CodeGenFunction.h revision 86811609d9353e3aed198045d56e790eb3b6118c
1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the internal per-function state used for llvm translation.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15#define CLANG_CODEGEN_CODEGENFUNCTION_H
16
17#include "clang/AST/Type.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/Frontend/CodeGenOptions.h"
22#include "clang/Basic/ABI.h"
23#include "clang/Basic/TargetInfo.h"
24#include "llvm/ADT/ArrayRef.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/Support/ValueHandle.h"
28#include "llvm/Support/Debug.h"
29#include "CodeGenModule.h"
30#include "CGBuilder.h"
31#include "CGDebugInfo.h"
32#include "CGValue.h"
33
34namespace llvm {
35  class BasicBlock;
36  class LLVMContext;
37  class MDNode;
38  class Module;
39  class SwitchInst;
40  class Twine;
41  class Value;
42  class CallSite;
43}
44
45namespace clang {
46  class APValue;
47  class ASTContext;
48  class BlockDecl;
49  class CXXDestructorDecl;
50  class CXXForRangeStmt;
51  class CXXTryStmt;
52  class Decl;
53  class LabelDecl;
54  class EnumConstantDecl;
55  class FunctionDecl;
56  class FunctionProtoType;
57  class LabelStmt;
58  class ObjCContainerDecl;
59  class ObjCInterfaceDecl;
60  class ObjCIvarDecl;
61  class ObjCMethodDecl;
62  class ObjCImplementationDecl;
63  class ObjCPropertyImplDecl;
64  class TargetInfo;
65  class TargetCodeGenInfo;
66  class VarDecl;
67  class ObjCForCollectionStmt;
68  class ObjCAtTryStmt;
69  class ObjCAtThrowStmt;
70  class ObjCAtSynchronizedStmt;
71  class ObjCAutoreleasePoolStmt;
72
73namespace CodeGen {
74  class CodeGenTypes;
75  class CGFunctionInfo;
76  class CGRecordLayout;
77  class CGBlockInfo;
78  class CGCXXABI;
79  class BlockFlags;
80  class BlockFieldFlags;
81
82/// A branch fixup.  These are required when emitting a goto to a
83/// label which hasn't been emitted yet.  The goto is optimistically
84/// emitted as a branch to the basic block for the label, and (if it
85/// occurs in a scope with non-trivial cleanups) a fixup is added to
86/// the innermost cleanup.  When a (normal) cleanup is popped, any
87/// unresolved fixups in that scope are threaded through the cleanup.
88struct BranchFixup {
89  /// The block containing the terminator which needs to be modified
90  /// into a switch if this fixup is resolved into the current scope.
91  /// If null, LatestBranch points directly to the destination.
92  llvm::BasicBlock *OptimisticBranchBlock;
93
94  /// The ultimate destination of the branch.
95  ///
96  /// This can be set to null to indicate that this fixup was
97  /// successfully resolved.
98  llvm::BasicBlock *Destination;
99
100  /// The destination index value.
101  unsigned DestinationIndex;
102
103  /// The initial branch of the fixup.
104  llvm::BranchInst *InitialBranch;
105};
106
107template <class T> struct InvariantValue {
108  typedef T type;
109  typedef T saved_type;
110  static bool needsSaving(type value) { return false; }
111  static saved_type save(CodeGenFunction &CGF, type value) { return value; }
112  static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
113};
114
115/// A metaprogramming class for ensuring that a value will dominate an
116/// arbitrary position in a function.
117template <class T> struct DominatingValue : InvariantValue<T> {};
118
119template <class T, bool mightBeInstruction =
120            llvm::is_base_of<llvm::Value, T>::value &&
121            !llvm::is_base_of<llvm::Constant, T>::value &&
122            !llvm::is_base_of<llvm::BasicBlock, T>::value>
123struct DominatingPointer;
124template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
125// template <class T> struct DominatingPointer<T,true> at end of file
126
127template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
128
129enum CleanupKind {
130  EHCleanup = 0x1,
131  NormalCleanup = 0x2,
132  NormalAndEHCleanup = EHCleanup | NormalCleanup,
133
134  InactiveCleanup = 0x4,
135  InactiveEHCleanup = EHCleanup | InactiveCleanup,
136  InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
137  InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
138};
139
140/// A stack of scopes which respond to exceptions, including cleanups
141/// and catch blocks.
142class EHScopeStack {
143public:
144  /// A saved depth on the scope stack.  This is necessary because
145  /// pushing scopes onto the stack invalidates iterators.
146  class stable_iterator {
147    friend class EHScopeStack;
148
149    /// Offset from StartOfData to EndOfBuffer.
150    ptrdiff_t Size;
151
152    stable_iterator(ptrdiff_t Size) : Size(Size) {}
153
154  public:
155    static stable_iterator invalid() { return stable_iterator(-1); }
156    stable_iterator() : Size(-1) {}
157
158    bool isValid() const { return Size >= 0; }
159
160    /// Returns true if this scope encloses I.
161    /// Returns false if I is invalid.
162    /// This scope must be valid.
163    bool encloses(stable_iterator I) const { return Size <= I.Size; }
164
165    /// Returns true if this scope strictly encloses I: that is,
166    /// if it encloses I and is not I.
167    /// Returns false is I is invalid.
168    /// This scope must be valid.
169    bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
170
171    friend bool operator==(stable_iterator A, stable_iterator B) {
172      return A.Size == B.Size;
173    }
174    friend bool operator!=(stable_iterator A, stable_iterator B) {
175      return A.Size != B.Size;
176    }
177  };
178
179  /// Information for lazily generating a cleanup.  Subclasses must be
180  /// POD-like: cleanups will not be destructed, and they will be
181  /// allocated on the cleanup stack and freely copied and moved
182  /// around.
183  ///
184  /// Cleanup implementations should generally be declared in an
185  /// anonymous namespace.
186  class Cleanup {
187    // Anchor the construction vtable.
188    virtual void anchor();
189  public:
190    /// Generation flags.
191    class Flags {
192      enum {
193        F_IsForEH             = 0x1,
194        F_IsNormalCleanupKind = 0x2,
195        F_IsEHCleanupKind     = 0x4
196      };
197      unsigned flags;
198
199    public:
200      Flags() : flags(0) {}
201
202      /// isForEH - true if the current emission is for an EH cleanup.
203      bool isForEHCleanup() const { return flags & F_IsForEH; }
204      bool isForNormalCleanup() const { return !isForEHCleanup(); }
205      void setIsForEHCleanup() { flags |= F_IsForEH; }
206
207      bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; }
208      void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; }
209
210      /// isEHCleanupKind - true if the cleanup was pushed as an EH
211      /// cleanup.
212      bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; }
213      void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; }
214    };
215
216    // Provide a virtual destructor to suppress a very common warning
217    // that unfortunately cannot be suppressed without this.  Cleanups
218    // should not rely on this destructor ever being called.
219    virtual ~Cleanup() {}
220
221    /// Emit the cleanup.  For normal cleanups, this is run in the
222    /// same EH context as when the cleanup was pushed, i.e. the
223    /// immediately-enclosing context of the cleanup scope.  For
224    /// EH cleanups, this is run in a terminate context.
225    ///
226    // \param IsForEHCleanup true if this is for an EH cleanup, false
227    ///  if for a normal cleanup.
228    virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0;
229  };
230
231  /// ConditionalCleanupN stores the saved form of its N parameters,
232  /// then restores them and performs the cleanup.
233  template <class T, class A0>
234  class ConditionalCleanup1 : public Cleanup {
235    typedef typename DominatingValue<A0>::saved_type A0_saved;
236    A0_saved a0_saved;
237
238    void Emit(CodeGenFunction &CGF, Flags flags) {
239      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
240      T(a0).Emit(CGF, flags);
241    }
242
243  public:
244    ConditionalCleanup1(A0_saved a0)
245      : a0_saved(a0) {}
246  };
247
248  template <class T, class A0, class A1>
249  class ConditionalCleanup2 : public Cleanup {
250    typedef typename DominatingValue<A0>::saved_type A0_saved;
251    typedef typename DominatingValue<A1>::saved_type A1_saved;
252    A0_saved a0_saved;
253    A1_saved a1_saved;
254
255    void Emit(CodeGenFunction &CGF, Flags flags) {
256      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
257      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
258      T(a0, a1).Emit(CGF, flags);
259    }
260
261  public:
262    ConditionalCleanup2(A0_saved a0, A1_saved a1)
263      : a0_saved(a0), a1_saved(a1) {}
264  };
265
266  template <class T, class A0, class A1, class A2>
267  class ConditionalCleanup3 : public Cleanup {
268    typedef typename DominatingValue<A0>::saved_type A0_saved;
269    typedef typename DominatingValue<A1>::saved_type A1_saved;
270    typedef typename DominatingValue<A2>::saved_type A2_saved;
271    A0_saved a0_saved;
272    A1_saved a1_saved;
273    A2_saved a2_saved;
274
275    void Emit(CodeGenFunction &CGF, Flags flags) {
276      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
277      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
278      A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
279      T(a0, a1, a2).Emit(CGF, flags);
280    }
281
282  public:
283    ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2)
284      : a0_saved(a0), a1_saved(a1), a2_saved(a2) {}
285  };
286
287  template <class T, class A0, class A1, class A2, class A3>
288  class ConditionalCleanup4 : public Cleanup {
289    typedef typename DominatingValue<A0>::saved_type A0_saved;
290    typedef typename DominatingValue<A1>::saved_type A1_saved;
291    typedef typename DominatingValue<A2>::saved_type A2_saved;
292    typedef typename DominatingValue<A3>::saved_type A3_saved;
293    A0_saved a0_saved;
294    A1_saved a1_saved;
295    A2_saved a2_saved;
296    A3_saved a3_saved;
297
298    void Emit(CodeGenFunction &CGF, Flags flags) {
299      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
300      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
301      A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
302      A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved);
303      T(a0, a1, a2, a3).Emit(CGF, flags);
304    }
305
306  public:
307    ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3)
308      : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {}
309  };
310
311private:
312  // The implementation for this class is in CGException.h and
313  // CGException.cpp; the definition is here because it's used as a
314  // member of CodeGenFunction.
315
316  /// The start of the scope-stack buffer, i.e. the allocated pointer
317  /// for the buffer.  All of these pointers are either simultaneously
318  /// null or simultaneously valid.
319  char *StartOfBuffer;
320
321  /// The end of the buffer.
322  char *EndOfBuffer;
323
324  /// The first valid entry in the buffer.
325  char *StartOfData;
326
327  /// The innermost normal cleanup on the stack.
328  stable_iterator InnermostNormalCleanup;
329
330  /// The innermost EH scope on the stack.
331  stable_iterator InnermostEHScope;
332
333  /// The current set of branch fixups.  A branch fixup is a jump to
334  /// an as-yet unemitted label, i.e. a label for which we don't yet
335  /// know the EH stack depth.  Whenever we pop a cleanup, we have
336  /// to thread all the current branch fixups through it.
337  ///
338  /// Fixups are recorded as the Use of the respective branch or
339  /// switch statement.  The use points to the final destination.
340  /// When popping out of a cleanup, these uses are threaded through
341  /// the cleanup and adjusted to point to the new cleanup.
342  ///
343  /// Note that branches are allowed to jump into protected scopes
344  /// in certain situations;  e.g. the following code is legal:
345  ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
346  ///     goto foo;
347  ///     A a;
348  ///    foo:
349  ///     bar();
350  SmallVector<BranchFixup, 8> BranchFixups;
351
352  char *allocate(size_t Size);
353
354  void *pushCleanup(CleanupKind K, size_t DataSize);
355
356public:
357  EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
358                   InnermostNormalCleanup(stable_end()),
359                   InnermostEHScope(stable_end()) {}
360  ~EHScopeStack() { delete[] StartOfBuffer; }
361
362  // Variadic templates would make this not terrible.
363
364  /// Push a lazily-created cleanup on the stack.
365  template <class T>
366  void pushCleanup(CleanupKind Kind) {
367    void *Buffer = pushCleanup(Kind, sizeof(T));
368    Cleanup *Obj = new(Buffer) T();
369    (void) Obj;
370  }
371
372  /// Push a lazily-created cleanup on the stack.
373  template <class T, class A0>
374  void pushCleanup(CleanupKind Kind, A0 a0) {
375    void *Buffer = pushCleanup(Kind, sizeof(T));
376    Cleanup *Obj = new(Buffer) T(a0);
377    (void) Obj;
378  }
379
380  /// Push a lazily-created cleanup on the stack.
381  template <class T, class A0, class A1>
382  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
383    void *Buffer = pushCleanup(Kind, sizeof(T));
384    Cleanup *Obj = new(Buffer) T(a0, a1);
385    (void) Obj;
386  }
387
388  /// Push a lazily-created cleanup on the stack.
389  template <class T, class A0, class A1, class A2>
390  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
391    void *Buffer = pushCleanup(Kind, sizeof(T));
392    Cleanup *Obj = new(Buffer) T(a0, a1, a2);
393    (void) Obj;
394  }
395
396  /// Push a lazily-created cleanup on the stack.
397  template <class T, class A0, class A1, class A2, class A3>
398  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
399    void *Buffer = pushCleanup(Kind, sizeof(T));
400    Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
401    (void) Obj;
402  }
403
404  /// Push a lazily-created cleanup on the stack.
405  template <class T, class A0, class A1, class A2, class A3, class A4>
406  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
407    void *Buffer = pushCleanup(Kind, sizeof(T));
408    Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
409    (void) Obj;
410  }
411
412  // Feel free to add more variants of the following:
413
414  /// Push a cleanup with non-constant storage requirements on the
415  /// stack.  The cleanup type must provide an additional static method:
416  ///   static size_t getExtraSize(size_t);
417  /// The argument to this method will be the value N, which will also
418  /// be passed as the first argument to the constructor.
419  ///
420  /// The data stored in the extra storage must obey the same
421  /// restrictions as normal cleanup member data.
422  ///
423  /// The pointer returned from this method is valid until the cleanup
424  /// stack is modified.
425  template <class T, class A0, class A1, class A2>
426  T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
427    void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
428    return new (Buffer) T(N, a0, a1, a2);
429  }
430
431  /// Pops a cleanup scope off the stack.  This is private to CGCleanup.cpp.
432  void popCleanup();
433
434  /// Push a set of catch handlers on the stack.  The catch is
435  /// uninitialized and will need to have the given number of handlers
436  /// set on it.
437  class EHCatchScope *pushCatch(unsigned NumHandlers);
438
439  /// Pops a catch scope off the stack.  This is private to CGException.cpp.
440  void popCatch();
441
442  /// Push an exceptions filter on the stack.
443  class EHFilterScope *pushFilter(unsigned NumFilters);
444
445  /// Pops an exceptions filter off the stack.
446  void popFilter();
447
448  /// Push a terminate handler on the stack.
449  void pushTerminate();
450
451  /// Pops a terminate handler off the stack.
452  void popTerminate();
453
454  /// Determines whether the exception-scopes stack is empty.
455  bool empty() const { return StartOfData == EndOfBuffer; }
456
457  bool requiresLandingPad() const {
458    return InnermostEHScope != stable_end();
459  }
460
461  /// Determines whether there are any normal cleanups on the stack.
462  bool hasNormalCleanups() const {
463    return InnermostNormalCleanup != stable_end();
464  }
465
466  /// Returns the innermost normal cleanup on the stack, or
467  /// stable_end() if there are no normal cleanups.
468  stable_iterator getInnermostNormalCleanup() const {
469    return InnermostNormalCleanup;
470  }
471  stable_iterator getInnermostActiveNormalCleanup() const;
472
473  stable_iterator getInnermostEHScope() const {
474    return InnermostEHScope;
475  }
476
477  stable_iterator getInnermostActiveEHScope() const;
478
479  /// An unstable reference to a scope-stack depth.  Invalidated by
480  /// pushes but not pops.
481  class iterator;
482
483  /// Returns an iterator pointing to the innermost EH scope.
484  iterator begin() const;
485
486  /// Returns an iterator pointing to the outermost EH scope.
487  iterator end() const;
488
489  /// Create a stable reference to the top of the EH stack.  The
490  /// returned reference is valid until that scope is popped off the
491  /// stack.
492  stable_iterator stable_begin() const {
493    return stable_iterator(EndOfBuffer - StartOfData);
494  }
495
496  /// Create a stable reference to the bottom of the EH stack.
497  static stable_iterator stable_end() {
498    return stable_iterator(0);
499  }
500
501  /// Translates an iterator into a stable_iterator.
502  stable_iterator stabilize(iterator it) const;
503
504  /// Turn a stable reference to a scope depth into a unstable pointer
505  /// to the EH stack.
506  iterator find(stable_iterator save) const;
507
508  /// Removes the cleanup pointed to by the given stable_iterator.
509  void removeCleanup(stable_iterator save);
510
511  /// Add a branch fixup to the current cleanup scope.
512  BranchFixup &addBranchFixup() {
513    assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
514    BranchFixups.push_back(BranchFixup());
515    return BranchFixups.back();
516  }
517
518  unsigned getNumBranchFixups() const { return BranchFixups.size(); }
519  BranchFixup &getBranchFixup(unsigned I) {
520    assert(I < getNumBranchFixups());
521    return BranchFixups[I];
522  }
523
524  /// Pops lazily-removed fixups from the end of the list.  This
525  /// should only be called by procedures which have just popped a
526  /// cleanup or resolved one or more fixups.
527  void popNullFixups();
528
529  /// Clears the branch-fixups list.  This should only be called by
530  /// ResolveAllBranchFixups.
531  void clearFixups() { BranchFixups.clear(); }
532};
533
534/// CodeGenFunction - This class organizes the per-function state that is used
535/// while generating LLVM code.
536class CodeGenFunction : public CodeGenTypeCache {
537  CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT
538  void operator=(const CodeGenFunction&);  // DO NOT IMPLEMENT
539
540  friend class CGCXXABI;
541public:
542  /// A jump destination is an abstract label, branching to which may
543  /// require a jump out through normal cleanups.
544  struct JumpDest {
545    JumpDest() : Block(0), ScopeDepth(), Index(0) {}
546    JumpDest(llvm::BasicBlock *Block,
547             EHScopeStack::stable_iterator Depth,
548             unsigned Index)
549      : Block(Block), ScopeDepth(Depth), Index(Index) {}
550
551    bool isValid() const { return Block != 0; }
552    llvm::BasicBlock *getBlock() const { return Block; }
553    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
554    unsigned getDestIndex() const { return Index; }
555
556  private:
557    llvm::BasicBlock *Block;
558    EHScopeStack::stable_iterator ScopeDepth;
559    unsigned Index;
560  };
561
562  CodeGenModule &CGM;  // Per-module state.
563  const TargetInfo &Target;
564
565  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
566  CGBuilderTy Builder;
567
568  /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
569  /// This excludes BlockDecls.
570  const Decl *CurFuncDecl;
571  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
572  const Decl *CurCodeDecl;
573  const CGFunctionInfo *CurFnInfo;
574  QualType FnRetTy;
575  llvm::Function *CurFn;
576
577  /// CurGD - The GlobalDecl for the current function being compiled.
578  GlobalDecl CurGD;
579
580  /// PrologueCleanupDepth - The cleanup depth enclosing all the
581  /// cleanups associated with the parameters.
582  EHScopeStack::stable_iterator PrologueCleanupDepth;
583
584  /// ReturnBlock - Unified return block.
585  JumpDest ReturnBlock;
586
587  /// ReturnValue - The temporary alloca to hold the return value. This is null
588  /// iff the function has no return value.
589  llvm::Value *ReturnValue;
590
591  /// AllocaInsertPoint - This is an instruction in the entry block before which
592  /// we prefer to insert allocas.
593  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
594
595  bool CatchUndefined;
596
597  /// In ARC, whether we should autorelease the return value.
598  bool AutoreleaseResult;
599
600  const CodeGen::CGBlockInfo *BlockInfo;
601  llvm::Value *BlockPointer;
602
603  /// \brief A mapping from NRVO variables to the flags used to indicate
604  /// when the NRVO has been applied to this variable.
605  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
606
607  EHScopeStack EHStack;
608
609  /// i32s containing the indexes of the cleanup destinations.
610  llvm::AllocaInst *NormalCleanupDest;
611
612  unsigned NextCleanupDestIndex;
613
614  /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
615  CGBlockInfo *FirstBlockInfo;
616
617  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
618  llvm::BasicBlock *EHResumeBlock;
619
620  /// The exception slot.  All landing pads write the current exception pointer
621  /// into this alloca.
622  llvm::Value *ExceptionSlot;
623
624  /// The selector slot.  Under the MandatoryCleanup model, all landing pads
625  /// write the current selector value into this alloca.
626  llvm::AllocaInst *EHSelectorSlot;
627
628  /// Emits a landing pad for the current EH stack.
629  llvm::BasicBlock *EmitLandingPad();
630
631  llvm::BasicBlock *getInvokeDestImpl();
632
633  template <class T>
634  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
635    return DominatingValue<T>::save(*this, value);
636  }
637
638public:
639  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
640  /// rethrows.
641  SmallVector<llvm::Value*, 8> ObjCEHValueStack;
642
643  /// A class controlling the emission of a finally block.
644  class FinallyInfo {
645    /// Where the catchall's edge through the cleanup should go.
646    JumpDest RethrowDest;
647
648    /// A function to call to enter the catch.
649    llvm::Constant *BeginCatchFn;
650
651    /// An i1 variable indicating whether or not the @finally is
652    /// running for an exception.
653    llvm::AllocaInst *ForEHVar;
654
655    /// An i8* variable into which the exception pointer to rethrow
656    /// has been saved.
657    llvm::AllocaInst *SavedExnVar;
658
659  public:
660    void enter(CodeGenFunction &CGF, const Stmt *Finally,
661               llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
662               llvm::Constant *rethrowFn);
663    void exit(CodeGenFunction &CGF);
664  };
665
666  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
667  /// current full-expression.  Safe against the possibility that
668  /// we're currently inside a conditionally-evaluated expression.
669  template <class T, class A0>
670  void pushFullExprCleanup(CleanupKind kind, A0 a0) {
671    // If we're not in a conditional branch, or if none of the
672    // arguments requires saving, then use the unconditional cleanup.
673    if (!isInConditionalBranch())
674      return EHStack.pushCleanup<T>(kind, a0);
675
676    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
677
678    typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
679    EHStack.pushCleanup<CleanupType>(kind, a0_saved);
680    initFullExprCleanup();
681  }
682
683  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
684  /// current full-expression.  Safe against the possibility that
685  /// we're currently inside a conditionally-evaluated expression.
686  template <class T, class A0, class A1>
687  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
688    // If we're not in a conditional branch, or if none of the
689    // arguments requires saving, then use the unconditional cleanup.
690    if (!isInConditionalBranch())
691      return EHStack.pushCleanup<T>(kind, a0, a1);
692
693    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
694    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
695
696    typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
697    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
698    initFullExprCleanup();
699  }
700
701  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
702  /// current full-expression.  Safe against the possibility that
703  /// we're currently inside a conditionally-evaluated expression.
704  template <class T, class A0, class A1, class A2>
705  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
706    // If we're not in a conditional branch, or if none of the
707    // arguments requires saving, then use the unconditional cleanup.
708    if (!isInConditionalBranch()) {
709      return EHStack.pushCleanup<T>(kind, a0, a1, a2);
710    }
711
712    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
713    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
714    typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
715
716    typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
717    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
718    initFullExprCleanup();
719  }
720
721  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
722  /// current full-expression.  Safe against the possibility that
723  /// we're currently inside a conditionally-evaluated expression.
724  template <class T, class A0, class A1, class A2, class A3>
725  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
726    // If we're not in a conditional branch, or if none of the
727    // arguments requires saving, then use the unconditional cleanup.
728    if (!isInConditionalBranch()) {
729      return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
730    }
731
732    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
733    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
734    typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
735    typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
736
737    typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
738    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
739                                     a2_saved, a3_saved);
740    initFullExprCleanup();
741  }
742
743  /// Set up the last cleaup that was pushed as a conditional
744  /// full-expression cleanup.
745  void initFullExprCleanup();
746
747  /// PushDestructorCleanup - Push a cleanup to call the
748  /// complete-object destructor of an object of the given type at the
749  /// given address.  Does nothing if T is not a C++ class type with a
750  /// non-trivial destructor.
751  void PushDestructorCleanup(QualType T, llvm::Value *Addr);
752
753  /// PushDestructorCleanup - Push a cleanup to call the
754  /// complete-object variant of the given destructor on the object at
755  /// the given address.
756  void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
757                             llvm::Value *Addr);
758
759  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
760  /// process all branch fixups.
761  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
762
763  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
764  /// The block cannot be reactivated.  Pops it if it's the top of the
765  /// stack.
766  ///
767  /// \param DominatingIP - An instruction which is known to
768  ///   dominate the current IP (if set) and which lies along
769  ///   all paths of execution between the current IP and the
770  ///   the point at which the cleanup comes into scope.
771  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
772                              llvm::Instruction *DominatingIP);
773
774  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
775  /// Cannot be used to resurrect a deactivated cleanup.
776  ///
777  /// \param DominatingIP - An instruction which is known to
778  ///   dominate the current IP (if set) and which lies along
779  ///   all paths of execution between the current IP and the
780  ///   the point at which the cleanup comes into scope.
781  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
782                            llvm::Instruction *DominatingIP);
783
784  /// \brief Enters a new scope for capturing cleanups, all of which
785  /// will be executed once the scope is exited.
786  class RunCleanupsScope {
787    EHScopeStack::stable_iterator CleanupStackDepth;
788    bool OldDidCallStackSave;
789    bool PerformCleanup;
790
791    RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT
792    RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT
793
794  protected:
795    CodeGenFunction& CGF;
796
797  public:
798    /// \brief Enter a new cleanup scope.
799    explicit RunCleanupsScope(CodeGenFunction &CGF)
800      : PerformCleanup(true), CGF(CGF)
801    {
802      CleanupStackDepth = CGF.EHStack.stable_begin();
803      OldDidCallStackSave = CGF.DidCallStackSave;
804      CGF.DidCallStackSave = false;
805    }
806
807    /// \brief Exit this cleanup scope, emitting any accumulated
808    /// cleanups.
809    ~RunCleanupsScope() {
810      if (PerformCleanup) {
811        CGF.DidCallStackSave = OldDidCallStackSave;
812        CGF.PopCleanupBlocks(CleanupStackDepth);
813      }
814    }
815
816    /// \brief Determine whether this scope requires any cleanups.
817    bool requiresCleanups() const {
818      return CGF.EHStack.stable_begin() != CleanupStackDepth;
819    }
820
821    /// \brief Force the emission of cleanups now, instead of waiting
822    /// until this object is destroyed.
823    void ForceCleanup() {
824      assert(PerformCleanup && "Already forced cleanup");
825      CGF.DidCallStackSave = OldDidCallStackSave;
826      CGF.PopCleanupBlocks(CleanupStackDepth);
827      PerformCleanup = false;
828    }
829  };
830
831  class LexicalScope: protected RunCleanupsScope {
832    SourceRange Range;
833    bool PopDebugStack;
834
835    LexicalScope(const LexicalScope &); // DO NOT IMPLEMENT THESE
836    LexicalScope &operator=(const LexicalScope &);
837
838  public:
839    /// \brief Enter a new cleanup scope.
840    explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
841      : RunCleanupsScope(CGF), Range(Range), PopDebugStack(true) {
842      if (CGDebugInfo *DI = CGF.getDebugInfo())
843        DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
844    }
845
846    /// \brief Exit this cleanup scope, emitting any accumulated
847    /// cleanups.
848    ~LexicalScope() {
849      if (PopDebugStack) {
850        CGDebugInfo *DI = CGF.getDebugInfo();
851        if (DI) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
852      }
853    }
854
855    /// \brief Force the emission of cleanups now, instead of waiting
856    /// until this object is destroyed.
857    void ForceCleanup() {
858      RunCleanupsScope::ForceCleanup();
859      if (CGDebugInfo *DI = CGF.getDebugInfo()) {
860        DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
861        PopDebugStack = false;
862      }
863    }
864  };
865
866
867  /// PopCleanupBlocks - Takes the old cleanup stack size and emits
868  /// the cleanup blocks that have been added.
869  void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
870
871  void ResolveBranchFixups(llvm::BasicBlock *Target);
872
873  /// The given basic block lies in the current EH scope, but may be a
874  /// target of a potentially scope-crossing jump; get a stable handle
875  /// to which we can perform this jump later.
876  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
877    return JumpDest(Target,
878                    EHStack.getInnermostNormalCleanup(),
879                    NextCleanupDestIndex++);
880  }
881
882  /// The given basic block lies in the current EH scope, but may be a
883  /// target of a potentially scope-crossing jump; get a stable handle
884  /// to which we can perform this jump later.
885  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
886    return getJumpDestInCurrentScope(createBasicBlock(Name));
887  }
888
889  /// EmitBranchThroughCleanup - Emit a branch from the current insert
890  /// block through the normal cleanup handling code (if any) and then
891  /// on to \arg Dest.
892  void EmitBranchThroughCleanup(JumpDest Dest);
893
894  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
895  /// specified destination obviously has no cleanups to run.  'false' is always
896  /// a conservatively correct answer for this method.
897  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
898
899  /// popCatchScope - Pops the catch scope at the top of the EHScope
900  /// stack, emitting any required code (other than the catch handlers
901  /// themselves).
902  void popCatchScope();
903
904  llvm::BasicBlock *getEHResumeBlock();
905  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
906
907  /// An object to manage conditionally-evaluated expressions.
908  class ConditionalEvaluation {
909    llvm::BasicBlock *StartBB;
910
911  public:
912    ConditionalEvaluation(CodeGenFunction &CGF)
913      : StartBB(CGF.Builder.GetInsertBlock()) {}
914
915    void begin(CodeGenFunction &CGF) {
916      assert(CGF.OutermostConditional != this);
917      if (!CGF.OutermostConditional)
918        CGF.OutermostConditional = this;
919    }
920
921    void end(CodeGenFunction &CGF) {
922      assert(CGF.OutermostConditional != 0);
923      if (CGF.OutermostConditional == this)
924        CGF.OutermostConditional = 0;
925    }
926
927    /// Returns a block which will be executed prior to each
928    /// evaluation of the conditional code.
929    llvm::BasicBlock *getStartingBlock() const {
930      return StartBB;
931    }
932  };
933
934  /// isInConditionalBranch - Return true if we're currently emitting
935  /// one branch or the other of a conditional expression.
936  bool isInConditionalBranch() const { return OutermostConditional != 0; }
937
938  void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
939    assert(isInConditionalBranch());
940    llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
941    new llvm::StoreInst(value, addr, &block->back());
942  }
943
944  /// An RAII object to record that we're evaluating a statement
945  /// expression.
946  class StmtExprEvaluation {
947    CodeGenFunction &CGF;
948
949    /// We have to save the outermost conditional: cleanups in a
950    /// statement expression aren't conditional just because the
951    /// StmtExpr is.
952    ConditionalEvaluation *SavedOutermostConditional;
953
954  public:
955    StmtExprEvaluation(CodeGenFunction &CGF)
956      : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
957      CGF.OutermostConditional = 0;
958    }
959
960    ~StmtExprEvaluation() {
961      CGF.OutermostConditional = SavedOutermostConditional;
962      CGF.EnsureInsertPoint();
963    }
964  };
965
966  /// An object which temporarily prevents a value from being
967  /// destroyed by aggressive peephole optimizations that assume that
968  /// all uses of a value have been realized in the IR.
969  class PeepholeProtection {
970    llvm::Instruction *Inst;
971    friend class CodeGenFunction;
972
973  public:
974    PeepholeProtection() : Inst(0) {}
975  };
976
977  /// A non-RAII class containing all the information about a bound
978  /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
979  /// this which makes individual mappings very simple; using this
980  /// class directly is useful when you have a variable number of
981  /// opaque values or don't want the RAII functionality for some
982  /// reason.
983  class OpaqueValueMappingData {
984    const OpaqueValueExpr *OpaqueValue;
985    bool BoundLValue;
986    CodeGenFunction::PeepholeProtection Protection;
987
988    OpaqueValueMappingData(const OpaqueValueExpr *ov,
989                           bool boundLValue)
990      : OpaqueValue(ov), BoundLValue(boundLValue) {}
991  public:
992    OpaqueValueMappingData() : OpaqueValue(0) {}
993
994    static bool shouldBindAsLValue(const Expr *expr) {
995      // gl-values should be bound as l-values for obvious reasons.
996      // Records should be bound as l-values because IR generation
997      // always keeps them in memory.  Expressions of function type
998      // act exactly like l-values but are formally required to be
999      // r-values in C.
1000      return expr->isGLValue() ||
1001             expr->getType()->isRecordType() ||
1002             expr->getType()->isFunctionType();
1003    }
1004
1005    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1006                                       const OpaqueValueExpr *ov,
1007                                       const Expr *e) {
1008      if (shouldBindAsLValue(ov))
1009        return bind(CGF, ov, CGF.EmitLValue(e));
1010      return bind(CGF, ov, CGF.EmitAnyExpr(e));
1011    }
1012
1013    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1014                                       const OpaqueValueExpr *ov,
1015                                       const LValue &lv) {
1016      assert(shouldBindAsLValue(ov));
1017      CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1018      return OpaqueValueMappingData(ov, true);
1019    }
1020
1021    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1022                                       const OpaqueValueExpr *ov,
1023                                       const RValue &rv) {
1024      assert(!shouldBindAsLValue(ov));
1025      CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1026
1027      OpaqueValueMappingData data(ov, false);
1028
1029      // Work around an extremely aggressive peephole optimization in
1030      // EmitScalarConversion which assumes that all other uses of a
1031      // value are extant.
1032      data.Protection = CGF.protectFromPeepholes(rv);
1033
1034      return data;
1035    }
1036
1037    bool isValid() const { return OpaqueValue != 0; }
1038    void clear() { OpaqueValue = 0; }
1039
1040    void unbind(CodeGenFunction &CGF) {
1041      assert(OpaqueValue && "no data to unbind!");
1042
1043      if (BoundLValue) {
1044        CGF.OpaqueLValues.erase(OpaqueValue);
1045      } else {
1046        CGF.OpaqueRValues.erase(OpaqueValue);
1047        CGF.unprotectFromPeepholes(Protection);
1048      }
1049    }
1050  };
1051
1052  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1053  class OpaqueValueMapping {
1054    CodeGenFunction &CGF;
1055    OpaqueValueMappingData Data;
1056
1057  public:
1058    static bool shouldBindAsLValue(const Expr *expr) {
1059      return OpaqueValueMappingData::shouldBindAsLValue(expr);
1060    }
1061
1062    /// Build the opaque value mapping for the given conditional
1063    /// operator if it's the GNU ?: extension.  This is a common
1064    /// enough pattern that the convenience operator is really
1065    /// helpful.
1066    ///
1067    OpaqueValueMapping(CodeGenFunction &CGF,
1068                       const AbstractConditionalOperator *op) : CGF(CGF) {
1069      if (isa<ConditionalOperator>(op))
1070        // Leave Data empty.
1071        return;
1072
1073      const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1074      Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1075                                          e->getCommon());
1076    }
1077
1078    OpaqueValueMapping(CodeGenFunction &CGF,
1079                       const OpaqueValueExpr *opaqueValue,
1080                       LValue lvalue)
1081      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1082    }
1083
1084    OpaqueValueMapping(CodeGenFunction &CGF,
1085                       const OpaqueValueExpr *opaqueValue,
1086                       RValue rvalue)
1087      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1088    }
1089
1090    void pop() {
1091      Data.unbind(CGF);
1092      Data.clear();
1093    }
1094
1095    ~OpaqueValueMapping() {
1096      if (Data.isValid()) Data.unbind(CGF);
1097    }
1098  };
1099
1100  /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
1101  /// number that holds the value.
1102  unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
1103
1104  /// BuildBlockByrefAddress - Computes address location of the
1105  /// variable which is declared as __block.
1106  llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
1107                                      const VarDecl *V);
1108private:
1109  CGDebugInfo *DebugInfo;
1110  bool DisableDebugInfo;
1111
1112  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1113  /// calling llvm.stacksave for multiple VLAs in the same scope.
1114  bool DidCallStackSave;
1115
1116  /// IndirectBranch - The first time an indirect goto is seen we create a block
1117  /// with an indirect branch.  Every time we see the address of a label taken,
1118  /// we add the label to the indirect goto.  Every subsequent indirect goto is
1119  /// codegen'd as a jump to the IndirectBranch's basic block.
1120  llvm::IndirectBrInst *IndirectBranch;
1121
1122  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1123  /// decls.
1124  typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
1125  DeclMapTy LocalDeclMap;
1126
1127  /// LabelMap - This keeps track of the LLVM basic block for each C label.
1128  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1129
1130  // BreakContinueStack - This keeps track of where break and continue
1131  // statements should jump to.
1132  struct BreakContinue {
1133    BreakContinue(JumpDest Break, JumpDest Continue)
1134      : BreakBlock(Break), ContinueBlock(Continue) {}
1135
1136    JumpDest BreakBlock;
1137    JumpDest ContinueBlock;
1138  };
1139  SmallVector<BreakContinue, 8> BreakContinueStack;
1140
1141  /// SwitchInsn - This is nearest current switch instruction. It is null if if
1142  /// current context is not in a switch.
1143  llvm::SwitchInst *SwitchInsn;
1144
1145  /// CaseRangeBlock - This block holds if condition check for last case
1146  /// statement range in current switch instruction.
1147  llvm::BasicBlock *CaseRangeBlock;
1148
1149  /// OpaqueLValues - Keeps track of the current set of opaque value
1150  /// expressions.
1151  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1152  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1153
1154  // VLASizeMap - This keeps track of the associated size for each VLA type.
1155  // We track this by the size expression rather than the type itself because
1156  // in certain situations, like a const qualifier applied to an VLA typedef,
1157  // multiple VLA types can share the same size expression.
1158  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1159  // enter/leave scopes.
1160  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1161
1162  /// A block containing a single 'unreachable' instruction.  Created
1163  /// lazily by getUnreachableBlock().
1164  llvm::BasicBlock *UnreachableBlock;
1165
1166  /// CXXThisDecl - When generating code for a C++ member function,
1167  /// this will hold the implicit 'this' declaration.
1168  ImplicitParamDecl *CXXThisDecl;
1169  llvm::Value *CXXThisValue;
1170
1171  /// CXXVTTDecl - When generating code for a base object constructor or
1172  /// base object destructor with virtual bases, this will hold the implicit
1173  /// VTT parameter.
1174  ImplicitParamDecl *CXXVTTDecl;
1175  llvm::Value *CXXVTTValue;
1176
1177  /// OutermostConditional - Points to the outermost active
1178  /// conditional control.  This is used so that we know if a
1179  /// temporary should be destroyed conditionally.
1180  ConditionalEvaluation *OutermostConditional;
1181
1182
1183  /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1184  /// type as well as the field number that contains the actual data.
1185  llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
1186                                              unsigned> > ByRefValueInfo;
1187
1188  llvm::BasicBlock *TerminateLandingPad;
1189  llvm::BasicBlock *TerminateHandler;
1190  llvm::BasicBlock *TrapBB;
1191
1192public:
1193  CodeGenFunction(CodeGenModule &cgm);
1194  ~CodeGenFunction();
1195
1196  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1197  ASTContext &getContext() const { return CGM.getContext(); }
1198  CGDebugInfo *getDebugInfo() {
1199    if (DisableDebugInfo)
1200      return NULL;
1201    return DebugInfo;
1202  }
1203  void disableDebugInfo() { DisableDebugInfo = true; }
1204  void enableDebugInfo() { DisableDebugInfo = false; }
1205
1206  bool shouldUseFusedARCCalls() {
1207    return CGM.getCodeGenOpts().OptimizationLevel == 0;
1208  }
1209
1210  const LangOptions &getLangOptions() const { return CGM.getLangOptions(); }
1211
1212  /// Returns a pointer to the function's exception object and selector slot,
1213  /// which is assigned in every landing pad.
1214  llvm::Value *getExceptionSlot();
1215  llvm::Value *getEHSelectorSlot();
1216
1217  /// Returns the contents of the function's exception object and selector
1218  /// slots.
1219  llvm::Value *getExceptionFromSlot();
1220  llvm::Value *getSelectorFromSlot();
1221
1222  llvm::Value *getNormalCleanupDestSlot();
1223
1224  llvm::BasicBlock *getUnreachableBlock() {
1225    if (!UnreachableBlock) {
1226      UnreachableBlock = createBasicBlock("unreachable");
1227      new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1228    }
1229    return UnreachableBlock;
1230  }
1231
1232  llvm::BasicBlock *getInvokeDest() {
1233    if (!EHStack.requiresLandingPad()) return 0;
1234    return getInvokeDestImpl();
1235  }
1236
1237  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1238
1239  //===--------------------------------------------------------------------===//
1240  //                                  Cleanups
1241  //===--------------------------------------------------------------------===//
1242
1243  typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1244
1245  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1246                                        llvm::Value *arrayEndPointer,
1247                                        QualType elementType,
1248                                        Destroyer &destroyer);
1249  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1250                                      llvm::Value *arrayEnd,
1251                                      QualType elementType,
1252                                      Destroyer &destroyer);
1253
1254  void pushDestroy(QualType::DestructionKind dtorKind,
1255                   llvm::Value *addr, QualType type);
1256  void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1257                   Destroyer &destroyer, bool useEHCleanupForArray);
1258  void emitDestroy(llvm::Value *addr, QualType type, Destroyer &destroyer,
1259                   bool useEHCleanupForArray);
1260  llvm::Function *generateDestroyHelper(llvm::Constant *addr,
1261                                        QualType type,
1262                                        Destroyer &destroyer,
1263                                        bool useEHCleanupForArray);
1264  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1265                        QualType type, Destroyer &destroyer,
1266                        bool checkZeroLength, bool useEHCleanup);
1267
1268  Destroyer &getDestroyer(QualType::DestructionKind destructionKind);
1269
1270  /// Determines whether an EH cleanup is required to destroy a type
1271  /// with the given destruction kind.
1272  bool needsEHCleanup(QualType::DestructionKind kind) {
1273    switch (kind) {
1274    case QualType::DK_none:
1275      return false;
1276    case QualType::DK_cxx_destructor:
1277    case QualType::DK_objc_weak_lifetime:
1278      return getLangOptions().Exceptions;
1279    case QualType::DK_objc_strong_lifetime:
1280      return getLangOptions().Exceptions &&
1281             CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1282    }
1283    llvm_unreachable("bad destruction kind");
1284  }
1285
1286  CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1287    return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1288  }
1289
1290  //===--------------------------------------------------------------------===//
1291  //                                  Objective-C
1292  //===--------------------------------------------------------------------===//
1293
1294  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1295
1296  void StartObjCMethod(const ObjCMethodDecl *MD,
1297                       const ObjCContainerDecl *CD,
1298                       SourceLocation StartLoc);
1299
1300  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1301  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1302                          const ObjCPropertyImplDecl *PID);
1303  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1304                              const ObjCPropertyImplDecl *propImpl);
1305
1306  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1307                                  ObjCMethodDecl *MD, bool ctor);
1308
1309  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1310  /// for the given property.
1311  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1312                          const ObjCPropertyImplDecl *PID);
1313  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1314                              const ObjCPropertyImplDecl *propImpl);
1315  bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1316  bool IvarTypeWithAggrGCObjects(QualType Ty);
1317
1318  //===--------------------------------------------------------------------===//
1319  //                                  Block Bits
1320  //===--------------------------------------------------------------------===//
1321
1322  llvm::Value *EmitBlockLiteral(const BlockExpr *);
1323  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1324  static void destroyBlockInfos(CGBlockInfo *info);
1325  llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1326                                           const CGBlockInfo &Info,
1327                                           llvm::StructType *,
1328                                           llvm::Constant *BlockVarLayout);
1329
1330  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1331                                        const CGBlockInfo &Info,
1332                                        const Decl *OuterFuncDecl,
1333                                        const DeclMapTy &ldm);
1334
1335  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1336  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1337
1338  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1339
1340  class AutoVarEmission;
1341
1342  void emitByrefStructureInit(const AutoVarEmission &emission);
1343  void enterByrefCleanup(const AutoVarEmission &emission);
1344
1345  llvm::Value *LoadBlockStruct() {
1346    assert(BlockPointer && "no block pointer set!");
1347    return BlockPointer;
1348  }
1349
1350  void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1351  void AllocateBlockDecl(const BlockDeclRefExpr *E);
1352  llvm::Value *GetAddrOfBlockDecl(const BlockDeclRefExpr *E) {
1353    return GetAddrOfBlockDecl(E->getDecl(), E->isByRef());
1354  }
1355  llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1356  llvm::Type *BuildByRefType(const VarDecl *var);
1357
1358  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1359                    const CGFunctionInfo &FnInfo);
1360  void StartFunction(GlobalDecl GD, QualType RetTy,
1361                     llvm::Function *Fn,
1362                     const CGFunctionInfo &FnInfo,
1363                     const FunctionArgList &Args,
1364                     SourceLocation StartLoc);
1365
1366  void EmitConstructorBody(FunctionArgList &Args);
1367  void EmitDestructorBody(FunctionArgList &Args);
1368  void EmitFunctionBody(FunctionArgList &Args);
1369
1370  /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1371  /// emission when possible.
1372  void EmitReturnBlock();
1373
1374  /// FinishFunction - Complete IR generation of the current function. It is
1375  /// legal to call this function even if there is no current insertion point.
1376  void FinishFunction(SourceLocation EndLoc=SourceLocation());
1377
1378  /// GenerateThunk - Generate a thunk for the given method.
1379  void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1380                     GlobalDecl GD, const ThunkInfo &Thunk);
1381
1382  void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1383                            GlobalDecl GD, const ThunkInfo &Thunk);
1384
1385  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1386                        FunctionArgList &Args);
1387
1388  /// InitializeVTablePointer - Initialize the vtable pointer of the given
1389  /// subobject.
1390  ///
1391  void InitializeVTablePointer(BaseSubobject Base,
1392                               const CXXRecordDecl *NearestVBase,
1393                               CharUnits OffsetFromNearestVBase,
1394                               llvm::Constant *VTable,
1395                               const CXXRecordDecl *VTableClass);
1396
1397  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1398  void InitializeVTablePointers(BaseSubobject Base,
1399                                const CXXRecordDecl *NearestVBase,
1400                                CharUnits OffsetFromNearestVBase,
1401                                bool BaseIsNonVirtualPrimaryBase,
1402                                llvm::Constant *VTable,
1403                                const CXXRecordDecl *VTableClass,
1404                                VisitedVirtualBasesSetTy& VBases);
1405
1406  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1407
1408  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1409  /// to by This.
1410  llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1411
1412  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1413  /// given phase of destruction for a destructor.  The end result
1414  /// should call destructors on members and base classes in reverse
1415  /// order of their construction.
1416  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1417
1418  /// ShouldInstrumentFunction - Return true if the current function should be
1419  /// instrumented with __cyg_profile_func_* calls
1420  bool ShouldInstrumentFunction();
1421
1422  /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1423  /// instrumentation function with the current function and the call site, if
1424  /// function instrumentation is enabled.
1425  void EmitFunctionInstrumentation(const char *Fn);
1426
1427  /// EmitMCountInstrumentation - Emit call to .mcount.
1428  void EmitMCountInstrumentation();
1429
1430  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1431  /// arguments for the given function. This is also responsible for naming the
1432  /// LLVM function arguments.
1433  void EmitFunctionProlog(const CGFunctionInfo &FI,
1434                          llvm::Function *Fn,
1435                          const FunctionArgList &Args);
1436
1437  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1438  /// given temporary.
1439  void EmitFunctionEpilog(const CGFunctionInfo &FI);
1440
1441  /// EmitStartEHSpec - Emit the start of the exception spec.
1442  void EmitStartEHSpec(const Decl *D);
1443
1444  /// EmitEndEHSpec - Emit the end of the exception spec.
1445  void EmitEndEHSpec(const Decl *D);
1446
1447  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1448  llvm::BasicBlock *getTerminateLandingPad();
1449
1450  /// getTerminateHandler - Return a handler (not a landing pad, just
1451  /// a catch handler) that just calls terminate.  This is used when
1452  /// a terminate scope encloses a try.
1453  llvm::BasicBlock *getTerminateHandler();
1454
1455  llvm::Type *ConvertTypeForMem(QualType T);
1456  llvm::Type *ConvertType(QualType T);
1457  llvm::Type *ConvertType(const TypeDecl *T) {
1458    return ConvertType(getContext().getTypeDeclType(T));
1459  }
1460
1461  /// LoadObjCSelf - Load the value of self. This function is only valid while
1462  /// generating code for an Objective-C method.
1463  llvm::Value *LoadObjCSelf();
1464
1465  /// TypeOfSelfObject - Return type of object that this self represents.
1466  QualType TypeOfSelfObject();
1467
1468  /// hasAggregateLLVMType - Return true if the specified AST type will map into
1469  /// an aggregate LLVM type or is void.
1470  static bool hasAggregateLLVMType(QualType T);
1471
1472  /// createBasicBlock - Create an LLVM basic block.
1473  llvm::BasicBlock *createBasicBlock(StringRef name = "",
1474                                     llvm::Function *parent = 0,
1475                                     llvm::BasicBlock *before = 0) {
1476#ifdef NDEBUG
1477    return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1478#else
1479    return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1480#endif
1481  }
1482
1483  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1484  /// label maps to.
1485  JumpDest getJumpDestForLabel(const LabelDecl *S);
1486
1487  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1488  /// another basic block, simplify it. This assumes that no other code could
1489  /// potentially reference the basic block.
1490  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1491
1492  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1493  /// adding a fall-through branch from the current insert block if
1494  /// necessary. It is legal to call this function even if there is no current
1495  /// insertion point.
1496  ///
1497  /// IsFinished - If true, indicates that the caller has finished emitting
1498  /// branches to the given block and does not expect to emit code into it. This
1499  /// means the block can be ignored if it is unreachable.
1500  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1501
1502  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1503  /// near its uses, and leave the insertion point in it.
1504  void EmitBlockAfterUses(llvm::BasicBlock *BB);
1505
1506  /// EmitBranch - Emit a branch to the specified basic block from the current
1507  /// insert block, taking care to avoid creation of branches from dummy
1508  /// blocks. It is legal to call this function even if there is no current
1509  /// insertion point.
1510  ///
1511  /// This function clears the current insertion point. The caller should follow
1512  /// calls to this function with calls to Emit*Block prior to generation new
1513  /// code.
1514  void EmitBranch(llvm::BasicBlock *Block);
1515
1516  /// HaveInsertPoint - True if an insertion point is defined. If not, this
1517  /// indicates that the current code being emitted is unreachable.
1518  bool HaveInsertPoint() const {
1519    return Builder.GetInsertBlock() != 0;
1520  }
1521
1522  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1523  /// emitted IR has a place to go. Note that by definition, if this function
1524  /// creates a block then that block is unreachable; callers may do better to
1525  /// detect when no insertion point is defined and simply skip IR generation.
1526  void EnsureInsertPoint() {
1527    if (!HaveInsertPoint())
1528      EmitBlock(createBasicBlock());
1529  }
1530
1531  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1532  /// specified stmt yet.
1533  void ErrorUnsupported(const Stmt *S, const char *Type,
1534                        bool OmitOnError=false);
1535
1536  //===--------------------------------------------------------------------===//
1537  //                                  Helpers
1538  //===--------------------------------------------------------------------===//
1539
1540  LValue MakeAddrLValue(llvm::Value *V, QualType T, unsigned Alignment = 0) {
1541    return LValue::MakeAddr(V, T, Alignment, getContext(),
1542                            CGM.getTBAAInfo(T));
1543  }
1544  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
1545    unsigned Alignment;
1546    if (T->isIncompleteType())
1547      Alignment = 0;
1548    else
1549      Alignment = getContext().getTypeAlignInChars(T).getQuantity();
1550    return LValue::MakeAddr(V, T, Alignment, getContext(),
1551                            CGM.getTBAAInfo(T));
1552  }
1553
1554  /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1555  /// block. The caller is responsible for setting an appropriate alignment on
1556  /// the alloca.
1557  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1558                                     const Twine &Name = "tmp");
1559
1560  /// InitTempAlloca - Provide an initial value for the given alloca.
1561  void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1562
1563  /// CreateIRTemp - Create a temporary IR object of the given type, with
1564  /// appropriate alignment. This routine should only be used when an temporary
1565  /// value needs to be stored into an alloca (for example, to avoid explicit
1566  /// PHI construction), but the type is the IR type, not the type appropriate
1567  /// for storing in memory.
1568  llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1569
1570  /// CreateMemTemp - Create a temporary memory object of the given type, with
1571  /// appropriate alignment.
1572  llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1573
1574  /// CreateAggTemp - Create a temporary memory object for the given
1575  /// aggregate type.
1576  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1577    return AggValueSlot::forAddr(CreateMemTemp(T, Name), T.getQualifiers(),
1578                                 AggValueSlot::IsNotDestructed,
1579                                 AggValueSlot::DoesNotNeedGCBarriers,
1580                                 AggValueSlot::IsNotAliased);
1581  }
1582
1583  /// Emit a cast to void* in the appropriate address space.
1584  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1585
1586  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1587  /// expression and compare the result against zero, returning an Int1Ty value.
1588  llvm::Value *EvaluateExprAsBool(const Expr *E);
1589
1590  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1591  void EmitIgnoredExpr(const Expr *E);
1592
1593  /// EmitAnyExpr - Emit code to compute the specified expression which can have
1594  /// any type.  The result is returned as an RValue struct.  If this is an
1595  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1596  /// the result should be returned.
1597  ///
1598  /// \param IgnoreResult - True if the resulting value isn't used.
1599  RValue EmitAnyExpr(const Expr *E,
1600                     AggValueSlot AggSlot = AggValueSlot::ignored(),
1601                     bool IgnoreResult = false);
1602
1603  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1604  // or the value of the expression, depending on how va_list is defined.
1605  llvm::Value *EmitVAListRef(const Expr *E);
1606
1607  /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1608  /// always be accessible even if no aggregate location is provided.
1609  RValue EmitAnyExprToTemp(const Expr *E);
1610
1611  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1612  /// arbitrary expression into the given memory location.
1613  void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1614                        Qualifiers Quals, bool IsInitializer);
1615
1616  /// EmitExprAsInit - Emits the code necessary to initialize a
1617  /// location in memory with the given initializer.
1618  void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1619                      LValue lvalue, bool capturedByInit);
1620
1621  /// EmitAggregateCopy - Emit an aggrate copy.
1622  ///
1623  /// \param isVolatile - True iff either the source or the destination is
1624  /// volatile.
1625  void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1626                         QualType EltTy, bool isVolatile=false);
1627
1628  /// StartBlock - Start new block named N. If insert block is a dummy block
1629  /// then reuse it.
1630  void StartBlock(const char *N);
1631
1632  /// GetAddrOfStaticLocalVar - Return the address of a static local variable.
1633  llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) {
1634    return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
1635  }
1636
1637  /// GetAddrOfLocalVar - Return the address of a local variable.
1638  llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1639    llvm::Value *Res = LocalDeclMap[VD];
1640    assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1641    return Res;
1642  }
1643
1644  /// getOpaqueLValueMapping - Given an opaque value expression (which
1645  /// must be mapped to an l-value), return its mapping.
1646  const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1647    assert(OpaqueValueMapping::shouldBindAsLValue(e));
1648
1649    llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1650      it = OpaqueLValues.find(e);
1651    assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1652    return it->second;
1653  }
1654
1655  /// getOpaqueRValueMapping - Given an opaque value expression (which
1656  /// must be mapped to an r-value), return its mapping.
1657  const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1658    assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1659
1660    llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1661      it = OpaqueRValues.find(e);
1662    assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1663    return it->second;
1664  }
1665
1666  /// getAccessedFieldNo - Given an encoded value and a result number, return
1667  /// the input field number being accessed.
1668  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1669
1670  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1671  llvm::BasicBlock *GetIndirectGotoBlock();
1672
1673  /// EmitNullInitialization - Generate code to set a value of the given type to
1674  /// null, If the type contains data member pointers, they will be initialized
1675  /// to -1 in accordance with the Itanium C++ ABI.
1676  void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1677
1678  // EmitVAArg - Generate code to get an argument from the passed in pointer
1679  // and update it accordingly. The return value is a pointer to the argument.
1680  // FIXME: We should be able to get rid of this method and use the va_arg
1681  // instruction in LLVM instead once it works well enough.
1682  llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1683
1684  /// emitArrayLength - Compute the length of an array, even if it's a
1685  /// VLA, and drill down to the base element type.
1686  llvm::Value *emitArrayLength(const ArrayType *arrayType,
1687                               QualType &baseType,
1688                               llvm::Value *&addr);
1689
1690  /// EmitVLASize - Capture all the sizes for the VLA expressions in
1691  /// the given variably-modified type and store them in the VLASizeMap.
1692  ///
1693  /// This function can be called with a null (unreachable) insert point.
1694  void EmitVariablyModifiedType(QualType Ty);
1695
1696  /// getVLASize - Returns an LLVM value that corresponds to the size,
1697  /// in non-variably-sized elements, of a variable length array type,
1698  /// plus that largest non-variably-sized element type.  Assumes that
1699  /// the type has already been emitted with EmitVariablyModifiedType.
1700  std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1701  std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1702
1703  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1704  /// generating code for an C++ member function.
1705  llvm::Value *LoadCXXThis() {
1706    assert(CXXThisValue && "no 'this' value for this function");
1707    return CXXThisValue;
1708  }
1709
1710  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1711  /// virtual bases.
1712  llvm::Value *LoadCXXVTT() {
1713    assert(CXXVTTValue && "no VTT value for this function");
1714    return CXXVTTValue;
1715  }
1716
1717  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1718  /// complete class to the given direct base.
1719  llvm::Value *
1720  GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1721                                        const CXXRecordDecl *Derived,
1722                                        const CXXRecordDecl *Base,
1723                                        bool BaseIsVirtual);
1724
1725  /// GetAddressOfBaseClass - This function will add the necessary delta to the
1726  /// load of 'this' and returns address of the base class.
1727  llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1728                                     const CXXRecordDecl *Derived,
1729                                     CastExpr::path_const_iterator PathBegin,
1730                                     CastExpr::path_const_iterator PathEnd,
1731                                     bool NullCheckValue);
1732
1733  llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1734                                        const CXXRecordDecl *Derived,
1735                                        CastExpr::path_const_iterator PathBegin,
1736                                        CastExpr::path_const_iterator PathEnd,
1737                                        bool NullCheckValue);
1738
1739  llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
1740                                         const CXXRecordDecl *ClassDecl,
1741                                         const CXXRecordDecl *BaseClassDecl);
1742
1743  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1744                                      CXXCtorType CtorType,
1745                                      const FunctionArgList &Args);
1746  // It's important not to confuse this and the previous function. Delegating
1747  // constructors are the C++0x feature. The constructor delegate optimization
1748  // is used to reduce duplication in the base and complete consturctors where
1749  // they are substantially the same.
1750  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1751                                        const FunctionArgList &Args);
1752  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1753                              bool ForVirtualBase, llvm::Value *This,
1754                              CallExpr::const_arg_iterator ArgBeg,
1755                              CallExpr::const_arg_iterator ArgEnd);
1756
1757  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1758                              llvm::Value *This, llvm::Value *Src,
1759                              CallExpr::const_arg_iterator ArgBeg,
1760                              CallExpr::const_arg_iterator ArgEnd);
1761
1762  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1763                                  const ConstantArrayType *ArrayTy,
1764                                  llvm::Value *ArrayPtr,
1765                                  CallExpr::const_arg_iterator ArgBeg,
1766                                  CallExpr::const_arg_iterator ArgEnd,
1767                                  bool ZeroInitialization = false);
1768
1769  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1770                                  llvm::Value *NumElements,
1771                                  llvm::Value *ArrayPtr,
1772                                  CallExpr::const_arg_iterator ArgBeg,
1773                                  CallExpr::const_arg_iterator ArgEnd,
1774                                  bool ZeroInitialization = false);
1775
1776  static Destroyer destroyCXXObject;
1777
1778  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1779                             bool ForVirtualBase, llvm::Value *This);
1780
1781  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1782                               llvm::Value *NewPtr, llvm::Value *NumElements);
1783
1784  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1785                        llvm::Value *Ptr);
1786
1787  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1788  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1789
1790  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1791                      QualType DeleteTy);
1792
1793  llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1794  llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1795
1796  void EmitCheck(llvm::Value *, unsigned Size);
1797
1798  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1799                                       bool isInc, bool isPre);
1800  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1801                                         bool isInc, bool isPre);
1802  //===--------------------------------------------------------------------===//
1803  //                            Declaration Emission
1804  //===--------------------------------------------------------------------===//
1805
1806  /// EmitDecl - Emit a declaration.
1807  ///
1808  /// This function can be called with a null (unreachable) insert point.
1809  void EmitDecl(const Decl &D);
1810
1811  /// EmitVarDecl - Emit a local variable declaration.
1812  ///
1813  /// This function can be called with a null (unreachable) insert point.
1814  void EmitVarDecl(const VarDecl &D);
1815
1816  void EmitScalarInit(const Expr *init, const ValueDecl *D,
1817                      LValue lvalue, bool capturedByInit);
1818  void EmitScalarInit(llvm::Value *init, LValue lvalue);
1819
1820  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1821                             llvm::Value *Address);
1822
1823  /// EmitAutoVarDecl - Emit an auto variable declaration.
1824  ///
1825  /// This function can be called with a null (unreachable) insert point.
1826  void EmitAutoVarDecl(const VarDecl &D);
1827
1828  class AutoVarEmission {
1829    friend class CodeGenFunction;
1830
1831    const VarDecl *Variable;
1832
1833    /// The alignment of the variable.
1834    CharUnits Alignment;
1835
1836    /// The address of the alloca.  Null if the variable was emitted
1837    /// as a global constant.
1838    llvm::Value *Address;
1839
1840    llvm::Value *NRVOFlag;
1841
1842    /// True if the variable is a __block variable.
1843    bool IsByRef;
1844
1845    /// True if the variable is of aggregate type and has a constant
1846    /// initializer.
1847    bool IsConstantAggregate;
1848
1849    struct Invalid {};
1850    AutoVarEmission(Invalid) : Variable(0) {}
1851
1852    AutoVarEmission(const VarDecl &variable)
1853      : Variable(&variable), Address(0), NRVOFlag(0),
1854        IsByRef(false), IsConstantAggregate(false) {}
1855
1856    bool wasEmittedAsGlobal() const { return Address == 0; }
1857
1858  public:
1859    static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1860
1861    /// Returns the address of the object within this declaration.
1862    /// Note that this does not chase the forwarding pointer for
1863    /// __block decls.
1864    llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1865      if (!IsByRef) return Address;
1866
1867      return CGF.Builder.CreateStructGEP(Address,
1868                                         CGF.getByRefValueLLVMField(Variable),
1869                                         Variable->getNameAsString());
1870    }
1871  };
1872  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1873  void EmitAutoVarInit(const AutoVarEmission &emission);
1874  void EmitAutoVarCleanups(const AutoVarEmission &emission);
1875  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1876                              QualType::DestructionKind dtorKind);
1877
1878  void EmitStaticVarDecl(const VarDecl &D,
1879                         llvm::GlobalValue::LinkageTypes Linkage);
1880
1881  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1882  void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
1883
1884  /// protectFromPeepholes - Protect a value that we're intending to
1885  /// store to the side, but which will probably be used later, from
1886  /// aggressive peepholing optimizations that might delete it.
1887  ///
1888  /// Pass the result to unprotectFromPeepholes to declare that
1889  /// protection is no longer required.
1890  ///
1891  /// There's no particular reason why this shouldn't apply to
1892  /// l-values, it's just that no existing peepholes work on pointers.
1893  PeepholeProtection protectFromPeepholes(RValue rvalue);
1894  void unprotectFromPeepholes(PeepholeProtection protection);
1895
1896  //===--------------------------------------------------------------------===//
1897  //                             Statement Emission
1898  //===--------------------------------------------------------------------===//
1899
1900  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1901  void EmitStopPoint(const Stmt *S);
1902
1903  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1904  /// this function even if there is no current insertion point.
1905  ///
1906  /// This function may clear the current insertion point; callers should use
1907  /// EnsureInsertPoint if they wish to subsequently generate code without first
1908  /// calling EmitBlock, EmitBranch, or EmitStmt.
1909  void EmitStmt(const Stmt *S);
1910
1911  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1912  /// necessarily require an insertion point or debug information; typically
1913  /// because the statement amounts to a jump or a container of other
1914  /// statements.
1915  ///
1916  /// \return True if the statement was handled.
1917  bool EmitSimpleStmt(const Stmt *S);
1918
1919  RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1920                          AggValueSlot AVS = AggValueSlot::ignored());
1921
1922  /// EmitLabel - Emit the block for the given label. It is legal to call this
1923  /// function even if there is no current insertion point.
1924  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1925
1926  void EmitLabelStmt(const LabelStmt &S);
1927  void EmitGotoStmt(const GotoStmt &S);
1928  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1929  void EmitIfStmt(const IfStmt &S);
1930  void EmitWhileStmt(const WhileStmt &S);
1931  void EmitDoStmt(const DoStmt &S);
1932  void EmitForStmt(const ForStmt &S);
1933  void EmitReturnStmt(const ReturnStmt &S);
1934  void EmitDeclStmt(const DeclStmt &S);
1935  void EmitBreakStmt(const BreakStmt &S);
1936  void EmitContinueStmt(const ContinueStmt &S);
1937  void EmitSwitchStmt(const SwitchStmt &S);
1938  void EmitDefaultStmt(const DefaultStmt &S);
1939  void EmitCaseStmt(const CaseStmt &S);
1940  void EmitCaseStmtRange(const CaseStmt &S);
1941  void EmitAsmStmt(const AsmStmt &S);
1942
1943  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1944  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1945  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1946  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1947  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
1948
1949  llvm::Constant *getUnwindResumeFn();
1950  llvm::Constant *getUnwindResumeOrRethrowFn();
1951  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1952  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1953
1954  void EmitCXXTryStmt(const CXXTryStmt &S);
1955  void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
1956
1957  //===--------------------------------------------------------------------===//
1958  //                         LValue Expression Emission
1959  //===--------------------------------------------------------------------===//
1960
1961  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
1962  RValue GetUndefRValue(QualType Ty);
1963
1964  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
1965  /// and issue an ErrorUnsupported style diagnostic (using the
1966  /// provided Name).
1967  RValue EmitUnsupportedRValue(const Expr *E,
1968                               const char *Name);
1969
1970  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
1971  /// an ErrorUnsupported style diagnostic (using the provided Name).
1972  LValue EmitUnsupportedLValue(const Expr *E,
1973                               const char *Name);
1974
1975  /// EmitLValue - Emit code to compute a designator that specifies the location
1976  /// of the expression.
1977  ///
1978  /// This can return one of two things: a simple address or a bitfield
1979  /// reference.  In either case, the LLVM Value* in the LValue structure is
1980  /// guaranteed to be an LLVM pointer type.
1981  ///
1982  /// If this returns a bitfield reference, nothing about the pointee type of
1983  /// the LLVM value is known: For example, it may not be a pointer to an
1984  /// integer.
1985  ///
1986  /// If this returns a normal address, and if the lvalue's C type is fixed
1987  /// size, this method guarantees that the returned pointer type will point to
1988  /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
1989  /// variable length type, this is not possible.
1990  ///
1991  LValue EmitLValue(const Expr *E);
1992
1993  /// EmitCheckedLValue - Same as EmitLValue but additionally we generate
1994  /// checking code to guard against undefined behavior.  This is only
1995  /// suitable when we know that the address will be used to access the
1996  /// object.
1997  LValue EmitCheckedLValue(const Expr *E);
1998
1999  /// EmitToMemory - Change a scalar value from its value
2000  /// representation to its in-memory representation.
2001  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2002
2003  /// EmitFromMemory - Change a scalar value from its memory
2004  /// representation to its value representation.
2005  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2006
2007  /// EmitLoadOfScalar - Load a scalar value from an address, taking
2008  /// care to appropriately convert from the memory representation to
2009  /// the LLVM value representation.
2010  llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
2011                                unsigned Alignment, QualType Ty,
2012                                llvm::MDNode *TBAAInfo = 0);
2013
2014  /// EmitLoadOfScalar - Load a scalar value from an address, taking
2015  /// care to appropriately convert from the memory representation to
2016  /// the LLVM value representation.  The l-value must be a simple
2017  /// l-value.
2018  llvm::Value *EmitLoadOfScalar(LValue lvalue);
2019
2020  /// EmitStoreOfScalar - Store a scalar value to an address, taking
2021  /// care to appropriately convert from the memory representation to
2022  /// the LLVM value representation.
2023  void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
2024                         bool Volatile, unsigned Alignment, QualType Ty,
2025                         llvm::MDNode *TBAAInfo = 0);
2026
2027  /// EmitStoreOfScalar - Store a scalar value to an address, taking
2028  /// care to appropriately convert from the memory representation to
2029  /// the LLVM value representation.  The l-value must be a simple
2030  /// l-value.
2031  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue);
2032
2033  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2034  /// this method emits the address of the lvalue, then loads the result as an
2035  /// rvalue, returning the rvalue.
2036  RValue EmitLoadOfLValue(LValue V);
2037  RValue EmitLoadOfExtVectorElementLValue(LValue V);
2038  RValue EmitLoadOfBitfieldLValue(LValue LV);
2039
2040  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2041  /// lvalue, where both are guaranteed to the have the same type, and that type
2042  /// is 'Ty'.
2043  void EmitStoreThroughLValue(RValue Src, LValue Dst);
2044  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2045
2046  /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
2047  /// EmitStoreThroughLValue.
2048  ///
2049  /// \param Result [out] - If non-null, this will be set to a Value* for the
2050  /// bit-field contents after the store, appropriate for use as the result of
2051  /// an assignment to the bit-field.
2052  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2053                                      llvm::Value **Result=0);
2054
2055  /// Emit an l-value for an assignment (simple or compound) of complex type.
2056  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2057  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2058
2059  // Note: only available for agg return types
2060  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2061  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2062  // Note: only available for agg return types
2063  LValue EmitCallExprLValue(const CallExpr *E);
2064  // Note: only available for agg return types
2065  LValue EmitVAArgExprLValue(const VAArgExpr *E);
2066  LValue EmitDeclRefLValue(const DeclRefExpr *E);
2067  LValue EmitStringLiteralLValue(const StringLiteral *E);
2068  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2069  LValue EmitPredefinedLValue(const PredefinedExpr *E);
2070  LValue EmitUnaryOpLValue(const UnaryOperator *E);
2071  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
2072  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2073  LValue EmitMemberExpr(const MemberExpr *E);
2074  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2075  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2076  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2077  LValue EmitCastLValue(const CastExpr *E);
2078  LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
2079  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2080  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2081
2082  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2083                                AggValueSlot slot = AggValueSlot::ignored());
2084  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2085
2086  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2087                              const ObjCIvarDecl *Ivar);
2088  LValue EmitLValueForAnonRecordField(llvm::Value* Base,
2089                                      const IndirectFieldDecl* Field,
2090                                      unsigned CVRQualifiers);
2091  LValue EmitLValueForField(llvm::Value* Base, const FieldDecl* Field,
2092                            unsigned CVRQualifiers);
2093
2094  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2095  /// if the Field is a reference, this will return the address of the reference
2096  /// and not the address of the value stored in the reference.
2097  LValue EmitLValueForFieldInitialization(llvm::Value* Base,
2098                                          const FieldDecl* Field,
2099                                          unsigned CVRQualifiers);
2100
2101  LValue EmitLValueForIvar(QualType ObjectTy,
2102                           llvm::Value* Base, const ObjCIvarDecl *Ivar,
2103                           unsigned CVRQualifiers);
2104
2105  LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field,
2106                                unsigned CVRQualifiers);
2107
2108  LValue EmitBlockDeclRefLValue(const BlockDeclRefExpr *E);
2109
2110  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2111  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2112  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2113
2114  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2115  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2116  LValue EmitStmtExprLValue(const StmtExpr *E);
2117  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2118  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2119  void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2120
2121  //===--------------------------------------------------------------------===//
2122  //                         Scalar Expression Emission
2123  //===--------------------------------------------------------------------===//
2124
2125  /// EmitCall - Generate a call of the given function, expecting the given
2126  /// result type, and using the given argument list which specifies both the
2127  /// LLVM arguments and the types they were derived from.
2128  ///
2129  /// \param TargetDecl - If given, the decl of the function in a direct call;
2130  /// used to set attributes on the call (noreturn, etc.).
2131  RValue EmitCall(const CGFunctionInfo &FnInfo,
2132                  llvm::Value *Callee,
2133                  ReturnValueSlot ReturnValue,
2134                  const CallArgList &Args,
2135                  const Decl *TargetDecl = 0,
2136                  llvm::Instruction **callOrInvoke = 0);
2137
2138  RValue EmitCall(QualType FnType, llvm::Value *Callee,
2139                  ReturnValueSlot ReturnValue,
2140                  CallExpr::const_arg_iterator ArgBeg,
2141                  CallExpr::const_arg_iterator ArgEnd,
2142                  const Decl *TargetDecl = 0);
2143  RValue EmitCallExpr(const CallExpr *E,
2144                      ReturnValueSlot ReturnValue = ReturnValueSlot());
2145
2146  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2147                                  ArrayRef<llvm::Value *> Args,
2148                                  const Twine &Name = "");
2149  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2150                                  const Twine &Name = "");
2151
2152  llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
2153                                llvm::Type *Ty);
2154  llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
2155                                llvm::Value *This, llvm::Type *Ty);
2156  llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2157                                         NestedNameSpecifier *Qual,
2158                                         llvm::Type *Ty);
2159
2160  llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2161                                                   CXXDtorType Type,
2162                                                   const CXXRecordDecl *RD);
2163
2164  RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2165                           llvm::Value *Callee,
2166                           ReturnValueSlot ReturnValue,
2167                           llvm::Value *This,
2168                           llvm::Value *VTT,
2169                           CallExpr::const_arg_iterator ArgBeg,
2170                           CallExpr::const_arg_iterator ArgEnd);
2171  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2172                               ReturnValueSlot ReturnValue);
2173  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2174                                      ReturnValueSlot ReturnValue);
2175
2176  llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2177                                           const CXXMethodDecl *MD,
2178                                           llvm::Value *This);
2179  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2180                                       const CXXMethodDecl *MD,
2181                                       ReturnValueSlot ReturnValue);
2182
2183  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2184                                ReturnValueSlot ReturnValue);
2185
2186
2187  RValue EmitBuiltinExpr(const FunctionDecl *FD,
2188                         unsigned BuiltinID, const CallExpr *E);
2189
2190  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2191
2192  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2193  /// is unhandled by the current target.
2194  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2195
2196  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2197  llvm::Value *EmitNeonCall(llvm::Function *F,
2198                            SmallVectorImpl<llvm::Value*> &O,
2199                            const char *name,
2200                            unsigned shift = 0, bool rightshift = false);
2201  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2202  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2203                                   bool negateForRightShift);
2204
2205  llvm::Value *BuildVector(const SmallVectorImpl<llvm::Value*> &Ops);
2206  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2207  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2208
2209  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2210  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2211  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2212  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2213                             ReturnValueSlot Return = ReturnValueSlot());
2214
2215  /// Retrieves the default cleanup kind for an ARC cleanup.
2216  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2217  CleanupKind getARCCleanupKind() {
2218    return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2219             ? NormalAndEHCleanup : NormalCleanup;
2220  }
2221
2222  // ARC primitives.
2223  void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2224  void EmitARCDestroyWeak(llvm::Value *addr);
2225  llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2226  llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2227  llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2228                                bool ignored);
2229  void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2230  void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2231  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2232  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2233  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2234                                  bool ignored);
2235  llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2236                                      bool ignored);
2237  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2238  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2239  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2240  void EmitARCRelease(llvm::Value *value, bool precise);
2241  llvm::Value *EmitARCAutorelease(llvm::Value *value);
2242  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2243  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2244  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2245
2246  std::pair<LValue,llvm::Value*>
2247  EmitARCStoreAutoreleasing(const BinaryOperator *e);
2248  std::pair<LValue,llvm::Value*>
2249  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2250
2251  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2252
2253  llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2254  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2255  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2256
2257  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2258  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2259  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2260
2261  static Destroyer destroyARCStrongImprecise;
2262  static Destroyer destroyARCStrongPrecise;
2263  static Destroyer destroyARCWeak;
2264
2265  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2266  llvm::Value *EmitObjCAutoreleasePoolPush();
2267  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2268  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2269  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2270
2271  /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
2272  /// expression. Will emit a temporary variable if E is not an LValue.
2273  RValue EmitReferenceBindingToExpr(const Expr* E,
2274                                    const NamedDecl *InitializedDecl);
2275
2276  //===--------------------------------------------------------------------===//
2277  //                           Expression Emission
2278  //===--------------------------------------------------------------------===//
2279
2280  // Expressions are broken into three classes: scalar, complex, aggregate.
2281
2282  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2283  /// scalar type, returning the result.
2284  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2285
2286  /// EmitScalarConversion - Emit a conversion from the specified type to the
2287  /// specified destination type, both of which are LLVM scalar types.
2288  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2289                                    QualType DstTy);
2290
2291  /// EmitComplexToScalarConversion - Emit a conversion from the specified
2292  /// complex type to the specified destination type, where the destination type
2293  /// is an LLVM scalar type.
2294  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2295                                             QualType DstTy);
2296
2297
2298  /// EmitAggExpr - Emit the computation of the specified expression
2299  /// of aggregate type.  The result is computed into the given slot,
2300  /// which may be null to indicate that the value is not needed.
2301  void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false);
2302
2303  /// EmitAggExprToLValue - Emit the computation of the specified expression of
2304  /// aggregate type into a temporary LValue.
2305  LValue EmitAggExprToLValue(const Expr *E);
2306
2307  /// EmitGCMemmoveCollectable - Emit special API for structs with object
2308  /// pointers.
2309  void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2310                                QualType Ty);
2311
2312  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2313  /// make sure it survives garbage collection until this point.
2314  void EmitExtendGCLifetime(llvm::Value *object);
2315
2316  /// EmitComplexExpr - Emit the computation of the specified expression of
2317  /// complex type, returning the result.
2318  ComplexPairTy EmitComplexExpr(const Expr *E,
2319                                bool IgnoreReal = false,
2320                                bool IgnoreImag = false);
2321
2322  /// EmitComplexExprIntoAddr - Emit the computation of the specified expression
2323  /// of complex type, storing into the specified Value*.
2324  void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
2325                               bool DestIsVolatile);
2326
2327  /// StoreComplexToAddr - Store a complex number into the specified address.
2328  void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
2329                          bool DestIsVolatile);
2330  /// LoadComplexFromAddr - Load a complex number from the specified address.
2331  ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
2332
2333  /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2334  /// a static local variable.
2335  llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2336                                            const char *Separator,
2337                                       llvm::GlobalValue::LinkageTypes Linkage);
2338
2339  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2340  /// global variable that has already been created for it.  If the initializer
2341  /// has a different type than GV does, this may free GV and return a different
2342  /// one.  Otherwise it just returns GV.
2343  llvm::GlobalVariable *
2344  AddInitializerToStaticVarDecl(const VarDecl &D,
2345                                llvm::GlobalVariable *GV);
2346
2347
2348  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2349  /// variable with global storage.
2350  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr);
2351
2352  /// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr
2353  /// with the C++ runtime so that its destructor will be called at exit.
2354  void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn,
2355                                     llvm::Constant *DeclPtr);
2356
2357  /// Emit code in this function to perform a guarded variable
2358  /// initialization.  Guarded initializations are used when it's not
2359  /// possible to prove that an initialization will be done exactly
2360  /// once, e.g. with a static local variable or a static data member
2361  /// of a class template.
2362  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr);
2363
2364  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2365  /// variables.
2366  void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2367                                 llvm::Constant **Decls,
2368                                 unsigned NumDecls);
2369
2370  /// GenerateCXXGlobalDtorFunc - Generates code for destroying global
2371  /// variables.
2372  void GenerateCXXGlobalDtorFunc(llvm::Function *Fn,
2373                                 const std::vector<std::pair<llvm::WeakVH,
2374                                   llvm::Constant*> > &DtorsAndObjects);
2375
2376  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2377                                        const VarDecl *D,
2378                                        llvm::GlobalVariable *Addr);
2379
2380  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2381
2382  void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2383                                  const Expr *Exp);
2384
2385  void enterFullExpression(const ExprWithCleanups *E) {
2386    if (E->getNumObjects() == 0) return;
2387    enterNonTrivialFullExpression(E);
2388  }
2389  void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2390
2391  void EmitCXXThrowExpr(const CXXThrowExpr *E);
2392
2393  RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
2394
2395  //===--------------------------------------------------------------------===//
2396  //                         Annotations Emission
2397  //===--------------------------------------------------------------------===//
2398
2399  /// Emit an annotation call (intrinsic or builtin).
2400  llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2401                                  llvm::Value *AnnotatedVal,
2402                                  llvm::StringRef AnnotationStr,
2403                                  SourceLocation Location);
2404
2405  /// Emit local annotations for the local variable V, declared by D.
2406  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2407
2408  /// Emit field annotations for the given field & value. Returns the
2409  /// annotation result.
2410  llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2411
2412  //===--------------------------------------------------------------------===//
2413  //                             Internal Helpers
2414  //===--------------------------------------------------------------------===//
2415
2416  /// ContainsLabel - Return true if the statement contains a label in it.  If
2417  /// this statement is not executed normally, it not containing a label means
2418  /// that we can just remove the code.
2419  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2420
2421  /// containsBreak - Return true if the statement contains a break out of it.
2422  /// If the statement (recursively) contains a switch or loop with a break
2423  /// inside of it, this is fine.
2424  static bool containsBreak(const Stmt *S);
2425
2426  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2427  /// to a constant, or if it does but contains a label, return false.  If it
2428  /// constant folds return true and set the boolean result in Result.
2429  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2430
2431  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2432  /// to a constant, or if it does but contains a label, return false.  If it
2433  /// constant folds return true and set the folded value.
2434  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result);
2435
2436  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2437  /// if statement) to the specified blocks.  Based on the condition, this might
2438  /// try to simplify the codegen of the conditional based on the branch.
2439  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2440                            llvm::BasicBlock *FalseBlock);
2441
2442  /// getTrapBB - Create a basic block that will call the trap intrinsic.  We'll
2443  /// generate a branch around the created basic block as necessary.
2444  llvm::BasicBlock *getTrapBB();
2445
2446  /// EmitCallArg - Emit a single call argument.
2447  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2448
2449  /// EmitDelegateCallArg - We are performing a delegate call; that
2450  /// is, the current function is delegating to another one.  Produce
2451  /// a r-value suitable for passing the given parameter.
2452  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
2453
2454  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2455  /// point operation, expressed as the maximum relative error in ulp.
2456  void SetFPAccuracy(llvm::Value *Val, unsigned AccuracyN,
2457                     unsigned AccuracyD = 1);
2458
2459private:
2460  void EmitReturnOfRValue(RValue RV, QualType Ty);
2461
2462  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2463  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2464  ///
2465  /// \param AI - The first function argument of the expansion.
2466  /// \return The argument following the last expanded function
2467  /// argument.
2468  llvm::Function::arg_iterator
2469  ExpandTypeFromArgs(QualType Ty, LValue Dst,
2470                     llvm::Function::arg_iterator AI);
2471
2472  /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2473  /// Ty, into individual arguments on the provided vector \arg Args. See
2474  /// ABIArgInfo::Expand.
2475  void ExpandTypeToArgs(QualType Ty, RValue Src,
2476                        SmallVector<llvm::Value*, 16> &Args,
2477                        llvm::FunctionType *IRFuncTy);
2478
2479  llvm::Value* EmitAsmInput(const AsmStmt &S,
2480                            const TargetInfo::ConstraintInfo &Info,
2481                            const Expr *InputExpr, std::string &ConstraintStr);
2482
2483  llvm::Value* EmitAsmInputLValue(const AsmStmt &S,
2484                                  const TargetInfo::ConstraintInfo &Info,
2485                                  LValue InputValue, QualType InputType,
2486                                  std::string &ConstraintStr);
2487
2488  /// EmitCallArgs - Emit call arguments for a function.
2489  /// The CallArgTypeInfo parameter is used for iterating over the known
2490  /// argument types of the function being called.
2491  template<typename T>
2492  void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2493                    CallExpr::const_arg_iterator ArgBeg,
2494                    CallExpr::const_arg_iterator ArgEnd) {
2495      CallExpr::const_arg_iterator Arg = ArgBeg;
2496
2497    // First, use the argument types that the type info knows about
2498    if (CallArgTypeInfo) {
2499      for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2500           E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2501        assert(Arg != ArgEnd && "Running over edge of argument list!");
2502        QualType ArgType = *I;
2503#ifndef NDEBUG
2504        QualType ActualArgType = Arg->getType();
2505        if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2506          QualType ActualBaseType =
2507            ActualArgType->getAs<PointerType>()->getPointeeType();
2508          QualType ArgBaseType =
2509            ArgType->getAs<PointerType>()->getPointeeType();
2510          if (ArgBaseType->isVariableArrayType()) {
2511            if (const VariableArrayType *VAT =
2512                getContext().getAsVariableArrayType(ActualBaseType)) {
2513              if (!VAT->getSizeExpr())
2514                ActualArgType = ArgType;
2515            }
2516          }
2517        }
2518        assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2519               getTypePtr() ==
2520               getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2521               "type mismatch in call argument!");
2522#endif
2523        EmitCallArg(Args, *Arg, ArgType);
2524      }
2525
2526      // Either we've emitted all the call args, or we have a call to a
2527      // variadic function.
2528      assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2529             "Extra arguments in non-variadic function!");
2530
2531    }
2532
2533    // If we still have any arguments, emit them using the type of the argument.
2534    for (; Arg != ArgEnd; ++Arg)
2535      EmitCallArg(Args, *Arg, Arg->getType());
2536  }
2537
2538  const TargetCodeGenInfo &getTargetHooks() const {
2539    return CGM.getTargetCodeGenInfo();
2540  }
2541
2542  void EmitDeclMetadata();
2543
2544  CodeGenModule::ByrefHelpers *
2545  buildByrefHelpers(llvm::StructType &byrefType,
2546                    const AutoVarEmission &emission);
2547};
2548
2549/// Helper class with most of the code for saving a value for a
2550/// conditional expression cleanup.
2551struct DominatingLLVMValue {
2552  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2553
2554  /// Answer whether the given value needs extra work to be saved.
2555  static bool needsSaving(llvm::Value *value) {
2556    // If it's not an instruction, we don't need to save.
2557    if (!isa<llvm::Instruction>(value)) return false;
2558
2559    // If it's an instruction in the entry block, we don't need to save.
2560    llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2561    return (block != &block->getParent()->getEntryBlock());
2562  }
2563
2564  /// Try to save the given value.
2565  static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2566    if (!needsSaving(value)) return saved_type(value, false);
2567
2568    // Otherwise we need an alloca.
2569    llvm::Value *alloca =
2570      CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2571    CGF.Builder.CreateStore(value, alloca);
2572
2573    return saved_type(alloca, true);
2574  }
2575
2576  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2577    if (!value.getInt()) return value.getPointer();
2578    return CGF.Builder.CreateLoad(value.getPointer());
2579  }
2580};
2581
2582/// A partial specialization of DominatingValue for llvm::Values that
2583/// might be llvm::Instructions.
2584template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2585  typedef T *type;
2586  static type restore(CodeGenFunction &CGF, saved_type value) {
2587    return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2588  }
2589};
2590
2591/// A specialization of DominatingValue for RValue.
2592template <> struct DominatingValue<RValue> {
2593  typedef RValue type;
2594  class saved_type {
2595    enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2596                AggregateAddress, ComplexAddress };
2597
2598    llvm::Value *Value;
2599    Kind K;
2600    saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2601
2602  public:
2603    static bool needsSaving(RValue value);
2604    static saved_type save(CodeGenFunction &CGF, RValue value);
2605    RValue restore(CodeGenFunction &CGF);
2606
2607    // implementations in CGExprCXX.cpp
2608  };
2609
2610  static bool needsSaving(type value) {
2611    return saved_type::needsSaving(value);
2612  }
2613  static saved_type save(CodeGenFunction &CGF, type value) {
2614    return saved_type::save(CGF, value);
2615  }
2616  static type restore(CodeGenFunction &CGF, saved_type value) {
2617    return value.restore(CGF);
2618  }
2619};
2620
2621}  // end namespace CodeGen
2622}  // end namespace clang
2623
2624#endif
2625