CodeGenFunction.h revision 8e3f86193995c47ee0d229e4336c3382410f09f5
1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the internal per-function state used for llvm translation.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15#define CLANG_CODEGEN_CODEGENFUNCTION_H
16
17#include "clang/AST/Type.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/Basic/TargetInfo.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/Support/ValueHandle.h"
25#include "CodeGenModule.h"
26#include "CGBlocks.h"
27#include "CGBuilder.h"
28#include "CGCall.h"
29#include "CGCXX.h"
30#include "CGValue.h"
31
32namespace llvm {
33  class BasicBlock;
34  class LLVMContext;
35  class MDNode;
36  class Module;
37  class SwitchInst;
38  class Twine;
39  class Value;
40  class CallSite;
41}
42
43namespace clang {
44  class ASTContext;
45  class CXXDestructorDecl;
46  class CXXTryStmt;
47  class Decl;
48  class EnumConstantDecl;
49  class FunctionDecl;
50  class FunctionProtoType;
51  class LabelStmt;
52  class ObjCContainerDecl;
53  class ObjCInterfaceDecl;
54  class ObjCIvarDecl;
55  class ObjCMethodDecl;
56  class ObjCImplementationDecl;
57  class ObjCPropertyImplDecl;
58  class TargetInfo;
59  class TargetCodeGenInfo;
60  class VarDecl;
61  class ObjCForCollectionStmt;
62  class ObjCAtTryStmt;
63  class ObjCAtThrowStmt;
64  class ObjCAtSynchronizedStmt;
65
66namespace CodeGen {
67  class CodeGenTypes;
68  class CGDebugInfo;
69  class CGFunctionInfo;
70  class CGRecordLayout;
71  class CGBlockInfo;
72
73/// A branch fixup.  These are required when emitting a goto to a
74/// label which hasn't been emitted yet.  The goto is optimistically
75/// emitted as a branch to the basic block for the label, and (if it
76/// occurs in a scope with non-trivial cleanups) a fixup is added to
77/// the innermost cleanup.  When a (normal) cleanup is popped, any
78/// unresolved fixups in that scope are threaded through the cleanup.
79struct BranchFixup {
80  /// The origin of the branch.  Any switch-index stores required by
81  /// cleanup threading are added before this instruction.
82  llvm::Instruction *Origin;
83
84  /// The destination of the branch.
85  ///
86  /// This can be set to null to indicate that this fixup was
87  /// successfully resolved.
88  llvm::BasicBlock *Destination;
89
90  /// The last branch of the fixup.  It is an invariant that
91  /// LatestBranch->getSuccessor(LatestBranchIndex) == Destination.
92  ///
93  /// The branch is always either a BranchInst or a SwitchInst.
94  llvm::TerminatorInst *LatestBranch;
95  unsigned LatestBranchIndex;
96};
97
98enum CleanupKind { NormalAndEHCleanup, EHCleanup, NormalCleanup };
99
100/// A stack of scopes which respond to exceptions, including cleanups
101/// and catch blocks.
102class EHScopeStack {
103public:
104  /// A saved depth on the scope stack.  This is necessary because
105  /// pushing scopes onto the stack invalidates iterators.
106  class stable_iterator {
107    friend class EHScopeStack;
108
109    /// Offset from StartOfData to EndOfBuffer.
110    ptrdiff_t Size;
111
112    stable_iterator(ptrdiff_t Size) : Size(Size) {}
113
114  public:
115    static stable_iterator invalid() { return stable_iterator(-1); }
116    stable_iterator() : Size(-1) {}
117
118    bool isValid() const { return Size >= 0; }
119
120    friend bool operator==(stable_iterator A, stable_iterator B) {
121      return A.Size == B.Size;
122    }
123    friend bool operator!=(stable_iterator A, stable_iterator B) {
124      return A.Size != B.Size;
125    }
126  };
127
128  /// A lazy cleanup.  These will be allocated on the cleanup stack
129  /// and so must be trivially copyable.  We "enforce" this by
130  /// providing no virtual destructor so that subclasses will be
131  /// encouraged to contain no non-POD types.
132  ///
133  /// LazyCleanup implementations should generally be declared in an
134  /// anonymous namespace.
135  class LazyCleanup {
136    // Anchor the construction vtable.
137    virtual void _anchor();
138
139  public:
140    /// Emit the cleanup.  For normal cleanups, this is run in the
141    /// same EH context as when the cleanup was pushed, i.e. the
142    /// immediately-enclosing context of the cleanup scope.  For
143    /// EH cleanups, this is run in a terminate context.
144    ///
145    // \param IsForEHCleanup true if this is for an EH cleanup, false
146    ///  if for a normal cleanup.
147    virtual void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) = 0;
148  };
149
150private:
151  // The implementation for this class is in CGException.h and
152  // CGException.cpp; the definition is here because it's used as a
153  // member of CodeGenFunction.
154
155  /// The start of the scope-stack buffer, i.e. the allocated pointer
156  /// for the buffer.  All of these pointers are either simultaneously
157  /// null or simultaneously valid.
158  char *StartOfBuffer;
159
160  /// The end of the buffer.
161  char *EndOfBuffer;
162
163  /// The first valid entry in the buffer.
164  char *StartOfData;
165
166  /// The innermost normal cleanup on the stack.
167  stable_iterator InnermostNormalCleanup;
168
169  /// The innermost EH cleanup on the stack.
170  stable_iterator InnermostEHCleanup;
171
172  /// The number of catches on the stack.
173  unsigned CatchDepth;
174
175  /// The current set of branch fixups.  A branch fixup is a jump to
176  /// an as-yet unemitted label, i.e. a label for which we don't yet
177  /// know the EH stack depth.  Whenever we pop a cleanup, we have
178  /// to thread all the current branch fixups through it.
179  ///
180  /// Fixups are recorded as the Use of the respective branch or
181  /// switch statement.  The use points to the final destination.
182  /// When popping out of a cleanup, these uses are threaded through
183  /// the cleanup and adjusted to point to the new cleanup.
184  ///
185  /// Note that branches are allowed to jump into protected scopes
186  /// in certain situations;  e.g. the following code is legal:
187  ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
188  ///     goto foo;
189  ///     A a;
190  ///    foo:
191  ///     bar();
192  llvm::SmallVector<BranchFixup, 8> BranchFixups;
193
194  char *allocate(size_t Size);
195
196  void popNullFixups();
197
198  void *pushLazyCleanup(CleanupKind K, size_t DataSize);
199
200public:
201  EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
202                   InnermostNormalCleanup(stable_end()),
203                   InnermostEHCleanup(stable_end()),
204                   CatchDepth(0) {}
205  ~EHScopeStack() { delete[] StartOfBuffer; }
206
207  // Variadic templates would make this not terrible.
208
209  /// Push a lazily-created cleanup on the stack.
210  template <class T>
211  void pushLazyCleanup(CleanupKind Kind) {
212    void *Buffer = pushLazyCleanup(Kind, sizeof(T));
213    LazyCleanup *Obj = new(Buffer) T();
214    (void) Obj;
215  }
216
217  /// Push a lazily-created cleanup on the stack.
218  template <class T, class A0>
219  void pushLazyCleanup(CleanupKind Kind, A0 a0) {
220    void *Buffer = pushLazyCleanup(Kind, sizeof(T));
221    LazyCleanup *Obj = new(Buffer) T(a0);
222    (void) Obj;
223  }
224
225  /// Push a lazily-created cleanup on the stack.
226  template <class T, class A0, class A1>
227  void pushLazyCleanup(CleanupKind Kind, A0 a0, A1 a1) {
228    void *Buffer = pushLazyCleanup(Kind, sizeof(T));
229    LazyCleanup *Obj = new(Buffer) T(a0, a1);
230    (void) Obj;
231  }
232
233  /// Push a lazily-created cleanup on the stack.
234  template <class T, class A0, class A1, class A2>
235  void pushLazyCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
236    void *Buffer = pushLazyCleanup(Kind, sizeof(T));
237    LazyCleanup *Obj = new(Buffer) T(a0, a1, a2);
238    (void) Obj;
239  }
240
241  /// Push a lazily-created cleanup on the stack.
242  template <class T, class A0, class A1, class A2, class A3>
243  void pushLazyCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
244    void *Buffer = pushLazyCleanup(Kind, sizeof(T));
245    LazyCleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
246    (void) Obj;
247  }
248
249  /// Push a cleanup on the stack.
250  void pushCleanup(llvm::BasicBlock *NormalEntry,
251                   llvm::BasicBlock *NormalExit,
252                   llvm::BasicBlock *EHEntry,
253                   llvm::BasicBlock *EHExit);
254
255  /// Pops a cleanup scope off the stack.  This should only be called
256  /// by CodeGenFunction::PopCleanupBlock.
257  void popCleanup();
258
259  /// Push a set of catch handlers on the stack.  The catch is
260  /// uninitialized and will need to have the given number of handlers
261  /// set on it.
262  class EHCatchScope *pushCatch(unsigned NumHandlers);
263
264  /// Pops a catch scope off the stack.
265  void popCatch();
266
267  /// Push an exceptions filter on the stack.
268  class EHFilterScope *pushFilter(unsigned NumFilters);
269
270  /// Pops an exceptions filter off the stack.
271  void popFilter();
272
273  /// Push a terminate handler on the stack.
274  void pushTerminate();
275
276  /// Pops a terminate handler off the stack.
277  void popTerminate();
278
279  /// Determines whether the exception-scopes stack is empty.
280  bool empty() const { return StartOfData == EndOfBuffer; }
281
282  bool requiresLandingPad() const {
283    return (CatchDepth || hasEHCleanups());
284  }
285
286  /// Determines whether there are any normal cleanups on the stack.
287  bool hasNormalCleanups() const {
288    return InnermostNormalCleanup != stable_end();
289  }
290
291  /// Returns the innermost normal cleanup on the stack, or
292  /// stable_end() if there are no normal cleanups.
293  stable_iterator getInnermostNormalCleanup() const {
294    return InnermostNormalCleanup;
295  }
296
297  /// Determines whether there are any EH cleanups on the stack.
298  bool hasEHCleanups() const {
299    return InnermostEHCleanup != stable_end();
300  }
301
302  /// Returns the innermost EH cleanup on the stack, or stable_end()
303  /// if there are no EH cleanups.
304  stable_iterator getInnermostEHCleanup() const {
305    return InnermostEHCleanup;
306  }
307
308  /// An unstable reference to a scope-stack depth.  Invalidated by
309  /// pushes but not pops.
310  class iterator;
311
312  /// Returns an iterator pointing to the innermost EH scope.
313  iterator begin() const;
314
315  /// Returns an iterator pointing to the outermost EH scope.
316  iterator end() const;
317
318  /// Create a stable reference to the top of the EH stack.  The
319  /// returned reference is valid until that scope is popped off the
320  /// stack.
321  stable_iterator stable_begin() const {
322    return stable_iterator(EndOfBuffer - StartOfData);
323  }
324
325  /// Create a stable reference to the bottom of the EH stack.
326  static stable_iterator stable_end() {
327    return stable_iterator(0);
328  }
329
330  /// Translates an iterator into a stable_iterator.
331  stable_iterator stabilize(iterator it) const;
332
333  /// Finds the nearest cleanup enclosing the given iterator.
334  /// Returns stable_iterator::invalid() if there are no such cleanups.
335  stable_iterator getEnclosingEHCleanup(iterator it) const;
336
337  /// Turn a stable reference to a scope depth into a unstable pointer
338  /// to the EH stack.
339  iterator find(stable_iterator save) const;
340
341  /// Removes the cleanup pointed to by the given stable_iterator.
342  void removeCleanup(stable_iterator save);
343
344  /// Add a branch fixup to the current cleanup scope.
345  BranchFixup &addBranchFixup() {
346    assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
347    BranchFixups.push_back(BranchFixup());
348    return BranchFixups.back();
349  }
350
351  unsigned getNumBranchFixups() const { return BranchFixups.size(); }
352  BranchFixup &getBranchFixup(unsigned I) {
353    assert(I < getNumBranchFixups());
354    return BranchFixups[I];
355  }
356
357  /// Mark any branch fixups leading to the given block as resolved.
358  void resolveBranchFixups(llvm::BasicBlock *Dest);
359};
360
361/// CodeGenFunction - This class organizes the per-function state that is used
362/// while generating LLVM code.
363class CodeGenFunction : public BlockFunction {
364  CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT
365  void operator=(const CodeGenFunction&);  // DO NOT IMPLEMENT
366public:
367  /// A jump destination is a pair of a basic block and a cleanup
368  /// depth.  They are used to implement direct jumps across cleanup
369  /// scopes, e.g. goto, break, continue, and return.
370  struct JumpDest {
371    JumpDest() : Block(0), ScopeDepth() {}
372    JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth)
373      : Block(Block), ScopeDepth(Depth) {}
374
375    llvm::BasicBlock *Block;
376    EHScopeStack::stable_iterator ScopeDepth;
377  };
378
379  CodeGenModule &CGM;  // Per-module state.
380  const TargetInfo &Target;
381
382  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
383  CGBuilderTy Builder;
384
385  /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
386  /// This excludes BlockDecls.
387  const Decl *CurFuncDecl;
388  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
389  const Decl *CurCodeDecl;
390  const CGFunctionInfo *CurFnInfo;
391  QualType FnRetTy;
392  llvm::Function *CurFn;
393
394  /// CurGD - The GlobalDecl for the current function being compiled.
395  GlobalDecl CurGD;
396
397  /// ReturnBlock - Unified return block.
398  JumpDest ReturnBlock;
399
400  /// ReturnValue - The temporary alloca to hold the return value. This is null
401  /// iff the function has no return value.
402  llvm::Value *ReturnValue;
403
404  /// AllocaInsertPoint - This is an instruction in the entry block before which
405  /// we prefer to insert allocas.
406  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
407
408  // intptr_t, i32, i64
409  const llvm::IntegerType *IntPtrTy, *Int32Ty, *Int64Ty;
410  uint32_t LLVMPointerWidth;
411
412  bool Exceptions;
413  bool CatchUndefined;
414
415  /// \brief A mapping from NRVO variables to the flags used to indicate
416  /// when the NRVO has been applied to this variable.
417  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
418
419  EHScopeStack EHStack;
420
421  /// The exception slot.  All landing pads write the current
422  /// exception pointer into this alloca.
423  llvm::Value *ExceptionSlot;
424
425  /// Emits a landing pad for the current EH stack.
426  llvm::BasicBlock *EmitLandingPad();
427
428  llvm::BasicBlock *getInvokeDestImpl();
429
430public:
431  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
432  /// rethrows.
433  llvm::SmallVector<llvm::Value*, 8> ObjCEHValueStack;
434
435  // A struct holding information about a finally block's IR
436  // generation.  For now, doesn't actually hold anything.
437  struct FinallyInfo {
438  };
439
440  FinallyInfo EnterFinallyBlock(const Stmt *Stmt,
441                                llvm::Constant *BeginCatchFn,
442                                llvm::Constant *EndCatchFn,
443                                llvm::Constant *RethrowFn);
444  void ExitFinallyBlock(FinallyInfo &FinallyInfo);
445
446  /// PushDestructorCleanup - Push a cleanup to call the
447  /// complete-object destructor of an object of the given type at the
448  /// given address.  Does nothing if T is not a C++ class type with a
449  /// non-trivial destructor.
450  void PushDestructorCleanup(QualType T, llvm::Value *Addr);
451
452  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
453  /// process all branch fixups.
454  void PopCleanupBlock();
455
456  /// CleanupBlock - RAII object that will create a cleanup block and
457  /// set the insert point to that block. When destructed, it sets the
458  /// insert point to the previous block and pushes a new cleanup
459  /// entry on the stack.
460  class CleanupBlock {
461    CodeGenFunction &CGF;
462    CGBuilderTy::InsertPoint SavedIP;
463    llvm::BasicBlock *NormalCleanupEntryBB;
464    llvm::BasicBlock *NormalCleanupExitBB;
465    llvm::BasicBlock *EHCleanupEntryBB;
466
467  public:
468    CleanupBlock(CodeGenFunction &CGF, CleanupKind Kind);
469
470    /// If we're currently writing a normal cleanup, tie that off and
471    /// start writing an EH cleanup.
472    void beginEHCleanup();
473
474    ~CleanupBlock();
475  };
476
477  /// \brief Enters a new scope for capturing cleanups, all of which
478  /// will be executed once the scope is exited.
479  class RunCleanupsScope {
480    CodeGenFunction& CGF;
481    EHScopeStack::stable_iterator CleanupStackDepth;
482    bool OldDidCallStackSave;
483    bool PerformCleanup;
484
485    RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT
486    RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT
487
488  public:
489    /// \brief Enter a new cleanup scope.
490    explicit RunCleanupsScope(CodeGenFunction &CGF)
491      : CGF(CGF), PerformCleanup(true)
492    {
493      CleanupStackDepth = CGF.EHStack.stable_begin();
494      OldDidCallStackSave = CGF.DidCallStackSave;
495    }
496
497    /// \brief Exit this cleanup scope, emitting any accumulated
498    /// cleanups.
499    ~RunCleanupsScope() {
500      if (PerformCleanup) {
501        CGF.DidCallStackSave = OldDidCallStackSave;
502        CGF.PopCleanupBlocks(CleanupStackDepth);
503      }
504    }
505
506    /// \brief Determine whether this scope requires any cleanups.
507    bool requiresCleanups() const {
508      return CGF.EHStack.stable_begin() != CleanupStackDepth;
509    }
510
511    /// \brief Force the emission of cleanups now, instead of waiting
512    /// until this object is destroyed.
513    void ForceCleanup() {
514      assert(PerformCleanup && "Already forced cleanup");
515      CGF.DidCallStackSave = OldDidCallStackSave;
516      CGF.PopCleanupBlocks(CleanupStackDepth);
517      PerformCleanup = false;
518    }
519  };
520
521
522  /// PopCleanupBlocks - Takes the old cleanup stack size and emits
523  /// the cleanup blocks that have been added.
524  void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
525
526  /// The given basic block lies in the current EH scope, but may be a
527  /// target of a potentially scope-crossing jump; get a stable handle
528  /// to which we can perform this jump later.
529  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) const {
530    return JumpDest(Target, EHStack.stable_begin());
531  }
532
533  /// The given basic block lies in the current EH scope, but may be a
534  /// target of a potentially scope-crossing jump; get a stable handle
535  /// to which we can perform this jump later.
536  JumpDest getJumpDestInCurrentScope(const char *Name = 0) {
537    return JumpDest(createBasicBlock(Name), EHStack.stable_begin());
538  }
539
540  /// EmitBranchThroughCleanup - Emit a branch from the current insert
541  /// block through the normal cleanup handling code (if any) and then
542  /// on to \arg Dest.
543  void EmitBranchThroughCleanup(JumpDest Dest);
544
545  /// EmitBranchThroughEHCleanup - Emit a branch from the current
546  /// insert block through the EH cleanup handling code (if any) and
547  /// then on to \arg Dest.
548  void EmitBranchThroughEHCleanup(JumpDest Dest);
549
550  /// BeginConditionalBranch - Should be called before a conditional part of an
551  /// expression is emitted. For example, before the RHS of the expression below
552  /// is emitted:
553  ///
554  /// b && f(T());
555  ///
556  /// This is used to make sure that any temporaries created in the conditional
557  /// branch are only destroyed if the branch is taken.
558  void BeginConditionalBranch() {
559    ++ConditionalBranchLevel;
560  }
561
562  /// EndConditionalBranch - Should be called after a conditional part of an
563  /// expression has been emitted.
564  void EndConditionalBranch() {
565    assert(ConditionalBranchLevel != 0 &&
566           "Conditional branch mismatch!");
567
568    --ConditionalBranchLevel;
569  }
570
571private:
572  CGDebugInfo *DebugInfo;
573
574  /// IndirectBranch - The first time an indirect goto is seen we create a block
575  /// with an indirect branch.  Every time we see the address of a label taken,
576  /// we add the label to the indirect goto.  Every subsequent indirect goto is
577  /// codegen'd as a jump to the IndirectBranch's basic block.
578  llvm::IndirectBrInst *IndirectBranch;
579
580  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
581  /// decls.
582  llvm::DenseMap<const Decl*, llvm::Value*> LocalDeclMap;
583
584  /// LabelMap - This keeps track of the LLVM basic block for each C label.
585  llvm::DenseMap<const LabelStmt*, JumpDest> LabelMap;
586
587  // BreakContinueStack - This keeps track of where break and continue
588  // statements should jump to.
589  struct BreakContinue {
590    BreakContinue(JumpDest Break, JumpDest Continue)
591      : BreakBlock(Break), ContinueBlock(Continue) {}
592
593    JumpDest BreakBlock;
594    JumpDest ContinueBlock;
595  };
596  llvm::SmallVector<BreakContinue, 8> BreakContinueStack;
597
598  /// SwitchInsn - This is nearest current switch instruction. It is null if if
599  /// current context is not in a switch.
600  llvm::SwitchInst *SwitchInsn;
601
602  /// CaseRangeBlock - This block holds if condition check for last case
603  /// statement range in current switch instruction.
604  llvm::BasicBlock *CaseRangeBlock;
605
606  /// InvokeDest - This is the nearest exception target for calls
607  /// which can unwind, when exceptions are being used.
608  llvm::BasicBlock *InvokeDest;
609
610  // VLASizeMap - This keeps track of the associated size for each VLA type.
611  // We track this by the size expression rather than the type itself because
612  // in certain situations, like a const qualifier applied to an VLA typedef,
613  // multiple VLA types can share the same size expression.
614  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
615  // enter/leave scopes.
616  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
617
618  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
619  /// calling llvm.stacksave for multiple VLAs in the same scope.
620  bool DidCallStackSave;
621
622  /// A block containing a single 'unreachable' instruction.  Created
623  /// lazily by getUnreachableBlock().
624  llvm::BasicBlock *UnreachableBlock;
625
626  /// CXXThisDecl - When generating code for a C++ member function,
627  /// this will hold the implicit 'this' declaration.
628  ImplicitParamDecl *CXXThisDecl;
629  llvm::Value *CXXThisValue;
630
631  /// CXXVTTDecl - When generating code for a base object constructor or
632  /// base object destructor with virtual bases, this will hold the implicit
633  /// VTT parameter.
634  ImplicitParamDecl *CXXVTTDecl;
635  llvm::Value *CXXVTTValue;
636
637  /// ConditionalBranchLevel - Contains the nesting level of the current
638  /// conditional branch. This is used so that we know if a temporary should be
639  /// destroyed conditionally.
640  unsigned ConditionalBranchLevel;
641
642
643  /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
644  /// type as well as the field number that contains the actual data.
645  llvm::DenseMap<const ValueDecl *, std::pair<const llvm::Type *,
646                                              unsigned> > ByRefValueInfo;
647
648  /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
649  /// number that holds the value.
650  unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
651
652  llvm::BasicBlock *TerminateLandingPad;
653  llvm::BasicBlock *TerminateHandler;
654  llvm::BasicBlock *TrapBB;
655
656public:
657  CodeGenFunction(CodeGenModule &cgm);
658
659  ASTContext &getContext() const;
660  CGDebugInfo *getDebugInfo() { return DebugInfo; }
661
662  /// Returns a pointer to the function's exception object slot, which
663  /// is assigned in every landing pad.
664  llvm::Value *getExceptionSlot();
665
666  llvm::BasicBlock *getUnreachableBlock() {
667    if (!UnreachableBlock) {
668      UnreachableBlock = createBasicBlock("unreachable");
669      new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
670    }
671    return UnreachableBlock;
672  }
673
674  llvm::BasicBlock *getInvokeDest() {
675    if (!EHStack.requiresLandingPad()) return 0;
676    return getInvokeDestImpl();
677  }
678
679  llvm::LLVMContext &getLLVMContext() { return VMContext; }
680
681  //===--------------------------------------------------------------------===//
682  //                                  Objective-C
683  //===--------------------------------------------------------------------===//
684
685  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
686
687  void StartObjCMethod(const ObjCMethodDecl *MD,
688                       const ObjCContainerDecl *CD);
689
690  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
691  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
692                          const ObjCPropertyImplDecl *PID);
693  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
694                                  ObjCMethodDecl *MD, bool ctor);
695
696  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
697  /// for the given property.
698  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
699                          const ObjCPropertyImplDecl *PID);
700  bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
701  bool IvarTypeWithAggrGCObjects(QualType Ty);
702
703  //===--------------------------------------------------------------------===//
704  //                                  Block Bits
705  //===--------------------------------------------------------------------===//
706
707  llvm::Value *BuildBlockLiteralTmp(const BlockExpr *);
708  llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
709                                           bool BlockHasCopyDispose,
710                                           CharUnits Size,
711                                           const llvm::StructType *,
712                                           std::vector<HelperInfo> *);
713
714  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
715                                        const BlockExpr *BExpr,
716                                        CGBlockInfo &Info,
717                                        const Decl *OuterFuncDecl,
718                                  llvm::DenseMap<const Decl*, llvm::Value*> ldm);
719
720  llvm::Value *LoadBlockStruct();
721
722  void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
723  void AllocateBlockDecl(const BlockDeclRefExpr *E);
724  llvm::Value *GetAddrOfBlockDecl(const BlockDeclRefExpr *E) {
725    return GetAddrOfBlockDecl(E->getDecl(), E->isByRef());
726  }
727  llvm::Value *GetAddrOfBlockDecl(const ValueDecl *D, bool ByRef);
728  const llvm::Type *BuildByRefType(const ValueDecl *D);
729
730  void GenerateCode(GlobalDecl GD, llvm::Function *Fn);
731  void StartFunction(GlobalDecl GD, QualType RetTy,
732                     llvm::Function *Fn,
733                     const FunctionArgList &Args,
734                     SourceLocation StartLoc);
735
736  void EmitConstructorBody(FunctionArgList &Args);
737  void EmitDestructorBody(FunctionArgList &Args);
738  void EmitFunctionBody(FunctionArgList &Args);
739
740  /// EmitReturnBlock - Emit the unified return block, trying to avoid its
741  /// emission when possible.
742  void EmitReturnBlock();
743
744  /// FinishFunction - Complete IR generation of the current function. It is
745  /// legal to call this function even if there is no current insertion point.
746  void FinishFunction(SourceLocation EndLoc=SourceLocation());
747
748  /// GenerateThunk - Generate a thunk for the given method.
749  void GenerateThunk(llvm::Function *Fn, GlobalDecl GD, const ThunkInfo &Thunk);
750
751  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
752                        FunctionArgList &Args);
753
754  /// InitializeVTablePointer - Initialize the vtable pointer of the given
755  /// subobject.
756  ///
757  void InitializeVTablePointer(BaseSubobject Base,
758                               const CXXRecordDecl *NearestVBase,
759                               uint64_t OffsetFromNearestVBase,
760                               llvm::Constant *VTable,
761                               const CXXRecordDecl *VTableClass);
762
763  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
764  void InitializeVTablePointers(BaseSubobject Base,
765                                const CXXRecordDecl *NearestVBase,
766                                uint64_t OffsetFromNearestVBase,
767                                bool BaseIsNonVirtualPrimaryBase,
768                                llvm::Constant *VTable,
769                                const CXXRecordDecl *VTableClass,
770                                VisitedVirtualBasesSetTy& VBases);
771
772  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
773
774
775  /// EmitDtorEpilogue - Emit all code that comes at the end of class's
776  /// destructor. This is to call destructors on members and base classes in
777  /// reverse order of their construction.
778  void EmitDtorEpilogue(const CXXDestructorDecl *Dtor,
779                        CXXDtorType Type);
780
781  /// ShouldInstrumentFunction - Return true if the current function should be
782  /// instrumented with __cyg_profile_func_* calls
783  bool ShouldInstrumentFunction();
784
785  /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
786  /// instrumentation function with the current function and the call site, if
787  /// function instrumentation is enabled.
788  void EmitFunctionInstrumentation(const char *Fn);
789
790  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
791  /// arguments for the given function. This is also responsible for naming the
792  /// LLVM function arguments.
793  void EmitFunctionProlog(const CGFunctionInfo &FI,
794                          llvm::Function *Fn,
795                          const FunctionArgList &Args);
796
797  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
798  /// given temporary.
799  void EmitFunctionEpilog(const CGFunctionInfo &FI);
800
801  /// EmitStartEHSpec - Emit the start of the exception spec.
802  void EmitStartEHSpec(const Decl *D);
803
804  /// EmitEndEHSpec - Emit the end of the exception spec.
805  void EmitEndEHSpec(const Decl *D);
806
807  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
808  llvm::BasicBlock *getTerminateLandingPad();
809
810  /// getTerminateHandler - Return a handler (not a landing pad, just
811  /// a catch handler) that just calls terminate.  This is used when
812  /// a terminate scope encloses a try.
813  llvm::BasicBlock *getTerminateHandler();
814
815  const llvm::Type *ConvertTypeForMem(QualType T);
816  const llvm::Type *ConvertType(QualType T);
817  const llvm::Type *ConvertType(const TypeDecl *T) {
818    return ConvertType(getContext().getTypeDeclType(T));
819  }
820
821  /// LoadObjCSelf - Load the value of self. This function is only valid while
822  /// generating code for an Objective-C method.
823  llvm::Value *LoadObjCSelf();
824
825  /// TypeOfSelfObject - Return type of object that this self represents.
826  QualType TypeOfSelfObject();
827
828  /// hasAggregateLLVMType - Return true if the specified AST type will map into
829  /// an aggregate LLVM type or is void.
830  static bool hasAggregateLLVMType(QualType T);
831
832  /// createBasicBlock - Create an LLVM basic block.
833  llvm::BasicBlock *createBasicBlock(const char *Name="",
834                                     llvm::Function *Parent=0,
835                                     llvm::BasicBlock *InsertBefore=0) {
836#ifdef NDEBUG
837    return llvm::BasicBlock::Create(VMContext, "", Parent, InsertBefore);
838#else
839    return llvm::BasicBlock::Create(VMContext, Name, Parent, InsertBefore);
840#endif
841  }
842
843  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
844  /// label maps to.
845  JumpDest getJumpDestForLabel(const LabelStmt *S);
846
847  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
848  /// another basic block, simplify it. This assumes that no other code could
849  /// potentially reference the basic block.
850  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
851
852  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
853  /// adding a fall-through branch from the current insert block if
854  /// necessary. It is legal to call this function even if there is no current
855  /// insertion point.
856  ///
857  /// IsFinished - If true, indicates that the caller has finished emitting
858  /// branches to the given block and does not expect to emit code into it. This
859  /// means the block can be ignored if it is unreachable.
860  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
861
862  /// EmitBranch - Emit a branch to the specified basic block from the current
863  /// insert block, taking care to avoid creation of branches from dummy
864  /// blocks. It is legal to call this function even if there is no current
865  /// insertion point.
866  ///
867  /// This function clears the current insertion point. The caller should follow
868  /// calls to this function with calls to Emit*Block prior to generation new
869  /// code.
870  void EmitBranch(llvm::BasicBlock *Block);
871
872  /// HaveInsertPoint - True if an insertion point is defined. If not, this
873  /// indicates that the current code being emitted is unreachable.
874  bool HaveInsertPoint() const {
875    return Builder.GetInsertBlock() != 0;
876  }
877
878  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
879  /// emitted IR has a place to go. Note that by definition, if this function
880  /// creates a block then that block is unreachable; callers may do better to
881  /// detect when no insertion point is defined and simply skip IR generation.
882  void EnsureInsertPoint() {
883    if (!HaveInsertPoint())
884      EmitBlock(createBasicBlock());
885  }
886
887  /// ErrorUnsupported - Print out an error that codegen doesn't support the
888  /// specified stmt yet.
889  void ErrorUnsupported(const Stmt *S, const char *Type,
890                        bool OmitOnError=false);
891
892  //===--------------------------------------------------------------------===//
893  //                                  Helpers
894  //===--------------------------------------------------------------------===//
895
896  Qualifiers MakeQualifiers(QualType T) {
897    Qualifiers Quals = getContext().getCanonicalType(T).getQualifiers();
898    Quals.setObjCGCAttr(getContext().getObjCGCAttrKind(T));
899    return Quals;
900  }
901
902  /// CreateTempAlloca - This creates a alloca and inserts it into the entry
903  /// block. The caller is responsible for setting an appropriate alignment on
904  /// the alloca.
905  llvm::AllocaInst *CreateTempAlloca(const llvm::Type *Ty,
906                                     const llvm::Twine &Name = "tmp");
907
908  /// InitTempAlloca - Provide an initial value for the given alloca.
909  void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
910
911  /// CreateIRTemp - Create a temporary IR object of the given type, with
912  /// appropriate alignment. This routine should only be used when an temporary
913  /// value needs to be stored into an alloca (for example, to avoid explicit
914  /// PHI construction), but the type is the IR type, not the type appropriate
915  /// for storing in memory.
916  llvm::AllocaInst *CreateIRTemp(QualType T, const llvm::Twine &Name = "tmp");
917
918  /// CreateMemTemp - Create a temporary memory object of the given type, with
919  /// appropriate alignment.
920  llvm::AllocaInst *CreateMemTemp(QualType T, const llvm::Twine &Name = "tmp");
921
922  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
923  /// expression and compare the result against zero, returning an Int1Ty value.
924  llvm::Value *EvaluateExprAsBool(const Expr *E);
925
926  /// EmitAnyExpr - Emit code to compute the specified expression which can have
927  /// any type.  The result is returned as an RValue struct.  If this is an
928  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
929  /// the result should be returned.
930  ///
931  /// \param IgnoreResult - True if the resulting value isn't used.
932  RValue EmitAnyExpr(const Expr *E, llvm::Value *AggLoc = 0,
933                     bool IsAggLocVolatile = false, bool IgnoreResult = false,
934                     bool IsInitializer = false);
935
936  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
937  // or the value of the expression, depending on how va_list is defined.
938  llvm::Value *EmitVAListRef(const Expr *E);
939
940  /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
941  /// always be accessible even if no aggregate location is provided.
942  RValue EmitAnyExprToTemp(const Expr *E, bool IsAggLocVolatile = false,
943                           bool IsInitializer = false);
944
945  /// EmitsAnyExprToMem - Emits the code necessary to evaluate an
946  /// arbitrary expression into the given memory location.
947  void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
948                        bool IsLocationVolatile = false,
949                        bool IsInitializer = false);
950
951  /// EmitAggregateCopy - Emit an aggrate copy.
952  ///
953  /// \param isVolatile - True iff either the source or the destination is
954  /// volatile.
955  void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
956                         QualType EltTy, bool isVolatile=false);
957
958  /// StartBlock - Start new block named N. If insert block is a dummy block
959  /// then reuse it.
960  void StartBlock(const char *N);
961
962  /// GetAddrOfStaticLocalVar - Return the address of a static local variable.
963  llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD);
964
965  /// GetAddrOfLocalVar - Return the address of a local variable.
966  llvm::Value *GetAddrOfLocalVar(const VarDecl *VD);
967
968  /// getAccessedFieldNo - Given an encoded value and a result number, return
969  /// the input field number being accessed.
970  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
971
972  llvm::BlockAddress *GetAddrOfLabel(const LabelStmt *L);
973  llvm::BasicBlock *GetIndirectGotoBlock();
974
975  /// EmitNullInitialization - Generate code to set a value of the given type to
976  /// null, If the type contains data member pointers, they will be initialized
977  /// to -1 in accordance with the Itanium C++ ABI.
978  void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
979
980  // EmitVAArg - Generate code to get an argument from the passed in pointer
981  // and update it accordingly. The return value is a pointer to the argument.
982  // FIXME: We should be able to get rid of this method and use the va_arg
983  // instruction in LLVM instead once it works well enough.
984  llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
985
986  /// EmitVLASize - Generate code for any VLA size expressions that might occur
987  /// in a variably modified type. If Ty is a VLA, will return the value that
988  /// corresponds to the size in bytes of the VLA type. Will return 0 otherwise.
989  ///
990  /// This function can be called with a null (unreachable) insert point.
991  llvm::Value *EmitVLASize(QualType Ty);
992
993  // GetVLASize - Returns an LLVM value that corresponds to the size in bytes
994  // of a variable length array type.
995  llvm::Value *GetVLASize(const VariableArrayType *);
996
997  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
998  /// generating code for an C++ member function.
999  llvm::Value *LoadCXXThis() {
1000    assert(CXXThisValue && "no 'this' value for this function");
1001    return CXXThisValue;
1002  }
1003
1004  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1005  /// virtual bases.
1006  llvm::Value *LoadCXXVTT() {
1007    assert(CXXVTTValue && "no VTT value for this function");
1008    return CXXVTTValue;
1009  }
1010
1011  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1012  /// complete class to the given direct base.
1013  llvm::Value *
1014  GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1015                                        const CXXRecordDecl *Derived,
1016                                        const CXXRecordDecl *Base,
1017                                        bool BaseIsVirtual);
1018
1019  /// GetAddressOfBaseClass - This function will add the necessary delta to the
1020  /// load of 'this' and returns address of the base class.
1021  llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1022                                     const CXXRecordDecl *Derived,
1023                                     const CXXBaseSpecifierArray &BasePath,
1024                                     bool NullCheckValue);
1025
1026  llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1027                                        const CXXRecordDecl *Derived,
1028                                        const CXXBaseSpecifierArray &BasePath,
1029                                        bool NullCheckValue);
1030
1031  llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
1032                                         const CXXRecordDecl *ClassDecl,
1033                                         const CXXRecordDecl *BaseClassDecl);
1034
1035  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1036                                      CXXCtorType CtorType,
1037                                      const FunctionArgList &Args);
1038  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1039                              bool ForVirtualBase, llvm::Value *This,
1040                              CallExpr::const_arg_iterator ArgBeg,
1041                              CallExpr::const_arg_iterator ArgEnd);
1042
1043  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1044                                  const ConstantArrayType *ArrayTy,
1045                                  llvm::Value *ArrayPtr,
1046                                  CallExpr::const_arg_iterator ArgBeg,
1047                                  CallExpr::const_arg_iterator ArgEnd);
1048
1049  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1050                                  llvm::Value *NumElements,
1051                                  llvm::Value *ArrayPtr,
1052                                  CallExpr::const_arg_iterator ArgBeg,
1053                                  CallExpr::const_arg_iterator ArgEnd);
1054
1055  void EmitCXXAggrDestructorCall(const CXXDestructorDecl *D,
1056                                 const ArrayType *Array,
1057                                 llvm::Value *This);
1058
1059  void EmitCXXAggrDestructorCall(const CXXDestructorDecl *D,
1060                                 llvm::Value *NumElements,
1061                                 llvm::Value *This);
1062
1063  llvm::Function *GenerateCXXAggrDestructorHelper(const CXXDestructorDecl *D,
1064                                                  const ArrayType *Array,
1065                                                  llvm::Value *This);
1066
1067  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1068                             bool ForVirtualBase, llvm::Value *This);
1069
1070  void EmitNewArrayInitializer(const CXXNewExpr *E, llvm::Value *NewPtr,
1071                               llvm::Value *NumElements);
1072
1073  void EmitCXXTemporary(const CXXTemporary *Temporary, llvm::Value *Ptr);
1074
1075  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1076  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1077
1078  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1079                      QualType DeleteTy);
1080
1081  llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1082  llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1083
1084  void EmitCheck(llvm::Value *, unsigned Size);
1085
1086  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1087                                       bool isInc, bool isPre);
1088  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1089                                         bool isInc, bool isPre);
1090  //===--------------------------------------------------------------------===//
1091  //                            Declaration Emission
1092  //===--------------------------------------------------------------------===//
1093
1094  /// EmitDecl - Emit a declaration.
1095  ///
1096  /// This function can be called with a null (unreachable) insert point.
1097  void EmitDecl(const Decl &D);
1098
1099  /// EmitBlockVarDecl - Emit a block variable declaration.
1100  ///
1101  /// This function can be called with a null (unreachable) insert point.
1102  void EmitBlockVarDecl(const VarDecl &D);
1103
1104  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1105                             llvm::Value *Address);
1106
1107  /// EmitLocalBlockVarDecl - Emit a local block variable declaration.
1108  ///
1109  /// This function can be called with a null (unreachable) insert point.
1110  void EmitLocalBlockVarDecl(const VarDecl &D, SpecialInitFn *SpecialInit = 0);
1111
1112  void EmitStaticBlockVarDecl(const VarDecl &D,
1113                              llvm::GlobalValue::LinkageTypes Linkage);
1114
1115  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1116  void EmitParmDecl(const VarDecl &D, llvm::Value *Arg);
1117
1118  //===--------------------------------------------------------------------===//
1119  //                             Statement Emission
1120  //===--------------------------------------------------------------------===//
1121
1122  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1123  void EmitStopPoint(const Stmt *S);
1124
1125  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1126  /// this function even if there is no current insertion point.
1127  ///
1128  /// This function may clear the current insertion point; callers should use
1129  /// EnsureInsertPoint if they wish to subsequently generate code without first
1130  /// calling EmitBlock, EmitBranch, or EmitStmt.
1131  void EmitStmt(const Stmt *S);
1132
1133  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1134  /// necessarily require an insertion point or debug information; typically
1135  /// because the statement amounts to a jump or a container of other
1136  /// statements.
1137  ///
1138  /// \return True if the statement was handled.
1139  bool EmitSimpleStmt(const Stmt *S);
1140
1141  RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1142                          llvm::Value *AggLoc = 0, bool isAggVol = false);
1143
1144  /// EmitLabel - Emit the block for the given label. It is legal to call this
1145  /// function even if there is no current insertion point.
1146  void EmitLabel(const LabelStmt &S); // helper for EmitLabelStmt.
1147
1148  void EmitLabelStmt(const LabelStmt &S);
1149  void EmitGotoStmt(const GotoStmt &S);
1150  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1151  void EmitIfStmt(const IfStmt &S);
1152  void EmitWhileStmt(const WhileStmt &S);
1153  void EmitDoStmt(const DoStmt &S);
1154  void EmitForStmt(const ForStmt &S);
1155  void EmitReturnStmt(const ReturnStmt &S);
1156  void EmitDeclStmt(const DeclStmt &S);
1157  void EmitBreakStmt(const BreakStmt &S);
1158  void EmitContinueStmt(const ContinueStmt &S);
1159  void EmitSwitchStmt(const SwitchStmt &S);
1160  void EmitDefaultStmt(const DefaultStmt &S);
1161  void EmitCaseStmt(const CaseStmt &S);
1162  void EmitCaseStmtRange(const CaseStmt &S);
1163  void EmitAsmStmt(const AsmStmt &S);
1164
1165  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1166  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1167  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1168  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1169
1170  llvm::Constant *getUnwindResumeOrRethrowFn();
1171  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1172  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1173
1174  void EmitCXXTryStmt(const CXXTryStmt &S);
1175
1176  //===--------------------------------------------------------------------===//
1177  //                         LValue Expression Emission
1178  //===--------------------------------------------------------------------===//
1179
1180  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
1181  RValue GetUndefRValue(QualType Ty);
1182
1183  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
1184  /// and issue an ErrorUnsupported style diagnostic (using the
1185  /// provided Name).
1186  RValue EmitUnsupportedRValue(const Expr *E,
1187                               const char *Name);
1188
1189  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
1190  /// an ErrorUnsupported style diagnostic (using the provided Name).
1191  LValue EmitUnsupportedLValue(const Expr *E,
1192                               const char *Name);
1193
1194  /// EmitLValue - Emit code to compute a designator that specifies the location
1195  /// of the expression.
1196  ///
1197  /// This can return one of two things: a simple address or a bitfield
1198  /// reference.  In either case, the LLVM Value* in the LValue structure is
1199  /// guaranteed to be an LLVM pointer type.
1200  ///
1201  /// If this returns a bitfield reference, nothing about the pointee type of
1202  /// the LLVM value is known: For example, it may not be a pointer to an
1203  /// integer.
1204  ///
1205  /// If this returns a normal address, and if the lvalue's C type is fixed
1206  /// size, this method guarantees that the returned pointer type will point to
1207  /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
1208  /// variable length type, this is not possible.
1209  ///
1210  LValue EmitLValue(const Expr *E);
1211
1212  /// EmitCheckedLValue - Same as EmitLValue but additionally we generate
1213  /// checking code to guard against undefined behavior.  This is only
1214  /// suitable when we know that the address will be used to access the
1215  /// object.
1216  LValue EmitCheckedLValue(const Expr *E);
1217
1218  /// EmitLoadOfScalar - Load a scalar value from an address, taking
1219  /// care to appropriately convert from the memory representation to
1220  /// the LLVM value representation.
1221  llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1222                                QualType Ty);
1223
1224  /// EmitStoreOfScalar - Store a scalar value to an address, taking
1225  /// care to appropriately convert from the memory representation to
1226  /// the LLVM value representation.
1227  void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1228                         bool Volatile, QualType Ty);
1229
1230  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
1231  /// this method emits the address of the lvalue, then loads the result as an
1232  /// rvalue, returning the rvalue.
1233  RValue EmitLoadOfLValue(LValue V, QualType LVType);
1234  RValue EmitLoadOfExtVectorElementLValue(LValue V, QualType LVType);
1235  RValue EmitLoadOfBitfieldLValue(LValue LV, QualType ExprType);
1236  RValue EmitLoadOfPropertyRefLValue(LValue LV, QualType ExprType);
1237  RValue EmitLoadOfKVCRefLValue(LValue LV, QualType ExprType);
1238
1239
1240  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1241  /// lvalue, where both are guaranteed to the have the same type, and that type
1242  /// is 'Ty'.
1243  void EmitStoreThroughLValue(RValue Src, LValue Dst, QualType Ty);
1244  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst,
1245                                                QualType Ty);
1246  void EmitStoreThroughPropertyRefLValue(RValue Src, LValue Dst, QualType Ty);
1247  void EmitStoreThroughKVCRefLValue(RValue Src, LValue Dst, QualType Ty);
1248
1249  /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
1250  /// EmitStoreThroughLValue.
1251  ///
1252  /// \param Result [out] - If non-null, this will be set to a Value* for the
1253  /// bit-field contents after the store, appropriate for use as the result of
1254  /// an assignment to the bit-field.
1255  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, QualType Ty,
1256                                      llvm::Value **Result=0);
1257
1258  // Note: only availabe for agg return types
1259  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
1260  LValue EmitCompoundAssignOperatorLValue(const CompoundAssignOperator *E);
1261  // Note: only available for agg return types
1262  LValue EmitCallExprLValue(const CallExpr *E);
1263  // Note: only available for agg return types
1264  LValue EmitVAArgExprLValue(const VAArgExpr *E);
1265  LValue EmitDeclRefLValue(const DeclRefExpr *E);
1266  LValue EmitStringLiteralLValue(const StringLiteral *E);
1267  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
1268  LValue EmitPredefinedFunctionName(unsigned Type);
1269  LValue EmitPredefinedLValue(const PredefinedExpr *E);
1270  LValue EmitUnaryOpLValue(const UnaryOperator *E);
1271  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
1272  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
1273  LValue EmitMemberExpr(const MemberExpr *E);
1274  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
1275  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
1276  LValue EmitConditionalOperatorLValue(const ConditionalOperator *E);
1277  LValue EmitCastLValue(const CastExpr *E);
1278  LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
1279
1280  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
1281                              const ObjCIvarDecl *Ivar);
1282  LValue EmitLValueForAnonRecordField(llvm::Value* Base,
1283                                      const FieldDecl* Field,
1284                                      unsigned CVRQualifiers);
1285  LValue EmitLValueForField(llvm::Value* Base, const FieldDecl* Field,
1286                            unsigned CVRQualifiers);
1287
1288  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
1289  /// if the Field is a reference, this will return the address of the reference
1290  /// and not the address of the value stored in the reference.
1291  LValue EmitLValueForFieldInitialization(llvm::Value* Base,
1292                                          const FieldDecl* Field,
1293                                          unsigned CVRQualifiers);
1294
1295  LValue EmitLValueForIvar(QualType ObjectTy,
1296                           llvm::Value* Base, const ObjCIvarDecl *Ivar,
1297                           unsigned CVRQualifiers);
1298
1299  LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field,
1300                                unsigned CVRQualifiers);
1301
1302  LValue EmitBlockDeclRefLValue(const BlockDeclRefExpr *E);
1303
1304  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
1305  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
1306  LValue EmitCXXExprWithTemporariesLValue(const CXXExprWithTemporaries *E);
1307  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
1308
1309  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
1310  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
1311  LValue EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E);
1312  LValue EmitObjCKVCRefLValue(const ObjCImplicitSetterGetterRefExpr *E);
1313  LValue EmitObjCSuperExprLValue(const ObjCSuperExpr *E);
1314  LValue EmitStmtExprLValue(const StmtExpr *E);
1315  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
1316  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
1317
1318  //===--------------------------------------------------------------------===//
1319  //                         Scalar Expression Emission
1320  //===--------------------------------------------------------------------===//
1321
1322  /// EmitCall - Generate a call of the given function, expecting the given
1323  /// result type, and using the given argument list which specifies both the
1324  /// LLVM arguments and the types they were derived from.
1325  ///
1326  /// \param TargetDecl - If given, the decl of the function in a direct call;
1327  /// used to set attributes on the call (noreturn, etc.).
1328  RValue EmitCall(const CGFunctionInfo &FnInfo,
1329                  llvm::Value *Callee,
1330                  ReturnValueSlot ReturnValue,
1331                  const CallArgList &Args,
1332                  const Decl *TargetDecl = 0,
1333                  llvm::Instruction **callOrInvoke = 0);
1334
1335  RValue EmitCall(QualType FnType, llvm::Value *Callee,
1336                  ReturnValueSlot ReturnValue,
1337                  CallExpr::const_arg_iterator ArgBeg,
1338                  CallExpr::const_arg_iterator ArgEnd,
1339                  const Decl *TargetDecl = 0);
1340  RValue EmitCallExpr(const CallExpr *E,
1341                      ReturnValueSlot ReturnValue = ReturnValueSlot());
1342
1343  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
1344                                  llvm::Value * const *ArgBegin,
1345                                  llvm::Value * const *ArgEnd,
1346                                  const llvm::Twine &Name = "");
1347
1348  llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
1349                                const llvm::Type *Ty);
1350  llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
1351                                llvm::Value *&This, const llvm::Type *Ty);
1352
1353  RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
1354                           llvm::Value *Callee,
1355                           ReturnValueSlot ReturnValue,
1356                           llvm::Value *This,
1357                           llvm::Value *VTT,
1358                           CallExpr::const_arg_iterator ArgBeg,
1359                           CallExpr::const_arg_iterator ArgEnd);
1360  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
1361                               ReturnValueSlot ReturnValue);
1362  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
1363                                      ReturnValueSlot ReturnValue);
1364
1365  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
1366                                       const CXXMethodDecl *MD,
1367                                       ReturnValueSlot ReturnValue);
1368
1369
1370  RValue EmitBuiltinExpr(const FunctionDecl *FD,
1371                         unsigned BuiltinID, const CallExpr *E);
1372
1373  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
1374
1375  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
1376  /// is unhandled by the current target.
1377  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
1378
1379  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
1380  llvm::Value *EmitNeonCall(llvm::Function *F,
1381                            llvm::SmallVectorImpl<llvm::Value*> &O,
1382                            const char *name, bool splat = false,
1383                            unsigned shift = 0, bool rightshift = false);
1384  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
1385  llvm::Value *EmitNeonShiftVector(llvm::Value *V, const llvm::Type *Ty,
1386                                   bool negateForRightShift);
1387
1388  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
1389  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
1390
1391  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
1392  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
1393  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
1394  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
1395                             ReturnValueSlot Return = ReturnValueSlot());
1396  RValue EmitObjCPropertyGet(const Expr *E,
1397                             ReturnValueSlot Return = ReturnValueSlot());
1398  RValue EmitObjCSuperPropertyGet(const Expr *Exp, const Selector &S,
1399                                  ReturnValueSlot Return = ReturnValueSlot());
1400  void EmitObjCPropertySet(const Expr *E, RValue Src);
1401  void EmitObjCSuperPropertySet(const Expr *E, const Selector &S, RValue Src);
1402
1403
1404  /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
1405  /// expression. Will emit a temporary variable if E is not an LValue.
1406  RValue EmitReferenceBindingToExpr(const Expr* E,
1407                                    const NamedDecl *InitializedDecl);
1408
1409  //===--------------------------------------------------------------------===//
1410  //                           Expression Emission
1411  //===--------------------------------------------------------------------===//
1412
1413  // Expressions are broken into three classes: scalar, complex, aggregate.
1414
1415  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
1416  /// scalar type, returning the result.
1417  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
1418
1419  /// EmitScalarConversion - Emit a conversion from the specified type to the
1420  /// specified destination type, both of which are LLVM scalar types.
1421  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
1422                                    QualType DstTy);
1423
1424  /// EmitComplexToScalarConversion - Emit a conversion from the specified
1425  /// complex type to the specified destination type, where the destination type
1426  /// is an LLVM scalar type.
1427  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
1428                                             QualType DstTy);
1429
1430
1431  /// EmitAggExpr - Emit the computation of the specified expression of
1432  /// aggregate type.  The result is computed into DestPtr.  Note that if
1433  /// DestPtr is null, the value of the aggregate expression is not needed.
1434  void EmitAggExpr(const Expr *E, llvm::Value *DestPtr, bool VolatileDest,
1435                   bool IgnoreResult = false, bool IsInitializer = false,
1436                   bool RequiresGCollection = false);
1437
1438  /// EmitAggExprToLValue - Emit the computation of the specified expression of
1439  /// aggregate type into a temporary LValue.
1440  LValue EmitAggExprToLValue(const Expr *E);
1441
1442  /// EmitGCMemmoveCollectable - Emit special API for structs with object
1443  /// pointers.
1444  void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1445                                QualType Ty);
1446
1447  /// EmitComplexExpr - Emit the computation of the specified expression of
1448  /// complex type, returning the result.
1449  ComplexPairTy EmitComplexExpr(const Expr *E, bool IgnoreReal = false,
1450                                bool IgnoreImag = false,
1451                                bool IgnoreRealAssign = false,
1452                                bool IgnoreImagAssign = false);
1453
1454  /// EmitComplexExprIntoAddr - Emit the computation of the specified expression
1455  /// of complex type, storing into the specified Value*.
1456  void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
1457                               bool DestIsVolatile);
1458
1459  /// StoreComplexToAddr - Store a complex number into the specified address.
1460  void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
1461                          bool DestIsVolatile);
1462  /// LoadComplexFromAddr - Load a complex number from the specified address.
1463  ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
1464
1465  /// CreateStaticBlockVarDecl - Create a zero-initialized LLVM global for a
1466  /// static block var decl.
1467  llvm::GlobalVariable *CreateStaticBlockVarDecl(const VarDecl &D,
1468                                                 const char *Separator,
1469                                       llvm::GlobalValue::LinkageTypes Linkage);
1470
1471  /// AddInitializerToGlobalBlockVarDecl - Add the initializer for 'D' to the
1472  /// global variable that has already been created for it.  If the initializer
1473  /// has a different type than GV does, this may free GV and return a different
1474  /// one.  Otherwise it just returns GV.
1475  llvm::GlobalVariable *
1476  AddInitializerToGlobalBlockVarDecl(const VarDecl &D,
1477                                     llvm::GlobalVariable *GV);
1478
1479
1480  /// EmitStaticCXXBlockVarDeclInit - Create the initializer for a C++ runtime
1481  /// initialized static block var decl.
1482  void EmitStaticCXXBlockVarDeclInit(const VarDecl &D,
1483                                     llvm::GlobalVariable *GV);
1484
1485  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
1486  /// variable with global storage.
1487  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr);
1488
1489  /// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr
1490  /// with the C++ runtime so that its destructor will be called at exit.
1491  void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn,
1492                                     llvm::Constant *DeclPtr);
1493
1494  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
1495  /// variables.
1496  void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
1497                                 llvm::Constant **Decls,
1498                                 unsigned NumDecls);
1499
1500  /// GenerateCXXGlobalDtorFunc - Generates code for destroying global
1501  /// variables.
1502  void GenerateCXXGlobalDtorFunc(llvm::Function *Fn,
1503                                 const std::vector<std::pair<llvm::WeakVH,
1504                                   llvm::Constant*> > &DtorsAndObjects);
1505
1506  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, const VarDecl *D);
1507
1508  void EmitCXXConstructExpr(llvm::Value *Dest, const CXXConstructExpr *E);
1509
1510  RValue EmitCXXExprWithTemporaries(const CXXExprWithTemporaries *E,
1511                                    llvm::Value *AggLoc = 0,
1512                                    bool IsAggLocVolatile = false,
1513                                    bool IsInitializer = false);
1514
1515  void EmitCXXThrowExpr(const CXXThrowExpr *E);
1516
1517  //===--------------------------------------------------------------------===//
1518  //                             Internal Helpers
1519  //===--------------------------------------------------------------------===//
1520
1521  /// ContainsLabel - Return true if the statement contains a label in it.  If
1522  /// this statement is not executed normally, it not containing a label means
1523  /// that we can just remove the code.
1524  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
1525
1526  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1527  /// to a constant, or if it does but contains a label, return 0.  If it
1528  /// constant folds to 'true' and does not contain a label, return 1, if it
1529  /// constant folds to 'false' and does not contain a label, return -1.
1530  int ConstantFoldsToSimpleInteger(const Expr *Cond);
1531
1532  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
1533  /// if statement) to the specified blocks.  Based on the condition, this might
1534  /// try to simplify the codegen of the conditional based on the branch.
1535  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
1536                            llvm::BasicBlock *FalseBlock);
1537
1538  /// getTrapBB - Create a basic block that will call the trap intrinsic.  We'll
1539  /// generate a branch around the created basic block as necessary.
1540  llvm::BasicBlock* getTrapBB();
1541
1542  /// EmitCallArg - Emit a single call argument.
1543  RValue EmitCallArg(const Expr *E, QualType ArgType);
1544
1545  /// EmitDelegateCallArg - We are performing a delegate call; that
1546  /// is, the current function is delegating to another one.  Produce
1547  /// a r-value suitable for passing the given parameter.
1548  RValue EmitDelegateCallArg(const VarDecl *Param);
1549
1550private:
1551  void EmitReturnOfRValue(RValue RV, QualType Ty);
1552
1553  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
1554  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
1555  ///
1556  /// \param AI - The first function argument of the expansion.
1557  /// \return The argument following the last expanded function
1558  /// argument.
1559  llvm::Function::arg_iterator
1560  ExpandTypeFromArgs(QualType Ty, LValue Dst,
1561                     llvm::Function::arg_iterator AI);
1562
1563  /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
1564  /// Ty, into individual arguments on the provided vector \arg Args. See
1565  /// ABIArgInfo::Expand.
1566  void ExpandTypeToArgs(QualType Ty, RValue Src,
1567                        llvm::SmallVector<llvm::Value*, 16> &Args);
1568
1569  llvm::Value* EmitAsmInput(const AsmStmt &S,
1570                            const TargetInfo::ConstraintInfo &Info,
1571                            const Expr *InputExpr, std::string &ConstraintStr);
1572
1573  /// EmitCallArgs - Emit call arguments for a function.
1574  /// The CallArgTypeInfo parameter is used for iterating over the known
1575  /// argument types of the function being called.
1576  template<typename T>
1577  void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
1578                    CallExpr::const_arg_iterator ArgBeg,
1579                    CallExpr::const_arg_iterator ArgEnd) {
1580      CallExpr::const_arg_iterator Arg = ArgBeg;
1581
1582    // First, use the argument types that the type info knows about
1583    if (CallArgTypeInfo) {
1584      for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
1585           E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
1586        assert(Arg != ArgEnd && "Running over edge of argument list!");
1587        QualType ArgType = *I;
1588
1589        assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
1590               getTypePtr() ==
1591               getContext().getCanonicalType(Arg->getType()).getTypePtr() &&
1592               "type mismatch in call argument!");
1593
1594        Args.push_back(std::make_pair(EmitCallArg(*Arg, ArgType),
1595                                      ArgType));
1596      }
1597
1598      // Either we've emitted all the call args, or we have a call to a
1599      // variadic function.
1600      assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
1601             "Extra arguments in non-variadic function!");
1602
1603    }
1604
1605    // If we still have any arguments, emit them using the type of the argument.
1606    for (; Arg != ArgEnd; ++Arg) {
1607      QualType ArgType = Arg->getType();
1608      Args.push_back(std::make_pair(EmitCallArg(*Arg, ArgType),
1609                                    ArgType));
1610    }
1611  }
1612
1613  const TargetCodeGenInfo &getTargetHooks() const {
1614    return CGM.getTargetCodeGenInfo();
1615  }
1616
1617  void EmitDeclMetadata();
1618};
1619
1620
1621}  // end namespace CodeGen
1622}  // end namespace clang
1623
1624#endif
1625