CodeGenFunction.h revision e87f3f62bcbe8bc562c1623c9e8bb49cf31c0460
1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This is the internal per-function state used for llvm translation. 11// 12//===----------------------------------------------------------------------===// 13 14#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H 15#define CLANG_CODEGEN_CODEGENFUNCTION_H 16 17#include "clang/AST/Type.h" 18#include "clang/AST/ExprCXX.h" 19#include "clang/AST/ExprObjC.h" 20#include "clang/AST/CharUnits.h" 21#include "clang/Frontend/CodeGenOptions.h" 22#include "clang/Basic/ABI.h" 23#include "clang/Basic/TargetInfo.h" 24#include "llvm/ADT/ArrayRef.h" 25#include "llvm/ADT/DenseMap.h" 26#include "llvm/ADT/SmallVector.h" 27#include "llvm/Support/ValueHandle.h" 28#include "llvm/Support/Debug.h" 29#include "CodeGenModule.h" 30#include "CGBuilder.h" 31#include "CGDebugInfo.h" 32#include "CGValue.h" 33 34namespace llvm { 35 class BasicBlock; 36 class LLVMContext; 37 class MDNode; 38 class Module; 39 class SwitchInst; 40 class Twine; 41 class Value; 42 class CallSite; 43} 44 45namespace clang { 46 class ASTContext; 47 class BlockDecl; 48 class CXXDestructorDecl; 49 class CXXForRangeStmt; 50 class CXXTryStmt; 51 class Decl; 52 class LabelDecl; 53 class EnumConstantDecl; 54 class FunctionDecl; 55 class FunctionProtoType; 56 class LabelStmt; 57 class ObjCContainerDecl; 58 class ObjCInterfaceDecl; 59 class ObjCIvarDecl; 60 class ObjCMethodDecl; 61 class ObjCImplementationDecl; 62 class ObjCPropertyImplDecl; 63 class TargetInfo; 64 class TargetCodeGenInfo; 65 class VarDecl; 66 class ObjCForCollectionStmt; 67 class ObjCAtTryStmt; 68 class ObjCAtThrowStmt; 69 class ObjCAtSynchronizedStmt; 70 class ObjCAutoreleasePoolStmt; 71 72namespace CodeGen { 73 class CodeGenTypes; 74 class CGFunctionInfo; 75 class CGRecordLayout; 76 class CGBlockInfo; 77 class CGCXXABI; 78 class BlockFlags; 79 class BlockFieldFlags; 80 81/// A branch fixup. These are required when emitting a goto to a 82/// label which hasn't been emitted yet. The goto is optimistically 83/// emitted as a branch to the basic block for the label, and (if it 84/// occurs in a scope with non-trivial cleanups) a fixup is added to 85/// the innermost cleanup. When a (normal) cleanup is popped, any 86/// unresolved fixups in that scope are threaded through the cleanup. 87struct BranchFixup { 88 /// The block containing the terminator which needs to be modified 89 /// into a switch if this fixup is resolved into the current scope. 90 /// If null, LatestBranch points directly to the destination. 91 llvm::BasicBlock *OptimisticBranchBlock; 92 93 /// The ultimate destination of the branch. 94 /// 95 /// This can be set to null to indicate that this fixup was 96 /// successfully resolved. 97 llvm::BasicBlock *Destination; 98 99 /// The destination index value. 100 unsigned DestinationIndex; 101 102 /// The initial branch of the fixup. 103 llvm::BranchInst *InitialBranch; 104}; 105 106template <class T> struct InvariantValue { 107 typedef T type; 108 typedef T saved_type; 109 static bool needsSaving(type value) { return false; } 110 static saved_type save(CodeGenFunction &CGF, type value) { return value; } 111 static type restore(CodeGenFunction &CGF, saved_type value) { return value; } 112}; 113 114/// A metaprogramming class for ensuring that a value will dominate an 115/// arbitrary position in a function. 116template <class T> struct DominatingValue : InvariantValue<T> {}; 117 118template <class T, bool mightBeInstruction = 119 llvm::is_base_of<llvm::Value, T>::value && 120 !llvm::is_base_of<llvm::Constant, T>::value && 121 !llvm::is_base_of<llvm::BasicBlock, T>::value> 122struct DominatingPointer; 123template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {}; 124// template <class T> struct DominatingPointer<T,true> at end of file 125 126template <class T> struct DominatingValue<T*> : DominatingPointer<T> {}; 127 128enum CleanupKind { 129 EHCleanup = 0x1, 130 NormalCleanup = 0x2, 131 NormalAndEHCleanup = EHCleanup | NormalCleanup, 132 133 InactiveCleanup = 0x4, 134 InactiveEHCleanup = EHCleanup | InactiveCleanup, 135 InactiveNormalCleanup = NormalCleanup | InactiveCleanup, 136 InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup 137}; 138 139/// A stack of scopes which respond to exceptions, including cleanups 140/// and catch blocks. 141class EHScopeStack { 142public: 143 /// A saved depth on the scope stack. This is necessary because 144 /// pushing scopes onto the stack invalidates iterators. 145 class stable_iterator { 146 friend class EHScopeStack; 147 148 /// Offset from StartOfData to EndOfBuffer. 149 ptrdiff_t Size; 150 151 stable_iterator(ptrdiff_t Size) : Size(Size) {} 152 153 public: 154 static stable_iterator invalid() { return stable_iterator(-1); } 155 stable_iterator() : Size(-1) {} 156 157 bool isValid() const { return Size >= 0; } 158 159 /// Returns true if this scope encloses I. 160 /// Returns false if I is invalid. 161 /// This scope must be valid. 162 bool encloses(stable_iterator I) const { return Size <= I.Size; } 163 164 /// Returns true if this scope strictly encloses I: that is, 165 /// if it encloses I and is not I. 166 /// Returns false is I is invalid. 167 /// This scope must be valid. 168 bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; } 169 170 friend bool operator==(stable_iterator A, stable_iterator B) { 171 return A.Size == B.Size; 172 } 173 friend bool operator!=(stable_iterator A, stable_iterator B) { 174 return A.Size != B.Size; 175 } 176 }; 177 178 /// Information for lazily generating a cleanup. Subclasses must be 179 /// POD-like: cleanups will not be destructed, and they will be 180 /// allocated on the cleanup stack and freely copied and moved 181 /// around. 182 /// 183 /// Cleanup implementations should generally be declared in an 184 /// anonymous namespace. 185 class Cleanup { 186 // Anchor the construction vtable. 187 virtual void anchor(); 188 public: 189 /// Generation flags. 190 class Flags { 191 enum { 192 F_IsForEH = 0x1, 193 F_IsNormalCleanupKind = 0x2, 194 F_IsEHCleanupKind = 0x4 195 }; 196 unsigned flags; 197 198 public: 199 Flags() : flags(0) {} 200 201 /// isForEH - true if the current emission is for an EH cleanup. 202 bool isForEHCleanup() const { return flags & F_IsForEH; } 203 bool isForNormalCleanup() const { return !isForEHCleanup(); } 204 void setIsForEHCleanup() { flags |= F_IsForEH; } 205 206 bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; } 207 void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; } 208 209 /// isEHCleanupKind - true if the cleanup was pushed as an EH 210 /// cleanup. 211 bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; } 212 void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; } 213 }; 214 215 // Provide a virtual destructor to suppress a very common warning 216 // that unfortunately cannot be suppressed without this. Cleanups 217 // should not rely on this destructor ever being called. 218 virtual ~Cleanup() {} 219 220 /// Emit the cleanup. For normal cleanups, this is run in the 221 /// same EH context as when the cleanup was pushed, i.e. the 222 /// immediately-enclosing context of the cleanup scope. For 223 /// EH cleanups, this is run in a terminate context. 224 /// 225 // \param IsForEHCleanup true if this is for an EH cleanup, false 226 /// if for a normal cleanup. 227 virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0; 228 }; 229 230 /// ConditionalCleanupN stores the saved form of its N parameters, 231 /// then restores them and performs the cleanup. 232 template <class T, class A0> 233 class ConditionalCleanup1 : public Cleanup { 234 typedef typename DominatingValue<A0>::saved_type A0_saved; 235 A0_saved a0_saved; 236 237 void Emit(CodeGenFunction &CGF, Flags flags) { 238 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 239 T(a0).Emit(CGF, flags); 240 } 241 242 public: 243 ConditionalCleanup1(A0_saved a0) 244 : a0_saved(a0) {} 245 }; 246 247 template <class T, class A0, class A1> 248 class ConditionalCleanup2 : public Cleanup { 249 typedef typename DominatingValue<A0>::saved_type A0_saved; 250 typedef typename DominatingValue<A1>::saved_type A1_saved; 251 A0_saved a0_saved; 252 A1_saved a1_saved; 253 254 void Emit(CodeGenFunction &CGF, Flags flags) { 255 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 256 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 257 T(a0, a1).Emit(CGF, flags); 258 } 259 260 public: 261 ConditionalCleanup2(A0_saved a0, A1_saved a1) 262 : a0_saved(a0), a1_saved(a1) {} 263 }; 264 265 template <class T, class A0, class A1, class A2> 266 class ConditionalCleanup3 : public Cleanup { 267 typedef typename DominatingValue<A0>::saved_type A0_saved; 268 typedef typename DominatingValue<A1>::saved_type A1_saved; 269 typedef typename DominatingValue<A2>::saved_type A2_saved; 270 A0_saved a0_saved; 271 A1_saved a1_saved; 272 A2_saved a2_saved; 273 274 void Emit(CodeGenFunction &CGF, Flags flags) { 275 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 276 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 277 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 278 T(a0, a1, a2).Emit(CGF, flags); 279 } 280 281 public: 282 ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2) 283 : a0_saved(a0), a1_saved(a1), a2_saved(a2) {} 284 }; 285 286 template <class T, class A0, class A1, class A2, class A3> 287 class ConditionalCleanup4 : public Cleanup { 288 typedef typename DominatingValue<A0>::saved_type A0_saved; 289 typedef typename DominatingValue<A1>::saved_type A1_saved; 290 typedef typename DominatingValue<A2>::saved_type A2_saved; 291 typedef typename DominatingValue<A3>::saved_type A3_saved; 292 A0_saved a0_saved; 293 A1_saved a1_saved; 294 A2_saved a2_saved; 295 A3_saved a3_saved; 296 297 void Emit(CodeGenFunction &CGF, Flags flags) { 298 A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved); 299 A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved); 300 A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved); 301 A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved); 302 T(a0, a1, a2, a3).Emit(CGF, flags); 303 } 304 305 public: 306 ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3) 307 : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {} 308 }; 309 310private: 311 // The implementation for this class is in CGException.h and 312 // CGException.cpp; the definition is here because it's used as a 313 // member of CodeGenFunction. 314 315 /// The start of the scope-stack buffer, i.e. the allocated pointer 316 /// for the buffer. All of these pointers are either simultaneously 317 /// null or simultaneously valid. 318 char *StartOfBuffer; 319 320 /// The end of the buffer. 321 char *EndOfBuffer; 322 323 /// The first valid entry in the buffer. 324 char *StartOfData; 325 326 /// The innermost normal cleanup on the stack. 327 stable_iterator InnermostNormalCleanup; 328 329 /// The innermost EH scope on the stack. 330 stable_iterator InnermostEHScope; 331 332 /// The current set of branch fixups. A branch fixup is a jump to 333 /// an as-yet unemitted label, i.e. a label for which we don't yet 334 /// know the EH stack depth. Whenever we pop a cleanup, we have 335 /// to thread all the current branch fixups through it. 336 /// 337 /// Fixups are recorded as the Use of the respective branch or 338 /// switch statement. The use points to the final destination. 339 /// When popping out of a cleanup, these uses are threaded through 340 /// the cleanup and adjusted to point to the new cleanup. 341 /// 342 /// Note that branches are allowed to jump into protected scopes 343 /// in certain situations; e.g. the following code is legal: 344 /// struct A { ~A(); }; // trivial ctor, non-trivial dtor 345 /// goto foo; 346 /// A a; 347 /// foo: 348 /// bar(); 349 SmallVector<BranchFixup, 8> BranchFixups; 350 351 char *allocate(size_t Size); 352 353 void *pushCleanup(CleanupKind K, size_t DataSize); 354 355public: 356 EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0), 357 InnermostNormalCleanup(stable_end()), 358 InnermostEHScope(stable_end()) {} 359 ~EHScopeStack() { delete[] StartOfBuffer; } 360 361 // Variadic templates would make this not terrible. 362 363 /// Push a lazily-created cleanup on the stack. 364 template <class T> 365 void pushCleanup(CleanupKind Kind) { 366 void *Buffer = pushCleanup(Kind, sizeof(T)); 367 Cleanup *Obj = new(Buffer) T(); 368 (void) Obj; 369 } 370 371 /// Push a lazily-created cleanup on the stack. 372 template <class T, class A0> 373 void pushCleanup(CleanupKind Kind, A0 a0) { 374 void *Buffer = pushCleanup(Kind, sizeof(T)); 375 Cleanup *Obj = new(Buffer) T(a0); 376 (void) Obj; 377 } 378 379 /// Push a lazily-created cleanup on the stack. 380 template <class T, class A0, class A1> 381 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) { 382 void *Buffer = pushCleanup(Kind, sizeof(T)); 383 Cleanup *Obj = new(Buffer) T(a0, a1); 384 (void) Obj; 385 } 386 387 /// Push a lazily-created cleanup on the stack. 388 template <class T, class A0, class A1, class A2> 389 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) { 390 void *Buffer = pushCleanup(Kind, sizeof(T)); 391 Cleanup *Obj = new(Buffer) T(a0, a1, a2); 392 (void) Obj; 393 } 394 395 /// Push a lazily-created cleanup on the stack. 396 template <class T, class A0, class A1, class A2, class A3> 397 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) { 398 void *Buffer = pushCleanup(Kind, sizeof(T)); 399 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3); 400 (void) Obj; 401 } 402 403 /// Push a lazily-created cleanup on the stack. 404 template <class T, class A0, class A1, class A2, class A3, class A4> 405 void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) { 406 void *Buffer = pushCleanup(Kind, sizeof(T)); 407 Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4); 408 (void) Obj; 409 } 410 411 // Feel free to add more variants of the following: 412 413 /// Push a cleanup with non-constant storage requirements on the 414 /// stack. The cleanup type must provide an additional static method: 415 /// static size_t getExtraSize(size_t); 416 /// The argument to this method will be the value N, which will also 417 /// be passed as the first argument to the constructor. 418 /// 419 /// The data stored in the extra storage must obey the same 420 /// restrictions as normal cleanup member data. 421 /// 422 /// The pointer returned from this method is valid until the cleanup 423 /// stack is modified. 424 template <class T, class A0, class A1, class A2> 425 T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) { 426 void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N)); 427 return new (Buffer) T(N, a0, a1, a2); 428 } 429 430 /// Pops a cleanup scope off the stack. This is private to CGCleanup.cpp. 431 void popCleanup(); 432 433 /// Push a set of catch handlers on the stack. The catch is 434 /// uninitialized and will need to have the given number of handlers 435 /// set on it. 436 class EHCatchScope *pushCatch(unsigned NumHandlers); 437 438 /// Pops a catch scope off the stack. This is private to CGException.cpp. 439 void popCatch(); 440 441 /// Push an exceptions filter on the stack. 442 class EHFilterScope *pushFilter(unsigned NumFilters); 443 444 /// Pops an exceptions filter off the stack. 445 void popFilter(); 446 447 /// Push a terminate handler on the stack. 448 void pushTerminate(); 449 450 /// Pops a terminate handler off the stack. 451 void popTerminate(); 452 453 /// Determines whether the exception-scopes stack is empty. 454 bool empty() const { return StartOfData == EndOfBuffer; } 455 456 bool requiresLandingPad() const { 457 return InnermostEHScope != stable_end(); 458 } 459 460 /// Determines whether there are any normal cleanups on the stack. 461 bool hasNormalCleanups() const { 462 return InnermostNormalCleanup != stable_end(); 463 } 464 465 /// Returns the innermost normal cleanup on the stack, or 466 /// stable_end() if there are no normal cleanups. 467 stable_iterator getInnermostNormalCleanup() const { 468 return InnermostNormalCleanup; 469 } 470 stable_iterator getInnermostActiveNormalCleanup() const; 471 472 stable_iterator getInnermostEHScope() const { 473 return InnermostEHScope; 474 } 475 476 stable_iterator getInnermostActiveEHScope() const; 477 478 /// An unstable reference to a scope-stack depth. Invalidated by 479 /// pushes but not pops. 480 class iterator; 481 482 /// Returns an iterator pointing to the innermost EH scope. 483 iterator begin() const; 484 485 /// Returns an iterator pointing to the outermost EH scope. 486 iterator end() const; 487 488 /// Create a stable reference to the top of the EH stack. The 489 /// returned reference is valid until that scope is popped off the 490 /// stack. 491 stable_iterator stable_begin() const { 492 return stable_iterator(EndOfBuffer - StartOfData); 493 } 494 495 /// Create a stable reference to the bottom of the EH stack. 496 static stable_iterator stable_end() { 497 return stable_iterator(0); 498 } 499 500 /// Translates an iterator into a stable_iterator. 501 stable_iterator stabilize(iterator it) const; 502 503 /// Turn a stable reference to a scope depth into a unstable pointer 504 /// to the EH stack. 505 iterator find(stable_iterator save) const; 506 507 /// Removes the cleanup pointed to by the given stable_iterator. 508 void removeCleanup(stable_iterator save); 509 510 /// Add a branch fixup to the current cleanup scope. 511 BranchFixup &addBranchFixup() { 512 assert(hasNormalCleanups() && "adding fixup in scope without cleanups"); 513 BranchFixups.push_back(BranchFixup()); 514 return BranchFixups.back(); 515 } 516 517 unsigned getNumBranchFixups() const { return BranchFixups.size(); } 518 BranchFixup &getBranchFixup(unsigned I) { 519 assert(I < getNumBranchFixups()); 520 return BranchFixups[I]; 521 } 522 523 /// Pops lazily-removed fixups from the end of the list. This 524 /// should only be called by procedures which have just popped a 525 /// cleanup or resolved one or more fixups. 526 void popNullFixups(); 527 528 /// Clears the branch-fixups list. This should only be called by 529 /// ResolveAllBranchFixups. 530 void clearFixups() { BranchFixups.clear(); } 531}; 532 533/// CodeGenFunction - This class organizes the per-function state that is used 534/// while generating LLVM code. 535class CodeGenFunction : public CodeGenTypeCache { 536 CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT 537 void operator=(const CodeGenFunction&); // DO NOT IMPLEMENT 538 539 friend class CGCXXABI; 540public: 541 /// A jump destination is an abstract label, branching to which may 542 /// require a jump out through normal cleanups. 543 struct JumpDest { 544 JumpDest() : Block(0), ScopeDepth(), Index(0) {} 545 JumpDest(llvm::BasicBlock *Block, 546 EHScopeStack::stable_iterator Depth, 547 unsigned Index) 548 : Block(Block), ScopeDepth(Depth), Index(Index) {} 549 550 bool isValid() const { return Block != 0; } 551 llvm::BasicBlock *getBlock() const { return Block; } 552 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 553 unsigned getDestIndex() const { return Index; } 554 555 private: 556 llvm::BasicBlock *Block; 557 EHScopeStack::stable_iterator ScopeDepth; 558 unsigned Index; 559 }; 560 561 CodeGenModule &CGM; // Per-module state. 562 const TargetInfo &Target; 563 564 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 565 CGBuilderTy Builder; 566 567 /// CurFuncDecl - Holds the Decl for the current function or ObjC method. 568 /// This excludes BlockDecls. 569 const Decl *CurFuncDecl; 570 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 571 const Decl *CurCodeDecl; 572 const CGFunctionInfo *CurFnInfo; 573 QualType FnRetTy; 574 llvm::Function *CurFn; 575 576 /// CurGD - The GlobalDecl for the current function being compiled. 577 GlobalDecl CurGD; 578 579 /// PrologueCleanupDepth - The cleanup depth enclosing all the 580 /// cleanups associated with the parameters. 581 EHScopeStack::stable_iterator PrologueCleanupDepth; 582 583 /// ReturnBlock - Unified return block. 584 JumpDest ReturnBlock; 585 586 /// ReturnValue - The temporary alloca to hold the return value. This is null 587 /// iff the function has no return value. 588 llvm::Value *ReturnValue; 589 590 /// AllocaInsertPoint - This is an instruction in the entry block before which 591 /// we prefer to insert allocas. 592 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 593 594 /// BoundsChecking - Emit run-time bounds checks. Higher values mean 595 /// potentially higher performance penalties. 596 unsigned char BoundsChecking; 597 598 /// CatchUndefined - Emit run-time checks to catch undefined behaviors. 599 bool CatchUndefined; 600 601 /// In ARC, whether we should autorelease the return value. 602 bool AutoreleaseResult; 603 604 const CodeGen::CGBlockInfo *BlockInfo; 605 llvm::Value *BlockPointer; 606 607 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 608 FieldDecl *LambdaThisCaptureField; 609 610 /// \brief A mapping from NRVO variables to the flags used to indicate 611 /// when the NRVO has been applied to this variable. 612 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 613 614 EHScopeStack EHStack; 615 616 /// i32s containing the indexes of the cleanup destinations. 617 llvm::AllocaInst *NormalCleanupDest; 618 619 unsigned NextCleanupDestIndex; 620 621 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 622 CGBlockInfo *FirstBlockInfo; 623 624 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 625 llvm::BasicBlock *EHResumeBlock; 626 627 /// The exception slot. All landing pads write the current exception pointer 628 /// into this alloca. 629 llvm::Value *ExceptionSlot; 630 631 /// The selector slot. Under the MandatoryCleanup model, all landing pads 632 /// write the current selector value into this alloca. 633 llvm::AllocaInst *EHSelectorSlot; 634 635 /// Emits a landing pad for the current EH stack. 636 llvm::BasicBlock *EmitLandingPad(); 637 638 llvm::BasicBlock *getInvokeDestImpl(); 639 640 template <class T> 641 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 642 return DominatingValue<T>::save(*this, value); 643 } 644 645public: 646 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 647 /// rethrows. 648 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 649 650 /// A class controlling the emission of a finally block. 651 class FinallyInfo { 652 /// Where the catchall's edge through the cleanup should go. 653 JumpDest RethrowDest; 654 655 /// A function to call to enter the catch. 656 llvm::Constant *BeginCatchFn; 657 658 /// An i1 variable indicating whether or not the @finally is 659 /// running for an exception. 660 llvm::AllocaInst *ForEHVar; 661 662 /// An i8* variable into which the exception pointer to rethrow 663 /// has been saved. 664 llvm::AllocaInst *SavedExnVar; 665 666 public: 667 void enter(CodeGenFunction &CGF, const Stmt *Finally, 668 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 669 llvm::Constant *rethrowFn); 670 void exit(CodeGenFunction &CGF); 671 }; 672 673 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 674 /// current full-expression. Safe against the possibility that 675 /// we're currently inside a conditionally-evaluated expression. 676 template <class T, class A0> 677 void pushFullExprCleanup(CleanupKind kind, A0 a0) { 678 // If we're not in a conditional branch, or if none of the 679 // arguments requires saving, then use the unconditional cleanup. 680 if (!isInConditionalBranch()) 681 return EHStack.pushCleanup<T>(kind, a0); 682 683 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 684 685 typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType; 686 EHStack.pushCleanup<CleanupType>(kind, a0_saved); 687 initFullExprCleanup(); 688 } 689 690 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 691 /// current full-expression. Safe against the possibility that 692 /// we're currently inside a conditionally-evaluated expression. 693 template <class T, class A0, class A1> 694 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) { 695 // If we're not in a conditional branch, or if none of the 696 // arguments requires saving, then use the unconditional cleanup. 697 if (!isInConditionalBranch()) 698 return EHStack.pushCleanup<T>(kind, a0, a1); 699 700 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 701 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 702 703 typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType; 704 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved); 705 initFullExprCleanup(); 706 } 707 708 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 709 /// current full-expression. Safe against the possibility that 710 /// we're currently inside a conditionally-evaluated expression. 711 template <class T, class A0, class A1, class A2> 712 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) { 713 // If we're not in a conditional branch, or if none of the 714 // arguments requires saving, then use the unconditional cleanup. 715 if (!isInConditionalBranch()) { 716 return EHStack.pushCleanup<T>(kind, a0, a1, a2); 717 } 718 719 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 720 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 721 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 722 723 typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType; 724 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved); 725 initFullExprCleanup(); 726 } 727 728 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 729 /// current full-expression. Safe against the possibility that 730 /// we're currently inside a conditionally-evaluated expression. 731 template <class T, class A0, class A1, class A2, class A3> 732 void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) { 733 // If we're not in a conditional branch, or if none of the 734 // arguments requires saving, then use the unconditional cleanup. 735 if (!isInConditionalBranch()) { 736 return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3); 737 } 738 739 typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0); 740 typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1); 741 typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2); 742 typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3); 743 744 typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType; 745 EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, 746 a2_saved, a3_saved); 747 initFullExprCleanup(); 748 } 749 750 /// Set up the last cleaup that was pushed as a conditional 751 /// full-expression cleanup. 752 void initFullExprCleanup(); 753 754 /// PushDestructorCleanup - Push a cleanup to call the 755 /// complete-object destructor of an object of the given type at the 756 /// given address. Does nothing if T is not a C++ class type with a 757 /// non-trivial destructor. 758 void PushDestructorCleanup(QualType T, llvm::Value *Addr); 759 760 /// PushDestructorCleanup - Push a cleanup to call the 761 /// complete-object variant of the given destructor on the object at 762 /// the given address. 763 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, 764 llvm::Value *Addr); 765 766 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 767 /// process all branch fixups. 768 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 769 770 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 771 /// The block cannot be reactivated. Pops it if it's the top of the 772 /// stack. 773 /// 774 /// \param DominatingIP - An instruction which is known to 775 /// dominate the current IP (if set) and which lies along 776 /// all paths of execution between the current IP and the 777 /// the point at which the cleanup comes into scope. 778 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 779 llvm::Instruction *DominatingIP); 780 781 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 782 /// Cannot be used to resurrect a deactivated cleanup. 783 /// 784 /// \param DominatingIP - An instruction which is known to 785 /// dominate the current IP (if set) and which lies along 786 /// all paths of execution between the current IP and the 787 /// the point at which the cleanup comes into scope. 788 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 789 llvm::Instruction *DominatingIP); 790 791 /// \brief Enters a new scope for capturing cleanups, all of which 792 /// will be executed once the scope is exited. 793 class RunCleanupsScope { 794 EHScopeStack::stable_iterator CleanupStackDepth; 795 bool OldDidCallStackSave; 796 bool PerformCleanup; 797 798 RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT 799 RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT 800 801 protected: 802 CodeGenFunction& CGF; 803 804 public: 805 /// \brief Enter a new cleanup scope. 806 explicit RunCleanupsScope(CodeGenFunction &CGF) 807 : PerformCleanup(true), CGF(CGF) 808 { 809 CleanupStackDepth = CGF.EHStack.stable_begin(); 810 OldDidCallStackSave = CGF.DidCallStackSave; 811 CGF.DidCallStackSave = false; 812 } 813 814 /// \brief Exit this cleanup scope, emitting any accumulated 815 /// cleanups. 816 ~RunCleanupsScope() { 817 if (PerformCleanup) { 818 CGF.DidCallStackSave = OldDidCallStackSave; 819 CGF.PopCleanupBlocks(CleanupStackDepth); 820 } 821 } 822 823 /// \brief Determine whether this scope requires any cleanups. 824 bool requiresCleanups() const { 825 return CGF.EHStack.stable_begin() != CleanupStackDepth; 826 } 827 828 /// \brief Force the emission of cleanups now, instead of waiting 829 /// until this object is destroyed. 830 void ForceCleanup() { 831 assert(PerformCleanup && "Already forced cleanup"); 832 CGF.DidCallStackSave = OldDidCallStackSave; 833 CGF.PopCleanupBlocks(CleanupStackDepth); 834 PerformCleanup = false; 835 } 836 }; 837 838 class LexicalScope: protected RunCleanupsScope { 839 SourceRange Range; 840 bool PopDebugStack; 841 842 LexicalScope(const LexicalScope &); // DO NOT IMPLEMENT THESE 843 LexicalScope &operator=(const LexicalScope &); 844 845 public: 846 /// \brief Enter a new cleanup scope. 847 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 848 : RunCleanupsScope(CGF), Range(Range), PopDebugStack(true) { 849 if (CGDebugInfo *DI = CGF.getDebugInfo()) 850 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 851 } 852 853 /// \brief Exit this cleanup scope, emitting any accumulated 854 /// cleanups. 855 ~LexicalScope() { 856 if (PopDebugStack) { 857 CGDebugInfo *DI = CGF.getDebugInfo(); 858 if (DI) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 859 } 860 } 861 862 /// \brief Force the emission of cleanups now, instead of waiting 863 /// until this object is destroyed. 864 void ForceCleanup() { 865 RunCleanupsScope::ForceCleanup(); 866 if (CGDebugInfo *DI = CGF.getDebugInfo()) { 867 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 868 PopDebugStack = false; 869 } 870 } 871 }; 872 873 874 /// PopCleanupBlocks - Takes the old cleanup stack size and emits 875 /// the cleanup blocks that have been added. 876 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 877 878 void ResolveBranchFixups(llvm::BasicBlock *Target); 879 880 /// The given basic block lies in the current EH scope, but may be a 881 /// target of a potentially scope-crossing jump; get a stable handle 882 /// to which we can perform this jump later. 883 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 884 return JumpDest(Target, 885 EHStack.getInnermostNormalCleanup(), 886 NextCleanupDestIndex++); 887 } 888 889 /// The given basic block lies in the current EH scope, but may be a 890 /// target of a potentially scope-crossing jump; get a stable handle 891 /// to which we can perform this jump later. 892 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 893 return getJumpDestInCurrentScope(createBasicBlock(Name)); 894 } 895 896 /// EmitBranchThroughCleanup - Emit a branch from the current insert 897 /// block through the normal cleanup handling code (if any) and then 898 /// on to \arg Dest. 899 void EmitBranchThroughCleanup(JumpDest Dest); 900 901 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 902 /// specified destination obviously has no cleanups to run. 'false' is always 903 /// a conservatively correct answer for this method. 904 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 905 906 /// popCatchScope - Pops the catch scope at the top of the EHScope 907 /// stack, emitting any required code (other than the catch handlers 908 /// themselves). 909 void popCatchScope(); 910 911 llvm::BasicBlock *getEHResumeBlock(); 912 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 913 914 /// An object to manage conditionally-evaluated expressions. 915 class ConditionalEvaluation { 916 llvm::BasicBlock *StartBB; 917 918 public: 919 ConditionalEvaluation(CodeGenFunction &CGF) 920 : StartBB(CGF.Builder.GetInsertBlock()) {} 921 922 void begin(CodeGenFunction &CGF) { 923 assert(CGF.OutermostConditional != this); 924 if (!CGF.OutermostConditional) 925 CGF.OutermostConditional = this; 926 } 927 928 void end(CodeGenFunction &CGF) { 929 assert(CGF.OutermostConditional != 0); 930 if (CGF.OutermostConditional == this) 931 CGF.OutermostConditional = 0; 932 } 933 934 /// Returns a block which will be executed prior to each 935 /// evaluation of the conditional code. 936 llvm::BasicBlock *getStartingBlock() const { 937 return StartBB; 938 } 939 }; 940 941 /// isInConditionalBranch - Return true if we're currently emitting 942 /// one branch or the other of a conditional expression. 943 bool isInConditionalBranch() const { return OutermostConditional != 0; } 944 945 void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) { 946 assert(isInConditionalBranch()); 947 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 948 new llvm::StoreInst(value, addr, &block->back()); 949 } 950 951 /// An RAII object to record that we're evaluating a statement 952 /// expression. 953 class StmtExprEvaluation { 954 CodeGenFunction &CGF; 955 956 /// We have to save the outermost conditional: cleanups in a 957 /// statement expression aren't conditional just because the 958 /// StmtExpr is. 959 ConditionalEvaluation *SavedOutermostConditional; 960 961 public: 962 StmtExprEvaluation(CodeGenFunction &CGF) 963 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 964 CGF.OutermostConditional = 0; 965 } 966 967 ~StmtExprEvaluation() { 968 CGF.OutermostConditional = SavedOutermostConditional; 969 CGF.EnsureInsertPoint(); 970 } 971 }; 972 973 /// An object which temporarily prevents a value from being 974 /// destroyed by aggressive peephole optimizations that assume that 975 /// all uses of a value have been realized in the IR. 976 class PeepholeProtection { 977 llvm::Instruction *Inst; 978 friend class CodeGenFunction; 979 980 public: 981 PeepholeProtection() : Inst(0) {} 982 }; 983 984 /// A non-RAII class containing all the information about a bound 985 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 986 /// this which makes individual mappings very simple; using this 987 /// class directly is useful when you have a variable number of 988 /// opaque values or don't want the RAII functionality for some 989 /// reason. 990 class OpaqueValueMappingData { 991 const OpaqueValueExpr *OpaqueValue; 992 bool BoundLValue; 993 CodeGenFunction::PeepholeProtection Protection; 994 995 OpaqueValueMappingData(const OpaqueValueExpr *ov, 996 bool boundLValue) 997 : OpaqueValue(ov), BoundLValue(boundLValue) {} 998 public: 999 OpaqueValueMappingData() : OpaqueValue(0) {} 1000 1001 static bool shouldBindAsLValue(const Expr *expr) { 1002 // gl-values should be bound as l-values for obvious reasons. 1003 // Records should be bound as l-values because IR generation 1004 // always keeps them in memory. Expressions of function type 1005 // act exactly like l-values but are formally required to be 1006 // r-values in C. 1007 return expr->isGLValue() || 1008 expr->getType()->isRecordType() || 1009 expr->getType()->isFunctionType(); 1010 } 1011 1012 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1013 const OpaqueValueExpr *ov, 1014 const Expr *e) { 1015 if (shouldBindAsLValue(ov)) 1016 return bind(CGF, ov, CGF.EmitLValue(e)); 1017 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 1018 } 1019 1020 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1021 const OpaqueValueExpr *ov, 1022 const LValue &lv) { 1023 assert(shouldBindAsLValue(ov)); 1024 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 1025 return OpaqueValueMappingData(ov, true); 1026 } 1027 1028 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 1029 const OpaqueValueExpr *ov, 1030 const RValue &rv) { 1031 assert(!shouldBindAsLValue(ov)); 1032 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 1033 1034 OpaqueValueMappingData data(ov, false); 1035 1036 // Work around an extremely aggressive peephole optimization in 1037 // EmitScalarConversion which assumes that all other uses of a 1038 // value are extant. 1039 data.Protection = CGF.protectFromPeepholes(rv); 1040 1041 return data; 1042 } 1043 1044 bool isValid() const { return OpaqueValue != 0; } 1045 void clear() { OpaqueValue = 0; } 1046 1047 void unbind(CodeGenFunction &CGF) { 1048 assert(OpaqueValue && "no data to unbind!"); 1049 1050 if (BoundLValue) { 1051 CGF.OpaqueLValues.erase(OpaqueValue); 1052 } else { 1053 CGF.OpaqueRValues.erase(OpaqueValue); 1054 CGF.unprotectFromPeepholes(Protection); 1055 } 1056 } 1057 }; 1058 1059 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 1060 class OpaqueValueMapping { 1061 CodeGenFunction &CGF; 1062 OpaqueValueMappingData Data; 1063 1064 public: 1065 static bool shouldBindAsLValue(const Expr *expr) { 1066 return OpaqueValueMappingData::shouldBindAsLValue(expr); 1067 } 1068 1069 /// Build the opaque value mapping for the given conditional 1070 /// operator if it's the GNU ?: extension. This is a common 1071 /// enough pattern that the convenience operator is really 1072 /// helpful. 1073 /// 1074 OpaqueValueMapping(CodeGenFunction &CGF, 1075 const AbstractConditionalOperator *op) : CGF(CGF) { 1076 if (isa<ConditionalOperator>(op)) 1077 // Leave Data empty. 1078 return; 1079 1080 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 1081 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 1082 e->getCommon()); 1083 } 1084 1085 OpaqueValueMapping(CodeGenFunction &CGF, 1086 const OpaqueValueExpr *opaqueValue, 1087 LValue lvalue) 1088 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 1089 } 1090 1091 OpaqueValueMapping(CodeGenFunction &CGF, 1092 const OpaqueValueExpr *opaqueValue, 1093 RValue rvalue) 1094 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 1095 } 1096 1097 void pop() { 1098 Data.unbind(CGF); 1099 Data.clear(); 1100 } 1101 1102 ~OpaqueValueMapping() { 1103 if (Data.isValid()) Data.unbind(CGF); 1104 } 1105 }; 1106 1107 /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field 1108 /// number that holds the value. 1109 unsigned getByRefValueLLVMField(const ValueDecl *VD) const; 1110 1111 /// BuildBlockByrefAddress - Computes address location of the 1112 /// variable which is declared as __block. 1113 llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr, 1114 const VarDecl *V); 1115private: 1116 CGDebugInfo *DebugInfo; 1117 bool DisableDebugInfo; 1118 1119 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 1120 /// calling llvm.stacksave for multiple VLAs in the same scope. 1121 bool DidCallStackSave; 1122 1123 /// IndirectBranch - The first time an indirect goto is seen we create a block 1124 /// with an indirect branch. Every time we see the address of a label taken, 1125 /// we add the label to the indirect goto. Every subsequent indirect goto is 1126 /// codegen'd as a jump to the IndirectBranch's basic block. 1127 llvm::IndirectBrInst *IndirectBranch; 1128 1129 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 1130 /// decls. 1131 typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy; 1132 DeclMapTy LocalDeclMap; 1133 1134 /// LabelMap - This keeps track of the LLVM basic block for each C label. 1135 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 1136 1137 // BreakContinueStack - This keeps track of where break and continue 1138 // statements should jump to. 1139 struct BreakContinue { 1140 BreakContinue(JumpDest Break, JumpDest Continue) 1141 : BreakBlock(Break), ContinueBlock(Continue) {} 1142 1143 JumpDest BreakBlock; 1144 JumpDest ContinueBlock; 1145 }; 1146 SmallVector<BreakContinue, 8> BreakContinueStack; 1147 1148 /// SwitchInsn - This is nearest current switch instruction. It is null if 1149 /// current context is not in a switch. 1150 llvm::SwitchInst *SwitchInsn; 1151 1152 /// CaseRangeBlock - This block holds if condition check for last case 1153 /// statement range in current switch instruction. 1154 llvm::BasicBlock *CaseRangeBlock; 1155 1156 /// OpaqueLValues - Keeps track of the current set of opaque value 1157 /// expressions. 1158 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 1159 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 1160 1161 // VLASizeMap - This keeps track of the associated size for each VLA type. 1162 // We track this by the size expression rather than the type itself because 1163 // in certain situations, like a const qualifier applied to an VLA typedef, 1164 // multiple VLA types can share the same size expression. 1165 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1166 // enter/leave scopes. 1167 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1168 1169 /// A block containing a single 'unreachable' instruction. Created 1170 /// lazily by getUnreachableBlock(). 1171 llvm::BasicBlock *UnreachableBlock; 1172 1173 /// CXXThisDecl - When generating code for a C++ member function, 1174 /// this will hold the implicit 'this' declaration. 1175 ImplicitParamDecl *CXXABIThisDecl; 1176 llvm::Value *CXXABIThisValue; 1177 llvm::Value *CXXThisValue; 1178 1179 /// CXXVTTDecl - When generating code for a base object constructor or 1180 /// base object destructor with virtual bases, this will hold the implicit 1181 /// VTT parameter. 1182 ImplicitParamDecl *CXXVTTDecl; 1183 llvm::Value *CXXVTTValue; 1184 1185 /// OutermostConditional - Points to the outermost active 1186 /// conditional control. This is used so that we know if a 1187 /// temporary should be destroyed conditionally. 1188 ConditionalEvaluation *OutermostConditional; 1189 1190 1191 /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM 1192 /// type as well as the field number that contains the actual data. 1193 llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *, 1194 unsigned> > ByRefValueInfo; 1195 1196 llvm::BasicBlock *TerminateLandingPad; 1197 llvm::BasicBlock *TerminateHandler; 1198 llvm::BasicBlock *TrapBB; 1199 1200 /// Add a kernel metadata node to the named metadata node 'opencl.kernels'. 1201 /// In the kernel metadata node, reference the kernel function and metadata 1202 /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2): 1203 /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string 1204 /// "work_group_size_hint", and three 32-bit integers X, Y and Z. 1205 /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string 1206 /// "reqd_work_group_size", and three 32-bit integers X, Y and Z. 1207 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1208 llvm::Function *Fn); 1209 1210public: 1211 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1212 ~CodeGenFunction(); 1213 1214 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1215 ASTContext &getContext() const { return CGM.getContext(); } 1216 CGDebugInfo *getDebugInfo() { 1217 if (DisableDebugInfo) 1218 return NULL; 1219 return DebugInfo; 1220 } 1221 void disableDebugInfo() { DisableDebugInfo = true; } 1222 void enableDebugInfo() { DisableDebugInfo = false; } 1223 1224 bool shouldUseFusedARCCalls() { 1225 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1226 } 1227 1228 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1229 1230 /// Returns a pointer to the function's exception object and selector slot, 1231 /// which is assigned in every landing pad. 1232 llvm::Value *getExceptionSlot(); 1233 llvm::Value *getEHSelectorSlot(); 1234 1235 /// Returns the contents of the function's exception object and selector 1236 /// slots. 1237 llvm::Value *getExceptionFromSlot(); 1238 llvm::Value *getSelectorFromSlot(); 1239 1240 llvm::Value *getNormalCleanupDestSlot(); 1241 1242 llvm::BasicBlock *getUnreachableBlock() { 1243 if (!UnreachableBlock) { 1244 UnreachableBlock = createBasicBlock("unreachable"); 1245 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1246 } 1247 return UnreachableBlock; 1248 } 1249 1250 llvm::BasicBlock *getInvokeDest() { 1251 if (!EHStack.requiresLandingPad()) return 0; 1252 return getInvokeDestImpl(); 1253 } 1254 1255 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1256 1257 //===--------------------------------------------------------------------===// 1258 // Cleanups 1259 //===--------------------------------------------------------------------===// 1260 1261 typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty); 1262 1263 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1264 llvm::Value *arrayEndPointer, 1265 QualType elementType, 1266 Destroyer *destroyer); 1267 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1268 llvm::Value *arrayEnd, 1269 QualType elementType, 1270 Destroyer *destroyer); 1271 1272 void pushDestroy(QualType::DestructionKind dtorKind, 1273 llvm::Value *addr, QualType type); 1274 void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type, 1275 Destroyer *destroyer, bool useEHCleanupForArray); 1276 void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer, 1277 bool useEHCleanupForArray); 1278 llvm::Function *generateDestroyHelper(llvm::Constant *addr, 1279 QualType type, 1280 Destroyer *destroyer, 1281 bool useEHCleanupForArray); 1282 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1283 QualType type, Destroyer *destroyer, 1284 bool checkZeroLength, bool useEHCleanup); 1285 1286 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1287 1288 /// Determines whether an EH cleanup is required to destroy a type 1289 /// with the given destruction kind. 1290 bool needsEHCleanup(QualType::DestructionKind kind) { 1291 switch (kind) { 1292 case QualType::DK_none: 1293 return false; 1294 case QualType::DK_cxx_destructor: 1295 case QualType::DK_objc_weak_lifetime: 1296 return getLangOpts().Exceptions; 1297 case QualType::DK_objc_strong_lifetime: 1298 return getLangOpts().Exceptions && 1299 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1300 } 1301 llvm_unreachable("bad destruction kind"); 1302 } 1303 1304 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1305 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1306 } 1307 1308 //===--------------------------------------------------------------------===// 1309 // Objective-C 1310 //===--------------------------------------------------------------------===// 1311 1312 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1313 1314 void StartObjCMethod(const ObjCMethodDecl *MD, 1315 const ObjCContainerDecl *CD, 1316 SourceLocation StartLoc); 1317 1318 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1319 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1320 const ObjCPropertyImplDecl *PID); 1321 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1322 const ObjCPropertyImplDecl *propImpl, 1323 const ObjCMethodDecl *GetterMothodDecl, 1324 llvm::Constant *AtomicHelperFn); 1325 1326 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1327 ObjCMethodDecl *MD, bool ctor); 1328 1329 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1330 /// for the given property. 1331 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1332 const ObjCPropertyImplDecl *PID); 1333 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1334 const ObjCPropertyImplDecl *propImpl, 1335 llvm::Constant *AtomicHelperFn); 1336 bool IndirectObjCSetterArg(const CGFunctionInfo &FI); 1337 bool IvarTypeWithAggrGCObjects(QualType Ty); 1338 1339 //===--------------------------------------------------------------------===// 1340 // Block Bits 1341 //===--------------------------------------------------------------------===// 1342 1343 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1344 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 1345 static void destroyBlockInfos(CGBlockInfo *info); 1346 llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *, 1347 const CGBlockInfo &Info, 1348 llvm::StructType *, 1349 llvm::Constant *BlockVarLayout); 1350 1351 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1352 const CGBlockInfo &Info, 1353 const Decl *OuterFuncDecl, 1354 const DeclMapTy &ldm, 1355 bool IsLambdaConversionToBlock); 1356 1357 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1358 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1359 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1360 const ObjCPropertyImplDecl *PID); 1361 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1362 const ObjCPropertyImplDecl *PID); 1363 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1364 1365 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1366 1367 class AutoVarEmission; 1368 1369 void emitByrefStructureInit(const AutoVarEmission &emission); 1370 void enterByrefCleanup(const AutoVarEmission &emission); 1371 1372 llvm::Value *LoadBlockStruct() { 1373 assert(BlockPointer && "no block pointer set!"); 1374 return BlockPointer; 1375 } 1376 1377 void AllocateBlockCXXThisPointer(const CXXThisExpr *E); 1378 void AllocateBlockDecl(const DeclRefExpr *E); 1379 llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1380 llvm::Type *BuildByRefType(const VarDecl *var); 1381 1382 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1383 const CGFunctionInfo &FnInfo); 1384 void StartFunction(GlobalDecl GD, QualType RetTy, 1385 llvm::Function *Fn, 1386 const CGFunctionInfo &FnInfo, 1387 const FunctionArgList &Args, 1388 SourceLocation StartLoc); 1389 1390 void EmitConstructorBody(FunctionArgList &Args); 1391 void EmitDestructorBody(FunctionArgList &Args); 1392 void EmitFunctionBody(FunctionArgList &Args); 1393 1394 void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda, 1395 CallArgList &CallArgs); 1396 void EmitLambdaToBlockPointerBody(FunctionArgList &Args); 1397 void EmitLambdaBlockInvokeBody(); 1398 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1399 void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); 1400 1401 /// EmitReturnBlock - Emit the unified return block, trying to avoid its 1402 /// emission when possible. 1403 void EmitReturnBlock(); 1404 1405 /// FinishFunction - Complete IR generation of the current function. It is 1406 /// legal to call this function even if there is no current insertion point. 1407 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1408 1409 /// GenerateThunk - Generate a thunk for the given method. 1410 void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1411 GlobalDecl GD, const ThunkInfo &Thunk); 1412 1413 void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1414 GlobalDecl GD, const ThunkInfo &Thunk); 1415 1416 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1417 FunctionArgList &Args); 1418 1419 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init, 1420 ArrayRef<VarDecl *> ArrayIndexes); 1421 1422 /// InitializeVTablePointer - Initialize the vtable pointer of the given 1423 /// subobject. 1424 /// 1425 void InitializeVTablePointer(BaseSubobject Base, 1426 const CXXRecordDecl *NearestVBase, 1427 CharUnits OffsetFromNearestVBase, 1428 llvm::Constant *VTable, 1429 const CXXRecordDecl *VTableClass); 1430 1431 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1432 void InitializeVTablePointers(BaseSubobject Base, 1433 const CXXRecordDecl *NearestVBase, 1434 CharUnits OffsetFromNearestVBase, 1435 bool BaseIsNonVirtualPrimaryBase, 1436 llvm::Constant *VTable, 1437 const CXXRecordDecl *VTableClass, 1438 VisitedVirtualBasesSetTy& VBases); 1439 1440 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1441 1442 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1443 /// to by This. 1444 llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty); 1445 1446 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1447 /// given phase of destruction for a destructor. The end result 1448 /// should call destructors on members and base classes in reverse 1449 /// order of their construction. 1450 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1451 1452 /// ShouldInstrumentFunction - Return true if the current function should be 1453 /// instrumented with __cyg_profile_func_* calls 1454 bool ShouldInstrumentFunction(); 1455 1456 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1457 /// instrumentation function with the current function and the call site, if 1458 /// function instrumentation is enabled. 1459 void EmitFunctionInstrumentation(const char *Fn); 1460 1461 /// EmitMCountInstrumentation - Emit call to .mcount. 1462 void EmitMCountInstrumentation(); 1463 1464 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1465 /// arguments for the given function. This is also responsible for naming the 1466 /// LLVM function arguments. 1467 void EmitFunctionProlog(const CGFunctionInfo &FI, 1468 llvm::Function *Fn, 1469 const FunctionArgList &Args); 1470 1471 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1472 /// given temporary. 1473 void EmitFunctionEpilog(const CGFunctionInfo &FI); 1474 1475 /// EmitStartEHSpec - Emit the start of the exception spec. 1476 void EmitStartEHSpec(const Decl *D); 1477 1478 /// EmitEndEHSpec - Emit the end of the exception spec. 1479 void EmitEndEHSpec(const Decl *D); 1480 1481 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1482 llvm::BasicBlock *getTerminateLandingPad(); 1483 1484 /// getTerminateHandler - Return a handler (not a landing pad, just 1485 /// a catch handler) that just calls terminate. This is used when 1486 /// a terminate scope encloses a try. 1487 llvm::BasicBlock *getTerminateHandler(); 1488 1489 llvm::Type *ConvertTypeForMem(QualType T); 1490 llvm::Type *ConvertType(QualType T); 1491 llvm::Type *ConvertType(const TypeDecl *T) { 1492 return ConvertType(getContext().getTypeDeclType(T)); 1493 } 1494 1495 /// LoadObjCSelf - Load the value of self. This function is only valid while 1496 /// generating code for an Objective-C method. 1497 llvm::Value *LoadObjCSelf(); 1498 1499 /// TypeOfSelfObject - Return type of object that this self represents. 1500 QualType TypeOfSelfObject(); 1501 1502 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1503 /// an aggregate LLVM type or is void. 1504 static bool hasAggregateLLVMType(QualType T); 1505 1506 /// createBasicBlock - Create an LLVM basic block. 1507 llvm::BasicBlock *createBasicBlock(StringRef name = "", 1508 llvm::Function *parent = 0, 1509 llvm::BasicBlock *before = 0) { 1510#ifdef NDEBUG 1511 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1512#else 1513 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1514#endif 1515 } 1516 1517 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1518 /// label maps to. 1519 JumpDest getJumpDestForLabel(const LabelDecl *S); 1520 1521 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1522 /// another basic block, simplify it. This assumes that no other code could 1523 /// potentially reference the basic block. 1524 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1525 1526 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1527 /// adding a fall-through branch from the current insert block if 1528 /// necessary. It is legal to call this function even if there is no current 1529 /// insertion point. 1530 /// 1531 /// IsFinished - If true, indicates that the caller has finished emitting 1532 /// branches to the given block and does not expect to emit code into it. This 1533 /// means the block can be ignored if it is unreachable. 1534 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1535 1536 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1537 /// near its uses, and leave the insertion point in it. 1538 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1539 1540 /// EmitBranch - Emit a branch to the specified basic block from the current 1541 /// insert block, taking care to avoid creation of branches from dummy 1542 /// blocks. It is legal to call this function even if there is no current 1543 /// insertion point. 1544 /// 1545 /// This function clears the current insertion point. The caller should follow 1546 /// calls to this function with calls to Emit*Block prior to generation new 1547 /// code. 1548 void EmitBranch(llvm::BasicBlock *Block); 1549 1550 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1551 /// indicates that the current code being emitted is unreachable. 1552 bool HaveInsertPoint() const { 1553 return Builder.GetInsertBlock() != 0; 1554 } 1555 1556 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1557 /// emitted IR has a place to go. Note that by definition, if this function 1558 /// creates a block then that block is unreachable; callers may do better to 1559 /// detect when no insertion point is defined and simply skip IR generation. 1560 void EnsureInsertPoint() { 1561 if (!HaveInsertPoint()) 1562 EmitBlock(createBasicBlock()); 1563 } 1564 1565 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1566 /// specified stmt yet. 1567 void ErrorUnsupported(const Stmt *S, const char *Type, 1568 bool OmitOnError=false); 1569 1570 //===--------------------------------------------------------------------===// 1571 // Helpers 1572 //===--------------------------------------------------------------------===// 1573 1574 LValue MakeAddrLValue(llvm::Value *V, QualType T, 1575 CharUnits Alignment = CharUnits()) { 1576 return LValue::MakeAddr(V, T, Alignment, getContext(), 1577 CGM.getTBAAInfo(T)); 1578 } 1579 1580 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 1581 CharUnits Alignment; 1582 if (!T->isIncompleteType()) 1583 Alignment = getContext().getTypeAlignInChars(T); 1584 return LValue::MakeAddr(V, T, Alignment, getContext(), 1585 CGM.getTBAAInfo(T)); 1586 } 1587 1588 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1589 /// block. The caller is responsible for setting an appropriate alignment on 1590 /// the alloca. 1591 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1592 const Twine &Name = "tmp"); 1593 1594 /// InitTempAlloca - Provide an initial value for the given alloca. 1595 void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value); 1596 1597 /// CreateIRTemp - Create a temporary IR object of the given type, with 1598 /// appropriate alignment. This routine should only be used when an temporary 1599 /// value needs to be stored into an alloca (for example, to avoid explicit 1600 /// PHI construction), but the type is the IR type, not the type appropriate 1601 /// for storing in memory. 1602 llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1603 1604 /// CreateMemTemp - Create a temporary memory object of the given type, with 1605 /// appropriate alignment. 1606 llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1607 1608 /// CreateAggTemp - Create a temporary memory object for the given 1609 /// aggregate type. 1610 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1611 CharUnits Alignment = getContext().getTypeAlignInChars(T); 1612 return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment, 1613 T.getQualifiers(), 1614 AggValueSlot::IsNotDestructed, 1615 AggValueSlot::DoesNotNeedGCBarriers, 1616 AggValueSlot::IsNotAliased); 1617 } 1618 1619 /// Emit a cast to void* in the appropriate address space. 1620 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1621 1622 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1623 /// expression and compare the result against zero, returning an Int1Ty value. 1624 llvm::Value *EvaluateExprAsBool(const Expr *E); 1625 1626 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1627 void EmitIgnoredExpr(const Expr *E); 1628 1629 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1630 /// any type. The result is returned as an RValue struct. If this is an 1631 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1632 /// the result should be returned. 1633 /// 1634 /// \param IgnoreResult - True if the resulting value isn't used. 1635 RValue EmitAnyExpr(const Expr *E, 1636 AggValueSlot aggSlot = AggValueSlot::ignored(), 1637 bool ignoreResult = false); 1638 1639 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1640 // or the value of the expression, depending on how va_list is defined. 1641 llvm::Value *EmitVAListRef(const Expr *E); 1642 1643 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1644 /// always be accessible even if no aggregate location is provided. 1645 RValue EmitAnyExprToTemp(const Expr *E); 1646 1647 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1648 /// arbitrary expression into the given memory location. 1649 void EmitAnyExprToMem(const Expr *E, llvm::Value *Location, 1650 Qualifiers Quals, bool IsInitializer); 1651 1652 /// EmitExprAsInit - Emits the code necessary to initialize a 1653 /// location in memory with the given initializer. 1654 void EmitExprAsInit(const Expr *init, const ValueDecl *D, 1655 LValue lvalue, bool capturedByInit); 1656 1657 /// EmitAggregateCopy - Emit an aggrate copy. 1658 /// 1659 /// \param isVolatile - True iff either the source or the destination is 1660 /// volatile. 1661 void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr, 1662 QualType EltTy, bool isVolatile=false, 1663 CharUnits Alignment = CharUnits::Zero()); 1664 1665 /// StartBlock - Start new block named N. If insert block is a dummy block 1666 /// then reuse it. 1667 void StartBlock(const char *N); 1668 1669 /// GetAddrOfStaticLocalVar - Return the address of a static local variable. 1670 llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) { 1671 return cast<llvm::Constant>(GetAddrOfLocalVar(BVD)); 1672 } 1673 1674 /// GetAddrOfLocalVar - Return the address of a local variable. 1675 llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) { 1676 llvm::Value *Res = LocalDeclMap[VD]; 1677 assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1678 return Res; 1679 } 1680 1681 /// getOpaqueLValueMapping - Given an opaque value expression (which 1682 /// must be mapped to an l-value), return its mapping. 1683 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1684 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1685 1686 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1687 it = OpaqueLValues.find(e); 1688 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1689 return it->second; 1690 } 1691 1692 /// getOpaqueRValueMapping - Given an opaque value expression (which 1693 /// must be mapped to an r-value), return its mapping. 1694 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1695 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1696 1697 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1698 it = OpaqueRValues.find(e); 1699 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1700 return it->second; 1701 } 1702 1703 /// getAccessedFieldNo - Given an encoded value and a result number, return 1704 /// the input field number being accessed. 1705 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1706 1707 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1708 llvm::BasicBlock *GetIndirectGotoBlock(); 1709 1710 /// EmitNullInitialization - Generate code to set a value of the given type to 1711 /// null, If the type contains data member pointers, they will be initialized 1712 /// to -1 in accordance with the Itanium C++ ABI. 1713 void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty); 1714 1715 // EmitVAArg - Generate code to get an argument from the passed in pointer 1716 // and update it accordingly. The return value is a pointer to the argument. 1717 // FIXME: We should be able to get rid of this method and use the va_arg 1718 // instruction in LLVM instead once it works well enough. 1719 llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty); 1720 1721 /// emitArrayLength - Compute the length of an array, even if it's a 1722 /// VLA, and drill down to the base element type. 1723 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1724 QualType &baseType, 1725 llvm::Value *&addr); 1726 1727 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1728 /// the given variably-modified type and store them in the VLASizeMap. 1729 /// 1730 /// This function can be called with a null (unreachable) insert point. 1731 void EmitVariablyModifiedType(QualType Ty); 1732 1733 /// getVLASize - Returns an LLVM value that corresponds to the size, 1734 /// in non-variably-sized elements, of a variable length array type, 1735 /// plus that largest non-variably-sized element type. Assumes that 1736 /// the type has already been emitted with EmitVariablyModifiedType. 1737 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1738 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1739 1740 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1741 /// generating code for an C++ member function. 1742 llvm::Value *LoadCXXThis() { 1743 assert(CXXThisValue && "no 'this' value for this function"); 1744 return CXXThisValue; 1745 } 1746 1747 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1748 /// virtual bases. 1749 llvm::Value *LoadCXXVTT() { 1750 assert(CXXVTTValue && "no VTT value for this function"); 1751 return CXXVTTValue; 1752 } 1753 1754 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1755 /// complete class to the given direct base. 1756 llvm::Value * 1757 GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value, 1758 const CXXRecordDecl *Derived, 1759 const CXXRecordDecl *Base, 1760 bool BaseIsVirtual); 1761 1762 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1763 /// load of 'this' and returns address of the base class. 1764 llvm::Value *GetAddressOfBaseClass(llvm::Value *Value, 1765 const CXXRecordDecl *Derived, 1766 CastExpr::path_const_iterator PathBegin, 1767 CastExpr::path_const_iterator PathEnd, 1768 bool NullCheckValue); 1769 1770 llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value, 1771 const CXXRecordDecl *Derived, 1772 CastExpr::path_const_iterator PathBegin, 1773 CastExpr::path_const_iterator PathEnd, 1774 bool NullCheckValue); 1775 1776 llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This, 1777 const CXXRecordDecl *ClassDecl, 1778 const CXXRecordDecl *BaseClassDecl); 1779 1780 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1781 CXXCtorType CtorType, 1782 const FunctionArgList &Args); 1783 // It's important not to confuse this and the previous function. Delegating 1784 // constructors are the C++0x feature. The constructor delegate optimization 1785 // is used to reduce duplication in the base and complete consturctors where 1786 // they are substantially the same. 1787 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1788 const FunctionArgList &Args); 1789 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1790 bool ForVirtualBase, llvm::Value *This, 1791 CallExpr::const_arg_iterator ArgBeg, 1792 CallExpr::const_arg_iterator ArgEnd); 1793 1794 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1795 llvm::Value *This, llvm::Value *Src, 1796 CallExpr::const_arg_iterator ArgBeg, 1797 CallExpr::const_arg_iterator ArgEnd); 1798 1799 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1800 const ConstantArrayType *ArrayTy, 1801 llvm::Value *ArrayPtr, 1802 CallExpr::const_arg_iterator ArgBeg, 1803 CallExpr::const_arg_iterator ArgEnd, 1804 bool ZeroInitialization = false); 1805 1806 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1807 llvm::Value *NumElements, 1808 llvm::Value *ArrayPtr, 1809 CallExpr::const_arg_iterator ArgBeg, 1810 CallExpr::const_arg_iterator ArgEnd, 1811 bool ZeroInitialization = false); 1812 1813 static Destroyer destroyCXXObject; 1814 1815 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1816 bool ForVirtualBase, llvm::Value *This); 1817 1818 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 1819 llvm::Value *NewPtr, llvm::Value *NumElements); 1820 1821 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 1822 llvm::Value *Ptr); 1823 1824 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1825 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1826 1827 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1828 QualType DeleteTy); 1829 1830 llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1831 llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE); 1832 1833 void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init); 1834 void EmitStdInitializerListCleanup(llvm::Value *loc, 1835 const InitListExpr *init); 1836 1837 void EmitCheck(llvm::Value *, unsigned Size); 1838 1839 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1840 bool isInc, bool isPre); 1841 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1842 bool isInc, bool isPre); 1843 //===--------------------------------------------------------------------===// 1844 // Declaration Emission 1845 //===--------------------------------------------------------------------===// 1846 1847 /// EmitDecl - Emit a declaration. 1848 /// 1849 /// This function can be called with a null (unreachable) insert point. 1850 void EmitDecl(const Decl &D); 1851 1852 /// EmitVarDecl - Emit a local variable declaration. 1853 /// 1854 /// This function can be called with a null (unreachable) insert point. 1855 void EmitVarDecl(const VarDecl &D); 1856 1857 void EmitScalarInit(const Expr *init, const ValueDecl *D, 1858 LValue lvalue, bool capturedByInit); 1859 void EmitScalarInit(llvm::Value *init, LValue lvalue); 1860 1861 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1862 llvm::Value *Address); 1863 1864 /// EmitAutoVarDecl - Emit an auto variable declaration. 1865 /// 1866 /// This function can be called with a null (unreachable) insert point. 1867 void EmitAutoVarDecl(const VarDecl &D); 1868 1869 class AutoVarEmission { 1870 friend class CodeGenFunction; 1871 1872 const VarDecl *Variable; 1873 1874 /// The alignment of the variable. 1875 CharUnits Alignment; 1876 1877 /// The address of the alloca. Null if the variable was emitted 1878 /// as a global constant. 1879 llvm::Value *Address; 1880 1881 llvm::Value *NRVOFlag; 1882 1883 /// True if the variable is a __block variable. 1884 bool IsByRef; 1885 1886 /// True if the variable is of aggregate type and has a constant 1887 /// initializer. 1888 bool IsConstantAggregate; 1889 1890 struct Invalid {}; 1891 AutoVarEmission(Invalid) : Variable(0) {} 1892 1893 AutoVarEmission(const VarDecl &variable) 1894 : Variable(&variable), Address(0), NRVOFlag(0), 1895 IsByRef(false), IsConstantAggregate(false) {} 1896 1897 bool wasEmittedAsGlobal() const { return Address == 0; } 1898 1899 public: 1900 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 1901 1902 /// Returns the address of the object within this declaration. 1903 /// Note that this does not chase the forwarding pointer for 1904 /// __block decls. 1905 llvm::Value *getObjectAddress(CodeGenFunction &CGF) const { 1906 if (!IsByRef) return Address; 1907 1908 return CGF.Builder.CreateStructGEP(Address, 1909 CGF.getByRefValueLLVMField(Variable), 1910 Variable->getNameAsString()); 1911 } 1912 }; 1913 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 1914 void EmitAutoVarInit(const AutoVarEmission &emission); 1915 void EmitAutoVarCleanups(const AutoVarEmission &emission); 1916 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 1917 QualType::DestructionKind dtorKind); 1918 1919 void EmitStaticVarDecl(const VarDecl &D, 1920 llvm::GlobalValue::LinkageTypes Linkage); 1921 1922 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 1923 void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo); 1924 1925 /// protectFromPeepholes - Protect a value that we're intending to 1926 /// store to the side, but which will probably be used later, from 1927 /// aggressive peepholing optimizations that might delete it. 1928 /// 1929 /// Pass the result to unprotectFromPeepholes to declare that 1930 /// protection is no longer required. 1931 /// 1932 /// There's no particular reason why this shouldn't apply to 1933 /// l-values, it's just that no existing peepholes work on pointers. 1934 PeepholeProtection protectFromPeepholes(RValue rvalue); 1935 void unprotectFromPeepholes(PeepholeProtection protection); 1936 1937 //===--------------------------------------------------------------------===// 1938 // Statement Emission 1939 //===--------------------------------------------------------------------===// 1940 1941 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 1942 void EmitStopPoint(const Stmt *S); 1943 1944 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 1945 /// this function even if there is no current insertion point. 1946 /// 1947 /// This function may clear the current insertion point; callers should use 1948 /// EnsureInsertPoint if they wish to subsequently generate code without first 1949 /// calling EmitBlock, EmitBranch, or EmitStmt. 1950 void EmitStmt(const Stmt *S); 1951 1952 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 1953 /// necessarily require an insertion point or debug information; typically 1954 /// because the statement amounts to a jump or a container of other 1955 /// statements. 1956 /// 1957 /// \return True if the statement was handled. 1958 bool EmitSimpleStmt(const Stmt *S); 1959 1960 RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 1961 AggValueSlot AVS = AggValueSlot::ignored()); 1962 1963 /// EmitLabel - Emit the block for the given label. It is legal to call this 1964 /// function even if there is no current insertion point. 1965 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 1966 1967 void EmitLabelStmt(const LabelStmt &S); 1968 void EmitAttributedStmt(const AttributedStmt &S); 1969 void EmitGotoStmt(const GotoStmt &S); 1970 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 1971 void EmitIfStmt(const IfStmt &S); 1972 void EmitWhileStmt(const WhileStmt &S); 1973 void EmitDoStmt(const DoStmt &S); 1974 void EmitForStmt(const ForStmt &S); 1975 void EmitReturnStmt(const ReturnStmt &S); 1976 void EmitDeclStmt(const DeclStmt &S); 1977 void EmitBreakStmt(const BreakStmt &S); 1978 void EmitContinueStmt(const ContinueStmt &S); 1979 void EmitSwitchStmt(const SwitchStmt &S); 1980 void EmitDefaultStmt(const DefaultStmt &S); 1981 void EmitCaseStmt(const CaseStmt &S); 1982 void EmitCaseStmtRange(const CaseStmt &S); 1983 void EmitAsmStmt(const AsmStmt &S); 1984 void EmitMSAsmStmt(const MSAsmStmt &S); 1985 1986 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 1987 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 1988 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 1989 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 1990 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 1991 1992 llvm::Constant *getUnwindResumeFn(); 1993 llvm::Constant *getUnwindResumeOrRethrowFn(); 1994 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1995 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 1996 1997 void EmitCXXTryStmt(const CXXTryStmt &S); 1998 void EmitCXXForRangeStmt(const CXXForRangeStmt &S); 1999 2000 //===--------------------------------------------------------------------===// 2001 // LValue Expression Emission 2002 //===--------------------------------------------------------------------===// 2003 2004 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 2005 RValue GetUndefRValue(QualType Ty); 2006 2007 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 2008 /// and issue an ErrorUnsupported style diagnostic (using the 2009 /// provided Name). 2010 RValue EmitUnsupportedRValue(const Expr *E, 2011 const char *Name); 2012 2013 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 2014 /// an ErrorUnsupported style diagnostic (using the provided Name). 2015 LValue EmitUnsupportedLValue(const Expr *E, 2016 const char *Name); 2017 2018 /// EmitLValue - Emit code to compute a designator that specifies the location 2019 /// of the expression. 2020 /// 2021 /// This can return one of two things: a simple address or a bitfield 2022 /// reference. In either case, the LLVM Value* in the LValue structure is 2023 /// guaranteed to be an LLVM pointer type. 2024 /// 2025 /// If this returns a bitfield reference, nothing about the pointee type of 2026 /// the LLVM value is known: For example, it may not be a pointer to an 2027 /// integer. 2028 /// 2029 /// If this returns a normal address, and if the lvalue's C type is fixed 2030 /// size, this method guarantees that the returned pointer type will point to 2031 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 2032 /// variable length type, this is not possible. 2033 /// 2034 LValue EmitLValue(const Expr *E); 2035 2036 /// EmitCheckedLValue - Same as EmitLValue but additionally we generate 2037 /// checking code to guard against undefined behavior. This is only 2038 /// suitable when we know that the address will be used to access the 2039 /// object. 2040 LValue EmitCheckedLValue(const Expr *E); 2041 2042 /// EmitToMemory - Change a scalar value from its value 2043 /// representation to its in-memory representation. 2044 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 2045 2046 /// EmitFromMemory - Change a scalar value from its memory 2047 /// representation to its value representation. 2048 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 2049 2050 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2051 /// care to appropriately convert from the memory representation to 2052 /// the LLVM value representation. 2053 llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile, 2054 unsigned Alignment, QualType Ty, 2055 llvm::MDNode *TBAAInfo = 0); 2056 2057 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2058 /// care to appropriately convert from the memory representation to 2059 /// the LLVM value representation. The l-value must be a simple 2060 /// l-value. 2061 llvm::Value *EmitLoadOfScalar(LValue lvalue); 2062 2063 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2064 /// care to appropriately convert from the memory representation to 2065 /// the LLVM value representation. 2066 void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr, 2067 bool Volatile, unsigned Alignment, QualType Ty, 2068 llvm::MDNode *TBAAInfo = 0, bool isInit=false); 2069 2070 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2071 /// care to appropriately convert from the memory representation to 2072 /// the LLVM value representation. The l-value must be a simple 2073 /// l-value. The isInit flag indicates whether this is an initialization. 2074 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 2075 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 2076 2077 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 2078 /// this method emits the address of the lvalue, then loads the result as an 2079 /// rvalue, returning the rvalue. 2080 RValue EmitLoadOfLValue(LValue V); 2081 RValue EmitLoadOfExtVectorElementLValue(LValue V); 2082 RValue EmitLoadOfBitfieldLValue(LValue LV); 2083 2084 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2085 /// lvalue, where both are guaranteed to the have the same type, and that type 2086 /// is 'Ty'. 2087 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false); 2088 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 2089 2090 /// EmitStoreThroughLValue - Store Src into Dst with same constraints as 2091 /// EmitStoreThroughLValue. 2092 /// 2093 /// \param Result [out] - If non-null, this will be set to a Value* for the 2094 /// bit-field contents after the store, appropriate for use as the result of 2095 /// an assignment to the bit-field. 2096 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2097 llvm::Value **Result=0); 2098 2099 /// Emit an l-value for an assignment (simple or compound) of complex type. 2100 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 2101 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 2102 2103 // Note: only available for agg return types 2104 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 2105 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 2106 // Note: only available for agg return types 2107 LValue EmitCallExprLValue(const CallExpr *E); 2108 // Note: only available for agg return types 2109 LValue EmitVAArgExprLValue(const VAArgExpr *E); 2110 LValue EmitDeclRefLValue(const DeclRefExpr *E); 2111 LValue EmitStringLiteralLValue(const StringLiteral *E); 2112 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 2113 LValue EmitPredefinedLValue(const PredefinedExpr *E); 2114 LValue EmitUnaryOpLValue(const UnaryOperator *E); 2115 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E); 2116 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 2117 LValue EmitMemberExpr(const MemberExpr *E); 2118 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 2119 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 2120 LValue EmitInitListLValue(const InitListExpr *E); 2121 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 2122 LValue EmitCastLValue(const CastExpr *E); 2123 LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E); 2124 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 2125 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 2126 2127 RValue EmitRValueForField(LValue LV, const FieldDecl *FD); 2128 2129 class ConstantEmission { 2130 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 2131 ConstantEmission(llvm::Constant *C, bool isReference) 2132 : ValueAndIsReference(C, isReference) {} 2133 public: 2134 ConstantEmission() {} 2135 static ConstantEmission forReference(llvm::Constant *C) { 2136 return ConstantEmission(C, true); 2137 } 2138 static ConstantEmission forValue(llvm::Constant *C) { 2139 return ConstantEmission(C, false); 2140 } 2141 2142 operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; } 2143 2144 bool isReference() const { return ValueAndIsReference.getInt(); } 2145 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 2146 assert(isReference()); 2147 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 2148 refExpr->getType()); 2149 } 2150 2151 llvm::Constant *getValue() const { 2152 assert(!isReference()); 2153 return ValueAndIsReference.getPointer(); 2154 } 2155 }; 2156 2157 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 2158 2159 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 2160 AggValueSlot slot = AggValueSlot::ignored()); 2161 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 2162 2163 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2164 const ObjCIvarDecl *Ivar); 2165 LValue EmitLValueForAnonRecordField(llvm::Value* Base, 2166 const IndirectFieldDecl* Field, 2167 unsigned CVRQualifiers); 2168 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 2169 2170 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 2171 /// if the Field is a reference, this will return the address of the reference 2172 /// and not the address of the value stored in the reference. 2173 LValue EmitLValueForFieldInitialization(LValue Base, 2174 const FieldDecl* Field); 2175 2176 LValue EmitLValueForIvar(QualType ObjectTy, 2177 llvm::Value* Base, const ObjCIvarDecl *Ivar, 2178 unsigned CVRQualifiers); 2179 2180 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 2181 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 2182 LValue EmitLambdaLValue(const LambdaExpr *E); 2183 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2184 2185 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2186 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2187 LValue EmitStmtExprLValue(const StmtExpr *E); 2188 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2189 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2190 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 2191 2192 //===--------------------------------------------------------------------===// 2193 // Scalar Expression Emission 2194 //===--------------------------------------------------------------------===// 2195 2196 /// EmitCall - Generate a call of the given function, expecting the given 2197 /// result type, and using the given argument list which specifies both the 2198 /// LLVM arguments and the types they were derived from. 2199 /// 2200 /// \param TargetDecl - If given, the decl of the function in a direct call; 2201 /// used to set attributes on the call (noreturn, etc.). 2202 RValue EmitCall(const CGFunctionInfo &FnInfo, 2203 llvm::Value *Callee, 2204 ReturnValueSlot ReturnValue, 2205 const CallArgList &Args, 2206 const Decl *TargetDecl = 0, 2207 llvm::Instruction **callOrInvoke = 0); 2208 2209 RValue EmitCall(QualType FnType, llvm::Value *Callee, 2210 ReturnValueSlot ReturnValue, 2211 CallExpr::const_arg_iterator ArgBeg, 2212 CallExpr::const_arg_iterator ArgEnd, 2213 const Decl *TargetDecl = 0); 2214 RValue EmitCallExpr(const CallExpr *E, 2215 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2216 2217 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2218 ArrayRef<llvm::Value *> Args, 2219 const Twine &Name = ""); 2220 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2221 const Twine &Name = ""); 2222 2223 llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This, 2224 llvm::Type *Ty); 2225 llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type, 2226 llvm::Value *This, llvm::Type *Ty); 2227 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2228 NestedNameSpecifier *Qual, 2229 llvm::Type *Ty); 2230 2231 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2232 CXXDtorType Type, 2233 const CXXRecordDecl *RD); 2234 2235 RValue EmitCXXMemberCall(const CXXMethodDecl *MD, 2236 llvm::Value *Callee, 2237 ReturnValueSlot ReturnValue, 2238 llvm::Value *This, 2239 llvm::Value *VTT, 2240 CallExpr::const_arg_iterator ArgBeg, 2241 CallExpr::const_arg_iterator ArgEnd); 2242 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2243 ReturnValueSlot ReturnValue); 2244 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2245 ReturnValueSlot ReturnValue); 2246 2247 llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E, 2248 const CXXMethodDecl *MD, 2249 llvm::Value *This); 2250 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2251 const CXXMethodDecl *MD, 2252 ReturnValueSlot ReturnValue); 2253 2254 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 2255 ReturnValueSlot ReturnValue); 2256 2257 2258 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2259 unsigned BuiltinID, const CallExpr *E); 2260 2261 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2262 2263 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2264 /// is unhandled by the current target. 2265 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2266 2267 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2268 llvm::Value *EmitNeonCall(llvm::Function *F, 2269 SmallVectorImpl<llvm::Value*> &O, 2270 const char *name, 2271 unsigned shift = 0, bool rightshift = false); 2272 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2273 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 2274 bool negateForRightShift); 2275 2276 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 2277 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2278 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2279 2280 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2281 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2282 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 2283 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 2284 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 2285 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 2286 const ObjCMethodDecl *MethodWithObjects); 2287 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2288 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2289 ReturnValueSlot Return = ReturnValueSlot()); 2290 2291 /// Retrieves the default cleanup kind for an ARC cleanup. 2292 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 2293 CleanupKind getARCCleanupKind() { 2294 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 2295 ? NormalAndEHCleanup : NormalCleanup; 2296 } 2297 2298 // ARC primitives. 2299 void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr); 2300 void EmitARCDestroyWeak(llvm::Value *addr); 2301 llvm::Value *EmitARCLoadWeak(llvm::Value *addr); 2302 llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr); 2303 llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr, 2304 bool ignored); 2305 void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src); 2306 void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src); 2307 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 2308 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 2309 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 2310 bool ignored); 2311 llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value, 2312 bool ignored); 2313 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 2314 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 2315 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 2316 void EmitARCRelease(llvm::Value *value, bool precise); 2317 llvm::Value *EmitARCAutorelease(llvm::Value *value); 2318 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 2319 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 2320 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 2321 2322 std::pair<LValue,llvm::Value*> 2323 EmitARCStoreAutoreleasing(const BinaryOperator *e); 2324 std::pair<LValue,llvm::Value*> 2325 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 2326 2327 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 2328 2329 llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr); 2330 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 2331 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 2332 2333 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 2334 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 2335 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 2336 2337 static Destroyer destroyARCStrongImprecise; 2338 static Destroyer destroyARCStrongPrecise; 2339 static Destroyer destroyARCWeak; 2340 2341 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 2342 llvm::Value *EmitObjCAutoreleasePoolPush(); 2343 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 2344 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 2345 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 2346 2347 /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in 2348 /// expression. Will emit a temporary variable if E is not an LValue. 2349 RValue EmitReferenceBindingToExpr(const Expr* E, 2350 const NamedDecl *InitializedDecl); 2351 2352 //===--------------------------------------------------------------------===// 2353 // Expression Emission 2354 //===--------------------------------------------------------------------===// 2355 2356 // Expressions are broken into three classes: scalar, complex, aggregate. 2357 2358 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 2359 /// scalar type, returning the result. 2360 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 2361 2362 /// EmitScalarConversion - Emit a conversion from the specified type to the 2363 /// specified destination type, both of which are LLVM scalar types. 2364 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 2365 QualType DstTy); 2366 2367 /// EmitComplexToScalarConversion - Emit a conversion from the specified 2368 /// complex type to the specified destination type, where the destination type 2369 /// is an LLVM scalar type. 2370 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 2371 QualType DstTy); 2372 2373 2374 /// EmitAggExpr - Emit the computation of the specified expression 2375 /// of aggregate type. The result is computed into the given slot, 2376 /// which may be null to indicate that the value is not needed. 2377 void EmitAggExpr(const Expr *E, AggValueSlot AS); 2378 2379 /// EmitAggExprToLValue - Emit the computation of the specified expression of 2380 /// aggregate type into a temporary LValue. 2381 LValue EmitAggExprToLValue(const Expr *E); 2382 2383 /// EmitGCMemmoveCollectable - Emit special API for structs with object 2384 /// pointers. 2385 void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr, 2386 QualType Ty); 2387 2388 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2389 /// make sure it survives garbage collection until this point. 2390 void EmitExtendGCLifetime(llvm::Value *object); 2391 2392 /// EmitComplexExpr - Emit the computation of the specified expression of 2393 /// complex type, returning the result. 2394 ComplexPairTy EmitComplexExpr(const Expr *E, 2395 bool IgnoreReal = false, 2396 bool IgnoreImag = false); 2397 2398 /// EmitComplexExprIntoAddr - Emit the computation of the specified expression 2399 /// of complex type, storing into the specified Value*. 2400 void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr, 2401 bool DestIsVolatile); 2402 2403 /// StoreComplexToAddr - Store a complex number into the specified address. 2404 void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr, 2405 bool DestIsVolatile); 2406 /// LoadComplexFromAddr - Load a complex number from the specified address. 2407 ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile); 2408 2409 /// CreateStaticVarDecl - Create a zero-initialized LLVM global for 2410 /// a static local variable. 2411 llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D, 2412 const char *Separator, 2413 llvm::GlobalValue::LinkageTypes Linkage); 2414 2415 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2416 /// global variable that has already been created for it. If the initializer 2417 /// has a different type than GV does, this may free GV and return a different 2418 /// one. Otherwise it just returns GV. 2419 llvm::GlobalVariable * 2420 AddInitializerToStaticVarDecl(const VarDecl &D, 2421 llvm::GlobalVariable *GV); 2422 2423 2424 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2425 /// variable with global storage. 2426 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 2427 bool PerformInit); 2428 2429 /// Call atexit() with a function that passes the given argument to 2430 /// the given function. 2431 void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr); 2432 2433 /// Emit code in this function to perform a guarded variable 2434 /// initialization. Guarded initializations are used when it's not 2435 /// possible to prove that an initialization will be done exactly 2436 /// once, e.g. with a static local variable or a static data member 2437 /// of a class template. 2438 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 2439 bool PerformInit); 2440 2441 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2442 /// variables. 2443 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2444 llvm::Constant **Decls, 2445 unsigned NumDecls); 2446 2447 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 2448 /// variables. 2449 void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn, 2450 const std::vector<std::pair<llvm::WeakVH, 2451 llvm::Constant*> > &DtorsAndObjects); 2452 2453 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2454 const VarDecl *D, 2455 llvm::GlobalVariable *Addr, 2456 bool PerformInit); 2457 2458 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2459 2460 void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src, 2461 const Expr *Exp); 2462 2463 void enterFullExpression(const ExprWithCleanups *E) { 2464 if (E->getNumObjects() == 0) return; 2465 enterNonTrivialFullExpression(E); 2466 } 2467 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 2468 2469 void EmitCXXThrowExpr(const CXXThrowExpr *E); 2470 2471 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 2472 2473 RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0); 2474 2475 //===--------------------------------------------------------------------===// 2476 // Annotations Emission 2477 //===--------------------------------------------------------------------===// 2478 2479 /// Emit an annotation call (intrinsic or builtin). 2480 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 2481 llvm::Value *AnnotatedVal, 2482 llvm::StringRef AnnotationStr, 2483 SourceLocation Location); 2484 2485 /// Emit local annotations for the local variable V, declared by D. 2486 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 2487 2488 /// Emit field annotations for the given field & value. Returns the 2489 /// annotation result. 2490 llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V); 2491 2492 //===--------------------------------------------------------------------===// 2493 // Internal Helpers 2494 //===--------------------------------------------------------------------===// 2495 2496 /// ContainsLabel - Return true if the statement contains a label in it. If 2497 /// this statement is not executed normally, it not containing a label means 2498 /// that we can just remove the code. 2499 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 2500 2501 /// containsBreak - Return true if the statement contains a break out of it. 2502 /// If the statement (recursively) contains a switch or loop with a break 2503 /// inside of it, this is fine. 2504 static bool containsBreak(const Stmt *S); 2505 2506 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2507 /// to a constant, or if it does but contains a label, return false. If it 2508 /// constant folds return true and set the boolean result in Result. 2509 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 2510 2511 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2512 /// to a constant, or if it does but contains a label, return false. If it 2513 /// constant folds return true and set the folded value. 2514 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result); 2515 2516 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 2517 /// if statement) to the specified blocks. Based on the condition, this might 2518 /// try to simplify the codegen of the conditional based on the branch. 2519 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 2520 llvm::BasicBlock *FalseBlock); 2521 2522 /// getTrapBB - Create a basic block that will call the trap intrinsic. We'll 2523 /// generate a branch around the created basic block as necessary. 2524 llvm::BasicBlock *getTrapBB(); 2525 2526 /// EmitCallArg - Emit a single call argument. 2527 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 2528 2529 /// EmitDelegateCallArg - We are performing a delegate call; that 2530 /// is, the current function is delegating to another one. Produce 2531 /// a r-value suitable for passing the given parameter. 2532 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param); 2533 2534 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 2535 /// point operation, expressed as the maximum relative error in ulp. 2536 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 2537 2538private: 2539 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 2540 void EmitReturnOfRValue(RValue RV, QualType Ty); 2541 2542 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 2543 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 2544 /// 2545 /// \param AI - The first function argument of the expansion. 2546 /// \return The argument following the last expanded function 2547 /// argument. 2548 llvm::Function::arg_iterator 2549 ExpandTypeFromArgs(QualType Ty, LValue Dst, 2550 llvm::Function::arg_iterator AI); 2551 2552 /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg 2553 /// Ty, into individual arguments on the provided vector \arg Args. See 2554 /// ABIArgInfo::Expand. 2555 void ExpandTypeToArgs(QualType Ty, RValue Src, 2556 SmallVector<llvm::Value*, 16> &Args, 2557 llvm::FunctionType *IRFuncTy); 2558 2559 llvm::Value* EmitAsmInput(const AsmStmt &S, 2560 const TargetInfo::ConstraintInfo &Info, 2561 const Expr *InputExpr, std::string &ConstraintStr); 2562 2563 llvm::Value* EmitAsmInputLValue(const AsmStmt &S, 2564 const TargetInfo::ConstraintInfo &Info, 2565 LValue InputValue, QualType InputType, 2566 std::string &ConstraintStr); 2567 2568 /// EmitCallArgs - Emit call arguments for a function. 2569 /// The CallArgTypeInfo parameter is used for iterating over the known 2570 /// argument types of the function being called. 2571 template<typename T> 2572 void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo, 2573 CallExpr::const_arg_iterator ArgBeg, 2574 CallExpr::const_arg_iterator ArgEnd) { 2575 CallExpr::const_arg_iterator Arg = ArgBeg; 2576 2577 // First, use the argument types that the type info knows about 2578 if (CallArgTypeInfo) { 2579 for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(), 2580 E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) { 2581 assert(Arg != ArgEnd && "Running over edge of argument list!"); 2582 QualType ArgType = *I; 2583#ifndef NDEBUG 2584 QualType ActualArgType = Arg->getType(); 2585 if (ArgType->isPointerType() && ActualArgType->isPointerType()) { 2586 QualType ActualBaseType = 2587 ActualArgType->getAs<PointerType>()->getPointeeType(); 2588 QualType ArgBaseType = 2589 ArgType->getAs<PointerType>()->getPointeeType(); 2590 if (ArgBaseType->isVariableArrayType()) { 2591 if (const VariableArrayType *VAT = 2592 getContext().getAsVariableArrayType(ActualBaseType)) { 2593 if (!VAT->getSizeExpr()) 2594 ActualArgType = ArgType; 2595 } 2596 } 2597 } 2598 assert(getContext().getCanonicalType(ArgType.getNonReferenceType()). 2599 getTypePtr() == 2600 getContext().getCanonicalType(ActualArgType).getTypePtr() && 2601 "type mismatch in call argument!"); 2602#endif 2603 EmitCallArg(Args, *Arg, ArgType); 2604 } 2605 2606 // Either we've emitted all the call args, or we have a call to a 2607 // variadic function. 2608 assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) && 2609 "Extra arguments in non-variadic function!"); 2610 2611 } 2612 2613 // If we still have any arguments, emit them using the type of the argument. 2614 for (; Arg != ArgEnd; ++Arg) 2615 EmitCallArg(Args, *Arg, Arg->getType()); 2616 } 2617 2618 const TargetCodeGenInfo &getTargetHooks() const { 2619 return CGM.getTargetCodeGenInfo(); 2620 } 2621 2622 void EmitDeclMetadata(); 2623 2624 CodeGenModule::ByrefHelpers * 2625 buildByrefHelpers(llvm::StructType &byrefType, 2626 const AutoVarEmission &emission); 2627 2628 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 2629 2630 /// GetPointeeAlignment - Given an expression with a pointer type, find the 2631 /// alignment of the type referenced by the pointer. Skip over implicit 2632 /// casts. 2633 unsigned GetPointeeAlignment(const Expr *Addr); 2634 2635 /// GetPointeeAlignmentValue - Given an expression with a pointer type, find 2636 /// the alignment of the type referenced by the pointer. Skip over implicit 2637 /// casts. Return the alignment as an llvm::Value. 2638 llvm::Value *GetPointeeAlignmentValue(const Expr *Addr); 2639}; 2640 2641/// Helper class with most of the code for saving a value for a 2642/// conditional expression cleanup. 2643struct DominatingLLVMValue { 2644 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 2645 2646 /// Answer whether the given value needs extra work to be saved. 2647 static bool needsSaving(llvm::Value *value) { 2648 // If it's not an instruction, we don't need to save. 2649 if (!isa<llvm::Instruction>(value)) return false; 2650 2651 // If it's an instruction in the entry block, we don't need to save. 2652 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 2653 return (block != &block->getParent()->getEntryBlock()); 2654 } 2655 2656 /// Try to save the given value. 2657 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 2658 if (!needsSaving(value)) return saved_type(value, false); 2659 2660 // Otherwise we need an alloca. 2661 llvm::Value *alloca = 2662 CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save"); 2663 CGF.Builder.CreateStore(value, alloca); 2664 2665 return saved_type(alloca, true); 2666 } 2667 2668 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 2669 if (!value.getInt()) return value.getPointer(); 2670 return CGF.Builder.CreateLoad(value.getPointer()); 2671 } 2672}; 2673 2674/// A partial specialization of DominatingValue for llvm::Values that 2675/// might be llvm::Instructions. 2676template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 2677 typedef T *type; 2678 static type restore(CodeGenFunction &CGF, saved_type value) { 2679 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 2680 } 2681}; 2682 2683/// A specialization of DominatingValue for RValue. 2684template <> struct DominatingValue<RValue> { 2685 typedef RValue type; 2686 class saved_type { 2687 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 2688 AggregateAddress, ComplexAddress }; 2689 2690 llvm::Value *Value; 2691 Kind K; 2692 saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {} 2693 2694 public: 2695 static bool needsSaving(RValue value); 2696 static saved_type save(CodeGenFunction &CGF, RValue value); 2697 RValue restore(CodeGenFunction &CGF); 2698 2699 // implementations in CGExprCXX.cpp 2700 }; 2701 2702 static bool needsSaving(type value) { 2703 return saved_type::needsSaving(value); 2704 } 2705 static saved_type save(CodeGenFunction &CGF, type value) { 2706 return saved_type::save(CGF, value); 2707 } 2708 static type restore(CodeGenFunction &CGF, saved_type value) { 2709 return value.restore(CGF); 2710 } 2711}; 2712 2713} // end namespace CodeGen 2714} // end namespace clang 2715 2716#endif 2717