CodeGenFunction.h revision d7722d9d76a851e7897f4127626616d3b1b8e530
1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This is the internal per-function state used for llvm translation. 11// 12//===----------------------------------------------------------------------===// 13 14#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H 15#define CLANG_CODEGEN_CODEGENFUNCTION_H 16 17#include "clang/AST/Type.h" 18#include "clang/AST/ExprCXX.h" 19#include "clang/AST/ExprObjC.h" 20#include "clang/AST/CharUnits.h" 21#include "clang/Frontend/CodeGenOptions.h" 22#include "clang/Basic/ABI.h" 23#include "clang/Basic/TargetInfo.h" 24#include "llvm/ADT/ArrayRef.h" 25#include "llvm/ADT/DenseMap.h" 26#include "llvm/ADT/SmallVector.h" 27#include "llvm/Support/ValueHandle.h" 28#include "llvm/Support/Debug.h" 29#include "CodeGenModule.h" 30#include "CGBuilder.h" 31#include "CGDebugInfo.h" 32#include "CGValue.h" 33 34namespace llvm { 35 class BasicBlock; 36 class LLVMContext; 37 class MDNode; 38 class Module; 39 class SwitchInst; 40 class Twine; 41 class Value; 42 class CallSite; 43} 44 45namespace clang { 46 class APValue; 47 class ASTContext; 48 class BlockDecl; 49 class CXXDestructorDecl; 50 class CXXForRangeStmt; 51 class CXXTryStmt; 52 class Decl; 53 class LabelDecl; 54 class EnumConstantDecl; 55 class FunctionDecl; 56 class FunctionProtoType; 57 class LabelStmt; 58 class ObjCContainerDecl; 59 class ObjCInterfaceDecl; 60 class ObjCIvarDecl; 61 class ObjCMethodDecl; 62 class ObjCImplementationDecl; 63 class ObjCPropertyImplDecl; 64 class TargetInfo; 65 class TargetCodeGenInfo; 66 class VarDecl; 67 class ObjCForCollectionStmt; 68 class ObjCAtTryStmt; 69 class ObjCAtThrowStmt; 70 class ObjCAtSynchronizedStmt; 71 class ObjCAutoreleasePoolStmt; 72 73namespace CodeGen { 74 class CodeGenTypes; 75 class CGFunctionInfo; 76 class CGRecordLayout; 77 class CGBlockInfo; 78 class CGCXXABI; 79 class BlockFlags; 80 class BlockFieldFlags; 81 82/// A branch fixup. These are required when emitting a goto to a 83/// label which hasn't been emitted yet. The goto is optimistically 84/// emitted as a branch to the basic block for the label, and (if it 85/// occurs in a scope with non-trivial cleanups) a fixup is added to 86/// the innermost cleanup. When a (normal) cleanup is popped, any 87/// unresolved fixups in that scope are threaded through the cleanup. 88struct BranchFixup { 89 /// The block containing the terminator which needs to be modified 90 /// into a switch if this fixup is resolved into the current scope. 91 /// If null, LatestBranch points directly to the destination. 92 llvm::BasicBlock *OptimisticBranchBlock; 93 94 /// The ultimate destination of the branch. 95 /// 96 /// This can be set to null to indicate that this fixup was 97 /// successfully resolved. 98 llvm::BasicBlock *Destination; 99 100 /// The destination index value. 101 unsigned DestinationIndex; 102 103 /// The initial branch of the fixup. 104 llvm::BranchInst *InitialBranch; 105}; 106 107template <class T> struct InvariantValue { 108 typedef T type; 109 typedef T saved_type; 110 static bool needsSaving(type value) { return false; } 111 static saved_type save(CodeGenFunction &CGF, type value) { return value; } 112 static type restore(CodeGenFunction &CGF, saved_type value) { return value; } 113}; 114 115/// A metaprogramming class for ensuring that a value will dominate an 116/// arbitrary position in a function. 117template <class T> struct DominatingValue : InvariantValue<T> {}; 118 119template <class T, bool mightBeInstruction = 120 llvm::is_base_of<llvm::Value, T>::value && 121 !llvm::is_base_of<llvm::Constant, T>::value && 122 !llvm::is_base_of<llvm::BasicBlock, T>::value> 123struct DominatingPointer; 124template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {}; 125// template <class T> struct DominatingPointer<T,true> at end of file 126 127template <class T> struct DominatingValue<T*> : DominatingPointer<T> {}; 128 129enum CleanupKind { 130 EHCleanup = 0x1, 131 NormalCleanup = 0x2, 132 NormalAndEHCleanup = EHCleanup | NormalCleanup, 133 134 InactiveCleanup = 0x4, 135 InactiveEHCleanup = EHCleanup | InactiveCleanup, 136 InactiveNormalCleanup = NormalCleanup | InactiveCleanup, 137 InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup 138}; 139 140/// A stack of scopes which respond to exceptions, including cleanups 141/// and catch blocks. 142class EHScopeStack { 143public: 144 /// A saved depth on the scope stack. This is necessary because 145 /// pushing scopes onto the stack invalidates iterators. 146 class stable_iterator { 147 friend class EHScopeStack; 148 149 /// Offset from StartOfData to EndOfBuffer. 150 ptrdiff_t Size; 151 152 stable_iterator(ptrdiff_t Size) : Size(Size) {} 153 154 public: 155 static stable_iterator invalid() { return stable_iterator(-1); } 156 stable_iterator() : Size(-1) {} 157 158 bool isValid() const { return Size >= 0; } 159 160 /// Returns true if this scope encloses I. 161 /// Returns false if I is invalid. 162 /// This scope must be valid. 163 bool encloses(stable_iterator I) const { return Size <= I.Size; } 164 165 /// Returns true if this scope strictly encloses I: that is, 166 /// if it encloses I and is not I. 167 /// Returns false is I is invalid. 168 /// This scope must be valid. 169 bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; } 170 171 friend bool operator==(stable_iterator A, stable_iterator B) { 172 return A.Size == B.Size; 173 } 174 friend bool operator!=(stable_iterator A, stable_iterator B) { 175 return A.Size != B.Size; 176 } 177 }; 178 179 /// Information for lazily generating a cleanup. Subclasses must be 180 /// POD-like: cleanups will not be destructed, and they will be 181 /// allocated on the cleanup stack and freely copied and moved 182 /// around. 183 /// 184 /// Cleanup implementations should generally be declared in an 185 /// anonymous namespace. 186 class Cleanup { 187 // Anchor the construction vtable. 188 virtual void anchor(); 189 public: 190 /// Generation flags. 191 class Flags { 192 enum { 193 F_IsForEH = 0x1, 194 F_IsNormalCleanupKind = 0x2, 195 F_IsEHCleanupKind = 0x4 196 }; 197 unsigned flags; 198 199 public: 200 Flags() : flags(0) {} 201 202 /// isForEH - true if the current emission is for an EH cleanup. 203 bool isForEHCleanup() const { return flags & F_IsForEH; } 204 bool isForNormalCleanup() const { return !isForEHCleanup(); } 205 void setIsForEHCleanup() { flags |= F_IsForEH; } 206 207 bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; } 208 void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; } 209 210 /// isEHCleanupKind - true if the cleanup was pushed as an EH 211 /// cleanup. 212 bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; } 213 void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; } 214 }; 215 216 // Provide a virtual destructor to suppress a very common warning 217 // that unfortunately cannot be suppressed without this. Cleanups 218 // should not rely on this destructor ever being called. 219 virtual ~Cleanup() {} 220 221 /// Emit the cleanup. For normal cleanups, this is run in the 222 /// same EH context as when the cleanup was pushed, i.e. the 223 /// immediately-enclosing context of the cleanup scope. For 224 /// EH cleanups, this is run in a terminate context. 225 /// 226 // \param IsForEHCleanup true if this is for an EH cleanup, false 227 /// if for a normal cleanup. 228 virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0; 229 }; 230 231 /// ConditionalCleanupN stores the saved form of its N parameters, 232 /// then restores them and performs the cleanup. 233 template <class T, class A0> 234 class ConditionalCleanup1 : public Cleanup { 235 typedef typename DominatingValue<A0>::saved_type A0_saved; 236 A0_saved a0_saved; 237 238 void Emit(CodeGenFunction &CGF, Flags flags) { 239 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 240 T(a0).Emit(CGF, flags); 241 } 242 243 public: 244 ConditionalCleanup1(A0_saved a0) 245 : a0_saved(a0) {} 246 }; 247 248 template <class T, class A0, class A1> 249 class ConditionalCleanup2 : public Cleanup { 250 typedef typename DominatingValue<A0>::saved_type A0_saved; 251 typedef typename DominatingValue<A1>::saved_type A1_saved; 252 A0_saved a0_saved; 253 A1_saved a1_saved; 254 255 void Emit(CodeGenFunction &CGF, Flags flags) { 256 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 257 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 258 T(a0, a1).Emit(CGF, flags); 259 } 260 261 public: 262 ConditionalCleanup2(A0_saved a0, A1_saved a1) 263 : a0_saved(a0), a1_saved(a1) {} 264 }; 265 266 template <class T, class A0, class A1, class A2> 267 class ConditionalCleanup3 : public Cleanup { 268 typedef typename DominatingValue<A0>::saved_type A0_saved; 269 typedef typename DominatingValue<A1>::saved_type A1_saved; 270 typedef typename DominatingValue<A2>::saved_type A2_saved; 271 A0_saved a0_saved; 272 A1_saved a1_saved; 273 A2_saved a2_saved; 274 275 void Emit(CodeGenFunction &CGF, Flags flags) { 276 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 277 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 278 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 279 T(a0, a1, a2).Emit(CGF, flags); 280 } 281 282 public: 283 ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2) 284 : a0_saved(a0), a1_saved(a1), a2_saved(a2) {} 285 }; 286 287 template <class T, class A0, class A1, class A2, class A3> 288 class ConditionalCleanup4 : public Cleanup { 289 typedef typename DominatingValue<A0>::saved_type A0_saved; 290 typedef typename DominatingValue<A1>::saved_type A1_saved; 291 typedef typename DominatingValue<A2>::saved_type A2_saved; 292 typedef typename DominatingValue<A3>::saved_type A3_saved; 293 A0_saved a0_saved; 294 A1_saved a1_saved; 295 A2_saved a2_saved; 296 A3_saved a3_saved; 297 298 void Emit(CodeGenFunction &CGF, Flags flags) { 299 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 300 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 301 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 302 A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved); 303 T(a0, a1, a2, a3).Emit(CGF, flags); 304 } 305 306 public: 307 ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3) 308 : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {} 309 }; 310 311private: 312 // The implementation for this class is in CGException.h and 313 // CGException.cpp; the definition is here because it's used as a 314 // member of CodeGenFunction. 315 316 /// The start of the scope-stack buffer, i.e. the allocated pointer 317 /// for the buffer. All of these pointers are either simultaneously 318 /// null or simultaneously valid. 319 char *StartOfBuffer; 320 321 /// The end of the buffer. 322 char *EndOfBuffer; 323 324 /// The first valid entry in the buffer. 325 char *StartOfData; 326 327 /// The innermost normal cleanup on the stack. 328 stable_iterator InnermostNormalCleanup; 329 330 /// The innermost EH scope on the stack. 331 stable_iterator InnermostEHScope; 332 333 /// The current set of branch fixups. A branch fixup is a jump to 334 /// an as-yet unemitted label, i.e. a label for which we don't yet 335 /// know the EH stack depth. Whenever we pop a cleanup, we have 336 /// to thread all the current branch fixups through it. 337 /// 338 /// Fixups are recorded as the Use of the respective branch or 339 /// switch statement. The use points to the final destination. 340 /// When popping out of a cleanup, these uses are threaded through 341 /// the cleanup and adjusted to point to the new cleanup. 342 /// 343 /// Note that branches are allowed to jump into protected scopes 344 /// in certain situations; e.g. the following code is legal: 345 /// struct A { ~A(); }; // trivial ctor, non-trivial dtor 346 /// goto foo; 347 /// A a; 348 /// foo: 349 /// bar(); 350 SmallVector<BranchFixup, 8> BranchFixups; 351 352 char *allocate(size_t Size); 353 354 void *pushCleanup(CleanupKind K, size_t DataSize); 355 356public: 357 EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0), 358 InnermostNormalCleanup(stable_end()), 359 InnermostEHScope(stable_end()) {} 360 ~EHScopeStack() { delete[] StartOfBuffer; } 361 362 // Variadic templates would make this not terrible. 363 364 /// Push a lazily-created cleanup on the stack. 365 template <class T> 366 void pushCleanup(CleanupKind Kind) { 367 void *Buffer = pushCleanup(Kind, sizeof(T)); 368 Cleanup *Obj = new(Buffer) T(); 369 (void) Obj; 370 } 371 372 /// Push a lazily-created cleanup on the stack. 373 template <class T, class A0> 374 void pushCleanup(CleanupKind Kind, A0 a0) { 375 void *Buffer = pushCleanup(Kind, sizeof(T)); 376 Cleanup *Obj = new(Buffer) T(a0); 377 (void) Obj; 378 } 379 380 /// Push a lazily-created cleanup on the stack. 381 template <class T, class A0, class A1> 382 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) { 383 void *Buffer = pushCleanup(Kind, sizeof(T)); 384 Cleanup *Obj = new(Buffer) T(a0, a1); 385 (void) Obj; 386 } 387 388 /// Push a lazily-created cleanup on the stack. 389 template <class T, class A0, class A1, class A2> 390 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) { 391 void *Buffer = pushCleanup(Kind, sizeof(T)); 392 Cleanup *Obj = new(Buffer) T(a0, a1, a2); 393 (void) Obj; 394 } 395 396 /// Push a lazily-created cleanup on the stack. 397 template <class T, class A0, class A1, class A2, class A3> 398 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) { 399 void *Buffer = pushCleanup(Kind, sizeof(T)); 400 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3); 401 (void) Obj; 402 } 403 404 /// Push a lazily-created cleanup on the stack. 405 template <class T, class A0, class A1, class A2, class A3, class A4> 406 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) { 407 void *Buffer = pushCleanup(Kind, sizeof(T)); 408 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4); 409 (void) Obj; 410 } 411 412 // Feel free to add more variants of the following: 413 414 /// Push a cleanup with non-constant storage requirements on the 415 /// stack. The cleanup type must provide an additional static method: 416 /// static size_t getExtraSize(size_t); 417 /// The argument to this method will be the value N, which will also 418 /// be passed as the first argument to the constructor. 419 /// 420 /// The data stored in the extra storage must obey the same 421 /// restrictions as normal cleanup member data. 422 /// 423 /// The pointer returned from this method is valid until the cleanup 424 /// stack is modified. 425 template <class T, class A0, class A1, class A2> 426 T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) { 427 void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N)); 428 return new (Buffer) T(N, a0, a1, a2); 429 } 430 431 /// Pops a cleanup scope off the stack. This is private to CGCleanup.cpp. 432 void popCleanup(); 433 434 /// Push a set of catch handlers on the stack. The catch is 435 /// uninitialized and will need to have the given number of handlers 436 /// set on it. 437 class EHCatchScope *pushCatch(unsigned NumHandlers); 438 439 /// Pops a catch scope off the stack. This is private to CGException.cpp. 440 void popCatch(); 441 442 /// Push an exceptions filter on the stack. 443 class EHFilterScope *pushFilter(unsigned NumFilters); 444 445 /// Pops an exceptions filter off the stack. 446 void popFilter(); 447 448 /// Push a terminate handler on the stack. 449 void pushTerminate(); 450 451 /// Pops a terminate handler off the stack. 452 void popTerminate(); 453 454 /// Determines whether the exception-scopes stack is empty. 455 bool empty() const { return StartOfData == EndOfBuffer; } 456 457 bool requiresLandingPad() const { 458 return InnermostEHScope != stable_end(); 459 } 460 461 /// Determines whether there are any normal cleanups on the stack. 462 bool hasNormalCleanups() const { 463 return InnermostNormalCleanup != stable_end(); 464 } 465 466 /// Returns the innermost normal cleanup on the stack, or 467 /// stable_end() if there are no normal cleanups. 468 stable_iterator getInnermostNormalCleanup() const { 469 return InnermostNormalCleanup; 470 } 471 stable_iterator getInnermostActiveNormalCleanup() const; 472 473 stable_iterator getInnermostEHScope() const { 474 return InnermostEHScope; 475 } 476 477 stable_iterator getInnermostActiveEHScope() const; 478 479 /// An unstable reference to a scope-stack depth. Invalidated by 480 /// pushes but not pops. 481 class iterator; 482 483 /// Returns an iterator pointing to the innermost EH scope. 484 iterator begin() const; 485 486 /// Returns an iterator pointing to the outermost EH scope. 487 iterator end() const; 488 489 /// Create a stable reference to the top of the EH stack. The 490 /// returned reference is valid until that scope is popped off the 491 /// stack. 492 stable_iterator stable_begin() const { 493 return stable_iterator(EndOfBuffer - StartOfData); 494 } 495 496 /// Create a stable reference to the bottom of the EH stack. 497 static stable_iterator stable_end() { 498 return stable_iterator(0); 499 } 500 501 /// Translates an iterator into a stable_iterator. 502 stable_iterator stabilize(iterator it) const; 503 504 /// Turn a stable reference to a scope depth into a unstable pointer 505 /// to the EH stack. 506 iterator find(stable_iterator save) const; 507 508 /// Removes the cleanup pointed to by the given stable_iterator. 509 void removeCleanup(stable_iterator save); 510 511 /// Add a branch fixup to the current cleanup scope. 512 BranchFixup &addBranchFixup() { 513 assert(hasNormalCleanups() && "adding fixup in scope without cleanups"); 514 BranchFixups.push_back(BranchFixup()); 515 return BranchFixups.back(); 516 } 517 518 unsigned getNumBranchFixups() const { return BranchFixups.size(); } 519 BranchFixup &getBranchFixup(unsigned I) { 520 assert(I < getNumBranchFixups()); 521 return BranchFixups[I]; 522 } 523 524 /// Pops lazily-removed fixups from the end of the list. This 525 /// should only be called by procedures which have just popped a 526 /// cleanup or resolved one or more fixups. 527 void popNullFixups(); 528 529 /// Clears the branch-fixups list. This should only be called by 530 /// ResolveAllBranchFixups. 531 void clearFixups() { BranchFixups.clear(); } 532}; 533 534/// CodeGenFunction - This class organizes the per-function state that is used 535/// while generating LLVM code. 536class CodeGenFunction : public CodeGenTypeCache { 537 CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT 538 void operator=(const CodeGenFunction&); // DO NOT IMPLEMENT 539 540 friend class CGCXXABI; 541public: 542 /// A jump destination is an abstract label, branching to which may 543 /// require a jump out through normal cleanups. 544 struct JumpDest { 545 JumpDest() : Block(0), ScopeDepth(), Index(0) {} 546 JumpDest(llvm::BasicBlock *Block, 547 EHScopeStack::stable_iterator Depth, 548 unsigned Index) 549 : Block(Block), ScopeDepth(Depth), Index(Index) {} 550 551 bool isValid() const { return Block != 0; } 552 llvm::BasicBlock *getBlock() const { return Block; } 553 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 554 unsigned getDestIndex() const { return Index; } 555 556 private: 557 llvm::BasicBlock *Block; 558 EHScopeStack::stable_iterator ScopeDepth; 559 unsigned Index; 560 }; 561 562 CodeGenModule &CGM; // Per-module state. 563 const TargetInfo &Target; 564 565 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 566 CGBuilderTy Builder; 567 568 /// CurFuncDecl - Holds the Decl for the current function or ObjC method. 569 /// This excludes BlockDecls. 570 const Decl *CurFuncDecl; 571 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 572 const Decl *CurCodeDecl; 573 const CGFunctionInfo *CurFnInfo; 574 QualType FnRetTy; 575 llvm::Function *CurFn; 576 577 /// CurGD - The GlobalDecl for the current function being compiled. 578 GlobalDecl CurGD; 579 580 /// PrologueCleanupDepth - The cleanup depth enclosing all the 581 /// cleanups associated with the parameters. 582 EHScopeStack::stable_iterator PrologueCleanupDepth; 583 584 /// ReturnBlock - Unified return block. 585 JumpDest ReturnBlock; 586 587 /// ReturnValue - The temporary alloca to hold the return value. This is null 588 /// iff the function has no return value. 589 llvm::Value *ReturnValue; 590 591 /// AllocaInsertPoint - This is an instruction in the entry block before which 592 /// we prefer to insert allocas. 593 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 594 595 bool CatchUndefined; 596 597 /// In ARC, whether we should autorelease the return value. 598 bool AutoreleaseResult; 599 600 const CodeGen::CGBlockInfo *BlockInfo; 601 llvm::Value *BlockPointer; 602 603 /// \brief A mapping from NRVO variables to the flags used to indicate 604 /// when the NRVO has been applied to this variable. 605 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 606 607 EHScopeStack EHStack; 608 609 /// i32s containing the indexes of the cleanup destinations. 610 llvm::AllocaInst *NormalCleanupDest; 611 612 unsigned NextCleanupDestIndex; 613 614 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 615 CGBlockInfo *FirstBlockInfo; 616 617 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 618 llvm::BasicBlock *EHResumeBlock; 619 620 /// The exception slot. All landing pads write the current exception pointer 621 /// into this alloca. 622 llvm::Value *ExceptionSlot; 623 624 /// The selector slot. Under the MandatoryCleanup model, all landing pads 625 /// write the current selector value into this alloca. 626 llvm::AllocaInst *EHSelectorSlot; 627 628 /// Emits a landing pad for the current EH stack. 629 llvm::BasicBlock *EmitLandingPad(); 630 631 llvm::BasicBlock *getInvokeDestImpl(); 632 633 template <class T> 634 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 635 return DominatingValue<T>::save(*this, value); 636 } 637 638public: 639 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 640 /// rethrows. 641 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 642 643 /// A class controlling the emission of a finally block. 644 class FinallyInfo { 645 /// Where the catchall's edge through the cleanup should go. 646 JumpDest RethrowDest; 647 648 /// A function to call to enter the catch. 649 llvm::Constant *BeginCatchFn; 650 651 /// An i1 variable indicating whether or not the @finally is 652 /// running for an exception. 653 llvm::AllocaInst *ForEHVar; 654 655 /// An i8* variable into which the exception pointer to rethrow 656 /// has been saved. 657 llvm::AllocaInst *SavedExnVar; 658 659 public: 660 void enter(CodeGenFunction &CGF, const Stmt *Finally, 661 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 662 llvm::Constant *rethrowFn); 663 void exit(CodeGenFunction &CGF); 664 }; 665 666 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 667 /// current full-expression. Safe against the possibility that 668 /// we're currently inside a conditionally-evaluated expression. 669 template <class T, class A0> 670 void pushFullExprCleanup(CleanupKind kind, A0 a0) { 671 // If we're not in a conditional branch, or if none of the 672 // arguments requires saving, then use the unconditional cleanup. 673 if (!isInConditionalBranch()) 674 return EHStack.pushCleanup<T>(kind, a0); 675 676 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 677 678 typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType; 679 EHStack.pushCleanup<CleanupType>(kind, a0_saved); 680 initFullExprCleanup(); 681 } 682 683 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 684 /// current full-expression. Safe against the possibility that 685 /// we're currently inside a conditionally-evaluated expression. 686 template <class T, class A0, class A1> 687 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) { 688 // If we're not in a conditional branch, or if none of the 689 // arguments requires saving, then use the unconditional cleanup. 690 if (!isInConditionalBranch()) 691 return EHStack.pushCleanup<T>(kind, a0, a1); 692 693 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 694 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 695 696 typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType; 697 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved); 698 initFullExprCleanup(); 699 } 700 701 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 702 /// current full-expression. Safe against the possibility that 703 /// we're currently inside a conditionally-evaluated expression. 704 template <class T, class A0, class A1, class A2> 705 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) { 706 // If we're not in a conditional branch, or if none of the 707 // arguments requires saving, then use the unconditional cleanup. 708 if (!isInConditionalBranch()) { 709 return EHStack.pushCleanup<T>(kind, a0, a1, a2); 710 } 711 712 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 713 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 714 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 715 716 typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType; 717 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved); 718 initFullExprCleanup(); 719 } 720 721 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 722 /// current full-expression. Safe against the possibility that 723 /// we're currently inside a conditionally-evaluated expression. 724 template <class T, class A0, class A1, class A2, class A3> 725 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) { 726 // If we're not in a conditional branch, or if none of the 727 // arguments requires saving, then use the unconditional cleanup. 728 if (!isInConditionalBranch()) { 729 return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3); 730 } 731 732 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 733 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 734 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 735 typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3); 736 737 typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType; 738 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, 739 a2_saved, a3_saved); 740 initFullExprCleanup(); 741 } 742 743 /// Set up the last cleaup that was pushed as a conditional 744 /// full-expression cleanup. 745 void initFullExprCleanup(); 746 747 /// PushDestructorCleanup - Push a cleanup to call the 748 /// complete-object destructor of an object of the given type at the 749 /// given address. Does nothing if T is not a C++ class type with a 750 /// non-trivial destructor. 751 void PushDestructorCleanup(QualType T, llvm::Value *Addr); 752 753 /// PushDestructorCleanup - Push a cleanup to call the 754 /// complete-object variant of the given destructor on the object at 755 /// the given address. 756 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, 757 llvm::Value *Addr); 758 759 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 760 /// process all branch fixups. 761 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 762 763 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 764 /// The block cannot be reactivated. Pops it if it's the top of the 765 /// stack. 766 /// 767 /// \param DominatingIP - An instruction which is known to 768 /// dominate the current IP (if set) and which lies along 769 /// all paths of execution between the current IP and the 770 /// the point at which the cleanup comes into scope. 771 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 772 llvm::Instruction *DominatingIP); 773 774 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 775 /// Cannot be used to resurrect a deactivated cleanup. 776 /// 777 /// \param DominatingIP - An instruction which is known to 778 /// dominate the current IP (if set) and which lies along 779 /// all paths of execution between the current IP and the 780 /// the point at which the cleanup comes into scope. 781 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 782 llvm::Instruction *DominatingIP); 783 784 /// \brief Enters a new scope for capturing cleanups, all of which 785 /// will be executed once the scope is exited. 786 class RunCleanupsScope { 787 EHScopeStack::stable_iterator CleanupStackDepth; 788 bool OldDidCallStackSave; 789 bool PerformCleanup; 790 791 RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT 792 RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT 793 794 protected: 795 CodeGenFunction& CGF; 796 797 public: 798 /// \brief Enter a new cleanup scope. 799 explicit RunCleanupsScope(CodeGenFunction &CGF) 800 : PerformCleanup(true), CGF(CGF) 801 { 802 CleanupStackDepth = CGF.EHStack.stable_begin(); 803 OldDidCallStackSave = CGF.DidCallStackSave; 804 CGF.DidCallStackSave = false; 805 } 806 807 /// \brief Exit this cleanup scope, emitting any accumulated 808 /// cleanups. 809 ~RunCleanupsScope() { 810 if (PerformCleanup) { 811 CGF.DidCallStackSave = OldDidCallStackSave; 812 CGF.PopCleanupBlocks(CleanupStackDepth); 813 } 814 } 815 816 /// \brief Determine whether this scope requires any cleanups. 817 bool requiresCleanups() const { 818 return CGF.EHStack.stable_begin() != CleanupStackDepth; 819 } 820 821 /// \brief Force the emission of cleanups now, instead of waiting 822 /// until this object is destroyed. 823 void ForceCleanup() { 824 assert(PerformCleanup && "Already forced cleanup"); 825 CGF.DidCallStackSave = OldDidCallStackSave; 826 CGF.PopCleanupBlocks(CleanupStackDepth); 827 PerformCleanup = false; 828 } 829 }; 830 831 class LexicalScope: protected RunCleanupsScope { 832 SourceRange Range; 833 bool PopDebugStack; 834 835 LexicalScope(const LexicalScope &); // DO NOT IMPLEMENT THESE 836 LexicalScope &operator=(const LexicalScope &); 837 838 public: 839 /// \brief Enter a new cleanup scope. 840 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 841 : RunCleanupsScope(CGF), Range(Range), PopDebugStack(true) { 842 if (CGDebugInfo *DI = CGF.getDebugInfo()) 843 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 844 } 845 846 /// \brief Exit this cleanup scope, emitting any accumulated 847 /// cleanups. 848 ~LexicalScope() { 849 if (PopDebugStack) { 850 CGDebugInfo *DI = CGF.getDebugInfo(); 851 if (DI) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 852 } 853 } 854 855 /// \brief Force the emission of cleanups now, instead of waiting 856 /// until this object is destroyed. 857 void ForceCleanup() { 858 RunCleanupsScope::ForceCleanup(); 859 if (CGDebugInfo *DI = CGF.getDebugInfo()) { 860 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 861 PopDebugStack = false; 862 } 863 } 864 }; 865 866 867 /// PopCleanupBlocks - Takes the old cleanup stack size and emits 868 /// the cleanup blocks that have been added. 869 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 870 871 void ResolveBranchFixups(llvm::BasicBlock *Target); 872 873 /// The given basic block lies in the current EH scope, but may be a 874 /// target of a potentially scope-crossing jump; get a stable handle 875 /// to which we can perform this jump later. 876 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 877 return JumpDest(Target, 878 EHStack.getInnermostNormalCleanup(), 879 NextCleanupDestIndex++); 880 } 881 882 /// The given basic block lies in the current EH scope, but may be a 883 /// target of a potentially scope-crossing jump; get a stable handle 884 /// to which we can perform this jump later. 885 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 886 return getJumpDestInCurrentScope(createBasicBlock(Name)); 887 } 888 889 /// EmitBranchThroughCleanup - Emit a branch from the current insert 890 /// block through the normal cleanup handling code (if any) and then 891 /// on to \arg Dest. 892 void EmitBranchThroughCleanup(JumpDest Dest); 893 894 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 895 /// specified destination obviously has no cleanups to run. 'false' is always 896 /// a conservatively correct answer for this method. 897 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 898 899 /// popCatchScope - Pops the catch scope at the top of the EHScope 900 /// stack, emitting any required code (other than the catch handlers 901 /// themselves). 902 void popCatchScope(); 903 904 llvm::BasicBlock *getEHResumeBlock(); 905 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 906 907 /// An object to manage conditionally-evaluated expressions. 908 class ConditionalEvaluation { 909 llvm::BasicBlock *StartBB; 910 911 public: 912 ConditionalEvaluation(CodeGenFunction &CGF) 913 : StartBB(CGF.Builder.GetInsertBlock()) {} 914 915 void begin(CodeGenFunction &CGF) { 916 assert(CGF.OutermostConditional != this); 917 if (!CGF.OutermostConditional) 918 CGF.OutermostConditional = this; 919 } 920 921 void end(CodeGenFunction &CGF) { 922 assert(CGF.OutermostConditional != 0); 923 if (CGF.OutermostConditional == this) 924 CGF.OutermostConditional = 0; 925 } 926 927 /// Returns a block which will be executed prior to each 928 /// evaluation of the conditional code. 929 llvm::BasicBlock *getStartingBlock() const { 930 return StartBB; 931 } 932 }; 933 934 /// isInConditionalBranch - Return true if we're currently emitting 935 /// one branch or the other of a conditional expression. 936 bool isInConditionalBranch() const { return OutermostConditional != 0; } 937 938 void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) { 939 assert(isInConditionalBranch()); 940 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 941 new llvm::StoreInst(value, addr, &block->back()); 942 } 943 944 /// An RAII object to record that we're evaluating a statement 945 /// expression. 946 class StmtExprEvaluation { 947 CodeGenFunction &CGF; 948 949 /// We have to save the outermost conditional: cleanups in a 950 /// statement expression aren't conditional just because the 951 /// StmtExpr is. 952 ConditionalEvaluation *SavedOutermostConditional; 953 954 public: 955 StmtExprEvaluation(CodeGenFunction &CGF) 956 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 957 CGF.OutermostConditional = 0; 958 } 959 960 ~StmtExprEvaluation() { 961 CGF.OutermostConditional = SavedOutermostConditional; 962 CGF.EnsureInsertPoint(); 963 } 964 }; 965 966 /// An object which temporarily prevents a value from being 967 /// destroyed by aggressive peephole optimizations that assume that 968 /// all uses of a value have been realized in the IR. 969 class PeepholeProtection { 970 llvm::Instruction *Inst; 971 friend class CodeGenFunction; 972 973 public: 974 PeepholeProtection() : Inst(0) {} 975 }; 976 977 /// A non-RAII class containing all the information about a bound 978 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 979 /// this which makes individual mappings very simple; using this 980 /// class directly is useful when you have a variable number of 981 /// opaque values or don't want the RAII functionality for some 982 /// reason. 983 class OpaqueValueMappingData { 984 const OpaqueValueExpr *OpaqueValue; 985 bool BoundLValue; 986 CodeGenFunction::PeepholeProtection Protection; 987 988 OpaqueValueMappingData(const OpaqueValueExpr *ov, 989 bool boundLValue) 990 : OpaqueValue(ov), BoundLValue(boundLValue) {} 991 public: 992 OpaqueValueMappingData() : OpaqueValue(0) {} 993 994 static bool shouldBindAsLValue(const Expr *expr) { 995 // gl-values should be bound as l-values for obvious reasons. 996 // Records should be bound as l-values because IR generation 997 // always keeps them in memory. Expressions of function type 998 // act exactly like l-values but are formally required to be 999 // r-values in C. 1000 return expr->isGLValue() || 1001 expr->getType()->isRecordType() || 1002 expr->getType()->isFunctionType(); 1003 } 1004 1005 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1006 const OpaqueValueExpr *ov, 1007 const Expr *e) { 1008 if (shouldBindAsLValue(ov)) 1009 return bind(CGF, ov, CGF.EmitLValue(e)); 1010 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1011 } 1012 1013 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1014 const OpaqueValueExpr *ov, 1015 const LValue &lv) { 1016 assert(shouldBindAsLValue(ov)); 1017 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1018 return OpaqueValueMappingData(ov, true); 1019 } 1020 1021 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1022 const OpaqueValueExpr *ov, 1023 const RValue &rv) { 1024 assert(!shouldBindAsLValue(ov)); 1025 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1026 1027 OpaqueValueMappingData data(ov, false); 1028 1029 // Work around an extremely aggressive peephole optimization in 1030 // EmitScalarConversion which assumes that all other uses of a 1031 // value are extant. 1032 data.Protection = CGF.protectFromPeepholes(rv); 1033 1034 return data; 1035 } 1036 1037 bool isValid() const { return OpaqueValue != 0; } 1038 void clear() { OpaqueValue = 0; } 1039 1040 void unbind(CodeGenFunction &CGF) { 1041 assert(OpaqueValue && "no data to unbind!"); 1042 1043 if (BoundLValue) { 1044 CGF.OpaqueLValues.erase(OpaqueValue); 1045 } else { 1046 CGF.OpaqueRValues.erase(OpaqueValue); 1047 CGF.unprotectFromPeepholes(Protection); 1048 } 1049 } 1050 }; 1051 1052 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1053 class OpaqueValueMapping { 1054 CodeGenFunction &CGF; 1055 OpaqueValueMappingData Data; 1056 1057 public: 1058 static bool shouldBindAsLValue(const Expr *expr) { 1059 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1060 } 1061 1062 /// Build the opaque value mapping for the given conditional 1063 /// operator if it's the GNU ?: extension. This is a common 1064 /// enough pattern that the convenience operator is really 1065 /// helpful. 1066 /// 1067 OpaqueValueMapping(CodeGenFunction &CGF, 1068 const AbstractConditionalOperator *op) : CGF(CGF) { 1069 if (isa<ConditionalOperator>(op)) 1070 // Leave Data empty. 1071 return; 1072 1073 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1074 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1075 e->getCommon()); 1076 } 1077 1078 OpaqueValueMapping(CodeGenFunction &CGF, 1079 const OpaqueValueExpr *opaqueValue, 1080 LValue lvalue) 1081 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1082 } 1083 1084 OpaqueValueMapping(CodeGenFunction &CGF, 1085 const OpaqueValueExpr *opaqueValue, 1086 RValue rvalue) 1087 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1088 } 1089 1090 void pop() { 1091 Data.unbind(CGF); 1092 Data.clear(); 1093 } 1094 1095 ~OpaqueValueMapping() { 1096 if (Data.isValid()) Data.unbind(CGF); 1097 } 1098 }; 1099 1100 /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field 1101 /// number that holds the value. 1102 unsigned getByRefValueLLVMField(const ValueDecl *VD) const; 1103 1104 /// BuildBlockByrefAddress - Computes address location of the 1105 /// variable which is declared as __block. 1106 llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr, 1107 const VarDecl *V); 1108private: 1109 CGDebugInfo *DebugInfo; 1110 bool DisableDebugInfo; 1111 1112 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1113 /// calling llvm.stacksave for multiple VLAs in the same scope. 1114 bool DidCallStackSave; 1115 1116 /// IndirectBranch - The first time an indirect goto is seen we create a block 1117 /// with an indirect branch. Every time we see the address of a label taken, 1118 /// we add the label to the indirect goto. Every subsequent indirect goto is 1119 /// codegen'd as a jump to the IndirectBranch's basic block. 1120 llvm::IndirectBrInst *IndirectBranch; 1121 1122 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1123 /// decls. 1124 typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy; 1125 DeclMapTy LocalDeclMap; 1126 1127 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1128 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1129 1130 // BreakContinueStack - This keeps track of where break and continue 1131 // statements should jump to. 1132 struct BreakContinue { 1133 BreakContinue(JumpDest Break, JumpDest Continue) 1134 : BreakBlock(Break), ContinueBlock(Continue) {} 1135 1136 JumpDest BreakBlock; 1137 JumpDest ContinueBlock; 1138 }; 1139 SmallVector<BreakContinue, 8> BreakContinueStack; 1140 1141 /// SwitchInsn - This is nearest current switch instruction. It is null if if 1142 /// current context is not in a switch. 1143 llvm::SwitchInst *SwitchInsn; 1144 1145 /// CaseRangeBlock - This block holds if condition check for last case 1146 /// statement range in current switch instruction. 1147 llvm::BasicBlock *CaseRangeBlock; 1148 1149 /// OpaqueLValues - Keeps track of the current set of opaque value 1150 /// expressions. 1151 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1152 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1153 1154 // VLASizeMap - This keeps track of the associated size for each VLA type. 1155 // We track this by the size expression rather than the type itself because 1156 // in certain situations, like a const qualifier applied to an VLA typedef, 1157 // multiple VLA types can share the same size expression. 1158 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1159 // enter/leave scopes. 1160 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1161 1162 /// A block containing a single 'unreachable' instruction. Created 1163 /// lazily by getUnreachableBlock(). 1164 llvm::BasicBlock *UnreachableBlock; 1165 1166 /// CXXThisDecl - When generating code for a C++ member function, 1167 /// this will hold the implicit 'this' declaration. 1168 ImplicitParamDecl *CXXThisDecl; 1169 llvm::Value *CXXThisValue; 1170 1171 /// CXXVTTDecl - When generating code for a base object constructor or 1172 /// base object destructor with virtual bases, this will hold the implicit 1173 /// VTT parameter. 1174 ImplicitParamDecl *CXXVTTDecl; 1175 llvm::Value *CXXVTTValue; 1176 1177 /// OutermostConditional - Points to the outermost active 1178 /// conditional control. This is used so that we know if a 1179 /// temporary should be destroyed conditionally. 1180 ConditionalEvaluation *OutermostConditional; 1181 1182 1183 /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM 1184 /// type as well as the field number that contains the actual data. 1185 llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *, 1186 unsigned> > ByRefValueInfo; 1187 1188 llvm::BasicBlock *TerminateLandingPad; 1189 llvm::BasicBlock *TerminateHandler; 1190 llvm::BasicBlock *TrapBB; 1191 1192public: 1193 CodeGenFunction(CodeGenModule &cgm); 1194 ~CodeGenFunction(); 1195 1196 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1197 ASTContext &getContext() const { return CGM.getContext(); } 1198 CGDebugInfo *getDebugInfo() { 1199 if (DisableDebugInfo) 1200 return NULL; 1201 return DebugInfo; 1202 } 1203 void disableDebugInfo() { DisableDebugInfo = true; } 1204 void enableDebugInfo() { DisableDebugInfo = false; } 1205 1206 bool shouldUseFusedARCCalls() { 1207 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1208 } 1209 1210 const LangOptions &getLangOptions() const { return CGM.getLangOptions(); } 1211 1212 /// Returns a pointer to the function's exception object and selector slot, 1213 /// which is assigned in every landing pad. 1214 llvm::Value *getExceptionSlot(); 1215 llvm::Value *getEHSelectorSlot(); 1216 1217 /// Returns the contents of the function's exception object and selector 1218 /// slots. 1219 llvm::Value *getExceptionFromSlot(); 1220 llvm::Value *getSelectorFromSlot(); 1221 1222 llvm::Value *getNormalCleanupDestSlot(); 1223 1224 llvm::BasicBlock *getUnreachableBlock() { 1225 if (!UnreachableBlock) { 1226 UnreachableBlock = createBasicBlock("unreachable"); 1227 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1228 } 1229 return UnreachableBlock; 1230 } 1231 1232 llvm::BasicBlock *getInvokeDest() { 1233 if (!EHStack.requiresLandingPad()) return 0; 1234 return getInvokeDestImpl(); 1235 } 1236 1237 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1238 1239 //===--------------------------------------------------------------------===// 1240 // Cleanups 1241 //===--------------------------------------------------------------------===// 1242 1243 typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty); 1244 1245 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1246 llvm::Value *arrayEndPointer, 1247 QualType elementType, 1248 Destroyer &destroyer); 1249 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1250 llvm::Value *arrayEnd, 1251 QualType elementType, 1252 Destroyer &destroyer); 1253 1254 void pushDestroy(QualType::DestructionKind dtorKind, 1255 llvm::Value *addr, QualType type); 1256 void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type, 1257 Destroyer &destroyer, bool useEHCleanupForArray); 1258 void emitDestroy(llvm::Value *addr, QualType type, Destroyer &destroyer, 1259 bool useEHCleanupForArray); 1260 llvm::Function *generateDestroyHelper(llvm::Constant *addr, 1261 QualType type, 1262 Destroyer &destroyer, 1263 bool useEHCleanupForArray); 1264 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1265 QualType type, Destroyer &destroyer, 1266 bool checkZeroLength, bool useEHCleanup); 1267 1268 Destroyer &getDestroyer(QualType::DestructionKind destructionKind); 1269 1270 /// Determines whether an EH cleanup is required to destroy a type 1271 /// with the given destruction kind. 1272 bool needsEHCleanup(QualType::DestructionKind kind) { 1273 switch (kind) { 1274 case QualType::DK_none: 1275 return false; 1276 case QualType::DK_cxx_destructor: 1277 case QualType::DK_objc_weak_lifetime: 1278 return getLangOptions().Exceptions; 1279 case QualType::DK_objc_strong_lifetime: 1280 return getLangOptions().Exceptions && 1281 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1282 } 1283 llvm_unreachable("bad destruction kind"); 1284 } 1285 1286 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1287 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1288 } 1289 1290 //===--------------------------------------------------------------------===// 1291 // Objective-C 1292 //===--------------------------------------------------------------------===// 1293 1294 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1295 1296 void StartObjCMethod(const ObjCMethodDecl *MD, 1297 const ObjCContainerDecl *CD, 1298 SourceLocation StartLoc); 1299 1300 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1301 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1302 const ObjCPropertyImplDecl *PID); 1303 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1304 const ObjCPropertyImplDecl *propImpl); 1305 1306 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1307 ObjCMethodDecl *MD, bool ctor); 1308 1309 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1310 /// for the given property. 1311 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1312 const ObjCPropertyImplDecl *PID); 1313 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1314 const ObjCPropertyImplDecl *propImpl); 1315 bool IndirectObjCSetterArg(const CGFunctionInfo &FI); 1316 bool IvarTypeWithAggrGCObjects(QualType Ty); 1317 1318 //===--------------------------------------------------------------------===// 1319 // Block Bits 1320 //===--------------------------------------------------------------------===// 1321 1322 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1323 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 1324 static void destroyBlockInfos(CGBlockInfo *info); 1325 llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *, 1326 const CGBlockInfo &Info, 1327 llvm::StructType *, 1328 llvm::Constant *BlockVarLayout); 1329 1330 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1331 const CGBlockInfo &Info, 1332 const Decl *OuterFuncDecl, 1333 const DeclMapTy &ldm); 1334 1335 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1336 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1337 1338 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1339 1340 class AutoVarEmission; 1341 1342 void emitByrefStructureInit(const AutoVarEmission &emission); 1343 void enterByrefCleanup(const AutoVarEmission &emission); 1344 1345 llvm::Value *LoadBlockStruct() { 1346 assert(BlockPointer && "no block pointer set!"); 1347 return BlockPointer; 1348 } 1349 1350 void AllocateBlockCXXThisPointer(const CXXThisExpr *E); 1351 void AllocateBlockDecl(const BlockDeclRefExpr *E); 1352 llvm::Value *GetAddrOfBlockDecl(const BlockDeclRefExpr *E) { 1353 return GetAddrOfBlockDecl(E->getDecl(), E->isByRef()); 1354 } 1355 llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1356 llvm::Type *BuildByRefType(const VarDecl *var); 1357 1358 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1359 const CGFunctionInfo &FnInfo); 1360 void StartFunction(GlobalDecl GD, QualType RetTy, 1361 llvm::Function *Fn, 1362 const CGFunctionInfo &FnInfo, 1363 const FunctionArgList &Args, 1364 SourceLocation StartLoc); 1365 1366 void EmitConstructorBody(FunctionArgList &Args); 1367 void EmitDestructorBody(FunctionArgList &Args); 1368 void EmitFunctionBody(FunctionArgList &Args); 1369 1370 /// EmitReturnBlock - Emit the unified return block, trying to avoid its 1371 /// emission when possible. 1372 void EmitReturnBlock(); 1373 1374 /// FinishFunction - Complete IR generation of the current function. It is 1375 /// legal to call this function even if there is no current insertion point. 1376 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1377 1378 /// GenerateThunk - Generate a thunk for the given method. 1379 void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1380 GlobalDecl GD, const ThunkInfo &Thunk); 1381 1382 void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1383 GlobalDecl GD, const ThunkInfo &Thunk); 1384 1385 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1386 FunctionArgList &Args); 1387 1388 /// InitializeVTablePointer - Initialize the vtable pointer of the given 1389 /// subobject. 1390 /// 1391 void InitializeVTablePointer(BaseSubobject Base, 1392 const CXXRecordDecl *NearestVBase, 1393 CharUnits OffsetFromNearestVBase, 1394 llvm::Constant *VTable, 1395 const CXXRecordDecl *VTableClass); 1396 1397 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1398 void InitializeVTablePointers(BaseSubobject Base, 1399 const CXXRecordDecl *NearestVBase, 1400 CharUnits OffsetFromNearestVBase, 1401 bool BaseIsNonVirtualPrimaryBase, 1402 llvm::Constant *VTable, 1403 const CXXRecordDecl *VTableClass, 1404 VisitedVirtualBasesSetTy& VBases); 1405 1406 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1407 1408 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1409 /// to by This. 1410 llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty); 1411 1412 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1413 /// given phase of destruction for a destructor. The end result 1414 /// should call destructors on members and base classes in reverse 1415 /// order of their construction. 1416 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1417 1418 /// ShouldInstrumentFunction - Return true if the current function should be 1419 /// instrumented with __cyg_profile_func_* calls 1420 bool ShouldInstrumentFunction(); 1421 1422 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1423 /// instrumentation function with the current function and the call site, if 1424 /// function instrumentation is enabled. 1425 void EmitFunctionInstrumentation(const char *Fn); 1426 1427 /// EmitMCountInstrumentation - Emit call to .mcount. 1428 void EmitMCountInstrumentation(); 1429 1430 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1431 /// arguments for the given function. This is also responsible for naming the 1432 /// LLVM function arguments. 1433 void EmitFunctionProlog(const CGFunctionInfo &FI, 1434 llvm::Function *Fn, 1435 const FunctionArgList &Args); 1436 1437 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1438 /// given temporary. 1439 void EmitFunctionEpilog(const CGFunctionInfo &FI); 1440 1441 /// EmitStartEHSpec - Emit the start of the exception spec. 1442 void EmitStartEHSpec(const Decl *D); 1443 1444 /// EmitEndEHSpec - Emit the end of the exception spec. 1445 void EmitEndEHSpec(const Decl *D); 1446 1447 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1448 llvm::BasicBlock *getTerminateLandingPad(); 1449 1450 /// getTerminateHandler - Return a handler (not a landing pad, just 1451 /// a catch handler) that just calls terminate. This is used when 1452 /// a terminate scope encloses a try. 1453 llvm::BasicBlock *getTerminateHandler(); 1454 1455 llvm::Type *ConvertTypeForMem(QualType T); 1456 llvm::Type *ConvertType(QualType T); 1457 llvm::Type *ConvertType(const TypeDecl *T) { 1458 return ConvertType(getContext().getTypeDeclType(T)); 1459 } 1460 1461 /// LoadObjCSelf - Load the value of self. This function is only valid while 1462 /// generating code for an Objective-C method. 1463 llvm::Value *LoadObjCSelf(); 1464 1465 /// TypeOfSelfObject - Return type of object that this self represents. 1466 QualType TypeOfSelfObject(); 1467 1468 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1469 /// an aggregate LLVM type or is void. 1470 static bool hasAggregateLLVMType(QualType T); 1471 1472 /// createBasicBlock - Create an LLVM basic block. 1473 llvm::BasicBlock *createBasicBlock(StringRef name = "", 1474 llvm::Function *parent = 0, 1475 llvm::BasicBlock *before = 0) { 1476#ifdef NDEBUG 1477 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1478#else 1479 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1480#endif 1481 } 1482 1483 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1484 /// label maps to. 1485 JumpDest getJumpDestForLabel(const LabelDecl *S); 1486 1487 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1488 /// another basic block, simplify it. This assumes that no other code could 1489 /// potentially reference the basic block. 1490 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1491 1492 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1493 /// adding a fall-through branch from the current insert block if 1494 /// necessary. It is legal to call this function even if there is no current 1495 /// insertion point. 1496 /// 1497 /// IsFinished - If true, indicates that the caller has finished emitting 1498 /// branches to the given block and does not expect to emit code into it. This 1499 /// means the block can be ignored if it is unreachable. 1500 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1501 1502 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1503 /// near its uses, and leave the insertion point in it. 1504 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1505 1506 /// EmitBranch - Emit a branch to the specified basic block from the current 1507 /// insert block, taking care to avoid creation of branches from dummy 1508 /// blocks. It is legal to call this function even if there is no current 1509 /// insertion point. 1510 /// 1511 /// This function clears the current insertion point. The caller should follow 1512 /// calls to this function with calls to Emit*Block prior to generation new 1513 /// code. 1514 void EmitBranch(llvm::BasicBlock *Block); 1515 1516 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1517 /// indicates that the current code being emitted is unreachable. 1518 bool HaveInsertPoint() const { 1519 return Builder.GetInsertBlock() != 0; 1520 } 1521 1522 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1523 /// emitted IR has a place to go. Note that by definition, if this function 1524 /// creates a block then that block is unreachable; callers may do better to 1525 /// detect when no insertion point is defined and simply skip IR generation. 1526 void EnsureInsertPoint() { 1527 if (!HaveInsertPoint()) 1528 EmitBlock(createBasicBlock()); 1529 } 1530 1531 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1532 /// specified stmt yet. 1533 void ErrorUnsupported(const Stmt *S, const char *Type, 1534 bool OmitOnError=false); 1535 1536 //===--------------------------------------------------------------------===// 1537 // Helpers 1538 //===--------------------------------------------------------------------===// 1539 1540 LValue MakeAddrLValue(llvm::Value *V, QualType T, unsigned Alignment = 0) { 1541 return LValue::MakeAddr(V, T, Alignment, getContext(), 1542 CGM.getTBAAInfo(T)); 1543 } 1544 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 1545 unsigned Alignment; 1546 if (T->isIncompleteType()) 1547 Alignment = 0; 1548 else 1549 Alignment = getContext().getTypeAlignInChars(T).getQuantity(); 1550 return LValue::MakeAddr(V, T, Alignment, getContext(), 1551 CGM.getTBAAInfo(T)); 1552 } 1553 1554 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1555 /// block. The caller is responsible for setting an appropriate alignment on 1556 /// the alloca. 1557 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1558 const Twine &Name = "tmp"); 1559 1560 /// InitTempAlloca - Provide an initial value for the given alloca. 1561 void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value); 1562 1563 /// CreateIRTemp - Create a temporary IR object of the given type, with 1564 /// appropriate alignment. This routine should only be used when an temporary 1565 /// value needs to be stored into an alloca (for example, to avoid explicit 1566 /// PHI construction), but the type is the IR type, not the type appropriate 1567 /// for storing in memory. 1568 llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1569 1570 /// CreateMemTemp - Create a temporary memory object of the given type, with 1571 /// appropriate alignment. 1572 llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1573 1574 /// CreateAggTemp - Create a temporary memory object for the given 1575 /// aggregate type. 1576 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1577 CharUnits Alignment = getContext().getTypeAlignInChars(T); 1578 return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment, 1579 T.getQualifiers(), 1580 AggValueSlot::IsNotDestructed, 1581 AggValueSlot::DoesNotNeedGCBarriers, 1582 AggValueSlot::IsNotAliased); 1583 } 1584 1585 /// Emit a cast to void* in the appropriate address space. 1586 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1587 1588 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1589 /// expression and compare the result against zero, returning an Int1Ty value. 1590 llvm::Value *EvaluateExprAsBool(const Expr *E); 1591 1592 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1593 void EmitIgnoredExpr(const Expr *E); 1594 1595 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1596 /// any type. The result is returned as an RValue struct. If this is an 1597 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1598 /// the result should be returned. 1599 /// 1600 /// \param IgnoreResult - True if the resulting value isn't used. 1601 RValue EmitAnyExpr(const Expr *E, 1602 AggValueSlot AggSlot = AggValueSlot::ignored(), 1603 bool IgnoreResult = false); 1604 1605 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1606 // or the value of the expression, depending on how va_list is defined. 1607 llvm::Value *EmitVAListRef(const Expr *E); 1608 1609 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1610 /// always be accessible even if no aggregate location is provided. 1611 RValue EmitAnyExprToTemp(const Expr *E); 1612 1613 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1614 /// arbitrary expression into the given memory location. 1615 void EmitAnyExprToMem(const Expr *E, llvm::Value *Location, 1616 Qualifiers Quals, bool IsInitializer); 1617 1618 /// EmitExprAsInit - Emits the code necessary to initialize a 1619 /// location in memory with the given initializer. 1620 void EmitExprAsInit(const Expr *init, const ValueDecl *D, 1621 LValue lvalue, bool capturedByInit); 1622 1623 /// EmitAggregateCopy - Emit an aggrate copy. 1624 /// 1625 /// \param isVolatile - True iff either the source or the destination is 1626 /// volatile. 1627 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1628 QualType EltTy, bool isVolatile=false); 1629 1630 /// StartBlock - Start new block named N. If insert block is a dummy block 1631 /// then reuse it. 1632 void StartBlock(const char *N); 1633 1634 /// GetAddrOfStaticLocalVar - Return the address of a static local variable. 1635 llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) { 1636 return cast<llvm::Constant>(GetAddrOfLocalVar(BVD)); 1637 } 1638 1639 /// GetAddrOfLocalVar - Return the address of a local variable. 1640 llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) { 1641 llvm::Value *Res = LocalDeclMap[VD]; 1642 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1643 return Res; 1644 } 1645 1646 /// getOpaqueLValueMapping - Given an opaque value expression (which 1647 /// must be mapped to an l-value), return its mapping. 1648 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1649 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1650 1651 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1652 it = OpaqueLValues.find(e); 1653 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1654 return it->second; 1655 } 1656 1657 /// getOpaqueRValueMapping - Given an opaque value expression (which 1658 /// must be mapped to an r-value), return its mapping. 1659 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1660 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1661 1662 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1663 it = OpaqueRValues.find(e); 1664 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1665 return it->second; 1666 } 1667 1668 /// getAccessedFieldNo - Given an encoded value and a result number, return 1669 /// the input field number being accessed. 1670 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1671 1672 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1673 llvm::BasicBlock *GetIndirectGotoBlock(); 1674 1675 /// EmitNullInitialization - Generate code to set a value of the given type to 1676 /// null, If the type contains data member pointers, they will be initialized 1677 /// to -1 in accordance with the Itanium C++ ABI. 1678 void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty); 1679 1680 // EmitVAArg - Generate code to get an argument from the passed in pointer 1681 // and update it accordingly. The return value is a pointer to the argument. 1682 // FIXME: We should be able to get rid of this method and use the va_arg 1683 // instruction in LLVM instead once it works well enough. 1684 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty); 1685 1686 /// emitArrayLength - Compute the length of an array, even if it's a 1687 /// VLA, and drill down to the base element type. 1688 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1689 QualType &baseType, 1690 llvm::Value *&addr); 1691 1692 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1693 /// the given variably-modified type and store them in the VLASizeMap. 1694 /// 1695 /// This function can be called with a null (unreachable) insert point. 1696 void EmitVariablyModifiedType(QualType Ty); 1697 1698 /// getVLASize - Returns an LLVM value that corresponds to the size, 1699 /// in non-variably-sized elements, of a variable length array type, 1700 /// plus that largest non-variably-sized element type. Assumes that 1701 /// the type has already been emitted with EmitVariablyModifiedType. 1702 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1703 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1704 1705 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1706 /// generating code for an C++ member function. 1707 llvm::Value *LoadCXXThis() { 1708 assert(CXXThisValue && "no 'this' value for this function"); 1709 return CXXThisValue; 1710 } 1711 1712 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1713 /// virtual bases. 1714 llvm::Value *LoadCXXVTT() { 1715 assert(CXXVTTValue && "no VTT value for this function"); 1716 return CXXVTTValue; 1717 } 1718 1719 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1720 /// complete class to the given direct base. 1721 llvm::Value * 1722 GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value, 1723 const CXXRecordDecl *Derived, 1724 const CXXRecordDecl *Base, 1725 bool BaseIsVirtual); 1726 1727 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1728 /// load of 'this' and returns address of the base class. 1729 llvm::Value *GetAddressOfBaseClass(llvm::Value *Value, 1730 const CXXRecordDecl *Derived, 1731 CastExpr::path_const_iterator PathBegin, 1732 CastExpr::path_const_iterator PathEnd, 1733 bool NullCheckValue); 1734 1735 llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value, 1736 const CXXRecordDecl *Derived, 1737 CastExpr::path_const_iterator PathBegin, 1738 CastExpr::path_const_iterator PathEnd, 1739 bool NullCheckValue); 1740 1741 llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This, 1742 const CXXRecordDecl *ClassDecl, 1743 const CXXRecordDecl *BaseClassDecl); 1744 1745 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1746 CXXCtorType CtorType, 1747 const FunctionArgList &Args); 1748 // It's important not to confuse this and the previous function. Delegating 1749 // constructors are the C++0x feature. The constructor delegate optimization 1750 // is used to reduce duplication in the base and complete consturctors where 1751 // they are substantially the same. 1752 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1753 const FunctionArgList &Args); 1754 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1755 bool ForVirtualBase, llvm::Value *This, 1756 CallExpr::const_arg_iterator ArgBeg, 1757 CallExpr::const_arg_iterator ArgEnd); 1758 1759 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1760 llvm::Value *This, llvm::Value *Src, 1761 CallExpr::const_arg_iterator ArgBeg, 1762 CallExpr::const_arg_iterator ArgEnd); 1763 1764 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1765 const ConstantArrayType *ArrayTy, 1766 llvm::Value *ArrayPtr, 1767 CallExpr::const_arg_iterator ArgBeg, 1768 CallExpr::const_arg_iterator ArgEnd, 1769 bool ZeroInitialization = false); 1770 1771 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1772 llvm::Value *NumElements, 1773 llvm::Value *ArrayPtr, 1774 CallExpr::const_arg_iterator ArgBeg, 1775 CallExpr::const_arg_iterator ArgEnd, 1776 bool ZeroInitialization = false); 1777 1778 static Destroyer destroyCXXObject; 1779 1780 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1781 bool ForVirtualBase, llvm::Value *This); 1782 1783 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 1784 llvm::Value *NewPtr, llvm::Value *NumElements); 1785 1786 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 1787 llvm::Value *Ptr); 1788 1789 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1790 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1791 1792 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1793 QualType DeleteTy); 1794 1795 llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1796 llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE); 1797 1798 void EmitCheck(llvm::Value *, unsigned Size); 1799 1800 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1801 bool isInc, bool isPre); 1802 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1803 bool isInc, bool isPre); 1804 //===--------------------------------------------------------------------===// 1805 // Declaration Emission 1806 //===--------------------------------------------------------------------===// 1807 1808 /// EmitDecl - Emit a declaration. 1809 /// 1810 /// This function can be called with a null (unreachable) insert point. 1811 void EmitDecl(const Decl &D); 1812 1813 /// EmitVarDecl - Emit a local variable declaration. 1814 /// 1815 /// This function can be called with a null (unreachable) insert point. 1816 void EmitVarDecl(const VarDecl &D); 1817 1818 void EmitScalarInit(const Expr *init, const ValueDecl *D, 1819 LValue lvalue, bool capturedByInit); 1820 void EmitScalarInit(llvm::Value *init, LValue lvalue); 1821 1822 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1823 llvm::Value *Address); 1824 1825 /// EmitAutoVarDecl - Emit an auto variable declaration. 1826 /// 1827 /// This function can be called with a null (unreachable) insert point. 1828 void EmitAutoVarDecl(const VarDecl &D); 1829 1830 class AutoVarEmission { 1831 friend class CodeGenFunction; 1832 1833 const VarDecl *Variable; 1834 1835 /// The alignment of the variable. 1836 CharUnits Alignment; 1837 1838 /// The address of the alloca. Null if the variable was emitted 1839 /// as a global constant. 1840 llvm::Value *Address; 1841 1842 llvm::Value *NRVOFlag; 1843 1844 /// True if the variable is a __block variable. 1845 bool IsByRef; 1846 1847 /// True if the variable is of aggregate type and has a constant 1848 /// initializer. 1849 bool IsConstantAggregate; 1850 1851 struct Invalid {}; 1852 AutoVarEmission(Invalid) : Variable(0) {} 1853 1854 AutoVarEmission(const VarDecl &variable) 1855 : Variable(&variable), Address(0), NRVOFlag(0), 1856 IsByRef(false), IsConstantAggregate(false) {} 1857 1858 bool wasEmittedAsGlobal() const { return Address == 0; } 1859 1860 public: 1861 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 1862 1863 /// Returns the address of the object within this declaration. 1864 /// Note that this does not chase the forwarding pointer for 1865 /// __block decls. 1866 llvm::Value *getObjectAddress(CodeGenFunction &CGF) const { 1867 if (!IsByRef) return Address; 1868 1869 return CGF.Builder.CreateStructGEP(Address, 1870 CGF.getByRefValueLLVMField(Variable), 1871 Variable->getNameAsString()); 1872 } 1873 }; 1874 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 1875 void EmitAutoVarInit(const AutoVarEmission &emission); 1876 void EmitAutoVarCleanups(const AutoVarEmission &emission); 1877 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 1878 QualType::DestructionKind dtorKind); 1879 1880 void EmitStaticVarDecl(const VarDecl &D, 1881 llvm::GlobalValue::LinkageTypes Linkage); 1882 1883 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 1884 void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo); 1885 1886 /// protectFromPeepholes - Protect a value that we're intending to 1887 /// store to the side, but which will probably be used later, from 1888 /// aggressive peepholing optimizations that might delete it. 1889 /// 1890 /// Pass the result to unprotectFromPeepholes to declare that 1891 /// protection is no longer required. 1892 /// 1893 /// There's no particular reason why this shouldn't apply to 1894 /// l-values, it's just that no existing peepholes work on pointers. 1895 PeepholeProtection protectFromPeepholes(RValue rvalue); 1896 void unprotectFromPeepholes(PeepholeProtection protection); 1897 1898 //===--------------------------------------------------------------------===// 1899 // Statement Emission 1900 //===--------------------------------------------------------------------===// 1901 1902 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 1903 void EmitStopPoint(const Stmt *S); 1904 1905 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 1906 /// this function even if there is no current insertion point. 1907 /// 1908 /// This function may clear the current insertion point; callers should use 1909 /// EnsureInsertPoint if they wish to subsequently generate code without first 1910 /// calling EmitBlock, EmitBranch, or EmitStmt. 1911 void EmitStmt(const Stmt *S); 1912 1913 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 1914 /// necessarily require an insertion point or debug information; typically 1915 /// because the statement amounts to a jump or a container of other 1916 /// statements. 1917 /// 1918 /// \return True if the statement was handled. 1919 bool EmitSimpleStmt(const Stmt *S); 1920 1921 RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 1922 AggValueSlot AVS = AggValueSlot::ignored()); 1923 1924 /// EmitLabel - Emit the block for the given label. It is legal to call this 1925 /// function even if there is no current insertion point. 1926 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 1927 1928 void EmitLabelStmt(const LabelStmt &S); 1929 void EmitGotoStmt(const GotoStmt &S); 1930 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 1931 void EmitIfStmt(const IfStmt &S); 1932 void EmitWhileStmt(const WhileStmt &S); 1933 void EmitDoStmt(const DoStmt &S); 1934 void EmitForStmt(const ForStmt &S); 1935 void EmitReturnStmt(const ReturnStmt &S); 1936 void EmitDeclStmt(const DeclStmt &S); 1937 void EmitBreakStmt(const BreakStmt &S); 1938 void EmitContinueStmt(const ContinueStmt &S); 1939 void EmitSwitchStmt(const SwitchStmt &S); 1940 void EmitDefaultStmt(const DefaultStmt &S); 1941 void EmitCaseStmt(const CaseStmt &S); 1942 void EmitCaseStmtRange(const CaseStmt &S); 1943 void EmitAsmStmt(const AsmStmt &S); 1944 1945 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 1946 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 1947 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 1948 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 1949 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 1950 1951 llvm::Constant *getUnwindResumeFn(); 1952 llvm::Constant *getUnwindResumeOrRethrowFn(); 1953 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1954 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1955 1956 void EmitCXXTryStmt(const CXXTryStmt &S); 1957 void EmitCXXForRangeStmt(const CXXForRangeStmt &S); 1958 1959 //===--------------------------------------------------------------------===// 1960 // LValue Expression Emission 1961 //===--------------------------------------------------------------------===// 1962 1963 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 1964 RValue GetUndefRValue(QualType Ty); 1965 1966 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 1967 /// and issue an ErrorUnsupported style diagnostic (using the 1968 /// provided Name). 1969 RValue EmitUnsupportedRValue(const Expr *E, 1970 const char *Name); 1971 1972 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 1973 /// an ErrorUnsupported style diagnostic (using the provided Name). 1974 LValue EmitUnsupportedLValue(const Expr *E, 1975 const char *Name); 1976 1977 /// EmitLValue - Emit code to compute a designator that specifies the location 1978 /// of the expression. 1979 /// 1980 /// This can return one of two things: a simple address or a bitfield 1981 /// reference. In either case, the LLVM Value* in the LValue structure is 1982 /// guaranteed to be an LLVM pointer type. 1983 /// 1984 /// If this returns a bitfield reference, nothing about the pointee type of 1985 /// the LLVM value is known: For example, it may not be a pointer to an 1986 /// integer. 1987 /// 1988 /// If this returns a normal address, and if the lvalue's C type is fixed 1989 /// size, this method guarantees that the returned pointer type will point to 1990 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 1991 /// variable length type, this is not possible. 1992 /// 1993 LValue EmitLValue(const Expr *E); 1994 1995 /// EmitCheckedLValue - Same as EmitLValue but additionally we generate 1996 /// checking code to guard against undefined behavior. This is only 1997 /// suitable when we know that the address will be used to access the 1998 /// object. 1999 LValue EmitCheckedLValue(const Expr *E); 2000 2001 /// EmitToMemory - Change a scalar value from its value 2002 /// representation to its in-memory representation. 2003 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 2004 2005 /// EmitFromMemory - Change a scalar value from its memory 2006 /// representation to its value representation. 2007 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 2008 2009 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2010 /// care to appropriately convert from the memory representation to 2011 /// the LLVM value representation. 2012 llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 2013 unsigned Alignment, QualType Ty, 2014 llvm::MDNode *TBAAInfo = 0); 2015 2016 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2017 /// care to appropriately convert from the memory representation to 2018 /// the LLVM value representation. The l-value must be a simple 2019 /// l-value. 2020 llvm::Value *EmitLoadOfScalar(LValue lvalue); 2021 2022 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2023 /// care to appropriately convert from the memory representation to 2024 /// the LLVM value representation. 2025 void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 2026 bool Volatile, unsigned Alignment, QualType Ty, 2027 llvm::MDNode *TBAAInfo = 0); 2028 2029 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2030 /// care to appropriately convert from the memory representation to 2031 /// the LLVM value representation. The l-value must be a simple 2032 /// l-value. 2033 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue); 2034 2035 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 2036 /// this method emits the address of the lvalue, then loads the result as an 2037 /// rvalue, returning the rvalue. 2038 RValue EmitLoadOfLValue(LValue V); 2039 RValue EmitLoadOfExtVectorElementLValue(LValue V); 2040 RValue EmitLoadOfBitfieldLValue(LValue LV); 2041 2042 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2043 /// lvalue, where both are guaranteed to the have the same type, and that type 2044 /// is 'Ty'. 2045 void EmitStoreThroughLValue(RValue Src, LValue Dst); 2046 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 2047 2048 /// EmitStoreThroughLValue - Store Src into Dst with same constraints as 2049 /// EmitStoreThroughLValue. 2050 /// 2051 /// \param Result [out] - If non-null, this will be set to a Value* for the 2052 /// bit-field contents after the store, appropriate for use as the result of 2053 /// an assignment to the bit-field. 2054 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2055 llvm::Value **Result=0); 2056 2057 /// Emit an l-value for an assignment (simple or compound) of complex type. 2058 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 2059 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 2060 2061 // Note: only available for agg return types 2062 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 2063 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 2064 // Note: only available for agg return types 2065 LValue EmitCallExprLValue(const CallExpr *E); 2066 // Note: only available for agg return types 2067 LValue EmitVAArgExprLValue(const VAArgExpr *E); 2068 LValue EmitDeclRefLValue(const DeclRefExpr *E); 2069 LValue EmitStringLiteralLValue(const StringLiteral *E); 2070 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 2071 LValue EmitPredefinedLValue(const PredefinedExpr *E); 2072 LValue EmitUnaryOpLValue(const UnaryOperator *E); 2073 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E); 2074 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 2075 LValue EmitMemberExpr(const MemberExpr *E); 2076 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 2077 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 2078 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 2079 LValue EmitCastLValue(const CastExpr *E); 2080 LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E); 2081 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 2082 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 2083 2084 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 2085 AggValueSlot slot = AggValueSlot::ignored()); 2086 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 2087 2088 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2089 const ObjCIvarDecl *Ivar); 2090 LValue EmitLValueForAnonRecordField(llvm::Value* Base, 2091 const IndirectFieldDecl* Field, 2092 unsigned CVRQualifiers); 2093 LValue EmitLValueForField(llvm::Value* Base, const FieldDecl* Field, 2094 unsigned CVRQualifiers); 2095 2096 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 2097 /// if the Field is a reference, this will return the address of the reference 2098 /// and not the address of the value stored in the reference. 2099 LValue EmitLValueForFieldInitialization(llvm::Value* Base, 2100 const FieldDecl* Field, 2101 unsigned CVRQualifiers); 2102 2103 LValue EmitLValueForIvar(QualType ObjectTy, 2104 llvm::Value* Base, const ObjCIvarDecl *Ivar, 2105 unsigned CVRQualifiers); 2106 2107 LValue EmitLValueForBitfield(llvm::Value* Base, const FieldDecl* Field, 2108 unsigned CVRQualifiers); 2109 2110 LValue EmitBlockDeclRefLValue(const BlockDeclRefExpr *E); 2111 2112 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 2113 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 2114 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2115 2116 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2117 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2118 LValue EmitStmtExprLValue(const StmtExpr *E); 2119 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2120 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2121 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 2122 2123 //===--------------------------------------------------------------------===// 2124 // Scalar Expression Emission 2125 //===--------------------------------------------------------------------===// 2126 2127 /// EmitCall - Generate a call of the given function, expecting the given 2128 /// result type, and using the given argument list which specifies both the 2129 /// LLVM arguments and the types they were derived from. 2130 /// 2131 /// \param TargetDecl - If given, the decl of the function in a direct call; 2132 /// used to set attributes on the call (noreturn, etc.). 2133 RValue EmitCall(const CGFunctionInfo &FnInfo, 2134 llvm::Value *Callee, 2135 ReturnValueSlot ReturnValue, 2136 const CallArgList &Args, 2137 const Decl *TargetDecl = 0, 2138 llvm::Instruction **callOrInvoke = 0); 2139 2140 RValue EmitCall(QualType FnType, llvm::Value *Callee, 2141 ReturnValueSlot ReturnValue, 2142 CallExpr::const_arg_iterator ArgBeg, 2143 CallExpr::const_arg_iterator ArgEnd, 2144 const Decl *TargetDecl = 0); 2145 RValue EmitCallExpr(const CallExpr *E, 2146 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2147 2148 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2149 ArrayRef<llvm::Value *> Args, 2150 const Twine &Name = ""); 2151 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2152 const Twine &Name = ""); 2153 2154 llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This, 2155 llvm::Type *Ty); 2156 llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type, 2157 llvm::Value *This, llvm::Type *Ty); 2158 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2159 NestedNameSpecifier *Qual, 2160 llvm::Type *Ty); 2161 2162 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2163 CXXDtorType Type, 2164 const CXXRecordDecl *RD); 2165 2166 RValue EmitCXXMemberCall(const CXXMethodDecl *MD, 2167 llvm::Value *Callee, 2168 ReturnValueSlot ReturnValue, 2169 llvm::Value *This, 2170 llvm::Value *VTT, 2171 CallExpr::const_arg_iterator ArgBeg, 2172 CallExpr::const_arg_iterator ArgEnd); 2173 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2174 ReturnValueSlot ReturnValue); 2175 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2176 ReturnValueSlot ReturnValue); 2177 2178 llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E, 2179 const CXXMethodDecl *MD, 2180 llvm::Value *This); 2181 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2182 const CXXMethodDecl *MD, 2183 ReturnValueSlot ReturnValue); 2184 2185 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 2186 ReturnValueSlot ReturnValue); 2187 2188 2189 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2190 unsigned BuiltinID, const CallExpr *E); 2191 2192 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2193 2194 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2195 /// is unhandled by the current target. 2196 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2197 2198 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2199 llvm::Value *EmitNeonCall(llvm::Function *F, 2200 SmallVectorImpl<llvm::Value*> &O, 2201 const char *name, 2202 unsigned shift = 0, bool rightshift = false); 2203 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2204 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 2205 bool negateForRightShift); 2206 2207 llvm::Value *BuildVector(const SmallVectorImpl<llvm::Value*> &Ops); 2208 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2209 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2210 2211 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2212 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2213 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2214 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2215 ReturnValueSlot Return = ReturnValueSlot()); 2216 2217 /// Retrieves the default cleanup kind for an ARC cleanup. 2218 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 2219 CleanupKind getARCCleanupKind() { 2220 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 2221 ? NormalAndEHCleanup : NormalCleanup; 2222 } 2223 2224 // ARC primitives. 2225 void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr); 2226 void EmitARCDestroyWeak(llvm::Value *addr); 2227 llvm::Value *EmitARCLoadWeak(llvm::Value *addr); 2228 llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr); 2229 llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr, 2230 bool ignored); 2231 void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src); 2232 void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src); 2233 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 2234 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 2235 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 2236 bool ignored); 2237 llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value, 2238 bool ignored); 2239 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 2240 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 2241 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 2242 void EmitARCRelease(llvm::Value *value, bool precise); 2243 llvm::Value *EmitARCAutorelease(llvm::Value *value); 2244 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 2245 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 2246 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 2247 2248 std::pair<LValue,llvm::Value*> 2249 EmitARCStoreAutoreleasing(const BinaryOperator *e); 2250 std::pair<LValue,llvm::Value*> 2251 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 2252 2253 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 2254 2255 llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr); 2256 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 2257 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 2258 2259 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 2260 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 2261 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 2262 2263 static Destroyer destroyARCStrongImprecise; 2264 static Destroyer destroyARCStrongPrecise; 2265 static Destroyer destroyARCWeak; 2266 2267 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 2268 llvm::Value *EmitObjCAutoreleasePoolPush(); 2269 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 2270 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 2271 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 2272 2273 /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in 2274 /// expression. Will emit a temporary variable if E is not an LValue. 2275 RValue EmitReferenceBindingToExpr(const Expr* E, 2276 const NamedDecl *InitializedDecl); 2277 2278 //===--------------------------------------------------------------------===// 2279 // Expression Emission 2280 //===--------------------------------------------------------------------===// 2281 2282 // Expressions are broken into three classes: scalar, complex, aggregate. 2283 2284 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 2285 /// scalar type, returning the result. 2286 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 2287 2288 /// EmitScalarConversion - Emit a conversion from the specified type to the 2289 /// specified destination type, both of which are LLVM scalar types. 2290 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 2291 QualType DstTy); 2292 2293 /// EmitComplexToScalarConversion - Emit a conversion from the specified 2294 /// complex type to the specified destination type, where the destination type 2295 /// is an LLVM scalar type. 2296 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 2297 QualType DstTy); 2298 2299 2300 /// EmitAggExpr - Emit the computation of the specified expression 2301 /// of aggregate type. The result is computed into the given slot, 2302 /// which may be null to indicate that the value is not needed. 2303 void EmitAggExpr(const Expr *E, AggValueSlot AS, bool IgnoreResult = false); 2304 2305 /// EmitAggExprToLValue - Emit the computation of the specified expression of 2306 /// aggregate type into a temporary LValue. 2307 LValue EmitAggExprToLValue(const Expr *E); 2308 2309 /// EmitGCMemmoveCollectable - Emit special API for structs with object 2310 /// pointers. 2311 void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr, 2312 QualType Ty); 2313 2314 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2315 /// make sure it survives garbage collection until this point. 2316 void EmitExtendGCLifetime(llvm::Value *object); 2317 2318 /// EmitComplexExpr - Emit the computation of the specified expression of 2319 /// complex type, returning the result. 2320 ComplexPairTy EmitComplexExpr(const Expr *E, 2321 bool IgnoreReal = false, 2322 bool IgnoreImag = false); 2323 2324 /// EmitComplexExprIntoAddr - Emit the computation of the specified expression 2325 /// of complex type, storing into the specified Value*. 2326 void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr, 2327 bool DestIsVolatile); 2328 2329 /// StoreComplexToAddr - Store a complex number into the specified address. 2330 void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr, 2331 bool DestIsVolatile); 2332 /// LoadComplexFromAddr - Load a complex number from the specified address. 2333 ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile); 2334 2335 /// CreateStaticVarDecl - Create a zero-initialized LLVM global for 2336 /// a static local variable. 2337 llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D, 2338 const char *Separator, 2339 llvm::GlobalValue::LinkageTypes Linkage); 2340 2341 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2342 /// global variable that has already been created for it. If the initializer 2343 /// has a different type than GV does, this may free GV and return a different 2344 /// one. Otherwise it just returns GV. 2345 llvm::GlobalVariable * 2346 AddInitializerToStaticVarDecl(const VarDecl &D, 2347 llvm::GlobalVariable *GV); 2348 2349 2350 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2351 /// variable with global storage. 2352 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr); 2353 2354 /// EmitCXXGlobalDtorRegistration - Emits a call to register the global ptr 2355 /// with the C++ runtime so that its destructor will be called at exit. 2356 void EmitCXXGlobalDtorRegistration(llvm::Constant *DtorFn, 2357 llvm::Constant *DeclPtr); 2358 2359 /// Emit code in this function to perform a guarded variable 2360 /// initialization. Guarded initializations are used when it's not 2361 /// possible to prove that an initialization will be done exactly 2362 /// once, e.g. with a static local variable or a static data member 2363 /// of a class template. 2364 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr); 2365 2366 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2367 /// variables. 2368 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2369 llvm::Constant **Decls, 2370 unsigned NumDecls); 2371 2372 /// GenerateCXXGlobalDtorFunc - Generates code for destroying global 2373 /// variables. 2374 void GenerateCXXGlobalDtorFunc(llvm::Function *Fn, 2375 const std::vector<std::pair<llvm::WeakVH, 2376 llvm::Constant*> > &DtorsAndObjects); 2377 2378 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2379 const VarDecl *D, 2380 llvm::GlobalVariable *Addr); 2381 2382 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2383 2384 void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, 2385 const Expr *Exp); 2386 2387 void enterFullExpression(const ExprWithCleanups *E) { 2388 if (E->getNumObjects() == 0) return; 2389 enterNonTrivialFullExpression(E); 2390 } 2391 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 2392 2393 void EmitCXXThrowExpr(const CXXThrowExpr *E); 2394 2395 RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0); 2396 2397 //===--------------------------------------------------------------------===// 2398 // Annotations Emission 2399 //===--------------------------------------------------------------------===// 2400 2401 /// Emit an annotation call (intrinsic or builtin). 2402 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 2403 llvm::Value *AnnotatedVal, 2404 llvm::StringRef AnnotationStr, 2405 SourceLocation Location); 2406 2407 /// Emit local annotations for the local variable V, declared by D. 2408 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 2409 2410 /// Emit field annotations for the given field & value. Returns the 2411 /// annotation result. 2412 llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V); 2413 2414 //===--------------------------------------------------------------------===// 2415 // Internal Helpers 2416 //===--------------------------------------------------------------------===// 2417 2418 /// ContainsLabel - Return true if the statement contains a label in it. If 2419 /// this statement is not executed normally, it not containing a label means 2420 /// that we can just remove the code. 2421 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 2422 2423 /// containsBreak - Return true if the statement contains a break out of it. 2424 /// If the statement (recursively) contains a switch or loop with a break 2425 /// inside of it, this is fine. 2426 static bool containsBreak(const Stmt *S); 2427 2428 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2429 /// to a constant, or if it does but contains a label, return false. If it 2430 /// constant folds return true and set the boolean result in Result. 2431 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 2432 2433 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2434 /// to a constant, or if it does but contains a label, return false. If it 2435 /// constant folds return true and set the folded value. 2436 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result); 2437 2438 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 2439 /// if statement) to the specified blocks. Based on the condition, this might 2440 /// try to simplify the codegen of the conditional based on the branch. 2441 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 2442 llvm::BasicBlock *FalseBlock); 2443 2444 /// getTrapBB - Create a basic block that will call the trap intrinsic. We'll 2445 /// generate a branch around the created basic block as necessary. 2446 llvm::BasicBlock *getTrapBB(); 2447 2448 /// EmitCallArg - Emit a single call argument. 2449 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 2450 2451 /// EmitDelegateCallArg - We are performing a delegate call; that 2452 /// is, the current function is delegating to another one. Produce 2453 /// a r-value suitable for passing the given parameter. 2454 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param); 2455 2456 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 2457 /// point operation, expressed as the maximum relative error in ulp. 2458 void SetFPAccuracy(llvm::Value *Val, unsigned AccuracyN, 2459 unsigned AccuracyD = 1); 2460 2461private: 2462 void EmitReturnOfRValue(RValue RV, QualType Ty); 2463 2464 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 2465 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 2466 /// 2467 /// \param AI - The first function argument of the expansion. 2468 /// \return The argument following the last expanded function 2469 /// argument. 2470 llvm::Function::arg_iterator 2471 ExpandTypeFromArgs(QualType Ty, LValue Dst, 2472 llvm::Function::arg_iterator AI); 2473 2474 /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg 2475 /// Ty, into individual arguments on the provided vector \arg Args. See 2476 /// ABIArgInfo::Expand. 2477 void ExpandTypeToArgs(QualType Ty, RValue Src, 2478 SmallVector<llvm::Value*, 16> &Args, 2479 llvm::FunctionType *IRFuncTy); 2480 2481 llvm::Value* EmitAsmInput(const AsmStmt &S, 2482 const TargetInfo::ConstraintInfo &Info, 2483 const Expr *InputExpr, std::string &ConstraintStr); 2484 2485 llvm::Value* EmitAsmInputLValue(const AsmStmt &S, 2486 const TargetInfo::ConstraintInfo &Info, 2487 LValue InputValue, QualType InputType, 2488 std::string &ConstraintStr); 2489 2490 /// EmitCallArgs - Emit call arguments for a function. 2491 /// The CallArgTypeInfo parameter is used for iterating over the known 2492 /// argument types of the function being called. 2493 template<typename T> 2494 void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo, 2495 CallExpr::const_arg_iterator ArgBeg, 2496 CallExpr::const_arg_iterator ArgEnd) { 2497 CallExpr::const_arg_iterator Arg = ArgBeg; 2498 2499 // First, use the argument types that the type info knows about 2500 if (CallArgTypeInfo) { 2501 for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(), 2502 E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) { 2503 assert(Arg != ArgEnd && "Running over edge of argument list!"); 2504 QualType ArgType = *I; 2505#ifndef NDEBUG 2506 QualType ActualArgType = Arg->getType(); 2507 if (ArgType->isPointerType() && ActualArgType->isPointerType()) { 2508 QualType ActualBaseType = 2509 ActualArgType->getAs<PointerType>()->getPointeeType(); 2510 QualType ArgBaseType = 2511 ArgType->getAs<PointerType>()->getPointeeType(); 2512 if (ArgBaseType->isVariableArrayType()) { 2513 if (const VariableArrayType *VAT = 2514 getContext().getAsVariableArrayType(ActualBaseType)) { 2515 if (!VAT->getSizeExpr()) 2516 ActualArgType = ArgType; 2517 } 2518 } 2519 } 2520 assert(getContext().getCanonicalType(ArgType.getNonReferenceType()). 2521 getTypePtr() == 2522 getContext().getCanonicalType(ActualArgType).getTypePtr() && 2523 "type mismatch in call argument!"); 2524#endif 2525 EmitCallArg(Args, *Arg, ArgType); 2526 } 2527 2528 // Either we've emitted all the call args, or we have a call to a 2529 // variadic function. 2530 assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) && 2531 "Extra arguments in non-variadic function!"); 2532 2533 } 2534 2535 // If we still have any arguments, emit them using the type of the argument. 2536 for (; Arg != ArgEnd; ++Arg) 2537 EmitCallArg(Args, *Arg, Arg->getType()); 2538 } 2539 2540 const TargetCodeGenInfo &getTargetHooks() const { 2541 return CGM.getTargetCodeGenInfo(); 2542 } 2543 2544 void EmitDeclMetadata(); 2545 2546 CodeGenModule::ByrefHelpers * 2547 buildByrefHelpers(llvm::StructType &byrefType, 2548 const AutoVarEmission &emission); 2549}; 2550 2551/// Helper class with most of the code for saving a value for a 2552/// conditional expression cleanup. 2553struct DominatingLLVMValue { 2554 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 2555 2556 /// Answer whether the given value needs extra work to be saved. 2557 static bool needsSaving(llvm::Value *value) { 2558 // If it's not an instruction, we don't need to save. 2559 if (!isa<llvm::Instruction>(value)) return false; 2560 2561 // If it's an instruction in the entry block, we don't need to save. 2562 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 2563 return (block != &block->getParent()->getEntryBlock()); 2564 } 2565 2566 /// Try to save the given value. 2567 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 2568 if (!needsSaving(value)) return saved_type(value, false); 2569 2570 // Otherwise we need an alloca. 2571 llvm::Value *alloca = 2572 CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save"); 2573 CGF.Builder.CreateStore(value, alloca); 2574 2575 return saved_type(alloca, true); 2576 } 2577 2578 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 2579 if (!value.getInt()) return value.getPointer(); 2580 return CGF.Builder.CreateLoad(value.getPointer()); 2581 } 2582}; 2583 2584/// A partial specialization of DominatingValue for llvm::Values that 2585/// might be llvm::Instructions. 2586template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 2587 typedef T *type; 2588 static type restore(CodeGenFunction &CGF, saved_type value) { 2589 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 2590 } 2591}; 2592 2593/// A specialization of DominatingValue for RValue. 2594template <> struct DominatingValue<RValue> { 2595 typedef RValue type; 2596 class saved_type { 2597 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 2598 AggregateAddress, ComplexAddress }; 2599 2600 llvm::Value *Value; 2601 Kind K; 2602 saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {} 2603 2604 public: 2605 static bool needsSaving(RValue value); 2606 static saved_type save(CodeGenFunction &CGF, RValue value); 2607 RValue restore(CodeGenFunction &CGF); 2608 2609 // implementations in CGExprCXX.cpp 2610 }; 2611 2612 static bool needsSaving(type value) { 2613 return saved_type::needsSaving(value); 2614 } 2615 static saved_type save(CodeGenFunction &CGF, type value) { 2616 return saved_type::save(CGF, value); 2617 } 2618 static type restore(CodeGenFunction &CGF, saved_type value) { 2619 return value.restore(CGF); 2620 } 2621}; 2622 2623} // end namespace CodeGen 2624} // end namespace clang 2625 2626#endif 2627