CodeGenFunction.h revision c764830bdb6de82baed068889096bd3e52d4cbda
1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the internal per-function state used for llvm translation.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15#define CLANG_CODEGEN_CODEGENFUNCTION_H
16
17#include "CGBuilder.h"
18#include "CGDebugInfo.h"
19#include "CGValue.h"
20#include "CodeGenModule.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/Type.h"
25#include "clang/Basic/ABI.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Frontend/CodeGenOptions.h"
28#include "llvm/ADT/ArrayRef.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ValueHandle.h"
33
34namespace llvm {
35  class BasicBlock;
36  class LLVMContext;
37  class MDNode;
38  class Module;
39  class SwitchInst;
40  class Twine;
41  class Value;
42  class CallSite;
43}
44
45namespace clang {
46  class ASTContext;
47  class BlockDecl;
48  class CXXDestructorDecl;
49  class CXXForRangeStmt;
50  class CXXTryStmt;
51  class Decl;
52  class LabelDecl;
53  class EnumConstantDecl;
54  class FunctionDecl;
55  class FunctionProtoType;
56  class LabelStmt;
57  class ObjCContainerDecl;
58  class ObjCInterfaceDecl;
59  class ObjCIvarDecl;
60  class ObjCMethodDecl;
61  class ObjCImplementationDecl;
62  class ObjCPropertyImplDecl;
63  class TargetInfo;
64  class TargetCodeGenInfo;
65  class VarDecl;
66  class ObjCForCollectionStmt;
67  class ObjCAtTryStmt;
68  class ObjCAtThrowStmt;
69  class ObjCAtSynchronizedStmt;
70  class ObjCAutoreleasePoolStmt;
71
72namespace CodeGen {
73  class CodeGenTypes;
74  class CGFunctionInfo;
75  class CGRecordLayout;
76  class CGBlockInfo;
77  class CGCXXABI;
78  class BlockFlags;
79  class BlockFieldFlags;
80
81/// A branch fixup.  These are required when emitting a goto to a
82/// label which hasn't been emitted yet.  The goto is optimistically
83/// emitted as a branch to the basic block for the label, and (if it
84/// occurs in a scope with non-trivial cleanups) a fixup is added to
85/// the innermost cleanup.  When a (normal) cleanup is popped, any
86/// unresolved fixups in that scope are threaded through the cleanup.
87struct BranchFixup {
88  /// The block containing the terminator which needs to be modified
89  /// into a switch if this fixup is resolved into the current scope.
90  /// If null, LatestBranch points directly to the destination.
91  llvm::BasicBlock *OptimisticBranchBlock;
92
93  /// The ultimate destination of the branch.
94  ///
95  /// This can be set to null to indicate that this fixup was
96  /// successfully resolved.
97  llvm::BasicBlock *Destination;
98
99  /// The destination index value.
100  unsigned DestinationIndex;
101
102  /// The initial branch of the fixup.
103  llvm::BranchInst *InitialBranch;
104};
105
106template <class T> struct InvariantValue {
107  typedef T type;
108  typedef T saved_type;
109  static bool needsSaving(type value) { return false; }
110  static saved_type save(CodeGenFunction &CGF, type value) { return value; }
111  static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
112};
113
114/// A metaprogramming class for ensuring that a value will dominate an
115/// arbitrary position in a function.
116template <class T> struct DominatingValue : InvariantValue<T> {};
117
118template <class T, bool mightBeInstruction =
119            llvm::is_base_of<llvm::Value, T>::value &&
120            !llvm::is_base_of<llvm::Constant, T>::value &&
121            !llvm::is_base_of<llvm::BasicBlock, T>::value>
122struct DominatingPointer;
123template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
124// template <class T> struct DominatingPointer<T,true> at end of file
125
126template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
127
128enum CleanupKind {
129  EHCleanup = 0x1,
130  NormalCleanup = 0x2,
131  NormalAndEHCleanup = EHCleanup | NormalCleanup,
132
133  InactiveCleanup = 0x4,
134  InactiveEHCleanup = EHCleanup | InactiveCleanup,
135  InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
136  InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
137};
138
139/// A stack of scopes which respond to exceptions, including cleanups
140/// and catch blocks.
141class EHScopeStack {
142public:
143  /// A saved depth on the scope stack.  This is necessary because
144  /// pushing scopes onto the stack invalidates iterators.
145  class stable_iterator {
146    friend class EHScopeStack;
147
148    /// Offset from StartOfData to EndOfBuffer.
149    ptrdiff_t Size;
150
151    stable_iterator(ptrdiff_t Size) : Size(Size) {}
152
153  public:
154    static stable_iterator invalid() { return stable_iterator(-1); }
155    stable_iterator() : Size(-1) {}
156
157    bool isValid() const { return Size >= 0; }
158
159    /// Returns true if this scope encloses I.
160    /// Returns false if I is invalid.
161    /// This scope must be valid.
162    bool encloses(stable_iterator I) const { return Size <= I.Size; }
163
164    /// Returns true if this scope strictly encloses I: that is,
165    /// if it encloses I and is not I.
166    /// Returns false is I is invalid.
167    /// This scope must be valid.
168    bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
169
170    friend bool operator==(stable_iterator A, stable_iterator B) {
171      return A.Size == B.Size;
172    }
173    friend bool operator!=(stable_iterator A, stable_iterator B) {
174      return A.Size != B.Size;
175    }
176  };
177
178  /// Information for lazily generating a cleanup.  Subclasses must be
179  /// POD-like: cleanups will not be destructed, and they will be
180  /// allocated on the cleanup stack and freely copied and moved
181  /// around.
182  ///
183  /// Cleanup implementations should generally be declared in an
184  /// anonymous namespace.
185  class Cleanup {
186    // Anchor the construction vtable.
187    virtual void anchor();
188  public:
189    /// Generation flags.
190    class Flags {
191      enum {
192        F_IsForEH             = 0x1,
193        F_IsNormalCleanupKind = 0x2,
194        F_IsEHCleanupKind     = 0x4
195      };
196      unsigned flags;
197
198    public:
199      Flags() : flags(0) {}
200
201      /// isForEH - true if the current emission is for an EH cleanup.
202      bool isForEHCleanup() const { return flags & F_IsForEH; }
203      bool isForNormalCleanup() const { return !isForEHCleanup(); }
204      void setIsForEHCleanup() { flags |= F_IsForEH; }
205
206      bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; }
207      void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; }
208
209      /// isEHCleanupKind - true if the cleanup was pushed as an EH
210      /// cleanup.
211      bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; }
212      void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; }
213    };
214
215    // Provide a virtual destructor to suppress a very common warning
216    // that unfortunately cannot be suppressed without this.  Cleanups
217    // should not rely on this destructor ever being called.
218    virtual ~Cleanup() {}
219
220    /// Emit the cleanup.  For normal cleanups, this is run in the
221    /// same EH context as when the cleanup was pushed, i.e. the
222    /// immediately-enclosing context of the cleanup scope.  For
223    /// EH cleanups, this is run in a terminate context.
224    ///
225    // \param flags cleanup kind.
226    virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0;
227  };
228
229  /// ConditionalCleanupN stores the saved form of its N parameters,
230  /// then restores them and performs the cleanup.
231  template <class T, class A0>
232  class ConditionalCleanup1 : public Cleanup {
233    typedef typename DominatingValue<A0>::saved_type A0_saved;
234    A0_saved a0_saved;
235
236    void Emit(CodeGenFunction &CGF, Flags flags) {
237      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
238      T(a0).Emit(CGF, flags);
239    }
240
241  public:
242    ConditionalCleanup1(A0_saved a0)
243      : a0_saved(a0) {}
244  };
245
246  template <class T, class A0, class A1>
247  class ConditionalCleanup2 : public Cleanup {
248    typedef typename DominatingValue<A0>::saved_type A0_saved;
249    typedef typename DominatingValue<A1>::saved_type A1_saved;
250    A0_saved a0_saved;
251    A1_saved a1_saved;
252
253    void Emit(CodeGenFunction &CGF, Flags flags) {
254      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
255      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
256      T(a0, a1).Emit(CGF, flags);
257    }
258
259  public:
260    ConditionalCleanup2(A0_saved a0, A1_saved a1)
261      : a0_saved(a0), a1_saved(a1) {}
262  };
263
264  template <class T, class A0, class A1, class A2>
265  class ConditionalCleanup3 : public Cleanup {
266    typedef typename DominatingValue<A0>::saved_type A0_saved;
267    typedef typename DominatingValue<A1>::saved_type A1_saved;
268    typedef typename DominatingValue<A2>::saved_type A2_saved;
269    A0_saved a0_saved;
270    A1_saved a1_saved;
271    A2_saved a2_saved;
272
273    void Emit(CodeGenFunction &CGF, Flags flags) {
274      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
275      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
276      A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
277      T(a0, a1, a2).Emit(CGF, flags);
278    }
279
280  public:
281    ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2)
282      : a0_saved(a0), a1_saved(a1), a2_saved(a2) {}
283  };
284
285  template <class T, class A0, class A1, class A2, class A3>
286  class ConditionalCleanup4 : public Cleanup {
287    typedef typename DominatingValue<A0>::saved_type A0_saved;
288    typedef typename DominatingValue<A1>::saved_type A1_saved;
289    typedef typename DominatingValue<A2>::saved_type A2_saved;
290    typedef typename DominatingValue<A3>::saved_type A3_saved;
291    A0_saved a0_saved;
292    A1_saved a1_saved;
293    A2_saved a2_saved;
294    A3_saved a3_saved;
295
296    void Emit(CodeGenFunction &CGF, Flags flags) {
297      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
298      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
299      A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
300      A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved);
301      T(a0, a1, a2, a3).Emit(CGF, flags);
302    }
303
304  public:
305    ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3)
306      : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {}
307  };
308
309private:
310  // The implementation for this class is in CGException.h and
311  // CGException.cpp; the definition is here because it's used as a
312  // member of CodeGenFunction.
313
314  /// The start of the scope-stack buffer, i.e. the allocated pointer
315  /// for the buffer.  All of these pointers are either simultaneously
316  /// null or simultaneously valid.
317  char *StartOfBuffer;
318
319  /// The end of the buffer.
320  char *EndOfBuffer;
321
322  /// The first valid entry in the buffer.
323  char *StartOfData;
324
325  /// The innermost normal cleanup on the stack.
326  stable_iterator InnermostNormalCleanup;
327
328  /// The innermost EH scope on the stack.
329  stable_iterator InnermostEHScope;
330
331  /// The current set of branch fixups.  A branch fixup is a jump to
332  /// an as-yet unemitted label, i.e. a label for which we don't yet
333  /// know the EH stack depth.  Whenever we pop a cleanup, we have
334  /// to thread all the current branch fixups through it.
335  ///
336  /// Fixups are recorded as the Use of the respective branch or
337  /// switch statement.  The use points to the final destination.
338  /// When popping out of a cleanup, these uses are threaded through
339  /// the cleanup and adjusted to point to the new cleanup.
340  ///
341  /// Note that branches are allowed to jump into protected scopes
342  /// in certain situations;  e.g. the following code is legal:
343  ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
344  ///     goto foo;
345  ///     A a;
346  ///    foo:
347  ///     bar();
348  SmallVector<BranchFixup, 8> BranchFixups;
349
350  char *allocate(size_t Size);
351
352  void *pushCleanup(CleanupKind K, size_t DataSize);
353
354public:
355  EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
356                   InnermostNormalCleanup(stable_end()),
357                   InnermostEHScope(stable_end()) {}
358  ~EHScopeStack() { delete[] StartOfBuffer; }
359
360  // Variadic templates would make this not terrible.
361
362  /// Push a lazily-created cleanup on the stack.
363  template <class T>
364  void pushCleanup(CleanupKind Kind) {
365    void *Buffer = pushCleanup(Kind, sizeof(T));
366    Cleanup *Obj = new(Buffer) T();
367    (void) Obj;
368  }
369
370  /// Push a lazily-created cleanup on the stack.
371  template <class T, class A0>
372  void pushCleanup(CleanupKind Kind, A0 a0) {
373    void *Buffer = pushCleanup(Kind, sizeof(T));
374    Cleanup *Obj = new(Buffer) T(a0);
375    (void) Obj;
376  }
377
378  /// Push a lazily-created cleanup on the stack.
379  template <class T, class A0, class A1>
380  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
381    void *Buffer = pushCleanup(Kind, sizeof(T));
382    Cleanup *Obj = new(Buffer) T(a0, a1);
383    (void) Obj;
384  }
385
386  /// Push a lazily-created cleanup on the stack.
387  template <class T, class A0, class A1, class A2>
388  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
389    void *Buffer = pushCleanup(Kind, sizeof(T));
390    Cleanup *Obj = new(Buffer) T(a0, a1, a2);
391    (void) Obj;
392  }
393
394  /// Push a lazily-created cleanup on the stack.
395  template <class T, class A0, class A1, class A2, class A3>
396  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
397    void *Buffer = pushCleanup(Kind, sizeof(T));
398    Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
399    (void) Obj;
400  }
401
402  /// Push a lazily-created cleanup on the stack.
403  template <class T, class A0, class A1, class A2, class A3, class A4>
404  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
405    void *Buffer = pushCleanup(Kind, sizeof(T));
406    Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
407    (void) Obj;
408  }
409
410  // Feel free to add more variants of the following:
411
412  /// Push a cleanup with non-constant storage requirements on the
413  /// stack.  The cleanup type must provide an additional static method:
414  ///   static size_t getExtraSize(size_t);
415  /// The argument to this method will be the value N, which will also
416  /// be passed as the first argument to the constructor.
417  ///
418  /// The data stored in the extra storage must obey the same
419  /// restrictions as normal cleanup member data.
420  ///
421  /// The pointer returned from this method is valid until the cleanup
422  /// stack is modified.
423  template <class T, class A0, class A1, class A2>
424  T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
425    void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
426    return new (Buffer) T(N, a0, a1, a2);
427  }
428
429  /// Pops a cleanup scope off the stack.  This is private to CGCleanup.cpp.
430  void popCleanup();
431
432  /// Push a set of catch handlers on the stack.  The catch is
433  /// uninitialized and will need to have the given number of handlers
434  /// set on it.
435  class EHCatchScope *pushCatch(unsigned NumHandlers);
436
437  /// Pops a catch scope off the stack.  This is private to CGException.cpp.
438  void popCatch();
439
440  /// Push an exceptions filter on the stack.
441  class EHFilterScope *pushFilter(unsigned NumFilters);
442
443  /// Pops an exceptions filter off the stack.
444  void popFilter();
445
446  /// Push a terminate handler on the stack.
447  void pushTerminate();
448
449  /// Pops a terminate handler off the stack.
450  void popTerminate();
451
452  /// Determines whether the exception-scopes stack is empty.
453  bool empty() const { return StartOfData == EndOfBuffer; }
454
455  bool requiresLandingPad() const {
456    return InnermostEHScope != stable_end();
457  }
458
459  /// Determines whether there are any normal cleanups on the stack.
460  bool hasNormalCleanups() const {
461    return InnermostNormalCleanup != stable_end();
462  }
463
464  /// Returns the innermost normal cleanup on the stack, or
465  /// stable_end() if there are no normal cleanups.
466  stable_iterator getInnermostNormalCleanup() const {
467    return InnermostNormalCleanup;
468  }
469  stable_iterator getInnermostActiveNormalCleanup() const;
470
471  stable_iterator getInnermostEHScope() const {
472    return InnermostEHScope;
473  }
474
475  stable_iterator getInnermostActiveEHScope() const;
476
477  /// An unstable reference to a scope-stack depth.  Invalidated by
478  /// pushes but not pops.
479  class iterator;
480
481  /// Returns an iterator pointing to the innermost EH scope.
482  iterator begin() const;
483
484  /// Returns an iterator pointing to the outermost EH scope.
485  iterator end() const;
486
487  /// Create a stable reference to the top of the EH stack.  The
488  /// returned reference is valid until that scope is popped off the
489  /// stack.
490  stable_iterator stable_begin() const {
491    return stable_iterator(EndOfBuffer - StartOfData);
492  }
493
494  /// Create a stable reference to the bottom of the EH stack.
495  static stable_iterator stable_end() {
496    return stable_iterator(0);
497  }
498
499  /// Translates an iterator into a stable_iterator.
500  stable_iterator stabilize(iterator it) const;
501
502  /// Turn a stable reference to a scope depth into a unstable pointer
503  /// to the EH stack.
504  iterator find(stable_iterator save) const;
505
506  /// Removes the cleanup pointed to by the given stable_iterator.
507  void removeCleanup(stable_iterator save);
508
509  /// Add a branch fixup to the current cleanup scope.
510  BranchFixup &addBranchFixup() {
511    assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
512    BranchFixups.push_back(BranchFixup());
513    return BranchFixups.back();
514  }
515
516  unsigned getNumBranchFixups() const { return BranchFixups.size(); }
517  BranchFixup &getBranchFixup(unsigned I) {
518    assert(I < getNumBranchFixups());
519    return BranchFixups[I];
520  }
521
522  /// Pops lazily-removed fixups from the end of the list.  This
523  /// should only be called by procedures which have just popped a
524  /// cleanup or resolved one or more fixups.
525  void popNullFixups();
526
527  /// Clears the branch-fixups list.  This should only be called by
528  /// ResolveAllBranchFixups.
529  void clearFixups() { BranchFixups.clear(); }
530};
531
532/// CodeGenFunction - This class organizes the per-function state that is used
533/// while generating LLVM code.
534class CodeGenFunction : public CodeGenTypeCache {
535  CodeGenFunction(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
536  void operator=(const CodeGenFunction &) LLVM_DELETED_FUNCTION;
537
538  friend class CGCXXABI;
539public:
540  /// A jump destination is an abstract label, branching to which may
541  /// require a jump out through normal cleanups.
542  struct JumpDest {
543    JumpDest() : Block(0), ScopeDepth(), Index(0) {}
544    JumpDest(llvm::BasicBlock *Block,
545             EHScopeStack::stable_iterator Depth,
546             unsigned Index)
547      : Block(Block), ScopeDepth(Depth), Index(Index) {}
548
549    bool isValid() const { return Block != 0; }
550    llvm::BasicBlock *getBlock() const { return Block; }
551    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
552    unsigned getDestIndex() const { return Index; }
553
554  private:
555    llvm::BasicBlock *Block;
556    EHScopeStack::stable_iterator ScopeDepth;
557    unsigned Index;
558  };
559
560  CodeGenModule &CGM;  // Per-module state.
561  const TargetInfo &Target;
562
563  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
564  CGBuilderTy Builder;
565
566  /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
567  /// This excludes BlockDecls.
568  const Decl *CurFuncDecl;
569  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
570  const Decl *CurCodeDecl;
571  const CGFunctionInfo *CurFnInfo;
572  QualType FnRetTy;
573  llvm::Function *CurFn;
574
575  /// CurGD - The GlobalDecl for the current function being compiled.
576  GlobalDecl CurGD;
577
578  /// PrologueCleanupDepth - The cleanup depth enclosing all the
579  /// cleanups associated with the parameters.
580  EHScopeStack::stable_iterator PrologueCleanupDepth;
581
582  /// ReturnBlock - Unified return block.
583  JumpDest ReturnBlock;
584
585  /// ReturnValue - The temporary alloca to hold the return value. This is null
586  /// iff the function has no return value.
587  llvm::Value *ReturnValue;
588
589  /// AllocaInsertPoint - This is an instruction in the entry block before which
590  /// we prefer to insert allocas.
591  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
592
593  /// BoundsChecking - Emit run-time bounds checks. Higher values mean
594  /// potentially higher performance penalties.
595  unsigned char BoundsChecking;
596
597  /// \brief Whether any type-checking sanitizers are enabled. If \c false,
598  /// calls to EmitTypeCheck can be skipped.
599  bool SanitizePerformTypeCheck;
600
601  /// \brief Sanitizer options to use for this function.
602  const SanitizerOptions *SanOpts;
603
604  /// In ARC, whether we should autorelease the return value.
605  bool AutoreleaseResult;
606
607  const CodeGen::CGBlockInfo *BlockInfo;
608  llvm::Value *BlockPointer;
609
610  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
611  FieldDecl *LambdaThisCaptureField;
612
613  /// \brief A mapping from NRVO variables to the flags used to indicate
614  /// when the NRVO has been applied to this variable.
615  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
616
617  EHScopeStack EHStack;
618
619  /// i32s containing the indexes of the cleanup destinations.
620  llvm::AllocaInst *NormalCleanupDest;
621
622  unsigned NextCleanupDestIndex;
623
624  /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
625  CGBlockInfo *FirstBlockInfo;
626
627  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
628  llvm::BasicBlock *EHResumeBlock;
629
630  /// The exception slot.  All landing pads write the current exception pointer
631  /// into this alloca.
632  llvm::Value *ExceptionSlot;
633
634  /// The selector slot.  Under the MandatoryCleanup model, all landing pads
635  /// write the current selector value into this alloca.
636  llvm::AllocaInst *EHSelectorSlot;
637
638  /// Emits a landing pad for the current EH stack.
639  llvm::BasicBlock *EmitLandingPad();
640
641  llvm::BasicBlock *getInvokeDestImpl();
642
643  template <class T>
644  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
645    return DominatingValue<T>::save(*this, value);
646  }
647
648public:
649  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
650  /// rethrows.
651  SmallVector<llvm::Value*, 8> ObjCEHValueStack;
652
653  /// A class controlling the emission of a finally block.
654  class FinallyInfo {
655    /// Where the catchall's edge through the cleanup should go.
656    JumpDest RethrowDest;
657
658    /// A function to call to enter the catch.
659    llvm::Constant *BeginCatchFn;
660
661    /// An i1 variable indicating whether or not the @finally is
662    /// running for an exception.
663    llvm::AllocaInst *ForEHVar;
664
665    /// An i8* variable into which the exception pointer to rethrow
666    /// has been saved.
667    llvm::AllocaInst *SavedExnVar;
668
669  public:
670    void enter(CodeGenFunction &CGF, const Stmt *Finally,
671               llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
672               llvm::Constant *rethrowFn);
673    void exit(CodeGenFunction &CGF);
674  };
675
676  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
677  /// current full-expression.  Safe against the possibility that
678  /// we're currently inside a conditionally-evaluated expression.
679  template <class T, class A0>
680  void pushFullExprCleanup(CleanupKind kind, A0 a0) {
681    // If we're not in a conditional branch, or if none of the
682    // arguments requires saving, then use the unconditional cleanup.
683    if (!isInConditionalBranch())
684      return EHStack.pushCleanup<T>(kind, a0);
685
686    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
687
688    typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
689    EHStack.pushCleanup<CleanupType>(kind, a0_saved);
690    initFullExprCleanup();
691  }
692
693  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
694  /// current full-expression.  Safe against the possibility that
695  /// we're currently inside a conditionally-evaluated expression.
696  template <class T, class A0, class A1>
697  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
698    // If we're not in a conditional branch, or if none of the
699    // arguments requires saving, then use the unconditional cleanup.
700    if (!isInConditionalBranch())
701      return EHStack.pushCleanup<T>(kind, a0, a1);
702
703    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
704    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
705
706    typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
707    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
708    initFullExprCleanup();
709  }
710
711  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
712  /// current full-expression.  Safe against the possibility that
713  /// we're currently inside a conditionally-evaluated expression.
714  template <class T, class A0, class A1, class A2>
715  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
716    // If we're not in a conditional branch, or if none of the
717    // arguments requires saving, then use the unconditional cleanup.
718    if (!isInConditionalBranch()) {
719      return EHStack.pushCleanup<T>(kind, a0, a1, a2);
720    }
721
722    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
723    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
724    typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
725
726    typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
727    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
728    initFullExprCleanup();
729  }
730
731  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
732  /// current full-expression.  Safe against the possibility that
733  /// we're currently inside a conditionally-evaluated expression.
734  template <class T, class A0, class A1, class A2, class A3>
735  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
736    // If we're not in a conditional branch, or if none of the
737    // arguments requires saving, then use the unconditional cleanup.
738    if (!isInConditionalBranch()) {
739      return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
740    }
741
742    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
743    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
744    typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
745    typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
746
747    typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
748    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
749                                     a2_saved, a3_saved);
750    initFullExprCleanup();
751  }
752
753  /// Set up the last cleaup that was pushed as a conditional
754  /// full-expression cleanup.
755  void initFullExprCleanup();
756
757  /// PushDestructorCleanup - Push a cleanup to call the
758  /// complete-object destructor of an object of the given type at the
759  /// given address.  Does nothing if T is not a C++ class type with a
760  /// non-trivial destructor.
761  void PushDestructorCleanup(QualType T, llvm::Value *Addr);
762
763  /// PushDestructorCleanup - Push a cleanup to call the
764  /// complete-object variant of the given destructor on the object at
765  /// the given address.
766  void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
767                             llvm::Value *Addr);
768
769  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
770  /// process all branch fixups.
771  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
772
773  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
774  /// The block cannot be reactivated.  Pops it if it's the top of the
775  /// stack.
776  ///
777  /// \param DominatingIP - An instruction which is known to
778  ///   dominate the current IP (if set) and which lies along
779  ///   all paths of execution between the current IP and the
780  ///   the point at which the cleanup comes into scope.
781  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
782                              llvm::Instruction *DominatingIP);
783
784  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
785  /// Cannot be used to resurrect a deactivated cleanup.
786  ///
787  /// \param DominatingIP - An instruction which is known to
788  ///   dominate the current IP (if set) and which lies along
789  ///   all paths of execution between the current IP and the
790  ///   the point at which the cleanup comes into scope.
791  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
792                            llvm::Instruction *DominatingIP);
793
794  /// \brief Enters a new scope for capturing cleanups, all of which
795  /// will be executed once the scope is exited.
796  class RunCleanupsScope {
797    EHScopeStack::stable_iterator CleanupStackDepth;
798    bool OldDidCallStackSave;
799    bool PerformCleanup;
800
801    RunCleanupsScope(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
802    void operator=(const RunCleanupsScope &) LLVM_DELETED_FUNCTION;
803
804  protected:
805    CodeGenFunction& CGF;
806
807  public:
808    /// \brief Enter a new cleanup scope.
809    explicit RunCleanupsScope(CodeGenFunction &CGF)
810      : PerformCleanup(true), CGF(CGF)
811    {
812      CleanupStackDepth = CGF.EHStack.stable_begin();
813      OldDidCallStackSave = CGF.DidCallStackSave;
814      CGF.DidCallStackSave = false;
815    }
816
817    /// \brief Exit this cleanup scope, emitting any accumulated
818    /// cleanups.
819    ~RunCleanupsScope() {
820      if (PerformCleanup) {
821        CGF.DidCallStackSave = OldDidCallStackSave;
822        CGF.PopCleanupBlocks(CleanupStackDepth);
823      }
824    }
825
826    /// \brief Determine whether this scope requires any cleanups.
827    bool requiresCleanups() const {
828      return CGF.EHStack.stable_begin() != CleanupStackDepth;
829    }
830
831    /// \brief Force the emission of cleanups now, instead of waiting
832    /// until this object is destroyed.
833    void ForceCleanup() {
834      assert(PerformCleanup && "Already forced cleanup");
835      CGF.DidCallStackSave = OldDidCallStackSave;
836      CGF.PopCleanupBlocks(CleanupStackDepth);
837      PerformCleanup = false;
838    }
839  };
840
841  class LexicalScope: protected RunCleanupsScope {
842    SourceRange Range;
843    bool PopDebugStack;
844
845    LexicalScope(const LexicalScope &) LLVM_DELETED_FUNCTION;
846    void operator=(const LexicalScope &) LLVM_DELETED_FUNCTION;
847
848  public:
849    /// \brief Enter a new cleanup scope.
850    explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
851      : RunCleanupsScope(CGF), Range(Range), PopDebugStack(true) {
852      if (CGDebugInfo *DI = CGF.getDebugInfo())
853        DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
854    }
855
856    /// \brief Exit this cleanup scope, emitting any accumulated
857    /// cleanups.
858    ~LexicalScope() {
859      if (PopDebugStack) {
860        CGDebugInfo *DI = CGF.getDebugInfo();
861        if (DI) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
862      }
863    }
864
865    /// \brief Force the emission of cleanups now, instead of waiting
866    /// until this object is destroyed.
867    void ForceCleanup() {
868      RunCleanupsScope::ForceCleanup();
869      if (CGDebugInfo *DI = CGF.getDebugInfo()) {
870        DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
871        PopDebugStack = false;
872      }
873    }
874  };
875
876
877  /// PopCleanupBlocks - Takes the old cleanup stack size and emits
878  /// the cleanup blocks that have been added.
879  void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
880
881  void ResolveBranchFixups(llvm::BasicBlock *Target);
882
883  /// The given basic block lies in the current EH scope, but may be a
884  /// target of a potentially scope-crossing jump; get a stable handle
885  /// to which we can perform this jump later.
886  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
887    return JumpDest(Target,
888                    EHStack.getInnermostNormalCleanup(),
889                    NextCleanupDestIndex++);
890  }
891
892  /// The given basic block lies in the current EH scope, but may be a
893  /// target of a potentially scope-crossing jump; get a stable handle
894  /// to which we can perform this jump later.
895  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
896    return getJumpDestInCurrentScope(createBasicBlock(Name));
897  }
898
899  /// EmitBranchThroughCleanup - Emit a branch from the current insert
900  /// block through the normal cleanup handling code (if any) and then
901  /// on to \arg Dest.
902  void EmitBranchThroughCleanup(JumpDest Dest);
903
904  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
905  /// specified destination obviously has no cleanups to run.  'false' is always
906  /// a conservatively correct answer for this method.
907  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
908
909  /// popCatchScope - Pops the catch scope at the top of the EHScope
910  /// stack, emitting any required code (other than the catch handlers
911  /// themselves).
912  void popCatchScope();
913
914  llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
915  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
916
917  /// An object to manage conditionally-evaluated expressions.
918  class ConditionalEvaluation {
919    llvm::BasicBlock *StartBB;
920
921  public:
922    ConditionalEvaluation(CodeGenFunction &CGF)
923      : StartBB(CGF.Builder.GetInsertBlock()) {}
924
925    void begin(CodeGenFunction &CGF) {
926      assert(CGF.OutermostConditional != this);
927      if (!CGF.OutermostConditional)
928        CGF.OutermostConditional = this;
929    }
930
931    void end(CodeGenFunction &CGF) {
932      assert(CGF.OutermostConditional != 0);
933      if (CGF.OutermostConditional == this)
934        CGF.OutermostConditional = 0;
935    }
936
937    /// Returns a block which will be executed prior to each
938    /// evaluation of the conditional code.
939    llvm::BasicBlock *getStartingBlock() const {
940      return StartBB;
941    }
942  };
943
944  /// isInConditionalBranch - Return true if we're currently emitting
945  /// one branch or the other of a conditional expression.
946  bool isInConditionalBranch() const { return OutermostConditional != 0; }
947
948  void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
949    assert(isInConditionalBranch());
950    llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
951    new llvm::StoreInst(value, addr, &block->back());
952  }
953
954  /// An RAII object to record that we're evaluating a statement
955  /// expression.
956  class StmtExprEvaluation {
957    CodeGenFunction &CGF;
958
959    /// We have to save the outermost conditional: cleanups in a
960    /// statement expression aren't conditional just because the
961    /// StmtExpr is.
962    ConditionalEvaluation *SavedOutermostConditional;
963
964  public:
965    StmtExprEvaluation(CodeGenFunction &CGF)
966      : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
967      CGF.OutermostConditional = 0;
968    }
969
970    ~StmtExprEvaluation() {
971      CGF.OutermostConditional = SavedOutermostConditional;
972      CGF.EnsureInsertPoint();
973    }
974  };
975
976  /// An object which temporarily prevents a value from being
977  /// destroyed by aggressive peephole optimizations that assume that
978  /// all uses of a value have been realized in the IR.
979  class PeepholeProtection {
980    llvm::Instruction *Inst;
981    friend class CodeGenFunction;
982
983  public:
984    PeepholeProtection() : Inst(0) {}
985  };
986
987  /// A non-RAII class containing all the information about a bound
988  /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
989  /// this which makes individual mappings very simple; using this
990  /// class directly is useful when you have a variable number of
991  /// opaque values or don't want the RAII functionality for some
992  /// reason.
993  class OpaqueValueMappingData {
994    const OpaqueValueExpr *OpaqueValue;
995    bool BoundLValue;
996    CodeGenFunction::PeepholeProtection Protection;
997
998    OpaqueValueMappingData(const OpaqueValueExpr *ov,
999                           bool boundLValue)
1000      : OpaqueValue(ov), BoundLValue(boundLValue) {}
1001  public:
1002    OpaqueValueMappingData() : OpaqueValue(0) {}
1003
1004    static bool shouldBindAsLValue(const Expr *expr) {
1005      // gl-values should be bound as l-values for obvious reasons.
1006      // Records should be bound as l-values because IR generation
1007      // always keeps them in memory.  Expressions of function type
1008      // act exactly like l-values but are formally required to be
1009      // r-values in C.
1010      return expr->isGLValue() ||
1011             expr->getType()->isRecordType() ||
1012             expr->getType()->isFunctionType();
1013    }
1014
1015    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1016                                       const OpaqueValueExpr *ov,
1017                                       const Expr *e) {
1018      if (shouldBindAsLValue(ov))
1019        return bind(CGF, ov, CGF.EmitLValue(e));
1020      return bind(CGF, ov, CGF.EmitAnyExpr(e));
1021    }
1022
1023    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1024                                       const OpaqueValueExpr *ov,
1025                                       const LValue &lv) {
1026      assert(shouldBindAsLValue(ov));
1027      CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1028      return OpaqueValueMappingData(ov, true);
1029    }
1030
1031    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1032                                       const OpaqueValueExpr *ov,
1033                                       const RValue &rv) {
1034      assert(!shouldBindAsLValue(ov));
1035      CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1036
1037      OpaqueValueMappingData data(ov, false);
1038
1039      // Work around an extremely aggressive peephole optimization in
1040      // EmitScalarConversion which assumes that all other uses of a
1041      // value are extant.
1042      data.Protection = CGF.protectFromPeepholes(rv);
1043
1044      return data;
1045    }
1046
1047    bool isValid() const { return OpaqueValue != 0; }
1048    void clear() { OpaqueValue = 0; }
1049
1050    void unbind(CodeGenFunction &CGF) {
1051      assert(OpaqueValue && "no data to unbind!");
1052
1053      if (BoundLValue) {
1054        CGF.OpaqueLValues.erase(OpaqueValue);
1055      } else {
1056        CGF.OpaqueRValues.erase(OpaqueValue);
1057        CGF.unprotectFromPeepholes(Protection);
1058      }
1059    }
1060  };
1061
1062  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1063  class OpaqueValueMapping {
1064    CodeGenFunction &CGF;
1065    OpaqueValueMappingData Data;
1066
1067  public:
1068    static bool shouldBindAsLValue(const Expr *expr) {
1069      return OpaqueValueMappingData::shouldBindAsLValue(expr);
1070    }
1071
1072    /// Build the opaque value mapping for the given conditional
1073    /// operator if it's the GNU ?: extension.  This is a common
1074    /// enough pattern that the convenience operator is really
1075    /// helpful.
1076    ///
1077    OpaqueValueMapping(CodeGenFunction &CGF,
1078                       const AbstractConditionalOperator *op) : CGF(CGF) {
1079      if (isa<ConditionalOperator>(op))
1080        // Leave Data empty.
1081        return;
1082
1083      const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1084      Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1085                                          e->getCommon());
1086    }
1087
1088    OpaqueValueMapping(CodeGenFunction &CGF,
1089                       const OpaqueValueExpr *opaqueValue,
1090                       LValue lvalue)
1091      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1092    }
1093
1094    OpaqueValueMapping(CodeGenFunction &CGF,
1095                       const OpaqueValueExpr *opaqueValue,
1096                       RValue rvalue)
1097      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1098    }
1099
1100    void pop() {
1101      Data.unbind(CGF);
1102      Data.clear();
1103    }
1104
1105    ~OpaqueValueMapping() {
1106      if (Data.isValid()) Data.unbind(CGF);
1107    }
1108  };
1109
1110  /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
1111  /// number that holds the value.
1112  unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
1113
1114  /// BuildBlockByrefAddress - Computes address location of the
1115  /// variable which is declared as __block.
1116  llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
1117                                      const VarDecl *V);
1118private:
1119  CGDebugInfo *DebugInfo;
1120  bool DisableDebugInfo;
1121
1122  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1123  /// calling llvm.stacksave for multiple VLAs in the same scope.
1124  bool DidCallStackSave;
1125
1126  /// IndirectBranch - The first time an indirect goto is seen we create a block
1127  /// with an indirect branch.  Every time we see the address of a label taken,
1128  /// we add the label to the indirect goto.  Every subsequent indirect goto is
1129  /// codegen'd as a jump to the IndirectBranch's basic block.
1130  llvm::IndirectBrInst *IndirectBranch;
1131
1132  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1133  /// decls.
1134  typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
1135  DeclMapTy LocalDeclMap;
1136
1137  /// LabelMap - This keeps track of the LLVM basic block for each C label.
1138  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1139
1140  // BreakContinueStack - This keeps track of where break and continue
1141  // statements should jump to.
1142  struct BreakContinue {
1143    BreakContinue(JumpDest Break, JumpDest Continue)
1144      : BreakBlock(Break), ContinueBlock(Continue) {}
1145
1146    JumpDest BreakBlock;
1147    JumpDest ContinueBlock;
1148  };
1149  SmallVector<BreakContinue, 8> BreakContinueStack;
1150
1151  /// SwitchInsn - This is nearest current switch instruction. It is null if
1152  /// current context is not in a switch.
1153  llvm::SwitchInst *SwitchInsn;
1154
1155  /// CaseRangeBlock - This block holds if condition check for last case
1156  /// statement range in current switch instruction.
1157  llvm::BasicBlock *CaseRangeBlock;
1158
1159  /// OpaqueLValues - Keeps track of the current set of opaque value
1160  /// expressions.
1161  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1162  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1163
1164  // VLASizeMap - This keeps track of the associated size for each VLA type.
1165  // We track this by the size expression rather than the type itself because
1166  // in certain situations, like a const qualifier applied to an VLA typedef,
1167  // multiple VLA types can share the same size expression.
1168  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1169  // enter/leave scopes.
1170  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1171
1172  /// A block containing a single 'unreachable' instruction.  Created
1173  /// lazily by getUnreachableBlock().
1174  llvm::BasicBlock *UnreachableBlock;
1175
1176  /// CXXThisDecl - When generating code for a C++ member function,
1177  /// this will hold the implicit 'this' declaration.
1178  ImplicitParamDecl *CXXABIThisDecl;
1179  llvm::Value *CXXABIThisValue;
1180  llvm::Value *CXXThisValue;
1181
1182  /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1183  /// destructor, this will hold the implicit argument (e.g. VTT).
1184  ImplicitParamDecl *CXXStructorImplicitParamDecl;
1185  llvm::Value *CXXStructorImplicitParamValue;
1186
1187  /// OutermostConditional - Points to the outermost active
1188  /// conditional control.  This is used so that we know if a
1189  /// temporary should be destroyed conditionally.
1190  ConditionalEvaluation *OutermostConditional;
1191
1192
1193  /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1194  /// type as well as the field number that contains the actual data.
1195  llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
1196                                              unsigned> > ByRefValueInfo;
1197
1198  llvm::BasicBlock *TerminateLandingPad;
1199  llvm::BasicBlock *TerminateHandler;
1200  llvm::BasicBlock *TrapBB;
1201
1202  /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
1203  /// In the kernel metadata node, reference the kernel function and metadata
1204  /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
1205  /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
1206  ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
1207  /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
1208  ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
1209  void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1210                                llvm::Function *Fn);
1211
1212public:
1213  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1214  ~CodeGenFunction();
1215
1216  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1217  ASTContext &getContext() const { return CGM.getContext(); }
1218  /// Returns true if DebugInfo is actually initialized.
1219  bool maybeInitializeDebugInfo() {
1220    if (CGM.getModuleDebugInfo()) {
1221      DebugInfo = CGM.getModuleDebugInfo();
1222      return true;
1223    }
1224    return false;
1225  }
1226  CGDebugInfo *getDebugInfo() {
1227    if (DisableDebugInfo)
1228      return NULL;
1229    return DebugInfo;
1230  }
1231  void disableDebugInfo() { DisableDebugInfo = true; }
1232  void enableDebugInfo() { DisableDebugInfo = false; }
1233
1234  bool shouldUseFusedARCCalls() {
1235    return CGM.getCodeGenOpts().OptimizationLevel == 0;
1236  }
1237
1238  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1239
1240  /// Returns a pointer to the function's exception object and selector slot,
1241  /// which is assigned in every landing pad.
1242  llvm::Value *getExceptionSlot();
1243  llvm::Value *getEHSelectorSlot();
1244
1245  /// Returns the contents of the function's exception object and selector
1246  /// slots.
1247  llvm::Value *getExceptionFromSlot();
1248  llvm::Value *getSelectorFromSlot();
1249
1250  llvm::Value *getNormalCleanupDestSlot();
1251
1252  llvm::BasicBlock *getUnreachableBlock() {
1253    if (!UnreachableBlock) {
1254      UnreachableBlock = createBasicBlock("unreachable");
1255      new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1256    }
1257    return UnreachableBlock;
1258  }
1259
1260  llvm::BasicBlock *getInvokeDest() {
1261    if (!EHStack.requiresLandingPad()) return 0;
1262    return getInvokeDestImpl();
1263  }
1264
1265  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1266
1267  //===--------------------------------------------------------------------===//
1268  //                                  Cleanups
1269  //===--------------------------------------------------------------------===//
1270
1271  typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1272
1273  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1274                                        llvm::Value *arrayEndPointer,
1275                                        QualType elementType,
1276                                        Destroyer *destroyer);
1277  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1278                                      llvm::Value *arrayEnd,
1279                                      QualType elementType,
1280                                      Destroyer *destroyer);
1281
1282  void pushDestroy(QualType::DestructionKind dtorKind,
1283                   llvm::Value *addr, QualType type);
1284  void pushEHDestroy(QualType::DestructionKind dtorKind,
1285                     llvm::Value *addr, QualType type);
1286  void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1287                   Destroyer *destroyer, bool useEHCleanupForArray);
1288  void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1289                   bool useEHCleanupForArray);
1290  llvm::Function *generateDestroyHelper(llvm::Constant *addr,
1291                                        QualType type,
1292                                        Destroyer *destroyer,
1293                                        bool useEHCleanupForArray);
1294  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1295                        QualType type, Destroyer *destroyer,
1296                        bool checkZeroLength, bool useEHCleanup);
1297
1298  Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1299
1300  /// Determines whether an EH cleanup is required to destroy a type
1301  /// with the given destruction kind.
1302  bool needsEHCleanup(QualType::DestructionKind kind) {
1303    switch (kind) {
1304    case QualType::DK_none:
1305      return false;
1306    case QualType::DK_cxx_destructor:
1307    case QualType::DK_objc_weak_lifetime:
1308      return getLangOpts().Exceptions;
1309    case QualType::DK_objc_strong_lifetime:
1310      return getLangOpts().Exceptions &&
1311             CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1312    }
1313    llvm_unreachable("bad destruction kind");
1314  }
1315
1316  CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1317    return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1318  }
1319
1320  //===--------------------------------------------------------------------===//
1321  //                                  Objective-C
1322  //===--------------------------------------------------------------------===//
1323
1324  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1325
1326  void StartObjCMethod(const ObjCMethodDecl *MD,
1327                       const ObjCContainerDecl *CD,
1328                       SourceLocation StartLoc);
1329
1330  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1331  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1332                          const ObjCPropertyImplDecl *PID);
1333  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1334                              const ObjCPropertyImplDecl *propImpl,
1335                              const ObjCMethodDecl *GetterMothodDecl,
1336                              llvm::Constant *AtomicHelperFn);
1337
1338  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1339                                  ObjCMethodDecl *MD, bool ctor);
1340
1341  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1342  /// for the given property.
1343  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1344                          const ObjCPropertyImplDecl *PID);
1345  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1346                              const ObjCPropertyImplDecl *propImpl,
1347                              llvm::Constant *AtomicHelperFn);
1348  bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1349  bool IvarTypeWithAggrGCObjects(QualType Ty);
1350
1351  //===--------------------------------------------------------------------===//
1352  //                                  Block Bits
1353  //===--------------------------------------------------------------------===//
1354
1355  llvm::Value *EmitBlockLiteral(const BlockExpr *);
1356  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1357  static void destroyBlockInfos(CGBlockInfo *info);
1358  llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1359                                           const CGBlockInfo &Info,
1360                                           llvm::StructType *,
1361                                           llvm::Constant *BlockVarLayout);
1362
1363  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1364                                        const CGBlockInfo &Info,
1365                                        const Decl *OuterFuncDecl,
1366                                        const DeclMapTy &ldm,
1367                                        bool IsLambdaConversionToBlock);
1368
1369  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1370  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1371  llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1372                                             const ObjCPropertyImplDecl *PID);
1373  llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1374                                             const ObjCPropertyImplDecl *PID);
1375  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1376
1377  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1378
1379  class AutoVarEmission;
1380
1381  void emitByrefStructureInit(const AutoVarEmission &emission);
1382  void enterByrefCleanup(const AutoVarEmission &emission);
1383
1384  llvm::Value *LoadBlockStruct() {
1385    assert(BlockPointer && "no block pointer set!");
1386    return BlockPointer;
1387  }
1388
1389  void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1390  void AllocateBlockDecl(const DeclRefExpr *E);
1391  llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1392  llvm::Type *BuildByRefType(const VarDecl *var);
1393
1394  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1395                    const CGFunctionInfo &FnInfo);
1396  void StartFunction(GlobalDecl GD, QualType RetTy,
1397                     llvm::Function *Fn,
1398                     const CGFunctionInfo &FnInfo,
1399                     const FunctionArgList &Args,
1400                     SourceLocation StartLoc);
1401
1402  void EmitConstructorBody(FunctionArgList &Args);
1403  void EmitDestructorBody(FunctionArgList &Args);
1404  void EmitFunctionBody(FunctionArgList &Args);
1405
1406  void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda,
1407                                  CallArgList &CallArgs);
1408  void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1409  void EmitLambdaBlockInvokeBody();
1410  void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1411  void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1412
1413  /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1414  /// emission when possible.
1415  void EmitReturnBlock();
1416
1417  /// FinishFunction - Complete IR generation of the current function. It is
1418  /// legal to call this function even if there is no current insertion point.
1419  void FinishFunction(SourceLocation EndLoc=SourceLocation());
1420
1421  /// GenerateThunk - Generate a thunk for the given method.
1422  void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1423                     GlobalDecl GD, const ThunkInfo &Thunk);
1424
1425  void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1426                            GlobalDecl GD, const ThunkInfo &Thunk);
1427
1428  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1429                        FunctionArgList &Args);
1430
1431  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1432                               ArrayRef<VarDecl *> ArrayIndexes);
1433
1434  /// InitializeVTablePointer - Initialize the vtable pointer of the given
1435  /// subobject.
1436  ///
1437  void InitializeVTablePointer(BaseSubobject Base,
1438                               const CXXRecordDecl *NearestVBase,
1439                               CharUnits OffsetFromNearestVBase,
1440                               llvm::Constant *VTable,
1441                               const CXXRecordDecl *VTableClass);
1442
1443  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1444  void InitializeVTablePointers(BaseSubobject Base,
1445                                const CXXRecordDecl *NearestVBase,
1446                                CharUnits OffsetFromNearestVBase,
1447                                bool BaseIsNonVirtualPrimaryBase,
1448                                llvm::Constant *VTable,
1449                                const CXXRecordDecl *VTableClass,
1450                                VisitedVirtualBasesSetTy& VBases);
1451
1452  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1453
1454  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1455  /// to by This.
1456  llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1457
1458  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1459  /// given phase of destruction for a destructor.  The end result
1460  /// should call destructors on members and base classes in reverse
1461  /// order of their construction.
1462  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1463
1464  /// ShouldInstrumentFunction - Return true if the current function should be
1465  /// instrumented with __cyg_profile_func_* calls
1466  bool ShouldInstrumentFunction();
1467
1468  /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1469  /// instrumentation function with the current function and the call site, if
1470  /// function instrumentation is enabled.
1471  void EmitFunctionInstrumentation(const char *Fn);
1472
1473  /// EmitMCountInstrumentation - Emit call to .mcount.
1474  void EmitMCountInstrumentation();
1475
1476  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1477  /// arguments for the given function. This is also responsible for naming the
1478  /// LLVM function arguments.
1479  void EmitFunctionProlog(const CGFunctionInfo &FI,
1480                          llvm::Function *Fn,
1481                          const FunctionArgList &Args);
1482
1483  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1484  /// given temporary.
1485  void EmitFunctionEpilog(const CGFunctionInfo &FI);
1486
1487  /// EmitStartEHSpec - Emit the start of the exception spec.
1488  void EmitStartEHSpec(const Decl *D);
1489
1490  /// EmitEndEHSpec - Emit the end of the exception spec.
1491  void EmitEndEHSpec(const Decl *D);
1492
1493  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1494  llvm::BasicBlock *getTerminateLandingPad();
1495
1496  /// getTerminateHandler - Return a handler (not a landing pad, just
1497  /// a catch handler) that just calls terminate.  This is used when
1498  /// a terminate scope encloses a try.
1499  llvm::BasicBlock *getTerminateHandler();
1500
1501  llvm::Type *ConvertTypeForMem(QualType T);
1502  llvm::Type *ConvertType(QualType T);
1503  llvm::Type *ConvertType(const TypeDecl *T) {
1504    return ConvertType(getContext().getTypeDeclType(T));
1505  }
1506
1507  /// LoadObjCSelf - Load the value of self. This function is only valid while
1508  /// generating code for an Objective-C method.
1509  llvm::Value *LoadObjCSelf();
1510
1511  /// TypeOfSelfObject - Return type of object that this self represents.
1512  QualType TypeOfSelfObject();
1513
1514  /// hasAggregateLLVMType - Return true if the specified AST type will map into
1515  /// an aggregate LLVM type or is void.
1516  static bool hasAggregateLLVMType(QualType T);
1517
1518  /// createBasicBlock - Create an LLVM basic block.
1519  llvm::BasicBlock *createBasicBlock(const Twine &name = "",
1520                                     llvm::Function *parent = 0,
1521                                     llvm::BasicBlock *before = 0) {
1522#ifdef NDEBUG
1523    return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1524#else
1525    return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1526#endif
1527  }
1528
1529  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1530  /// label maps to.
1531  JumpDest getJumpDestForLabel(const LabelDecl *S);
1532
1533  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1534  /// another basic block, simplify it. This assumes that no other code could
1535  /// potentially reference the basic block.
1536  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1537
1538  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1539  /// adding a fall-through branch from the current insert block if
1540  /// necessary. It is legal to call this function even if there is no current
1541  /// insertion point.
1542  ///
1543  /// IsFinished - If true, indicates that the caller has finished emitting
1544  /// branches to the given block and does not expect to emit code into it. This
1545  /// means the block can be ignored if it is unreachable.
1546  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1547
1548  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1549  /// near its uses, and leave the insertion point in it.
1550  void EmitBlockAfterUses(llvm::BasicBlock *BB);
1551
1552  /// EmitBranch - Emit a branch to the specified basic block from the current
1553  /// insert block, taking care to avoid creation of branches from dummy
1554  /// blocks. It is legal to call this function even if there is no current
1555  /// insertion point.
1556  ///
1557  /// This function clears the current insertion point. The caller should follow
1558  /// calls to this function with calls to Emit*Block prior to generation new
1559  /// code.
1560  void EmitBranch(llvm::BasicBlock *Block);
1561
1562  /// HaveInsertPoint - True if an insertion point is defined. If not, this
1563  /// indicates that the current code being emitted is unreachable.
1564  bool HaveInsertPoint() const {
1565    return Builder.GetInsertBlock() != 0;
1566  }
1567
1568  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1569  /// emitted IR has a place to go. Note that by definition, if this function
1570  /// creates a block then that block is unreachable; callers may do better to
1571  /// detect when no insertion point is defined and simply skip IR generation.
1572  void EnsureInsertPoint() {
1573    if (!HaveInsertPoint())
1574      EmitBlock(createBasicBlock());
1575  }
1576
1577  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1578  /// specified stmt yet.
1579  void ErrorUnsupported(const Stmt *S, const char *Type,
1580                        bool OmitOnError=false);
1581
1582  //===--------------------------------------------------------------------===//
1583  //                                  Helpers
1584  //===--------------------------------------------------------------------===//
1585
1586  LValue MakeAddrLValue(llvm::Value *V, QualType T,
1587                        CharUnits Alignment = CharUnits()) {
1588    return LValue::MakeAddr(V, T, Alignment, getContext(),
1589                            CGM.getTBAAInfo(T));
1590  }
1591
1592  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
1593    CharUnits Alignment;
1594    if (!T->isIncompleteType())
1595      Alignment = getContext().getTypeAlignInChars(T);
1596    return LValue::MakeAddr(V, T, Alignment, getContext(),
1597                            CGM.getTBAAInfo(T));
1598  }
1599
1600  /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1601  /// block. The caller is responsible for setting an appropriate alignment on
1602  /// the alloca.
1603  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1604                                     const Twine &Name = "tmp");
1605
1606  /// InitTempAlloca - Provide an initial value for the given alloca.
1607  void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1608
1609  /// CreateIRTemp - Create a temporary IR object of the given type, with
1610  /// appropriate alignment. This routine should only be used when an temporary
1611  /// value needs to be stored into an alloca (for example, to avoid explicit
1612  /// PHI construction), but the type is the IR type, not the type appropriate
1613  /// for storing in memory.
1614  llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1615
1616  /// CreateMemTemp - Create a temporary memory object of the given type, with
1617  /// appropriate alignment.
1618  llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1619
1620  /// CreateAggTemp - Create a temporary memory object for the given
1621  /// aggregate type.
1622  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1623    CharUnits Alignment = getContext().getTypeAlignInChars(T);
1624    return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1625                                 T.getQualifiers(),
1626                                 AggValueSlot::IsNotDestructed,
1627                                 AggValueSlot::DoesNotNeedGCBarriers,
1628                                 AggValueSlot::IsNotAliased);
1629  }
1630
1631  /// Emit a cast to void* in the appropriate address space.
1632  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1633
1634  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1635  /// expression and compare the result against zero, returning an Int1Ty value.
1636  llvm::Value *EvaluateExprAsBool(const Expr *E);
1637
1638  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1639  void EmitIgnoredExpr(const Expr *E);
1640
1641  /// EmitAnyExpr - Emit code to compute the specified expression which can have
1642  /// any type.  The result is returned as an RValue struct.  If this is an
1643  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1644  /// the result should be returned.
1645  ///
1646  /// \param ignoreResult True if the resulting value isn't used.
1647  RValue EmitAnyExpr(const Expr *E,
1648                     AggValueSlot aggSlot = AggValueSlot::ignored(),
1649                     bool ignoreResult = false);
1650
1651  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1652  // or the value of the expression, depending on how va_list is defined.
1653  llvm::Value *EmitVAListRef(const Expr *E);
1654
1655  /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1656  /// always be accessible even if no aggregate location is provided.
1657  RValue EmitAnyExprToTemp(const Expr *E);
1658
1659  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1660  /// arbitrary expression into the given memory location.
1661  void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1662                        Qualifiers Quals, bool IsInitializer);
1663
1664  /// EmitExprAsInit - Emits the code necessary to initialize a
1665  /// location in memory with the given initializer.
1666  void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1667                      LValue lvalue, bool capturedByInit);
1668
1669  /// hasVolatileMember - returns true if aggregate type has a volatile
1670  /// member.
1671  bool hasVolatileMember(QualType T) {
1672    if (const RecordType *RT = T->getAs<RecordType>()) {
1673      const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
1674      return RD->hasVolatileMember();
1675    }
1676    return false;
1677  }
1678  /// EmitAggregateCopy - Emit an aggregate assignment.
1679  ///
1680  /// The difference to EmitAggregateCopy is that tail padding is not copied.
1681  /// This is required for correctness when assigning non-POD structures in C++.
1682  void EmitAggregateAssign(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1683                           QualType EltTy) {
1684    bool IsVolatile = hasVolatileMember(EltTy);
1685    EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, CharUnits::Zero(),
1686                      true);
1687  }
1688
1689  /// EmitAggregateCopy - Emit an aggregate copy.
1690  ///
1691  /// \param isVolatile - True iff either the source or the destination is
1692  /// volatile.
1693  /// \param isAssignment - If false, allow padding to be copied.  This often
1694  /// yields more efficient.
1695  void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1696                         QualType EltTy, bool isVolatile=false,
1697                         CharUnits Alignment = CharUnits::Zero(),
1698                         bool isAssignment = false);
1699
1700  /// StartBlock - Start new block named N. If insert block is a dummy block
1701  /// then reuse it.
1702  void StartBlock(const char *N);
1703
1704  /// GetAddrOfLocalVar - Return the address of a local variable.
1705  llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1706    llvm::Value *Res = LocalDeclMap[VD];
1707    assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1708    return Res;
1709  }
1710
1711  /// getOpaqueLValueMapping - Given an opaque value expression (which
1712  /// must be mapped to an l-value), return its mapping.
1713  const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1714    assert(OpaqueValueMapping::shouldBindAsLValue(e));
1715
1716    llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1717      it = OpaqueLValues.find(e);
1718    assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1719    return it->second;
1720  }
1721
1722  /// getOpaqueRValueMapping - Given an opaque value expression (which
1723  /// must be mapped to an r-value), return its mapping.
1724  const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1725    assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1726
1727    llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1728      it = OpaqueRValues.find(e);
1729    assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1730    return it->second;
1731  }
1732
1733  /// getAccessedFieldNo - Given an encoded value and a result number, return
1734  /// the input field number being accessed.
1735  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1736
1737  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1738  llvm::BasicBlock *GetIndirectGotoBlock();
1739
1740  /// EmitNullInitialization - Generate code to set a value of the given type to
1741  /// null, If the type contains data member pointers, they will be initialized
1742  /// to -1 in accordance with the Itanium C++ ABI.
1743  void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1744
1745  // EmitVAArg - Generate code to get an argument from the passed in pointer
1746  // and update it accordingly. The return value is a pointer to the argument.
1747  // FIXME: We should be able to get rid of this method and use the va_arg
1748  // instruction in LLVM instead once it works well enough.
1749  llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1750
1751  /// emitArrayLength - Compute the length of an array, even if it's a
1752  /// VLA, and drill down to the base element type.
1753  llvm::Value *emitArrayLength(const ArrayType *arrayType,
1754                               QualType &baseType,
1755                               llvm::Value *&addr);
1756
1757  /// EmitVLASize - Capture all the sizes for the VLA expressions in
1758  /// the given variably-modified type and store them in the VLASizeMap.
1759  ///
1760  /// This function can be called with a null (unreachable) insert point.
1761  void EmitVariablyModifiedType(QualType Ty);
1762
1763  /// getVLASize - Returns an LLVM value that corresponds to the size,
1764  /// in non-variably-sized elements, of a variable length array type,
1765  /// plus that largest non-variably-sized element type.  Assumes that
1766  /// the type has already been emitted with EmitVariablyModifiedType.
1767  std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1768  std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1769
1770  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1771  /// generating code for an C++ member function.
1772  llvm::Value *LoadCXXThis() {
1773    assert(CXXThisValue && "no 'this' value for this function");
1774    return CXXThisValue;
1775  }
1776
1777  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1778  /// virtual bases.
1779  // FIXME: Every place that calls LoadCXXVTT is something
1780  // that needs to be abstracted properly.
1781  llvm::Value *LoadCXXVTT() {
1782    assert(CXXStructorImplicitParamValue && "no VTT value for this function");
1783    return CXXStructorImplicitParamValue;
1784  }
1785
1786  /// LoadCXXStructorImplicitParam - Load the implicit parameter
1787  /// for a constructor/destructor.
1788  llvm::Value *LoadCXXStructorImplicitParam() {
1789    assert(CXXStructorImplicitParamValue &&
1790           "no implicit argument value for this function");
1791    return CXXStructorImplicitParamValue;
1792  }
1793
1794  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1795  /// complete class to the given direct base.
1796  llvm::Value *
1797  GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1798                                        const CXXRecordDecl *Derived,
1799                                        const CXXRecordDecl *Base,
1800                                        bool BaseIsVirtual);
1801
1802  /// GetAddressOfBaseClass - This function will add the necessary delta to the
1803  /// load of 'this' and returns address of the base class.
1804  llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1805                                     const CXXRecordDecl *Derived,
1806                                     CastExpr::path_const_iterator PathBegin,
1807                                     CastExpr::path_const_iterator PathEnd,
1808                                     bool NullCheckValue);
1809
1810  llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1811                                        const CXXRecordDecl *Derived,
1812                                        CastExpr::path_const_iterator PathBegin,
1813                                        CastExpr::path_const_iterator PathEnd,
1814                                        bool NullCheckValue);
1815
1816  llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
1817                                         const CXXRecordDecl *ClassDecl,
1818                                         const CXXRecordDecl *BaseClassDecl);
1819
1820  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1821                                      CXXCtorType CtorType,
1822                                      const FunctionArgList &Args);
1823  // It's important not to confuse this and the previous function. Delegating
1824  // constructors are the C++0x feature. The constructor delegate optimization
1825  // is used to reduce duplication in the base and complete consturctors where
1826  // they are substantially the same.
1827  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1828                                        const FunctionArgList &Args);
1829  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1830                              bool ForVirtualBase, bool Delegating,
1831                              llvm::Value *This,
1832                              CallExpr::const_arg_iterator ArgBeg,
1833                              CallExpr::const_arg_iterator ArgEnd);
1834
1835  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1836                              llvm::Value *This, llvm::Value *Src,
1837                              CallExpr::const_arg_iterator ArgBeg,
1838                              CallExpr::const_arg_iterator ArgEnd);
1839
1840  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1841                                  const ConstantArrayType *ArrayTy,
1842                                  llvm::Value *ArrayPtr,
1843                                  CallExpr::const_arg_iterator ArgBeg,
1844                                  CallExpr::const_arg_iterator ArgEnd,
1845                                  bool ZeroInitialization = false);
1846
1847  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1848                                  llvm::Value *NumElements,
1849                                  llvm::Value *ArrayPtr,
1850                                  CallExpr::const_arg_iterator ArgBeg,
1851                                  CallExpr::const_arg_iterator ArgEnd,
1852                                  bool ZeroInitialization = false);
1853
1854  static Destroyer destroyCXXObject;
1855
1856  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1857                             bool ForVirtualBase, bool Delegating,
1858                             llvm::Value *This);
1859
1860  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1861                               llvm::Value *NewPtr, llvm::Value *NumElements);
1862
1863  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1864                        llvm::Value *Ptr);
1865
1866  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1867  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1868
1869  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1870                      QualType DeleteTy);
1871
1872  llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1873  llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1874  llvm::Value* EmitCXXUuidofExpr(const CXXUuidofExpr *E);
1875
1876  void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init);
1877  void EmitStdInitializerListCleanup(llvm::Value *loc,
1878                                     const InitListExpr *init);
1879
1880  /// \brief Situations in which we might emit a check for the suitability of a
1881  ///        pointer or glvalue.
1882  enum TypeCheckKind {
1883    /// Checking the operand of a load. Must be suitably sized and aligned.
1884    TCK_Load,
1885    /// Checking the destination of a store. Must be suitably sized and aligned.
1886    TCK_Store,
1887    /// Checking the bound value in a reference binding. Must be suitably sized
1888    /// and aligned, but is not required to refer to an object (until the
1889    /// reference is used), per core issue 453.
1890    TCK_ReferenceBinding,
1891    /// Checking the object expression in a non-static data member access. Must
1892    /// be an object within its lifetime.
1893    TCK_MemberAccess,
1894    /// Checking the 'this' pointer for a call to a non-static member function.
1895    /// Must be an object within its lifetime.
1896    TCK_MemberCall,
1897    /// Checking the 'this' pointer for a constructor call.
1898    TCK_ConstructorCall,
1899    /// Checking the operand of a static_cast to a derived pointer type. Must be
1900    /// null or an object within its lifetime.
1901    TCK_DowncastPointer,
1902    /// Checking the operand of a static_cast to a derived reference type. Must
1903    /// be an object within its lifetime.
1904    TCK_DowncastReference
1905  };
1906
1907  /// \brief Emit a check that \p V is the address of storage of the
1908  /// appropriate size and alignment for an object of type \p Type.
1909  void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
1910                     QualType Type, CharUnits Alignment = CharUnits::Zero());
1911
1912  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1913                                       bool isInc, bool isPre);
1914  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1915                                         bool isInc, bool isPre);
1916  //===--------------------------------------------------------------------===//
1917  //                            Declaration Emission
1918  //===--------------------------------------------------------------------===//
1919
1920  /// EmitDecl - Emit a declaration.
1921  ///
1922  /// This function can be called with a null (unreachable) insert point.
1923  void EmitDecl(const Decl &D);
1924
1925  /// EmitVarDecl - Emit a local variable declaration.
1926  ///
1927  /// This function can be called with a null (unreachable) insert point.
1928  void EmitVarDecl(const VarDecl &D);
1929
1930  void EmitScalarInit(const Expr *init, const ValueDecl *D,
1931                      LValue lvalue, bool capturedByInit);
1932  void EmitScalarInit(llvm::Value *init, LValue lvalue);
1933
1934  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1935                             llvm::Value *Address);
1936
1937  /// EmitAutoVarDecl - Emit an auto variable declaration.
1938  ///
1939  /// This function can be called with a null (unreachable) insert point.
1940  void EmitAutoVarDecl(const VarDecl &D);
1941
1942  class AutoVarEmission {
1943    friend class CodeGenFunction;
1944
1945    const VarDecl *Variable;
1946
1947    /// The alignment of the variable.
1948    CharUnits Alignment;
1949
1950    /// The address of the alloca.  Null if the variable was emitted
1951    /// as a global constant.
1952    llvm::Value *Address;
1953
1954    llvm::Value *NRVOFlag;
1955
1956    /// True if the variable is a __block variable.
1957    bool IsByRef;
1958
1959    /// True if the variable is of aggregate type and has a constant
1960    /// initializer.
1961    bool IsConstantAggregate;
1962
1963    struct Invalid {};
1964    AutoVarEmission(Invalid) : Variable(0) {}
1965
1966    AutoVarEmission(const VarDecl &variable)
1967      : Variable(&variable), Address(0), NRVOFlag(0),
1968        IsByRef(false), IsConstantAggregate(false) {}
1969
1970    bool wasEmittedAsGlobal() const { return Address == 0; }
1971
1972  public:
1973    static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1974
1975    /// Returns the address of the object within this declaration.
1976    /// Note that this does not chase the forwarding pointer for
1977    /// __block decls.
1978    llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1979      if (!IsByRef) return Address;
1980
1981      return CGF.Builder.CreateStructGEP(Address,
1982                                         CGF.getByRefValueLLVMField(Variable),
1983                                         Variable->getNameAsString());
1984    }
1985  };
1986  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1987  void EmitAutoVarInit(const AutoVarEmission &emission);
1988  void EmitAutoVarCleanups(const AutoVarEmission &emission);
1989  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1990                              QualType::DestructionKind dtorKind);
1991
1992  void EmitStaticVarDecl(const VarDecl &D,
1993                         llvm::GlobalValue::LinkageTypes Linkage);
1994
1995  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1996  void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
1997
1998  /// protectFromPeepholes - Protect a value that we're intending to
1999  /// store to the side, but which will probably be used later, from
2000  /// aggressive peepholing optimizations that might delete it.
2001  ///
2002  /// Pass the result to unprotectFromPeepholes to declare that
2003  /// protection is no longer required.
2004  ///
2005  /// There's no particular reason why this shouldn't apply to
2006  /// l-values, it's just that no existing peepholes work on pointers.
2007  PeepholeProtection protectFromPeepholes(RValue rvalue);
2008  void unprotectFromPeepholes(PeepholeProtection protection);
2009
2010  //===--------------------------------------------------------------------===//
2011  //                             Statement Emission
2012  //===--------------------------------------------------------------------===//
2013
2014  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
2015  void EmitStopPoint(const Stmt *S);
2016
2017  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
2018  /// this function even if there is no current insertion point.
2019  ///
2020  /// This function may clear the current insertion point; callers should use
2021  /// EnsureInsertPoint if they wish to subsequently generate code without first
2022  /// calling EmitBlock, EmitBranch, or EmitStmt.
2023  void EmitStmt(const Stmt *S);
2024
2025  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
2026  /// necessarily require an insertion point or debug information; typically
2027  /// because the statement amounts to a jump or a container of other
2028  /// statements.
2029  ///
2030  /// \return True if the statement was handled.
2031  bool EmitSimpleStmt(const Stmt *S);
2032
2033  RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
2034                          AggValueSlot AVS = AggValueSlot::ignored());
2035  RValue EmitCompoundStmtWithoutScope(const CompoundStmt &S,
2036                                      bool GetLast = false, AggValueSlot AVS =
2037                                          AggValueSlot::ignored());
2038
2039  /// EmitLabel - Emit the block for the given label. It is legal to call this
2040  /// function even if there is no current insertion point.
2041  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
2042
2043  void EmitLabelStmt(const LabelStmt &S);
2044  void EmitAttributedStmt(const AttributedStmt &S);
2045  void EmitGotoStmt(const GotoStmt &S);
2046  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
2047  void EmitIfStmt(const IfStmt &S);
2048  void EmitWhileStmt(const WhileStmt &S);
2049  void EmitDoStmt(const DoStmt &S);
2050  void EmitForStmt(const ForStmt &S);
2051  void EmitReturnStmt(const ReturnStmt &S);
2052  void EmitDeclStmt(const DeclStmt &S);
2053  void EmitBreakStmt(const BreakStmt &S);
2054  void EmitContinueStmt(const ContinueStmt &S);
2055  void EmitSwitchStmt(const SwitchStmt &S);
2056  void EmitDefaultStmt(const DefaultStmt &S);
2057  void EmitCaseStmt(const CaseStmt &S);
2058  void EmitCaseStmtRange(const CaseStmt &S);
2059  void EmitAsmStmt(const AsmStmt &S);
2060
2061  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
2062  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
2063  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
2064  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
2065  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
2066
2067  llvm::Constant *getUnwindResumeFn();
2068  llvm::Constant *getUnwindResumeOrRethrowFn();
2069  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2070  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
2071
2072  void EmitCXXTryStmt(const CXXTryStmt &S);
2073  void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
2074
2075  //===--------------------------------------------------------------------===//
2076  //                         LValue Expression Emission
2077  //===--------------------------------------------------------------------===//
2078
2079  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2080  RValue GetUndefRValue(QualType Ty);
2081
2082  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2083  /// and issue an ErrorUnsupported style diagnostic (using the
2084  /// provided Name).
2085  RValue EmitUnsupportedRValue(const Expr *E,
2086                               const char *Name);
2087
2088  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2089  /// an ErrorUnsupported style diagnostic (using the provided Name).
2090  LValue EmitUnsupportedLValue(const Expr *E,
2091                               const char *Name);
2092
2093  /// EmitLValue - Emit code to compute a designator that specifies the location
2094  /// of the expression.
2095  ///
2096  /// This can return one of two things: a simple address or a bitfield
2097  /// reference.  In either case, the LLVM Value* in the LValue structure is
2098  /// guaranteed to be an LLVM pointer type.
2099  ///
2100  /// If this returns a bitfield reference, nothing about the pointee type of
2101  /// the LLVM value is known: For example, it may not be a pointer to an
2102  /// integer.
2103  ///
2104  /// If this returns a normal address, and if the lvalue's C type is fixed
2105  /// size, this method guarantees that the returned pointer type will point to
2106  /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2107  /// variable length type, this is not possible.
2108  ///
2109  LValue EmitLValue(const Expr *E);
2110
2111  /// \brief Same as EmitLValue but additionally we generate checking code to
2112  /// guard against undefined behavior.  This is only suitable when we know
2113  /// that the address will be used to access the object.
2114  LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
2115
2116  /// EmitToMemory - Change a scalar value from its value
2117  /// representation to its in-memory representation.
2118  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2119
2120  /// EmitFromMemory - Change a scalar value from its memory
2121  /// representation to its value representation.
2122  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2123
2124  /// EmitLoadOfScalar - Load a scalar value from an address, taking
2125  /// care to appropriately convert from the memory representation to
2126  /// the LLVM value representation.
2127  llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
2128                                unsigned Alignment, QualType Ty,
2129                                llvm::MDNode *TBAAInfo = 0);
2130
2131  /// EmitLoadOfScalar - Load a scalar value from an address, taking
2132  /// care to appropriately convert from the memory representation to
2133  /// the LLVM value representation.  The l-value must be a simple
2134  /// l-value.
2135  llvm::Value *EmitLoadOfScalar(LValue lvalue);
2136
2137  /// EmitStoreOfScalar - Store a scalar value to an address, taking
2138  /// care to appropriately convert from the memory representation to
2139  /// the LLVM value representation.
2140  void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
2141                         bool Volatile, unsigned Alignment, QualType Ty,
2142                         llvm::MDNode *TBAAInfo = 0, bool isInit=false);
2143
2144  /// EmitStoreOfScalar - Store a scalar value to an address, taking
2145  /// care to appropriately convert from the memory representation to
2146  /// the LLVM value representation.  The l-value must be a simple
2147  /// l-value.  The isInit flag indicates whether this is an initialization.
2148  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2149  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2150
2151  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2152  /// this method emits the address of the lvalue, then loads the result as an
2153  /// rvalue, returning the rvalue.
2154  RValue EmitLoadOfLValue(LValue V);
2155  RValue EmitLoadOfExtVectorElementLValue(LValue V);
2156  RValue EmitLoadOfBitfieldLValue(LValue LV);
2157
2158  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2159  /// lvalue, where both are guaranteed to the have the same type, and that type
2160  /// is 'Ty'.
2161  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false);
2162  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2163
2164  /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
2165  /// EmitStoreThroughLValue.
2166  ///
2167  /// \param Result [out] - If non-null, this will be set to a Value* for the
2168  /// bit-field contents after the store, appropriate for use as the result of
2169  /// an assignment to the bit-field.
2170  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2171                                      llvm::Value **Result=0);
2172
2173  /// Emit an l-value for an assignment (simple or compound) of complex type.
2174  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2175  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2176
2177  // Note: only available for agg return types
2178  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2179  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2180  // Note: only available for agg return types
2181  LValue EmitCallExprLValue(const CallExpr *E);
2182  // Note: only available for agg return types
2183  LValue EmitVAArgExprLValue(const VAArgExpr *E);
2184  LValue EmitDeclRefLValue(const DeclRefExpr *E);
2185  LValue EmitStringLiteralLValue(const StringLiteral *E);
2186  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2187  LValue EmitPredefinedLValue(const PredefinedExpr *E);
2188  LValue EmitUnaryOpLValue(const UnaryOperator *E);
2189  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
2190  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2191  LValue EmitMemberExpr(const MemberExpr *E);
2192  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2193  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2194  LValue EmitInitListLValue(const InitListExpr *E);
2195  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2196  LValue EmitCastLValue(const CastExpr *E);
2197  LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
2198  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2199  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2200
2201  RValue EmitRValueForField(LValue LV, const FieldDecl *FD);
2202
2203  class ConstantEmission {
2204    llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2205    ConstantEmission(llvm::Constant *C, bool isReference)
2206      : ValueAndIsReference(C, isReference) {}
2207  public:
2208    ConstantEmission() {}
2209    static ConstantEmission forReference(llvm::Constant *C) {
2210      return ConstantEmission(C, true);
2211    }
2212    static ConstantEmission forValue(llvm::Constant *C) {
2213      return ConstantEmission(C, false);
2214    }
2215
2216    operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; }
2217
2218    bool isReference() const { return ValueAndIsReference.getInt(); }
2219    LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2220      assert(isReference());
2221      return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2222                                            refExpr->getType());
2223    }
2224
2225    llvm::Constant *getValue() const {
2226      assert(!isReference());
2227      return ValueAndIsReference.getPointer();
2228    }
2229  };
2230
2231  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2232
2233  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2234                                AggValueSlot slot = AggValueSlot::ignored());
2235  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2236
2237  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2238                              const ObjCIvarDecl *Ivar);
2239  LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2240
2241  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2242  /// if the Field is a reference, this will return the address of the reference
2243  /// and not the address of the value stored in the reference.
2244  LValue EmitLValueForFieldInitialization(LValue Base,
2245                                          const FieldDecl* Field);
2246
2247  LValue EmitLValueForIvar(QualType ObjectTy,
2248                           llvm::Value* Base, const ObjCIvarDecl *Ivar,
2249                           unsigned CVRQualifiers);
2250
2251  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2252  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2253  LValue EmitLambdaLValue(const LambdaExpr *E);
2254  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2255  LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
2256
2257  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2258  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2259  LValue EmitStmtExprLValue(const StmtExpr *E);
2260  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2261  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2262  void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2263
2264  //===--------------------------------------------------------------------===//
2265  //                         Scalar Expression Emission
2266  //===--------------------------------------------------------------------===//
2267
2268  /// EmitCall - Generate a call of the given function, expecting the given
2269  /// result type, and using the given argument list which specifies both the
2270  /// LLVM arguments and the types they were derived from.
2271  ///
2272  /// \param TargetDecl - If given, the decl of the function in a direct call;
2273  /// used to set attributes on the call (noreturn, etc.).
2274  RValue EmitCall(const CGFunctionInfo &FnInfo,
2275                  llvm::Value *Callee,
2276                  ReturnValueSlot ReturnValue,
2277                  const CallArgList &Args,
2278                  const Decl *TargetDecl = 0,
2279                  llvm::Instruction **callOrInvoke = 0);
2280
2281  RValue EmitCall(QualType FnType, llvm::Value *Callee,
2282                  ReturnValueSlot ReturnValue,
2283                  CallExpr::const_arg_iterator ArgBeg,
2284                  CallExpr::const_arg_iterator ArgEnd,
2285                  const Decl *TargetDecl = 0);
2286  RValue EmitCallExpr(const CallExpr *E,
2287                      ReturnValueSlot ReturnValue = ReturnValueSlot());
2288
2289  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2290                                  ArrayRef<llvm::Value *> Args,
2291                                  const Twine &Name = "");
2292  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2293                                  const Twine &Name = "");
2294
2295  llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
2296                                llvm::Type *Ty);
2297  llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
2298                                llvm::Value *This, llvm::Type *Ty);
2299  llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2300                                         NestedNameSpecifier *Qual,
2301                                         llvm::Type *Ty);
2302
2303  llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2304                                                   CXXDtorType Type,
2305                                                   const CXXRecordDecl *RD);
2306
2307  RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2308                           SourceLocation CallLoc,
2309                           llvm::Value *Callee,
2310                           ReturnValueSlot ReturnValue,
2311                           llvm::Value *This,
2312                           llvm::Value *ImplicitParam,
2313                           QualType ImplicitParamTy,
2314                           CallExpr::const_arg_iterator ArgBeg,
2315                           CallExpr::const_arg_iterator ArgEnd);
2316  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2317                               ReturnValueSlot ReturnValue);
2318  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2319                                      ReturnValueSlot ReturnValue);
2320
2321  llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2322                                           const CXXMethodDecl *MD,
2323                                           llvm::Value *This);
2324  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2325                                       const CXXMethodDecl *MD,
2326                                       ReturnValueSlot ReturnValue);
2327
2328  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2329                                ReturnValueSlot ReturnValue);
2330
2331
2332  RValue EmitBuiltinExpr(const FunctionDecl *FD,
2333                         unsigned BuiltinID, const CallExpr *E);
2334
2335  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2336
2337  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2338  /// is unhandled by the current target.
2339  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2340
2341  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2342  llvm::Value *EmitNeonCall(llvm::Function *F,
2343                            SmallVectorImpl<llvm::Value*> &O,
2344                            const char *name,
2345                            unsigned shift = 0, bool rightshift = false);
2346  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2347  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2348                                   bool negateForRightShift);
2349
2350  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2351  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2352  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2353
2354  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2355  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2356  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2357  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2358  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2359  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2360                                const ObjCMethodDecl *MethodWithObjects);
2361  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2362  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2363                             ReturnValueSlot Return = ReturnValueSlot());
2364
2365  /// Retrieves the default cleanup kind for an ARC cleanup.
2366  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2367  CleanupKind getARCCleanupKind() {
2368    return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2369             ? NormalAndEHCleanup : NormalCleanup;
2370  }
2371
2372  // ARC primitives.
2373  void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2374  void EmitARCDestroyWeak(llvm::Value *addr);
2375  llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2376  llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2377  llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2378                                bool ignored);
2379  void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2380  void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2381  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2382  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2383  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2384                                  bool ignored);
2385  llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2386                                      bool ignored);
2387  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2388  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2389  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2390  void EmitARCDestroyStrong(llvm::Value *addr, bool precise);
2391  void EmitARCRelease(llvm::Value *value, bool precise);
2392  llvm::Value *EmitARCAutorelease(llvm::Value *value);
2393  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2394  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2395  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2396
2397  std::pair<LValue,llvm::Value*>
2398  EmitARCStoreAutoreleasing(const BinaryOperator *e);
2399  std::pair<LValue,llvm::Value*>
2400  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2401
2402  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2403
2404  llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2405  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2406  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2407
2408  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2409  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2410  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2411
2412  static Destroyer destroyARCStrongImprecise;
2413  static Destroyer destroyARCStrongPrecise;
2414  static Destroyer destroyARCWeak;
2415
2416  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2417  llvm::Value *EmitObjCAutoreleasePoolPush();
2418  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2419  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2420  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2421
2422  /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
2423  /// expression. Will emit a temporary variable if E is not an LValue.
2424  RValue EmitReferenceBindingToExpr(const Expr* E,
2425                                    const NamedDecl *InitializedDecl);
2426
2427  //===--------------------------------------------------------------------===//
2428  //                           Expression Emission
2429  //===--------------------------------------------------------------------===//
2430
2431  // Expressions are broken into three classes: scalar, complex, aggregate.
2432
2433  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2434  /// scalar type, returning the result.
2435  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2436
2437  /// EmitScalarConversion - Emit a conversion from the specified type to the
2438  /// specified destination type, both of which are LLVM scalar types.
2439  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2440                                    QualType DstTy);
2441
2442  /// EmitComplexToScalarConversion - Emit a conversion from the specified
2443  /// complex type to the specified destination type, where the destination type
2444  /// is an LLVM scalar type.
2445  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2446                                             QualType DstTy);
2447
2448
2449  /// EmitAggExpr - Emit the computation of the specified expression
2450  /// of aggregate type.  The result is computed into the given slot,
2451  /// which may be null to indicate that the value is not needed.
2452  void EmitAggExpr(const Expr *E, AggValueSlot AS);
2453
2454  /// EmitAggExprToLValue - Emit the computation of the specified expression of
2455  /// aggregate type into a temporary LValue.
2456  LValue EmitAggExprToLValue(const Expr *E);
2457
2458  /// EmitGCMemmoveCollectable - Emit special API for structs with object
2459  /// pointers.
2460  void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2461                                QualType Ty);
2462
2463  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2464  /// make sure it survives garbage collection until this point.
2465  void EmitExtendGCLifetime(llvm::Value *object);
2466
2467  /// EmitComplexExpr - Emit the computation of the specified expression of
2468  /// complex type, returning the result.
2469  ComplexPairTy EmitComplexExpr(const Expr *E,
2470                                bool IgnoreReal = false,
2471                                bool IgnoreImag = false);
2472
2473  /// EmitComplexExprIntoAddr - Emit the computation of the specified expression
2474  /// of complex type, storing into the specified Value*.
2475  void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
2476                               bool DestIsVolatile);
2477
2478  /// StoreComplexToAddr - Store a complex number into the specified address.
2479  void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
2480                          bool DestIsVolatile);
2481  /// LoadComplexFromAddr - Load a complex number from the specified address.
2482  ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
2483
2484  /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2485  /// a static local variable.
2486  llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2487                                            const char *Separator,
2488                                       llvm::GlobalValue::LinkageTypes Linkage);
2489
2490  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2491  /// global variable that has already been created for it.  If the initializer
2492  /// has a different type than GV does, this may free GV and return a different
2493  /// one.  Otherwise it just returns GV.
2494  llvm::GlobalVariable *
2495  AddInitializerToStaticVarDecl(const VarDecl &D,
2496                                llvm::GlobalVariable *GV);
2497
2498
2499  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2500  /// variable with global storage.
2501  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2502                                bool PerformInit);
2503
2504  /// Call atexit() with a function that passes the given argument to
2505  /// the given function.
2506  void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr);
2507
2508  /// Emit code in this function to perform a guarded variable
2509  /// initialization.  Guarded initializations are used when it's not
2510  /// possible to prove that an initialization will be done exactly
2511  /// once, e.g. with a static local variable or a static data member
2512  /// of a class template.
2513  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2514                          bool PerformInit);
2515
2516  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2517  /// variables.
2518  void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2519                                 llvm::Constant **Decls,
2520                                 unsigned NumDecls);
2521
2522  /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2523  /// variables.
2524  void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2525                                  const std::vector<std::pair<llvm::WeakVH,
2526                                  llvm::Constant*> > &DtorsAndObjects);
2527
2528  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2529                                        const VarDecl *D,
2530                                        llvm::GlobalVariable *Addr,
2531                                        bool PerformInit);
2532
2533  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2534
2535  void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2536                                  const Expr *Exp);
2537
2538  void enterFullExpression(const ExprWithCleanups *E) {
2539    if (E->getNumObjects() == 0) return;
2540    enterNonTrivialFullExpression(E);
2541  }
2542  void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2543
2544  void EmitCXXThrowExpr(const CXXThrowExpr *E);
2545
2546  void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2547
2548  RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
2549
2550  //===--------------------------------------------------------------------===//
2551  //                         Annotations Emission
2552  //===--------------------------------------------------------------------===//
2553
2554  /// Emit an annotation call (intrinsic or builtin).
2555  llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2556                                  llvm::Value *AnnotatedVal,
2557                                  StringRef AnnotationStr,
2558                                  SourceLocation Location);
2559
2560  /// Emit local annotations for the local variable V, declared by D.
2561  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2562
2563  /// Emit field annotations for the given field & value. Returns the
2564  /// annotation result.
2565  llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2566
2567  //===--------------------------------------------------------------------===//
2568  //                             Internal Helpers
2569  //===--------------------------------------------------------------------===//
2570
2571  /// ContainsLabel - Return true if the statement contains a label in it.  If
2572  /// this statement is not executed normally, it not containing a label means
2573  /// that we can just remove the code.
2574  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2575
2576  /// containsBreak - Return true if the statement contains a break out of it.
2577  /// If the statement (recursively) contains a switch or loop with a break
2578  /// inside of it, this is fine.
2579  static bool containsBreak(const Stmt *S);
2580
2581  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2582  /// to a constant, or if it does but contains a label, return false.  If it
2583  /// constant folds return true and set the boolean result in Result.
2584  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2585
2586  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2587  /// to a constant, or if it does but contains a label, return false.  If it
2588  /// constant folds return true and set the folded value.
2589  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
2590
2591  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2592  /// if statement) to the specified blocks.  Based on the condition, this might
2593  /// try to simplify the codegen of the conditional based on the branch.
2594  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2595                            llvm::BasicBlock *FalseBlock);
2596
2597  /// \brief Emit a description of a type in a format suitable for passing to
2598  /// a runtime sanitizer handler.
2599  llvm::Constant *EmitCheckTypeDescriptor(QualType T);
2600
2601  /// \brief Convert a value into a format suitable for passing to a runtime
2602  /// sanitizer handler.
2603  llvm::Value *EmitCheckValue(llvm::Value *V);
2604
2605  /// \brief Emit a description of a source location in a format suitable for
2606  /// passing to a runtime sanitizer handler.
2607  llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
2608
2609  /// \brief Specify under what conditions this check can be recovered
2610  enum CheckRecoverableKind {
2611    /// Always terminate program execution if this check fails
2612    CRK_Unrecoverable,
2613    /// Check supports recovering, allows user to specify which
2614    CRK_Recoverable,
2615    /// Runtime conditionally aborts, always need to support recovery.
2616    CRK_AlwaysRecoverable
2617  };
2618
2619  /// \brief Create a basic block that will call a handler function in a
2620  /// sanitizer runtime with the provided arguments, and create a conditional
2621  /// branch to it.
2622  void EmitCheck(llvm::Value *Checked, StringRef CheckName,
2623                 ArrayRef<llvm::Constant *> StaticArgs,
2624                 ArrayRef<llvm::Value *> DynamicArgs,
2625                 CheckRecoverableKind Recoverable);
2626
2627  /// \brief Create a basic block that will call the trap intrinsic, and emit a
2628  /// conditional branch to it, for the -ftrapv checks.
2629  void EmitTrapCheck(llvm::Value *Checked);
2630
2631  /// EmitCallArg - Emit a single call argument.
2632  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2633
2634  /// EmitDelegateCallArg - We are performing a delegate call; that
2635  /// is, the current function is delegating to another one.  Produce
2636  /// a r-value suitable for passing the given parameter.
2637  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
2638
2639  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2640  /// point operation, expressed as the maximum relative error in ulp.
2641  void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2642
2643private:
2644  llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2645  void EmitReturnOfRValue(RValue RV, QualType Ty);
2646
2647  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2648  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2649  ///
2650  /// \param AI - The first function argument of the expansion.
2651  /// \return The argument following the last expanded function
2652  /// argument.
2653  llvm::Function::arg_iterator
2654  ExpandTypeFromArgs(QualType Ty, LValue Dst,
2655                     llvm::Function::arg_iterator AI);
2656
2657  /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2658  /// Ty, into individual arguments on the provided vector \arg Args. See
2659  /// ABIArgInfo::Expand.
2660  void ExpandTypeToArgs(QualType Ty, RValue Src,
2661                        SmallVector<llvm::Value*, 16> &Args,
2662                        llvm::FunctionType *IRFuncTy);
2663
2664  llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2665                            const Expr *InputExpr, std::string &ConstraintStr);
2666
2667  llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2668                                  LValue InputValue, QualType InputType,
2669                                  std::string &ConstraintStr);
2670
2671  /// EmitCallArgs - Emit call arguments for a function.
2672  /// The CallArgTypeInfo parameter is used for iterating over the known
2673  /// argument types of the function being called.
2674  template<typename T>
2675  void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2676                    CallExpr::const_arg_iterator ArgBeg,
2677                    CallExpr::const_arg_iterator ArgEnd) {
2678      CallExpr::const_arg_iterator Arg = ArgBeg;
2679
2680    // First, use the argument types that the type info knows about
2681    if (CallArgTypeInfo) {
2682      for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2683           E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2684        assert(Arg != ArgEnd && "Running over edge of argument list!");
2685        QualType ArgType = *I;
2686#ifndef NDEBUG
2687        QualType ActualArgType = Arg->getType();
2688        if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2689          QualType ActualBaseType =
2690            ActualArgType->getAs<PointerType>()->getPointeeType();
2691          QualType ArgBaseType =
2692            ArgType->getAs<PointerType>()->getPointeeType();
2693          if (ArgBaseType->isVariableArrayType()) {
2694            if (const VariableArrayType *VAT =
2695                getContext().getAsVariableArrayType(ActualBaseType)) {
2696              if (!VAT->getSizeExpr())
2697                ActualArgType = ArgType;
2698            }
2699          }
2700        }
2701        assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2702               getTypePtr() ==
2703               getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2704               "type mismatch in call argument!");
2705#endif
2706        EmitCallArg(Args, *Arg, ArgType);
2707      }
2708
2709      // Either we've emitted all the call args, or we have a call to a
2710      // variadic function.
2711      assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2712             "Extra arguments in non-variadic function!");
2713
2714    }
2715
2716    // If we still have any arguments, emit them using the type of the argument.
2717    for (; Arg != ArgEnd; ++Arg)
2718      EmitCallArg(Args, *Arg, Arg->getType());
2719  }
2720
2721  const TargetCodeGenInfo &getTargetHooks() const {
2722    return CGM.getTargetCodeGenInfo();
2723  }
2724
2725  void EmitDeclMetadata();
2726
2727  CodeGenModule::ByrefHelpers *
2728  buildByrefHelpers(llvm::StructType &byrefType,
2729                    const AutoVarEmission &emission);
2730
2731  void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
2732
2733  /// GetPointeeAlignment - Given an expression with a pointer type, emit the
2734  /// value and compute our best estimate of the alignment of the pointee.
2735  std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
2736};
2737
2738/// Helper class with most of the code for saving a value for a
2739/// conditional expression cleanup.
2740struct DominatingLLVMValue {
2741  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2742
2743  /// Answer whether the given value needs extra work to be saved.
2744  static bool needsSaving(llvm::Value *value) {
2745    // If it's not an instruction, we don't need to save.
2746    if (!isa<llvm::Instruction>(value)) return false;
2747
2748    // If it's an instruction in the entry block, we don't need to save.
2749    llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2750    return (block != &block->getParent()->getEntryBlock());
2751  }
2752
2753  /// Try to save the given value.
2754  static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2755    if (!needsSaving(value)) return saved_type(value, false);
2756
2757    // Otherwise we need an alloca.
2758    llvm::Value *alloca =
2759      CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2760    CGF.Builder.CreateStore(value, alloca);
2761
2762    return saved_type(alloca, true);
2763  }
2764
2765  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2766    if (!value.getInt()) return value.getPointer();
2767    return CGF.Builder.CreateLoad(value.getPointer());
2768  }
2769};
2770
2771/// A partial specialization of DominatingValue for llvm::Values that
2772/// might be llvm::Instructions.
2773template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2774  typedef T *type;
2775  static type restore(CodeGenFunction &CGF, saved_type value) {
2776    return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2777  }
2778};
2779
2780/// A specialization of DominatingValue for RValue.
2781template <> struct DominatingValue<RValue> {
2782  typedef RValue type;
2783  class saved_type {
2784    enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2785                AggregateAddress, ComplexAddress };
2786
2787    llvm::Value *Value;
2788    Kind K;
2789    saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2790
2791  public:
2792    static bool needsSaving(RValue value);
2793    static saved_type save(CodeGenFunction &CGF, RValue value);
2794    RValue restore(CodeGenFunction &CGF);
2795
2796    // implementations in CGExprCXX.cpp
2797  };
2798
2799  static bool needsSaving(type value) {
2800    return saved_type::needsSaving(value);
2801  }
2802  static saved_type save(CodeGenFunction &CGF, type value) {
2803    return saved_type::save(CGF, value);
2804  }
2805  static type restore(CodeGenFunction &CGF, saved_type value) {
2806    return value.restore(CGF);
2807  }
2808};
2809
2810}  // end namespace CodeGen
2811}  // end namespace clang
2812
2813#endif
2814