CodeGenFunction.h revision d26bc76c98006609002d9930f8840490e88ac5b5
1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the internal per-function state used for llvm translation.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15#define CLANG_CODEGEN_CODEGENFUNCTION_H
16
17#include "clang/AST/Type.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/Basic/ABI.h"
22#include "clang/Basic/TargetInfo.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/Support/ValueHandle.h"
26#include "CodeGenModule.h"
27#include "CGBuilder.h"
28#include "CGValue.h"
29
30namespace llvm {
31  class BasicBlock;
32  class LLVMContext;
33  class MDNode;
34  class Module;
35  class SwitchInst;
36  class Twine;
37  class Value;
38  class CallSite;
39}
40
41namespace clang {
42  class APValue;
43  class ASTContext;
44  class CXXDestructorDecl;
45  class CXXTryStmt;
46  class Decl;
47  class LabelDecl;
48  class EnumConstantDecl;
49  class FunctionDecl;
50  class FunctionProtoType;
51  class LabelStmt;
52  class ObjCContainerDecl;
53  class ObjCInterfaceDecl;
54  class ObjCIvarDecl;
55  class ObjCMethodDecl;
56  class ObjCImplementationDecl;
57  class ObjCPropertyImplDecl;
58  class TargetInfo;
59  class TargetCodeGenInfo;
60  class VarDecl;
61  class ObjCForCollectionStmt;
62  class ObjCAtTryStmt;
63  class ObjCAtThrowStmt;
64  class ObjCAtSynchronizedStmt;
65
66namespace CodeGen {
67  class CodeGenTypes;
68  class CGDebugInfo;
69  class CGFunctionInfo;
70  class CGRecordLayout;
71  class CGBlockInfo;
72  class CGCXXABI;
73  class BlockFlags;
74  class BlockFieldFlags;
75
76/// A branch fixup.  These are required when emitting a goto to a
77/// label which hasn't been emitted yet.  The goto is optimistically
78/// emitted as a branch to the basic block for the label, and (if it
79/// occurs in a scope with non-trivial cleanups) a fixup is added to
80/// the innermost cleanup.  When a (normal) cleanup is popped, any
81/// unresolved fixups in that scope are threaded through the cleanup.
82struct BranchFixup {
83  /// The block containing the terminator which needs to be modified
84  /// into a switch if this fixup is resolved into the current scope.
85  /// If null, LatestBranch points directly to the destination.
86  llvm::BasicBlock *OptimisticBranchBlock;
87
88  /// The ultimate destination of the branch.
89  ///
90  /// This can be set to null to indicate that this fixup was
91  /// successfully resolved.
92  llvm::BasicBlock *Destination;
93
94  /// The destination index value.
95  unsigned DestinationIndex;
96
97  /// The initial branch of the fixup.
98  llvm::BranchInst *InitialBranch;
99};
100
101template <class T> struct InvariantValue {
102  typedef T type;
103  typedef T saved_type;
104  static bool needsSaving(type value) { return false; }
105  static saved_type save(CodeGenFunction &CGF, type value) { return value; }
106  static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
107};
108
109/// A metaprogramming class for ensuring that a value will dominate an
110/// arbitrary position in a function.
111template <class T> struct DominatingValue : InvariantValue<T> {};
112
113template <class T, bool mightBeInstruction =
114            llvm::is_base_of<llvm::Value, T>::value &&
115            !llvm::is_base_of<llvm::Constant, T>::value &&
116            !llvm::is_base_of<llvm::BasicBlock, T>::value>
117struct DominatingPointer;
118template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
119// template <class T> struct DominatingPointer<T,true> at end of file
120
121template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
122
123enum CleanupKind {
124  EHCleanup = 0x1,
125  NormalCleanup = 0x2,
126  NormalAndEHCleanup = EHCleanup | NormalCleanup,
127
128  InactiveCleanup = 0x4,
129  InactiveEHCleanup = EHCleanup | InactiveCleanup,
130  InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
131  InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
132};
133
134/// A stack of scopes which respond to exceptions, including cleanups
135/// and catch blocks.
136class EHScopeStack {
137public:
138  /// A saved depth on the scope stack.  This is necessary because
139  /// pushing scopes onto the stack invalidates iterators.
140  class stable_iterator {
141    friend class EHScopeStack;
142
143    /// Offset from StartOfData to EndOfBuffer.
144    ptrdiff_t Size;
145
146    stable_iterator(ptrdiff_t Size) : Size(Size) {}
147
148  public:
149    static stable_iterator invalid() { return stable_iterator(-1); }
150    stable_iterator() : Size(-1) {}
151
152    bool isValid() const { return Size >= 0; }
153
154    /// Returns true if this scope encloses I.
155    /// Returns false if I is invalid.
156    /// This scope must be valid.
157    bool encloses(stable_iterator I) const { return Size <= I.Size; }
158
159    /// Returns true if this scope strictly encloses I: that is,
160    /// if it encloses I and is not I.
161    /// Returns false is I is invalid.
162    /// This scope must be valid.
163    bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
164
165    friend bool operator==(stable_iterator A, stable_iterator B) {
166      return A.Size == B.Size;
167    }
168    friend bool operator!=(stable_iterator A, stable_iterator B) {
169      return A.Size != B.Size;
170    }
171  };
172
173  /// Information for lazily generating a cleanup.  Subclasses must be
174  /// POD-like: cleanups will not be destructed, and they will be
175  /// allocated on the cleanup stack and freely copied and moved
176  /// around.
177  ///
178  /// Cleanup implementations should generally be declared in an
179  /// anonymous namespace.
180  class Cleanup {
181  public:
182    // Anchor the construction vtable.  We use the destructor because
183    // gcc gives an obnoxious warning if there are virtual methods
184    // with an accessible non-virtual destructor.  Unfortunately,
185    // declaring this destructor makes it non-trivial, but there
186    // doesn't seem to be any other way around this warning.
187    //
188    // This destructor will never be called.
189    virtual ~Cleanup();
190
191    /// Emit the cleanup.  For normal cleanups, this is run in the
192    /// same EH context as when the cleanup was pushed, i.e. the
193    /// immediately-enclosing context of the cleanup scope.  For
194    /// EH cleanups, this is run in a terminate context.
195    ///
196    // \param IsForEHCleanup true if this is for an EH cleanup, false
197    ///  if for a normal cleanup.
198    virtual void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) = 0;
199  };
200
201  /// UnconditionalCleanupN stores its N parameters and just passes
202  /// them to the real cleanup function.
203  template <class T, class A0>
204  class UnconditionalCleanup1 : public Cleanup {
205    A0 a0;
206  public:
207    UnconditionalCleanup1(A0 a0) : a0(a0) {}
208    void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
209      T::Emit(CGF, IsForEHCleanup, a0);
210    }
211  };
212
213  template <class T, class A0, class A1>
214  class UnconditionalCleanup2 : public Cleanup {
215    A0 a0; A1 a1;
216  public:
217    UnconditionalCleanup2(A0 a0, A1 a1) : a0(a0), a1(a1) {}
218    void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
219      T::Emit(CGF, IsForEHCleanup, a0, a1);
220    }
221  };
222
223  /// ConditionalCleanupN stores the saved form of its N parameters,
224  /// then restores them and performs the cleanup.
225  template <class T, class A0>
226  class ConditionalCleanup1 : public Cleanup {
227    typedef typename DominatingValue<A0>::saved_type A0_saved;
228    A0_saved a0_saved;
229
230    void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
231      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
232      T::Emit(CGF, IsForEHCleanup, a0);
233    }
234
235  public:
236    ConditionalCleanup1(A0_saved a0)
237      : a0_saved(a0) {}
238  };
239
240  template <class T, class A0, class A1>
241  class ConditionalCleanup2 : public Cleanup {
242    typedef typename DominatingValue<A0>::saved_type A0_saved;
243    typedef typename DominatingValue<A1>::saved_type A1_saved;
244    A0_saved a0_saved;
245    A1_saved a1_saved;
246
247    void Emit(CodeGenFunction &CGF, bool IsForEHCleanup) {
248      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
249      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
250      T::Emit(CGF, IsForEHCleanup, a0, a1);
251    }
252
253  public:
254    ConditionalCleanup2(A0_saved a0, A1_saved a1)
255      : a0_saved(a0), a1_saved(a1) {}
256  };
257
258private:
259  // The implementation for this class is in CGException.h and
260  // CGException.cpp; the definition is here because it's used as a
261  // member of CodeGenFunction.
262
263  /// The start of the scope-stack buffer, i.e. the allocated pointer
264  /// for the buffer.  All of these pointers are either simultaneously
265  /// null or simultaneously valid.
266  char *StartOfBuffer;
267
268  /// The end of the buffer.
269  char *EndOfBuffer;
270
271  /// The first valid entry in the buffer.
272  char *StartOfData;
273
274  /// The innermost normal cleanup on the stack.
275  stable_iterator InnermostNormalCleanup;
276
277  /// The innermost EH cleanup on the stack.
278  stable_iterator InnermostEHCleanup;
279
280  /// The number of catches on the stack.
281  unsigned CatchDepth;
282
283  /// The current EH destination index.  Reset to FirstCatchIndex
284  /// whenever the last EH cleanup is popped.
285  unsigned NextEHDestIndex;
286  enum { FirstEHDestIndex = 1 };
287
288  /// The current set of branch fixups.  A branch fixup is a jump to
289  /// an as-yet unemitted label, i.e. a label for which we don't yet
290  /// know the EH stack depth.  Whenever we pop a cleanup, we have
291  /// to thread all the current branch fixups through it.
292  ///
293  /// Fixups are recorded as the Use of the respective branch or
294  /// switch statement.  The use points to the final destination.
295  /// When popping out of a cleanup, these uses are threaded through
296  /// the cleanup and adjusted to point to the new cleanup.
297  ///
298  /// Note that branches are allowed to jump into protected scopes
299  /// in certain situations;  e.g. the following code is legal:
300  ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
301  ///     goto foo;
302  ///     A a;
303  ///    foo:
304  ///     bar();
305  llvm::SmallVector<BranchFixup, 8> BranchFixups;
306
307  char *allocate(size_t Size);
308
309  void *pushCleanup(CleanupKind K, size_t DataSize);
310
311public:
312  EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
313                   InnermostNormalCleanup(stable_end()),
314                   InnermostEHCleanup(stable_end()),
315                   CatchDepth(0), NextEHDestIndex(FirstEHDestIndex) {}
316  ~EHScopeStack() { delete[] StartOfBuffer; }
317
318  // Variadic templates would make this not terrible.
319
320  /// Push a lazily-created cleanup on the stack.
321  template <class T>
322  void pushCleanup(CleanupKind Kind) {
323    void *Buffer = pushCleanup(Kind, sizeof(T));
324    Cleanup *Obj = new(Buffer) T();
325    (void) Obj;
326  }
327
328  /// Push a lazily-created cleanup on the stack.
329  template <class T, class A0>
330  void pushCleanup(CleanupKind Kind, A0 a0) {
331    void *Buffer = pushCleanup(Kind, sizeof(T));
332    Cleanup *Obj = new(Buffer) T(a0);
333    (void) Obj;
334  }
335
336  /// Push a lazily-created cleanup on the stack.
337  template <class T, class A0, class A1>
338  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
339    void *Buffer = pushCleanup(Kind, sizeof(T));
340    Cleanup *Obj = new(Buffer) T(a0, a1);
341    (void) Obj;
342  }
343
344  /// Push a lazily-created cleanup on the stack.
345  template <class T, class A0, class A1, class A2>
346  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
347    void *Buffer = pushCleanup(Kind, sizeof(T));
348    Cleanup *Obj = new(Buffer) T(a0, a1, a2);
349    (void) Obj;
350  }
351
352  /// Push a lazily-created cleanup on the stack.
353  template <class T, class A0, class A1, class A2, class A3>
354  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
355    void *Buffer = pushCleanup(Kind, sizeof(T));
356    Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
357    (void) Obj;
358  }
359
360  /// Push a lazily-created cleanup on the stack.
361  template <class T, class A0, class A1, class A2, class A3, class A4>
362  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
363    void *Buffer = pushCleanup(Kind, sizeof(T));
364    Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
365    (void) Obj;
366  }
367
368  // Feel free to add more variants of the following:
369
370  /// Push a cleanup with non-constant storage requirements on the
371  /// stack.  The cleanup type must provide an additional static method:
372  ///   static size_t getExtraSize(size_t);
373  /// The argument to this method will be the value N, which will also
374  /// be passed as the first argument to the constructor.
375  ///
376  /// The data stored in the extra storage must obey the same
377  /// restrictions as normal cleanup member data.
378  ///
379  /// The pointer returned from this method is valid until the cleanup
380  /// stack is modified.
381  template <class T, class A0, class A1, class A2>
382  T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
383    void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
384    return new (Buffer) T(N, a0, a1, a2);
385  }
386
387  /// Pops a cleanup scope off the stack.  This should only be called
388  /// by CodeGenFunction::PopCleanupBlock.
389  void popCleanup();
390
391  /// Push a set of catch handlers on the stack.  The catch is
392  /// uninitialized and will need to have the given number of handlers
393  /// set on it.
394  class EHCatchScope *pushCatch(unsigned NumHandlers);
395
396  /// Pops a catch scope off the stack.
397  void popCatch();
398
399  /// Push an exceptions filter on the stack.
400  class EHFilterScope *pushFilter(unsigned NumFilters);
401
402  /// Pops an exceptions filter off the stack.
403  void popFilter();
404
405  /// Push a terminate handler on the stack.
406  void pushTerminate();
407
408  /// Pops a terminate handler off the stack.
409  void popTerminate();
410
411  /// Determines whether the exception-scopes stack is empty.
412  bool empty() const { return StartOfData == EndOfBuffer; }
413
414  bool requiresLandingPad() const {
415    return (CatchDepth || hasEHCleanups());
416  }
417
418  /// Determines whether there are any normal cleanups on the stack.
419  bool hasNormalCleanups() const {
420    return InnermostNormalCleanup != stable_end();
421  }
422
423  /// Returns the innermost normal cleanup on the stack, or
424  /// stable_end() if there are no normal cleanups.
425  stable_iterator getInnermostNormalCleanup() const {
426    return InnermostNormalCleanup;
427  }
428  stable_iterator getInnermostActiveNormalCleanup() const; // CGException.h
429
430  /// Determines whether there are any EH cleanups on the stack.
431  bool hasEHCleanups() const {
432    return InnermostEHCleanup != stable_end();
433  }
434
435  /// Returns the innermost EH cleanup on the stack, or stable_end()
436  /// if there are no EH cleanups.
437  stable_iterator getInnermostEHCleanup() const {
438    return InnermostEHCleanup;
439  }
440  stable_iterator getInnermostActiveEHCleanup() const; // CGException.h
441
442  /// An unstable reference to a scope-stack depth.  Invalidated by
443  /// pushes but not pops.
444  class iterator;
445
446  /// Returns an iterator pointing to the innermost EH scope.
447  iterator begin() const;
448
449  /// Returns an iterator pointing to the outermost EH scope.
450  iterator end() const;
451
452  /// Create a stable reference to the top of the EH stack.  The
453  /// returned reference is valid until that scope is popped off the
454  /// stack.
455  stable_iterator stable_begin() const {
456    return stable_iterator(EndOfBuffer - StartOfData);
457  }
458
459  /// Create a stable reference to the bottom of the EH stack.
460  static stable_iterator stable_end() {
461    return stable_iterator(0);
462  }
463
464  /// Translates an iterator into a stable_iterator.
465  stable_iterator stabilize(iterator it) const;
466
467  /// Finds the nearest cleanup enclosing the given iterator.
468  /// Returns stable_iterator::invalid() if there are no such cleanups.
469  stable_iterator getEnclosingEHCleanup(iterator it) const;
470
471  /// Turn a stable reference to a scope depth into a unstable pointer
472  /// to the EH stack.
473  iterator find(stable_iterator save) const;
474
475  /// Removes the cleanup pointed to by the given stable_iterator.
476  void removeCleanup(stable_iterator save);
477
478  /// Add a branch fixup to the current cleanup scope.
479  BranchFixup &addBranchFixup() {
480    assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
481    BranchFixups.push_back(BranchFixup());
482    return BranchFixups.back();
483  }
484
485  unsigned getNumBranchFixups() const { return BranchFixups.size(); }
486  BranchFixup &getBranchFixup(unsigned I) {
487    assert(I < getNumBranchFixups());
488    return BranchFixups[I];
489  }
490
491  /// Pops lazily-removed fixups from the end of the list.  This
492  /// should only be called by procedures which have just popped a
493  /// cleanup or resolved one or more fixups.
494  void popNullFixups();
495
496  /// Clears the branch-fixups list.  This should only be called by
497  /// ResolveAllBranchFixups.
498  void clearFixups() { BranchFixups.clear(); }
499
500  /// Gets the next EH destination index.
501  unsigned getNextEHDestIndex() { return NextEHDestIndex++; }
502};
503
504/// CodeGenFunction - This class organizes the per-function state that is used
505/// while generating LLVM code.
506class CodeGenFunction : public CodeGenTypeCache {
507  CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT
508  void operator=(const CodeGenFunction&);  // DO NOT IMPLEMENT
509
510  friend class CGCXXABI;
511public:
512  /// A jump destination is an abstract label, branching to which may
513  /// require a jump out through normal cleanups.
514  struct JumpDest {
515    JumpDest() : Block(0), ScopeDepth(), Index(0) {}
516    JumpDest(llvm::BasicBlock *Block,
517             EHScopeStack::stable_iterator Depth,
518             unsigned Index)
519      : Block(Block), ScopeDepth(Depth), Index(Index) {}
520
521    bool isValid() const { return Block != 0; }
522    llvm::BasicBlock *getBlock() const { return Block; }
523    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
524    unsigned getDestIndex() const { return Index; }
525
526  private:
527    llvm::BasicBlock *Block;
528    EHScopeStack::stable_iterator ScopeDepth;
529    unsigned Index;
530  };
531
532  /// An unwind destination is an abstract label, branching to which
533  /// may require a jump out through EH cleanups.
534  struct UnwindDest {
535    UnwindDest() : Block(0), ScopeDepth(), Index(0) {}
536    UnwindDest(llvm::BasicBlock *Block,
537               EHScopeStack::stable_iterator Depth,
538               unsigned Index)
539      : Block(Block), ScopeDepth(Depth), Index(Index) {}
540
541    bool isValid() const { return Block != 0; }
542    llvm::BasicBlock *getBlock() const { return Block; }
543    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
544    unsigned getDestIndex() const { return Index; }
545
546  private:
547    llvm::BasicBlock *Block;
548    EHScopeStack::stable_iterator ScopeDepth;
549    unsigned Index;
550  };
551
552  CodeGenModule &CGM;  // Per-module state.
553  const TargetInfo &Target;
554
555  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
556  CGBuilderTy Builder;
557
558  /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
559  /// This excludes BlockDecls.
560  const Decl *CurFuncDecl;
561  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
562  const Decl *CurCodeDecl;
563  const CGFunctionInfo *CurFnInfo;
564  QualType FnRetTy;
565  llvm::Function *CurFn;
566
567  /// CurGD - The GlobalDecl for the current function being compiled.
568  GlobalDecl CurGD;
569
570  /// ReturnBlock - Unified return block.
571  JumpDest ReturnBlock;
572
573  /// ReturnValue - The temporary alloca to hold the return value. This is null
574  /// iff the function has no return value.
575  llvm::Value *ReturnValue;
576
577  /// RethrowBlock - Unified rethrow block.
578  UnwindDest RethrowBlock;
579
580  /// AllocaInsertPoint - This is an instruction in the entry block before which
581  /// we prefer to insert allocas.
582  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
583
584  bool CatchUndefined;
585
586  const CodeGen::CGBlockInfo *BlockInfo;
587  llvm::Value *BlockPointer;
588
589  /// \brief A mapping from NRVO variables to the flags used to indicate
590  /// when the NRVO has been applied to this variable.
591  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
592
593  EHScopeStack EHStack;
594
595  /// i32s containing the indexes of the cleanup destinations.
596  llvm::AllocaInst *NormalCleanupDest;
597  llvm::AllocaInst *EHCleanupDest;
598
599  unsigned NextCleanupDestIndex;
600
601  /// The exception slot.  All landing pads write the current
602  /// exception pointer into this alloca.
603  llvm::Value *ExceptionSlot;
604
605  /// Emits a landing pad for the current EH stack.
606  llvm::BasicBlock *EmitLandingPad();
607
608  llvm::BasicBlock *getInvokeDestImpl();
609
610  /// Set up the last cleaup that was pushed as a conditional
611  /// full-expression cleanup.
612  void initFullExprCleanup();
613
614  template <class T>
615  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
616    return DominatingValue<T>::save(*this, value);
617  }
618
619public:
620  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
621  /// rethrows.
622  llvm::SmallVector<llvm::Value*, 8> ObjCEHValueStack;
623
624  // A struct holding information about a finally block's IR
625  // generation.  For now, doesn't actually hold anything.
626  struct FinallyInfo {
627  };
628
629  FinallyInfo EnterFinallyBlock(const Stmt *Stmt,
630                                llvm::Constant *BeginCatchFn,
631                                llvm::Constant *EndCatchFn,
632                                llvm::Constant *RethrowFn);
633  void ExitFinallyBlock(FinallyInfo &FinallyInfo);
634
635  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
636  /// current full-expression.  Safe against the possibility that
637  /// we're currently inside a conditionally-evaluated expression.
638  template <class T, class A0>
639  void pushFullExprCleanup(CleanupKind kind, A0 a0) {
640    // If we're not in a conditional branch, or if none of the
641    // arguments requires saving, then use the unconditional cleanup.
642    if (!isInConditionalBranch()) {
643      typedef EHScopeStack::UnconditionalCleanup1<T, A0> CleanupType;
644      return EHStack.pushCleanup<CleanupType>(kind, a0);
645    }
646
647    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
648
649    typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
650    EHStack.pushCleanup<CleanupType>(kind, a0_saved);
651    initFullExprCleanup();
652  }
653
654  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
655  /// current full-expression.  Safe against the possibility that
656  /// we're currently inside a conditionally-evaluated expression.
657  template <class T, class A0, class A1>
658  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
659    // If we're not in a conditional branch, or if none of the
660    // arguments requires saving, then use the unconditional cleanup.
661    if (!isInConditionalBranch()) {
662      typedef EHScopeStack::UnconditionalCleanup2<T, A0, A1> CleanupType;
663      return EHStack.pushCleanup<CleanupType>(kind, a0, a1);
664    }
665
666    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
667    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
668
669    typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
670    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
671    initFullExprCleanup();
672  }
673
674  /// PushDestructorCleanup - Push a cleanup to call the
675  /// complete-object destructor of an object of the given type at the
676  /// given address.  Does nothing if T is not a C++ class type with a
677  /// non-trivial destructor.
678  void PushDestructorCleanup(QualType T, llvm::Value *Addr);
679
680  /// PushDestructorCleanup - Push a cleanup to call the
681  /// complete-object variant of the given destructor on the object at
682  /// the given address.
683  void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
684                             llvm::Value *Addr);
685
686  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
687  /// process all branch fixups.
688  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
689
690  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
691  /// The block cannot be reactivated.  Pops it if it's the top of the
692  /// stack.
693  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup);
694
695  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
696  /// Cannot be used to resurrect a deactivated cleanup.
697  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup);
698
699  /// \brief Enters a new scope for capturing cleanups, all of which
700  /// will be executed once the scope is exited.
701  class RunCleanupsScope {
702    CodeGenFunction& CGF;
703    EHScopeStack::stable_iterator CleanupStackDepth;
704    bool OldDidCallStackSave;
705    bool PerformCleanup;
706
707    RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT
708    RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT
709
710  public:
711    /// \brief Enter a new cleanup scope.
712    explicit RunCleanupsScope(CodeGenFunction &CGF)
713      : CGF(CGF), PerformCleanup(true)
714    {
715      CleanupStackDepth = CGF.EHStack.stable_begin();
716      OldDidCallStackSave = CGF.DidCallStackSave;
717      CGF.DidCallStackSave = false;
718    }
719
720    /// \brief Exit this cleanup scope, emitting any accumulated
721    /// cleanups.
722    ~RunCleanupsScope() {
723      if (PerformCleanup) {
724        CGF.DidCallStackSave = OldDidCallStackSave;
725        CGF.PopCleanupBlocks(CleanupStackDepth);
726      }
727    }
728
729    /// \brief Determine whether this scope requires any cleanups.
730    bool requiresCleanups() const {
731      return CGF.EHStack.stable_begin() != CleanupStackDepth;
732    }
733
734    /// \brief Force the emission of cleanups now, instead of waiting
735    /// until this object is destroyed.
736    void ForceCleanup() {
737      assert(PerformCleanup && "Already forced cleanup");
738      CGF.DidCallStackSave = OldDidCallStackSave;
739      CGF.PopCleanupBlocks(CleanupStackDepth);
740      PerformCleanup = false;
741    }
742  };
743
744
745  /// PopCleanupBlocks - Takes the old cleanup stack size and emits
746  /// the cleanup blocks that have been added.
747  void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
748
749  void ResolveBranchFixups(llvm::BasicBlock *Target);
750
751  /// The given basic block lies in the current EH scope, but may be a
752  /// target of a potentially scope-crossing jump; get a stable handle
753  /// to which we can perform this jump later.
754  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
755    return JumpDest(Target,
756                    EHStack.getInnermostNormalCleanup(),
757                    NextCleanupDestIndex++);
758  }
759
760  /// The given basic block lies in the current EH scope, but may be a
761  /// target of a potentially scope-crossing jump; get a stable handle
762  /// to which we can perform this jump later.
763  JumpDest getJumpDestInCurrentScope(llvm::StringRef Name = llvm::StringRef()) {
764    return getJumpDestInCurrentScope(createBasicBlock(Name));
765  }
766
767  /// EmitBranchThroughCleanup - Emit a branch from the current insert
768  /// block through the normal cleanup handling code (if any) and then
769  /// on to \arg Dest.
770  void EmitBranchThroughCleanup(JumpDest Dest);
771
772  /// EmitBranchThroughEHCleanup - Emit a branch from the current
773  /// insert block through the EH cleanup handling code (if any) and
774  /// then on to \arg Dest.
775  void EmitBranchThroughEHCleanup(UnwindDest Dest);
776
777  /// getRethrowDest - Returns the unified outermost-scope rethrow
778  /// destination.
779  UnwindDest getRethrowDest();
780
781  /// An object to manage conditionally-evaluated expressions.
782  class ConditionalEvaluation {
783    llvm::BasicBlock *StartBB;
784
785  public:
786    ConditionalEvaluation(CodeGenFunction &CGF)
787      : StartBB(CGF.Builder.GetInsertBlock()) {}
788
789    void begin(CodeGenFunction &CGF) {
790      assert(CGF.OutermostConditional != this);
791      if (!CGF.OutermostConditional)
792        CGF.OutermostConditional = this;
793    }
794
795    void end(CodeGenFunction &CGF) {
796      assert(CGF.OutermostConditional != 0);
797      if (CGF.OutermostConditional == this)
798        CGF.OutermostConditional = 0;
799    }
800
801    /// Returns a block which will be executed prior to each
802    /// evaluation of the conditional code.
803    llvm::BasicBlock *getStartingBlock() const {
804      return StartBB;
805    }
806  };
807
808  /// isInConditionalBranch - Return true if we're currently emitting
809  /// one branch or the other of a conditional expression.
810  bool isInConditionalBranch() const { return OutermostConditional != 0; }
811
812  /// An RAII object to record that we're evaluating a statement
813  /// expression.
814  class StmtExprEvaluation {
815    CodeGenFunction &CGF;
816
817    /// We have to save the outermost conditional: cleanups in a
818    /// statement expression aren't conditional just because the
819    /// StmtExpr is.
820    ConditionalEvaluation *SavedOutermostConditional;
821
822  public:
823    StmtExprEvaluation(CodeGenFunction &CGF)
824      : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
825      CGF.OutermostConditional = 0;
826    }
827
828    ~StmtExprEvaluation() {
829      CGF.OutermostConditional = SavedOutermostConditional;
830      CGF.EnsureInsertPoint();
831    }
832  };
833
834  /// An object which temporarily prevents a value from being
835  /// destroyed by aggressive peephole optimizations that assume that
836  /// all uses of a value have been realized in the IR.
837  class PeepholeProtection {
838    llvm::Instruction *Inst;
839    friend class CodeGenFunction;
840
841  public:
842    PeepholeProtection() : Inst(0) {}
843  };
844
845  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
846  class OpaqueValueMapping {
847    CodeGenFunction &CGF;
848    const OpaqueValueExpr *OpaqueValue;
849    bool BoundLValue;
850    CodeGenFunction::PeepholeProtection Protection;
851
852  public:
853    static bool shouldBindAsLValue(const Expr *expr) {
854      return expr->isGLValue() || expr->getType()->isRecordType();
855    }
856
857    /// Build the opaque value mapping for the given conditional
858    /// operator if it's the GNU ?: extension.  This is a common
859    /// enough pattern that the convenience operator is really
860    /// helpful.
861    ///
862    OpaqueValueMapping(CodeGenFunction &CGF,
863                       const AbstractConditionalOperator *op) : CGF(CGF) {
864      if (isa<ConditionalOperator>(op)) {
865        OpaqueValue = 0;
866        BoundLValue = false;
867        return;
868      }
869
870      const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
871      init(e->getOpaqueValue(), e->getCommon());
872    }
873
874    OpaqueValueMapping(CodeGenFunction &CGF,
875                       const OpaqueValueExpr *opaqueValue,
876                       LValue lvalue)
877      : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(true) {
878      assert(opaqueValue && "no opaque value expression!");
879      assert(shouldBindAsLValue(opaqueValue));
880      initLValue(lvalue);
881    }
882
883    OpaqueValueMapping(CodeGenFunction &CGF,
884                       const OpaqueValueExpr *opaqueValue,
885                       RValue rvalue)
886      : CGF(CGF), OpaqueValue(opaqueValue), BoundLValue(false) {
887      assert(opaqueValue && "no opaque value expression!");
888      assert(!shouldBindAsLValue(opaqueValue));
889      initRValue(rvalue);
890    }
891
892    void pop() {
893      assert(OpaqueValue && "mapping already popped!");
894      popImpl();
895      OpaqueValue = 0;
896    }
897
898    ~OpaqueValueMapping() {
899      if (OpaqueValue) popImpl();
900    }
901
902  private:
903    void popImpl() {
904      if (BoundLValue)
905        CGF.OpaqueLValues.erase(OpaqueValue);
906      else {
907        CGF.OpaqueRValues.erase(OpaqueValue);
908        CGF.unprotectFromPeepholes(Protection);
909      }
910    }
911
912    void init(const OpaqueValueExpr *ov, const Expr *e) {
913      OpaqueValue = ov;
914      BoundLValue = shouldBindAsLValue(ov);
915      assert(BoundLValue == shouldBindAsLValue(e)
916             && "inconsistent expression value kinds!");
917      if (BoundLValue)
918        initLValue(CGF.EmitLValue(e));
919      else
920        initRValue(CGF.EmitAnyExpr(e));
921    }
922
923    void initLValue(const LValue &lv) {
924      CGF.OpaqueLValues.insert(std::make_pair(OpaqueValue, lv));
925    }
926
927    void initRValue(const RValue &rv) {
928      // Work around an extremely aggressive peephole optimization in
929      // EmitScalarConversion which assumes that all other uses of a
930      // value are extant.
931      Protection = CGF.protectFromPeepholes(rv);
932      CGF.OpaqueRValues.insert(std::make_pair(OpaqueValue, rv));
933    }
934  };
935
936  /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
937  /// number that holds the value.
938  unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
939
940  /// BuildBlockByrefAddress - Computes address location of the
941  /// variable which is declared as __block.
942  llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
943                                      const VarDecl *V);
944private:
945  CGDebugInfo *DebugInfo;
946  bool DisableDebugInfo;
947
948  /// IndirectBranch - The first time an indirect goto is seen we create a block
949  /// with an indirect branch.  Every time we see the address of a label taken,
950  /// we add the label to the indirect goto.  Every subsequent indirect goto is
951  /// codegen'd as a jump to the IndirectBranch's basic block.
952  llvm::IndirectBrInst *IndirectBranch;
953
954  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
955  /// decls.
956  typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
957  DeclMapTy LocalDeclMap;
958
959  /// LabelMap - This keeps track of the LLVM basic block for each C label.
960  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
961
962  // BreakContinueStack - This keeps track of where break and continue
963  // statements should jump to.
964  struct BreakContinue {
965    BreakContinue(JumpDest Break, JumpDest Continue)
966      : BreakBlock(Break), ContinueBlock(Continue) {}
967
968    JumpDest BreakBlock;
969    JumpDest ContinueBlock;
970  };
971  llvm::SmallVector<BreakContinue, 8> BreakContinueStack;
972
973  /// SwitchInsn - This is nearest current switch instruction. It is null if if
974  /// current context is not in a switch.
975  llvm::SwitchInst *SwitchInsn;
976
977  /// CaseRangeBlock - This block holds if condition check for last case
978  /// statement range in current switch instruction.
979  llvm::BasicBlock *CaseRangeBlock;
980
981  /// OpaqueLValues - Keeps track of the current set of opaque value
982  /// expressions.
983  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
984  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
985
986  // VLASizeMap - This keeps track of the associated size for each VLA type.
987  // We track this by the size expression rather than the type itself because
988  // in certain situations, like a const qualifier applied to an VLA typedef,
989  // multiple VLA types can share the same size expression.
990  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
991  // enter/leave scopes.
992  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
993
994  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
995  /// calling llvm.stacksave for multiple VLAs in the same scope.
996  bool DidCallStackSave;
997
998  /// A block containing a single 'unreachable' instruction.  Created
999  /// lazily by getUnreachableBlock().
1000  llvm::BasicBlock *UnreachableBlock;
1001
1002  /// CXXThisDecl - When generating code for a C++ member function,
1003  /// this will hold the implicit 'this' declaration.
1004  ImplicitParamDecl *CXXThisDecl;
1005  llvm::Value *CXXThisValue;
1006
1007  /// CXXVTTDecl - When generating code for a base object constructor or
1008  /// base object destructor with virtual bases, this will hold the implicit
1009  /// VTT parameter.
1010  ImplicitParamDecl *CXXVTTDecl;
1011  llvm::Value *CXXVTTValue;
1012
1013  /// OutermostConditional - Points to the outermost active
1014  /// conditional control.  This is used so that we know if a
1015  /// temporary should be destroyed conditionally.
1016  ConditionalEvaluation *OutermostConditional;
1017
1018
1019  /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1020  /// type as well as the field number that contains the actual data.
1021  llvm::DenseMap<const ValueDecl *, std::pair<const llvm::Type *,
1022                                              unsigned> > ByRefValueInfo;
1023
1024  llvm::BasicBlock *TerminateLandingPad;
1025  llvm::BasicBlock *TerminateHandler;
1026  llvm::BasicBlock *TrapBB;
1027
1028public:
1029  CodeGenFunction(CodeGenModule &cgm);
1030
1031  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1032  ASTContext &getContext() const;
1033  CGDebugInfo *getDebugInfo() {
1034    if (DisableDebugInfo)
1035      return NULL;
1036    return DebugInfo;
1037  }
1038  void disableDebugInfo() { DisableDebugInfo = true; }
1039  void enableDebugInfo() { DisableDebugInfo = false; }
1040
1041
1042  const LangOptions &getLangOptions() const { return CGM.getLangOptions(); }
1043
1044  /// Returns a pointer to the function's exception object slot, which
1045  /// is assigned in every landing pad.
1046  llvm::Value *getExceptionSlot();
1047
1048  llvm::Value *getNormalCleanupDestSlot();
1049  llvm::Value *getEHCleanupDestSlot();
1050
1051  llvm::BasicBlock *getUnreachableBlock() {
1052    if (!UnreachableBlock) {
1053      UnreachableBlock = createBasicBlock("unreachable");
1054      new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1055    }
1056    return UnreachableBlock;
1057  }
1058
1059  llvm::BasicBlock *getInvokeDest() {
1060    if (!EHStack.requiresLandingPad()) return 0;
1061    return getInvokeDestImpl();
1062  }
1063
1064  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1065
1066  //===--------------------------------------------------------------------===//
1067  //                                  Objective-C
1068  //===--------------------------------------------------------------------===//
1069
1070  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1071
1072  void StartObjCMethod(const ObjCMethodDecl *MD,
1073                       const ObjCContainerDecl *CD);
1074
1075  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1076  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1077                          const ObjCPropertyImplDecl *PID);
1078  void GenerateObjCGetterBody(ObjCIvarDecl *Ivar, bool IsAtomic, bool IsStrong);
1079  void GenerateObjCAtomicSetterBody(ObjCMethodDecl *OMD,
1080                                    ObjCIvarDecl *Ivar);
1081
1082  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1083                                  ObjCMethodDecl *MD, bool ctor);
1084
1085  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1086  /// for the given property.
1087  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1088                          const ObjCPropertyImplDecl *PID);
1089  bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1090  bool IvarTypeWithAggrGCObjects(QualType Ty);
1091
1092  //===--------------------------------------------------------------------===//
1093  //                                  Block Bits
1094  //===--------------------------------------------------------------------===//
1095
1096  llvm::Value *EmitBlockLiteral(const BlockExpr *);
1097  llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1098                                           const CGBlockInfo &Info,
1099                                           const llvm::StructType *,
1100                                           llvm::Constant *BlockVarLayout);
1101
1102  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1103                                        const CGBlockInfo &Info,
1104                                        const Decl *OuterFuncDecl,
1105                                        const DeclMapTy &ldm);
1106
1107  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1108  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1109
1110  llvm::Constant *GeneratebyrefCopyHelperFunction(const llvm::Type *,
1111                                                  BlockFieldFlags flags,
1112                                                  const VarDecl *BD);
1113  llvm::Constant *GeneratebyrefDestroyHelperFunction(const llvm::Type *T,
1114                                                     BlockFieldFlags flags,
1115                                                     const VarDecl *BD);
1116
1117  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1118
1119  llvm::Value *LoadBlockStruct() {
1120    assert(BlockPointer && "no block pointer set!");
1121    return BlockPointer;
1122  }
1123
1124  void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1125  void AllocateBlockDecl(const BlockDeclRefExpr *E);
1126  llvm::Value *GetAddrOfBlockDecl(const BlockDeclRefExpr *E) {
1127    return GetAddrOfBlockDecl(E->getDecl(), E->isByRef());
1128  }
1129  llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1130  const llvm::Type *BuildByRefType(const VarDecl *var);
1131
1132  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1133                    const CGFunctionInfo &FnInfo);
1134  void StartFunction(GlobalDecl GD, QualType RetTy,
1135                     llvm::Function *Fn,
1136                     const CGFunctionInfo &FnInfo,
1137                     const FunctionArgList &Args,
1138                     SourceLocation StartLoc);
1139
1140  void EmitConstructorBody(FunctionArgList &Args);
1141  void EmitDestructorBody(FunctionArgList &Args);
1142  void EmitFunctionBody(FunctionArgList &Args);
1143
1144  /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1145  /// emission when possible.
1146  void EmitReturnBlock();
1147
1148  /// FinishFunction - Complete IR generation of the current function. It is
1149  /// legal to call this function even if there is no current insertion point.
1150  void FinishFunction(SourceLocation EndLoc=SourceLocation());
1151
1152  /// GenerateThunk - Generate a thunk for the given method.
1153  void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1154                     GlobalDecl GD, const ThunkInfo &Thunk);
1155
1156  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1157                        FunctionArgList &Args);
1158
1159  /// InitializeVTablePointer - Initialize the vtable pointer of the given
1160  /// subobject.
1161  ///
1162  void InitializeVTablePointer(BaseSubobject Base,
1163                               const CXXRecordDecl *NearestVBase,
1164                               uint64_t OffsetFromNearestVBase,
1165                               llvm::Constant *VTable,
1166                               const CXXRecordDecl *VTableClass);
1167
1168  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1169  void InitializeVTablePointers(BaseSubobject Base,
1170                                const CXXRecordDecl *NearestVBase,
1171                                uint64_t OffsetFromNearestVBase,
1172                                bool BaseIsNonVirtualPrimaryBase,
1173                                llvm::Constant *VTable,
1174                                const CXXRecordDecl *VTableClass,
1175                                VisitedVirtualBasesSetTy& VBases);
1176
1177  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1178
1179  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1180  /// to by This.
1181  llvm::Value *GetVTablePtr(llvm::Value *This, const llvm::Type *Ty);
1182
1183  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1184  /// given phase of destruction for a destructor.  The end result
1185  /// should call destructors on members and base classes in reverse
1186  /// order of their construction.
1187  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1188
1189  /// ShouldInstrumentFunction - Return true if the current function should be
1190  /// instrumented with __cyg_profile_func_* calls
1191  bool ShouldInstrumentFunction();
1192
1193  /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1194  /// instrumentation function with the current function and the call site, if
1195  /// function instrumentation is enabled.
1196  void EmitFunctionInstrumentation(const char *Fn);
1197
1198  /// EmitMCountInstrumentation - Emit call to .mcount.
1199  void EmitMCountInstrumentation();
1200
1201  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1202  /// arguments for the given function. This is also responsible for naming the
1203  /// LLVM function arguments.
1204  void EmitFunctionProlog(const CGFunctionInfo &FI,
1205                          llvm::Function *Fn,
1206                          const FunctionArgList &Args);
1207
1208  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1209  /// given temporary.
1210  void EmitFunctionEpilog(const CGFunctionInfo &FI);
1211
1212  /// EmitStartEHSpec - Emit the start of the exception spec.
1213  void EmitStartEHSpec(const Decl *D);
1214
1215  /// EmitEndEHSpec - Emit the end of the exception spec.
1216  void EmitEndEHSpec(const Decl *D);
1217
1218  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1219  llvm::BasicBlock *getTerminateLandingPad();
1220
1221  /// getTerminateHandler - Return a handler (not a landing pad, just
1222  /// a catch handler) that just calls terminate.  This is used when
1223  /// a terminate scope encloses a try.
1224  llvm::BasicBlock *getTerminateHandler();
1225
1226  const llvm::Type *ConvertTypeForMem(QualType T);
1227  const llvm::Type *ConvertType(QualType T);
1228  const llvm::Type *ConvertType(const TypeDecl *T) {
1229    return ConvertType(getContext().getTypeDeclType(T));
1230  }
1231
1232  /// LoadObjCSelf - Load the value of self. This function is only valid while
1233  /// generating code for an Objective-C method.
1234  llvm::Value *LoadObjCSelf();
1235
1236  /// TypeOfSelfObject - Return type of object that this self represents.
1237  QualType TypeOfSelfObject();
1238
1239  /// hasAggregateLLVMType - Return true if the specified AST type will map into
1240  /// an aggregate LLVM type or is void.
1241  static bool hasAggregateLLVMType(QualType T);
1242
1243  /// createBasicBlock - Create an LLVM basic block.
1244  llvm::BasicBlock *createBasicBlock(llvm::StringRef name = "",
1245                                     llvm::Function *parent = 0,
1246                                     llvm::BasicBlock *before = 0) {
1247#ifdef NDEBUG
1248    return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1249#else
1250    return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1251#endif
1252  }
1253
1254  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1255  /// label maps to.
1256  JumpDest getJumpDestForLabel(const LabelDecl *S);
1257
1258  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1259  /// another basic block, simplify it. This assumes that no other code could
1260  /// potentially reference the basic block.
1261  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1262
1263  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1264  /// adding a fall-through branch from the current insert block if
1265  /// necessary. It is legal to call this function even if there is no current
1266  /// insertion point.
1267  ///
1268  /// IsFinished - If true, indicates that the caller has finished emitting
1269  /// branches to the given block and does not expect to emit code into it. This
1270  /// means the block can be ignored if it is unreachable.
1271  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1272
1273  /// EmitBranch - Emit a branch to the specified basic block from the current
1274  /// insert block, taking care to avoid creation of branches from dummy
1275  /// blocks. It is legal to call this function even if there is no current
1276  /// insertion point.
1277  ///
1278  /// This function clears the current insertion point. The caller should follow
1279  /// calls to this function with calls to Emit*Block prior to generation new
1280  /// code.
1281  void EmitBranch(llvm::BasicBlock *Block);
1282
1283  /// HaveInsertPoint - True if an insertion point is defined. If not, this
1284  /// indicates that the current code being emitted is unreachable.
1285  bool HaveInsertPoint() const {
1286    return Builder.GetInsertBlock() != 0;
1287  }
1288
1289  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1290  /// emitted IR has a place to go. Note that by definition, if this function
1291  /// creates a block then that block is unreachable; callers may do better to
1292  /// detect when no insertion point is defined and simply skip IR generation.
1293  void EnsureInsertPoint() {
1294    if (!HaveInsertPoint())
1295      EmitBlock(createBasicBlock());
1296  }
1297
1298  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1299  /// specified stmt yet.
1300  void ErrorUnsupported(const Stmt *S, const char *Type,
1301                        bool OmitOnError=false);
1302
1303  //===--------------------------------------------------------------------===//
1304  //                                  Helpers
1305  //===--------------------------------------------------------------------===//
1306
1307  LValue MakeAddrLValue(llvm::Value *V, QualType T, unsigned Alignment = 0) {
1308    return LValue::MakeAddr(V, T, Alignment, getContext(),
1309                            CGM.getTBAAInfo(T));
1310  }
1311
1312  /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1313  /// block. The caller is responsible for setting an appropriate alignment on
1314  /// the alloca.
1315  llvm::AllocaInst *CreateTempAlloca(const llvm::Type *Ty,
1316                                     const llvm::Twine &Name = "tmp");
1317
1318  /// InitTempAlloca - Provide an initial value for the given alloca.
1319  void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1320
1321  /// CreateIRTemp - Create a temporary IR object of the given type, with
1322  /// appropriate alignment. This routine should only be used when an temporary
1323  /// value needs to be stored into an alloca (for example, to avoid explicit
1324  /// PHI construction), but the type is the IR type, not the type appropriate
1325  /// for storing in memory.
1326  llvm::AllocaInst *CreateIRTemp(QualType T, const llvm::Twine &Name = "tmp");
1327
1328  /// CreateMemTemp - Create a temporary memory object of the given type, with
1329  /// appropriate alignment.
1330  llvm::AllocaInst *CreateMemTemp(QualType T, const llvm::Twine &Name = "tmp");
1331
1332  /// CreateAggTemp - Create a temporary memory object for the given
1333  /// aggregate type.
1334  AggValueSlot CreateAggTemp(QualType T, const llvm::Twine &Name = "tmp") {
1335    return AggValueSlot::forAddr(CreateMemTemp(T, Name), false, false);
1336  }
1337
1338  /// Emit a cast to void* in the appropriate address space.
1339  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1340
1341  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1342  /// expression and compare the result against zero, returning an Int1Ty value.
1343  llvm::Value *EvaluateExprAsBool(const Expr *E);
1344
1345  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1346  void EmitIgnoredExpr(const Expr *E);
1347
1348  /// EmitAnyExpr - Emit code to compute the specified expression which can have
1349  /// any type.  The result is returned as an RValue struct.  If this is an
1350  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1351  /// the result should be returned.
1352  ///
1353  /// \param IgnoreResult - True if the resulting value isn't used.
1354  RValue EmitAnyExpr(const Expr *E,
1355                     AggValueSlot AggSlot = AggValueSlot::ignored(),
1356                     bool IgnoreResult = false);
1357
1358  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1359  // or the value of the expression, depending on how va_list is defined.
1360  llvm::Value *EmitVAListRef(const Expr *E);
1361
1362  /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1363  /// always be accessible even if no aggregate location is provided.
1364  RValue EmitAnyExprToTemp(const Expr *E);
1365
1366  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1367  /// arbitrary expression into the given memory location.
1368  void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1369                        bool IsLocationVolatile,
1370                        bool IsInitializer);
1371
1372  /// EmitExprAsInit - Emits the code necessary to initialize a
1373  /// location in memory with the given initializer.
1374  void EmitExprAsInit(const Expr *init, const VarDecl *var,
1375                      llvm::Value *loc, CharUnits alignment,
1376                      bool capturedByInit);
1377
1378  /// EmitAggregateCopy - Emit an aggrate copy.
1379  ///
1380  /// \param isVolatile - True iff either the source or the destination is
1381  /// volatile.
1382  void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1383                         QualType EltTy, bool isVolatile=false);
1384
1385  /// StartBlock - Start new block named N. If insert block is a dummy block
1386  /// then reuse it.
1387  void StartBlock(const char *N);
1388
1389  /// GetAddrOfStaticLocalVar - Return the address of a static local variable.
1390  llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) {
1391    return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
1392  }
1393
1394  /// GetAddrOfLocalVar - Return the address of a local variable.
1395  llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1396    llvm::Value *Res = LocalDeclMap[VD];
1397    assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1398    return Res;
1399  }
1400
1401  /// getOpaqueLValueMapping - Given an opaque value expression (which
1402  /// must be mapped to an l-value), return its mapping.
1403  const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1404    assert(OpaqueValueMapping::shouldBindAsLValue(e));
1405
1406    llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1407      it = OpaqueLValues.find(e);
1408    assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1409    return it->second;
1410  }
1411
1412  /// getOpaqueRValueMapping - Given an opaque value expression (which
1413  /// must be mapped to an r-value), return its mapping.
1414  const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1415    assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1416
1417    llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1418      it = OpaqueRValues.find(e);
1419    assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1420    return it->second;
1421  }
1422
1423  /// getAccessedFieldNo - Given an encoded value and a result number, return
1424  /// the input field number being accessed.
1425  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1426
1427  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1428  llvm::BasicBlock *GetIndirectGotoBlock();
1429
1430  /// EmitNullInitialization - Generate code to set a value of the given type to
1431  /// null, If the type contains data member pointers, they will be initialized
1432  /// to -1 in accordance with the Itanium C++ ABI.
1433  void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1434
1435  // EmitVAArg - Generate code to get an argument from the passed in pointer
1436  // and update it accordingly. The return value is a pointer to the argument.
1437  // FIXME: We should be able to get rid of this method and use the va_arg
1438  // instruction in LLVM instead once it works well enough.
1439  llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1440
1441  /// EmitVLASize - Generate code for any VLA size expressions that might occur
1442  /// in a variably modified type. If Ty is a VLA, will return the value that
1443  /// corresponds to the size in bytes of the VLA type. Will return 0 otherwise.
1444  ///
1445  /// This function can be called with a null (unreachable) insert point.
1446  llvm::Value *EmitVLASize(QualType Ty);
1447
1448  // GetVLASize - Returns an LLVM value that corresponds to the size in bytes
1449  // of a variable length array type.
1450  llvm::Value *GetVLASize(const VariableArrayType *);
1451
1452  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1453  /// generating code for an C++ member function.
1454  llvm::Value *LoadCXXThis() {
1455    assert(CXXThisValue && "no 'this' value for this function");
1456    return CXXThisValue;
1457  }
1458
1459  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1460  /// virtual bases.
1461  llvm::Value *LoadCXXVTT() {
1462    assert(CXXVTTValue && "no VTT value for this function");
1463    return CXXVTTValue;
1464  }
1465
1466  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1467  /// complete class to the given direct base.
1468  llvm::Value *
1469  GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1470                                        const CXXRecordDecl *Derived,
1471                                        const CXXRecordDecl *Base,
1472                                        bool BaseIsVirtual);
1473
1474  /// GetAddressOfBaseClass - This function will add the necessary delta to the
1475  /// load of 'this' and returns address of the base class.
1476  llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1477                                     const CXXRecordDecl *Derived,
1478                                     CastExpr::path_const_iterator PathBegin,
1479                                     CastExpr::path_const_iterator PathEnd,
1480                                     bool NullCheckValue);
1481
1482  llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1483                                        const CXXRecordDecl *Derived,
1484                                        CastExpr::path_const_iterator PathBegin,
1485                                        CastExpr::path_const_iterator PathEnd,
1486                                        bool NullCheckValue);
1487
1488  llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
1489                                         const CXXRecordDecl *ClassDecl,
1490                                         const CXXRecordDecl *BaseClassDecl);
1491
1492  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1493                                      CXXCtorType CtorType,
1494                                      const FunctionArgList &Args);
1495  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1496                              bool ForVirtualBase, llvm::Value *This,
1497                              CallExpr::const_arg_iterator ArgBeg,
1498                              CallExpr::const_arg_iterator ArgEnd);
1499
1500  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1501                              llvm::Value *This, llvm::Value *Src,
1502                              CallExpr::const_arg_iterator ArgBeg,
1503                              CallExpr::const_arg_iterator ArgEnd);
1504
1505  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1506                                  const ConstantArrayType *ArrayTy,
1507                                  llvm::Value *ArrayPtr,
1508                                  CallExpr::const_arg_iterator ArgBeg,
1509                                  CallExpr::const_arg_iterator ArgEnd,
1510                                  bool ZeroInitialization = false);
1511
1512  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1513                                  llvm::Value *NumElements,
1514                                  llvm::Value *ArrayPtr,
1515                                  CallExpr::const_arg_iterator ArgBeg,
1516                                  CallExpr::const_arg_iterator ArgEnd,
1517                                  bool ZeroInitialization = false);
1518
1519  void EmitCXXAggrDestructorCall(const CXXDestructorDecl *D,
1520                                 const ArrayType *Array,
1521                                 llvm::Value *This);
1522
1523  void EmitCXXAggrDestructorCall(const CXXDestructorDecl *D,
1524                                 llvm::Value *NumElements,
1525                                 llvm::Value *This);
1526
1527  llvm::Function *GenerateCXXAggrDestructorHelper(const CXXDestructorDecl *D,
1528                                                  const ArrayType *Array,
1529                                                  llvm::Value *This);
1530
1531  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1532                             bool ForVirtualBase, llvm::Value *This);
1533
1534  void EmitNewArrayInitializer(const CXXNewExpr *E, llvm::Value *NewPtr,
1535                               llvm::Value *NumElements);
1536
1537  void EmitCXXTemporary(const CXXTemporary *Temporary, llvm::Value *Ptr);
1538
1539  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1540  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1541
1542  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1543                      QualType DeleteTy);
1544
1545  llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1546  llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1547
1548  void EmitCheck(llvm::Value *, unsigned Size);
1549
1550  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1551                                       bool isInc, bool isPre);
1552  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1553                                         bool isInc, bool isPre);
1554  //===--------------------------------------------------------------------===//
1555  //                            Declaration Emission
1556  //===--------------------------------------------------------------------===//
1557
1558  /// EmitDecl - Emit a declaration.
1559  ///
1560  /// This function can be called with a null (unreachable) insert point.
1561  void EmitDecl(const Decl &D);
1562
1563  /// EmitVarDecl - Emit a local variable declaration.
1564  ///
1565  /// This function can be called with a null (unreachable) insert point.
1566  void EmitVarDecl(const VarDecl &D);
1567
1568  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1569                             llvm::Value *Address);
1570
1571  /// EmitAutoVarDecl - Emit an auto variable declaration.
1572  ///
1573  /// This function can be called with a null (unreachable) insert point.
1574  void EmitAutoVarDecl(const VarDecl &D);
1575
1576  class AutoVarEmission {
1577    friend class CodeGenFunction;
1578
1579    const VarDecl *Variable;
1580
1581    /// The alignment of the variable.
1582    CharUnits Alignment;
1583
1584    /// The address of the alloca.  Null if the variable was emitted
1585    /// as a global constant.
1586    llvm::Value *Address;
1587
1588    llvm::Value *NRVOFlag;
1589
1590    /// True if the variable is a __block variable.
1591    bool IsByRef;
1592
1593    /// True if the variable is of aggregate type and has a constant
1594    /// initializer.
1595    bool IsConstantAggregate;
1596
1597    struct Invalid {};
1598    AutoVarEmission(Invalid) : Variable(0) {}
1599
1600    AutoVarEmission(const VarDecl &variable)
1601      : Variable(&variable), Address(0), NRVOFlag(0),
1602        IsByRef(false), IsConstantAggregate(false) {}
1603
1604    bool wasEmittedAsGlobal() const { return Address == 0; }
1605
1606  public:
1607    static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1608
1609    /// Returns the address of the object within this declaration.
1610    /// Note that this does not chase the forwarding pointer for
1611    /// __block decls.
1612    llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1613      if (!IsByRef) return Address;
1614
1615      return CGF.Builder.CreateStructGEP(Address,
1616                                         CGF.getByRefValueLLVMField(Variable),
1617                                         Variable->getNameAsString());
1618    }
1619  };
1620  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1621  void EmitAutoVarInit(const AutoVarEmission &emission);
1622  void EmitAutoVarCleanups(const AutoVarEmission &emission);
1623
1624  void EmitStaticVarDecl(const VarDecl &D,
1625                         llvm::GlobalValue::LinkageTypes Linkage);
1626
1627  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1628  void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
1629
1630  /// protectFromPeepholes - Protect a value that we're intending to
1631  /// store to the side, but which will probably be used later, from
1632  /// aggressive peepholing optimizations that might delete it.
1633  ///
1634  /// Pass the result to unprotectFromPeepholes to declare that
1635  /// protection is no longer required.
1636  ///
1637  /// There's no particular reason why this shouldn't apply to
1638  /// l-values, it's just that no existing peepholes work on pointers.
1639  PeepholeProtection protectFromPeepholes(RValue rvalue);
1640  void unprotectFromPeepholes(PeepholeProtection protection);
1641
1642  //===--------------------------------------------------------------------===//
1643  //                             Statement Emission
1644  //===--------------------------------------------------------------------===//
1645
1646  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1647  void EmitStopPoint(const Stmt *S);
1648
1649  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1650  /// this function even if there is no current insertion point.
1651  ///
1652  /// This function may clear the current insertion point; callers should use
1653  /// EnsureInsertPoint if they wish to subsequently generate code without first
1654  /// calling EmitBlock, EmitBranch, or EmitStmt.
1655  void EmitStmt(const Stmt *S);
1656
1657  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1658  /// necessarily require an insertion point or debug information; typically
1659  /// because the statement amounts to a jump or a container of other
1660  /// statements.
1661  ///
1662  /// \return True if the statement was handled.
1663  bool EmitSimpleStmt(const Stmt *S);
1664
1665  RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1666                          AggValueSlot AVS = AggValueSlot::ignored());
1667
1668  /// EmitLabel - Emit the block for the given label. It is legal to call this
1669  /// function even if there is no current insertion point.
1670  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1671
1672  void EmitLabelStmt(const LabelStmt &S);
1673  void EmitGotoStmt(const GotoStmt &S);
1674  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1675  void EmitIfStmt(const IfStmt &S);
1676  void EmitWhileStmt(const WhileStmt &S);
1677  void EmitDoStmt(const DoStmt &S);
1678  void EmitForStmt(const ForStmt &S);
1679  void EmitReturnStmt(const ReturnStmt &S);
1680  void EmitDeclStmt(const DeclStmt &S);
1681  void EmitBreakStmt(const BreakStmt &S);
1682  void EmitContinueStmt(const ContinueStmt &S);
1683  void EmitSwitchStmt(const SwitchStmt &S);
1684  void EmitDefaultStmt(const DefaultStmt &S);
1685  void EmitCaseStmt(const CaseStmt &S);
1686  void EmitCaseStmtRange(const CaseStmt &S);
1687  void EmitAsmStmt(const AsmStmt &S);
1688
1689  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1690  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1691  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1692  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1693
1694  llvm::Constant *getUnwindResumeOrRethrowFn();
1695  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1696  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1697
1698  void EmitCXXTryStmt(const CXXTryStmt &S);
1699
1700  //===--------------------------------------------------------------------===//
1701  //                         LValue Expression Emission
1702  //===--------------------------------------------------------------------===//
1703
1704  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
1705  RValue GetUndefRValue(QualType Ty);
1706
1707  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
1708  /// and issue an ErrorUnsupported style diagnostic (using the
1709  /// provided Name).
1710  RValue EmitUnsupportedRValue(const Expr *E,
1711                               const char *Name);
1712
1713  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
1714  /// an ErrorUnsupported style diagnostic (using the provided Name).
1715  LValue EmitUnsupportedLValue(const Expr *E,
1716                               const char *Name);
1717
1718  /// EmitLValue - Emit code to compute a designator that specifies the location
1719  /// of the expression.
1720  ///
1721  /// This can return one of two things: a simple address or a bitfield
1722  /// reference.  In either case, the LLVM Value* in the LValue structure is
1723  /// guaranteed to be an LLVM pointer type.
1724  ///
1725  /// If this returns a bitfield reference, nothing about the pointee type of
1726  /// the LLVM value is known: For example, it may not be a pointer to an
1727  /// integer.
1728  ///
1729  /// If this returns a normal address, and if the lvalue's C type is fixed
1730  /// size, this method guarantees that the returned pointer type will point to
1731  /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
1732  /// variable length type, this is not possible.
1733  ///
1734  LValue EmitLValue(const Expr *E);
1735
1736  /// EmitCheckedLValue - Same as EmitLValue but additionally we generate
1737  /// checking code to guard against undefined behavior.  This is only
1738  /// suitable when we know that the address will be used to access the
1739  /// object.
1740  LValue EmitCheckedLValue(const Expr *E);
1741
1742  /// EmitToMemory - Change a scalar value from its value
1743  /// representation to its in-memory representation.
1744  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
1745
1746  /// EmitFromMemory - Change a scalar value from its memory
1747  /// representation to its value representation.
1748  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
1749
1750  /// EmitLoadOfScalar - Load a scalar value from an address, taking
1751  /// care to appropriately convert from the memory representation to
1752  /// the LLVM value representation.
1753  llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1754                                unsigned Alignment, QualType Ty,
1755                                llvm::MDNode *TBAAInfo = 0);
1756
1757  /// EmitStoreOfScalar - Store a scalar value to an address, taking
1758  /// care to appropriately convert from the memory representation to
1759  /// the LLVM value representation.
1760  void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1761                         bool Volatile, unsigned Alignment, QualType Ty,
1762                         llvm::MDNode *TBAAInfo = 0);
1763
1764  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
1765  /// this method emits the address of the lvalue, then loads the result as an
1766  /// rvalue, returning the rvalue.
1767  RValue EmitLoadOfLValue(LValue V, QualType LVType);
1768  RValue EmitLoadOfExtVectorElementLValue(LValue V, QualType LVType);
1769  RValue EmitLoadOfBitfieldLValue(LValue LV, QualType ExprType);
1770  RValue EmitLoadOfPropertyRefLValue(LValue LV,
1771                                 ReturnValueSlot Return = ReturnValueSlot());
1772
1773  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1774  /// lvalue, where both are guaranteed to the have the same type, and that type
1775  /// is 'Ty'.
1776  void EmitStoreThroughLValue(RValue Src, LValue Dst, QualType Ty);
1777  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst,
1778                                                QualType Ty);
1779  void EmitStoreThroughPropertyRefLValue(RValue Src, LValue Dst);
1780
1781  /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
1782  /// EmitStoreThroughLValue.
1783  ///
1784  /// \param Result [out] - If non-null, this will be set to a Value* for the
1785  /// bit-field contents after the store, appropriate for use as the result of
1786  /// an assignment to the bit-field.
1787  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, QualType Ty,
1788                                      llvm::Value **Result=0);
1789
1790  /// Emit an l-value for an assignment (simple or compound) of complex type.
1791  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
1792  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
1793
1794  // Note: only availabe for agg return types
1795  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
1796  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
1797  // Note: only available for agg return types
1798  LValue EmitCallExprLValue(const CallExpr *E);
1799  // Note: only available for agg return types
1800  LValue EmitVAArgExprLValue(const VAArgExpr *E);
1801  LValue EmitDeclRefLValue(const DeclRefExpr *E);
1802  LValue EmitStringLiteralLValue(const StringLiteral *E);
1803  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
1804  LValue EmitPredefinedLValue(const PredefinedExpr *E);
1805  LValue EmitUnaryOpLValue(const UnaryOperator *E);
1806  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
1807  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
1808  LValue EmitMemberExpr(const MemberExpr *E);
1809  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
1810  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
1811  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
1812  LValue EmitCastLValue(const CastExpr *E);
1813  LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
1814  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
1815
1816  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
1817                              const ObjCIvarDecl *Ivar);
1818  LValue EmitLValueForAnonRecordField(llvm::Value* Base,
1819                                      const IndirectFieldDecl* Field,
1820                                      unsigned CVRQualifiers);
1821  LValue EmitLValueForField(llvm::Value* Base, const FieldDecl* Field,
1822                            unsigned CVRQualifiers);
1823
1824  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
1825  /// if the Field is a reference, this will return the address of the reference
1826  /// and not the address of the value stored in the reference.
1827  LValue EmitLValueForFieldInitialization(llvm::Value* Base,
1828                                          const FieldDecl* Field,
1829                                          unsigned CVRQualifiers);
1830
1831  LValue EmitLValueForIvar(QualType ObjectTy,
1832                           llvm::Value* Base, const ObjCIvarDecl *Ivar,
1833                           unsigned CVRQualifiers);
1834
1835  LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field,
1836                                unsigned CVRQualifiers);
1837
1838  LValue EmitBlockDeclRefLValue(const BlockDeclRefExpr *E);
1839
1840  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
1841  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
1842  LValue EmitExprWithCleanupsLValue(const ExprWithCleanups *E);
1843  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
1844
1845  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
1846  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
1847  LValue EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E);
1848  LValue EmitStmtExprLValue(const StmtExpr *E);
1849  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
1850  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
1851  void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
1852
1853  //===--------------------------------------------------------------------===//
1854  //                         Scalar Expression Emission
1855  //===--------------------------------------------------------------------===//
1856
1857  /// EmitCall - Generate a call of the given function, expecting the given
1858  /// result type, and using the given argument list which specifies both the
1859  /// LLVM arguments and the types they were derived from.
1860  ///
1861  /// \param TargetDecl - If given, the decl of the function in a direct call;
1862  /// used to set attributes on the call (noreturn, etc.).
1863  RValue EmitCall(const CGFunctionInfo &FnInfo,
1864                  llvm::Value *Callee,
1865                  ReturnValueSlot ReturnValue,
1866                  const CallArgList &Args,
1867                  const Decl *TargetDecl = 0,
1868                  llvm::Instruction **callOrInvoke = 0);
1869
1870  RValue EmitCall(QualType FnType, llvm::Value *Callee,
1871                  ReturnValueSlot ReturnValue,
1872                  CallExpr::const_arg_iterator ArgBeg,
1873                  CallExpr::const_arg_iterator ArgEnd,
1874                  const Decl *TargetDecl = 0);
1875  RValue EmitCallExpr(const CallExpr *E,
1876                      ReturnValueSlot ReturnValue = ReturnValueSlot());
1877
1878  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
1879                                  llvm::Value * const *ArgBegin,
1880                                  llvm::Value * const *ArgEnd,
1881                                  const llvm::Twine &Name = "");
1882
1883  llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
1884                                const llvm::Type *Ty);
1885  llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
1886                                llvm::Value *This, const llvm::Type *Ty);
1887  llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
1888                                         NestedNameSpecifier *Qual,
1889                                         const llvm::Type *Ty);
1890
1891  llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
1892                                                   CXXDtorType Type,
1893                                                   const CXXRecordDecl *RD);
1894
1895  RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
1896                           llvm::Value *Callee,
1897                           ReturnValueSlot ReturnValue,
1898                           llvm::Value *This,
1899                           llvm::Value *VTT,
1900                           CallExpr::const_arg_iterator ArgBeg,
1901                           CallExpr::const_arg_iterator ArgEnd);
1902  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
1903                               ReturnValueSlot ReturnValue);
1904  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
1905                                      ReturnValueSlot ReturnValue);
1906
1907  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
1908                                       const CXXMethodDecl *MD,
1909                                       ReturnValueSlot ReturnValue);
1910
1911
1912  RValue EmitBuiltinExpr(const FunctionDecl *FD,
1913                         unsigned BuiltinID, const CallExpr *E);
1914
1915  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
1916
1917  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
1918  /// is unhandled by the current target.
1919  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
1920
1921  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
1922  llvm::Value *EmitNeonCall(llvm::Function *F,
1923                            llvm::SmallVectorImpl<llvm::Value*> &O,
1924                            const char *name,
1925                            unsigned shift = 0, bool rightshift = false);
1926  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
1927  llvm::Value *EmitNeonShiftVector(llvm::Value *V, const llvm::Type *Ty,
1928                                   bool negateForRightShift);
1929
1930  llvm::Value *BuildVector(const llvm::SmallVectorImpl<llvm::Value*> &Ops);
1931  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
1932  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
1933
1934  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
1935  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
1936  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
1937  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
1938                             ReturnValueSlot Return = ReturnValueSlot());
1939
1940  /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
1941  /// expression. Will emit a temporary variable if E is not an LValue.
1942  RValue EmitReferenceBindingToExpr(const Expr* E,
1943                                    const NamedDecl *InitializedDecl);
1944
1945  //===--------------------------------------------------------------------===//
1946  //                           Expression Emission
1947  //===--------------------------------------------------------------------===//
1948
1949  // Expressions are broken into three classes: scalar, complex, aggregate.
1950
1951  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
1952  /// scalar type, returning the result.
1953  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
1954
1955  /// EmitScalarConversion - Emit a conversion from the specified type to the
1956  /// specified destination type, both of which are LLVM scalar types.
1957  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
1958                                    QualType DstTy);
1959
1960  /// EmitComplexToScalarConversion - Emit a conversion from the specified
1961  /// complex type to the specified destination type, where the destination type
1962  /// is an LLVM scalar type.
1963  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
1964                                             QualType DstTy);
1965
1966
1967  /// EmitAggExpr - Emit the computation of the specified expression
1968  /// of aggregate type.  The result is computed into the given slot,
1969  /// which may be null to indicate that the value is not needed.
1970  void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false);
1971
1972  /// EmitAggExprToLValue - Emit the computation of the specified expression of
1973  /// aggregate type into a temporary LValue.
1974  LValue EmitAggExprToLValue(const Expr *E);
1975
1976  /// EmitGCMemmoveCollectable - Emit special API for structs with object
1977  /// pointers.
1978  void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1979                                QualType Ty);
1980
1981  /// EmitComplexExpr - Emit the computation of the specified expression of
1982  /// complex type, returning the result.
1983  ComplexPairTy EmitComplexExpr(const Expr *E,
1984                                bool IgnoreReal = false,
1985                                bool IgnoreImag = false);
1986
1987  /// EmitComplexExprIntoAddr - Emit the computation of the specified expression
1988  /// of complex type, storing into the specified Value*.
1989  void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
1990                               bool DestIsVolatile);
1991
1992  /// StoreComplexToAddr - Store a complex number into the specified address.
1993  void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
1994                          bool DestIsVolatile);
1995  /// LoadComplexFromAddr - Load a complex number from the specified address.
1996  ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
1997
1998  /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
1999  /// a static local variable.
2000  llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2001                                            const char *Separator,
2002                                       llvm::GlobalValue::LinkageTypes Linkage);
2003
2004  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2005  /// global variable that has already been created for it.  If the initializer
2006  /// has a different type than GV does, this may free GV and return a different
2007  /// one.  Otherwise it just returns GV.
2008  llvm::GlobalVariable *
2009  AddInitializerToStaticVarDecl(const VarDecl &D,
2010                                llvm::GlobalVariable *GV);
2011
2012
2013  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2014  /// variable with global storage.
2015  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr);
2016
2017  /// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr
2018  /// with the C++ runtime so that its destructor will be called at exit.
2019  void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn,
2020                                     llvm::Constant *DeclPtr);
2021
2022  /// Emit code in this function to perform a guarded variable
2023  /// initialization.  Guarded initializations are used when it's not
2024  /// possible to prove that an initialization will be done exactly
2025  /// once, e.g. with a static local variable or a static data member
2026  /// of a class template.
2027  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr);
2028
2029  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2030  /// variables.
2031  void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2032                                 llvm::Constant **Decls,
2033                                 unsigned NumDecls);
2034
2035  /// GenerateCXXGlobalDtorFunc - Generates code for destroying global
2036  /// variables.
2037  void GenerateCXXGlobalDtorFunc(llvm::Function *Fn,
2038                                 const std::vector<std::pair<llvm::WeakVH,
2039                                   llvm::Constant*> > &DtorsAndObjects);
2040
2041  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2042                                        const VarDecl *D,
2043                                        llvm::GlobalVariable *Addr);
2044
2045  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2046
2047  void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2048                                  const Expr *Exp);
2049
2050  RValue EmitExprWithCleanups(const ExprWithCleanups *E,
2051                              AggValueSlot Slot =AggValueSlot::ignored());
2052
2053  void EmitCXXThrowExpr(const CXXThrowExpr *E);
2054
2055  //===--------------------------------------------------------------------===//
2056  //                             Internal Helpers
2057  //===--------------------------------------------------------------------===//
2058
2059  /// ContainsLabel - Return true if the statement contains a label in it.  If
2060  /// this statement is not executed normally, it not containing a label means
2061  /// that we can just remove the code.
2062  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2063
2064  /// containsBreak - Return true if the statement contains a break out of it.
2065  /// If the statement (recursively) contains a switch or loop with a break
2066  /// inside of it, this is fine.
2067  static bool containsBreak(const Stmt *S);
2068
2069  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2070  /// to a constant, or if it does but contains a label, return false.  If it
2071  /// constant folds return true and set the boolean result in Result.
2072  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2073
2074  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2075  /// to a constant, or if it does but contains a label, return false.  If it
2076  /// constant folds return true and set the folded value.
2077  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result);
2078
2079  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2080  /// if statement) to the specified blocks.  Based on the condition, this might
2081  /// try to simplify the codegen of the conditional based on the branch.
2082  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2083                            llvm::BasicBlock *FalseBlock);
2084
2085  /// getTrapBB - Create a basic block that will call the trap intrinsic.  We'll
2086  /// generate a branch around the created basic block as necessary.
2087  llvm::BasicBlock *getTrapBB();
2088
2089  /// EmitCallArg - Emit a single call argument.
2090  RValue EmitCallArg(const Expr *E, QualType ArgType);
2091
2092  /// EmitDelegateCallArg - We are performing a delegate call; that
2093  /// is, the current function is delegating to another one.  Produce
2094  /// a r-value suitable for passing the given parameter.
2095  RValue EmitDelegateCallArg(const VarDecl *Param);
2096
2097private:
2098  void EmitReturnOfRValue(RValue RV, QualType Ty);
2099
2100  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2101  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2102  ///
2103  /// \param AI - The first function argument of the expansion.
2104  /// \return The argument following the last expanded function
2105  /// argument.
2106  llvm::Function::arg_iterator
2107  ExpandTypeFromArgs(QualType Ty, LValue Dst,
2108                     llvm::Function::arg_iterator AI);
2109
2110  /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2111  /// Ty, into individual arguments on the provided vector \arg Args. See
2112  /// ABIArgInfo::Expand.
2113  void ExpandTypeToArgs(QualType Ty, RValue Src,
2114                        llvm::SmallVector<llvm::Value*, 16> &Args);
2115
2116  llvm::Value* EmitAsmInput(const AsmStmt &S,
2117                            const TargetInfo::ConstraintInfo &Info,
2118                            const Expr *InputExpr, std::string &ConstraintStr);
2119
2120  llvm::Value* EmitAsmInputLValue(const AsmStmt &S,
2121                                  const TargetInfo::ConstraintInfo &Info,
2122                                  LValue InputValue, QualType InputType,
2123                                  std::string &ConstraintStr);
2124
2125  /// EmitCallArgs - Emit call arguments for a function.
2126  /// The CallArgTypeInfo parameter is used for iterating over the known
2127  /// argument types of the function being called.
2128  template<typename T>
2129  void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2130                    CallExpr::const_arg_iterator ArgBeg,
2131                    CallExpr::const_arg_iterator ArgEnd) {
2132      CallExpr::const_arg_iterator Arg = ArgBeg;
2133
2134    // First, use the argument types that the type info knows about
2135    if (CallArgTypeInfo) {
2136      for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2137           E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2138        assert(Arg != ArgEnd && "Running over edge of argument list!");
2139        QualType ArgType = *I;
2140#ifndef NDEBUG
2141        QualType ActualArgType = Arg->getType();
2142        if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2143          QualType ActualBaseType =
2144            ActualArgType->getAs<PointerType>()->getPointeeType();
2145          QualType ArgBaseType =
2146            ArgType->getAs<PointerType>()->getPointeeType();
2147          if (ArgBaseType->isVariableArrayType()) {
2148            if (const VariableArrayType *VAT =
2149                getContext().getAsVariableArrayType(ActualBaseType)) {
2150              if (!VAT->getSizeExpr())
2151                ActualArgType = ArgType;
2152            }
2153          }
2154        }
2155        assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2156               getTypePtr() ==
2157               getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2158               "type mismatch in call argument!");
2159#endif
2160        Args.push_back(std::make_pair(EmitCallArg(*Arg, ArgType),
2161                                      ArgType));
2162      }
2163
2164      // Either we've emitted all the call args, or we have a call to a
2165      // variadic function.
2166      assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2167             "Extra arguments in non-variadic function!");
2168
2169    }
2170
2171    // If we still have any arguments, emit them using the type of the argument.
2172    for (; Arg != ArgEnd; ++Arg) {
2173      QualType ArgType = Arg->getType();
2174      Args.push_back(std::make_pair(EmitCallArg(*Arg, ArgType),
2175                                    ArgType));
2176    }
2177  }
2178
2179  const TargetCodeGenInfo &getTargetHooks() const {
2180    return CGM.getTargetCodeGenInfo();
2181  }
2182
2183  void EmitDeclMetadata();
2184};
2185
2186/// Helper class with most of the code for saving a value for a
2187/// conditional expression cleanup.
2188struct DominatingLLVMValue {
2189  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2190
2191  /// Answer whether the given value needs extra work to be saved.
2192  static bool needsSaving(llvm::Value *value) {
2193    // If it's not an instruction, we don't need to save.
2194    if (!isa<llvm::Instruction>(value)) return false;
2195
2196    // If it's an instruction in the entry block, we don't need to save.
2197    llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2198    return (block != &block->getParent()->getEntryBlock());
2199  }
2200
2201  /// Try to save the given value.
2202  static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2203    if (!needsSaving(value)) return saved_type(value, false);
2204
2205    // Otherwise we need an alloca.
2206    llvm::Value *alloca =
2207      CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2208    CGF.Builder.CreateStore(value, alloca);
2209
2210    return saved_type(alloca, true);
2211  }
2212
2213  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2214    if (!value.getInt()) return value.getPointer();
2215    return CGF.Builder.CreateLoad(value.getPointer());
2216  }
2217};
2218
2219/// A partial specialization of DominatingValue for llvm::Values that
2220/// might be llvm::Instructions.
2221template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2222  typedef T *type;
2223  static type restore(CodeGenFunction &CGF, saved_type value) {
2224    return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2225  }
2226};
2227
2228/// A specialization of DominatingValue for RValue.
2229template <> struct DominatingValue<RValue> {
2230  typedef RValue type;
2231  class saved_type {
2232    enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2233                AggregateAddress, ComplexAddress };
2234
2235    llvm::Value *Value;
2236    Kind K;
2237    saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2238
2239  public:
2240    static bool needsSaving(RValue value);
2241    static saved_type save(CodeGenFunction &CGF, RValue value);
2242    RValue restore(CodeGenFunction &CGF);
2243
2244    // implementations in CGExprCXX.cpp
2245  };
2246
2247  static bool needsSaving(type value) {
2248    return saved_type::needsSaving(value);
2249  }
2250  static saved_type save(CodeGenFunction &CGF, type value) {
2251    return saved_type::save(CGF, value);
2252  }
2253  static type restore(CodeGenFunction &CGF, saved_type value) {
2254    return value.restore(CGF);
2255  }
2256};
2257
2258}  // end namespace CodeGen
2259}  // end namespace clang
2260
2261#endif
2262