); 1136 llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1137 llvm::Type *BuildByRefType(const VarDecl *var); 1138 1139 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1140 const CGFunctionInfo &FnInfo); 1141 void StartFunction(GlobalDecl GD, 1142 QualType RetTy, 1143 llvm::Function *Fn, 1144 const CGFunctionInfo &FnInfo, 1145 const FunctionArgList &Args, 1146 SourceLocation StartLoc); 1147 1148 void EmitConstructorBody(FunctionArgList &Args); 1149 void EmitDestructorBody(FunctionArgList &Args); 1150 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1151 void EmitFunctionBody(FunctionArgList &Args); 1152 1153 void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda, 1154 CallArgList &CallArgs); 1155 void EmitLambdaToBlockPointerBody(FunctionArgList &Args); 1156 void EmitLambdaBlockInvokeBody(); 1157 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1158 void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); 1159 1160 /// EmitReturnBlock - Emit the unified return block, trying to avoid its 1161 /// emission when possible. 1162 void EmitReturnBlock(); 1163 1164 /// FinishFunction - Complete IR generation of the current function. It is 1165 /// legal to call this function even if there is no current insertion point. 1166 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1167 1168 /// GenerateThunk - Generate a thunk for the given method. 1169 void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1170 GlobalDecl GD, const ThunkInfo &Thunk); 1171 1172 void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1173 GlobalDecl GD, const ThunkInfo &Thunk); 1174 1175 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1176 FunctionArgList &Args); 1177 1178 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init, 1179 ArrayRef<VarDecl *> ArrayIndexes); 1180 1181 /// InitializeVTablePointer - Initialize the vtable pointer of the given 1182 /// subobject. 1183 /// 1184 void InitializeVTablePointer(BaseSubobject Base, 1185 const CXXRecordDecl *NearestVBase, 1186 CharUnits OffsetFromNearestVBase, 1187 llvm::Constant *VTable, 1188 const CXXRecordDecl *VTableClass); 1189 1190 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1191 void InitializeVTablePointers(BaseSubobject Base, 1192 const CXXRecordDecl *NearestVBase, 1193 CharUnits OffsetFromNearestVBase, 1194 bool BaseIsNonVirtualPrimaryBase, 1195 llvm::Constant *VTable, 1196 const CXXRecordDecl *VTableClass, 1197 VisitedVirtualBasesSetTy& VBases); 1198 1199 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1200 1201 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1202 /// to by This. 1203 llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty); 1204 1205 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1206 /// given phase of destruction for a destructor. The end result 1207 /// should call destructors on members and base classes in reverse 1208 /// order of their construction. 1209 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1210 1211 /// ShouldInstrumentFunction - Return true if the current function should be 1212 /// instrumented with __cyg_profile_func_* calls 1213 bool ShouldInstrumentFunction(); 1214 1215 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1216 /// instrumentation function with the current function and the call site, if 1217 /// function instrumentation is enabled. 1218 void EmitFunctionInstrumentation(const char *Fn); 1219 1220 /// EmitMCountInstrumentation - Emit call to .mcount. 1221 void EmitMCountInstrumentation(); 1222 1223 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1224 /// arguments for the given function. This is also responsible for naming the 1225 /// LLVM function arguments. 1226 void EmitFunctionProlog(const CGFunctionInfo &FI, 1227 llvm::Function *Fn, 1228 const FunctionArgList &Args); 1229 1230 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1231 /// given temporary. 1232 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc); 1233 1234 /// EmitStartEHSpec - Emit the start of the exception spec. 1235 void EmitStartEHSpec(const Decl *D); 1236 1237 /// EmitEndEHSpec - Emit the end of the exception spec. 1238 void EmitEndEHSpec(const Decl *D); 1239 1240 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1241 llvm::BasicBlock *getTerminateLandingPad(); 1242 1243 /// getTerminateHandler - Return a handler (not a landing pad, just 1244 /// a catch handler) that just calls terminate. This is used when 1245 /// a terminate scope encloses a try. 1246 llvm::BasicBlock *getTerminateHandler(); 1247 1248 llvm::Type *ConvertTypeForMem(QualType T); 1249 llvm::Type *ConvertType(QualType T); 1250 llvm::Type *ConvertType(const TypeDecl *T) { 1251 return ConvertType(getContext().getTypeDeclType(T)); 1252 } 1253 1254 /// LoadObjCSelf - Load the value of self. This function is only valid while 1255 /// generating code for an Objective-C method. 1256 llvm::Value *LoadObjCSelf(); 1257 1258 /// TypeOfSelfObject - Return type of object that this self represents. 1259 QualType TypeOfSelfObject(); 1260 1261 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1262 /// an aggregate LLVM type or is void. 1263 static TypeEvaluationKind getEvaluationKind(QualType T); 1264 1265 static bool hasScalarEvaluationKind(QualType T) { 1266 return getEvaluationKind(T) == TEK_Scalar; 1267 } 1268 1269 static bool hasAggregateEvaluationKind(QualType T) { 1270 return getEvaluationKind(T) == TEK_Aggregate; 1271 } 1272 1273 /// createBasicBlock - Create an LLVM basic block. 1274 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1275 llvm::Function *parent = 0, 1276 llvm::BasicBlock *before = 0) { 1277#ifdef NDEBUG 1278 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1279#else 1280 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1281#endif 1282 } 1283 1284 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1285 /// label maps to. 1286 JumpDest getJumpDestForLabel(const LabelDecl *S); 1287 1288 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1289 /// another basic block, simplify it. This assumes that no other code could 1290 /// potentially reference the basic block. 1291 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1292 1293 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1294 /// adding a fall-through branch from the current insert block if 1295 /// necessary. It is legal to call this function even if there is no current 1296 /// insertion point. 1297 /// 1298 /// IsFinished - If true, indicates that the caller has finished emitting 1299 /// branches to the given block and does not expect to emit code into it. This 1300 /// means the block can be ignored if it is unreachable. 1301 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1302 1303 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1304 /// near its uses, and leave the insertion point in it. 1305 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1306 1307 /// EmitBranch - Emit a branch to the specified basic block from the current 1308 /// insert block, taking care to avoid creation of branches from dummy 1309 /// blocks. It is legal to call this function even if there is no current 1310 /// insertion point. 1311 /// 1312 /// This function clears the current insertion point. The caller should follow 1313 /// calls to this function with calls to Emit*Block prior to generation new 1314 /// code. 1315 void EmitBranch(llvm::BasicBlock *Block); 1316 1317 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1318 /// indicates that the current code being emitted is unreachable. 1319 bool HaveInsertPoint() const { 1320 return Builder.GetInsertBlock() != 0; 1321 } 1322 1323 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1324 /// emitted IR has a place to go. Note that by definition, if this function 1325 /// creates a block then that block is unreachable; callers may do better to 1326 /// detect when no insertion point is defined and simply skip IR generation. 1327 void EnsureInsertPoint() { 1328 if (!HaveInsertPoint()) 1329 EmitBlock(createBasicBlock()); 1330 } 1331 1332 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1333 /// specified stmt yet. 1334 void ErrorUnsupported(const Stmt *S, const char *Type, 1335 bool OmitOnError=false); 1336 1337 //===--------------------------------------------------------------------===// 1338 // Helpers 1339 //===--------------------------------------------------------------------===// 1340 1341 LValue MakeAddrLValue(llvm::Value *V, QualType T, 1342 CharUnits Alignment = CharUnits()) { 1343 return LValue::MakeAddr(V, T, Alignment, getContext(), 1344 CGM.getTBAAInfo(T)); 1345 } 1346 1347 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 1348 CharUnits Alignment; 1349 if (!T->isIncompleteType()) 1350 Alignment = getContext().getTypeAlignInChars(T); 1351 return LValue::MakeAddr(V, T, Alignment, getContext(), 1352 CGM.getTBAAInfo(T)); 1353 } 1354 1355 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1356 /// block. The caller is responsible for setting an appropriate alignment on 1357 /// the alloca. 1358 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1359 const Twine &Name = "tmp"); 1360 1361 /// InitTempAlloca - Provide an initial value for the given alloca. 1362 void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value); 1363 1364 /// CreateIRTemp - Create a temporary IR object of the given type, with 1365 /// appropriate alignment. This routine should only be used when an temporary 1366 /// value needs to be stored into an alloca (for example, to avoid explicit 1367 /// PHI construction), but the type is the IR type, not the type appropriate 1368 /// for storing in memory. 1369 llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1370 1371 /// CreateMemTemp - Create a temporary memory object of the given type, with 1372 /// appropriate alignment. 1373 llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1374 1375 /// CreateAggTemp - Create a temporary memory object for the given 1376 /// aggregate type. 1377 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1378 CharUnits Alignment = getContext().getTypeAlignInChars(T); 1379 return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment, 1380 T.getQualifiers(), 1381 AggValueSlot::IsNotDestructed, 1382 AggValueSlot::DoesNotNeedGCBarriers, 1383 AggValueSlot::IsNotAliased); 1384 } 1385 1386 /// Emit a cast to void* in the appropriate address space. 1387 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1388 1389 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1390 /// expression and compare the result against zero, returning an Int1Ty value. 1391 llvm::Value *EvaluateExprAsBool(const Expr *E); 1392 1393 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1394 void EmitIgnoredExpr(const Expr *E); 1395 1396 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1397 /// any type. The result is returned as an RValue struct. If this is an 1398 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1399 /// the result should be returned. 1400 /// 1401 /// \param ignoreResult True if the resulting value isn't used. 1402 RValue EmitAnyExpr(const Expr *E, 1403 AggValueSlot aggSlot = AggValueSlot::ignored(), 1404 bool ignoreResult = false); 1405 1406 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1407 // or the value of the expression, depending on how va_list is defined. 1408 llvm::Value *EmitVAListRef(const Expr *E); 1409 1410 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1411 /// always be accessible even if no aggregate location is provided. 1412 RValue EmitAnyExprToTemp(const Expr *E); 1413 1414 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1415 /// arbitrary expression into the given memory location. 1416 void EmitAnyExprToMem(const Expr *E, llvm::Value *Location, 1417 Qualifiers Quals, bool IsInitializer); 1418 1419 /// EmitExprAsInit - Emits the code necessary to initialize a 1420 /// location in memory with the given initializer. 1421 void EmitExprAsInit(const Expr *init, const ValueDecl *D, 1422 LValue lvalue, bool capturedByInit); 1423 1424 /// hasVolatileMember - returns true if aggregate type has a volatile 1425 /// member. 1426 bool hasVolatileMember(QualType T) { 1427 if (const RecordType *RT = T->getAs<RecordType>()) { 1428 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 1429 return RD->hasVolatileMember(); 1430 } 1431 return false; 1432 } 1433 /// EmitAggregateCopy - Emit an aggregate assignment. 1434 /// 1435 /// The difference to EmitAggregateCopy is that tail padding is not copied. 1436 /// This is required for correctness when assigning non-POD structures in C++. 1437 void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1438 QualType EltTy) { 1439 bool IsVolatile = hasVolatileMember(EltTy); 1440 EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(), 1441 true); 1442 } 1443 1444 /// EmitAggregateCopy - Emit an aggregate copy. 1445 /// 1446 /// \param isVolatile - True iff either the source or the destination is 1447 /// volatile. 1448 /// \param isAssignment - If false, allow padding to be copied. This often 1449 /// yields more efficient. 1450 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1451 QualType EltTy, bool isVolatile=false, 1452 CharUnits Alignment = CharUnits::Zero(), 1453 bool isAssignment = false); 1454 1455 /// StartBlock - Start new block named N. If insert block is a dummy block 1456 /// then reuse it. 1457 void StartBlock(const char *N); 1458 1459 /// GetAddrOfLocalVar - Return the address of a local variable. 1460 llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) { 1461 llvm::Value *Res = LocalDeclMap[VD]; 1462 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1463 return Res; 1464 } 1465 1466 /// getOpaqueLValueMapping - Given an opaque value expression (which 1467 /// must be mapped to an l-value), return its mapping. 1468 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1469 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1470 1471 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1472 it = OpaqueLValues.find(e); 1473 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1474 return it->second; 1475 } 1476 1477 /// getOpaqueRValueMapping - Given an opaque value expression (which 1478 /// must be mapped to an r-value), return its mapping. 1479 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1480 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1481 1482 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1483 it = OpaqueRValues.find(e); 1484 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1485 return it->second; 1486 } 1487 1488 /// getAccessedFieldNo - Given an encoded value and a result number, return 1489 /// the input field number being accessed. 1490 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1491 1492 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1493 llvm::BasicBlock *GetIndirectGotoBlock(); 1494 1495 /// EmitNullInitialization - Generate code to set a value of the given type to 1496 /// null, If the type contains data member pointers, they will be initialized 1497 /// to -1 in accordance with the Itanium C++ ABI. 1498 void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty); 1499 1500 // EmitVAArg - Generate code to get an argument from the passed in pointer 1501 // and update it accordingly. The return value is a pointer to the argument. 1502 // FIXME: We should be able to get rid of this method and use the va_arg 1503 // instruction in LLVM instead once it works well enough. 1504 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty); 1505 1506 /// emitArrayLength - Compute the length of an array, even if it's a 1507 /// VLA, and drill down to the base element type. 1508 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1509 QualType &baseType, 1510 llvm::Value *&addr); 1511 1512 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1513 /// the given variably-modified type and store them in the VLASizeMap. 1514 /// 1515 /// This function can be called with a null (unreachable) insert point. 1516 void EmitVariablyModifiedType(QualType Ty); 1517 1518 /// getVLASize - Returns an LLVM value that corresponds to the size, 1519 /// in non-variably-sized elements, of a variable length array type, 1520 /// plus that largest non-variably-sized element type. Assumes that 1521 /// the type has already been emitted with EmitVariablyModifiedType. 1522 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1523 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1524 1525 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1526 /// generating code for an C++ member function. 1527 llvm::Value *LoadCXXThis() { 1528 assert(CXXThisValue && "no 'this' value for this function"); 1529 return CXXThisValue; 1530 } 1531 1532 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1533 /// virtual bases. 1534 // FIXME: Every place that calls LoadCXXVTT is something 1535 // that needs to be abstracted properly. 1536 llvm::Value *LoadCXXVTT() { 1537 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 1538 return CXXStructorImplicitParamValue; 1539 } 1540 1541 /// LoadCXXStructorImplicitParam - Load the implicit parameter 1542 /// for a constructor/destructor. 1543 llvm::Value *LoadCXXStructorImplicitParam() { 1544 assert(CXXStructorImplicitParamValue && 1545 "no implicit argument value for this function"); 1546 return CXXStructorImplicitParamValue; 1547 } 1548 1549 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1550 /// complete class to the given direct base. 1551 llvm::Value * 1552 GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value, 1553 const CXXRecordDecl *Derived, 1554 const CXXRecordDecl *Base, 1555 bool BaseIsVirtual); 1556 1557 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1558 /// load of 'this' and returns address of the base class. 1559 llvm::Value *GetAddressOfBaseClass(llvm::Value *Value, 1560 const CXXRecordDecl *Derived, 1561 CastExpr::path_const_iterator PathBegin, 1562 CastExpr::path_const_iterator PathEnd, 1563 bool NullCheckValue); 1564 1565 llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value, 1566 const CXXRecordDecl *Derived, 1567 CastExpr::path_const_iterator PathBegin, 1568 CastExpr::path_const_iterator PathEnd, 1569 bool NullCheckValue); 1570 1571 /// GetVTTParameter - Return the VTT parameter that should be passed to a 1572 /// base constructor/destructor with virtual bases. 1573 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 1574 /// to ItaniumCXXABI.cpp together with all the references to VTT. 1575 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 1576 bool Delegating); 1577 1578 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1579 CXXCtorType CtorType, 1580 const FunctionArgList &Args); 1581 // It's important not to confuse this and the previous function. Delegating 1582 // constructors are the C++0x feature. The constructor delegate optimization 1583 // is used to reduce duplication in the base and complete consturctors where 1584 // they are substantially the same. 1585 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1586 const FunctionArgList &Args); 1587 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1588 bool ForVirtualBase, bool Delegating, 1589 llvm::Value *This, 1590 CallExpr::const_arg_iterator ArgBeg, 1591 CallExpr::const_arg_iterator ArgEnd); 1592 1593 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1594 llvm::Value *This, llvm::Value *Src, 1595 CallExpr::const_arg_iterator ArgBeg, 1596 CallExpr::const_arg_iterator ArgEnd); 1597 1598 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1599 const ConstantArrayType *ArrayTy, 1600 llvm::Value *ArrayPtr, 1601 CallExpr::const_arg_iterator ArgBeg, 1602 CallExpr::const_arg_iterator ArgEnd, 1603 bool ZeroInitialization = false); 1604 1605 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1606 llvm::Value *NumElements, 1607 llvm::Value *ArrayPtr, 1608 CallExpr::const_arg_iterator ArgBeg, 1609 CallExpr::const_arg_iterator ArgEnd, 1610 bool ZeroInitialization = false); 1611 1612 static Destroyer destroyCXXObject; 1613 1614 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1615 bool ForVirtualBase, bool Delegating, 1616 llvm::Value *This); 1617 1618 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 1619 llvm::Value *NewPtr, llvm::Value *NumElements); 1620 1621 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 1622 llvm::Value *Ptr); 1623 1624 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1625 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1626 1627 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1628 QualType DeleteTy); 1629 1630 llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1631 llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE); 1632 llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E); 1633 1634 void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init); 1635 void EmitStdInitializerListCleanup(llvm::Value *loc, 1636 const InitListExpr *init); 1637 1638 /// \brief Situations in which we might emit a check for the suitability of a 1639 /// pointer or glvalue. 1640 enum TypeCheckKind { 1641 /// Checking the operand of a load. Must be suitably sized and aligned. 1642 TCK_Load, 1643 /// Checking the destination of a store. Must be suitably sized and aligned. 1644 TCK_Store, 1645 /// Checking the bound value in a reference binding. Must be suitably sized 1646 /// and aligned, but is not required to refer to an object (until the 1647 /// reference is used), per core issue 453. 1648 TCK_ReferenceBinding, 1649 /// Checking the object expression in a non-static data member access. Must 1650 /// be an object within its lifetime. 1651 TCK_MemberAccess, 1652 /// Checking the 'this' pointer for a call to a non-static member function. 1653 /// Must be an object within its lifetime. 1654 TCK_MemberCall, 1655 /// Checking the 'this' pointer for a constructor call. 1656 TCK_ConstructorCall, 1657 /// Checking the operand of a static_cast to a derived pointer type. Must be 1658 /// null or an object within its lifetime. 1659 TCK_DowncastPointer, 1660 /// Checking the operand of a static_cast to a derived reference type. Must 1661 /// be an object within its lifetime. 1662 TCK_DowncastReference 1663 }; 1664 1665 /// \brief Emit a check that \p V is the address of storage of the 1666 /// appropriate size and alignment for an object of type \p Type. 1667 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 1668 QualType Type, CharUnits Alignment = CharUnits::Zero()); 1669 1670 /// \brief Emit a check that \p Base points into an array object, which 1671 /// we can access at index \p Index. \p Accessed should be \c false if we 1672 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 1673 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 1674 QualType IndexType, bool Accessed); 1675 1676 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1677 bool isInc, bool isPre); 1678 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1679 bool isInc, bool isPre); 1680 //===--------------------------------------------------------------------===// 1681 // Declaration Emission 1682 //===--------------------------------------------------------------------===// 1683 1684 /// EmitDecl - Emit a declaration. 1685 /// 1686 /// This function can be called with a null (unreachable) insert point. 1687 void EmitDecl(const Decl &D); 1688 1689 /// EmitVarDecl - Emit a local variable declaration. 1690 /// 1691 /// This function can be called with a null (unreachable) insert point. 1692 void EmitVarDecl(const VarDecl &D); 1693 1694 void EmitScalarInit(const Expr *init, const ValueDecl *D, 1695 LValue lvalue, bool capturedByInit); 1696 void EmitScalarInit(llvm::Value *init, LValue lvalue); 1697 1698 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1699 llvm::Value *Address); 1700 1701 /// EmitAutoVarDecl - Emit an auto variable declaration. 1702 /// 1703 /// This function can be called with a null (unreachable) insert point. 1704 void EmitAutoVarDecl(const VarDecl &D); 1705 1706 class AutoVarEmission { 1707 friend class CodeGenFunction; 1708 1709 const VarDecl *Variable; 1710 1711 /// The alignment of the variable. 1712 CharUnits Alignment; 1713 1714 /// The address of the alloca. Null if the variable was emitted 1715 /// as a global constant. 1716 llvm::Value *Address; 1717 1718 llvm::Value *NRVOFlag; 1719 1720 /// True if the variable is a __block variable. 1721 bool IsByRef; 1722 1723 /// True if the variable is of aggregate type and has a constant 1724 /// initializer. 1725 bool IsConstantAggregate; 1726 1727 /// Non-null if we should use lifetime annotations. 1728 llvm::Value *SizeForLifetimeMarkers; 1729 1730 struct Invalid {}; 1731 AutoVarEmission(Invalid) : Variable(0) {} 1732 1733 AutoVarEmission(const VarDecl &variable) 1734 : Variable(&variable), Address(0), NRVOFlag(0), 1735 IsByRef(false), IsConstantAggregate(false), 1736 SizeForLifetimeMarkers(0) {} 1737 1738 bool wasEmittedAsGlobal() const { return Address == 0; } 1739 1740 public: 1741 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 1742 1743 bool useLifetimeMarkers() const { return SizeForLifetimeMarkers != 0; } 1744 llvm::Value *getSizeForLifetimeMarkers() const { 1745 assert(useLifetimeMarkers()); 1746 return SizeForLifetimeMarkers; 1747 } 1748 1749 /// Returns the raw, allocated address, which is not necessarily 1750 /// the address of the object itself. 1751 llvm::Value *getAllocatedAddress() const { 1752 return Address; 1753 } 1754 1755 /// Returns the address of the object within this declaration. 1756 /// Note that this does not chase the forwarding pointer for 1757 /// __block decls. 1758 llvm::Value *getObjectAddress(CodeGenFunction &CGF) const { 1759 if (!IsByRef) return Address; 1760 1761 return CGF.Builder.CreateStructGEP(Address, 1762 CGF.getByRefValueLLVMField(Variable), 1763 Variable->getNameAsString()); 1764 } 1765 }; 1766 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 1767 void EmitAutoVarInit(const AutoVarEmission &emission); 1768 void EmitAutoVarCleanups(const AutoVarEmission &emission); 1769 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 1770 QualType::DestructionKind dtorKind); 1771 1772 void EmitStaticVarDecl(const VarDecl &D, 1773 llvm::GlobalValue::LinkageTypes Linkage); 1774 1775 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 1776 void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo); 1777 1778 /// protectFromPeepholes - Protect a value that we're intending to 1779 /// store to the side, but which will probably be used later, from 1780 /// aggressive peepholing optimizations that might delete it. 1781 /// 1782 /// Pass the result to unprotectFromPeepholes to declare that 1783 /// protection is no longer required. 1784 /// 1785 /// There's no particular reason why this shouldn't apply to 1786 /// l-values, it's just that no existing peepholes work on pointers. 1787 PeepholeProtection protectFromPeepholes(RValue rvalue); 1788 void unprotectFromPeepholes(PeepholeProtection protection); 1789 1790 //===--------------------------------------------------------------------===// 1791 // Statement Emission 1792 //===--------------------------------------------------------------------===// 1793 1794 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 1795 void EmitStopPoint(const Stmt *S); 1796 1797 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 1798 /// this function even if there is no current insertion point. 1799 /// 1800 /// This function may clear the current insertion point; callers should use 1801 /// EnsureInsertPoint if they wish to subsequently generate code without first 1802 /// calling EmitBlock, EmitBranch, or EmitStmt. 1803 void EmitStmt(const Stmt *S); 1804 1805 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 1806 /// necessarily require an insertion point or debug information; typically 1807 /// because the statement amounts to a jump or a container of other 1808 /// statements. 1809 /// 1810 /// \return True if the statement was handled. 1811 bool EmitSimpleStmt(const Stmt *S); 1812 1813 llvm::Value *EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 1814 AggValueSlot AVS = AggValueSlot::ignored()); 1815 llvm::Value *EmitCompoundStmtWithoutScope(const CompoundStmt &S, 1816 bool GetLast = false, 1817 AggValueSlot AVS = 1818 AggValueSlot::ignored()); 1819 1820 /// EmitLabel - Emit the block for the given label. It is legal to call this 1821 /// function even if there is no current insertion point. 1822 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 1823 1824 void EmitLabelStmt(const LabelStmt &S); 1825 void EmitAttributedStmt(const AttributedStmt &S); 1826 void EmitGotoStmt(const GotoStmt &S); 1827 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 1828 void EmitIfStmt(const IfStmt &S); 1829 void EmitWhileStmt(const WhileStmt &S); 1830 void EmitDoStmt(const DoStmt &S); 1831 void EmitForStmt(const ForStmt &S); 1832 void EmitReturnStmt(const ReturnStmt &S); 1833 void EmitDeclStmt(const DeclStmt &S); 1834 void EmitBreakStmt(const BreakStmt &S); 1835 void EmitContinueStmt(const ContinueStmt &S); 1836 void EmitSwitchStmt(const SwitchStmt &S); 1837 void EmitDefaultStmt(const DefaultStmt &S); 1838 void EmitCaseStmt(const CaseStmt &S); 1839 void EmitCaseStmtRange(const CaseStmt &S); 1840 void EmitAsmStmt(const AsmStmt &S); 1841 1842 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 1843 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 1844 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 1845 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 1846 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 1847 1848 llvm::Constant *getUnwindResumeFn(); 1849 llvm::Constant *getUnwindResumeOrRethrowFn(); 1850 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1851 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1852 1853 void EmitCXXTryStmt(const CXXTryStmt &S); 1854 void EmitCXXForRangeStmt(const CXXForRangeStmt &S); 1855 1856 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 1857 llvm::Function *GenerateCapturedStmtFunction(const CapturedDecl *CD, 1858 const RecordDecl *RD); 1859 1860 //===--------------------------------------------------------------------===// 1861 // LValue Expression Emission 1862 //===--------------------------------------------------------------------===// 1863 1864 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 1865 RValue GetUndefRValue(QualType Ty); 1866 1867 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 1868 /// and issue an ErrorUnsupported style diagnostic (using the 1869 /// provided Name). 1870 RValue EmitUnsupportedRValue(const Expr *E, 1871 const char *Name); 1872 1873 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 1874 /// an ErrorUnsupported style diagnostic (using the provided Name). 1875 LValue EmitUnsupportedLValue(const Expr *E, 1876 const char *Name); 1877 1878 /// EmitLValue - Emit code to compute a designator that specifies the location 1879 /// of the expression. 1880 /// 1881 /// This can return one of two things: a simple address or a bitfield 1882 /// reference. In either case, the LLVM Value* in the LValue structure is 1883 /// guaranteed to be an LLVM pointer type. 1884 /// 1885 /// If this returns a bitfield reference, nothing about the pointee type of 1886 /// the LLVM value is known: For example, it may not be a pointer to an 1887 /// integer. 1888 /// 1889 /// If this returns a normal address, and if the lvalue's C type is fixed 1890 /// size, this method guarantees that the returned pointer type will point to 1891 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 1892 /// variable length type, this is not possible. 1893 /// 1894 LValue EmitLValue(const Expr *E); 1895 1896 /// \brief Same as EmitLValue but additionally we generate checking code to 1897 /// guard against undefined behavior. This is only suitable when we know 1898 /// that the address will be used to access the object. 1899 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 1900 1901 RValue convertTempToRValue(llvm::Value *addr, QualType type); 1902 1903 void EmitAtomicInit(Expr *E, LValue lvalue); 1904 1905 RValue EmitAtomicLoad(LValue lvalue, 1906 AggValueSlot slot = AggValueSlot::ignored()); 1907 1908 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 1909 1910 /// EmitToMemory - Change a scalar value from its value 1911 /// representation to its in-memory representation. 1912 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 1913 1914 /// EmitFromMemory - Change a scalar value from its memory 1915 /// representation to its value representation. 1916 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 1917 1918 /// EmitLoadOfScalar - Load a scalar value from an address, taking 1919 /// care to appropriately convert from the memory representation to 1920 /// the LLVM value representation. 1921 llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 1922 unsigned Alignment, QualType Ty, 1923 llvm::MDNode *TBAAInfo = 0, 1924 QualType TBAABaseTy = QualType(), 1925 uint64_t TBAAOffset = 0); 1926 1927 /// EmitLoadOfScalar - Load a scalar value from an address, taking 1928 /// care to appropriately convert from the memory representation to 1929 /// the LLVM value representation. The l-value must be a simple 1930 /// l-value. 1931 llvm::Value *EmitLoadOfScalar(LValue lvalue); 1932 1933 /// EmitStoreOfScalar - Store a scalar value to an address, taking 1934 /// care to appropriately convert from the memory representation to 1935 /// the LLVM value representation. 1936 void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 1937 bool Volatile, unsigned Alignment, QualType Ty, 1938 llvm::MDNode *TBAAInfo = 0, bool isInit = false, 1939 QualType TBAABaseTy = QualType(), 1940 uint64_t TBAAOffset = 0); 1941 1942 /// EmitStoreOfScalar - Store a scalar value to an address, taking 1943 /// care to appropriately convert from the memory representation to 1944 /// the LLVM value representation. The l-value must be a simple 1945 /// l-value. The isInit flag indicates whether this is an initialization. 1946 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 1947 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 1948 1949 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 1950 /// this method emits the address of the lvalue, then loads the result as an 1951 /// rvalue, returning the rvalue. 1952 RValue EmitLoadOfLValue(LValue V); 1953 RValue EmitLoadOfExtVectorElementLValue(LValue V); 1954 RValue EmitLoadOfBitfieldLValue(LValue LV); 1955 1956 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 1957 /// lvalue, where both are guaranteed to the have the same type, and that type 1958 /// is 'Ty'. 1959 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false); 1960 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 1961 1962 /// EmitStoreThroughLValue - Store Src into Dst with same constraints as 1963 /// EmitStoreThroughLValue. 1964 /// 1965 /// \param Result [out] - If non-null, this will be set to a Value* for the 1966 /// bit-field contents after the store, appropriate for use as the result of 1967 /// an assignment to the bit-field. 1968 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 1969 llvm::Value **Result=0); 1970 1971 /// Emit an l-value for an assignment (simple or compound) of complex type. 1972 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 1973 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 1974 1975 // Note: only available for agg return types 1976 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 1977 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 1978 // Note: only available for agg return types 1979 LValue EmitCallExprLValue(const CallExpr *E); 1980 // Note: only available for agg return types 1981 LValue EmitVAArgExprLValue(const VAArgExpr *E); 1982 LValue EmitDeclRefLValue(const DeclRefExpr *E); 1983 LValue EmitStringLiteralLValue(const StringLiteral *E); 1984 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 1985 LValue EmitPredefinedLValue(const PredefinedExpr *E); 1986 LValue EmitUnaryOpLValue(const UnaryOperator *E); 1987 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 1988 bool Accessed = false); 1989 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 1990 LValue EmitMemberExpr(const MemberExpr *E); 1991 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 1992 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 1993 LValue EmitInitListLValue(const InitListExpr *E); 1994 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 1995 LValue EmitCastLValue(const CastExpr *E); 1996 LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E); 1997 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 1998 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 1999 2000 RValue EmitRValueForField(LValue LV, const FieldDecl *FD); 2001 2002 class ConstantEmission { 2003 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 2004 ConstantEmission(llvm::Constant *C, bool isReference) 2005 : ValueAndIsReference(C, isReference) {} 2006 public: 2007 ConstantEmission() {} 2008 static ConstantEmission forReference(llvm::Constant *C) { 2009 return ConstantEmission(C, true); 2010 } 2011 static ConstantEmission forValue(llvm::Constant *C) { 2012 return ConstantEmission(C, false); 2013 } 2014 2015 LLVM_EXPLICIT operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; } 2016 2017 bool isReference() const { return ValueAndIsReference.getInt(); } 2018 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 2019 assert(isReference()); 2020 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 2021 refExpr->getType()); 2022 } 2023 2024 llvm::Constant *getValue() const { 2025 assert(!isReference()); 2026 return ValueAndIsReference.getPointer(); 2027 } 2028 }; 2029 2030 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 2031 2032 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 2033 AggValueSlot slot = AggValueSlot::ignored()); 2034 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 2035 2036 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2037 const ObjCIvarDecl *Ivar); 2038 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 2039 LValue EmitLValueForLambdaField(const FieldDecl *Field); 2040 2041 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 2042 /// if the Field is a reference, this will return the address of the reference 2043 /// and not the address of the value stored in the reference. 2044 LValue EmitLValueForFieldInitialization(LValue Base, 2045 const FieldDecl* Field); 2046 2047 LValue EmitLValueForIvar(QualType ObjectTy, 2048 llvm::Value* Base, const ObjCIvarDecl *Ivar, 2049 unsigned CVRQualifiers); 2050 2051 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 2052 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 2053 LValue EmitLambdaLValue(const LambdaExpr *E); 2054 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2055 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 2056 2057 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2058 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2059 LValue EmitStmtExprLValue(const StmtExpr *E); 2060 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2061 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2062 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 2063 2064 //===--------------------------------------------------------------------===// 2065 // Scalar Expression Emission 2066 //===--------------------------------------------------------------------===// 2067 2068 /// EmitCall - Generate a call of the given function, expecting the given 2069 /// result type, and using the given argument list which specifies both the 2070 /// LLVM arguments and the types they were derived from. 2071 /// 2072 /// \param TargetDecl - If given, the decl of the function in a direct call; 2073 /// used to set attributes on the call (noreturn, etc.). 2074 RValue EmitCall(const CGFunctionInfo &FnInfo, 2075 llvm::Value *Callee, 2076 ReturnValueSlot ReturnValue, 2077 const CallArgList &Args, 2078 const Decl *TargetDecl = 0, 2079 llvm::Instruction **callOrInvoke = 0); 2080 2081 RValue EmitCall(QualType FnType, llvm::Value *Callee, 2082 ReturnValueSlot ReturnValue, 2083 CallExpr::const_arg_iterator ArgBeg, 2084 CallExpr::const_arg_iterator ArgEnd, 2085 const Decl *TargetDecl = 0); 2086 RValue EmitCallExpr(const CallExpr *E, 2087 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2088 2089 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2090 const Twine &name = ""); 2091 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2092 ArrayRef<llvm::Value*> args, 2093 const Twine &name = ""); 2094 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2095 const Twine &name = ""); 2096 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2097 ArrayRef<llvm::Value*> args, 2098 const Twine &name = ""); 2099 2100 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2101 ArrayRef<llvm::Value *> Args, 2102 const Twine &Name = ""); 2103 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2104 const Twine &Name = ""); 2105 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2106 ArrayRef<llvm::Value*> args, 2107 const Twine &name = ""); 2108 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2109 const Twine &name = ""); 2110 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 2111 ArrayRef<llvm::Value*> args); 2112 2113 llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This, 2114 llvm::Type *Ty); 2115 llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type, 2116 llvm::Value *This, llvm::Type *Ty); 2117 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2118 NestedNameSpecifier *Qual, 2119 llvm::Type *Ty); 2120 2121 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2122 CXXDtorType Type, 2123 const CXXRecordDecl *RD); 2124 2125 RValue EmitCXXMemberCall(const CXXMethodDecl *MD, 2126 SourceLocation CallLoc, 2127 llvm::Value *Callee, 2128 ReturnValueSlot ReturnValue, 2129 llvm::Value *This, 2130 llvm::Value *ImplicitParam, 2131 QualType ImplicitParamTy, 2132 CallExpr::const_arg_iterator ArgBeg, 2133 CallExpr::const_arg_iterator ArgEnd); 2134 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2135 ReturnValueSlot ReturnValue); 2136 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2137 ReturnValueSlot ReturnValue); 2138 2139 llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E, 2140 const CXXMethodDecl *MD, 2141 llvm::Value *This); 2142 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2143 const CXXMethodDecl *MD, 2144 ReturnValueSlot ReturnValue); 2145 2146 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 2147 ReturnValueSlot ReturnValue); 2148 2149 2150 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2151 unsigned BuiltinID, const CallExpr *E); 2152 2153 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2154 2155 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2156 /// is unhandled by the current target. 2157 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2158 2159 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2160 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2161 llvm::Value *EmitNeonCall(llvm::Function *F, 2162 SmallVectorImpl<llvm::Value*> &O, 2163 const char *name, 2164 unsigned shift = 0, bool rightshift = false); 2165 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2166 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 2167 bool negateForRightShift); 2168 2169 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 2170 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2171 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2172 2173 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2174 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2175 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 2176 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 2177 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 2178 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 2179 const ObjCMethodDecl *MethodWithObjects); 2180 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2181 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2182 ReturnValueSlot Return = ReturnValueSlot()); 2183 2184 /// Retrieves the default cleanup kind for an ARC cleanup. 2185 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 2186 CleanupKind getARCCleanupKind() { 2187 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 2188 ? NormalAndEHCleanup : NormalCleanup; 2189 } 2190 2191 // ARC primitives. 2192 void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr); 2193 void EmitARCDestroyWeak(llvm::Value *addr); 2194 llvm::Value *EmitARCLoadWeak(llvm::Value *addr); 2195 llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr); 2196 llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr, 2197 bool ignored); 2198 void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src); 2199 void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src); 2200 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 2201 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 2202 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 2203 bool resultIgnored); 2204 llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value, 2205 bool resultIgnored); 2206 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 2207 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 2208 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 2209 void EmitARCDestroyStrong(llvm::Value *addr, ARCPreciseLifetime_t precise); 2210 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 2211 llvm::Value *EmitARCAutorelease(llvm::Value *value); 2212 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 2213 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 2214 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 2215 2216 std::pair<LValue,llvm::Value*> 2217 EmitARCStoreAutoreleasing(const BinaryOperator *e); 2218 std::pair<LValue,llvm::Value*> 2219 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 2220 2221 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 2222 2223 llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr); 2224 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 2225 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 2226 2227 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 2228 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 2229 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 2230 2231 void EmitARCIntrinsicUse(llvm::ArrayRef<llvm::Value*> values); 2232 2233 static Destroyer destroyARCStrongImprecise; 2234 static Destroyer destroyARCStrongPrecise; 2235 static Destroyer destroyARCWeak; 2236 2237 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 2238 llvm::Value *EmitObjCAutoreleasePoolPush(); 2239 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 2240 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 2241 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 2242 2243 /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in 2244 /// expression. Will emit a temporary variable if E is not an LValue. 2245 RValue EmitReferenceBindingToExpr(const Expr* E, 2246 const NamedDecl *InitializedDecl); 2247 2248 //===--------------------------------------------------------------------===// 2249 // Expression Emission 2250 //===--------------------------------------------------------------------===// 2251 2252 // Expressions are broken into three classes: scalar, complex, aggregate. 2253 2254 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 2255 /// scalar type, returning the result. 2256 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 2257 2258 /// EmitScalarConversion - Emit a conversion from the specified type to the 2259 /// specified destination type, both of which are LLVM scalar types. 2260 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 2261 QualType DstTy); 2262 2263 /// EmitComplexToScalarConversion - Emit a conversion from the specified 2264 /// complex type to the specified destination type, where the destination type 2265 /// is an LLVM scalar type. 2266 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 2267 QualType DstTy); 2268 2269 2270 /// EmitAggExpr - Emit the computation of the specified expression 2271 /// of aggregate type. The result is computed into the given slot, 2272 /// which may be null to indicate that the value is not needed. 2273 void EmitAggExpr(const Expr *E, AggValueSlot AS); 2274 2275 /// EmitAggExprToLValue - Emit the computation of the specified expression of 2276 /// aggregate type into a temporary LValue. 2277 LValue EmitAggExprToLValue(const Expr *E); 2278 2279 /// EmitGCMemmoveCollectable - Emit special API for structs with object 2280 /// pointers. 2281 void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr, 2282 QualType Ty); 2283 2284 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2285 /// make sure it survives garbage collection until this point. 2286 void EmitExtendGCLifetime(llvm::Value *object); 2287 2288 /// EmitComplexExpr - Emit the computation of the specified expression of 2289 /// complex type, returning the result. 2290 ComplexPairTy EmitComplexExpr(const Expr *E, 2291 bool IgnoreReal = false, 2292 bool IgnoreImag = false); 2293 2294 /// EmitComplexExprIntoLValue - Emit the given expression of complex 2295 /// type and place its result into the specified l-value. 2296 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 2297 2298 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 2299 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 2300 2301 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 2302 ComplexPairTy EmitLoadOfComplex(LValue src); 2303 2304 /// CreateStaticVarDecl - Create a zero-initialized LLVM global for 2305 /// a static local variable. 2306 llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D, 2307 const char *Separator, 2308 llvm::GlobalValue::LinkageTypes Linkage); 2309 2310 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2311 /// global variable that has already been created for it. If the initializer 2312 /// has a different type than GV does, this may free GV and return a different 2313 /// one. Otherwise it just returns GV. 2314 llvm::GlobalVariable * 2315 AddInitializerToStaticVarDecl(const VarDecl &D, 2316 llvm::GlobalVariable *GV); 2317 2318 2319 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2320 /// variable with global storage. 2321 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 2322 bool PerformInit); 2323 2324 /// Call atexit() with a function that passes the given argument to 2325 /// the given function. 2326 void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr); 2327 2328 /// Emit code in this function to perform a guarded variable 2329 /// initialization. Guarded initializations are used when it's not 2330 /// possible to prove that an initialization will be done exactly 2331 /// once, e.g. with a static local variable or a static data member 2332 /// of a class template. 2333 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 2334 bool PerformInit); 2335 2336 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2337 /// variables. 2338 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2339 ArrayRef<llvm::Constant *> Decls, 2340 llvm::GlobalVariable *Guard = 0); 2341 2342 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 2343 /// variables. 2344 void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn, 2345 const std::vector<std::pair<llvm::WeakVH, 2346 llvm::Constant*> > &DtorsAndObjects); 2347 2348 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2349 const VarDecl *D, 2350 llvm::GlobalVariable *Addr, 2351 bool PerformInit); 2352 2353 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2354 2355 void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, 2356 const Expr *Exp); 2357 2358 void enterFullExpression(const ExprWithCleanups *E) { 2359 if (E->getNumObjects() == 0) return; 2360 enterNonTrivialFullExpression(E); 2361 } 2362 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 2363 2364 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 2365 2366 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 2367 2368 RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0); 2369 2370 //===--------------------------------------------------------------------===// 2371 // Annotations Emission 2372 //===--------------------------------------------------------------------===// 2373 2374 /// Emit an annotation call (intrinsic or builtin). 2375 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 2376 llvm::Value *AnnotatedVal, 2377 StringRef AnnotationStr, 2378 SourceLocation Location); 2379 2380 /// Emit local annotations for the local variable V, declared by D. 2381 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 2382 2383 /// Emit field annotations for the given field & value. Returns the 2384 /// annotation result. 2385 llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V); 2386 2387 //===--------------------------------------------------------------------===// 2388 // Internal Helpers 2389 //===--------------------------------------------------------------------===// 2390 2391 /// ContainsLabel - Return true if the statement contains a label in it. If 2392 /// this statement is not executed normally, it not containing a label means 2393 /// that we can just remove the code. 2394 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 2395 2396 /// containsBreak - Return true if the statement contains a break out of it. 2397 /// If the statement (recursively) contains a switch or loop with a break 2398 /// inside of it, this is fine. 2399 static bool containsBreak(const Stmt *S); 2400 2401 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2402 /// to a constant, or if it does but contains a label, return false. If it 2403 /// constant folds return true and set the boolean result in Result. 2404 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 2405 2406 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2407 /// to a constant, or if it does but contains a label, return false. If it 2408 /// constant folds return true and set the folded value. 2409 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result); 2410 2411 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 2412 /// if statement) to the specified blocks. Based on the condition, this might 2413 /// try to simplify the codegen of the conditional based on the branch. 2414 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 2415 llvm::BasicBlock *FalseBlock); 2416 2417 /// \brief Emit a description of a type in a format suitable for passing to 2418 /// a runtime sanitizer handler. 2419 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 2420 2421 /// \brief Convert a value into a format suitable for passing to a runtime 2422 /// sanitizer handler. 2423 llvm::Value *EmitCheckValue(llvm::Value *V); 2424 2425 /// \brief Emit a description of a source location in a format suitable for 2426 /// passing to a runtime sanitizer handler. 2427 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 2428 2429 /// \brief Specify under what conditions this check can be recovered 2430 enum CheckRecoverableKind { 2431 /// Always terminate program execution if this check fails 2432 CRK_Unrecoverable, 2433 /// Check supports recovering, allows user to specify which 2434 CRK_Recoverable, 2435 /// Runtime conditionally aborts, always need to support recovery. 2436 CRK_AlwaysRecoverable 2437 }; 2438 2439 /// \brief Create a basic block that will call a handler function in a 2440 /// sanitizer runtime with the provided arguments, and create a conditional 2441 /// branch to it. 2442 void EmitCheck(llvm::Value *Checked, StringRef CheckName, 2443 ArrayRef<llvm::Constant *> StaticArgs, 2444 ArrayRef<llvm::Value *> DynamicArgs, 2445 CheckRecoverableKind Recoverable); 2446 2447 /// \brief Create a basic block that will call the trap intrinsic, and emit a 2448 /// conditional branch to it, for the -ftrapv checks. 2449 void EmitTrapCheck(llvm::Value *Checked); 2450 2451 /// EmitCallArg - Emit a single call argument. 2452 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 2453 2454 /// EmitDelegateCallArg - We are performing a delegate call; that 2455 /// is, the current function is delegating to another one. Produce 2456 /// a r-value suitable for passing the given parameter. 2457 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param); 2458 2459 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 2460 /// point operation, expressed as the maximum relative error in ulp. 2461 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 2462 2463private: 2464 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 2465 void EmitReturnOfRValue(RValue RV, QualType Ty); 2466 2467 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 2468 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 2469 /// 2470 /// \param AI - The first function argument of the expansion. 2471 /// \return The argument following the last expanded function 2472 /// argument. 2473 llvm::Function::arg_iterator 2474 ExpandTypeFromArgs(QualType Ty, LValue Dst, 2475 llvm::Function::arg_iterator AI); 2476 2477 /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg 2478 /// Ty, into individual arguments on the provided vector \arg Args. See 2479 /// ABIArgInfo::Expand. 2480 void ExpandTypeToArgs(QualType Ty, RValue Src, 2481 SmallVector<llvm::Value*, 16> &Args, 2482 llvm::FunctionType *IRFuncTy); 2483 2484 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 2485 const Expr *InputExpr, std::string &ConstraintStr); 2486 2487 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 2488 LValue InputValue, QualType InputType, 2489 std::string &ConstraintStr); 2490 2491 /// EmitCallArgs - Emit call arguments for a function. 2492 /// The CallArgTypeInfo parameter is used for iterating over the known 2493 /// argument types of the function being called. 2494 template<typename T> 2495 void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo, 2496 CallExpr::const_arg_iterator ArgBeg, 2497 CallExpr::const_arg_iterator ArgEnd) { 2498 CallExpr::const_arg_iterator Arg = ArgBeg; 2499 2500 // First, use the argument types that the type info knows about 2501 if (CallArgTypeInfo) { 2502 for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(), 2503 E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) { 2504 assert(Arg != ArgEnd && "Running over edge of argument list!"); 2505 QualType ArgType = *I; 2506#ifndef NDEBUG 2507 QualType ActualArgType = Arg->getType(); 2508 if (ArgType->isPointerType() && ActualArgType->isPointerType()) { 2509 QualType ActualBaseType = 2510 ActualArgType->getAs<PointerType>()->getPointeeType(); 2511 QualType ArgBaseType = 2512 ArgType->getAs<PointerType>()->getPointeeType(); 2513 if (ArgBaseType->isVariableArrayType()) { 2514 if (const VariableArrayType *VAT = 2515 getContext().getAsVariableArrayType(ActualBaseType)) { 2516 if (!VAT->getSizeExpr()) 2517 ActualArgType = ArgType; 2518 } 2519 } 2520 } 2521 assert(getContext().getCanonicalType(ArgType.getNonReferenceType()). 2522 getTypePtr() == 2523 getContext().getCanonicalType(ActualArgType).getTypePtr() && 2524 "type mismatch in call argument!"); 2525#endif 2526 EmitCallArg(Args, *Arg, ArgType); 2527 } 2528 2529 // Either we've emitted all the call args, or we have a call to a 2530 // variadic function. 2531 assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) && 2532 "Extra arguments in non-variadic function!"); 2533 2534 } 2535 2536 // If we still have any arguments, emit them using the type of the argument. 2537 for (; Arg != ArgEnd; ++Arg) 2538 EmitCallArg(Args, *Arg, Arg->getType()); 2539 } 2540 2541 const TargetCodeGenInfo &getTargetHooks() const { 2542 return CGM.getTargetCodeGenInfo(); 2543 } 2544 2545 void EmitDeclMetadata(); 2546 2547 CodeGenModule::ByrefHelpers * 2548 buildByrefHelpers(llvm::StructType &byrefType, 2549 const AutoVarEmission &emission); 2550 2551 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 2552 2553 /// GetPointeeAlignment - Given an expression with a pointer type, emit the 2554 /// value and compute our best estimate of the alignment of the pointee. 2555 std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr); 2556}; 2557 2558/// Helper class with most of the code for saving a value for a 2559/// conditional expression cleanup. 2560struct DominatingLLVMValue { 2561 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 2562 2563 /// Answer whether the given value needs extra work to be saved. 2564 static bool needsSaving(llvm::Value *value) { 2565 // If it's not an instruction, we don't need to save. 2566 if (!isa<llvm::Instruction>(value)) return false; 2567 2568 // If it's an instruction in the entry block, we don't need to save. 2569 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 2570 return (block != &block->getParent()->getEntryBlock()); 2571 } 2572 2573 /// Try to save the given value. 2574 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 2575 if (!needsSaving(value)) return saved_type(value, false); 2576 2577 // Otherwise we need an alloca. 2578 llvm::Value *alloca = 2579 CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save"); 2580 CGF.Builder.CreateStore(value, alloca); 2581 2582 return saved_type(alloca, true); 2583 } 2584 2585 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 2586 if (!value.getInt()) return value.getPointer(); 2587 return CGF.Builder.CreateLoad(value.getPointer()); 2588 } 2589}; 2590 2591/// A partial specialization of DominatingValue for llvm::Values that 2592/// might be llvm::Instructions. 2593template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 2594 typedef T *type; 2595 static type restore(CodeGenFunction &CGF, saved_type value) { 2596 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 2597 } 2598}; 2599 2600/// A specialization of DominatingValue for RValue. 2601template <> struct DominatingValue<RValue> { 2602 typedef RValue type; 2603 class saved_type { 2604 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 2605 AggregateAddress, ComplexAddress }; 2606 2607 llvm::Value *Value; 2608 Kind K; 2609 saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {} 2610 2611 public: 2612 static bool needsSaving(RValue value); 2613 static saved_type save(CodeGenFunction &CGF, RValue value); 2614 RValue restore(CodeGenFunction &CGF); 2615 2616 // implementations in CGExprCXX.cpp 2617 }; 2618 2619 static bool needsSaving(type value) { 2620 return saved_type::needsSaving(value); 2621 } 2622 static saved_type save(CodeGenFunction &CGF, type value) { 2623 return saved_type::save(CGF, value); 2624 } 2625 static type restore(CodeGenFunction &CGF, saved_type value) { 2626 return value.restore(CGF); 2627 } 2628}; 2629 2630} // end namespace CodeGen 2631} // end namespace clang 2632 2633#endif 2634