CodeGenFunction.h revision 93c332a8ba2c193c435b293966d343dab15f555b
1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the internal per-function state used for llvm translation.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15#define CLANG_CODEGEN_CODEGENFUNCTION_H
16
17#include "clang/AST/Type.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/Basic/ABI.h"
22#include "clang/Basic/TargetInfo.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/ValueHandle.h"
26#include "CodeGenModule.h"
27#include "CGBuilder.h"
28#include "CGValue.h"
29
30namespace llvm {
31  class BasicBlock;
32  class LLVMContext;
33  class MDNode;
34  class Module;
35  class SwitchInst;
36  class Twine;
37  class Value;
38  class CallSite;
39}
40
41namespace clang {
42  class APValue;
43  class ASTContext;
44  class CXXDestructorDecl;
45  class CXXForRangeStmt;
46  class CXXTryStmt;
47  class Decl;
48  class LabelDecl;
49  class EnumConstantDecl;
50  class FunctionDecl;
51  class FunctionProtoType;
52  class LabelStmt;
53  class ObjCContainerDecl;
54  class ObjCInterfaceDecl;
55  class ObjCIvarDecl;
56  class ObjCMethodDecl;
57  class ObjCImplementationDecl;
58  class ObjCPropertyImplDecl;
59  class TargetInfo;
60  class TargetCodeGenInfo;
61  class VarDecl;
62  class ObjCForCollectionStmt;
63  class ObjCAtTryStmt;
64  class ObjCAtThrowStmt;
65  class ObjCAtSynchronizedStmt;
66
67namespace CodeGen {
68  class CodeGenTypes;
69  class CGDebugInfo;
70  class CGFunctionInfo;
71  class CGRecordLayout;
72  class CGBlockInfo;
73  class CGCXXABI;
74  class BlockFlags;
75  class BlockFieldFlags;
76
77/// A branch fixup.  These are required when emitting a goto to a
78/// label which hasn't been emitted yet.  The goto is optimistically
79/// emitted as a branch to the basic block for the label, and (if it
80/// occurs in a scope with non-trivial cleanups) a fixup is added to
81/// the innermost cleanup.  When a (normal) cleanup is popped, any
82/// unresolved fixups in that scope are threaded through the cleanup.
83struct BranchFixup {
84  /// The block containing the terminator which needs to be modified
85  /// into a switch if this fixup is resolved into the current scope.
86  /// If null, LatestBranch points directly to the destination.
87  llvm::BasicBlock *OptimisticBranchBlock;
88
89  /// The ultimate destination of the branch.
90  ///
91  /// This can be set to null to indicate that this fixup was
92  /// successfully resolved.
93  llvm::BasicBlock *Destination;
94
95  /// The destination index value.
96  unsigned DestinationIndex;
97
98  /// The initial branch of the fixup.
99  llvm::BranchInst *InitialBranch;
100};
101
102template <class T> struct InvariantValue {
103  typedef T type;
104  typedef T saved_type;
105  static bool needsSaving(type value) { return false; }
106  static saved_type save(CodeGenFunction &CGF, type value) { return value; }
107  static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
108};
109
110/// A metaprogramming class for ensuring that a value will dominate an
111/// arbitrary position in a function.
112template <class T> struct DominatingValue : InvariantValue<T> {};
113
114template <class T, bool mightBeInstruction =
115            llvm::is_base_of<llvm::Value, T>::value &&
116            !llvm::is_base_of<llvm::Constant, T>::value &&
117            !llvm::is_base_of<llvm::BasicBlock, T>::value>
118struct DominatingPointer;
119template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
120// template <class T> struct DominatingPointer<T,true> at end of file
121
122template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
123
124enum CleanupKind {
125  EHCleanup = 0x1,
126  NormalCleanup = 0x2,
127  NormalAndEHCleanup = EHCleanup | NormalCleanup,
128
129  InactiveCleanup = 0x4,
130  InactiveEHCleanup = EHCleanup | InactiveCleanup,
131  InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
132  InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
133};
134
135/// A stack of scopes which respond to exceptions, including cleanups
136/// and catch blocks.
137class EHScopeStack {
138public:
139  /// A saved depth on the scope stack.  This is necessary because
140  /// pushing scopes onto the stack invalidates iterators.
141  class stable_iterator {
142    friend class EHScopeStack;
143
144    /// Offset from StartOfData to EndOfBuffer.
145    ptrdiff_t Size;
146
147    stable_iterator(ptrdiff_t Size) : Size(Size) {}
148
149  public:
150    static stable_iterator invalid() { return stable_iterator(-1); }
151    stable_iterator() : Size(-1) {}
152
153    bool isValid() const { return Size >= 0; }
154
155    /// Returns true if this scope encloses I.
156    /// Returns false if I is invalid.
157    /// This scope must be valid.
158    bool encloses(stable_iterator I) const { return Size <= I.Size; }
159
160    /// Returns true if this scope strictly encloses I: that is,
161    /// if it encloses I and is not I.
162    /// Returns false is I is invalid.
163    /// This scope must be valid.
164    bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
165
166    friend bool operator==(stable_iterator A, stable_iterator B) {
167      return A.Size == B.Size;
168    }
169    friend bool operator!=(stable_iterator A, stable_iterator B) {
170      return A.Size != B.Size;
171    }
172  };
173
174  /// Information for lazily generating a cleanup.  Subclasses must be
175  /// POD-like: cleanups will not be destructed, and they will be
176  /// allocated on the cleanup stack and freely copied and moved
177  /// around.
178  ///
179  /// Cleanup implementations should generally be declared in an
180  /// anonymous namespace.
181  class Cleanup {
182  public:
183    // Anchor the construction vtable.  We use the destructor because
184    // gcc gives an obnoxious warning if there are virtual methods
185    // with an accessible non-virtual destructor.  Unfortunately,
186    // declaring this destructor makes it non-trivial, but there
187    // doesn't seem to be any other way around this warning.
188    //
189    // This destructor will never be called.
190    virtual ~Cleanup();
191
192    /// Emit the cleanup.  For normal cleanups, this is run in the
193    /// same EH context as when the cleanup was pushed, i.e. the
194    /// immediately-enclosing context of the cleanup scope.  For
195    /// EH cleanups, this is run in a terminate context.
196    ///
197    // \param IsForEHCleanup true if this is for an EH cleanup, false
198    ///  if for a normal cleanup.
199    virtual void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) = 0;
200  };
201
202  /// UnconditionalCleanupN stores its N parameters and just passes
203  /// them to the real cleanup function.
204  template <class T, class A0>
205  class UnconditionalCleanup1 : public Cleanup {
206    A0 a0;
207  public:
208    UnconditionalCleanup1(A0 a0) : a0(a0) {}
209    void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
210      T::Emit(CGF, IsForEHCleanup, a0);
211    }
212  };
213
214  template <class T, class A0, class A1>
215  class UnconditionalCleanup2 : public Cleanup {
216    A0 a0; A1 a1;
217  public:
218    UnconditionalCleanup2(A0 a0, A1 a1) : a0(a0), a1(a1) {}
219    void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
220      T::Emit(CGF, IsForEHCleanup, a0, a1);
221    }
222  };
223
224  /// ConditionalCleanupN stores the saved form of its N parameters,
225  /// then restores them and performs the cleanup.
226  template <class T, class A0>
227  class ConditionalCleanup1 : public Cleanup {
228    typedef typename DominatingValue<A0>::saved_type A0_saved;
229    A0_saved a0_saved;
230
231    void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
232      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
233      T::Emit(CGF, IsForEHCleanup, a0);
234    }
235
236  public:
237    ConditionalCleanup1(A0_saved a0)
238      : a0_saved(a0) {}
239  };
240
241  template <class T, class A0, class A1>
242  class ConditionalCleanup2 : public Cleanup {
243    typedef typename DominatingValue<A0>::saved_type A0_saved;
244    typedef typename DominatingValue<A1>::saved_type A1_saved;
245    A0_saved a0_saved;
246    A1_saved a1_saved;
247
248    void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
249      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
250      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
251      T::Emit(CGF, IsForEHCleanup, a0, a1);
252    }
253
254  public:
255    ConditionalCleanup2(A0_saved a0, A1_saved a1)
256      : a0_saved(a0), a1_saved(a1) {}
257  };
258
259private:
260  // The implementation for this class is in CGException.h and
261  // CGException.cpp; the definition is here because it's used as a
262  // member of CodeGenFunction.
263
264  /// The start of the scope-stack buffer, i.e. the allocated pointer
265  /// for the buffer.  All of these pointers are either simultaneously
266  /// null or simultaneously valid.
267  char *StartOfBuffer;
268
269  /// The end of the buffer.
270  char *EndOfBuffer;
271
272  /// The first valid entry in the buffer.
273  char *StartOfData;
274
275  /// The innermost normal cleanup on the stack.
276  stable_iterator InnermostNormalCleanup;
277
278  /// The innermost EH cleanup on the stack.
279  stable_iterator InnermostEHCleanup;
280
281  /// The number of catches on the stack.
282  unsigned CatchDepth;
283
284  /// The current EH destination index.  Reset to FirstCatchIndex
285  /// whenever the last EH cleanup is popped.
286  unsigned NextEHDestIndex;
287  enum { FirstEHDestIndex = 1 };
288
289  /// The current set of branch fixups.  A branch fixup is a jump to
290  /// an as-yet unemitted label, i.e. a label for which we don't yet
291  /// know the EH stack depth.  Whenever we pop a cleanup, we have
292  /// to thread all the current branch fixups through it.
293  ///
294  /// Fixups are recorded as the Use of the respective branch or
295  /// switch statement.  The use points to the final destination.
296  /// When popping out of a cleanup, these uses are threaded through
297  /// the cleanup and adjusted to point to the new cleanup.
298  ///
299  /// Note that branches are allowed to jump into protected scopes
300  /// in certain situations;  e.g. the following code is legal:
301  ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
302  ///     goto foo;
303  ///     A a;
304  ///    foo:
305  ///     bar();
306  llvm::SmallVector<BranchFixup, 8> BranchFixups;
307
308  char *allocate(size_t Size);
309
310  void *pushCleanup(CleanupKind K, size_t DataSize);
311
312public:
313  EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
314                   InnermostNormalCleanup(stable_end()),
315                   InnermostEHCleanup(stable_end()),
316                   CatchDepth(0), NextEHDestIndex(FirstEHDestIndex) {}
317  ~EHScopeStack() { delete[] StartOfBuffer; }
318
319  // Variadic templates would make this not terrible.
320
321  /// Push a lazily-created cleanup on the stack.
322  template <class T>
323  void pushCleanup(CleanupKind Kind) {
324    void *Buffer = pushCleanup(Kind, sizeof(T));
325    Cleanup *Obj = new(Buffer) T();
326    (void) Obj;
327  }
328
329  /// Push a lazily-created cleanup on the stack.
330  template <class T, class A0>
331  void pushCleanup(CleanupKind Kind, A0 a0) {
332    void *Buffer = pushCleanup(Kind, sizeof(T));
333    Cleanup *Obj = new(Buffer) T(a0);
334    (void) Obj;
335  }
336
337  /// Push a lazily-created cleanup on the stack.
338  template <class T, class A0, class A1>
339  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
340    void *Buffer = pushCleanup(Kind, sizeof(T));
341    Cleanup *Obj = new(Buffer) T(a0, a1);
342    (void) Obj;
343  }
344
345  /// Push a lazily-created cleanup on the stack.
346  template <class T, class A0, class A1, class A2>
347  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
348    void *Buffer = pushCleanup(Kind, sizeof(T));
349    Cleanup *Obj = new(Buffer) T(a0, a1, a2);
350    (void) Obj;
351  }
352
353  /// Push a lazily-created cleanup on the stack.
354  template <class T, class A0, class A1, class A2, class A3>
355  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
356    void *Buffer = pushCleanup(Kind, sizeof(T));
357    Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
358    (void) Obj;
359  }
360
361  /// Push a lazily-created cleanup on the stack.
362  template <class T, class A0, class A1, class A2, class A3, class A4>
363  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
364    void *Buffer = pushCleanup(Kind, sizeof(T));
365    Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
366    (void) Obj;
367  }
368
369  // Feel free to add more variants of the following:
370
371  /// Push a cleanup with non-constant storage requirements on the
372  /// stack.  The cleanup type must provide an additional static method:
373  ///   static size_t getExtraSize(size_t);
374  /// The argument to this method will be the value N, which will also
375  /// be passed as the first argument to the constructor.
376  ///
377  /// The data stored in the extra storage must obey the same
378  /// restrictions as normal cleanup member data.
379  ///
380  /// The pointer returned from this method is valid until the cleanup
381  /// stack is modified.
382  template <class T, class A0, class A1, class A2>
383  T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
384    void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
385    return new (Buffer) T(N, a0, a1, a2);
386  }
387
388  /// Pops a cleanup scope off the stack.  This should only be called
389  /// by CodeGenFunction::PopCleanupBlock.
390  void popCleanup();
391
392  /// Push a set of catch handlers on the stack.  The catch is
393  /// uninitialized and will need to have the given number of handlers
394  /// set on it.
395  class EHCatchScope *pushCatch(unsigned NumHandlers);
396
397  /// Pops a catch scope off the stack.
398  void popCatch();
399
400  /// Push an exceptions filter on the stack.
401  class EHFilterScope *pushFilter(unsigned NumFilters);
402
403  /// Pops an exceptions filter off the stack.
404  void popFilter();
405
406  /// Push a terminate handler on the stack.
407  void pushTerminate();
408
409  /// Pops a terminate handler off the stack.
410  void popTerminate();
411
412  /// Determines whether the exception-scopes stack is empty.
413  bool empty() const { return StartOfData == EndOfBuffer; }
414
415  bool requiresLandingPad() const {
416    return (CatchDepth || hasEHCleanups());
417  }
418
419  /// Determines whether there are any normal cleanups on the stack.
420  bool hasNormalCleanups() const {
421    return InnermostNormalCleanup != stable_end();
422  }
423
424  /// Returns the innermost normal cleanup on the stack, or
425  /// stable_end() if there are no normal cleanups.
426  stable_iterator getInnermostNormalCleanup() const {
427    return InnermostNormalCleanup;
428  }
429  stable_iterator getInnermostActiveNormalCleanup() const; // CGException.h
430
431  /// Determines whether there are any EH cleanups on the stack.
432  bool hasEHCleanups() const {
433    return InnermostEHCleanup != stable_end();
434  }
435
436  /// Returns the innermost EH cleanup on the stack, or stable_end()
437  /// if there are no EH cleanups.
438  stable_iterator getInnermostEHCleanup() const {
439    return InnermostEHCleanup;
440  }
441  stable_iterator getInnermostActiveEHCleanup() const; // CGException.h
442
443  /// An unstable reference to a scope-stack depth.  Invalidated by
444  /// pushes but not pops.
445  class iterator;
446
447  /// Returns an iterator pointing to the innermost EH scope.
448  iterator begin() const;
449
450  /// Returns an iterator pointing to the outermost EH scope.
451  iterator end() const;
452
453  /// Create a stable reference to the top of the EH stack.  The
454  /// returned reference is valid until that scope is popped off the
455  /// stack.
456  stable_iterator stable_begin() const {
457    return stable_iterator(EndOfBuffer - StartOfData);
458  }
459
460  /// Create a stable reference to the bottom of the EH stack.
461  static stable_iterator stable_end() {
462    return stable_iterator(0);
463  }
464
465  /// Translates an iterator into a stable_iterator.
466  stable_iterator stabilize(iterator it) const;
467
468  /// Finds the nearest cleanup enclosing the given iterator.
469  /// Returns stable_iterator::invalid() if there are no such cleanups.
470  stable_iterator getEnclosingEHCleanup(iterator it) const;
471
472  /// Turn a stable reference to a scope depth into a unstable pointer
473  /// to the EH stack.
474  iterator find(stable_iterator save) const;
475
476  /// Removes the cleanup pointed to by the given stable_iterator.
477  void removeCleanup(stable_iterator save);
478
479  /// Add a branch fixup to the current cleanup scope.
480  BranchFixup &addBranchFixup() {
481    assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
482    BranchFixups.push_back(BranchFixup());
483    return BranchFixups.back();
484  }
485
486  unsigned getNumBranchFixups() const { return BranchFixups.size(); }
487  BranchFixup &getBranchFixup(unsigned I) {
488    assert(I < getNumBranchFixups());
489    return BranchFixups[I];
490  }
491
492  /// Pops lazily-removed fixups from the end of the list.  This
493  /// should only be called by procedures which have just popped a
494  /// cleanup or resolved one or more fixups.
495  void popNullFixups();
496
497  /// Clears the branch-fixups list.  This should only be called by
498  /// ResolveAllBranchFixups.
499  void clearFixups() { BranchFixups.clear(); }
500
501  /// Gets the next EH destination index.
502  unsigned getNextEHDestIndex() { return NextEHDestIndex++; }
503};
504
505/// CodeGenFunction - This class organizes the per-function state that is used
506/// while generating LLVM code.
507class CodeGenFunction : public CodeGenTypeCache {
508  CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT
509  void operator=(const CodeGenFunction&);  // DO NOT IMPLEMENT
510
511  friend class CGCXXABI;
512public:
513  /// A jump destination is an abstract label, branching to which may
514  /// require a jump out through normal cleanups.
515  struct JumpDest {
516    JumpDest() : Block(0), ScopeDepth(), Index(0) {}
517    JumpDest(llvm::BasicBlock *Block,
518             EHScopeStack::stable_iterator Depth,
519             unsigned Index)
520      : Block(Block), ScopeDepth(Depth), Index(Index) {}
521
522    bool isValid() const { return Block != 0; }
523    llvm::BasicBlock *getBlock() const { return Block; }
524    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
525    unsigned getDestIndex() const { return Index; }
526
527  private:
528    llvm::BasicBlock *Block;
529    EHScopeStack::stable_iterator ScopeDepth;
530    unsigned Index;
531  };
532
533  /// An unwind destination is an abstract label, branching to which
534  /// may require a jump out through EH cleanups.
535  struct UnwindDest {
536    UnwindDest() : Block(0), ScopeDepth(), Index(0) {}
537    UnwindDest(llvm::BasicBlock *Block,
538               EHScopeStack::stable_iterator Depth,
539               unsigned Index)
540      : Block(Block), ScopeDepth(Depth), Index(Index) {}
541
542    bool isValid() const { return Block != 0; }
543    llvm::BasicBlock *getBlock() const { return Block; }
544    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
545    unsigned getDestIndex() const { return Index; }
546
547  private:
548    llvm::BasicBlock *Block;
549    EHScopeStack::stable_iterator ScopeDepth;
550    unsigned Index;
551  };
552
553  CodeGenModule &CGM;  // Per-module state.
554  const TargetInfo &Target;
555
556  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
557  CGBuilderTy Builder;
558
559  /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
560  /// This excludes BlockDecls.
561  const Decl *CurFuncDecl;
562  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
563  const Decl *CurCodeDecl;
564  const CGFunctionInfo *CurFnInfo;
565  QualType FnRetTy;
566  llvm::Function *CurFn;
567
568  /// CurGD - The GlobalDecl for the current function being compiled.
569  GlobalDecl CurGD;
570
571  /// ReturnBlock - Unified return block.
572  JumpDest ReturnBlock;
573
574  /// ReturnValue - The temporary alloca to hold the return value. This is null
575  /// iff the function has no return value.
576  llvm::Value *ReturnValue;
577
578  /// RethrowBlock - Unified rethrow block.
579  UnwindDest RethrowBlock;
580
581  /// AllocaInsertPoint - This is an instruction in the entry block before which
582  /// we prefer to insert allocas.
583  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
584
585  bool CatchUndefined;
586
587  const CodeGen::CGBlockInfo *BlockInfo;
588  llvm::Value *BlockPointer;
589
590  /// \brief A mapping from NRVO variables to the flags used to indicate
591  /// when the NRVO has been applied to this variable.
592  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
593
594  EHScopeStack EHStack;
595
596  /// i32s containing the indexes of the cleanup destinations.
597  llvm::AllocaInst *NormalCleanupDest;
598  llvm::AllocaInst *EHCleanupDest;
599
600  unsigned NextCleanupDestIndex;
601
602  /// The exception slot.  All landing pads write the current
603  /// exception pointer into this alloca.
604  llvm::Value *ExceptionSlot;
605
606  /// The selector slot.  Under the MandatoryCleanup model, all
607  /// landing pads write the current selector value into this alloca.
608  llvm::AllocaInst *EHSelectorSlot;
609
610  /// Emits a landing pad for the current EH stack.
611  llvm::BasicBlock *EmitLandingPad();
612
613  llvm::BasicBlock *getInvokeDestImpl();
614
615  /// Set up the last cleaup that was pushed as a conditional
616  /// full-expression cleanup.
617  void initFullExprCleanup();
618
619  template <class T>
620  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
621    return DominatingValue<T>::save(*this, value);
622  }
623
624public:
625  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
626  /// rethrows.
627  llvm::SmallVector<llvm::Value*, 8> ObjCEHValueStack;
628
629  // A struct holding information about a finally block's IR
630  // generation.  For now, doesn't actually hold anything.
631  struct FinallyInfo {
632  };
633
634  FinallyInfo EnterFinallyBlock(const Stmt *Stmt,
635                                llvm::Constant *BeginCatchFn,
636                                llvm::Constant *EndCatchFn,
637                                llvm::Constant *RethrowFn);
638  void ExitFinallyBlock(FinallyInfo &FinallyInfo);
639
640  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
641  /// current full-expression.  Safe against the possibility that
642  /// we're currently inside a conditionally-evaluated expression.
643  template <class T, class A0>
644  void pushFullExprCleanup(CleanupKind kind, A0 a0) {
645    // If we're not in a conditional branch, or if none of the
646    // arguments requires saving, then use the unconditional cleanup.
647    if (!isInConditionalBranch()) {
648      typedef EHScopeStack::UnconditionalCleanup1<T, A0> CleanupType;
649      return EHStack.pushCleanup<CleanupType>(kind, a0);
650    }
651
652    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
653
654    typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
655    EHStack.pushCleanup<CleanupType>(kind, a0_saved);
656    initFullExprCleanup();
657  }
658
659  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
660  /// current full-expression.  Safe against the possibility that
661  /// we're currently inside a conditionally-evaluated expression.
662  template <class T, class A0, class A1>
663  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
664    // If we're not in a conditional branch, or if none of the
665    // arguments requires saving, then use the unconditional cleanup.
666    if (!isInConditionalBranch()) {
667      typedef EHScopeStack::UnconditionalCleanup2<T, A0, A1> CleanupType;
668      return EHStack.pushCleanup<CleanupType>(kind, a0, a1);
669    }
670
671    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
672    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
673
674    typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
675    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
676    initFullExprCleanup();
677  }
678
679  /// PushDestructorCleanup - Push a cleanup to call the
680  /// complete-object destructor of an object of the given type at the
681  /// given address.  Does nothing if T is not a C++ class type with a
682  /// non-trivial destructor.
683  void PushDestructorCleanup(QualType T, llvm::Value *Addr);
684
685  /// PushDestructorCleanup - Push a cleanup to call the
686  /// complete-object variant of the given destructor on the object at
687  /// the given address.
688  void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
689                             llvm::Value *Addr);
690
691  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
692  /// process all branch fixups.
693  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
694
695  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
696  /// The block cannot be reactivated.  Pops it if it's the top of the
697  /// stack.
698  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup);
699
700  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
701  /// Cannot be used to resurrect a deactivated cleanup.
702  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup);
703
704  /// \brief Enters a new scope for capturing cleanups, all of which
705  /// will be executed once the scope is exited.
706  class RunCleanupsScope {
707    CodeGenFunction& CGF;
708    EHScopeStack::stable_iterator CleanupStackDepth;
709    bool OldDidCallStackSave;
710    bool PerformCleanup;
711
712    RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT
713    RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT
714
715  public:
716    /// \brief Enter a new cleanup scope.
717    explicit RunCleanupsScope(CodeGenFunction &CGF)
718      : CGF(CGF), PerformCleanup(true)
719    {
720      CleanupStackDepth = CGF.EHStack.stable_begin();
721      OldDidCallStackSave = CGF.DidCallStackSave;
722      CGF.DidCallStackSave = false;
723    }
724
725    /// \brief Exit this cleanup scope, emitting any accumulated
726    /// cleanups.
727    ~RunCleanupsScope() {
728      if (PerformCleanup) {
729        CGF.DidCallStackSave = OldDidCallStackSave;
730        CGF.PopCleanupBlocks(CleanupStackDepth);
731      }
732    }
733
734    /// \brief Determine whether this scope requires any cleanups.
735    bool requiresCleanups() const {
736      return CGF.EHStack.stable_begin() != CleanupStackDepth;
737    }
738
739    /// \brief Force the emission of cleanups now, instead of waiting
740    /// until this object is destroyed.
741    void ForceCleanup() {
742      assert(PerformCleanup && "Already forced cleanup");
743      CGF.DidCallStackSave = OldDidCallStackSave;
744      CGF.PopCleanupBlocks(CleanupStackDepth);
745      PerformCleanup = false;
746    }
747  };
748
749
750  /// PopCleanupBlocks - Takes the old cleanup stack size and emits
751  /// the cleanup blocks that have been added.
752  void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
753
754  void ResolveBranchFixups(llvm::BasicBlock *Target);
755
756  /// The given basic block lies in the current EH scope, but may be a
757  /// target of a potentially scope-crossing jump; get a stable handle
758  /// to which we can perform this jump later.
759  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
760    return JumpDest(Target,
761                    EHStack.getInnermostNormalCleanup(),
762                    NextCleanupDestIndex++);
763  }
764
765  /// The given basic block lies in the current EH scope, but may be a
766  /// target of a potentially scope-crossing jump; get a stable handle
767  /// to which we can perform this jump later.
768  JumpDest getJumpDestInCurrentScope(llvm::StringRef Name = llvm::StringRef()) {
769    return getJumpDestInCurrentScope(createBasicBlock(Name));
770  }
771
772  /// EmitBranchThroughCleanup - Emit a branch from the current insert
773  /// block through the normal cleanup handling code (if any) and then
774  /// on to \arg Dest.
775  void EmitBranchThroughCleanup(JumpDest Dest);
776
777  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
778  /// specified destination obviously has no cleanups to run.  'false' is always
779  /// a conservatively correct answer for this method.
780  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
781
782  /// EmitBranchThroughEHCleanup - Emit a branch from the current
783  /// insert block through the EH cleanup handling code (if any) and
784  /// then on to \arg Dest.
785  void EmitBranchThroughEHCleanup(UnwindDest Dest);
786
787  /// getRethrowDest - Returns the unified outermost-scope rethrow
788  /// destination.
789  UnwindDest getRethrowDest();
790
791  /// An object to manage conditionally-evaluated expressions.
792  class ConditionalEvaluation {
793    llvm::BasicBlock *StartBB;
794
795  public:
796    ConditionalEvaluation(CodeGenFunction &CGF)
797      : StartBB(CGF.Builder.GetInsertBlock()) {}
798
799    void begin(CodeGenFunction &CGF) {
800      assert(CGF.OutermostConditional != this);
801      if (!CGF.OutermostConditional)
802        CGF.OutermostConditional = this;
803    }
804
805    void end(CodeGenFunction &CGF) {
806      assert(CGF.OutermostConditional != 0);
807      if (CGF.OutermostConditional == this)
808        CGF.OutermostConditional = 0;
809    }
810
811    /// Returns a block which will be executed prior to each
812    /// evaluation of the conditional code.
813    llvm::BasicBlock *getStartingBlock() const {
814      return StartBB;
815    }
816  };
817
818  /// isInConditionalBranch - Return true if we're currently emitting
819  /// one branch or the other of a conditional expression.
820  bool isInConditionalBranch() const { return OutermostConditional != 0; }
821
822  /// An RAII object to record that we're evaluating a statement
823  /// expression.
824  class StmtExprEvaluation {
825    CodeGenFunction &CGF;
826
827    /// We have to save the outermost conditional: cleanups in a
828    /// statement expression aren't conditional just because the
829    /// StmtExpr is.
830    ConditionalEvaluation *SavedOutermostConditional;
831
832  public:
833    StmtExprEvaluation(CodeGenFunction &CGF)
834      : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
835      CGF.OutermostConditional = 0;
836    }
837
838    ~StmtExprEvaluation() {
839      CGF.OutermostConditional = SavedOutermostConditional;
840      CGF.EnsureInsertPoint();
841    }
842  };
843
844  /// An object which temporarily prevents a value from being
845  /// destroyed by aggressive peephole optimizations that assume that
846  /// all uses of a value have been realized in the IR.
847  class PeepholeProtection {
848    llvm::Instruction *Inst;
849    friend class CodeGenFunction;
850
851  public:
852    PeepholeProtection() : Inst(0) {}
853  };
854
855  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
856  class OpaqueValueMapping {
857    CodeGenFunction &CGF;
858    const OpaqueValueExpr *OpaqueValue;
859    bool BoundLValue;
860    CodeGenFunction::PeepholeProtection Protection;
861
862  public:
863    static bool shouldBindAsLValue(const Expr *expr) {
864      return expr->isGLValue() || expr->getType()->isRecordType();
865    }
866
867    /// Build the opaque value mapping for the given conditional
868    /// operator if it's the GNU ?: extension.  This is a common
869    /// enough pattern that the convenience operator is really
870    /// helpful.
871    ///
872    OpaqueValueMapping(CodeGenFunction &CGF,
873                       const AbstractConditionalOperator *op) : CGF(CGF) {
874      if (isa<ConditionalOperator>(op)) {
875        OpaqueValue = 0;
876        BoundLValue = false;
877        return;
878      }
879
880      const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
881      init(e->getOpaqueValue(), e->getCommon());
882    }
883
884    OpaqueValueMapping(CodeGenFunction &CGF,
885                       const OpaqueValueExpr *opaqueValue,
886                       LValue lvalue)
887      : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(true) {
888      assert(opaqueValue && "no opaque value expression!");
889      assert(shouldBindAsLValue(opaqueValue));
890      initLValue(lvalue);
891    }
892
893    OpaqueValueMapping(CodeGenFunction &CGF,
894                       const OpaqueValueExpr *opaqueValue,
895                       RValue rvalue)
896      : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(false) {
897      assert(opaqueValue && "no opaque value expression!");
898      assert(!shouldBindAsLValue(opaqueValue));
899      initRValue(rvalue);
900    }
901
902    void pop() {
903      assert(OpaqueValue && "mapping already popped!");
904      popImpl();
905      OpaqueValue = 0;
906    }
907
908    ~OpaqueValueMapping() {
909      if (OpaqueValue) popImpl();
910    }
911
912  private:
913    void popImpl() {
914      if (BoundLValue)
915        CGF.OpaqueLValues.erase(OpaqueValue);
916      else {
917        CGF.OpaqueRValues.erase(OpaqueValue);
918        CGF.unprotectFromPeepholes(Protection);
919      }
920    }
921
922    void init(const OpaqueValueExpr *ov, const Expr *e) {
923      OpaqueValue = ov;
924      BoundLValue = shouldBindAsLValue(ov);
925      assert(BoundLValue == shouldBindAsLValue(e)
926             && "inconsistent expression value kinds!");
927      if (BoundLValue)
928        initLValue(CGF.EmitLValue(e));
929      else
930        initRValue(CGF.EmitAnyExpr(e));
931    }
932
933    void initLValue(const LValue &lv) {
934      CGF.OpaqueLValues.insert(std::make_pair(OpaqueValue, lv));
935    }
936
937    void initRValue(const RValue &rv) {
938      // Work around an extremely aggressive peephole optimization in
939      // EmitScalarConversion which assumes that all other uses of a
940      // value are extant.
941      Protection = CGF.protectFromPeepholes(rv);
942      CGF.OpaqueRValues.insert(std::make_pair(OpaqueValue, rv));
943    }
944  };
945
946  /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
947  /// number that holds the value.
948  unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
949
950  /// BuildBlockByrefAddress - Computes address location of the
951  /// variable which is declared as __block.
952  llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
953                                      const VarDecl *V);
954private:
955  CGDebugInfo *DebugInfo;
956  bool DisableDebugInfo;
957
958  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
959  /// calling llvm.stacksave for multiple VLAs in the same scope.
960  bool DidCallStackSave;
961
962  /// IndirectBranch - The first time an indirect goto is seen we create a block
963  /// with an indirect branch.  Every time we see the address of a label taken,
964  /// we add the label to the indirect goto.  Every subsequent indirect goto is
965  /// codegen'd as a jump to the IndirectBranch's basic block.
966  llvm::IndirectBrInst *IndirectBranch;
967
968  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
969  /// decls.
970  typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
971  DeclMapTy LocalDeclMap;
972
973  /// LabelMap - This keeps track of the LLVM basic block for each C label.
974  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
975
976  // BreakContinueStack - This keeps track of where break and continue
977  // statements should jump to.
978  struct BreakContinue {
979    BreakContinue(JumpDest Break, JumpDest Continue)
980      : BreakBlock(Break), ContinueBlock(Continue) {}
981
982    JumpDest BreakBlock;
983    JumpDest ContinueBlock;
984  };
985  llvm::SmallVector<BreakContinue, 8> BreakContinueStack;
986
987  /// SwitchInsn - This is nearest current switch instruction. It is null if if
988  /// current context is not in a switch.
989  llvm::SwitchInst *SwitchInsn;
990
991  /// CaseRangeBlock - This block holds if condition check for last case
992  /// statement range in current switch instruction.
993  llvm::BasicBlock *CaseRangeBlock;
994
995  /// OpaqueLValues - Keeps track of the current set of opaque value
996  /// expressions.
997  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
998  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
999
1000  // VLASizeMap - This keeps track of the associated size for each VLA type.
1001  // We track this by the size expression rather than the type itself because
1002  // in certain situations, like a const qualifier applied to an VLA typedef,
1003  // multiple VLA types can share the same size expression.
1004  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1005  // enter/leave scopes.
1006  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1007
1008  /// A block containing a single 'unreachable' instruction.  Created
1009  /// lazily by getUnreachableBlock().
1010  llvm::BasicBlock *UnreachableBlock;
1011
1012  /// CXXThisDecl - When generating code for a C++ member function,
1013  /// this will hold the implicit 'this' declaration.
1014  ImplicitParamDecl *CXXThisDecl;
1015  llvm::Value *CXXThisValue;
1016
1017  /// CXXVTTDecl - When generating code for a base object constructor or
1018  /// base object destructor with virtual bases, this will hold the implicit
1019  /// VTT parameter.
1020  ImplicitParamDecl *CXXVTTDecl;
1021  llvm::Value *CXXVTTValue;
1022
1023  /// OutermostConditional - Points to the outermost active
1024  /// conditional control.  This is used so that we know if a
1025  /// temporary should be destroyed conditionally.
1026  ConditionalEvaluation *OutermostConditional;
1027
1028
1029  /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1030  /// type as well as the field number that contains the actual data.
1031  llvm::DenseMap<const ValueDecl *, std::pair<const llvm::Type *,
1032                                              unsigned> > ByRefValueInfo;
1033
1034  llvm::BasicBlock *TerminateLandingPad;
1035  llvm::BasicBlock *TerminateHandler;
1036  llvm::BasicBlock *TrapBB;
1037
1038public:
1039  CodeGenFunction(CodeGenModule &cgm);
1040
1041  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1042  ASTContext &getContext() const { return CGM.getContext(); }
1043  CGDebugInfo *getDebugInfo() {
1044    if (DisableDebugInfo)
1045      return NULL;
1046    return DebugInfo;
1047  }
1048  void disableDebugInfo() { DisableDebugInfo = true; }
1049  void enableDebugInfo() { DisableDebugInfo = false; }
1050
1051
1052  const LangOptions &getLangOptions() const { return CGM.getLangOptions(); }
1053
1054  /// Returns a pointer to the function's exception object slot, which
1055  /// is assigned in every landing pad.
1056  llvm::Value *getExceptionSlot();
1057  llvm::Value *getEHSelectorSlot();
1058
1059  llvm::Value *getNormalCleanupDestSlot();
1060  llvm::Value *getEHCleanupDestSlot();
1061
1062  llvm::BasicBlock *getUnreachableBlock() {
1063    if (!UnreachableBlock) {
1064      UnreachableBlock = createBasicBlock("unreachable");
1065      new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1066    }
1067    return UnreachableBlock;
1068  }
1069
1070  llvm::BasicBlock *getInvokeDest() {
1071    if (!EHStack.requiresLandingPad()) return 0;
1072    return getInvokeDestImpl();
1073  }
1074
1075  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1076
1077  //===--------------------------------------------------------------------===//
1078  //                                  Objective-C
1079  //===--------------------------------------------------------------------===//
1080
1081  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1082
1083  void StartObjCMethod(const ObjCMethodDecl *MD,
1084                       const ObjCContainerDecl *CD,
1085                       SourceLocation StartLoc);
1086
1087  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1088  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1089                          const ObjCPropertyImplDecl *PID);
1090  void GenerateObjCGetterBody(ObjCIvarDecl *Ivar, bool IsAtomic, bool IsStrong);
1091  void GenerateObjCAtomicSetterBody(ObjCMethodDecl *OMD,
1092                                    ObjCIvarDecl *Ivar);
1093
1094  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1095                                  ObjCMethodDecl *MD, bool ctor);
1096
1097  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1098  /// for the given property.
1099  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1100                          const ObjCPropertyImplDecl *PID);
1101  bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1102  bool IvarTypeWithAggrGCObjects(QualType Ty);
1103
1104  //===--------------------------------------------------------------------===//
1105  //                                  Block Bits
1106  //===--------------------------------------------------------------------===//
1107
1108  llvm::Value *EmitBlockLiteral(const BlockExpr *);
1109  llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1110                                           const CGBlockInfo &Info,
1111                                           const llvm::StructType *,
1112                                           llvm::Constant *BlockVarLayout);
1113
1114  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1115                                        const CGBlockInfo &Info,
1116                                        const Decl *OuterFuncDecl,
1117                                        const DeclMapTy &ldm);
1118
1119  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1120  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1121
1122  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1123
1124  class AutoVarEmission;
1125
1126  void emitByrefStructureInit(const AutoVarEmission &emission);
1127  void enterByrefCleanup(const AutoVarEmission &emission);
1128
1129  llvm::Value *LoadBlockStruct() {
1130    assert(BlockPointer && "no block pointer set!");
1131    return BlockPointer;
1132  }
1133
1134  void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1135  void AllocateBlockDecl(const BlockDeclRefExpr *E);
1136  llvm::Value *GetAddrOfBlockDecl(const BlockDeclRefExpr *E) {
1137    return GetAddrOfBlockDecl(E->getDecl(), E->isByRef());
1138  }
1139  llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1140  const llvm::Type *BuildByRefType(const VarDecl *var);
1141
1142  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1143                    const CGFunctionInfo &FnInfo);
1144  void StartFunction(GlobalDecl GD, QualType RetTy,
1145                     llvm::Function *Fn,
1146                     const CGFunctionInfo &FnInfo,
1147                     const FunctionArgList &Args,
1148                     SourceLocation StartLoc);
1149
1150  void EmitConstructorBody(FunctionArgList &Args);
1151  void EmitDestructorBody(FunctionArgList &Args);
1152  void EmitFunctionBody(FunctionArgList &Args);
1153
1154  /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1155  /// emission when possible.
1156  void EmitReturnBlock();
1157
1158  /// FinishFunction - Complete IR generation of the current function. It is
1159  /// legal to call this function even if there is no current insertion point.
1160  void FinishFunction(SourceLocation EndLoc=SourceLocation());
1161
1162  /// GenerateThunk - Generate a thunk for the given method.
1163  void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1164                     GlobalDecl GD, const ThunkInfo &Thunk);
1165
1166  void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1167                            GlobalDecl GD, const ThunkInfo &Thunk);
1168
1169  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1170                        FunctionArgList &Args);
1171
1172  /// InitializeVTablePointer - Initialize the vtable pointer of the given
1173  /// subobject.
1174  ///
1175  void InitializeVTablePointer(BaseSubobject Base,
1176                               const CXXRecordDecl *NearestVBase,
1177                               CharUnits OffsetFromNearestVBase,
1178                               llvm::Constant *VTable,
1179                               const CXXRecordDecl *VTableClass);
1180
1181  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1182  void InitializeVTablePointers(BaseSubobject Base,
1183                                const CXXRecordDecl *NearestVBase,
1184                                CharUnits OffsetFromNearestVBase,
1185                                bool BaseIsNonVirtualPrimaryBase,
1186                                llvm::Constant *VTable,
1187                                const CXXRecordDecl *VTableClass,
1188                                VisitedVirtualBasesSetTy& VBases);
1189
1190  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1191
1192  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1193  /// to by This.
1194  llvm::Value *GetVTablePtr(llvm::Value *This, const llvm::Type *Ty);
1195
1196  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1197  /// given phase of destruction for a destructor.  The end result
1198  /// should call destructors on members and base classes in reverse
1199  /// order of their construction.
1200  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1201
1202  /// ShouldInstrumentFunction - Return true if the current function should be
1203  /// instrumented with __cyg_profile_func_* calls
1204  bool ShouldInstrumentFunction();
1205
1206  /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1207  /// instrumentation function with the current function and the call site, if
1208  /// function instrumentation is enabled.
1209  void EmitFunctionInstrumentation(const char *Fn);
1210
1211  /// EmitMCountInstrumentation - Emit call to .mcount.
1212  void EmitMCountInstrumentation();
1213
1214  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1215  /// arguments for the given function. This is also responsible for naming the
1216  /// LLVM function arguments.
1217  void EmitFunctionProlog(const CGFunctionInfo &FI,
1218                          llvm::Function *Fn,
1219                          const FunctionArgList &Args);
1220
1221  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1222  /// given temporary.
1223  void EmitFunctionEpilog(const CGFunctionInfo &FI);
1224
1225  /// EmitStartEHSpec - Emit the start of the exception spec.
1226  void EmitStartEHSpec(const Decl *D);
1227
1228  /// EmitEndEHSpec - Emit the end of the exception spec.
1229  void EmitEndEHSpec(const Decl *D);
1230
1231  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1232  llvm::BasicBlock *getTerminateLandingPad();
1233
1234  /// getTerminateHandler - Return a handler (not a landing pad, just
1235  /// a catch handler) that just calls terminate.  This is used when
1236  /// a terminate scope encloses a try.
1237  llvm::BasicBlock *getTerminateHandler();
1238
1239  const llvm::Type *ConvertTypeForMem(QualType T);
1240  const llvm::Type *ConvertType(QualType T);
1241  const llvm::Type *ConvertType(const TypeDecl *T) {
1242    return ConvertType(getContext().getTypeDeclType(T));
1243  }
1244
1245  /// LoadObjCSelf - Load the value of self. This function is only valid while
1246  /// generating code for an Objective-C method.
1247  llvm::Value *LoadObjCSelf();
1248
1249  /// TypeOfSelfObject - Return type of object that this self represents.
1250  QualType TypeOfSelfObject();
1251
1252  /// hasAggregateLLVMType - Return true if the specified AST type will map into
1253  /// an aggregate LLVM type or is void.
1254  static bool hasAggregateLLVMType(QualType T);
1255
1256  /// createBasicBlock - Create an LLVM basic block.
1257  llvm::BasicBlock *createBasicBlock(llvm::StringRef name = "",
1258                                     llvm::Function *parent = 0,
1259                                     llvm::BasicBlock *before = 0) {
1260#ifdef NDEBUG
1261    return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1262#else
1263    return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1264#endif
1265  }
1266
1267  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1268  /// label maps to.
1269  JumpDest getJumpDestForLabel(const LabelDecl *S);
1270
1271  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1272  /// another basic block, simplify it. This assumes that no other code could
1273  /// potentially reference the basic block.
1274  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1275
1276  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1277  /// adding a fall-through branch from the current insert block if
1278  /// necessary. It is legal to call this function even if there is no current
1279  /// insertion point.
1280  ///
1281  /// IsFinished - If true, indicates that the caller has finished emitting
1282  /// branches to the given block and does not expect to emit code into it. This
1283  /// means the block can be ignored if it is unreachable.
1284  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1285
1286  /// EmitBranch - Emit a branch to the specified basic block from the current
1287  /// insert block, taking care to avoid creation of branches from dummy
1288  /// blocks. It is legal to call this function even if there is no current
1289  /// insertion point.
1290  ///
1291  /// This function clears the current insertion point. The caller should follow
1292  /// calls to this function with calls to Emit*Block prior to generation new
1293  /// code.
1294  void EmitBranch(llvm::BasicBlock *Block);
1295
1296  /// HaveInsertPoint - True if an insertion point is defined. If not, this
1297  /// indicates that the current code being emitted is unreachable.
1298  bool HaveInsertPoint() const {
1299    return Builder.GetInsertBlock() != 0;
1300  }
1301
1302  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1303  /// emitted IR has a place to go. Note that by definition, if this function
1304  /// creates a block then that block is unreachable; callers may do better to
1305  /// detect when no insertion point is defined and simply skip IR generation.
1306  void EnsureInsertPoint() {
1307    if (!HaveInsertPoint())
1308      EmitBlock(createBasicBlock());
1309  }
1310
1311  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1312  /// specified stmt yet.
1313  void ErrorUnsupported(const Stmt *S, const char *Type,
1314                        bool OmitOnError=false);
1315
1316  //===--------------------------------------------------------------------===//
1317  //                                  Helpers
1318  //===--------------------------------------------------------------------===//
1319
1320  LValue MakeAddrLValue(llvm::Value *V, QualType T, unsigned Alignment = 0) {
1321    return LValue::MakeAddr(V, T, Alignment, getContext(),
1322                            CGM.getTBAAInfo(T));
1323  }
1324
1325  /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1326  /// block. The caller is responsible for setting an appropriate alignment on
1327  /// the alloca.
1328  llvm::AllocaInst *CreateTempAlloca(const llvm::Type *Ty,
1329                                     const llvm::Twine &Name = "tmp");
1330
1331  /// InitTempAlloca - Provide an initial value for the given alloca.
1332  void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1333
1334  /// CreateIRTemp - Create a temporary IR object of the given type, with
1335  /// appropriate alignment. This routine should only be used when an temporary
1336  /// value needs to be stored into an alloca (for example, to avoid explicit
1337  /// PHI construction), but the type is the IR type, not the type appropriate
1338  /// for storing in memory.
1339  llvm::AllocaInst *CreateIRTemp(QualType T, const llvm::Twine &Name = "tmp");
1340
1341  /// CreateMemTemp - Create a temporary memory object of the given type, with
1342  /// appropriate alignment.
1343  llvm::AllocaInst *CreateMemTemp(QualType T, const llvm::Twine &Name = "tmp");
1344
1345  /// CreateAggTemp - Create a temporary memory object for the given
1346  /// aggregate type.
1347  AggValueSlot CreateAggTemp(QualType T, const llvm::Twine &Name = "tmp") {
1348    return AggValueSlot::forAddr(CreateMemTemp(T, Name), false, false);
1349  }
1350
1351  /// Emit a cast to void* in the appropriate address space.
1352  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1353
1354  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1355  /// expression and compare the result against zero, returning an Int1Ty value.
1356  llvm::Value *EvaluateExprAsBool(const Expr *E);
1357
1358  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1359  void EmitIgnoredExpr(const Expr *E);
1360
1361  /// EmitAnyExpr - Emit code to compute the specified expression which can have
1362  /// any type.  The result is returned as an RValue struct.  If this is an
1363  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1364  /// the result should be returned.
1365  ///
1366  /// \param IgnoreResult - True if the resulting value isn't used.
1367  RValue EmitAnyExpr(const Expr *E,
1368                     AggValueSlot AggSlot = AggValueSlot::ignored(),
1369                     bool IgnoreResult = false);
1370
1371  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1372  // or the value of the expression, depending on how va_list is defined.
1373  llvm::Value *EmitVAListRef(const Expr *E);
1374
1375  /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1376  /// always be accessible even if no aggregate location is provided.
1377  RValue EmitAnyExprToTemp(const Expr *E);
1378
1379  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1380  /// arbitrary expression into the given memory location.
1381  void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1382                        bool IsLocationVolatile,
1383                        bool IsInitializer);
1384
1385  /// EmitExprAsInit - Emits the code necessary to initialize a
1386  /// location in memory with the given initializer.
1387  void EmitExprAsInit(const Expr *init, const VarDecl *var,
1388                      llvm::Value *loc, CharUnits alignment,
1389                      bool capturedByInit);
1390
1391  /// EmitAggregateCopy - Emit an aggrate copy.
1392  ///
1393  /// \param isVolatile - True iff either the source or the destination is
1394  /// volatile.
1395  void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1396                         QualType EltTy, bool isVolatile=false);
1397
1398  /// StartBlock - Start new block named N. If insert block is a dummy block
1399  /// then reuse it.
1400  void StartBlock(const char *N);
1401
1402  /// GetAddrOfStaticLocalVar - Return the address of a static local variable.
1403  llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) {
1404    return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
1405  }
1406
1407  /// GetAddrOfLocalVar - Return the address of a local variable.
1408  llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1409    llvm::Value *Res = LocalDeclMap[VD];
1410    assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1411    return Res;
1412  }
1413
1414  /// getOpaqueLValueMapping - Given an opaque value expression (which
1415  /// must be mapped to an l-value), return its mapping.
1416  const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1417    assert(OpaqueValueMapping::shouldBindAsLValue(e));
1418
1419    llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1420      it = OpaqueLValues.find(e);
1421    assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1422    return it->second;
1423  }
1424
1425  /// getOpaqueRValueMapping - Given an opaque value expression (which
1426  /// must be mapped to an r-value), return its mapping.
1427  const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1428    assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1429
1430    llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1431      it = OpaqueRValues.find(e);
1432    assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1433    return it->second;
1434  }
1435
1436  /// getAccessedFieldNo - Given an encoded value and a result number, return
1437  /// the input field number being accessed.
1438  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1439
1440  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1441  llvm::BasicBlock *GetIndirectGotoBlock();
1442
1443  /// EmitNullInitialization - Generate code to set a value of the given type to
1444  /// null, If the type contains data member pointers, they will be initialized
1445  /// to -1 in accordance with the Itanium C++ ABI.
1446  void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1447
1448  // EmitVAArg - Generate code to get an argument from the passed in pointer
1449  // and update it accordingly. The return value is a pointer to the argument.
1450  // FIXME: We should be able to get rid of this method and use the va_arg
1451  // instruction in LLVM instead once it works well enough.
1452  llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1453
1454  /// EmitVLASize - Generate code for any VLA size expressions that might occur
1455  /// in a variably modified type. If Ty is a VLA, will return the value that
1456  /// corresponds to the size in bytes of the VLA type. Will return 0 otherwise.
1457  ///
1458  /// This function can be called with a null (unreachable) insert point.
1459  llvm::Value *EmitVLASize(QualType Ty);
1460
1461  // GetVLASize - Returns an LLVM value that corresponds to the size in bytes
1462  // of a variable length array type.
1463  llvm::Value *GetVLASize(const VariableArrayType *);
1464
1465  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1466  /// generating code for an C++ member function.
1467  llvm::Value *LoadCXXThis() {
1468    assert(CXXThisValue && "no 'this' value for this function");
1469    return CXXThisValue;
1470  }
1471
1472  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1473  /// virtual bases.
1474  llvm::Value *LoadCXXVTT() {
1475    assert(CXXVTTValue && "no VTT value for this function");
1476    return CXXVTTValue;
1477  }
1478
1479  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1480  /// complete class to the given direct base.
1481  llvm::Value *
1482  GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1483                                        const CXXRecordDecl *Derived,
1484                                        const CXXRecordDecl *Base,
1485                                        bool BaseIsVirtual);
1486
1487  /// GetAddressOfBaseClass - This function will add the necessary delta to the
1488  /// load of 'this' and returns address of the base class.
1489  llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1490                                     const CXXRecordDecl *Derived,
1491                                     CastExpr::path_const_iterator PathBegin,
1492                                     CastExpr::path_const_iterator PathEnd,
1493                                     bool NullCheckValue);
1494
1495  llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1496                                        const CXXRecordDecl *Derived,
1497                                        CastExpr::path_const_iterator PathBegin,
1498                                        CastExpr::path_const_iterator PathEnd,
1499                                        bool NullCheckValue);
1500
1501  llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
1502                                         const CXXRecordDecl *ClassDecl,
1503                                         const CXXRecordDecl *BaseClassDecl);
1504
1505  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1506                                      CXXCtorType CtorType,
1507                                      const FunctionArgList &Args);
1508  // It's important not to confuse this and the previous function. Delegating
1509  // constructors are the C++0x feature. The constructor delegate optimization
1510  // is used to reduce duplication in the base and complete consturctors where
1511  // they are substantially the same.
1512  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1513                                        const FunctionArgList &Args);
1514  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1515                              bool ForVirtualBase, llvm::Value *This,
1516                              CallExpr::const_arg_iterator ArgBeg,
1517                              CallExpr::const_arg_iterator ArgEnd);
1518
1519  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1520                              llvm::Value *This, llvm::Value *Src,
1521                              CallExpr::const_arg_iterator ArgBeg,
1522                              CallExpr::const_arg_iterator ArgEnd);
1523
1524  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1525                                  const ConstantArrayType *ArrayTy,
1526                                  llvm::Value *ArrayPtr,
1527                                  CallExpr::const_arg_iterator ArgBeg,
1528                                  CallExpr::const_arg_iterator ArgEnd,
1529                                  bool ZeroInitialization = false);
1530
1531  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1532                                  llvm::Value *NumElements,
1533                                  llvm::Value *ArrayPtr,
1534                                  CallExpr::const_arg_iterator ArgBeg,
1535                                  CallExpr::const_arg_iterator ArgEnd,
1536                                  bool ZeroInitialization = false);
1537
1538  void EmitCXXAggrDestructorCall(const CXXDestructorDecl *D,
1539                                 const ArrayType *Array,
1540                                 llvm::Value *This);
1541
1542  void EmitCXXAggrDestructorCall(const CXXDestructorDecl *D,
1543                                 llvm::Value *NumElements,
1544                                 llvm::Value *This);
1545
1546  llvm::Function *GenerateCXXAggrDestructorHelper(const CXXDestructorDecl *D,
1547                                                  const ArrayType *Array,
1548                                                  llvm::Value *This);
1549
1550  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1551                             bool ForVirtualBase, llvm::Value *This);
1552
1553  void EmitNewArrayInitializer(const CXXNewExpr *E, llvm::Value *NewPtr,
1554                               llvm::Value *NumElements);
1555
1556  void EmitCXXTemporary(const CXXTemporary *Temporary, llvm::Value *Ptr);
1557
1558  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1559  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1560
1561  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1562                      QualType DeleteTy);
1563
1564  llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1565  llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1566
1567  void EmitCheck(llvm::Value *, unsigned Size);
1568
1569  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1570                                       bool isInc, bool isPre);
1571  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1572                                         bool isInc, bool isPre);
1573  //===--------------------------------------------------------------------===//
1574  //                            Declaration Emission
1575  //===--------------------------------------------------------------------===//
1576
1577  /// EmitDecl - Emit a declaration.
1578  ///
1579  /// This function can be called with a null (unreachable) insert point.
1580  void EmitDecl(const Decl &D);
1581
1582  /// EmitVarDecl - Emit a local variable declaration.
1583  ///
1584  /// This function can be called with a null (unreachable) insert point.
1585  void EmitVarDecl(const VarDecl &D);
1586
1587  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1588                             llvm::Value *Address);
1589
1590  /// EmitAutoVarDecl - Emit an auto variable declaration.
1591  ///
1592  /// This function can be called with a null (unreachable) insert point.
1593  void EmitAutoVarDecl(const VarDecl &D);
1594
1595  class AutoVarEmission {
1596    friend class CodeGenFunction;
1597
1598    const VarDecl *Variable;
1599
1600    /// The alignment of the variable.
1601    CharUnits Alignment;
1602
1603    /// The address of the alloca.  Null if the variable was emitted
1604    /// as a global constant.
1605    llvm::Value *Address;
1606
1607    llvm::Value *NRVOFlag;
1608
1609    /// True if the variable is a __block variable.
1610    bool IsByRef;
1611
1612    /// True if the variable is of aggregate type and has a constant
1613    /// initializer.
1614    bool IsConstantAggregate;
1615
1616    struct Invalid {};
1617    AutoVarEmission(Invalid) : Variable(0) {}
1618
1619    AutoVarEmission(const VarDecl &variable)
1620      : Variable(&variable), Address(0), NRVOFlag(0),
1621        IsByRef(false), IsConstantAggregate(false) {}
1622
1623    bool wasEmittedAsGlobal() const { return Address == 0; }
1624
1625  public:
1626    static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1627
1628    /// Returns the address of the object within this declaration.
1629    /// Note that this does not chase the forwarding pointer for
1630    /// __block decls.
1631    llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1632      if (!IsByRef) return Address;
1633
1634      return CGF.Builder.CreateStructGEP(Address,
1635                                         CGF.getByRefValueLLVMField(Variable),
1636                                         Variable->getNameAsString());
1637    }
1638  };
1639  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1640  void EmitAutoVarInit(const AutoVarEmission &emission);
1641  void EmitAutoVarCleanups(const AutoVarEmission &emission);
1642
1643  void EmitStaticVarDecl(const VarDecl &D,
1644                         llvm::GlobalValue::LinkageTypes Linkage);
1645
1646  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1647  void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
1648
1649  /// protectFromPeepholes - Protect a value that we're intending to
1650  /// store to the side, but which will probably be used later, from
1651  /// aggressive peepholing optimizations that might delete it.
1652  ///
1653  /// Pass the result to unprotectFromPeepholes to declare that
1654  /// protection is no longer required.
1655  ///
1656  /// There's no particular reason why this shouldn't apply to
1657  /// l-values, it's just that no existing peepholes work on pointers.
1658  PeepholeProtection protectFromPeepholes(RValue rvalue);
1659  void unprotectFromPeepholes(PeepholeProtection protection);
1660
1661  //===--------------------------------------------------------------------===//
1662  //                             Statement Emission
1663  //===--------------------------------------------------------------------===//
1664
1665  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1666  void EmitStopPoint(const Stmt *S);
1667
1668  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1669  /// this function even if there is no current insertion point.
1670  ///
1671  /// This function may clear the current insertion point; callers should use
1672  /// EnsureInsertPoint if they wish to subsequently generate code without first
1673  /// calling EmitBlock, EmitBranch, or EmitStmt.
1674  void EmitStmt(const Stmt *S);
1675
1676  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1677  /// necessarily require an insertion point or debug information; typically
1678  /// because the statement amounts to a jump or a container of other
1679  /// statements.
1680  ///
1681  /// \return True if the statement was handled.
1682  bool EmitSimpleStmt(const Stmt *S);
1683
1684  RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1685                          AggValueSlot AVS = AggValueSlot::ignored());
1686
1687  /// EmitLabel - Emit the block for the given label. It is legal to call this
1688  /// function even if there is no current insertion point.
1689  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1690
1691  void EmitLabelStmt(const LabelStmt &S);
1692  void EmitGotoStmt(const GotoStmt &S);
1693  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1694  void EmitIfStmt(const IfStmt &S);
1695  void EmitWhileStmt(const WhileStmt &S);
1696  void EmitDoStmt(const DoStmt &S);
1697  void EmitForStmt(const ForStmt &S);
1698  void EmitReturnStmt(const ReturnStmt &S);
1699  void EmitDeclStmt(const DeclStmt &S);
1700  void EmitBreakStmt(const BreakStmt &S);
1701  void EmitContinueStmt(const ContinueStmt &S);
1702  void EmitSwitchStmt(const SwitchStmt &S);
1703  void EmitDefaultStmt(const DefaultStmt &S);
1704  void EmitCaseStmt(const CaseStmt &S);
1705  void EmitCaseStmtRange(const CaseStmt &S);
1706  void EmitAsmStmt(const AsmStmt &S);
1707
1708  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1709  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1710  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1711  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1712
1713  llvm::Constant *getUnwindResumeFn();
1714  llvm::Constant *getUnwindResumeOrRethrowFn();
1715  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1716  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1717
1718  void EmitCXXTryStmt(const CXXTryStmt &S);
1719  void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
1720
1721  //===--------------------------------------------------------------------===//
1722  //                         LValue Expression Emission
1723  //===--------------------------------------------------------------------===//
1724
1725  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
1726  RValue GetUndefRValue(QualType Ty);
1727
1728  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
1729  /// and issue an ErrorUnsupported style diagnostic (using the
1730  /// provided Name).
1731  RValue EmitUnsupportedRValue(const Expr *E,
1732                               const char *Name);
1733
1734  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
1735  /// an ErrorUnsupported style diagnostic (using the provided Name).
1736  LValue EmitUnsupportedLValue(const Expr *E,
1737                               const char *Name);
1738
1739  /// EmitLValue - Emit code to compute a designator that specifies the location
1740  /// of the expression.
1741  ///
1742  /// This can return one of two things: a simple address or a bitfield
1743  /// reference.  In either case, the LLVM Value* in the LValue structure is
1744  /// guaranteed to be an LLVM pointer type.
1745  ///
1746  /// If this returns a bitfield reference, nothing about the pointee type of
1747  /// the LLVM value is known: For example, it may not be a pointer to an
1748  /// integer.
1749  ///
1750  /// If this returns a normal address, and if the lvalue's C type is fixed
1751  /// size, this method guarantees that the returned pointer type will point to
1752  /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
1753  /// variable length type, this is not possible.
1754  ///
1755  LValue EmitLValue(const Expr *E);
1756
1757  /// EmitCheckedLValue - Same as EmitLValue but additionally we generate
1758  /// checking code to guard against undefined behavior.  This is only
1759  /// suitable when we know that the address will be used to access the
1760  /// object.
1761  LValue EmitCheckedLValue(const Expr *E);
1762
1763  /// EmitToMemory - Change a scalar value from its value
1764  /// representation to its in-memory representation.
1765  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
1766
1767  /// EmitFromMemory - Change a scalar value from its memory
1768  /// representation to its value representation.
1769  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
1770
1771  /// EmitLoadOfScalar - Load a scalar value from an address, taking
1772  /// care to appropriately convert from the memory representation to
1773  /// the LLVM value representation.
1774  llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1775                                unsigned Alignment, QualType Ty,
1776                                llvm::MDNode *TBAAInfo = 0);
1777
1778  /// EmitStoreOfScalar - Store a scalar value to an address, taking
1779  /// care to appropriately convert from the memory representation to
1780  /// the LLVM value representation.
1781  void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1782                         bool Volatile, unsigned Alignment, QualType Ty,
1783                         llvm::MDNode *TBAAInfo = 0);
1784
1785  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
1786  /// this method emits the address of the lvalue, then loads the result as an
1787  /// rvalue, returning the rvalue.
1788  RValue EmitLoadOfLValue(LValue V, QualType LVType);
1789  RValue EmitLoadOfExtVectorElementLValue(LValue V, QualType LVType);
1790  RValue EmitLoadOfBitfieldLValue(LValue LV, QualType ExprType);
1791  RValue EmitLoadOfPropertyRefLValue(LValue LV,
1792                                 ReturnValueSlot Return = ReturnValueSlot());
1793
1794  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1795  /// lvalue, where both are guaranteed to the have the same type, and that type
1796  /// is 'Ty'.
1797  void EmitStoreThroughLValue(RValue Src, LValue Dst, QualType Ty);
1798  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst,
1799                                                QualType Ty);
1800  void EmitStoreThroughPropertyRefLValue(RValue Src, LValue Dst);
1801
1802  /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
1803  /// EmitStoreThroughLValue.
1804  ///
1805  /// \param Result [out] - If non-null, this will be set to a Value* for the
1806  /// bit-field contents after the store, appropriate for use as the result of
1807  /// an assignment to the bit-field.
1808  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, QualType Ty,
1809                                      llvm::Value **Result=0);
1810
1811  /// Emit an l-value for an assignment (simple or compound) of complex type.
1812  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
1813  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
1814
1815  // Note: only available for agg return types
1816  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
1817  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
1818  // Note: only available for agg return types
1819  LValue EmitCallExprLValue(const CallExpr *E);
1820  // Note: only available for agg return types
1821  LValue EmitVAArgExprLValue(const VAArgExpr *E);
1822  LValue EmitDeclRefLValue(const DeclRefExpr *E);
1823  LValue EmitStringLiteralLValue(const StringLiteral *E);
1824  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
1825  LValue EmitPredefinedLValue(const PredefinedExpr *E);
1826  LValue EmitUnaryOpLValue(const UnaryOperator *E);
1827  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
1828  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
1829  LValue EmitMemberExpr(const MemberExpr *E);
1830  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
1831  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
1832  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
1833  LValue EmitCastLValue(const CastExpr *E);
1834  LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
1835  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
1836
1837  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
1838                              const ObjCIvarDecl *Ivar);
1839  LValue EmitLValueForAnonRecordField(llvm::Value* Base,
1840                                      const IndirectFieldDecl* Field,
1841                                      unsigned CVRQualifiers);
1842  LValue EmitLValueForField(llvm::Value* Base, const FieldDecl* Field,
1843                            unsigned CVRQualifiers);
1844
1845  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
1846  /// if the Field is a reference, this will return the address of the reference
1847  /// and not the address of the value stored in the reference.
1848  LValue EmitLValueForFieldInitialization(llvm::Value* Base,
1849                                          const FieldDecl* Field,
1850                                          unsigned CVRQualifiers);
1851
1852  LValue EmitLValueForIvar(QualType ObjectTy,
1853                           llvm::Value* Base, const ObjCIvarDecl *Ivar,
1854                           unsigned CVRQualifiers);
1855
1856  LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field,
1857                                unsigned CVRQualifiers);
1858
1859  LValue EmitBlockDeclRefLValue(const BlockDeclRefExpr *E);
1860
1861  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
1862  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
1863  LValue EmitExprWithCleanupsLValue(const ExprWithCleanups *E);
1864  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
1865
1866  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
1867  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
1868  LValue EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E);
1869  LValue EmitStmtExprLValue(const StmtExpr *E);
1870  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
1871  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
1872  void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
1873
1874  //===--------------------------------------------------------------------===//
1875  //                         Scalar Expression Emission
1876  //===--------------------------------------------------------------------===//
1877
1878  /// EmitCall - Generate a call of the given function, expecting the given
1879  /// result type, and using the given argument list which specifies both the
1880  /// LLVM arguments and the types they were derived from.
1881  ///
1882  /// \param TargetDecl - If given, the decl of the function in a direct call;
1883  /// used to set attributes on the call (noreturn, etc.).
1884  RValue EmitCall(const CGFunctionInfo &FnInfo,
1885                  llvm::Value *Callee,
1886                  ReturnValueSlot ReturnValue,
1887                  const CallArgList &Args,
1888                  const Decl *TargetDecl = 0,
1889                  llvm::Instruction **callOrInvoke = 0);
1890
1891  RValue EmitCall(QualType FnType, llvm::Value *Callee,
1892                  ReturnValueSlot ReturnValue,
1893                  CallExpr::const_arg_iterator ArgBeg,
1894                  CallExpr::const_arg_iterator ArgEnd,
1895                  const Decl *TargetDecl = 0);
1896  RValue EmitCallExpr(const CallExpr *E,
1897                      ReturnValueSlot ReturnValue = ReturnValueSlot());
1898
1899  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
1900                                  llvm::Value * const *ArgBegin,
1901                                  llvm::Value * const *ArgEnd,
1902                                  const llvm::Twine &Name = "");
1903
1904  llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
1905                                const llvm::Type *Ty);
1906  llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
1907                                llvm::Value *This, const llvm::Type *Ty);
1908  llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
1909                                         NestedNameSpecifier *Qual,
1910                                         const llvm::Type *Ty);
1911
1912  llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
1913                                                   CXXDtorType Type,
1914                                                   const CXXRecordDecl *RD);
1915
1916  RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
1917                           llvm::Value *Callee,
1918                           ReturnValueSlot ReturnValue,
1919                           llvm::Value *This,
1920                           llvm::Value *VTT,
1921                           CallExpr::const_arg_iterator ArgBeg,
1922                           CallExpr::const_arg_iterator ArgEnd);
1923  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
1924                               ReturnValueSlot ReturnValue);
1925  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
1926                                      ReturnValueSlot ReturnValue);
1927
1928  llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
1929                                           const CXXMethodDecl *MD,
1930                                           llvm::Value *This);
1931  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
1932                                       const CXXMethodDecl *MD,
1933                                       ReturnValueSlot ReturnValue);
1934
1935
1936  RValue EmitBuiltinExpr(const FunctionDecl *FD,
1937                         unsigned BuiltinID, const CallExpr *E);
1938
1939  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
1940
1941  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
1942  /// is unhandled by the current target.
1943  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
1944
1945  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
1946  llvm::Value *EmitNeonCall(llvm::Function *F,
1947                            llvm::SmallVectorImpl<llvm::Value*> &O,
1948                            const char *name,
1949                            unsigned shift = 0, bool rightshift = false);
1950  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
1951  llvm::Value *EmitNeonShiftVector(llvm::Value *V, const llvm::Type *Ty,
1952                                   bool negateForRightShift);
1953
1954  llvm::Value *BuildVector(const llvm::SmallVectorImpl<llvm::Value*> &Ops);
1955  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
1956  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
1957
1958  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
1959  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
1960  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
1961  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
1962                             ReturnValueSlot Return = ReturnValueSlot());
1963
1964  /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
1965  /// expression. Will emit a temporary variable if E is not an LValue.
1966  RValue EmitReferenceBindingToExpr(const Expr* E,
1967                                    const NamedDecl *InitializedDecl);
1968
1969  //===--------------------------------------------------------------------===//
1970  //                           Expression Emission
1971  //===--------------------------------------------------------------------===//
1972
1973  // Expressions are broken into three classes: scalar, complex, aggregate.
1974
1975  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
1976  /// scalar type, returning the result.
1977  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
1978
1979  /// EmitScalarConversion - Emit a conversion from the specified type to the
1980  /// specified destination type, both of which are LLVM scalar types.
1981  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
1982                                    QualType DstTy);
1983
1984  /// EmitComplexToScalarConversion - Emit a conversion from the specified
1985  /// complex type to the specified destination type, where the destination type
1986  /// is an LLVM scalar type.
1987  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
1988                                             QualType DstTy);
1989
1990
1991  /// EmitAggExpr - Emit the computation of the specified expression
1992  /// of aggregate type.  The result is computed into the given slot,
1993  /// which may be null to indicate that the value is not needed.
1994  void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false);
1995
1996  /// EmitAggExprToLValue - Emit the computation of the specified expression of
1997  /// aggregate type into a temporary LValue.
1998  LValue EmitAggExprToLValue(const Expr *E);
1999
2000  /// EmitGCMemmoveCollectable - Emit special API for structs with object
2001  /// pointers.
2002  void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2003                                QualType Ty);
2004
2005  /// EmitComplexExpr - Emit the computation of the specified expression of
2006  /// complex type, returning the result.
2007  ComplexPairTy EmitComplexExpr(const Expr *E,
2008                                bool IgnoreReal = false,
2009                                bool IgnoreImag = false);
2010
2011  /// EmitComplexExprIntoAddr - Emit the computation of the specified expression
2012  /// of complex type, storing into the specified Value*.
2013  void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
2014                               bool DestIsVolatile);
2015
2016  /// StoreComplexToAddr - Store a complex number into the specified address.
2017  void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
2018                          bool DestIsVolatile);
2019  /// LoadComplexFromAddr - Load a complex number from the specified address.
2020  ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
2021
2022  /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2023  /// a static local variable.
2024  llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2025                                            const char *Separator,
2026                                       llvm::GlobalValue::LinkageTypes Linkage);
2027
2028  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2029  /// global variable that has already been created for it.  If the initializer
2030  /// has a different type than GV does, this may free GV and return a different
2031  /// one.  Otherwise it just returns GV.
2032  llvm::GlobalVariable *
2033  AddInitializerToStaticVarDecl(const VarDecl &D,
2034                                llvm::GlobalVariable *GV);
2035
2036
2037  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2038  /// variable with global storage.
2039  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr);
2040
2041  /// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr
2042  /// with the C++ runtime so that its destructor will be called at exit.
2043  void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn,
2044                                     llvm::Constant *DeclPtr);
2045
2046  /// Emit code in this function to perform a guarded variable
2047  /// initialization.  Guarded initializations are used when it's not
2048  /// possible to prove that an initialization will be done exactly
2049  /// once, e.g. with a static local variable or a static data member
2050  /// of a class template.
2051  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr);
2052
2053  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2054  /// variables.
2055  void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2056                                 llvm::Constant **Decls,
2057                                 unsigned NumDecls);
2058
2059  /// GenerateCXXGlobalDtorFunc - Generates code for destroying global
2060  /// variables.
2061  void GenerateCXXGlobalDtorFunc(llvm::Function *Fn,
2062                                 const std::vector<std::pair<llvm::WeakVH,
2063                                   llvm::Constant*> > &DtorsAndObjects);
2064
2065  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2066                                        const VarDecl *D,
2067                                        llvm::GlobalVariable *Addr);
2068
2069  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2070
2071  void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2072                                  const Expr *Exp);
2073
2074  RValue EmitExprWithCleanups(const ExprWithCleanups *E,
2075                              AggValueSlot Slot =AggValueSlot::ignored());
2076
2077  void EmitCXXThrowExpr(const CXXThrowExpr *E);
2078
2079  //===--------------------------------------------------------------------===//
2080  //                             Internal Helpers
2081  //===--------------------------------------------------------------------===//
2082
2083  /// ContainsLabel - Return true if the statement contains a label in it.  If
2084  /// this statement is not executed normally, it not containing a label means
2085  /// that we can just remove the code.
2086  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2087
2088  /// containsBreak - Return true if the statement contains a break out of it.
2089  /// If the statement (recursively) contains a switch or loop with a break
2090  /// inside of it, this is fine.
2091  static bool containsBreak(const Stmt *S);
2092
2093  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2094  /// to a constant, or if it does but contains a label, return false.  If it
2095  /// constant folds return true and set the boolean result in Result.
2096  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2097
2098  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2099  /// to a constant, or if it does but contains a label, return false.  If it
2100  /// constant folds return true and set the folded value.
2101  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result);
2102
2103  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2104  /// if statement) to the specified blocks.  Based on the condition, this might
2105  /// try to simplify the codegen of the conditional based on the branch.
2106  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2107                            llvm::BasicBlock *FalseBlock);
2108
2109  /// getTrapBB - Create a basic block that will call the trap intrinsic.  We'll
2110  /// generate a branch around the created basic block as necessary.
2111  llvm::BasicBlock *getTrapBB();
2112
2113  /// EmitCallArg - Emit a single call argument.
2114  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2115
2116  /// EmitDelegateCallArg - We are performing a delegate call; that
2117  /// is, the current function is delegating to another one.  Produce
2118  /// a r-value suitable for passing the given parameter.
2119  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
2120
2121private:
2122  void EmitReturnOfRValue(RValue RV, QualType Ty);
2123
2124  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2125  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2126  ///
2127  /// \param AI - The first function argument of the expansion.
2128  /// \return The argument following the last expanded function
2129  /// argument.
2130  llvm::Function::arg_iterator
2131  ExpandTypeFromArgs(QualType Ty, LValue Dst,
2132                     llvm::Function::arg_iterator AI);
2133
2134  /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2135  /// Ty, into individual arguments on the provided vector \arg Args. See
2136  /// ABIArgInfo::Expand.
2137  void ExpandTypeToArgs(QualType Ty, RValue Src,
2138                        llvm::SmallVector<llvm::Value*, 16> &Args);
2139
2140  llvm::Value* EmitAsmInput(const AsmStmt &S,
2141                            const TargetInfo::ConstraintInfo &Info,
2142                            const Expr *InputExpr, std::string &ConstraintStr);
2143
2144  llvm::Value* EmitAsmInputLValue(const AsmStmt &S,
2145                                  const TargetInfo::ConstraintInfo &Info,
2146                                  LValue InputValue, QualType InputType,
2147                                  std::string &ConstraintStr);
2148
2149  /// EmitCallArgs - Emit call arguments for a function.
2150  /// The CallArgTypeInfo parameter is used for iterating over the known
2151  /// argument types of the function being called.
2152  template<typename T>
2153  void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2154                    CallExpr::const_arg_iterator ArgBeg,
2155                    CallExpr::const_arg_iterator ArgEnd) {
2156      CallExpr::const_arg_iterator Arg = ArgBeg;
2157
2158    // First, use the argument types that the type info knows about
2159    if (CallArgTypeInfo) {
2160      for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2161           E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2162        assert(Arg != ArgEnd && "Running over edge of argument list!");
2163        QualType ArgType = *I;
2164#ifndef NDEBUG
2165        QualType ActualArgType = Arg->getType();
2166        if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2167          QualType ActualBaseType =
2168            ActualArgType->getAs<PointerType>()->getPointeeType();
2169          QualType ArgBaseType =
2170            ArgType->getAs<PointerType>()->getPointeeType();
2171          if (ArgBaseType->isVariableArrayType()) {
2172            if (const VariableArrayType *VAT =
2173                getContext().getAsVariableArrayType(ActualBaseType)) {
2174              if (!VAT->getSizeExpr())
2175                ActualArgType = ArgType;
2176            }
2177          }
2178        }
2179        assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2180               getTypePtr() ==
2181               getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2182               "type mismatch in call argument!");
2183#endif
2184        EmitCallArg(Args, *Arg, ArgType);
2185      }
2186
2187      // Either we've emitted all the call args, or we have a call to a
2188      // variadic function.
2189      assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2190             "Extra arguments in non-variadic function!");
2191
2192    }
2193
2194    // If we still have any arguments, emit them using the type of the argument.
2195    for (; Arg != ArgEnd; ++Arg)
2196      EmitCallArg(Args, *Arg, Arg->getType());
2197  }
2198
2199  const TargetCodeGenInfo &getTargetHooks() const {
2200    return CGM.getTargetCodeGenInfo();
2201  }
2202
2203  void EmitDeclMetadata();
2204
2205  CodeGenModule::ByrefHelpers *
2206  buildByrefHelpers(const llvm::StructType &byrefType,
2207                    const AutoVarEmission &emission);
2208};
2209
2210/// Helper class with most of the code for saving a value for a
2211/// conditional expression cleanup.
2212struct DominatingLLVMValue {
2213  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2214
2215  /// Answer whether the given value needs extra work to be saved.
2216  static bool needsSaving(llvm::Value *value) {
2217    // If it's not an instruction, we don't need to save.
2218    if (!isa<llvm::Instruction>(value)) return false;
2219
2220    // If it's an instruction in the entry block, we don't need to save.
2221    llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2222    return (block != &block->getParent()->getEntryBlock());
2223  }
2224
2225  /// Try to save the given value.
2226  static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2227    if (!needsSaving(value)) return saved_type(value, false);
2228
2229    // Otherwise we need an alloca.
2230    llvm::Value *alloca =
2231      CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2232    CGF.Builder.CreateStore(value, alloca);
2233
2234    return saved_type(alloca, true);
2235  }
2236
2237  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2238    if (!value.getInt()) return value.getPointer();
2239    return CGF.Builder.CreateLoad(value.getPointer());
2240  }
2241};
2242
2243/// A partial specialization of DominatingValue for llvm::Values that
2244/// might be llvm::Instructions.
2245template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2246  typedef T *type;
2247  static type restore(CodeGenFunction &CGF, saved_type value) {
2248    return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2249  }
2250};
2251
2252/// A specialization of DominatingValue for RValue.
2253template <> struct DominatingValue<RValue> {
2254  typedef RValue type;
2255  class saved_type {
2256    enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2257                AggregateAddress, ComplexAddress };
2258
2259    llvm::Value *Value;
2260    Kind K;
2261    saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2262
2263  public:
2264    static bool needsSaving(RValue value);
2265    static saved_type save(CodeGenFunction &CGF, RValue value);
2266    RValue restore(CodeGenFunction &CGF);
2267
2268    // implementations in CGExprCXX.cpp
2269  };
2270
2271  static bool needsSaving(type value) {
2272    return saved_type::needsSaving(value);
2273  }
2274  static saved_type save(CodeGenFunction &CGF, type value) {
2275    return saved_type::save(CGF, value);
2276  }
2277  static type restore(CodeGenFunction &CGF, saved_type value) {
2278    return value.restore(CGF);
2279  }
2280};
2281
2282}  // end namespace CodeGen
2283}  // end namespace clang
2284
2285#endif
2286