CodeGenFunction.h revision bdc4d80956c83a486e58d3df6bb524a1f66ff574
1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the internal per-function state used for llvm translation.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15#define CLANG_CODEGEN_CODEGENFUNCTION_H
16
17#include "clang/AST/Type.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/Frontend/CodeGenOptions.h"
22#include "clang/Basic/ABI.h"
23#include "clang/Basic/TargetInfo.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/SmallVector.h"
26#include "llvm/Support/ValueHandle.h"
27#include "CodeGenModule.h"
28#include "CGBuilder.h"
29#include "CGValue.h"
30
31namespace llvm {
32  class BasicBlock;
33  class LLVMContext;
34  class MDNode;
35  class Module;
36  class SwitchInst;
37  class Twine;
38  class Value;
39  class CallSite;
40}
41
42namespace clang {
43  class APValue;
44  class ASTContext;
45  class CXXDestructorDecl;
46  class CXXForRangeStmt;
47  class CXXTryStmt;
48  class Decl;
49  class LabelDecl;
50  class EnumConstantDecl;
51  class FunctionDecl;
52  class FunctionProtoType;
53  class LabelStmt;
54  class ObjCContainerDecl;
55  class ObjCInterfaceDecl;
56  class ObjCIvarDecl;
57  class ObjCMethodDecl;
58  class ObjCImplementationDecl;
59  class ObjCPropertyImplDecl;
60  class TargetInfo;
61  class TargetCodeGenInfo;
62  class VarDecl;
63  class ObjCForCollectionStmt;
64  class ObjCAtTryStmt;
65  class ObjCAtThrowStmt;
66  class ObjCAtSynchronizedStmt;
67  class ObjCAutoreleasePoolStmt;
68
69namespace CodeGen {
70  class CodeGenTypes;
71  class CGDebugInfo;
72  class CGFunctionInfo;
73  class CGRecordLayout;
74  class CGBlockInfo;
75  class CGCXXABI;
76  class BlockFlags;
77  class BlockFieldFlags;
78
79/// A branch fixup.  These are required when emitting a goto to a
80/// label which hasn't been emitted yet.  The goto is optimistically
81/// emitted as a branch to the basic block for the label, and (if it
82/// occurs in a scope with non-trivial cleanups) a fixup is added to
83/// the innermost cleanup.  When a (normal) cleanup is popped, any
84/// unresolved fixups in that scope are threaded through the cleanup.
85struct BranchFixup {
86  /// The block containing the terminator which needs to be modified
87  /// into a switch if this fixup is resolved into the current scope.
88  /// If null, LatestBranch points directly to the destination.
89  llvm::BasicBlock *OptimisticBranchBlock;
90
91  /// The ultimate destination of the branch.
92  ///
93  /// This can be set to null to indicate that this fixup was
94  /// successfully resolved.
95  llvm::BasicBlock *Destination;
96
97  /// The destination index value.
98  unsigned DestinationIndex;
99
100  /// The initial branch of the fixup.
101  llvm::BranchInst *InitialBranch;
102};
103
104template <class T> struct InvariantValue {
105  typedef T type;
106  typedef T saved_type;
107  static bool needsSaving(type value) { return false; }
108  static saved_type save(CodeGenFunction &CGF, type value) { return value; }
109  static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
110};
111
112/// A metaprogramming class for ensuring that a value will dominate an
113/// arbitrary position in a function.
114template <class T> struct DominatingValue : InvariantValue<T> {};
115
116template <class T, bool mightBeInstruction =
117            llvm::is_base_of<llvm::Value, T>::value &&
118            !llvm::is_base_of<llvm::Constant, T>::value &&
119            !llvm::is_base_of<llvm::BasicBlock, T>::value>
120struct DominatingPointer;
121template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
122// template <class T> struct DominatingPointer<T,true> at end of file
123
124template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
125
126enum CleanupKind {
127  EHCleanup = 0x1,
128  NormalCleanup = 0x2,
129  NormalAndEHCleanup = EHCleanup | NormalCleanup,
130
131  InactiveCleanup = 0x4,
132  InactiveEHCleanup = EHCleanup | InactiveCleanup,
133  InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
134  InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
135};
136
137/// A stack of scopes which respond to exceptions, including cleanups
138/// and catch blocks.
139class EHScopeStack {
140public:
141  /// A saved depth on the scope stack.  This is necessary because
142  /// pushing scopes onto the stack invalidates iterators.
143  class stable_iterator {
144    friend class EHScopeStack;
145
146    /// Offset from StartOfData to EndOfBuffer.
147    ptrdiff_t Size;
148
149    stable_iterator(ptrdiff_t Size) : Size(Size) {}
150
151  public:
152    static stable_iterator invalid() { return stable_iterator(-1); }
153    stable_iterator() : Size(-1) {}
154
155    bool isValid() const { return Size >= 0; }
156
157    /// Returns true if this scope encloses I.
158    /// Returns false if I is invalid.
159    /// This scope must be valid.
160    bool encloses(stable_iterator I) const { return Size <= I.Size; }
161
162    /// Returns true if this scope strictly encloses I: that is,
163    /// if it encloses I and is not I.
164    /// Returns false is I is invalid.
165    /// This scope must be valid.
166    bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
167
168    friend bool operator==(stable_iterator A, stable_iterator B) {
169      return A.Size == B.Size;
170    }
171    friend bool operator!=(stable_iterator A, stable_iterator B) {
172      return A.Size != B.Size;
173    }
174  };
175
176  /// Information for lazily generating a cleanup.  Subclasses must be
177  /// POD-like: cleanups will not be destructed, and they will be
178  /// allocated on the cleanup stack and freely copied and moved
179  /// around.
180  ///
181  /// Cleanup implementations should generally be declared in an
182  /// anonymous namespace.
183  class Cleanup {
184  public:
185    // Anchor the construction vtable.  We use the destructor because
186    // gcc gives an obnoxious warning if there are virtual methods
187    // with an accessible non-virtual destructor.  Unfortunately,
188    // declaring this destructor makes it non-trivial, but there
189    // doesn't seem to be any other way around this warning.
190    //
191    // This destructor will never be called.
192    virtual ~Cleanup();
193
194    /// Emit the cleanup.  For normal cleanups, this is run in the
195    /// same EH context as when the cleanup was pushed, i.e. the
196    /// immediately-enclosing context of the cleanup scope.  For
197    /// EH cleanups, this is run in a terminate context.
198    ///
199    // \param IsForEHCleanup true if this is for an EH cleanup, false
200    ///  if for a normal cleanup.
201    virtual void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) = 0;
202  };
203
204  /// UnconditionalCleanupN stores its N parameters and just passes
205  /// them to the real cleanup function.
206  template <class T, class A0>
207  class UnconditionalCleanup1 : public Cleanup {
208    A0 a0;
209  public:
210    UnconditionalCleanup1(A0 a0) : a0(a0) {}
211    void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
212      T::Emit(CGF, IsForEHCleanup, a0);
213    }
214  };
215
216  template <class T, class A0, class A1>
217  class UnconditionalCleanup2 : public Cleanup {
218    A0 a0; A1 a1;
219  public:
220    UnconditionalCleanup2(A0 a0, A1 a1) : a0(a0), a1(a1) {}
221    void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
222      T::Emit(CGF, IsForEHCleanup, a0, a1);
223    }
224  };
225
226  template <class T, class A0, class A1, class A2>
227  class UnconditionalCleanup3 : public Cleanup {
228    A0 a0; A1 a1; A2 a2;
229  public:
230    UnconditionalCleanup3(A0 a0, A1 a1, A2 a2) : a0(a0), a1(a1), a2(a2) {}
231    void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
232      T::Emit(CGF, IsForEHCleanup, a0, a1, a2);
233    }
234  };
235
236  /// ConditionalCleanupN stores the saved form of its N parameters,
237  /// then restores them and performs the cleanup.
238  template <class T, class A0>
239  class ConditionalCleanup1 : public Cleanup {
240    typedef typename DominatingValue<A0>::saved_type A0_saved;
241    A0_saved a0_saved;
242
243    void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
244      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
245      T::Emit(CGF, IsForEHCleanup, a0);
246    }
247
248  public:
249    ConditionalCleanup1(A0_saved a0)
250      : a0_saved(a0) {}
251  };
252
253  template <class T, class A0, class A1>
254  class ConditionalCleanup2 : public Cleanup {
255    typedef typename DominatingValue<A0>::saved_type A0_saved;
256    typedef typename DominatingValue<A1>::saved_type A1_saved;
257    A0_saved a0_saved;
258    A1_saved a1_saved;
259
260    void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
261      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
262      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
263      T::Emit(CGF, IsForEHCleanup, a0, a1);
264    }
265
266  public:
267    ConditionalCleanup2(A0_saved a0, A1_saved a1)
268      : a0_saved(a0), a1_saved(a1) {}
269  };
270
271  template <class T, class A0, class A1, class A2>
272  class ConditionalCleanup3 : public Cleanup {
273    typedef typename DominatingValue<A0>::saved_type A0_saved;
274    typedef typename DominatingValue<A1>::saved_type A1_saved;
275    typedef typename DominatingValue<A2>::saved_type A2_saved;
276    A0_saved a0_saved;
277    A1_saved a1_saved;
278    A2_saved a2_saved;
279
280    void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
281      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
282      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
283      A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
284      T::Emit(CGF, IsForEHCleanup, a0, a1, a2);
285    }
286
287  public:
288    ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2)
289    : a0_saved(a0), a1_saved(a1), a2_saved(a2) {}
290  };
291
292private:
293  // The implementation for this class is in CGException.h and
294  // CGException.cpp; the definition is here because it's used as a
295  // member of CodeGenFunction.
296
297  /// The start of the scope-stack buffer, i.e. the allocated pointer
298  /// for the buffer.  All of these pointers are either simultaneously
299  /// null or simultaneously valid.
300  char *StartOfBuffer;
301
302  /// The end of the buffer.
303  char *EndOfBuffer;
304
305  /// The first valid entry in the buffer.
306  char *StartOfData;
307
308  /// The innermost normal cleanup on the stack.
309  stable_iterator InnermostNormalCleanup;
310
311  /// The innermost EH cleanup on the stack.
312  stable_iterator InnermostEHCleanup;
313
314  /// The number of catches on the stack.
315  unsigned CatchDepth;
316
317  /// The current EH destination index.  Reset to FirstCatchIndex
318  /// whenever the last EH cleanup is popped.
319  unsigned NextEHDestIndex;
320  enum { FirstEHDestIndex = 1 };
321
322  /// The current set of branch fixups.  A branch fixup is a jump to
323  /// an as-yet unemitted label, i.e. a label for which we don't yet
324  /// know the EH stack depth.  Whenever we pop a cleanup, we have
325  /// to thread all the current branch fixups through it.
326  ///
327  /// Fixups are recorded as the Use of the respective branch or
328  /// switch statement.  The use points to the final destination.
329  /// When popping out of a cleanup, these uses are threaded through
330  /// the cleanup and adjusted to point to the new cleanup.
331  ///
332  /// Note that branches are allowed to jump into protected scopes
333  /// in certain situations;  e.g. the following code is legal:
334  ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
335  ///     goto foo;
336  ///     A a;
337  ///    foo:
338  ///     bar();
339  llvm::SmallVector<BranchFixup, 8> BranchFixups;
340
341  char *allocate(size_t Size);
342
343  void *pushCleanup(CleanupKind K, size_t DataSize);
344
345public:
346  EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
347                   InnermostNormalCleanup(stable_end()),
348                   InnermostEHCleanup(stable_end()),
349                   CatchDepth(0), NextEHDestIndex(FirstEHDestIndex) {}
350  ~EHScopeStack() { delete[] StartOfBuffer; }
351
352  // Variadic templates would make this not terrible.
353
354  /// Push a lazily-created cleanup on the stack.
355  template <class T>
356  void pushCleanup(CleanupKind Kind) {
357    void *Buffer = pushCleanup(Kind, sizeof(T));
358    Cleanup *Obj = new(Buffer) T();
359    (void) Obj;
360  }
361
362  /// Push a lazily-created cleanup on the stack.
363  template <class T, class A0>
364  void pushCleanup(CleanupKind Kind, A0 a0) {
365    void *Buffer = pushCleanup(Kind, sizeof(T));
366    Cleanup *Obj = new(Buffer) T(a0);
367    (void) Obj;
368  }
369
370  /// Push a lazily-created cleanup on the stack.
371  template <class T, class A0, class A1>
372  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
373    void *Buffer = pushCleanup(Kind, sizeof(T));
374    Cleanup *Obj = new(Buffer) T(a0, a1);
375    (void) Obj;
376  }
377
378  /// Push a lazily-created cleanup on the stack.
379  template <class T, class A0, class A1, class A2>
380  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
381    void *Buffer = pushCleanup(Kind, sizeof(T));
382    Cleanup *Obj = new(Buffer) T(a0, a1, a2);
383    (void) Obj;
384  }
385
386  /// Push a lazily-created cleanup on the stack.
387  template <class T, class A0, class A1, class A2, class A3>
388  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
389    void *Buffer = pushCleanup(Kind, sizeof(T));
390    Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
391    (void) Obj;
392  }
393
394  /// Push a lazily-created cleanup on the stack.
395  template <class T, class A0, class A1, class A2, class A3, class A4>
396  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
397    void *Buffer = pushCleanup(Kind, sizeof(T));
398    Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
399    (void) Obj;
400  }
401
402  // Feel free to add more variants of the following:
403
404  /// Push a cleanup with non-constant storage requirements on the
405  /// stack.  The cleanup type must provide an additional static method:
406  ///   static size_t getExtraSize(size_t);
407  /// The argument to this method will be the value N, which will also
408  /// be passed as the first argument to the constructor.
409  ///
410  /// The data stored in the extra storage must obey the same
411  /// restrictions as normal cleanup member data.
412  ///
413  /// The pointer returned from this method is valid until the cleanup
414  /// stack is modified.
415  template <class T, class A0, class A1, class A2>
416  T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
417    void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
418    return new (Buffer) T(N, a0, a1, a2);
419  }
420
421  /// Pops a cleanup scope off the stack.  This should only be called
422  /// by CodeGenFunction::PopCleanupBlock.
423  void popCleanup();
424
425  /// Push a set of catch handlers on the stack.  The catch is
426  /// uninitialized and will need to have the given number of handlers
427  /// set on it.
428  class EHCatchScope *pushCatch(unsigned NumHandlers);
429
430  /// Pops a catch scope off the stack.
431  void popCatch();
432
433  /// Push an exceptions filter on the stack.
434  class EHFilterScope *pushFilter(unsigned NumFilters);
435
436  /// Pops an exceptions filter off the stack.
437  void popFilter();
438
439  /// Push a terminate handler on the stack.
440  void pushTerminate();
441
442  /// Pops a terminate handler off the stack.
443  void popTerminate();
444
445  /// Determines whether the exception-scopes stack is empty.
446  bool empty() const { return StartOfData == EndOfBuffer; }
447
448  bool requiresLandingPad() const {
449    return (CatchDepth || hasEHCleanups());
450  }
451
452  /// Determines whether there are any normal cleanups on the stack.
453  bool hasNormalCleanups() const {
454    return InnermostNormalCleanup != stable_end();
455  }
456
457  /// Returns the innermost normal cleanup on the stack, or
458  /// stable_end() if there are no normal cleanups.
459  stable_iterator getInnermostNormalCleanup() const {
460    return InnermostNormalCleanup;
461  }
462  stable_iterator getInnermostActiveNormalCleanup() const; // CGException.h
463
464  /// Determines whether there are any EH cleanups on the stack.
465  bool hasEHCleanups() const {
466    return InnermostEHCleanup != stable_end();
467  }
468
469  /// Returns the innermost EH cleanup on the stack, or stable_end()
470  /// if there are no EH cleanups.
471  stable_iterator getInnermostEHCleanup() const {
472    return InnermostEHCleanup;
473  }
474  stable_iterator getInnermostActiveEHCleanup() const; // CGException.h
475
476  /// An unstable reference to a scope-stack depth.  Invalidated by
477  /// pushes but not pops.
478  class iterator;
479
480  /// Returns an iterator pointing to the innermost EH scope.
481  iterator begin() const;
482
483  /// Returns an iterator pointing to the outermost EH scope.
484  iterator end() const;
485
486  /// Create a stable reference to the top of the EH stack.  The
487  /// returned reference is valid until that scope is popped off the
488  /// stack.
489  stable_iterator stable_begin() const {
490    return stable_iterator(EndOfBuffer - StartOfData);
491  }
492
493  /// Create a stable reference to the bottom of the EH stack.
494  static stable_iterator stable_end() {
495    return stable_iterator(0);
496  }
497
498  /// Translates an iterator into a stable_iterator.
499  stable_iterator stabilize(iterator it) const;
500
501  /// Finds the nearest cleanup enclosing the given iterator.
502  /// Returns stable_iterator::invalid() if there are no such cleanups.
503  stable_iterator getEnclosingEHCleanup(iterator it) const;
504
505  /// Turn a stable reference to a scope depth into a unstable pointer
506  /// to the EH stack.
507  iterator find(stable_iterator save) const;
508
509  /// Removes the cleanup pointed to by the given stable_iterator.
510  void removeCleanup(stable_iterator save);
511
512  /// Add a branch fixup to the current cleanup scope.
513  BranchFixup &addBranchFixup() {
514    assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
515    BranchFixups.push_back(BranchFixup());
516    return BranchFixups.back();
517  }
518
519  unsigned getNumBranchFixups() const { return BranchFixups.size(); }
520  BranchFixup &getBranchFixup(unsigned I) {
521    assert(I < getNumBranchFixups());
522    return BranchFixups[I];
523  }
524
525  /// Pops lazily-removed fixups from the end of the list.  This
526  /// should only be called by procedures which have just popped a
527  /// cleanup or resolved one or more fixups.
528  void popNullFixups();
529
530  /// Clears the branch-fixups list.  This should only be called by
531  /// ResolveAllBranchFixups.
532  void clearFixups() { BranchFixups.clear(); }
533
534  /// Gets the next EH destination index.
535  unsigned getNextEHDestIndex() { return NextEHDestIndex++; }
536};
537
538/// CodeGenFunction - This class organizes the per-function state that is used
539/// while generating LLVM code.
540class CodeGenFunction : public CodeGenTypeCache {
541  CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT
542  void operator=(const CodeGenFunction&);  // DO NOT IMPLEMENT
543
544  friend class CGCXXABI;
545public:
546  /// A jump destination is an abstract label, branching to which may
547  /// require a jump out through normal cleanups.
548  struct JumpDest {
549    JumpDest() : Block(0), ScopeDepth(), Index(0) {}
550    JumpDest(llvm::BasicBlock *Block,
551             EHScopeStack::stable_iterator Depth,
552             unsigned Index)
553      : Block(Block), ScopeDepth(Depth), Index(Index) {}
554
555    bool isValid() const { return Block != 0; }
556    llvm::BasicBlock *getBlock() const { return Block; }
557    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
558    unsigned getDestIndex() const { return Index; }
559
560  private:
561    llvm::BasicBlock *Block;
562    EHScopeStack::stable_iterator ScopeDepth;
563    unsigned Index;
564  };
565
566  /// An unwind destination is an abstract label, branching to which
567  /// may require a jump out through EH cleanups.
568  struct UnwindDest {
569    UnwindDest() : Block(0), ScopeDepth(), Index(0) {}
570    UnwindDest(llvm::BasicBlock *Block,
571               EHScopeStack::stable_iterator Depth,
572               unsigned Index)
573      : Block(Block), ScopeDepth(Depth), Index(Index) {}
574
575    bool isValid() const { return Block != 0; }
576    llvm::BasicBlock *getBlock() const { return Block; }
577    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
578    unsigned getDestIndex() const { return Index; }
579
580  private:
581    llvm::BasicBlock *Block;
582    EHScopeStack::stable_iterator ScopeDepth;
583    unsigned Index;
584  };
585
586  CodeGenModule &CGM;  // Per-module state.
587  const TargetInfo &Target;
588
589  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
590  CGBuilderTy Builder;
591
592  /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
593  /// This excludes BlockDecls.
594  const Decl *CurFuncDecl;
595  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
596  const Decl *CurCodeDecl;
597  const CGFunctionInfo *CurFnInfo;
598  QualType FnRetTy;
599  llvm::Function *CurFn;
600
601  /// CurGD - The GlobalDecl for the current function being compiled.
602  GlobalDecl CurGD;
603
604  /// PrologueCleanupDepth - The cleanup depth enclosing all the
605  /// cleanups associated with the parameters.
606  EHScopeStack::stable_iterator PrologueCleanupDepth;
607
608  /// ReturnBlock - Unified return block.
609  JumpDest ReturnBlock;
610
611  /// ReturnValue - The temporary alloca to hold the return value. This is null
612  /// iff the function has no return value.
613  llvm::Value *ReturnValue;
614
615  /// RethrowBlock - Unified rethrow block.
616  UnwindDest RethrowBlock;
617
618  /// AllocaInsertPoint - This is an instruction in the entry block before which
619  /// we prefer to insert allocas.
620  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
621
622  bool CatchUndefined;
623
624  /// In ARC, whether we should autorelease the return value.
625  bool AutoreleaseResult;
626
627  const CodeGen::CGBlockInfo *BlockInfo;
628  llvm::Value *BlockPointer;
629
630  /// \brief A mapping from NRVO variables to the flags used to indicate
631  /// when the NRVO has been applied to this variable.
632  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
633
634  EHScopeStack EHStack;
635
636  /// i32s containing the indexes of the cleanup destinations.
637  llvm::AllocaInst *NormalCleanupDest;
638  llvm::AllocaInst *EHCleanupDest;
639
640  unsigned NextCleanupDestIndex;
641
642  /// The exception slot.  All landing pads write the current
643  /// exception pointer into this alloca.
644  llvm::Value *ExceptionSlot;
645
646  /// The selector slot.  Under the MandatoryCleanup model, all
647  /// landing pads write the current selector value into this alloca.
648  llvm::AllocaInst *EHSelectorSlot;
649
650  /// Emits a landing pad for the current EH stack.
651  llvm::BasicBlock *EmitLandingPad();
652
653  llvm::BasicBlock *getInvokeDestImpl();
654
655  /// Set up the last cleaup that was pushed as a conditional
656  /// full-expression cleanup.
657  void initFullExprCleanup();
658
659  template <class T>
660  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
661    return DominatingValue<T>::save(*this, value);
662  }
663
664public:
665  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
666  /// rethrows.
667  llvm::SmallVector<llvm::Value*, 8> ObjCEHValueStack;
668
669  /// A class controlling the emission of a finally block.
670  class FinallyInfo {
671    /// Where the catchall's edge through the cleanup should go.
672    JumpDest RethrowDest;
673
674    /// A function to call to enter the catch.
675    llvm::Constant *BeginCatchFn;
676
677    /// An i1 variable indicating whether or not the @finally is
678    /// running for an exception.
679    llvm::AllocaInst *ForEHVar;
680
681    /// An i8* variable into which the exception pointer to rethrow
682    /// has been saved.
683    llvm::AllocaInst *SavedExnVar;
684
685  public:
686    void enter(CodeGenFunction &CGF, const Stmt *Finally,
687               llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
688               llvm::Constant *rethrowFn);
689    void exit(CodeGenFunction &CGF);
690  };
691
692  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
693  /// current full-expression.  Safe against the possibility that
694  /// we're currently inside a conditionally-evaluated expression.
695  template <class T, class A0>
696  void pushFullExprCleanup(CleanupKind kind, A0 a0) {
697    // If we're not in a conditional branch, or if none of the
698    // arguments requires saving, then use the unconditional cleanup.
699    if (!isInConditionalBranch()) {
700      typedef EHScopeStack::UnconditionalCleanup1<T, A0> CleanupType;
701      return EHStack.pushCleanup<CleanupType>(kind, a0);
702    }
703
704    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
705
706    typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
707    EHStack.pushCleanup<CleanupType>(kind, a0_saved);
708    initFullExprCleanup();
709  }
710
711  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
712  /// current full-expression.  Safe against the possibility that
713  /// we're currently inside a conditionally-evaluated expression.
714  template <class T, class A0, class A1>
715  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
716    // If we're not in a conditional branch, or if none of the
717    // arguments requires saving, then use the unconditional cleanup.
718    if (!isInConditionalBranch()) {
719      typedef EHScopeStack::UnconditionalCleanup2<T, A0, A1> CleanupType;
720      return EHStack.pushCleanup<CleanupType>(kind, a0, a1);
721    }
722
723    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
724    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
725
726    typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
727    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
728    initFullExprCleanup();
729  }
730
731  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
732  /// current full-expression.  Safe against the possibility that
733  /// we're currently inside a conditionally-evaluated expression.
734  template <class T, class A0, class A1, class A2>
735  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
736    // If we're not in a conditional branch, or if none of the
737    // arguments requires saving, then use the unconditional cleanup.
738    if (!isInConditionalBranch()) {
739      typedef EHScopeStack::UnconditionalCleanup3<T, A0, A1, A2> CleanupType;
740      return EHStack.pushCleanup<CleanupType>(kind, a0, a1, a2);
741    }
742
743    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
744    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
745    typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
746
747    typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
748    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
749    initFullExprCleanup();
750  }
751
752  /// PushDestructorCleanup - Push a cleanup to call the
753  /// complete-object destructor of an object of the given type at the
754  /// given address.  Does nothing if T is not a C++ class type with a
755  /// non-trivial destructor.
756  void PushDestructorCleanup(QualType T, llvm::Value *Addr);
757
758  /// PushDestructorCleanup - Push a cleanup to call the
759  /// complete-object variant of the given destructor on the object at
760  /// the given address.
761  void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
762                             llvm::Value *Addr);
763
764  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
765  /// process all branch fixups.
766  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
767
768  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
769  /// The block cannot be reactivated.  Pops it if it's the top of the
770  /// stack.
771  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup);
772
773  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
774  /// Cannot be used to resurrect a deactivated cleanup.
775  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup);
776
777  /// \brief Enters a new scope for capturing cleanups, all of which
778  /// will be executed once the scope is exited.
779  class RunCleanupsScope {
780    CodeGenFunction& CGF;
781    EHScopeStack::stable_iterator CleanupStackDepth;
782    bool OldDidCallStackSave;
783    bool PerformCleanup;
784
785    RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT
786    RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT
787
788  public:
789    /// \brief Enter a new cleanup scope.
790    explicit RunCleanupsScope(CodeGenFunction &CGF)
791      : CGF(CGF), PerformCleanup(true)
792    {
793      CleanupStackDepth = CGF.EHStack.stable_begin();
794      OldDidCallStackSave = CGF.DidCallStackSave;
795      CGF.DidCallStackSave = false;
796    }
797
798    /// \brief Exit this cleanup scope, emitting any accumulated
799    /// cleanups.
800    ~RunCleanupsScope() {
801      if (PerformCleanup) {
802        CGF.DidCallStackSave = OldDidCallStackSave;
803        CGF.PopCleanupBlocks(CleanupStackDepth);
804      }
805    }
806
807    /// \brief Determine whether this scope requires any cleanups.
808    bool requiresCleanups() const {
809      return CGF.EHStack.stable_begin() != CleanupStackDepth;
810    }
811
812    /// \brief Force the emission of cleanups now, instead of waiting
813    /// until this object is destroyed.
814    void ForceCleanup() {
815      assert(PerformCleanup && "Already forced cleanup");
816      CGF.DidCallStackSave = OldDidCallStackSave;
817      CGF.PopCleanupBlocks(CleanupStackDepth);
818      PerformCleanup = false;
819    }
820  };
821
822
823  /// PopCleanupBlocks - Takes the old cleanup stack size and emits
824  /// the cleanup blocks that have been added.
825  void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
826
827  void ResolveBranchFixups(llvm::BasicBlock *Target);
828
829  /// The given basic block lies in the current EH scope, but may be a
830  /// target of a potentially scope-crossing jump; get a stable handle
831  /// to which we can perform this jump later.
832  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
833    return JumpDest(Target,
834                    EHStack.getInnermostNormalCleanup(),
835                    NextCleanupDestIndex++);
836  }
837
838  /// The given basic block lies in the current EH scope, but may be a
839  /// target of a potentially scope-crossing jump; get a stable handle
840  /// to which we can perform this jump later.
841  JumpDest getJumpDestInCurrentScope(llvm::StringRef Name = llvm::StringRef()) {
842    return getJumpDestInCurrentScope(createBasicBlock(Name));
843  }
844
845  /// EmitBranchThroughCleanup - Emit a branch from the current insert
846  /// block through the normal cleanup handling code (if any) and then
847  /// on to \arg Dest.
848  void EmitBranchThroughCleanup(JumpDest Dest);
849
850  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
851  /// specified destination obviously has no cleanups to run.  'false' is always
852  /// a conservatively correct answer for this method.
853  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
854
855  /// EmitBranchThroughEHCleanup - Emit a branch from the current
856  /// insert block through the EH cleanup handling code (if any) and
857  /// then on to \arg Dest.
858  void EmitBranchThroughEHCleanup(UnwindDest Dest);
859
860  /// getRethrowDest - Returns the unified outermost-scope rethrow
861  /// destination.
862  UnwindDest getRethrowDest();
863
864  /// An object to manage conditionally-evaluated expressions.
865  class ConditionalEvaluation {
866    llvm::BasicBlock *StartBB;
867
868  public:
869    ConditionalEvaluation(CodeGenFunction &CGF)
870      : StartBB(CGF.Builder.GetInsertBlock()) {}
871
872    void begin(CodeGenFunction &CGF) {
873      assert(CGF.OutermostConditional != this);
874      if (!CGF.OutermostConditional)
875        CGF.OutermostConditional = this;
876    }
877
878    void end(CodeGenFunction &CGF) {
879      assert(CGF.OutermostConditional != 0);
880      if (CGF.OutermostConditional == this)
881        CGF.OutermostConditional = 0;
882    }
883
884    /// Returns a block which will be executed prior to each
885    /// evaluation of the conditional code.
886    llvm::BasicBlock *getStartingBlock() const {
887      return StartBB;
888    }
889  };
890
891  /// isInConditionalBranch - Return true if we're currently emitting
892  /// one branch or the other of a conditional expression.
893  bool isInConditionalBranch() const { return OutermostConditional != 0; }
894
895  /// An RAII object to record that we're evaluating a statement
896  /// expression.
897  class StmtExprEvaluation {
898    CodeGenFunction &CGF;
899
900    /// We have to save the outermost conditional: cleanups in a
901    /// statement expression aren't conditional just because the
902    /// StmtExpr is.
903    ConditionalEvaluation *SavedOutermostConditional;
904
905  public:
906    StmtExprEvaluation(CodeGenFunction &CGF)
907      : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
908      CGF.OutermostConditional = 0;
909    }
910
911    ~StmtExprEvaluation() {
912      CGF.OutermostConditional = SavedOutermostConditional;
913      CGF.EnsureInsertPoint();
914    }
915  };
916
917  /// An object which temporarily prevents a value from being
918  /// destroyed by aggressive peephole optimizations that assume that
919  /// all uses of a value have been realized in the IR.
920  class PeepholeProtection {
921    llvm::Instruction *Inst;
922    friend class CodeGenFunction;
923
924  public:
925    PeepholeProtection() : Inst(0) {}
926  };
927
928  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
929  class OpaqueValueMapping {
930    CodeGenFunction &CGF;
931    const OpaqueValueExpr *OpaqueValue;
932    bool BoundLValue;
933    CodeGenFunction::PeepholeProtection Protection;
934
935  public:
936    static bool shouldBindAsLValue(const Expr *expr) {
937      return expr->isGLValue() || expr->getType()->isRecordType();
938    }
939
940    /// Build the opaque value mapping for the given conditional
941    /// operator if it's the GNU ?: extension.  This is a common
942    /// enough pattern that the convenience operator is really
943    /// helpful.
944    ///
945    OpaqueValueMapping(CodeGenFunction &CGF,
946                       const AbstractConditionalOperator *op) : CGF(CGF) {
947      if (isa<ConditionalOperator>(op)) {
948        OpaqueValue = 0;
949        BoundLValue = false;
950        return;
951      }
952
953      const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
954      init(e->getOpaqueValue(), e->getCommon());
955    }
956
957    OpaqueValueMapping(CodeGenFunction &CGF,
958                       const OpaqueValueExpr *opaqueValue,
959                       LValue lvalue)
960      : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(true) {
961      assert(opaqueValue && "no opaque value expression!");
962      assert(shouldBindAsLValue(opaqueValue));
963      initLValue(lvalue);
964    }
965
966    OpaqueValueMapping(CodeGenFunction &CGF,
967                       const OpaqueValueExpr *opaqueValue,
968                       RValue rvalue)
969      : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(false) {
970      assert(opaqueValue && "no opaque value expression!");
971      assert(!shouldBindAsLValue(opaqueValue));
972      initRValue(rvalue);
973    }
974
975    void pop() {
976      assert(OpaqueValue && "mapping already popped!");
977      popImpl();
978      OpaqueValue = 0;
979    }
980
981    ~OpaqueValueMapping() {
982      if (OpaqueValue) popImpl();
983    }
984
985  private:
986    void popImpl() {
987      if (BoundLValue)
988        CGF.OpaqueLValues.erase(OpaqueValue);
989      else {
990        CGF.OpaqueRValues.erase(OpaqueValue);
991        CGF.unprotectFromPeepholes(Protection);
992      }
993    }
994
995    void init(const OpaqueValueExpr *ov, const Expr *e) {
996      OpaqueValue = ov;
997      BoundLValue = shouldBindAsLValue(ov);
998      assert(BoundLValue == shouldBindAsLValue(e)
999             && "inconsistent expression value kinds!");
1000      if (BoundLValue)
1001        initLValue(CGF.EmitLValue(e));
1002      else
1003        initRValue(CGF.EmitAnyExpr(e));
1004    }
1005
1006    void initLValue(const LValue &lv) {
1007      CGF.OpaqueLValues.insert(std::make_pair(OpaqueValue, lv));
1008    }
1009
1010    void initRValue(const RValue &rv) {
1011      // Work around an extremely aggressive peephole optimization in
1012      // EmitScalarConversion which assumes that all other uses of a
1013      // value are extant.
1014      Protection = CGF.protectFromPeepholes(rv);
1015      CGF.OpaqueRValues.insert(std::make_pair(OpaqueValue, rv));
1016    }
1017  };
1018
1019  /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
1020  /// number that holds the value.
1021  unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
1022
1023  /// BuildBlockByrefAddress - Computes address location of the
1024  /// variable which is declared as __block.
1025  llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
1026                                      const VarDecl *V);
1027private:
1028  CGDebugInfo *DebugInfo;
1029  bool DisableDebugInfo;
1030
1031  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1032  /// calling llvm.stacksave for multiple VLAs in the same scope.
1033  bool DidCallStackSave;
1034
1035  /// IndirectBranch - The first time an indirect goto is seen we create a block
1036  /// with an indirect branch.  Every time we see the address of a label taken,
1037  /// we add the label to the indirect goto.  Every subsequent indirect goto is
1038  /// codegen'd as a jump to the IndirectBranch's basic block.
1039  llvm::IndirectBrInst *IndirectBranch;
1040
1041  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1042  /// decls.
1043  typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
1044  DeclMapTy LocalDeclMap;
1045
1046  /// LabelMap - This keeps track of the LLVM basic block for each C label.
1047  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1048
1049  // BreakContinueStack - This keeps track of where break and continue
1050  // statements should jump to.
1051  struct BreakContinue {
1052    BreakContinue(JumpDest Break, JumpDest Continue)
1053      : BreakBlock(Break), ContinueBlock(Continue) {}
1054
1055    JumpDest BreakBlock;
1056    JumpDest ContinueBlock;
1057  };
1058  llvm::SmallVector<BreakContinue, 8> BreakContinueStack;
1059
1060  /// SwitchInsn - This is nearest current switch instruction. It is null if if
1061  /// current context is not in a switch.
1062  llvm::SwitchInst *SwitchInsn;
1063
1064  /// CaseRangeBlock - This block holds if condition check for last case
1065  /// statement range in current switch instruction.
1066  llvm::BasicBlock *CaseRangeBlock;
1067
1068  /// OpaqueLValues - Keeps track of the current set of opaque value
1069  /// expressions.
1070  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1071  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1072
1073  // VLASizeMap - This keeps track of the associated size for each VLA type.
1074  // We track this by the size expression rather than the type itself because
1075  // in certain situations, like a const qualifier applied to an VLA typedef,
1076  // multiple VLA types can share the same size expression.
1077  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1078  // enter/leave scopes.
1079  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1080
1081  /// A block containing a single 'unreachable' instruction.  Created
1082  /// lazily by getUnreachableBlock().
1083  llvm::BasicBlock *UnreachableBlock;
1084
1085  /// CXXThisDecl - When generating code for a C++ member function,
1086  /// this will hold the implicit 'this' declaration.
1087  ImplicitParamDecl *CXXThisDecl;
1088  llvm::Value *CXXThisValue;
1089
1090  /// CXXVTTDecl - When generating code for a base object constructor or
1091  /// base object destructor with virtual bases, this will hold the implicit
1092  /// VTT parameter.
1093  ImplicitParamDecl *CXXVTTDecl;
1094  llvm::Value *CXXVTTValue;
1095
1096  /// OutermostConditional - Points to the outermost active
1097  /// conditional control.  This is used so that we know if a
1098  /// temporary should be destroyed conditionally.
1099  ConditionalEvaluation *OutermostConditional;
1100
1101
1102  /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1103  /// type as well as the field number that contains the actual data.
1104  llvm::DenseMap<const ValueDecl *, std::pair<const llvm::Type *,
1105                                              unsigned> > ByRefValueInfo;
1106
1107  llvm::BasicBlock *TerminateLandingPad;
1108  llvm::BasicBlock *TerminateHandler;
1109  llvm::BasicBlock *TrapBB;
1110
1111public:
1112  CodeGenFunction(CodeGenModule &cgm);
1113
1114  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1115  ASTContext &getContext() const { return CGM.getContext(); }
1116  CGDebugInfo *getDebugInfo() {
1117    if (DisableDebugInfo)
1118      return NULL;
1119    return DebugInfo;
1120  }
1121  void disableDebugInfo() { DisableDebugInfo = true; }
1122  void enableDebugInfo() { DisableDebugInfo = false; }
1123
1124  bool shouldUseFusedARCCalls() {
1125    return CGM.getCodeGenOpts().OptimizationLevel == 0;
1126  }
1127
1128  const LangOptions &getLangOptions() const { return CGM.getLangOptions(); }
1129
1130  /// Returns a pointer to the function's exception object slot, which
1131  /// is assigned in every landing pad.
1132  llvm::Value *getExceptionSlot();
1133  llvm::Value *getEHSelectorSlot();
1134
1135  llvm::Value *getNormalCleanupDestSlot();
1136  llvm::Value *getEHCleanupDestSlot();
1137
1138  llvm::BasicBlock *getUnreachableBlock() {
1139    if (!UnreachableBlock) {
1140      UnreachableBlock = createBasicBlock("unreachable");
1141      new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1142    }
1143    return UnreachableBlock;
1144  }
1145
1146  llvm::BasicBlock *getInvokeDest() {
1147    if (!EHStack.requiresLandingPad()) return 0;
1148    return getInvokeDestImpl();
1149  }
1150
1151  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1152
1153  //===--------------------------------------------------------------------===//
1154  //                                  Cleanups
1155  //===--------------------------------------------------------------------===//
1156
1157  typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1158
1159  void pushPartialArrayCleanup(llvm::Value *arrayBegin,
1160                               QualType elementType,
1161                               Destroyer &destroyer,
1162                               llvm::Value *arrayEndPointer);
1163
1164  Destroyer &getDestroyer(QualType::DestructionKind destructionKind);
1165  void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1166                   Destroyer &destroyer);
1167  void emitDestroy(llvm::Value *addr, QualType type, Destroyer &destroyer);
1168  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1169                        QualType type, Destroyer &destroyer);
1170
1171  /// Determines whether an EH cleanup is required to destroy a type
1172  /// with the given destruction kind.
1173  bool needsEHCleanup(QualType::DestructionKind kind) {
1174    switch (kind) {
1175    case QualType::DK_none:
1176      return false;
1177    case QualType::DK_cxx_destructor:
1178    case QualType::DK_objc_weak_lifetime:
1179      return getLangOptions().Exceptions;
1180    case QualType::DK_objc_strong_lifetime:
1181      return getLangOptions().Exceptions &&
1182             CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1183    }
1184    llvm_unreachable("bad destruction kind");
1185  }
1186
1187  //===--------------------------------------------------------------------===//
1188  //                                  Objective-C
1189  //===--------------------------------------------------------------------===//
1190
1191  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1192
1193  void StartObjCMethod(const ObjCMethodDecl *MD,
1194                       const ObjCContainerDecl *CD,
1195                       SourceLocation StartLoc);
1196
1197  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1198  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1199                          const ObjCPropertyImplDecl *PID);
1200  void GenerateObjCGetterBody(ObjCIvarDecl *Ivar, bool IsAtomic, bool IsStrong);
1201  void GenerateObjCAtomicSetterBody(ObjCMethodDecl *OMD,
1202                                    ObjCIvarDecl *Ivar);
1203
1204  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1205                                  ObjCMethodDecl *MD, bool ctor);
1206
1207  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1208  /// for the given property.
1209  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1210                          const ObjCPropertyImplDecl *PID);
1211  bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1212  bool IvarTypeWithAggrGCObjects(QualType Ty);
1213
1214  //===--------------------------------------------------------------------===//
1215  //                                  Block Bits
1216  //===--------------------------------------------------------------------===//
1217
1218  llvm::Value *EmitBlockLiteral(const BlockExpr *);
1219  llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1220                                           const CGBlockInfo &Info,
1221                                           const llvm::StructType *,
1222                                           llvm::Constant *BlockVarLayout);
1223
1224  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1225                                        const CGBlockInfo &Info,
1226                                        const Decl *OuterFuncDecl,
1227                                        const DeclMapTy &ldm);
1228
1229  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1230  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1231
1232  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1233
1234  class AutoVarEmission;
1235
1236  void emitByrefStructureInit(const AutoVarEmission &emission);
1237  void enterByrefCleanup(const AutoVarEmission &emission);
1238
1239  llvm::Value *LoadBlockStruct() {
1240    assert(BlockPointer && "no block pointer set!");
1241    return BlockPointer;
1242  }
1243
1244  void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1245  void AllocateBlockDecl(const BlockDeclRefExpr *E);
1246  llvm::Value *GetAddrOfBlockDecl(const BlockDeclRefExpr *E) {
1247    return GetAddrOfBlockDecl(E->getDecl(), E->isByRef());
1248  }
1249  llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1250  const llvm::Type *BuildByRefType(const VarDecl *var);
1251
1252  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1253                    const CGFunctionInfo &FnInfo);
1254  void StartFunction(GlobalDecl GD, QualType RetTy,
1255                     llvm::Function *Fn,
1256                     const CGFunctionInfo &FnInfo,
1257                     const FunctionArgList &Args,
1258                     SourceLocation StartLoc);
1259
1260  void EmitConstructorBody(FunctionArgList &Args);
1261  void EmitDestructorBody(FunctionArgList &Args);
1262  void EmitFunctionBody(FunctionArgList &Args);
1263
1264  /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1265  /// emission when possible.
1266  void EmitReturnBlock();
1267
1268  /// FinishFunction - Complete IR generation of the current function. It is
1269  /// legal to call this function even if there is no current insertion point.
1270  void FinishFunction(SourceLocation EndLoc=SourceLocation());
1271
1272  /// GenerateThunk - Generate a thunk for the given method.
1273  void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1274                     GlobalDecl GD, const ThunkInfo &Thunk);
1275
1276  void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1277                            GlobalDecl GD, const ThunkInfo &Thunk);
1278
1279  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1280                        FunctionArgList &Args);
1281
1282  /// InitializeVTablePointer - Initialize the vtable pointer of the given
1283  /// subobject.
1284  ///
1285  void InitializeVTablePointer(BaseSubobject Base,
1286                               const CXXRecordDecl *NearestVBase,
1287                               CharUnits OffsetFromNearestVBase,
1288                               llvm::Constant *VTable,
1289                               const CXXRecordDecl *VTableClass);
1290
1291  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1292  void InitializeVTablePointers(BaseSubobject Base,
1293                                const CXXRecordDecl *NearestVBase,
1294                                CharUnits OffsetFromNearestVBase,
1295                                bool BaseIsNonVirtualPrimaryBase,
1296                                llvm::Constant *VTable,
1297                                const CXXRecordDecl *VTableClass,
1298                                VisitedVirtualBasesSetTy& VBases);
1299
1300  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1301
1302  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1303  /// to by This.
1304  llvm::Value *GetVTablePtr(llvm::Value *This, const llvm::Type *Ty);
1305
1306  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1307  /// given phase of destruction for a destructor.  The end result
1308  /// should call destructors on members and base classes in reverse
1309  /// order of their construction.
1310  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1311
1312  /// ShouldInstrumentFunction - Return true if the current function should be
1313  /// instrumented with __cyg_profile_func_* calls
1314  bool ShouldInstrumentFunction();
1315
1316  /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1317  /// instrumentation function with the current function and the call site, if
1318  /// function instrumentation is enabled.
1319  void EmitFunctionInstrumentation(const char *Fn);
1320
1321  /// EmitMCountInstrumentation - Emit call to .mcount.
1322  void EmitMCountInstrumentation();
1323
1324  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1325  /// arguments for the given function. This is also responsible for naming the
1326  /// LLVM function arguments.
1327  void EmitFunctionProlog(const CGFunctionInfo &FI,
1328                          llvm::Function *Fn,
1329                          const FunctionArgList &Args);
1330
1331  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1332  /// given temporary.
1333  void EmitFunctionEpilog(const CGFunctionInfo &FI);
1334
1335  /// EmitStartEHSpec - Emit the start of the exception spec.
1336  void EmitStartEHSpec(const Decl *D);
1337
1338  /// EmitEndEHSpec - Emit the end of the exception spec.
1339  void EmitEndEHSpec(const Decl *D);
1340
1341  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1342  llvm::BasicBlock *getTerminateLandingPad();
1343
1344  /// getTerminateHandler - Return a handler (not a landing pad, just
1345  /// a catch handler) that just calls terminate.  This is used when
1346  /// a terminate scope encloses a try.
1347  llvm::BasicBlock *getTerminateHandler();
1348
1349  const llvm::Type *ConvertTypeForMem(QualType T);
1350  const llvm::Type *ConvertType(QualType T);
1351  const llvm::Type *ConvertType(const TypeDecl *T) {
1352    return ConvertType(getContext().getTypeDeclType(T));
1353  }
1354
1355  /// LoadObjCSelf - Load the value of self. This function is only valid while
1356  /// generating code for an Objective-C method.
1357  llvm::Value *LoadObjCSelf();
1358
1359  /// TypeOfSelfObject - Return type of object that this self represents.
1360  QualType TypeOfSelfObject();
1361
1362  /// hasAggregateLLVMType - Return true if the specified AST type will map into
1363  /// an aggregate LLVM type or is void.
1364  static bool hasAggregateLLVMType(QualType T);
1365
1366  /// createBasicBlock - Create an LLVM basic block.
1367  llvm::BasicBlock *createBasicBlock(llvm::StringRef name = "",
1368                                     llvm::Function *parent = 0,
1369                                     llvm::BasicBlock *before = 0) {
1370#ifdef NDEBUG
1371    return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1372#else
1373    return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1374#endif
1375  }
1376
1377  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1378  /// label maps to.
1379  JumpDest getJumpDestForLabel(const LabelDecl *S);
1380
1381  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1382  /// another basic block, simplify it. This assumes that no other code could
1383  /// potentially reference the basic block.
1384  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1385
1386  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1387  /// adding a fall-through branch from the current insert block if
1388  /// necessary. It is legal to call this function even if there is no current
1389  /// insertion point.
1390  ///
1391  /// IsFinished - If true, indicates that the caller has finished emitting
1392  /// branches to the given block and does not expect to emit code into it. This
1393  /// means the block can be ignored if it is unreachable.
1394  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1395
1396  /// EmitBranch - Emit a branch to the specified basic block from the current
1397  /// insert block, taking care to avoid creation of branches from dummy
1398  /// blocks. It is legal to call this function even if there is no current
1399  /// insertion point.
1400  ///
1401  /// This function clears the current insertion point. The caller should follow
1402  /// calls to this function with calls to Emit*Block prior to generation new
1403  /// code.
1404  void EmitBranch(llvm::BasicBlock *Block);
1405
1406  /// HaveInsertPoint - True if an insertion point is defined. If not, this
1407  /// indicates that the current code being emitted is unreachable.
1408  bool HaveInsertPoint() const {
1409    return Builder.GetInsertBlock() != 0;
1410  }
1411
1412  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1413  /// emitted IR has a place to go. Note that by definition, if this function
1414  /// creates a block then that block is unreachable; callers may do better to
1415  /// detect when no insertion point is defined and simply skip IR generation.
1416  void EnsureInsertPoint() {
1417    if (!HaveInsertPoint())
1418      EmitBlock(createBasicBlock());
1419  }
1420
1421  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1422  /// specified stmt yet.
1423  void ErrorUnsupported(const Stmt *S, const char *Type,
1424                        bool OmitOnError=false);
1425
1426  //===--------------------------------------------------------------------===//
1427  //                                  Helpers
1428  //===--------------------------------------------------------------------===//
1429
1430  LValue MakeAddrLValue(llvm::Value *V, QualType T, unsigned Alignment = 0) {
1431    return LValue::MakeAddr(V, T, Alignment, getContext(),
1432                            CGM.getTBAAInfo(T));
1433  }
1434
1435  /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1436  /// block. The caller is responsible for setting an appropriate alignment on
1437  /// the alloca.
1438  llvm::AllocaInst *CreateTempAlloca(const llvm::Type *Ty,
1439                                     const llvm::Twine &Name = "tmp");
1440
1441  /// InitTempAlloca - Provide an initial value for the given alloca.
1442  void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1443
1444  /// CreateIRTemp - Create a temporary IR object of the given type, with
1445  /// appropriate alignment. This routine should only be used when an temporary
1446  /// value needs to be stored into an alloca (for example, to avoid explicit
1447  /// PHI construction), but the type is the IR type, not the type appropriate
1448  /// for storing in memory.
1449  llvm::AllocaInst *CreateIRTemp(QualType T, const llvm::Twine &Name = "tmp");
1450
1451  /// CreateMemTemp - Create a temporary memory object of the given type, with
1452  /// appropriate alignment.
1453  llvm::AllocaInst *CreateMemTemp(QualType T, const llvm::Twine &Name = "tmp");
1454
1455  /// CreateAggTemp - Create a temporary memory object for the given
1456  /// aggregate type.
1457  AggValueSlot CreateAggTemp(QualType T, const llvm::Twine &Name = "tmp") {
1458    return AggValueSlot::forAddr(CreateMemTemp(T, Name), T.getQualifiers(),
1459                                 false);
1460  }
1461
1462  /// Emit a cast to void* in the appropriate address space.
1463  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1464
1465  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1466  /// expression and compare the result against zero, returning an Int1Ty value.
1467  llvm::Value *EvaluateExprAsBool(const Expr *E);
1468
1469  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1470  void EmitIgnoredExpr(const Expr *E);
1471
1472  /// EmitAnyExpr - Emit code to compute the specified expression which can have
1473  /// any type.  The result is returned as an RValue struct.  If this is an
1474  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1475  /// the result should be returned.
1476  ///
1477  /// \param IgnoreResult - True if the resulting value isn't used.
1478  RValue EmitAnyExpr(const Expr *E,
1479                     AggValueSlot AggSlot = AggValueSlot::ignored(),
1480                     bool IgnoreResult = false);
1481
1482  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1483  // or the value of the expression, depending on how va_list is defined.
1484  llvm::Value *EmitVAListRef(const Expr *E);
1485
1486  /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1487  /// always be accessible even if no aggregate location is provided.
1488  RValue EmitAnyExprToTemp(const Expr *E);
1489
1490  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1491  /// arbitrary expression into the given memory location.
1492  void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1493                        Qualifiers Quals, bool IsInitializer);
1494
1495  /// EmitExprAsInit - Emits the code necessary to initialize a
1496  /// location in memory with the given initializer.
1497  void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1498                      LValue lvalue, bool capturedByInit);
1499
1500  /// EmitAggregateCopy - Emit an aggrate copy.
1501  ///
1502  /// \param isVolatile - True iff either the source or the destination is
1503  /// volatile.
1504  void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1505                         QualType EltTy, bool isVolatile=false);
1506
1507  /// StartBlock - Start new block named N. If insert block is a dummy block
1508  /// then reuse it.
1509  void StartBlock(const char *N);
1510
1511  /// GetAddrOfStaticLocalVar - Return the address of a static local variable.
1512  llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) {
1513    return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
1514  }
1515
1516  /// GetAddrOfLocalVar - Return the address of a local variable.
1517  llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1518    llvm::Value *Res = LocalDeclMap[VD];
1519    assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1520    return Res;
1521  }
1522
1523  /// getOpaqueLValueMapping - Given an opaque value expression (which
1524  /// must be mapped to an l-value), return its mapping.
1525  const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1526    assert(OpaqueValueMapping::shouldBindAsLValue(e));
1527
1528    llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1529      it = OpaqueLValues.find(e);
1530    assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1531    return it->second;
1532  }
1533
1534  /// getOpaqueRValueMapping - Given an opaque value expression (which
1535  /// must be mapped to an r-value), return its mapping.
1536  const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1537    assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1538
1539    llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1540      it = OpaqueRValues.find(e);
1541    assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1542    return it->second;
1543  }
1544
1545  /// getAccessedFieldNo - Given an encoded value and a result number, return
1546  /// the input field number being accessed.
1547  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1548
1549  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1550  llvm::BasicBlock *GetIndirectGotoBlock();
1551
1552  /// EmitNullInitialization - Generate code to set a value of the given type to
1553  /// null, If the type contains data member pointers, they will be initialized
1554  /// to -1 in accordance with the Itanium C++ ABI.
1555  void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1556
1557  // EmitVAArg - Generate code to get an argument from the passed in pointer
1558  // and update it accordingly. The return value is a pointer to the argument.
1559  // FIXME: We should be able to get rid of this method and use the va_arg
1560  // instruction in LLVM instead once it works well enough.
1561  llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1562
1563  /// emitArrayLength - Compute the length of an array, even if it's a
1564  /// VLA, and drill down to the base element type.
1565  llvm::Value *emitArrayLength(const ArrayType *arrayType,
1566                               QualType &baseType,
1567                               llvm::Value *&addr);
1568
1569  /// EmitVLASize - Capture all the sizes for the VLA expressions in
1570  /// the given variably-modified type and store them in the VLASizeMap.
1571  ///
1572  /// This function can be called with a null (unreachable) insert point.
1573  void EmitVariablyModifiedType(QualType Ty);
1574
1575  /// getVLASize - Returns an LLVM value that corresponds to the size,
1576  /// in non-variably-sized elements, of a variable length array type,
1577  /// plus that largest non-variably-sized element type.  Assumes that
1578  /// the type has already been emitted with EmitVariablyModifiedType.
1579  std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1580  std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1581
1582  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1583  /// generating code for an C++ member function.
1584  llvm::Value *LoadCXXThis() {
1585    assert(CXXThisValue && "no 'this' value for this function");
1586    return CXXThisValue;
1587  }
1588
1589  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1590  /// virtual bases.
1591  llvm::Value *LoadCXXVTT() {
1592    assert(CXXVTTValue && "no VTT value for this function");
1593    return CXXVTTValue;
1594  }
1595
1596  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1597  /// complete class to the given direct base.
1598  llvm::Value *
1599  GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1600                                        const CXXRecordDecl *Derived,
1601                                        const CXXRecordDecl *Base,
1602                                        bool BaseIsVirtual);
1603
1604  /// GetAddressOfBaseClass - This function will add the necessary delta to the
1605  /// load of 'this' and returns address of the base class.
1606  llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1607                                     const CXXRecordDecl *Derived,
1608                                     CastExpr::path_const_iterator PathBegin,
1609                                     CastExpr::path_const_iterator PathEnd,
1610                                     bool NullCheckValue);
1611
1612  llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1613                                        const CXXRecordDecl *Derived,
1614                                        CastExpr::path_const_iterator PathBegin,
1615                                        CastExpr::path_const_iterator PathEnd,
1616                                        bool NullCheckValue);
1617
1618  llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
1619                                         const CXXRecordDecl *ClassDecl,
1620                                         const CXXRecordDecl *BaseClassDecl);
1621
1622  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1623                                      CXXCtorType CtorType,
1624                                      const FunctionArgList &Args);
1625  // It's important not to confuse this and the previous function. Delegating
1626  // constructors are the C++0x feature. The constructor delegate optimization
1627  // is used to reduce duplication in the base and complete consturctors where
1628  // they are substantially the same.
1629  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1630                                        const FunctionArgList &Args);
1631  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1632                              bool ForVirtualBase, llvm::Value *This,
1633                              CallExpr::const_arg_iterator ArgBeg,
1634                              CallExpr::const_arg_iterator ArgEnd);
1635
1636  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1637                              llvm::Value *This, llvm::Value *Src,
1638                              CallExpr::const_arg_iterator ArgBeg,
1639                              CallExpr::const_arg_iterator ArgEnd);
1640
1641  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1642                                  const ConstantArrayType *ArrayTy,
1643                                  llvm::Value *ArrayPtr,
1644                                  CallExpr::const_arg_iterator ArgBeg,
1645                                  CallExpr::const_arg_iterator ArgEnd,
1646                                  bool ZeroInitialization = false);
1647
1648  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1649                                  llvm::Value *NumElements,
1650                                  llvm::Value *ArrayPtr,
1651                                  CallExpr::const_arg_iterator ArgBeg,
1652                                  CallExpr::const_arg_iterator ArgEnd,
1653                                  bool ZeroInitialization = false);
1654
1655  void EmitCXXAggrDestructorCall(const CXXDestructorDecl *D,
1656                                 const ArrayType *Array,
1657                                 llvm::Value *This);
1658
1659  static Destroyer destroyCXXObject;
1660
1661  void EmitCXXAggrDestructorCall(const CXXDestructorDecl *D,
1662                                 llvm::Value *NumElements,
1663                                 llvm::Value *This);
1664
1665  llvm::Function *GenerateCXXAggrDestructorHelper(const CXXDestructorDecl *D,
1666                                                  const ArrayType *Array,
1667                                                  llvm::Value *This);
1668
1669  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1670                             bool ForVirtualBase, llvm::Value *This);
1671
1672  void EmitNewArrayInitializer(const CXXNewExpr *E, llvm::Value *NewPtr,
1673                               llvm::Value *NumElements);
1674
1675  void EmitCXXTemporary(const CXXTemporary *Temporary, llvm::Value *Ptr);
1676
1677  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1678  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1679
1680  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1681                      QualType DeleteTy);
1682
1683  llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1684  llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1685
1686  void EmitCheck(llvm::Value *, unsigned Size);
1687
1688  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1689                                       bool isInc, bool isPre);
1690  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1691                                         bool isInc, bool isPre);
1692  //===--------------------------------------------------------------------===//
1693  //                            Declaration Emission
1694  //===--------------------------------------------------------------------===//
1695
1696  /// EmitDecl - Emit a declaration.
1697  ///
1698  /// This function can be called with a null (unreachable) insert point.
1699  void EmitDecl(const Decl &D);
1700
1701  /// EmitVarDecl - Emit a local variable declaration.
1702  ///
1703  /// This function can be called with a null (unreachable) insert point.
1704  void EmitVarDecl(const VarDecl &D);
1705
1706  void EmitScalarInit(const Expr *init, const ValueDecl *D,
1707                      LValue lvalue, bool capturedByInit);
1708  void EmitScalarInit(llvm::Value *init, LValue lvalue);
1709
1710  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1711                             llvm::Value *Address);
1712
1713  /// EmitAutoVarDecl - Emit an auto variable declaration.
1714  ///
1715  /// This function can be called with a null (unreachable) insert point.
1716  void EmitAutoVarDecl(const VarDecl &D);
1717
1718  class AutoVarEmission {
1719    friend class CodeGenFunction;
1720
1721    const VarDecl *Variable;
1722
1723    /// The alignment of the variable.
1724    CharUnits Alignment;
1725
1726    /// The address of the alloca.  Null if the variable was emitted
1727    /// as a global constant.
1728    llvm::Value *Address;
1729
1730    llvm::Value *NRVOFlag;
1731
1732    /// True if the variable is a __block variable.
1733    bool IsByRef;
1734
1735    /// True if the variable is of aggregate type and has a constant
1736    /// initializer.
1737    bool IsConstantAggregate;
1738
1739    struct Invalid {};
1740    AutoVarEmission(Invalid) : Variable(0) {}
1741
1742    AutoVarEmission(const VarDecl &variable)
1743      : Variable(&variable), Address(0), NRVOFlag(0),
1744        IsByRef(false), IsConstantAggregate(false) {}
1745
1746    bool wasEmittedAsGlobal() const { return Address == 0; }
1747
1748  public:
1749    static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1750
1751    /// Returns the address of the object within this declaration.
1752    /// Note that this does not chase the forwarding pointer for
1753    /// __block decls.
1754    llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1755      if (!IsByRef) return Address;
1756
1757      return CGF.Builder.CreateStructGEP(Address,
1758                                         CGF.getByRefValueLLVMField(Variable),
1759                                         Variable->getNameAsString());
1760    }
1761  };
1762  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1763  void EmitAutoVarInit(const AutoVarEmission &emission);
1764  void EmitAutoVarCleanups(const AutoVarEmission &emission);
1765  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1766                              QualType::DestructionKind dtorKind);
1767
1768  void EmitStaticVarDecl(const VarDecl &D,
1769                         llvm::GlobalValue::LinkageTypes Linkage);
1770
1771  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1772  void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
1773
1774  /// protectFromPeepholes - Protect a value that we're intending to
1775  /// store to the side, but which will probably be used later, from
1776  /// aggressive peepholing optimizations that might delete it.
1777  ///
1778  /// Pass the result to unprotectFromPeepholes to declare that
1779  /// protection is no longer required.
1780  ///
1781  /// There's no particular reason why this shouldn't apply to
1782  /// l-values, it's just that no existing peepholes work on pointers.
1783  PeepholeProtection protectFromPeepholes(RValue rvalue);
1784  void unprotectFromPeepholes(PeepholeProtection protection);
1785
1786  //===--------------------------------------------------------------------===//
1787  //                             Statement Emission
1788  //===--------------------------------------------------------------------===//
1789
1790  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1791  void EmitStopPoint(const Stmt *S);
1792
1793  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1794  /// this function even if there is no current insertion point.
1795  ///
1796  /// This function may clear the current insertion point; callers should use
1797  /// EnsureInsertPoint if they wish to subsequently generate code without first
1798  /// calling EmitBlock, EmitBranch, or EmitStmt.
1799  void EmitStmt(const Stmt *S);
1800
1801  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1802  /// necessarily require an insertion point or debug information; typically
1803  /// because the statement amounts to a jump or a container of other
1804  /// statements.
1805  ///
1806  /// \return True if the statement was handled.
1807  bool EmitSimpleStmt(const Stmt *S);
1808
1809  RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1810                          AggValueSlot AVS = AggValueSlot::ignored());
1811
1812  /// EmitLabel - Emit the block for the given label. It is legal to call this
1813  /// function even if there is no current insertion point.
1814  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1815
1816  void EmitLabelStmt(const LabelStmt &S);
1817  void EmitGotoStmt(const GotoStmt &S);
1818  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1819  void EmitIfStmt(const IfStmt &S);
1820  void EmitWhileStmt(const WhileStmt &S);
1821  void EmitDoStmt(const DoStmt &S);
1822  void EmitForStmt(const ForStmt &S);
1823  void EmitReturnStmt(const ReturnStmt &S);
1824  void EmitDeclStmt(const DeclStmt &S);
1825  void EmitBreakStmt(const BreakStmt &S);
1826  void EmitContinueStmt(const ContinueStmt &S);
1827  void EmitSwitchStmt(const SwitchStmt &S);
1828  void EmitDefaultStmt(const DefaultStmt &S);
1829  void EmitCaseStmt(const CaseStmt &S);
1830  void EmitCaseStmtRange(const CaseStmt &S);
1831  void EmitAsmStmt(const AsmStmt &S);
1832
1833  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1834  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1835  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1836  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1837  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
1838
1839  llvm::Constant *getUnwindResumeFn();
1840  llvm::Constant *getUnwindResumeOrRethrowFn();
1841  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1842  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1843
1844  void EmitCXXTryStmt(const CXXTryStmt &S);
1845  void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
1846
1847  //===--------------------------------------------------------------------===//
1848  //                         LValue Expression Emission
1849  //===--------------------------------------------------------------------===//
1850
1851  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
1852  RValue GetUndefRValue(QualType Ty);
1853
1854  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
1855  /// and issue an ErrorUnsupported style diagnostic (using the
1856  /// provided Name).
1857  RValue EmitUnsupportedRValue(const Expr *E,
1858                               const char *Name);
1859
1860  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
1861  /// an ErrorUnsupported style diagnostic (using the provided Name).
1862  LValue EmitUnsupportedLValue(const Expr *E,
1863                               const char *Name);
1864
1865  /// EmitLValue - Emit code to compute a designator that specifies the location
1866  /// of the expression.
1867  ///
1868  /// This can return one of two things: a simple address or a bitfield
1869  /// reference.  In either case, the LLVM Value* in the LValue structure is
1870  /// guaranteed to be an LLVM pointer type.
1871  ///
1872  /// If this returns a bitfield reference, nothing about the pointee type of
1873  /// the LLVM value is known: For example, it may not be a pointer to an
1874  /// integer.
1875  ///
1876  /// If this returns a normal address, and if the lvalue's C type is fixed
1877  /// size, this method guarantees that the returned pointer type will point to
1878  /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
1879  /// variable length type, this is not possible.
1880  ///
1881  LValue EmitLValue(const Expr *E);
1882
1883  /// EmitCheckedLValue - Same as EmitLValue but additionally we generate
1884  /// checking code to guard against undefined behavior.  This is only
1885  /// suitable when we know that the address will be used to access the
1886  /// object.
1887  LValue EmitCheckedLValue(const Expr *E);
1888
1889  /// EmitToMemory - Change a scalar value from its value
1890  /// representation to its in-memory representation.
1891  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
1892
1893  /// EmitFromMemory - Change a scalar value from its memory
1894  /// representation to its value representation.
1895  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
1896
1897  /// EmitLoadOfScalar - Load a scalar value from an address, taking
1898  /// care to appropriately convert from the memory representation to
1899  /// the LLVM value representation.
1900  llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1901                                unsigned Alignment, QualType Ty,
1902                                llvm::MDNode *TBAAInfo = 0);
1903
1904  /// EmitLoadOfScalar - Load a scalar value from an address, taking
1905  /// care to appropriately convert from the memory representation to
1906  /// the LLVM value representation.  The l-value must be a simple
1907  /// l-value.
1908  llvm::Value *EmitLoadOfScalar(LValue lvalue);
1909
1910  /// EmitStoreOfScalar - Store a scalar value to an address, taking
1911  /// care to appropriately convert from the memory representation to
1912  /// the LLVM value representation.
1913  void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1914                         bool Volatile, unsigned Alignment, QualType Ty,
1915                         llvm::MDNode *TBAAInfo = 0);
1916
1917  /// EmitStoreOfScalar - Store a scalar value to an address, taking
1918  /// care to appropriately convert from the memory representation to
1919  /// the LLVM value representation.  The l-value must be a simple
1920  /// l-value.
1921  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue);
1922
1923  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
1924  /// this method emits the address of the lvalue, then loads the result as an
1925  /// rvalue, returning the rvalue.
1926  RValue EmitLoadOfLValue(LValue V);
1927  RValue EmitLoadOfExtVectorElementLValue(LValue V);
1928  RValue EmitLoadOfBitfieldLValue(LValue LV);
1929  RValue EmitLoadOfPropertyRefLValue(LValue LV,
1930                                 ReturnValueSlot Return = ReturnValueSlot());
1931
1932  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1933  /// lvalue, where both are guaranteed to the have the same type, and that type
1934  /// is 'Ty'.
1935  void EmitStoreThroughLValue(RValue Src, LValue Dst);
1936  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
1937  void EmitStoreThroughPropertyRefLValue(RValue Src, LValue Dst);
1938
1939  /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
1940  /// EmitStoreThroughLValue.
1941  ///
1942  /// \param Result [out] - If non-null, this will be set to a Value* for the
1943  /// bit-field contents after the store, appropriate for use as the result of
1944  /// an assignment to the bit-field.
1945  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1946                                      llvm::Value **Result=0);
1947
1948  /// Emit an l-value for an assignment (simple or compound) of complex type.
1949  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
1950  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
1951
1952  // Note: only available for agg return types
1953  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
1954  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
1955  // Note: only available for agg return types
1956  LValue EmitCallExprLValue(const CallExpr *E);
1957  // Note: only available for agg return types
1958  LValue EmitVAArgExprLValue(const VAArgExpr *E);
1959  LValue EmitDeclRefLValue(const DeclRefExpr *E);
1960  LValue EmitStringLiteralLValue(const StringLiteral *E);
1961  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
1962  LValue EmitPredefinedLValue(const PredefinedExpr *E);
1963  LValue EmitUnaryOpLValue(const UnaryOperator *E);
1964  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
1965  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
1966  LValue EmitMemberExpr(const MemberExpr *E);
1967  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
1968  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
1969  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
1970  LValue EmitCastLValue(const CastExpr *E);
1971  LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
1972  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
1973  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
1974
1975  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
1976                              const ObjCIvarDecl *Ivar);
1977  LValue EmitLValueForAnonRecordField(llvm::Value* Base,
1978                                      const IndirectFieldDecl* Field,
1979                                      unsigned CVRQualifiers);
1980  LValue EmitLValueForField(llvm::Value* Base, const FieldDecl* Field,
1981                            unsigned CVRQualifiers);
1982
1983  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
1984  /// if the Field is a reference, this will return the address of the reference
1985  /// and not the address of the value stored in the reference.
1986  LValue EmitLValueForFieldInitialization(llvm::Value* Base,
1987                                          const FieldDecl* Field,
1988                                          unsigned CVRQualifiers);
1989
1990  LValue EmitLValueForIvar(QualType ObjectTy,
1991                           llvm::Value* Base, const ObjCIvarDecl *Ivar,
1992                           unsigned CVRQualifiers);
1993
1994  LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field,
1995                                unsigned CVRQualifiers);
1996
1997  LValue EmitBlockDeclRefLValue(const BlockDeclRefExpr *E);
1998
1999  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2000  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2001  LValue EmitExprWithCleanupsLValue(const ExprWithCleanups *E);
2002  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2003
2004  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2005  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2006  LValue EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E);
2007  LValue EmitStmtExprLValue(const StmtExpr *E);
2008  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2009  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2010  void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2011
2012  //===--------------------------------------------------------------------===//
2013  //                         Scalar Expression Emission
2014  //===--------------------------------------------------------------------===//
2015
2016  /// EmitCall - Generate a call of the given function, expecting the given
2017  /// result type, and using the given argument list which specifies both the
2018  /// LLVM arguments and the types they were derived from.
2019  ///
2020  /// \param TargetDecl - If given, the decl of the function in a direct call;
2021  /// used to set attributes on the call (noreturn, etc.).
2022  RValue EmitCall(const CGFunctionInfo &FnInfo,
2023                  llvm::Value *Callee,
2024                  ReturnValueSlot ReturnValue,
2025                  const CallArgList &Args,
2026                  const Decl *TargetDecl = 0,
2027                  llvm::Instruction **callOrInvoke = 0);
2028
2029  RValue EmitCall(QualType FnType, llvm::Value *Callee,
2030                  ReturnValueSlot ReturnValue,
2031                  CallExpr::const_arg_iterator ArgBeg,
2032                  CallExpr::const_arg_iterator ArgEnd,
2033                  const Decl *TargetDecl = 0);
2034  RValue EmitCallExpr(const CallExpr *E,
2035                      ReturnValueSlot ReturnValue = ReturnValueSlot());
2036
2037  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2038                                  llvm::Value * const *ArgBegin,
2039                                  llvm::Value * const *ArgEnd,
2040                                  const llvm::Twine &Name = "");
2041
2042  llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
2043                                const llvm::Type *Ty);
2044  llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
2045                                llvm::Value *This, const llvm::Type *Ty);
2046  llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2047                                         NestedNameSpecifier *Qual,
2048                                         const llvm::Type *Ty);
2049
2050  llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2051                                                   CXXDtorType Type,
2052                                                   const CXXRecordDecl *RD);
2053
2054  RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2055                           llvm::Value *Callee,
2056                           ReturnValueSlot ReturnValue,
2057                           llvm::Value *This,
2058                           llvm::Value *VTT,
2059                           CallExpr::const_arg_iterator ArgBeg,
2060                           CallExpr::const_arg_iterator ArgEnd);
2061  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2062                               ReturnValueSlot ReturnValue);
2063  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2064                                      ReturnValueSlot ReturnValue);
2065
2066  llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2067                                           const CXXMethodDecl *MD,
2068                                           llvm::Value *This);
2069  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2070                                       const CXXMethodDecl *MD,
2071                                       ReturnValueSlot ReturnValue);
2072
2073
2074  RValue EmitBuiltinExpr(const FunctionDecl *FD,
2075                         unsigned BuiltinID, const CallExpr *E);
2076
2077  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2078
2079  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2080  /// is unhandled by the current target.
2081  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2082
2083  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2084  llvm::Value *EmitNeonCall(llvm::Function *F,
2085                            llvm::SmallVectorImpl<llvm::Value*> &O,
2086                            const char *name,
2087                            unsigned shift = 0, bool rightshift = false);
2088  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2089  llvm::Value *EmitNeonShiftVector(llvm::Value *V, const llvm::Type *Ty,
2090                                   bool negateForRightShift);
2091
2092  llvm::Value *BuildVector(const llvm::SmallVectorImpl<llvm::Value*> &Ops);
2093  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2094  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2095
2096  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2097  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2098  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2099  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2100                             ReturnValueSlot Return = ReturnValueSlot());
2101
2102  /// Retrieves the default cleanup kind for an ARC cleanup.
2103  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2104  CleanupKind getARCCleanupKind() {
2105    return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2106             ? NormalAndEHCleanup : NormalCleanup;
2107  }
2108
2109  // ARC primitives.
2110  void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2111  void EmitARCDestroyWeak(llvm::Value *addr);
2112  llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2113  llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2114  llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2115                                bool ignored);
2116  void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2117  void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2118  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2119  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2120  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2121                                  bool ignored);
2122  llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2123                                      bool ignored);
2124  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2125  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2126  llvm::Value *EmitARCRetainBlock(llvm::Value *value);
2127  void EmitARCRelease(llvm::Value *value, bool precise);
2128  llvm::Value *EmitARCAutorelease(llvm::Value *value);
2129  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2130  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2131  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2132
2133  std::pair<LValue,llvm::Value*>
2134  EmitARCStoreAutoreleasing(const BinaryOperator *e);
2135  std::pair<LValue,llvm::Value*>
2136  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2137
2138  llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2139  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2140  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2141
2142  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2143  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2144
2145  void PushARCReleaseCleanup(CleanupKind kind, QualType type,
2146                             llvm::Value *addr, bool precise,
2147                             bool forFullExpr = false);
2148  void PushARCArrayReleaseCleanup(CleanupKind kind, QualType elementType,
2149                                  llvm::Value *addr,
2150                                  llvm::Value *countOrCountPtr,
2151                                  bool precise, bool forFullExpr = false);
2152  void PushARCWeakReleaseCleanup(CleanupKind kind, QualType type,
2153                                 llvm::Value *addr, bool forFullExpr = false);
2154  void PushARCArrayWeakReleaseCleanup(CleanupKind kind, QualType elementType,
2155                                      llvm::Value *addr,
2156                                      llvm::Value *countOrCountPtr,
2157                                      bool forFullExpr = false);
2158  static Destroyer destroyARCStrongImprecise;
2159  static Destroyer destroyARCStrongPrecise;
2160  static Destroyer destroyARCWeak;
2161
2162  void PushARCFieldReleaseCleanup(CleanupKind cleanupKind,
2163                                  const FieldDecl *Field);
2164  void PushARCFieldWeakReleaseCleanup(CleanupKind cleanupKind,
2165                                      const FieldDecl *Field);
2166
2167  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2168  llvm::Value *EmitObjCAutoreleasePoolPush();
2169  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2170  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2171  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2172
2173  /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
2174  /// expression. Will emit a temporary variable if E is not an LValue.
2175  RValue EmitReferenceBindingToExpr(const Expr* E,
2176                                    const NamedDecl *InitializedDecl);
2177
2178  //===--------------------------------------------------------------------===//
2179  //                           Expression Emission
2180  //===--------------------------------------------------------------------===//
2181
2182  // Expressions are broken into three classes: scalar, complex, aggregate.
2183
2184  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2185  /// scalar type, returning the result.
2186  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2187
2188  /// EmitScalarConversion - Emit a conversion from the specified type to the
2189  /// specified destination type, both of which are LLVM scalar types.
2190  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2191                                    QualType DstTy);
2192
2193  /// EmitComplexToScalarConversion - Emit a conversion from the specified
2194  /// complex type to the specified destination type, where the destination type
2195  /// is an LLVM scalar type.
2196  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2197                                             QualType DstTy);
2198
2199
2200  /// EmitAggExpr - Emit the computation of the specified expression
2201  /// of aggregate type.  The result is computed into the given slot,
2202  /// which may be null to indicate that the value is not needed.
2203  void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false);
2204
2205  /// EmitAggExprToLValue - Emit the computation of the specified expression of
2206  /// aggregate type into a temporary LValue.
2207  LValue EmitAggExprToLValue(const Expr *E);
2208
2209  /// EmitGCMemmoveCollectable - Emit special API for structs with object
2210  /// pointers.
2211  void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2212                                QualType Ty);
2213
2214  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2215  /// make sure it survives garbage collection until this point.
2216  void EmitExtendGCLifetime(llvm::Value *object);
2217
2218  /// EmitComplexExpr - Emit the computation of the specified expression of
2219  /// complex type, returning the result.
2220  ComplexPairTy EmitComplexExpr(const Expr *E,
2221                                bool IgnoreReal = false,
2222                                bool IgnoreImag = false);
2223
2224  /// EmitComplexExprIntoAddr - Emit the computation of the specified expression
2225  /// of complex type, storing into the specified Value*.
2226  void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
2227                               bool DestIsVolatile);
2228
2229  /// StoreComplexToAddr - Store a complex number into the specified address.
2230  void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
2231                          bool DestIsVolatile);
2232  /// LoadComplexFromAddr - Load a complex number from the specified address.
2233  ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
2234
2235  /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2236  /// a static local variable.
2237  llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2238                                            const char *Separator,
2239                                       llvm::GlobalValue::LinkageTypes Linkage);
2240
2241  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2242  /// global variable that has already been created for it.  If the initializer
2243  /// has a different type than GV does, this may free GV and return a different
2244  /// one.  Otherwise it just returns GV.
2245  llvm::GlobalVariable *
2246  AddInitializerToStaticVarDecl(const VarDecl &D,
2247                                llvm::GlobalVariable *GV);
2248
2249
2250  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2251  /// variable with global storage.
2252  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr);
2253
2254  /// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr
2255  /// with the C++ runtime so that its destructor will be called at exit.
2256  void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn,
2257                                     llvm::Constant *DeclPtr);
2258
2259  /// Emit code in this function to perform a guarded variable
2260  /// initialization.  Guarded initializations are used when it's not
2261  /// possible to prove that an initialization will be done exactly
2262  /// once, e.g. with a static local variable or a static data member
2263  /// of a class template.
2264  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr);
2265
2266  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2267  /// variables.
2268  void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2269                                 llvm::Constant **Decls,
2270                                 unsigned NumDecls);
2271
2272  /// GenerateCXXGlobalDtorFunc - Generates code for destroying global
2273  /// variables.
2274  void GenerateCXXGlobalDtorFunc(llvm::Function *Fn,
2275                                 const std::vector<std::pair<llvm::WeakVH,
2276                                   llvm::Constant*> > &DtorsAndObjects);
2277
2278  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2279                                        const VarDecl *D,
2280                                        llvm::GlobalVariable *Addr);
2281
2282  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2283
2284  void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2285                                  const Expr *Exp);
2286
2287  RValue EmitExprWithCleanups(const ExprWithCleanups *E,
2288                              AggValueSlot Slot =AggValueSlot::ignored());
2289
2290  void EmitCXXThrowExpr(const CXXThrowExpr *E);
2291
2292  //===--------------------------------------------------------------------===//
2293  //                             Internal Helpers
2294  //===--------------------------------------------------------------------===//
2295
2296  /// ContainsLabel - Return true if the statement contains a label in it.  If
2297  /// this statement is not executed normally, it not containing a label means
2298  /// that we can just remove the code.
2299  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2300
2301  /// containsBreak - Return true if the statement contains a break out of it.
2302  /// If the statement (recursively) contains a switch or loop with a break
2303  /// inside of it, this is fine.
2304  static bool containsBreak(const Stmt *S);
2305
2306  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2307  /// to a constant, or if it does but contains a label, return false.  If it
2308  /// constant folds return true and set the boolean result in Result.
2309  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2310
2311  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2312  /// to a constant, or if it does but contains a label, return false.  If it
2313  /// constant folds return true and set the folded value.
2314  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result);
2315
2316  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2317  /// if statement) to the specified blocks.  Based on the condition, this might
2318  /// try to simplify the codegen of the conditional based on the branch.
2319  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2320                            llvm::BasicBlock *FalseBlock);
2321
2322  /// getTrapBB - Create a basic block that will call the trap intrinsic.  We'll
2323  /// generate a branch around the created basic block as necessary.
2324  llvm::BasicBlock *getTrapBB();
2325
2326  /// EmitCallArg - Emit a single call argument.
2327  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2328
2329  /// EmitDelegateCallArg - We are performing a delegate call; that
2330  /// is, the current function is delegating to another one.  Produce
2331  /// a r-value suitable for passing the given parameter.
2332  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
2333
2334private:
2335  void EmitReturnOfRValue(RValue RV, QualType Ty);
2336
2337  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2338  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2339  ///
2340  /// \param AI - The first function argument of the expansion.
2341  /// \return The argument following the last expanded function
2342  /// argument.
2343  llvm::Function::arg_iterator
2344  ExpandTypeFromArgs(QualType Ty, LValue Dst,
2345                     llvm::Function::arg_iterator AI);
2346
2347  /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2348  /// Ty, into individual arguments on the provided vector \arg Args. See
2349  /// ABIArgInfo::Expand.
2350  void ExpandTypeToArgs(QualType Ty, RValue Src,
2351                        llvm::SmallVector<llvm::Value*, 16> &Args);
2352
2353  llvm::Value* EmitAsmInput(const AsmStmt &S,
2354                            const TargetInfo::ConstraintInfo &Info,
2355                            const Expr *InputExpr, std::string &ConstraintStr);
2356
2357  llvm::Value* EmitAsmInputLValue(const AsmStmt &S,
2358                                  const TargetInfo::ConstraintInfo &Info,
2359                                  LValue InputValue, QualType InputType,
2360                                  std::string &ConstraintStr);
2361
2362  /// EmitCallArgs - Emit call arguments for a function.
2363  /// The CallArgTypeInfo parameter is used for iterating over the known
2364  /// argument types of the function being called.
2365  template<typename T>
2366  void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2367                    CallExpr::const_arg_iterator ArgBeg,
2368                    CallExpr::const_arg_iterator ArgEnd) {
2369      CallExpr::const_arg_iterator Arg = ArgBeg;
2370
2371    // First, use the argument types that the type info knows about
2372    if (CallArgTypeInfo) {
2373      for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2374           E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2375        assert(Arg != ArgEnd && "Running over edge of argument list!");
2376        QualType ArgType = *I;
2377#ifndef NDEBUG
2378        QualType ActualArgType = Arg->getType();
2379        if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2380          QualType ActualBaseType =
2381            ActualArgType->getAs<PointerType>()->getPointeeType();
2382          QualType ArgBaseType =
2383            ArgType->getAs<PointerType>()->getPointeeType();
2384          if (ArgBaseType->isVariableArrayType()) {
2385            if (const VariableArrayType *VAT =
2386                getContext().getAsVariableArrayType(ActualBaseType)) {
2387              if (!VAT->getSizeExpr())
2388                ActualArgType = ArgType;
2389            }
2390          }
2391        }
2392        assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2393               getTypePtr() ==
2394               getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2395               "type mismatch in call argument!");
2396#endif
2397        EmitCallArg(Args, *Arg, ArgType);
2398      }
2399
2400      // Either we've emitted all the call args, or we have a call to a
2401      // variadic function.
2402      assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2403             "Extra arguments in non-variadic function!");
2404
2405    }
2406
2407    // If we still have any arguments, emit them using the type of the argument.
2408    for (; Arg != ArgEnd; ++Arg)
2409      EmitCallArg(Args, *Arg, Arg->getType());
2410  }
2411
2412  const TargetCodeGenInfo &getTargetHooks() const {
2413    return CGM.getTargetCodeGenInfo();
2414  }
2415
2416  void EmitDeclMetadata();
2417
2418  CodeGenModule::ByrefHelpers *
2419  buildByrefHelpers(const llvm::StructType &byrefType,
2420                    const AutoVarEmission &emission);
2421};
2422
2423/// Helper class with most of the code for saving a value for a
2424/// conditional expression cleanup.
2425struct DominatingLLVMValue {
2426  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2427
2428  /// Answer whether the given value needs extra work to be saved.
2429  static bool needsSaving(llvm::Value *value) {
2430    // If it's not an instruction, we don't need to save.
2431    if (!isa<llvm::Instruction>(value)) return false;
2432
2433    // If it's an instruction in the entry block, we don't need to save.
2434    llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2435    return (block != &block->getParent()->getEntryBlock());
2436  }
2437
2438  /// Try to save the given value.
2439  static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2440    if (!needsSaving(value)) return saved_type(value, false);
2441
2442    // Otherwise we need an alloca.
2443    llvm::Value *alloca =
2444      CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2445    CGF.Builder.CreateStore(value, alloca);
2446
2447    return saved_type(alloca, true);
2448  }
2449
2450  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2451    if (!value.getInt()) return value.getPointer();
2452    return CGF.Builder.CreateLoad(value.getPointer());
2453  }
2454};
2455
2456/// A partial specialization of DominatingValue for llvm::Values that
2457/// might be llvm::Instructions.
2458template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2459  typedef T *type;
2460  static type restore(CodeGenFunction &CGF, saved_type value) {
2461    return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2462  }
2463};
2464
2465/// A specialization of DominatingValue for RValue.
2466template <> struct DominatingValue<RValue> {
2467  typedef RValue type;
2468  class saved_type {
2469    enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2470                AggregateAddress, ComplexAddress };
2471
2472    llvm::Value *Value;
2473    Kind K;
2474    saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2475
2476  public:
2477    static bool needsSaving(RValue value);
2478    static saved_type save(CodeGenFunction &CGF, RValue value);
2479    RValue restore(CodeGenFunction &CGF);
2480
2481    // implementations in CGExprCXX.cpp
2482  };
2483
2484  static bool needsSaving(type value) {
2485    return saved_type::needsSaving(value);
2486  }
2487  static saved_type save(CodeGenFunction &CGF, type value) {
2488    return saved_type::save(CGF, value);
2489  }
2490  static type restore(CodeGenFunction &CGF, saved_type value) {
2491    return value.restore(CGF);
2492  }
2493};
2494
2495}  // end namespace CodeGen
2496}  // end namespace clang
2497
2498#endif
2499