CodeGenFunction.h revision e87f3f62bcbe8bc562c1623c9e8bb49cf31c0460
1//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the internal per-function state used for llvm translation.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
15#define CLANG_CODEGEN_CODEGENFUNCTION_H
16
17#include "clang/AST/Type.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/Frontend/CodeGenOptions.h"
22#include "clang/Basic/ABI.h"
23#include "clang/Basic/TargetInfo.h"
24#include "llvm/ADT/ArrayRef.h"
25#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/Support/ValueHandle.h"
28#include "llvm/Support/Debug.h"
29#include "CodeGenModule.h"
30#include "CGBuilder.h"
31#include "CGDebugInfo.h"
32#include "CGValue.h"
33
34namespace llvm {
35  class BasicBlock;
36  class LLVMContext;
37  class MDNode;
38  class Module;
39  class SwitchInst;
40  class Twine;
41  class Value;
42  class CallSite;
43}
44
45namespace clang {
46  class ASTContext;
47  class BlockDecl;
48  class CXXDestructorDecl;
49  class CXXForRangeStmt;
50  class CXXTryStmt;
51  class Decl;
52  class LabelDecl;
53  class EnumConstantDecl;
54  class FunctionDecl;
55  class FunctionProtoType;
56  class LabelStmt;
57  class ObjCContainerDecl;
58  class ObjCInterfaceDecl;
59  class ObjCIvarDecl;
60  class ObjCMethodDecl;
61  class ObjCImplementationDecl;
62  class ObjCPropertyImplDecl;
63  class TargetInfo;
64  class TargetCodeGenInfo;
65  class VarDecl;
66  class ObjCForCollectionStmt;
67  class ObjCAtTryStmt;
68  class ObjCAtThrowStmt;
69  class ObjCAtSynchronizedStmt;
70  class ObjCAutoreleasePoolStmt;
71
72namespace CodeGen {
73  class CodeGenTypes;
74  class CGFunctionInfo;
75  class CGRecordLayout;
76  class CGBlockInfo;
77  class CGCXXABI;
78  class BlockFlags;
79  class BlockFieldFlags;
80
81/// A branch fixup.  These are required when emitting a goto to a
82/// label which hasn't been emitted yet.  The goto is optimistically
83/// emitted as a branch to the basic block for the label, and (if it
84/// occurs in a scope with non-trivial cleanups) a fixup is added to
85/// the innermost cleanup.  When a (normal) cleanup is popped, any
86/// unresolved fixups in that scope are threaded through the cleanup.
87struct BranchFixup {
88  /// The block containing the terminator which needs to be modified
89  /// into a switch if this fixup is resolved into the current scope.
90  /// If null, LatestBranch points directly to the destination.
91  llvm::BasicBlock *OptimisticBranchBlock;
92
93  /// The ultimate destination of the branch.
94  ///
95  /// This can be set to null to indicate that this fixup was
96  /// successfully resolved.
97  llvm::BasicBlock *Destination;
98
99  /// The destination index value.
100  unsigned DestinationIndex;
101
102  /// The initial branch of the fixup.
103  llvm::BranchInst *InitialBranch;
104};
105
106template <class T> struct InvariantValue {
107  typedef T type;
108  typedef T saved_type;
109  static bool needsSaving(type value) { return false; }
110  static saved_type save(CodeGenFunction &CGF, type value) { return value; }
111  static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
112};
113
114/// A metaprogramming class for ensuring that a value will dominate an
115/// arbitrary position in a function.
116template <class T> struct DominatingValue : InvariantValue<T> {};
117
118template <class T, bool mightBeInstruction =
119            llvm::is_base_of<llvm::Value, T>::value &&
120            !llvm::is_base_of<llvm::Constant, T>::value &&
121            !llvm::is_base_of<llvm::BasicBlock, T>::value>
122struct DominatingPointer;
123template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
124// template <class T> struct DominatingPointer<T,true> at end of file
125
126template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
127
128enum CleanupKind {
129  EHCleanup = 0x1,
130  NormalCleanup = 0x2,
131  NormalAndEHCleanup = EHCleanup | NormalCleanup,
132
133  InactiveCleanup = 0x4,
134  InactiveEHCleanup = EHCleanup | InactiveCleanup,
135  InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
136  InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
137};
138
139/// A stack of scopes which respond to exceptions, including cleanups
140/// and catch blocks.
141class EHScopeStack {
142public:
143  /// A saved depth on the scope stack.  This is necessary because
144  /// pushing scopes onto the stack invalidates iterators.
145  class stable_iterator {
146    friend class EHScopeStack;
147
148    /// Offset from StartOfData to EndOfBuffer.
149    ptrdiff_t Size;
150
151    stable_iterator(ptrdiff_t Size) : Size(Size) {}
152
153  public:
154    static stable_iterator invalid() { return stable_iterator(-1); }
155    stable_iterator() : Size(-1) {}
156
157    bool isValid() const { return Size >= 0; }
158
159    /// Returns true if this scope encloses I.
160    /// Returns false if I is invalid.
161    /// This scope must be valid.
162    bool encloses(stable_iterator I) const { return Size <= I.Size; }
163
164    /// Returns true if this scope strictly encloses I: that is,
165    /// if it encloses I and is not I.
166    /// Returns false is I is invalid.
167    /// This scope must be valid.
168    bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
169
170    friend bool operator==(stable_iterator A, stable_iterator B) {
171      return A.Size == B.Size;
172    }
173    friend bool operator!=(stable_iterator A, stable_iterator B) {
174      return A.Size != B.Size;
175    }
176  };
177
178  /// Information for lazily generating a cleanup.  Subclasses must be
179  /// POD-like: cleanups will not be destructed, and they will be
180  /// allocated on the cleanup stack and freely copied and moved
181  /// around.
182  ///
183  /// Cleanup implementations should generally be declared in an
184  /// anonymous namespace.
185  class Cleanup {
186    // Anchor the construction vtable.
187    virtual void anchor();
188  public:
189    /// Generation flags.
190    class Flags {
191      enum {
192        F_IsForEH             = 0x1,
193        F_IsNormalCleanupKind = 0x2,
194        F_IsEHCleanupKind     = 0x4
195      };
196      unsigned flags;
197
198    public:
199      Flags() : flags(0) {}
200
201      /// isForEH - true if the current emission is for an EH cleanup.
202      bool isForEHCleanup() const { return flags & F_IsForEH; }
203      bool isForNormalCleanup() const { return !isForEHCleanup(); }
204      void setIsForEHCleanup() { flags |= F_IsForEH; }
205
206      bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; }
207      void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; }
208
209      /// isEHCleanupKind - true if the cleanup was pushed as an EH
210      /// cleanup.
211      bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; }
212      void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; }
213    };
214
215    // Provide a virtual destructor to suppress a very common warning
216    // that unfortunately cannot be suppressed without this.  Cleanups
217    // should not rely on this destructor ever being called.
218    virtual ~Cleanup() {}
219
220    /// Emit the cleanup.  For normal cleanups, this is run in the
221    /// same EH context as when the cleanup was pushed, i.e. the
222    /// immediately-enclosing context of the cleanup scope.  For
223    /// EH cleanups, this is run in a terminate context.
224    ///
225    // \param IsForEHCleanup true if this is for an EH cleanup, false
226    ///  if for a normal cleanup.
227    virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0;
228  };
229
230  /// ConditionalCleanupN stores the saved form of its N parameters,
231  /// then restores them and performs the cleanup.
232  template <class T, class A0>
233  class ConditionalCleanup1 : public Cleanup {
234    typedef typename DominatingValue<A0>::saved_type A0_saved;
235    A0_saved a0_saved;
236
237    void Emit(CodeGenFunction &CGF, Flags flags) {
238      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
239      T(a0).Emit(CGF, flags);
240    }
241
242  public:
243    ConditionalCleanup1(A0_saved a0)
244      : a0_saved(a0) {}
245  };
246
247  template <class T, class A0, class A1>
248  class ConditionalCleanup2 : public Cleanup {
249    typedef typename DominatingValue<A0>::saved_type A0_saved;
250    typedef typename DominatingValue<A1>::saved_type A1_saved;
251    A0_saved a0_saved;
252    A1_saved a1_saved;
253
254    void Emit(CodeGenFunction &CGF, Flags flags) {
255      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
256      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
257      T(a0, a1).Emit(CGF, flags);
258    }
259
260  public:
261    ConditionalCleanup2(A0_saved a0, A1_saved a1)
262      : a0_saved(a0), a1_saved(a1) {}
263  };
264
265  template <class T, class A0, class A1, class A2>
266  class ConditionalCleanup3 : public Cleanup {
267    typedef typename DominatingValue<A0>::saved_type A0_saved;
268    typedef typename DominatingValue<A1>::saved_type A1_saved;
269    typedef typename DominatingValue<A2>::saved_type A2_saved;
270    A0_saved a0_saved;
271    A1_saved a1_saved;
272    A2_saved a2_saved;
273
274    void Emit(CodeGenFunction &CGF, Flags flags) {
275      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
276      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
277      A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
278      T(a0, a1, a2).Emit(CGF, flags);
279    }
280
281  public:
282    ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2)
283      : a0_saved(a0), a1_saved(a1), a2_saved(a2) {}
284  };
285
286  template <class T, class A0, class A1, class A2, class A3>
287  class ConditionalCleanup4 : public Cleanup {
288    typedef typename DominatingValue<A0>::saved_type A0_saved;
289    typedef typename DominatingValue<A1>::saved_type A1_saved;
290    typedef typename DominatingValue<A2>::saved_type A2_saved;
291    typedef typename DominatingValue<A3>::saved_type A3_saved;
292    A0_saved a0_saved;
293    A1_saved a1_saved;
294    A2_saved a2_saved;
295    A3_saved a3_saved;
296
297    void Emit(CodeGenFunction &CGF, Flags flags) {
298      A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
299      A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
300      A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
301      A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved);
302      T(a0, a1, a2, a3).Emit(CGF, flags);
303    }
304
305  public:
306    ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3)
307      : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {}
308  };
309
310private:
311  // The implementation for this class is in CGException.h and
312  // CGException.cpp; the definition is here because it's used as a
313  // member of CodeGenFunction.
314
315  /// The start of the scope-stack buffer, i.e. the allocated pointer
316  /// for the buffer.  All of these pointers are either simultaneously
317  /// null or simultaneously valid.
318  char *StartOfBuffer;
319
320  /// The end of the buffer.
321  char *EndOfBuffer;
322
323  /// The first valid entry in the buffer.
324  char *StartOfData;
325
326  /// The innermost normal cleanup on the stack.
327  stable_iterator InnermostNormalCleanup;
328
329  /// The innermost EH scope on the stack.
330  stable_iterator InnermostEHScope;
331
332  /// The current set of branch fixups.  A branch fixup is a jump to
333  /// an as-yet unemitted label, i.e. a label for which we don't yet
334  /// know the EH stack depth.  Whenever we pop a cleanup, we have
335  /// to thread all the current branch fixups through it.
336  ///
337  /// Fixups are recorded as the Use of the respective branch or
338  /// switch statement.  The use points to the final destination.
339  /// When popping out of a cleanup, these uses are threaded through
340  /// the cleanup and adjusted to point to the new cleanup.
341  ///
342  /// Note that branches are allowed to jump into protected scopes
343  /// in certain situations;  e.g. the following code is legal:
344  ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
345  ///     goto foo;
346  ///     A a;
347  ///    foo:
348  ///     bar();
349  SmallVector<BranchFixup, 8> BranchFixups;
350
351  char *allocate(size_t Size);
352
353  void *pushCleanup(CleanupKind K, size_t DataSize);
354
355public:
356  EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
357                   InnermostNormalCleanup(stable_end()),
358                   InnermostEHScope(stable_end()) {}
359  ~EHScopeStack() { delete[] StartOfBuffer; }
360
361  // Variadic templates would make this not terrible.
362
363  /// Push a lazily-created cleanup on the stack.
364  template <class T>
365  void pushCleanup(CleanupKind Kind) {
366    void *Buffer = pushCleanup(Kind, sizeof(T));
367    Cleanup *Obj = new(Buffer) T();
368    (void) Obj;
369  }
370
371  /// Push a lazily-created cleanup on the stack.
372  template <class T, class A0>
373  void pushCleanup(CleanupKind Kind, A0 a0) {
374    void *Buffer = pushCleanup(Kind, sizeof(T));
375    Cleanup *Obj = new(Buffer) T(a0);
376    (void) Obj;
377  }
378
379  /// Push a lazily-created cleanup on the stack.
380  template <class T, class A0, class A1>
381  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
382    void *Buffer = pushCleanup(Kind, sizeof(T));
383    Cleanup *Obj = new(Buffer) T(a0, a1);
384    (void) Obj;
385  }
386
387  /// Push a lazily-created cleanup on the stack.
388  template <class T, class A0, class A1, class A2>
389  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
390    void *Buffer = pushCleanup(Kind, sizeof(T));
391    Cleanup *Obj = new(Buffer) T(a0, a1, a2);
392    (void) Obj;
393  }
394
395  /// Push a lazily-created cleanup on the stack.
396  template <class T, class A0, class A1, class A2, class A3>
397  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
398    void *Buffer = pushCleanup(Kind, sizeof(T));
399    Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
400    (void) Obj;
401  }
402
403  /// Push a lazily-created cleanup on the stack.
404  template <class T, class A0, class A1, class A2, class A3, class A4>
405  void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
406    void *Buffer = pushCleanup(Kind, sizeof(T));
407    Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
408    (void) Obj;
409  }
410
411  // Feel free to add more variants of the following:
412
413  /// Push a cleanup with non-constant storage requirements on the
414  /// stack.  The cleanup type must provide an additional static method:
415  ///   static size_t getExtraSize(size_t);
416  /// The argument to this method will be the value N, which will also
417  /// be passed as the first argument to the constructor.
418  ///
419  /// The data stored in the extra storage must obey the same
420  /// restrictions as normal cleanup member data.
421  ///
422  /// The pointer returned from this method is valid until the cleanup
423  /// stack is modified.
424  template <class T, class A0, class A1, class A2>
425  T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
426    void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
427    return new (Buffer) T(N, a0, a1, a2);
428  }
429
430  /// Pops a cleanup scope off the stack.  This is private to CGCleanup.cpp.
431  void popCleanup();
432
433  /// Push a set of catch handlers on the stack.  The catch is
434  /// uninitialized and will need to have the given number of handlers
435  /// set on it.
436  class EHCatchScope *pushCatch(unsigned NumHandlers);
437
438  /// Pops a catch scope off the stack.  This is private to CGException.cpp.
439  void popCatch();
440
441  /// Push an exceptions filter on the stack.
442  class EHFilterScope *pushFilter(unsigned NumFilters);
443
444  /// Pops an exceptions filter off the stack.
445  void popFilter();
446
447  /// Push a terminate handler on the stack.
448  void pushTerminate();
449
450  /// Pops a terminate handler off the stack.
451  void popTerminate();
452
453  /// Determines whether the exception-scopes stack is empty.
454  bool empty() const { return StartOfData == EndOfBuffer; }
455
456  bool requiresLandingPad() const {
457    return InnermostEHScope != stable_end();
458  }
459
460  /// Determines whether there are any normal cleanups on the stack.
461  bool hasNormalCleanups() const {
462    return InnermostNormalCleanup != stable_end();
463  }
464
465  /// Returns the innermost normal cleanup on the stack, or
466  /// stable_end() if there are no normal cleanups.
467  stable_iterator getInnermostNormalCleanup() const {
468    return InnermostNormalCleanup;
469  }
470  stable_iterator getInnermostActiveNormalCleanup() const;
471
472  stable_iterator getInnermostEHScope() const {
473    return InnermostEHScope;
474  }
475
476  stable_iterator getInnermostActiveEHScope() const;
477
478  /// An unstable reference to a scope-stack depth.  Invalidated by
479  /// pushes but not pops.
480  class iterator;
481
482  /// Returns an iterator pointing to the innermost EH scope.
483  iterator begin() const;
484
485  /// Returns an iterator pointing to the outermost EH scope.
486  iterator end() const;
487
488  /// Create a stable reference to the top of the EH stack.  The
489  /// returned reference is valid until that scope is popped off the
490  /// stack.
491  stable_iterator stable_begin() const {
492    return stable_iterator(EndOfBuffer - StartOfData);
493  }
494
495  /// Create a stable reference to the bottom of the EH stack.
496  static stable_iterator stable_end() {
497    return stable_iterator(0);
498  }
499
500  /// Translates an iterator into a stable_iterator.
501  stable_iterator stabilize(iterator it) const;
502
503  /// Turn a stable reference to a scope depth into a unstable pointer
504  /// to the EH stack.
505  iterator find(stable_iterator save) const;
506
507  /// Removes the cleanup pointed to by the given stable_iterator.
508  void removeCleanup(stable_iterator save);
509
510  /// Add a branch fixup to the current cleanup scope.
511  BranchFixup &addBranchFixup() {
512    assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
513    BranchFixups.push_back(BranchFixup());
514    return BranchFixups.back();
515  }
516
517  unsigned getNumBranchFixups() const { return BranchFixups.size(); }
518  BranchFixup &getBranchFixup(unsigned I) {
519    assert(I < getNumBranchFixups());
520    return BranchFixups[I];
521  }
522
523  /// Pops lazily-removed fixups from the end of the list.  This
524  /// should only be called by procedures which have just popped a
525  /// cleanup or resolved one or more fixups.
526  void popNullFixups();
527
528  /// Clears the branch-fixups list.  This should only be called by
529  /// ResolveAllBranchFixups.
530  void clearFixups() { BranchFixups.clear(); }
531};
532
533/// CodeGenFunction - This class organizes the per-function state that is used
534/// while generating LLVM code.
535class CodeGenFunction : public CodeGenTypeCache {
536  CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT
537  void operator=(const CodeGenFunction&);  // DO NOT IMPLEMENT
538
539  friend class CGCXXABI;
540public:
541  /// A jump destination is an abstract label, branching to which may
542  /// require a jump out through normal cleanups.
543  struct JumpDest {
544    JumpDest() : Block(0), ScopeDepth(), Index(0) {}
545    JumpDest(llvm::BasicBlock *Block,
546             EHScopeStack::stable_iterator Depth,
547             unsigned Index)
548      : Block(Block), ScopeDepth(Depth), Index(Index) {}
549
550    bool isValid() const { return Block != 0; }
551    llvm::BasicBlock *getBlock() const { return Block; }
552    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
553    unsigned getDestIndex() const { return Index; }
554
555  private:
556    llvm::BasicBlock *Block;
557    EHScopeStack::stable_iterator ScopeDepth;
558    unsigned Index;
559  };
560
561  CodeGenModule &CGM;  // Per-module state.
562  const TargetInfo &Target;
563
564  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
565  CGBuilderTy Builder;
566
567  /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
568  /// This excludes BlockDecls.
569  const Decl *CurFuncDecl;
570  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
571  const Decl *CurCodeDecl;
572  const CGFunctionInfo *CurFnInfo;
573  QualType FnRetTy;
574  llvm::Function *CurFn;
575
576  /// CurGD - The GlobalDecl for the current function being compiled.
577  GlobalDecl CurGD;
578
579  /// PrologueCleanupDepth - The cleanup depth enclosing all the
580  /// cleanups associated with the parameters.
581  EHScopeStack::stable_iterator PrologueCleanupDepth;
582
583  /// ReturnBlock - Unified return block.
584  JumpDest ReturnBlock;
585
586  /// ReturnValue - The temporary alloca to hold the return value. This is null
587  /// iff the function has no return value.
588  llvm::Value *ReturnValue;
589
590  /// AllocaInsertPoint - This is an instruction in the entry block before which
591  /// we prefer to insert allocas.
592  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
593
594  /// BoundsChecking - Emit run-time bounds checks. Higher values mean
595  /// potentially higher performance penalties.
596  unsigned char BoundsChecking;
597
598  /// CatchUndefined - Emit run-time checks to catch undefined behaviors.
599  bool CatchUndefined;
600
601  /// In ARC, whether we should autorelease the return value.
602  bool AutoreleaseResult;
603
604  const CodeGen::CGBlockInfo *BlockInfo;
605  llvm::Value *BlockPointer;
606
607  llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
608  FieldDecl *LambdaThisCaptureField;
609
610  /// \brief A mapping from NRVO variables to the flags used to indicate
611  /// when the NRVO has been applied to this variable.
612  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
613
614  EHScopeStack EHStack;
615
616  /// i32s containing the indexes of the cleanup destinations.
617  llvm::AllocaInst *NormalCleanupDest;
618
619  unsigned NextCleanupDestIndex;
620
621  /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
622  CGBlockInfo *FirstBlockInfo;
623
624  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
625  llvm::BasicBlock *EHResumeBlock;
626
627  /// The exception slot.  All landing pads write the current exception pointer
628  /// into this alloca.
629  llvm::Value *ExceptionSlot;
630
631  /// The selector slot.  Under the MandatoryCleanup model, all landing pads
632  /// write the current selector value into this alloca.
633  llvm::AllocaInst *EHSelectorSlot;
634
635  /// Emits a landing pad for the current EH stack.
636  llvm::BasicBlock *EmitLandingPad();
637
638  llvm::BasicBlock *getInvokeDestImpl();
639
640  template <class T>
641  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
642    return DominatingValue<T>::save(*this, value);
643  }
644
645public:
646  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
647  /// rethrows.
648  SmallVector<llvm::Value*, 8> ObjCEHValueStack;
649
650  /// A class controlling the emission of a finally block.
651  class FinallyInfo {
652    /// Where the catchall's edge through the cleanup should go.
653    JumpDest RethrowDest;
654
655    /// A function to call to enter the catch.
656    llvm::Constant *BeginCatchFn;
657
658    /// An i1 variable indicating whether or not the @finally is
659    /// running for an exception.
660    llvm::AllocaInst *ForEHVar;
661
662    /// An i8* variable into which the exception pointer to rethrow
663    /// has been saved.
664    llvm::AllocaInst *SavedExnVar;
665
666  public:
667    void enter(CodeGenFunction &CGF, const Stmt *Finally,
668               llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
669               llvm::Constant *rethrowFn);
670    void exit(CodeGenFunction &CGF);
671  };
672
673  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
674  /// current full-expression.  Safe against the possibility that
675  /// we're currently inside a conditionally-evaluated expression.
676  template <class T, class A0>
677  void pushFullExprCleanup(CleanupKind kind, A0 a0) {
678    // If we're not in a conditional branch, or if none of the
679    // arguments requires saving, then use the unconditional cleanup.
680    if (!isInConditionalBranch())
681      return EHStack.pushCleanup<T>(kind, a0);
682
683    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
684
685    typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
686    EHStack.pushCleanup<CleanupType>(kind, a0_saved);
687    initFullExprCleanup();
688  }
689
690  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
691  /// current full-expression.  Safe against the possibility that
692  /// we're currently inside a conditionally-evaluated expression.
693  template <class T, class A0, class A1>
694  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
695    // If we're not in a conditional branch, or if none of the
696    // arguments requires saving, then use the unconditional cleanup.
697    if (!isInConditionalBranch())
698      return EHStack.pushCleanup<T>(kind, a0, a1);
699
700    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
701    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
702
703    typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
704    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
705    initFullExprCleanup();
706  }
707
708  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
709  /// current full-expression.  Safe against the possibility that
710  /// we're currently inside a conditionally-evaluated expression.
711  template <class T, class A0, class A1, class A2>
712  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
713    // If we're not in a conditional branch, or if none of the
714    // arguments requires saving, then use the unconditional cleanup.
715    if (!isInConditionalBranch()) {
716      return EHStack.pushCleanup<T>(kind, a0, a1, a2);
717    }
718
719    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
720    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
721    typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
722
723    typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
724    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
725    initFullExprCleanup();
726  }
727
728  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
729  /// current full-expression.  Safe against the possibility that
730  /// we're currently inside a conditionally-evaluated expression.
731  template <class T, class A0, class A1, class A2, class A3>
732  void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
733    // If we're not in a conditional branch, or if none of the
734    // arguments requires saving, then use the unconditional cleanup.
735    if (!isInConditionalBranch()) {
736      return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
737    }
738
739    typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
740    typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
741    typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
742    typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
743
744    typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
745    EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
746                                     a2_saved, a3_saved);
747    initFullExprCleanup();
748  }
749
750  /// Set up the last cleaup that was pushed as a conditional
751  /// full-expression cleanup.
752  void initFullExprCleanup();
753
754  /// PushDestructorCleanup - Push a cleanup to call the
755  /// complete-object destructor of an object of the given type at the
756  /// given address.  Does nothing if T is not a C++ class type with a
757  /// non-trivial destructor.
758  void PushDestructorCleanup(QualType T, llvm::Value *Addr);
759
760  /// PushDestructorCleanup - Push a cleanup to call the
761  /// complete-object variant of the given destructor on the object at
762  /// the given address.
763  void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
764                             llvm::Value *Addr);
765
766  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
767  /// process all branch fixups.
768  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
769
770  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
771  /// The block cannot be reactivated.  Pops it if it's the top of the
772  /// stack.
773  ///
774  /// \param DominatingIP - An instruction which is known to
775  ///   dominate the current IP (if set) and which lies along
776  ///   all paths of execution between the current IP and the
777  ///   the point at which the cleanup comes into scope.
778  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
779                              llvm::Instruction *DominatingIP);
780
781  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
782  /// Cannot be used to resurrect a deactivated cleanup.
783  ///
784  /// \param DominatingIP - An instruction which is known to
785  ///   dominate the current IP (if set) and which lies along
786  ///   all paths of execution between the current IP and the
787  ///   the point at which the cleanup comes into scope.
788  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
789                            llvm::Instruction *DominatingIP);
790
791  /// \brief Enters a new scope for capturing cleanups, all of which
792  /// will be executed once the scope is exited.
793  class RunCleanupsScope {
794    EHScopeStack::stable_iterator CleanupStackDepth;
795    bool OldDidCallStackSave;
796    bool PerformCleanup;
797
798    RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT
799    RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT
800
801  protected:
802    CodeGenFunction& CGF;
803
804  public:
805    /// \brief Enter a new cleanup scope.
806    explicit RunCleanupsScope(CodeGenFunction &CGF)
807      : PerformCleanup(true), CGF(CGF)
808    {
809      CleanupStackDepth = CGF.EHStack.stable_begin();
810      OldDidCallStackSave = CGF.DidCallStackSave;
811      CGF.DidCallStackSave = false;
812    }
813
814    /// \brief Exit this cleanup scope, emitting any accumulated
815    /// cleanups.
816    ~RunCleanupsScope() {
817      if (PerformCleanup) {
818        CGF.DidCallStackSave = OldDidCallStackSave;
819        CGF.PopCleanupBlocks(CleanupStackDepth);
820      }
821    }
822
823    /// \brief Determine whether this scope requires any cleanups.
824    bool requiresCleanups() const {
825      return CGF.EHStack.stable_begin() != CleanupStackDepth;
826    }
827
828    /// \brief Force the emission of cleanups now, instead of waiting
829    /// until this object is destroyed.
830    void ForceCleanup() {
831      assert(PerformCleanup && "Already forced cleanup");
832      CGF.DidCallStackSave = OldDidCallStackSave;
833      CGF.PopCleanupBlocks(CleanupStackDepth);
834      PerformCleanup = false;
835    }
836  };
837
838  class LexicalScope: protected RunCleanupsScope {
839    SourceRange Range;
840    bool PopDebugStack;
841
842    LexicalScope(const LexicalScope &); // DO NOT IMPLEMENT THESE
843    LexicalScope &operator=(const LexicalScope &);
844
845  public:
846    /// \brief Enter a new cleanup scope.
847    explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
848      : RunCleanupsScope(CGF), Range(Range), PopDebugStack(true) {
849      if (CGDebugInfo *DI = CGF.getDebugInfo())
850        DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
851    }
852
853    /// \brief Exit this cleanup scope, emitting any accumulated
854    /// cleanups.
855    ~LexicalScope() {
856      if (PopDebugStack) {
857        CGDebugInfo *DI = CGF.getDebugInfo();
858        if (DI) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
859      }
860    }
861
862    /// \brief Force the emission of cleanups now, instead of waiting
863    /// until this object is destroyed.
864    void ForceCleanup() {
865      RunCleanupsScope::ForceCleanup();
866      if (CGDebugInfo *DI = CGF.getDebugInfo()) {
867        DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
868        PopDebugStack = false;
869      }
870    }
871  };
872
873
874  /// PopCleanupBlocks - Takes the old cleanup stack size and emits
875  /// the cleanup blocks that have been added.
876  void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
877
878  void ResolveBranchFixups(llvm::BasicBlock *Target);
879
880  /// The given basic block lies in the current EH scope, but may be a
881  /// target of a potentially scope-crossing jump; get a stable handle
882  /// to which we can perform this jump later.
883  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
884    return JumpDest(Target,
885                    EHStack.getInnermostNormalCleanup(),
886                    NextCleanupDestIndex++);
887  }
888
889  /// The given basic block lies in the current EH scope, but may be a
890  /// target of a potentially scope-crossing jump; get a stable handle
891  /// to which we can perform this jump later.
892  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
893    return getJumpDestInCurrentScope(createBasicBlock(Name));
894  }
895
896  /// EmitBranchThroughCleanup - Emit a branch from the current insert
897  /// block through the normal cleanup handling code (if any) and then
898  /// on to \arg Dest.
899  void EmitBranchThroughCleanup(JumpDest Dest);
900
901  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
902  /// specified destination obviously has no cleanups to run.  'false' is always
903  /// a conservatively correct answer for this method.
904  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
905
906  /// popCatchScope - Pops the catch scope at the top of the EHScope
907  /// stack, emitting any required code (other than the catch handlers
908  /// themselves).
909  void popCatchScope();
910
911  llvm::BasicBlock *getEHResumeBlock();
912  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
913
914  /// An object to manage conditionally-evaluated expressions.
915  class ConditionalEvaluation {
916    llvm::BasicBlock *StartBB;
917
918  public:
919    ConditionalEvaluation(CodeGenFunction &CGF)
920      : StartBB(CGF.Builder.GetInsertBlock()) {}
921
922    void begin(CodeGenFunction &CGF) {
923      assert(CGF.OutermostConditional != this);
924      if (!CGF.OutermostConditional)
925        CGF.OutermostConditional = this;
926    }
927
928    void end(CodeGenFunction &CGF) {
929      assert(CGF.OutermostConditional != 0);
930      if (CGF.OutermostConditional == this)
931        CGF.OutermostConditional = 0;
932    }
933
934    /// Returns a block which will be executed prior to each
935    /// evaluation of the conditional code.
936    llvm::BasicBlock *getStartingBlock() const {
937      return StartBB;
938    }
939  };
940
941  /// isInConditionalBranch - Return true if we're currently emitting
942  /// one branch or the other of a conditional expression.
943  bool isInConditionalBranch() const { return OutermostConditional != 0; }
944
945  void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
946    assert(isInConditionalBranch());
947    llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
948    new llvm::StoreInst(value, addr, &block->back());
949  }
950
951  /// An RAII object to record that we're evaluating a statement
952  /// expression.
953  class StmtExprEvaluation {
954    CodeGenFunction &CGF;
955
956    /// We have to save the outermost conditional: cleanups in a
957    /// statement expression aren't conditional just because the
958    /// StmtExpr is.
959    ConditionalEvaluation *SavedOutermostConditional;
960
961  public:
962    StmtExprEvaluation(CodeGenFunction &CGF)
963      : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
964      CGF.OutermostConditional = 0;
965    }
966
967    ~StmtExprEvaluation() {
968      CGF.OutermostConditional = SavedOutermostConditional;
969      CGF.EnsureInsertPoint();
970    }
971  };
972
973  /// An object which temporarily prevents a value from being
974  /// destroyed by aggressive peephole optimizations that assume that
975  /// all uses of a value have been realized in the IR.
976  class PeepholeProtection {
977    llvm::Instruction *Inst;
978    friend class CodeGenFunction;
979
980  public:
981    PeepholeProtection() : Inst(0) {}
982  };
983
984  /// A non-RAII class containing all the information about a bound
985  /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
986  /// this which makes individual mappings very simple; using this
987  /// class directly is useful when you have a variable number of
988  /// opaque values or don't want the RAII functionality for some
989  /// reason.
990  class OpaqueValueMappingData {
991    const OpaqueValueExpr *OpaqueValue;
992    bool BoundLValue;
993    CodeGenFunction::PeepholeProtection Protection;
994
995    OpaqueValueMappingData(const OpaqueValueExpr *ov,
996                           bool boundLValue)
997      : OpaqueValue(ov), BoundLValue(boundLValue) {}
998  public:
999    OpaqueValueMappingData() : OpaqueValue(0) {}
1000
1001    static bool shouldBindAsLValue(const Expr *expr) {
1002      // gl-values should be bound as l-values for obvious reasons.
1003      // Records should be bound as l-values because IR generation
1004      // always keeps them in memory.  Expressions of function type
1005      // act exactly like l-values but are formally required to be
1006      // r-values in C.
1007      return expr->isGLValue() ||
1008             expr->getType()->isRecordType() ||
1009             expr->getType()->isFunctionType();
1010    }
1011
1012    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1013                                       const OpaqueValueExpr *ov,
1014                                       const Expr *e) {
1015      if (shouldBindAsLValue(ov))
1016        return bind(CGF, ov, CGF.EmitLValue(e));
1017      return bind(CGF, ov, CGF.EmitAnyExpr(e));
1018    }
1019
1020    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1021                                       const OpaqueValueExpr *ov,
1022                                       const LValue &lv) {
1023      assert(shouldBindAsLValue(ov));
1024      CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1025      return OpaqueValueMappingData(ov, true);
1026    }
1027
1028    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1029                                       const OpaqueValueExpr *ov,
1030                                       const RValue &rv) {
1031      assert(!shouldBindAsLValue(ov));
1032      CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1033
1034      OpaqueValueMappingData data(ov, false);
1035
1036      // Work around an extremely aggressive peephole optimization in
1037      // EmitScalarConversion which assumes that all other uses of a
1038      // value are extant.
1039      data.Protection = CGF.protectFromPeepholes(rv);
1040
1041      return data;
1042    }
1043
1044    bool isValid() const { return OpaqueValue != 0; }
1045    void clear() { OpaqueValue = 0; }
1046
1047    void unbind(CodeGenFunction &CGF) {
1048      assert(OpaqueValue && "no data to unbind!");
1049
1050      if (BoundLValue) {
1051        CGF.OpaqueLValues.erase(OpaqueValue);
1052      } else {
1053        CGF.OpaqueRValues.erase(OpaqueValue);
1054        CGF.unprotectFromPeepholes(Protection);
1055      }
1056    }
1057  };
1058
1059  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1060  class OpaqueValueMapping {
1061    CodeGenFunction &CGF;
1062    OpaqueValueMappingData Data;
1063
1064  public:
1065    static bool shouldBindAsLValue(const Expr *expr) {
1066      return OpaqueValueMappingData::shouldBindAsLValue(expr);
1067    }
1068
1069    /// Build the opaque value mapping for the given conditional
1070    /// operator if it's the GNU ?: extension.  This is a common
1071    /// enough pattern that the convenience operator is really
1072    /// helpful.
1073    ///
1074    OpaqueValueMapping(CodeGenFunction &CGF,
1075                       const AbstractConditionalOperator *op) : CGF(CGF) {
1076      if (isa<ConditionalOperator>(op))
1077        // Leave Data empty.
1078        return;
1079
1080      const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1081      Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1082                                          e->getCommon());
1083    }
1084
1085    OpaqueValueMapping(CodeGenFunction &CGF,
1086                       const OpaqueValueExpr *opaqueValue,
1087                       LValue lvalue)
1088      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1089    }
1090
1091    OpaqueValueMapping(CodeGenFunction &CGF,
1092                       const OpaqueValueExpr *opaqueValue,
1093                       RValue rvalue)
1094      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1095    }
1096
1097    void pop() {
1098      Data.unbind(CGF);
1099      Data.clear();
1100    }
1101
1102    ~OpaqueValueMapping() {
1103      if (Data.isValid()) Data.unbind(CGF);
1104    }
1105  };
1106
1107  /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
1108  /// number that holds the value.
1109  unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
1110
1111  /// BuildBlockByrefAddress - Computes address location of the
1112  /// variable which is declared as __block.
1113  llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
1114                                      const VarDecl *V);
1115private:
1116  CGDebugInfo *DebugInfo;
1117  bool DisableDebugInfo;
1118
1119  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1120  /// calling llvm.stacksave for multiple VLAs in the same scope.
1121  bool DidCallStackSave;
1122
1123  /// IndirectBranch - The first time an indirect goto is seen we create a block
1124  /// with an indirect branch.  Every time we see the address of a label taken,
1125  /// we add the label to the indirect goto.  Every subsequent indirect goto is
1126  /// codegen'd as a jump to the IndirectBranch's basic block.
1127  llvm::IndirectBrInst *IndirectBranch;
1128
1129  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1130  /// decls.
1131  typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
1132  DeclMapTy LocalDeclMap;
1133
1134  /// LabelMap - This keeps track of the LLVM basic block for each C label.
1135  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1136
1137  // BreakContinueStack - This keeps track of where break and continue
1138  // statements should jump to.
1139  struct BreakContinue {
1140    BreakContinue(JumpDest Break, JumpDest Continue)
1141      : BreakBlock(Break), ContinueBlock(Continue) {}
1142
1143    JumpDest BreakBlock;
1144    JumpDest ContinueBlock;
1145  };
1146  SmallVector<BreakContinue, 8> BreakContinueStack;
1147
1148  /// SwitchInsn - This is nearest current switch instruction. It is null if
1149  /// current context is not in a switch.
1150  llvm::SwitchInst *SwitchInsn;
1151
1152  /// CaseRangeBlock - This block holds if condition check for last case
1153  /// statement range in current switch instruction.
1154  llvm::BasicBlock *CaseRangeBlock;
1155
1156  /// OpaqueLValues - Keeps track of the current set of opaque value
1157  /// expressions.
1158  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1159  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1160
1161  // VLASizeMap - This keeps track of the associated size for each VLA type.
1162  // We track this by the size expression rather than the type itself because
1163  // in certain situations, like a const qualifier applied to an VLA typedef,
1164  // multiple VLA types can share the same size expression.
1165  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1166  // enter/leave scopes.
1167  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1168
1169  /// A block containing a single 'unreachable' instruction.  Created
1170  /// lazily by getUnreachableBlock().
1171  llvm::BasicBlock *UnreachableBlock;
1172
1173  /// CXXThisDecl - When generating code for a C++ member function,
1174  /// this will hold the implicit 'this' declaration.
1175  ImplicitParamDecl *CXXABIThisDecl;
1176  llvm::Value *CXXABIThisValue;
1177  llvm::Value *CXXThisValue;
1178
1179  /// CXXVTTDecl - When generating code for a base object constructor or
1180  /// base object destructor with virtual bases, this will hold the implicit
1181  /// VTT parameter.
1182  ImplicitParamDecl *CXXVTTDecl;
1183  llvm::Value *CXXVTTValue;
1184
1185  /// OutermostConditional - Points to the outermost active
1186  /// conditional control.  This is used so that we know if a
1187  /// temporary should be destroyed conditionally.
1188  ConditionalEvaluation *OutermostConditional;
1189
1190
1191  /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
1192  /// type as well as the field number that contains the actual data.
1193  llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
1194                                              unsigned> > ByRefValueInfo;
1195
1196  llvm::BasicBlock *TerminateLandingPad;
1197  llvm::BasicBlock *TerminateHandler;
1198  llvm::BasicBlock *TrapBB;
1199
1200  /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
1201  /// In the kernel metadata node, reference the kernel function and metadata
1202  /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
1203  /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
1204  ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
1205  /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
1206  ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
1207  void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
1208                                llvm::Function *Fn);
1209
1210public:
1211  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
1212  ~CodeGenFunction();
1213
1214  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
1215  ASTContext &getContext() const { return CGM.getContext(); }
1216  CGDebugInfo *getDebugInfo() {
1217    if (DisableDebugInfo)
1218      return NULL;
1219    return DebugInfo;
1220  }
1221  void disableDebugInfo() { DisableDebugInfo = true; }
1222  void enableDebugInfo() { DisableDebugInfo = false; }
1223
1224  bool shouldUseFusedARCCalls() {
1225    return CGM.getCodeGenOpts().OptimizationLevel == 0;
1226  }
1227
1228  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
1229
1230  /// Returns a pointer to the function's exception object and selector slot,
1231  /// which is assigned in every landing pad.
1232  llvm::Value *getExceptionSlot();
1233  llvm::Value *getEHSelectorSlot();
1234
1235  /// Returns the contents of the function's exception object and selector
1236  /// slots.
1237  llvm::Value *getExceptionFromSlot();
1238  llvm::Value *getSelectorFromSlot();
1239
1240  llvm::Value *getNormalCleanupDestSlot();
1241
1242  llvm::BasicBlock *getUnreachableBlock() {
1243    if (!UnreachableBlock) {
1244      UnreachableBlock = createBasicBlock("unreachable");
1245      new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
1246    }
1247    return UnreachableBlock;
1248  }
1249
1250  llvm::BasicBlock *getInvokeDest() {
1251    if (!EHStack.requiresLandingPad()) return 0;
1252    return getInvokeDestImpl();
1253  }
1254
1255  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
1256
1257  //===--------------------------------------------------------------------===//
1258  //                                  Cleanups
1259  //===--------------------------------------------------------------------===//
1260
1261  typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
1262
1263  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1264                                        llvm::Value *arrayEndPointer,
1265                                        QualType elementType,
1266                                        Destroyer *destroyer);
1267  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1268                                      llvm::Value *arrayEnd,
1269                                      QualType elementType,
1270                                      Destroyer *destroyer);
1271
1272  void pushDestroy(QualType::DestructionKind dtorKind,
1273                   llvm::Value *addr, QualType type);
1274  void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
1275                   Destroyer *destroyer, bool useEHCleanupForArray);
1276  void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
1277                   bool useEHCleanupForArray);
1278  llvm::Function *generateDestroyHelper(llvm::Constant *addr,
1279                                        QualType type,
1280                                        Destroyer *destroyer,
1281                                        bool useEHCleanupForArray);
1282  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
1283                        QualType type, Destroyer *destroyer,
1284                        bool checkZeroLength, bool useEHCleanup);
1285
1286  Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
1287
1288  /// Determines whether an EH cleanup is required to destroy a type
1289  /// with the given destruction kind.
1290  bool needsEHCleanup(QualType::DestructionKind kind) {
1291    switch (kind) {
1292    case QualType::DK_none:
1293      return false;
1294    case QualType::DK_cxx_destructor:
1295    case QualType::DK_objc_weak_lifetime:
1296      return getLangOpts().Exceptions;
1297    case QualType::DK_objc_strong_lifetime:
1298      return getLangOpts().Exceptions &&
1299             CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
1300    }
1301    llvm_unreachable("bad destruction kind");
1302  }
1303
1304  CleanupKind getCleanupKind(QualType::DestructionKind kind) {
1305    return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
1306  }
1307
1308  //===--------------------------------------------------------------------===//
1309  //                                  Objective-C
1310  //===--------------------------------------------------------------------===//
1311
1312  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
1313
1314  void StartObjCMethod(const ObjCMethodDecl *MD,
1315                       const ObjCContainerDecl *CD,
1316                       SourceLocation StartLoc);
1317
1318  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
1319  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
1320                          const ObjCPropertyImplDecl *PID);
1321  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
1322                              const ObjCPropertyImplDecl *propImpl,
1323                              const ObjCMethodDecl *GetterMothodDecl,
1324                              llvm::Constant *AtomicHelperFn);
1325
1326  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
1327                                  ObjCMethodDecl *MD, bool ctor);
1328
1329  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
1330  /// for the given property.
1331  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
1332                          const ObjCPropertyImplDecl *PID);
1333  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
1334                              const ObjCPropertyImplDecl *propImpl,
1335                              llvm::Constant *AtomicHelperFn);
1336  bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
1337  bool IvarTypeWithAggrGCObjects(QualType Ty);
1338
1339  //===--------------------------------------------------------------------===//
1340  //                                  Block Bits
1341  //===--------------------------------------------------------------------===//
1342
1343  llvm::Value *EmitBlockLiteral(const BlockExpr *);
1344  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
1345  static void destroyBlockInfos(CGBlockInfo *info);
1346  llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
1347                                           const CGBlockInfo &Info,
1348                                           llvm::StructType *,
1349                                           llvm::Constant *BlockVarLayout);
1350
1351  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
1352                                        const CGBlockInfo &Info,
1353                                        const Decl *OuterFuncDecl,
1354                                        const DeclMapTy &ldm,
1355                                        bool IsLambdaConversionToBlock);
1356
1357  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
1358  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
1359  llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
1360                                             const ObjCPropertyImplDecl *PID);
1361  llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
1362                                             const ObjCPropertyImplDecl *PID);
1363  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
1364
1365  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
1366
1367  class AutoVarEmission;
1368
1369  void emitByrefStructureInit(const AutoVarEmission &emission);
1370  void enterByrefCleanup(const AutoVarEmission &emission);
1371
1372  llvm::Value *LoadBlockStruct() {
1373    assert(BlockPointer && "no block pointer set!");
1374    return BlockPointer;
1375  }
1376
1377  void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
1378  void AllocateBlockDecl(const DeclRefExpr *E);
1379  llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
1380  llvm::Type *BuildByRefType(const VarDecl *var);
1381
1382  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
1383                    const CGFunctionInfo &FnInfo);
1384  void StartFunction(GlobalDecl GD, QualType RetTy,
1385                     llvm::Function *Fn,
1386                     const CGFunctionInfo &FnInfo,
1387                     const FunctionArgList &Args,
1388                     SourceLocation StartLoc);
1389
1390  void EmitConstructorBody(FunctionArgList &Args);
1391  void EmitDestructorBody(FunctionArgList &Args);
1392  void EmitFunctionBody(FunctionArgList &Args);
1393
1394  void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda,
1395                                  CallArgList &CallArgs);
1396  void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
1397  void EmitLambdaBlockInvokeBody();
1398  void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
1399  void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
1400
1401  /// EmitReturnBlock - Emit the unified return block, trying to avoid its
1402  /// emission when possible.
1403  void EmitReturnBlock();
1404
1405  /// FinishFunction - Complete IR generation of the current function. It is
1406  /// legal to call this function even if there is no current insertion point.
1407  void FinishFunction(SourceLocation EndLoc=SourceLocation());
1408
1409  /// GenerateThunk - Generate a thunk for the given method.
1410  void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1411                     GlobalDecl GD, const ThunkInfo &Thunk);
1412
1413  void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
1414                            GlobalDecl GD, const ThunkInfo &Thunk);
1415
1416  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
1417                        FunctionArgList &Args);
1418
1419  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
1420                               ArrayRef<VarDecl *> ArrayIndexes);
1421
1422  /// InitializeVTablePointer - Initialize the vtable pointer of the given
1423  /// subobject.
1424  ///
1425  void InitializeVTablePointer(BaseSubobject Base,
1426                               const CXXRecordDecl *NearestVBase,
1427                               CharUnits OffsetFromNearestVBase,
1428                               llvm::Constant *VTable,
1429                               const CXXRecordDecl *VTableClass);
1430
1431  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
1432  void InitializeVTablePointers(BaseSubobject Base,
1433                                const CXXRecordDecl *NearestVBase,
1434                                CharUnits OffsetFromNearestVBase,
1435                                bool BaseIsNonVirtualPrimaryBase,
1436                                llvm::Constant *VTable,
1437                                const CXXRecordDecl *VTableClass,
1438                                VisitedVirtualBasesSetTy& VBases);
1439
1440  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
1441
1442  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
1443  /// to by This.
1444  llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
1445
1446  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
1447  /// given phase of destruction for a destructor.  The end result
1448  /// should call destructors on members and base classes in reverse
1449  /// order of their construction.
1450  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
1451
1452  /// ShouldInstrumentFunction - Return true if the current function should be
1453  /// instrumented with __cyg_profile_func_* calls
1454  bool ShouldInstrumentFunction();
1455
1456  /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
1457  /// instrumentation function with the current function and the call site, if
1458  /// function instrumentation is enabled.
1459  void EmitFunctionInstrumentation(const char *Fn);
1460
1461  /// EmitMCountInstrumentation - Emit call to .mcount.
1462  void EmitMCountInstrumentation();
1463
1464  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
1465  /// arguments for the given function. This is also responsible for naming the
1466  /// LLVM function arguments.
1467  void EmitFunctionProlog(const CGFunctionInfo &FI,
1468                          llvm::Function *Fn,
1469                          const FunctionArgList &Args);
1470
1471  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
1472  /// given temporary.
1473  void EmitFunctionEpilog(const CGFunctionInfo &FI);
1474
1475  /// EmitStartEHSpec - Emit the start of the exception spec.
1476  void EmitStartEHSpec(const Decl *D);
1477
1478  /// EmitEndEHSpec - Emit the end of the exception spec.
1479  void EmitEndEHSpec(const Decl *D);
1480
1481  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
1482  llvm::BasicBlock *getTerminateLandingPad();
1483
1484  /// getTerminateHandler - Return a handler (not a landing pad, just
1485  /// a catch handler) that just calls terminate.  This is used when
1486  /// a terminate scope encloses a try.
1487  llvm::BasicBlock *getTerminateHandler();
1488
1489  llvm::Type *ConvertTypeForMem(QualType T);
1490  llvm::Type *ConvertType(QualType T);
1491  llvm::Type *ConvertType(const TypeDecl *T) {
1492    return ConvertType(getContext().getTypeDeclType(T));
1493  }
1494
1495  /// LoadObjCSelf - Load the value of self. This function is only valid while
1496  /// generating code for an Objective-C method.
1497  llvm::Value *LoadObjCSelf();
1498
1499  /// TypeOfSelfObject - Return type of object that this self represents.
1500  QualType TypeOfSelfObject();
1501
1502  /// hasAggregateLLVMType - Return true if the specified AST type will map into
1503  /// an aggregate LLVM type or is void.
1504  static bool hasAggregateLLVMType(QualType T);
1505
1506  /// createBasicBlock - Create an LLVM basic block.
1507  llvm::BasicBlock *createBasicBlock(StringRef name = "",
1508                                     llvm::Function *parent = 0,
1509                                     llvm::BasicBlock *before = 0) {
1510#ifdef NDEBUG
1511    return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
1512#else
1513    return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
1514#endif
1515  }
1516
1517  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
1518  /// label maps to.
1519  JumpDest getJumpDestForLabel(const LabelDecl *S);
1520
1521  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
1522  /// another basic block, simplify it. This assumes that no other code could
1523  /// potentially reference the basic block.
1524  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
1525
1526  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
1527  /// adding a fall-through branch from the current insert block if
1528  /// necessary. It is legal to call this function even if there is no current
1529  /// insertion point.
1530  ///
1531  /// IsFinished - If true, indicates that the caller has finished emitting
1532  /// branches to the given block and does not expect to emit code into it. This
1533  /// means the block can be ignored if it is unreachable.
1534  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
1535
1536  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
1537  /// near its uses, and leave the insertion point in it.
1538  void EmitBlockAfterUses(llvm::BasicBlock *BB);
1539
1540  /// EmitBranch - Emit a branch to the specified basic block from the current
1541  /// insert block, taking care to avoid creation of branches from dummy
1542  /// blocks. It is legal to call this function even if there is no current
1543  /// insertion point.
1544  ///
1545  /// This function clears the current insertion point. The caller should follow
1546  /// calls to this function with calls to Emit*Block prior to generation new
1547  /// code.
1548  void EmitBranch(llvm::BasicBlock *Block);
1549
1550  /// HaveInsertPoint - True if an insertion point is defined. If not, this
1551  /// indicates that the current code being emitted is unreachable.
1552  bool HaveInsertPoint() const {
1553    return Builder.GetInsertBlock() != 0;
1554  }
1555
1556  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
1557  /// emitted IR has a place to go. Note that by definition, if this function
1558  /// creates a block then that block is unreachable; callers may do better to
1559  /// detect when no insertion point is defined and simply skip IR generation.
1560  void EnsureInsertPoint() {
1561    if (!HaveInsertPoint())
1562      EmitBlock(createBasicBlock());
1563  }
1564
1565  /// ErrorUnsupported - Print out an error that codegen doesn't support the
1566  /// specified stmt yet.
1567  void ErrorUnsupported(const Stmt *S, const char *Type,
1568                        bool OmitOnError=false);
1569
1570  //===--------------------------------------------------------------------===//
1571  //                                  Helpers
1572  //===--------------------------------------------------------------------===//
1573
1574  LValue MakeAddrLValue(llvm::Value *V, QualType T,
1575                        CharUnits Alignment = CharUnits()) {
1576    return LValue::MakeAddr(V, T, Alignment, getContext(),
1577                            CGM.getTBAAInfo(T));
1578  }
1579
1580  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
1581    CharUnits Alignment;
1582    if (!T->isIncompleteType())
1583      Alignment = getContext().getTypeAlignInChars(T);
1584    return LValue::MakeAddr(V, T, Alignment, getContext(),
1585                            CGM.getTBAAInfo(T));
1586  }
1587
1588  /// CreateTempAlloca - This creates a alloca and inserts it into the entry
1589  /// block. The caller is responsible for setting an appropriate alignment on
1590  /// the alloca.
1591  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
1592                                     const Twine &Name = "tmp");
1593
1594  /// InitTempAlloca - Provide an initial value for the given alloca.
1595  void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
1596
1597  /// CreateIRTemp - Create a temporary IR object of the given type, with
1598  /// appropriate alignment. This routine should only be used when an temporary
1599  /// value needs to be stored into an alloca (for example, to avoid explicit
1600  /// PHI construction), but the type is the IR type, not the type appropriate
1601  /// for storing in memory.
1602  llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
1603
1604  /// CreateMemTemp - Create a temporary memory object of the given type, with
1605  /// appropriate alignment.
1606  llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
1607
1608  /// CreateAggTemp - Create a temporary memory object for the given
1609  /// aggregate type.
1610  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
1611    CharUnits Alignment = getContext().getTypeAlignInChars(T);
1612    return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
1613                                 T.getQualifiers(),
1614                                 AggValueSlot::IsNotDestructed,
1615                                 AggValueSlot::DoesNotNeedGCBarriers,
1616                                 AggValueSlot::IsNotAliased);
1617  }
1618
1619  /// Emit a cast to void* in the appropriate address space.
1620  llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
1621
1622  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
1623  /// expression and compare the result against zero, returning an Int1Ty value.
1624  llvm::Value *EvaluateExprAsBool(const Expr *E);
1625
1626  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
1627  void EmitIgnoredExpr(const Expr *E);
1628
1629  /// EmitAnyExpr - Emit code to compute the specified expression which can have
1630  /// any type.  The result is returned as an RValue struct.  If this is an
1631  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
1632  /// the result should be returned.
1633  ///
1634  /// \param IgnoreResult - True if the resulting value isn't used.
1635  RValue EmitAnyExpr(const Expr *E,
1636                     AggValueSlot aggSlot = AggValueSlot::ignored(),
1637                     bool ignoreResult = false);
1638
1639  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
1640  // or the value of the expression, depending on how va_list is defined.
1641  llvm::Value *EmitVAListRef(const Expr *E);
1642
1643  /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
1644  /// always be accessible even if no aggregate location is provided.
1645  RValue EmitAnyExprToTemp(const Expr *E);
1646
1647  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
1648  /// arbitrary expression into the given memory location.
1649  void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
1650                        Qualifiers Quals, bool IsInitializer);
1651
1652  /// EmitExprAsInit - Emits the code necessary to initialize a
1653  /// location in memory with the given initializer.
1654  void EmitExprAsInit(const Expr *init, const ValueDecl *D,
1655                      LValue lvalue, bool capturedByInit);
1656
1657  /// EmitAggregateCopy - Emit an aggrate copy.
1658  ///
1659  /// \param isVolatile - True iff either the source or the destination is
1660  /// volatile.
1661  void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
1662                         QualType EltTy, bool isVolatile=false,
1663                         CharUnits Alignment = CharUnits::Zero());
1664
1665  /// StartBlock - Start new block named N. If insert block is a dummy block
1666  /// then reuse it.
1667  void StartBlock(const char *N);
1668
1669  /// GetAddrOfStaticLocalVar - Return the address of a static local variable.
1670  llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) {
1671    return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
1672  }
1673
1674  /// GetAddrOfLocalVar - Return the address of a local variable.
1675  llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
1676    llvm::Value *Res = LocalDeclMap[VD];
1677    assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
1678    return Res;
1679  }
1680
1681  /// getOpaqueLValueMapping - Given an opaque value expression (which
1682  /// must be mapped to an l-value), return its mapping.
1683  const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
1684    assert(OpaqueValueMapping::shouldBindAsLValue(e));
1685
1686    llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
1687      it = OpaqueLValues.find(e);
1688    assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
1689    return it->second;
1690  }
1691
1692  /// getOpaqueRValueMapping - Given an opaque value expression (which
1693  /// must be mapped to an r-value), return its mapping.
1694  const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
1695    assert(!OpaqueValueMapping::shouldBindAsLValue(e));
1696
1697    llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
1698      it = OpaqueRValues.find(e);
1699    assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
1700    return it->second;
1701  }
1702
1703  /// getAccessedFieldNo - Given an encoded value and a result number, return
1704  /// the input field number being accessed.
1705  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
1706
1707  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
1708  llvm::BasicBlock *GetIndirectGotoBlock();
1709
1710  /// EmitNullInitialization - Generate code to set a value of the given type to
1711  /// null, If the type contains data member pointers, they will be initialized
1712  /// to -1 in accordance with the Itanium C++ ABI.
1713  void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
1714
1715  // EmitVAArg - Generate code to get an argument from the passed in pointer
1716  // and update it accordingly. The return value is a pointer to the argument.
1717  // FIXME: We should be able to get rid of this method and use the va_arg
1718  // instruction in LLVM instead once it works well enough.
1719  llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
1720
1721  /// emitArrayLength - Compute the length of an array, even if it's a
1722  /// VLA, and drill down to the base element type.
1723  llvm::Value *emitArrayLength(const ArrayType *arrayType,
1724                               QualType &baseType,
1725                               llvm::Value *&addr);
1726
1727  /// EmitVLASize - Capture all the sizes for the VLA expressions in
1728  /// the given variably-modified type and store them in the VLASizeMap.
1729  ///
1730  /// This function can be called with a null (unreachable) insert point.
1731  void EmitVariablyModifiedType(QualType Ty);
1732
1733  /// getVLASize - Returns an LLVM value that corresponds to the size,
1734  /// in non-variably-sized elements, of a variable length array type,
1735  /// plus that largest non-variably-sized element type.  Assumes that
1736  /// the type has already been emitted with EmitVariablyModifiedType.
1737  std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
1738  std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
1739
1740  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
1741  /// generating code for an C++ member function.
1742  llvm::Value *LoadCXXThis() {
1743    assert(CXXThisValue && "no 'this' value for this function");
1744    return CXXThisValue;
1745  }
1746
1747  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
1748  /// virtual bases.
1749  llvm::Value *LoadCXXVTT() {
1750    assert(CXXVTTValue && "no VTT value for this function");
1751    return CXXVTTValue;
1752  }
1753
1754  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
1755  /// complete class to the given direct base.
1756  llvm::Value *
1757  GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
1758                                        const CXXRecordDecl *Derived,
1759                                        const CXXRecordDecl *Base,
1760                                        bool BaseIsVirtual);
1761
1762  /// GetAddressOfBaseClass - This function will add the necessary delta to the
1763  /// load of 'this' and returns address of the base class.
1764  llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
1765                                     const CXXRecordDecl *Derived,
1766                                     CastExpr::path_const_iterator PathBegin,
1767                                     CastExpr::path_const_iterator PathEnd,
1768                                     bool NullCheckValue);
1769
1770  llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
1771                                        const CXXRecordDecl *Derived,
1772                                        CastExpr::path_const_iterator PathBegin,
1773                                        CastExpr::path_const_iterator PathEnd,
1774                                        bool NullCheckValue);
1775
1776  llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
1777                                         const CXXRecordDecl *ClassDecl,
1778                                         const CXXRecordDecl *BaseClassDecl);
1779
1780  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1781                                      CXXCtorType CtorType,
1782                                      const FunctionArgList &Args);
1783  // It's important not to confuse this and the previous function. Delegating
1784  // constructors are the C++0x feature. The constructor delegate optimization
1785  // is used to reduce duplication in the base and complete consturctors where
1786  // they are substantially the same.
1787  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1788                                        const FunctionArgList &Args);
1789  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
1790                              bool ForVirtualBase, llvm::Value *This,
1791                              CallExpr::const_arg_iterator ArgBeg,
1792                              CallExpr::const_arg_iterator ArgEnd);
1793
1794  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1795                              llvm::Value *This, llvm::Value *Src,
1796                              CallExpr::const_arg_iterator ArgBeg,
1797                              CallExpr::const_arg_iterator ArgEnd);
1798
1799  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1800                                  const ConstantArrayType *ArrayTy,
1801                                  llvm::Value *ArrayPtr,
1802                                  CallExpr::const_arg_iterator ArgBeg,
1803                                  CallExpr::const_arg_iterator ArgEnd,
1804                                  bool ZeroInitialization = false);
1805
1806  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
1807                                  llvm::Value *NumElements,
1808                                  llvm::Value *ArrayPtr,
1809                                  CallExpr::const_arg_iterator ArgBeg,
1810                                  CallExpr::const_arg_iterator ArgEnd,
1811                                  bool ZeroInitialization = false);
1812
1813  static Destroyer destroyCXXObject;
1814
1815  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
1816                             bool ForVirtualBase, llvm::Value *This);
1817
1818  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
1819                               llvm::Value *NewPtr, llvm::Value *NumElements);
1820
1821  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
1822                        llvm::Value *Ptr);
1823
1824  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
1825  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
1826
1827  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
1828                      QualType DeleteTy);
1829
1830  llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
1831  llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
1832
1833  void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init);
1834  void EmitStdInitializerListCleanup(llvm::Value *loc,
1835                                     const InitListExpr *init);
1836
1837  void EmitCheck(llvm::Value *, unsigned Size);
1838
1839  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1840                                       bool isInc, bool isPre);
1841  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1842                                         bool isInc, bool isPre);
1843  //===--------------------------------------------------------------------===//
1844  //                            Declaration Emission
1845  //===--------------------------------------------------------------------===//
1846
1847  /// EmitDecl - Emit a declaration.
1848  ///
1849  /// This function can be called with a null (unreachable) insert point.
1850  void EmitDecl(const Decl &D);
1851
1852  /// EmitVarDecl - Emit a local variable declaration.
1853  ///
1854  /// This function can be called with a null (unreachable) insert point.
1855  void EmitVarDecl(const VarDecl &D);
1856
1857  void EmitScalarInit(const Expr *init, const ValueDecl *D,
1858                      LValue lvalue, bool capturedByInit);
1859  void EmitScalarInit(llvm::Value *init, LValue lvalue);
1860
1861  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
1862                             llvm::Value *Address);
1863
1864  /// EmitAutoVarDecl - Emit an auto variable declaration.
1865  ///
1866  /// This function can be called with a null (unreachable) insert point.
1867  void EmitAutoVarDecl(const VarDecl &D);
1868
1869  class AutoVarEmission {
1870    friend class CodeGenFunction;
1871
1872    const VarDecl *Variable;
1873
1874    /// The alignment of the variable.
1875    CharUnits Alignment;
1876
1877    /// The address of the alloca.  Null if the variable was emitted
1878    /// as a global constant.
1879    llvm::Value *Address;
1880
1881    llvm::Value *NRVOFlag;
1882
1883    /// True if the variable is a __block variable.
1884    bool IsByRef;
1885
1886    /// True if the variable is of aggregate type and has a constant
1887    /// initializer.
1888    bool IsConstantAggregate;
1889
1890    struct Invalid {};
1891    AutoVarEmission(Invalid) : Variable(0) {}
1892
1893    AutoVarEmission(const VarDecl &variable)
1894      : Variable(&variable), Address(0), NRVOFlag(0),
1895        IsByRef(false), IsConstantAggregate(false) {}
1896
1897    bool wasEmittedAsGlobal() const { return Address == 0; }
1898
1899  public:
1900    static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
1901
1902    /// Returns the address of the object within this declaration.
1903    /// Note that this does not chase the forwarding pointer for
1904    /// __block decls.
1905    llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
1906      if (!IsByRef) return Address;
1907
1908      return CGF.Builder.CreateStructGEP(Address,
1909                                         CGF.getByRefValueLLVMField(Variable),
1910                                         Variable->getNameAsString());
1911    }
1912  };
1913  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
1914  void EmitAutoVarInit(const AutoVarEmission &emission);
1915  void EmitAutoVarCleanups(const AutoVarEmission &emission);
1916  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
1917                              QualType::DestructionKind dtorKind);
1918
1919  void EmitStaticVarDecl(const VarDecl &D,
1920                         llvm::GlobalValue::LinkageTypes Linkage);
1921
1922  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
1923  void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
1924
1925  /// protectFromPeepholes - Protect a value that we're intending to
1926  /// store to the side, but which will probably be used later, from
1927  /// aggressive peepholing optimizations that might delete it.
1928  ///
1929  /// Pass the result to unprotectFromPeepholes to declare that
1930  /// protection is no longer required.
1931  ///
1932  /// There's no particular reason why this shouldn't apply to
1933  /// l-values, it's just that no existing peepholes work on pointers.
1934  PeepholeProtection protectFromPeepholes(RValue rvalue);
1935  void unprotectFromPeepholes(PeepholeProtection protection);
1936
1937  //===--------------------------------------------------------------------===//
1938  //                             Statement Emission
1939  //===--------------------------------------------------------------------===//
1940
1941  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
1942  void EmitStopPoint(const Stmt *S);
1943
1944  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
1945  /// this function even if there is no current insertion point.
1946  ///
1947  /// This function may clear the current insertion point; callers should use
1948  /// EnsureInsertPoint if they wish to subsequently generate code without first
1949  /// calling EmitBlock, EmitBranch, or EmitStmt.
1950  void EmitStmt(const Stmt *S);
1951
1952  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
1953  /// necessarily require an insertion point or debug information; typically
1954  /// because the statement amounts to a jump or a container of other
1955  /// statements.
1956  ///
1957  /// \return True if the statement was handled.
1958  bool EmitSimpleStmt(const Stmt *S);
1959
1960  RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
1961                          AggValueSlot AVS = AggValueSlot::ignored());
1962
1963  /// EmitLabel - Emit the block for the given label. It is legal to call this
1964  /// function even if there is no current insertion point.
1965  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
1966
1967  void EmitLabelStmt(const LabelStmt &S);
1968  void EmitAttributedStmt(const AttributedStmt &S);
1969  void EmitGotoStmt(const GotoStmt &S);
1970  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
1971  void EmitIfStmt(const IfStmt &S);
1972  void EmitWhileStmt(const WhileStmt &S);
1973  void EmitDoStmt(const DoStmt &S);
1974  void EmitForStmt(const ForStmt &S);
1975  void EmitReturnStmt(const ReturnStmt &S);
1976  void EmitDeclStmt(const DeclStmt &S);
1977  void EmitBreakStmt(const BreakStmt &S);
1978  void EmitContinueStmt(const ContinueStmt &S);
1979  void EmitSwitchStmt(const SwitchStmt &S);
1980  void EmitDefaultStmt(const DefaultStmt &S);
1981  void EmitCaseStmt(const CaseStmt &S);
1982  void EmitCaseStmtRange(const CaseStmt &S);
1983  void EmitAsmStmt(const AsmStmt &S);
1984  void EmitMSAsmStmt(const MSAsmStmt &S);
1985
1986  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
1987  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
1988  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
1989  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
1990  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
1991
1992  llvm::Constant *getUnwindResumeFn();
1993  llvm::Constant *getUnwindResumeOrRethrowFn();
1994  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1995  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
1996
1997  void EmitCXXTryStmt(const CXXTryStmt &S);
1998  void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
1999
2000  //===--------------------------------------------------------------------===//
2001  //                         LValue Expression Emission
2002  //===--------------------------------------------------------------------===//
2003
2004  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
2005  RValue GetUndefRValue(QualType Ty);
2006
2007  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
2008  /// and issue an ErrorUnsupported style diagnostic (using the
2009  /// provided Name).
2010  RValue EmitUnsupportedRValue(const Expr *E,
2011                               const char *Name);
2012
2013  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
2014  /// an ErrorUnsupported style diagnostic (using the provided Name).
2015  LValue EmitUnsupportedLValue(const Expr *E,
2016                               const char *Name);
2017
2018  /// EmitLValue - Emit code to compute a designator that specifies the location
2019  /// of the expression.
2020  ///
2021  /// This can return one of two things: a simple address or a bitfield
2022  /// reference.  In either case, the LLVM Value* in the LValue structure is
2023  /// guaranteed to be an LLVM pointer type.
2024  ///
2025  /// If this returns a bitfield reference, nothing about the pointee type of
2026  /// the LLVM value is known: For example, it may not be a pointer to an
2027  /// integer.
2028  ///
2029  /// If this returns a normal address, and if the lvalue's C type is fixed
2030  /// size, this method guarantees that the returned pointer type will point to
2031  /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
2032  /// variable length type, this is not possible.
2033  ///
2034  LValue EmitLValue(const Expr *E);
2035
2036  /// EmitCheckedLValue - Same as EmitLValue but additionally we generate
2037  /// checking code to guard against undefined behavior.  This is only
2038  /// suitable when we know that the address will be used to access the
2039  /// object.
2040  LValue EmitCheckedLValue(const Expr *E);
2041
2042  /// EmitToMemory - Change a scalar value from its value
2043  /// representation to its in-memory representation.
2044  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
2045
2046  /// EmitFromMemory - Change a scalar value from its memory
2047  /// representation to its value representation.
2048  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
2049
2050  /// EmitLoadOfScalar - Load a scalar value from an address, taking
2051  /// care to appropriately convert from the memory representation to
2052  /// the LLVM value representation.
2053  llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
2054                                unsigned Alignment, QualType Ty,
2055                                llvm::MDNode *TBAAInfo = 0);
2056
2057  /// EmitLoadOfScalar - Load a scalar value from an address, taking
2058  /// care to appropriately convert from the memory representation to
2059  /// the LLVM value representation.  The l-value must be a simple
2060  /// l-value.
2061  llvm::Value *EmitLoadOfScalar(LValue lvalue);
2062
2063  /// EmitStoreOfScalar - Store a scalar value to an address, taking
2064  /// care to appropriately convert from the memory representation to
2065  /// the LLVM value representation.
2066  void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
2067                         bool Volatile, unsigned Alignment, QualType Ty,
2068                         llvm::MDNode *TBAAInfo = 0, bool isInit=false);
2069
2070  /// EmitStoreOfScalar - Store a scalar value to an address, taking
2071  /// care to appropriately convert from the memory representation to
2072  /// the LLVM value representation.  The l-value must be a simple
2073  /// l-value.  The isInit flag indicates whether this is an initialization.
2074  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
2075  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
2076
2077  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
2078  /// this method emits the address of the lvalue, then loads the result as an
2079  /// rvalue, returning the rvalue.
2080  RValue EmitLoadOfLValue(LValue V);
2081  RValue EmitLoadOfExtVectorElementLValue(LValue V);
2082  RValue EmitLoadOfBitfieldLValue(LValue LV);
2083
2084  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
2085  /// lvalue, where both are guaranteed to the have the same type, and that type
2086  /// is 'Ty'.
2087  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false);
2088  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
2089
2090  /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
2091  /// EmitStoreThroughLValue.
2092  ///
2093  /// \param Result [out] - If non-null, this will be set to a Value* for the
2094  /// bit-field contents after the store, appropriate for use as the result of
2095  /// an assignment to the bit-field.
2096  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2097                                      llvm::Value **Result=0);
2098
2099  /// Emit an l-value for an assignment (simple or compound) of complex type.
2100  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
2101  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
2102
2103  // Note: only available for agg return types
2104  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
2105  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
2106  // Note: only available for agg return types
2107  LValue EmitCallExprLValue(const CallExpr *E);
2108  // Note: only available for agg return types
2109  LValue EmitVAArgExprLValue(const VAArgExpr *E);
2110  LValue EmitDeclRefLValue(const DeclRefExpr *E);
2111  LValue EmitStringLiteralLValue(const StringLiteral *E);
2112  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
2113  LValue EmitPredefinedLValue(const PredefinedExpr *E);
2114  LValue EmitUnaryOpLValue(const UnaryOperator *E);
2115  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
2116  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
2117  LValue EmitMemberExpr(const MemberExpr *E);
2118  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
2119  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
2120  LValue EmitInitListLValue(const InitListExpr *E);
2121  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
2122  LValue EmitCastLValue(const CastExpr *E);
2123  LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
2124  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
2125  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
2126
2127  RValue EmitRValueForField(LValue LV, const FieldDecl *FD);
2128
2129  class ConstantEmission {
2130    llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
2131    ConstantEmission(llvm::Constant *C, bool isReference)
2132      : ValueAndIsReference(C, isReference) {}
2133  public:
2134    ConstantEmission() {}
2135    static ConstantEmission forReference(llvm::Constant *C) {
2136      return ConstantEmission(C, true);
2137    }
2138    static ConstantEmission forValue(llvm::Constant *C) {
2139      return ConstantEmission(C, false);
2140    }
2141
2142    operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; }
2143
2144    bool isReference() const { return ValueAndIsReference.getInt(); }
2145    LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
2146      assert(isReference());
2147      return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
2148                                            refExpr->getType());
2149    }
2150
2151    llvm::Constant *getValue() const {
2152      assert(!isReference());
2153      return ValueAndIsReference.getPointer();
2154    }
2155  };
2156
2157  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
2158
2159  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
2160                                AggValueSlot slot = AggValueSlot::ignored());
2161  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
2162
2163  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
2164                              const ObjCIvarDecl *Ivar);
2165  LValue EmitLValueForAnonRecordField(llvm::Value* Base,
2166                                      const IndirectFieldDecl* Field,
2167                                      unsigned CVRQualifiers);
2168  LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
2169
2170  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
2171  /// if the Field is a reference, this will return the address of the reference
2172  /// and not the address of the value stored in the reference.
2173  LValue EmitLValueForFieldInitialization(LValue Base,
2174                                          const FieldDecl* Field);
2175
2176  LValue EmitLValueForIvar(QualType ObjectTy,
2177                           llvm::Value* Base, const ObjCIvarDecl *Ivar,
2178                           unsigned CVRQualifiers);
2179
2180  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
2181  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
2182  LValue EmitLambdaLValue(const LambdaExpr *E);
2183  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
2184
2185  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
2186  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
2187  LValue EmitStmtExprLValue(const StmtExpr *E);
2188  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
2189  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
2190  void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
2191
2192  //===--------------------------------------------------------------------===//
2193  //                         Scalar Expression Emission
2194  //===--------------------------------------------------------------------===//
2195
2196  /// EmitCall - Generate a call of the given function, expecting the given
2197  /// result type, and using the given argument list which specifies both the
2198  /// LLVM arguments and the types they were derived from.
2199  ///
2200  /// \param TargetDecl - If given, the decl of the function in a direct call;
2201  /// used to set attributes on the call (noreturn, etc.).
2202  RValue EmitCall(const CGFunctionInfo &FnInfo,
2203                  llvm::Value *Callee,
2204                  ReturnValueSlot ReturnValue,
2205                  const CallArgList &Args,
2206                  const Decl *TargetDecl = 0,
2207                  llvm::Instruction **callOrInvoke = 0);
2208
2209  RValue EmitCall(QualType FnType, llvm::Value *Callee,
2210                  ReturnValueSlot ReturnValue,
2211                  CallExpr::const_arg_iterator ArgBeg,
2212                  CallExpr::const_arg_iterator ArgEnd,
2213                  const Decl *TargetDecl = 0);
2214  RValue EmitCallExpr(const CallExpr *E,
2215                      ReturnValueSlot ReturnValue = ReturnValueSlot());
2216
2217  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2218                                  ArrayRef<llvm::Value *> Args,
2219                                  const Twine &Name = "");
2220  llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
2221                                  const Twine &Name = "");
2222
2223  llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
2224                                llvm::Type *Ty);
2225  llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
2226                                llvm::Value *This, llvm::Type *Ty);
2227  llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
2228                                         NestedNameSpecifier *Qual,
2229                                         llvm::Type *Ty);
2230
2231  llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
2232                                                   CXXDtorType Type,
2233                                                   const CXXRecordDecl *RD);
2234
2235  RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
2236                           llvm::Value *Callee,
2237                           ReturnValueSlot ReturnValue,
2238                           llvm::Value *This,
2239                           llvm::Value *VTT,
2240                           CallExpr::const_arg_iterator ArgBeg,
2241                           CallExpr::const_arg_iterator ArgEnd);
2242  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
2243                               ReturnValueSlot ReturnValue);
2244  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
2245                                      ReturnValueSlot ReturnValue);
2246
2247  llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2248                                           const CXXMethodDecl *MD,
2249                                           llvm::Value *This);
2250  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
2251                                       const CXXMethodDecl *MD,
2252                                       ReturnValueSlot ReturnValue);
2253
2254  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
2255                                ReturnValueSlot ReturnValue);
2256
2257
2258  RValue EmitBuiltinExpr(const FunctionDecl *FD,
2259                         unsigned BuiltinID, const CallExpr *E);
2260
2261  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
2262
2263  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
2264  /// is unhandled by the current target.
2265  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2266
2267  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2268  llvm::Value *EmitNeonCall(llvm::Function *F,
2269                            SmallVectorImpl<llvm::Value*> &O,
2270                            const char *name,
2271                            unsigned shift = 0, bool rightshift = false);
2272  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
2273  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
2274                                   bool negateForRightShift);
2275
2276  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
2277  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2278  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
2279
2280  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
2281  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
2282  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
2283  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
2284  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
2285  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
2286                                const ObjCMethodDecl *MethodWithObjects);
2287  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
2288  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
2289                             ReturnValueSlot Return = ReturnValueSlot());
2290
2291  /// Retrieves the default cleanup kind for an ARC cleanup.
2292  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
2293  CleanupKind getARCCleanupKind() {
2294    return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
2295             ? NormalAndEHCleanup : NormalCleanup;
2296  }
2297
2298  // ARC primitives.
2299  void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
2300  void EmitARCDestroyWeak(llvm::Value *addr);
2301  llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
2302  llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
2303  llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
2304                                bool ignored);
2305  void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
2306  void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
2307  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
2308  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
2309  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
2310                                  bool ignored);
2311  llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
2312                                      bool ignored);
2313  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
2314  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
2315  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
2316  void EmitARCRelease(llvm::Value *value, bool precise);
2317  llvm::Value *EmitARCAutorelease(llvm::Value *value);
2318  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
2319  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
2320  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
2321
2322  std::pair<LValue,llvm::Value*>
2323  EmitARCStoreAutoreleasing(const BinaryOperator *e);
2324  std::pair<LValue,llvm::Value*>
2325  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
2326
2327  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
2328
2329  llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
2330  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
2331  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
2332
2333  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
2334  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
2335  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
2336
2337  static Destroyer destroyARCStrongImprecise;
2338  static Destroyer destroyARCStrongPrecise;
2339  static Destroyer destroyARCWeak;
2340
2341  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
2342  llvm::Value *EmitObjCAutoreleasePoolPush();
2343  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
2344  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
2345  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
2346
2347  /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
2348  /// expression. Will emit a temporary variable if E is not an LValue.
2349  RValue EmitReferenceBindingToExpr(const Expr* E,
2350                                    const NamedDecl *InitializedDecl);
2351
2352  //===--------------------------------------------------------------------===//
2353  //                           Expression Emission
2354  //===--------------------------------------------------------------------===//
2355
2356  // Expressions are broken into three classes: scalar, complex, aggregate.
2357
2358  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
2359  /// scalar type, returning the result.
2360  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
2361
2362  /// EmitScalarConversion - Emit a conversion from the specified type to the
2363  /// specified destination type, both of which are LLVM scalar types.
2364  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
2365                                    QualType DstTy);
2366
2367  /// EmitComplexToScalarConversion - Emit a conversion from the specified
2368  /// complex type to the specified destination type, where the destination type
2369  /// is an LLVM scalar type.
2370  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
2371                                             QualType DstTy);
2372
2373
2374  /// EmitAggExpr - Emit the computation of the specified expression
2375  /// of aggregate type.  The result is computed into the given slot,
2376  /// which may be null to indicate that the value is not needed.
2377  void EmitAggExpr(const Expr *E, AggValueSlot AS);
2378
2379  /// EmitAggExprToLValue - Emit the computation of the specified expression of
2380  /// aggregate type into a temporary LValue.
2381  LValue EmitAggExprToLValue(const Expr *E);
2382
2383  /// EmitGCMemmoveCollectable - Emit special API for structs with object
2384  /// pointers.
2385  void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
2386                                QualType Ty);
2387
2388  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
2389  /// make sure it survives garbage collection until this point.
2390  void EmitExtendGCLifetime(llvm::Value *object);
2391
2392  /// EmitComplexExpr - Emit the computation of the specified expression of
2393  /// complex type, returning the result.
2394  ComplexPairTy EmitComplexExpr(const Expr *E,
2395                                bool IgnoreReal = false,
2396                                bool IgnoreImag = false);
2397
2398  /// EmitComplexExprIntoAddr - Emit the computation of the specified expression
2399  /// of complex type, storing into the specified Value*.
2400  void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
2401                               bool DestIsVolatile);
2402
2403  /// StoreComplexToAddr - Store a complex number into the specified address.
2404  void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
2405                          bool DestIsVolatile);
2406  /// LoadComplexFromAddr - Load a complex number from the specified address.
2407  ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
2408
2409  /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
2410  /// a static local variable.
2411  llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
2412                                            const char *Separator,
2413                                       llvm::GlobalValue::LinkageTypes Linkage);
2414
2415  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
2416  /// global variable that has already been created for it.  If the initializer
2417  /// has a different type than GV does, this may free GV and return a different
2418  /// one.  Otherwise it just returns GV.
2419  llvm::GlobalVariable *
2420  AddInitializerToStaticVarDecl(const VarDecl &D,
2421                                llvm::GlobalVariable *GV);
2422
2423
2424  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
2425  /// variable with global storage.
2426  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
2427                                bool PerformInit);
2428
2429  /// Call atexit() with a function that passes the given argument to
2430  /// the given function.
2431  void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr);
2432
2433  /// Emit code in this function to perform a guarded variable
2434  /// initialization.  Guarded initializations are used when it's not
2435  /// possible to prove that an initialization will be done exactly
2436  /// once, e.g. with a static local variable or a static data member
2437  /// of a class template.
2438  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
2439                          bool PerformInit);
2440
2441  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
2442  /// variables.
2443  void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
2444                                 llvm::Constant **Decls,
2445                                 unsigned NumDecls);
2446
2447  /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
2448  /// variables.
2449  void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
2450                                  const std::vector<std::pair<llvm::WeakVH,
2451                                  llvm::Constant*> > &DtorsAndObjects);
2452
2453  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
2454                                        const VarDecl *D,
2455                                        llvm::GlobalVariable *Addr,
2456                                        bool PerformInit);
2457
2458  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
2459
2460  void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
2461                                  const Expr *Exp);
2462
2463  void enterFullExpression(const ExprWithCleanups *E) {
2464    if (E->getNumObjects() == 0) return;
2465    enterNonTrivialFullExpression(E);
2466  }
2467  void enterNonTrivialFullExpression(const ExprWithCleanups *E);
2468
2469  void EmitCXXThrowExpr(const CXXThrowExpr *E);
2470
2471  void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
2472
2473  RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
2474
2475  //===--------------------------------------------------------------------===//
2476  //                         Annotations Emission
2477  //===--------------------------------------------------------------------===//
2478
2479  /// Emit an annotation call (intrinsic or builtin).
2480  llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
2481                                  llvm::Value *AnnotatedVal,
2482                                  llvm::StringRef AnnotationStr,
2483                                  SourceLocation Location);
2484
2485  /// Emit local annotations for the local variable V, declared by D.
2486  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
2487
2488  /// Emit field annotations for the given field & value. Returns the
2489  /// annotation result.
2490  llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
2491
2492  //===--------------------------------------------------------------------===//
2493  //                             Internal Helpers
2494  //===--------------------------------------------------------------------===//
2495
2496  /// ContainsLabel - Return true if the statement contains a label in it.  If
2497  /// this statement is not executed normally, it not containing a label means
2498  /// that we can just remove the code.
2499  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
2500
2501  /// containsBreak - Return true if the statement contains a break out of it.
2502  /// If the statement (recursively) contains a switch or loop with a break
2503  /// inside of it, this is fine.
2504  static bool containsBreak(const Stmt *S);
2505
2506  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2507  /// to a constant, or if it does but contains a label, return false.  If it
2508  /// constant folds return true and set the boolean result in Result.
2509  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
2510
2511  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
2512  /// to a constant, or if it does but contains a label, return false.  If it
2513  /// constant folds return true and set the folded value.
2514  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APInt &Result);
2515
2516  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
2517  /// if statement) to the specified blocks.  Based on the condition, this might
2518  /// try to simplify the codegen of the conditional based on the branch.
2519  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
2520                            llvm::BasicBlock *FalseBlock);
2521
2522  /// getTrapBB - Create a basic block that will call the trap intrinsic.  We'll
2523  /// generate a branch around the created basic block as necessary.
2524  llvm::BasicBlock *getTrapBB();
2525
2526  /// EmitCallArg - Emit a single call argument.
2527  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
2528
2529  /// EmitDelegateCallArg - We are performing a delegate call; that
2530  /// is, the current function is delegating to another one.  Produce
2531  /// a r-value suitable for passing the given parameter.
2532  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
2533
2534  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
2535  /// point operation, expressed as the maximum relative error in ulp.
2536  void SetFPAccuracy(llvm::Value *Val, float Accuracy);
2537
2538private:
2539  llvm::MDNode *getRangeForLoadFromType(QualType Ty);
2540  void EmitReturnOfRValue(RValue RV, QualType Ty);
2541
2542  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
2543  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
2544  ///
2545  /// \param AI - The first function argument of the expansion.
2546  /// \return The argument following the last expanded function
2547  /// argument.
2548  llvm::Function::arg_iterator
2549  ExpandTypeFromArgs(QualType Ty, LValue Dst,
2550                     llvm::Function::arg_iterator AI);
2551
2552  /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
2553  /// Ty, into individual arguments on the provided vector \arg Args. See
2554  /// ABIArgInfo::Expand.
2555  void ExpandTypeToArgs(QualType Ty, RValue Src,
2556                        SmallVector<llvm::Value*, 16> &Args,
2557                        llvm::FunctionType *IRFuncTy);
2558
2559  llvm::Value* EmitAsmInput(const AsmStmt &S,
2560                            const TargetInfo::ConstraintInfo &Info,
2561                            const Expr *InputExpr, std::string &ConstraintStr);
2562
2563  llvm::Value* EmitAsmInputLValue(const AsmStmt &S,
2564                                  const TargetInfo::ConstraintInfo &Info,
2565                                  LValue InputValue, QualType InputType,
2566                                  std::string &ConstraintStr);
2567
2568  /// EmitCallArgs - Emit call arguments for a function.
2569  /// The CallArgTypeInfo parameter is used for iterating over the known
2570  /// argument types of the function being called.
2571  template<typename T>
2572  void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
2573                    CallExpr::const_arg_iterator ArgBeg,
2574                    CallExpr::const_arg_iterator ArgEnd) {
2575      CallExpr::const_arg_iterator Arg = ArgBeg;
2576
2577    // First, use the argument types that the type info knows about
2578    if (CallArgTypeInfo) {
2579      for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
2580           E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
2581        assert(Arg != ArgEnd && "Running over edge of argument list!");
2582        QualType ArgType = *I;
2583#ifndef NDEBUG
2584        QualType ActualArgType = Arg->getType();
2585        if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
2586          QualType ActualBaseType =
2587            ActualArgType->getAs<PointerType>()->getPointeeType();
2588          QualType ArgBaseType =
2589            ArgType->getAs<PointerType>()->getPointeeType();
2590          if (ArgBaseType->isVariableArrayType()) {
2591            if (const VariableArrayType *VAT =
2592                getContext().getAsVariableArrayType(ActualBaseType)) {
2593              if (!VAT->getSizeExpr())
2594                ActualArgType = ArgType;
2595            }
2596          }
2597        }
2598        assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
2599               getTypePtr() ==
2600               getContext().getCanonicalType(ActualArgType).getTypePtr() &&
2601               "type mismatch in call argument!");
2602#endif
2603        EmitCallArg(Args, *Arg, ArgType);
2604      }
2605
2606      // Either we've emitted all the call args, or we have a call to a
2607      // variadic function.
2608      assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
2609             "Extra arguments in non-variadic function!");
2610
2611    }
2612
2613    // If we still have any arguments, emit them using the type of the argument.
2614    for (; Arg != ArgEnd; ++Arg)
2615      EmitCallArg(Args, *Arg, Arg->getType());
2616  }
2617
2618  const TargetCodeGenInfo &getTargetHooks() const {
2619    return CGM.getTargetCodeGenInfo();
2620  }
2621
2622  void EmitDeclMetadata();
2623
2624  CodeGenModule::ByrefHelpers *
2625  buildByrefHelpers(llvm::StructType &byrefType,
2626                    const AutoVarEmission &emission);
2627
2628  void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
2629
2630  /// GetPointeeAlignment - Given an expression with a pointer type, find the
2631  /// alignment of the type referenced by the pointer.  Skip over implicit
2632  /// casts.
2633  unsigned GetPointeeAlignment(const Expr *Addr);
2634
2635  /// GetPointeeAlignmentValue - Given an expression with a pointer type, find
2636  /// the alignment of the type referenced by the pointer.  Skip over implicit
2637  /// casts.  Return the alignment as an llvm::Value.
2638  llvm::Value *GetPointeeAlignmentValue(const Expr *Addr);
2639};
2640
2641/// Helper class with most of the code for saving a value for a
2642/// conditional expression cleanup.
2643struct DominatingLLVMValue {
2644  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
2645
2646  /// Answer whether the given value needs extra work to be saved.
2647  static bool needsSaving(llvm::Value *value) {
2648    // If it's not an instruction, we don't need to save.
2649    if (!isa<llvm::Instruction>(value)) return false;
2650
2651    // If it's an instruction in the entry block, we don't need to save.
2652    llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
2653    return (block != &block->getParent()->getEntryBlock());
2654  }
2655
2656  /// Try to save the given value.
2657  static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
2658    if (!needsSaving(value)) return saved_type(value, false);
2659
2660    // Otherwise we need an alloca.
2661    llvm::Value *alloca =
2662      CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
2663    CGF.Builder.CreateStore(value, alloca);
2664
2665    return saved_type(alloca, true);
2666  }
2667
2668  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
2669    if (!value.getInt()) return value.getPointer();
2670    return CGF.Builder.CreateLoad(value.getPointer());
2671  }
2672};
2673
2674/// A partial specialization of DominatingValue for llvm::Values that
2675/// might be llvm::Instructions.
2676template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
2677  typedef T *type;
2678  static type restore(CodeGenFunction &CGF, saved_type value) {
2679    return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
2680  }
2681};
2682
2683/// A specialization of DominatingValue for RValue.
2684template <> struct DominatingValue<RValue> {
2685  typedef RValue type;
2686  class saved_type {
2687    enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
2688                AggregateAddress, ComplexAddress };
2689
2690    llvm::Value *Value;
2691    Kind K;
2692    saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
2693
2694  public:
2695    static bool needsSaving(RValue value);
2696    static saved_type save(CodeGenFunction &CGF, RValue value);
2697    RValue restore(CodeGenFunction &CGF);
2698
2699    // implementations in CGExprCXX.cpp
2700  };
2701
2702  static bool needsSaving(type value) {
2703    return saved_type::needsSaving(value);
2704  }
2705  static saved_type save(CodeGenFunction &CGF, type value) {
2706    return saved_type::save(CGF, value);
2707  }
2708  static type restore(CodeGenFunction &CGF, saved_type value) {
2709    return value.restore(CGF);
2710  }
2711};
2712
2713}  // end namespace CodeGen
2714}  // end namespace clang
2715
2716#endif
2717