1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#include "common.h"
11
12int EIGEN_BLAS_FUNC(gemm)(char *opa, char *opb, int *m, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc)
13{
14//   std::cerr << "in gemm " << *opa << " " << *opb << " " << *m << " " << *n << " " << *k << " " << *lda << " " << *ldb << " " << *ldc << " " << *palpha << " " << *pbeta << "\n";
15  typedef void (*functype)(DenseIndex, DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, Scalar, internal::level3_blocking<Scalar,Scalar>&, Eigen::internal::GemmParallelInfo<DenseIndex>*);
16  static functype func[12];
17
18  static bool init = false;
19  if(!init)
20  {
21    for(int k=0; k<12; ++k)
22      func[k] = 0;
23    func[NOTR  | (NOTR << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,ColMajor,false,Scalar,ColMajor,false,ColMajor>::run);
24    func[TR    | (NOTR << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,false,Scalar,ColMajor,false,ColMajor>::run);
25    func[ADJ   | (NOTR << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,ColMajor,false,ColMajor>::run);
26    func[NOTR  | (TR   << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,false,ColMajor>::run);
27    func[TR    | (TR   << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,false,Scalar,RowMajor,false,ColMajor>::run);
28    func[ADJ   | (TR   << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,RowMajor,false,ColMajor>::run);
29    func[NOTR  | (ADJ  << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,Conj, ColMajor>::run);
30    func[TR    | (ADJ  << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,false,Scalar,RowMajor,Conj, ColMajor>::run);
31    func[ADJ   | (ADJ  << 2)] = (internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,RowMajor,Conj, ColMajor>::run);
32    init = true;
33  }
34
35  Scalar* a = reinterpret_cast<Scalar*>(pa);
36  Scalar* b = reinterpret_cast<Scalar*>(pb);
37  Scalar* c = reinterpret_cast<Scalar*>(pc);
38  Scalar alpha  = *reinterpret_cast<Scalar*>(palpha);
39  Scalar beta   = *reinterpret_cast<Scalar*>(pbeta);
40
41  int info = 0;
42  if(OP(*opa)==INVALID)                                               info = 1;
43  else if(OP(*opb)==INVALID)                                          info = 2;
44  else if(*m<0)                                                       info = 3;
45  else if(*n<0)                                                       info = 4;
46  else if(*k<0)                                                       info = 5;
47  else if(*lda<std::max(1,(OP(*opa)==NOTR)?*m:*k))                    info = 8;
48  else if(*ldb<std::max(1,(OP(*opb)==NOTR)?*k:*n))                    info = 10;
49  else if(*ldc<std::max(1,*m))                                        info = 13;
50  if(info)
51    return xerbla_(SCALAR_SUFFIX_UP"GEMM ",&info,6);
52
53  if(beta!=Scalar(1))
54  {
55    if(beta==Scalar(0)) matrix(c, *m, *n, *ldc).setZero();
56    else                matrix(c, *m, *n, *ldc) *= beta;
57  }
58
59  internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic> blocking(*m,*n,*k);
60
61  int code = OP(*opa) | (OP(*opb) << 2);
62  func[code](*m, *n, *k, a, *lda, b, *ldb, c, *ldc, alpha, blocking, 0);
63  return 0;
64}
65
66int EIGEN_BLAS_FUNC(trsm)(char *side, char *uplo, char *opa, char *diag, int *m, int *n, RealScalar *palpha,  RealScalar *pa, int *lda, RealScalar *pb, int *ldb)
67{
68//   std::cerr << "in trsm " << *side << " " << *uplo << " " << *opa << " " << *diag << " " << *m << "," << *n << " " << *palpha << " " << *lda << " " << *ldb<< "\n";
69  typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, internal::level3_blocking<Scalar,Scalar>&);
70  static functype func[32];
71
72  static bool init = false;
73  if(!init)
74  {
75    for(int k=0; k<32; ++k)
76      func[k] = 0;
77
78    func[NOTR  | (LEFT  << 2) | (UP << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|0,          false,ColMajor,ColMajor>::run);
79    func[TR    | (LEFT  << 2) | (UP << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|0,          false,RowMajor,ColMajor>::run);
80    func[ADJ   | (LEFT  << 2) | (UP << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|0,          Conj, RowMajor,ColMajor>::run);
81
82    func[NOTR  | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|0,          false,ColMajor,ColMajor>::run);
83    func[TR    | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|0,          false,RowMajor,ColMajor>::run);
84    func[ADJ   | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|0,          Conj, RowMajor,ColMajor>::run);
85
86    func[NOTR  | (LEFT  << 2) | (LO << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|0,          false,ColMajor,ColMajor>::run);
87    func[TR    | (LEFT  << 2) | (LO << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|0,          false,RowMajor,ColMajor>::run);
88    func[ADJ   | (LEFT  << 2) | (LO << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|0,          Conj, RowMajor,ColMajor>::run);
89
90    func[NOTR  | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|0,          false,ColMajor,ColMajor>::run);
91    func[TR    | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|0,          false,RowMajor,ColMajor>::run);
92    func[ADJ   | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|0,          Conj, RowMajor,ColMajor>::run);
93
94
95    func[NOTR  | (LEFT  << 2) | (UP << 3) | (UNIT  << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|UnitDiag,false,ColMajor,ColMajor>::run);
96    func[TR    | (LEFT  << 2) | (UP << 3) | (UNIT  << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|UnitDiag,false,RowMajor,ColMajor>::run);
97    func[ADJ   | (LEFT  << 2) | (UP << 3) | (UNIT  << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|UnitDiag,Conj, RowMajor,ColMajor>::run);
98
99    func[NOTR  | (RIGHT << 2) | (UP << 3) | (UNIT  << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|UnitDiag,false,ColMajor,ColMajor>::run);
100    func[TR    | (RIGHT << 2) | (UP << 3) | (UNIT  << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|UnitDiag,false,RowMajor,ColMajor>::run);
101    func[ADJ   | (RIGHT << 2) | (UP << 3) | (UNIT  << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|UnitDiag,Conj, RowMajor,ColMajor>::run);
102
103    func[NOTR  | (LEFT  << 2) | (LO << 3) | (UNIT  << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|UnitDiag,false,ColMajor,ColMajor>::run);
104    func[TR    | (LEFT  << 2) | (LO << 3) | (UNIT  << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|UnitDiag,false,RowMajor,ColMajor>::run);
105    func[ADJ   | (LEFT  << 2) | (LO << 3) | (UNIT  << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|UnitDiag,Conj, RowMajor,ColMajor>::run);
106
107    func[NOTR  | (RIGHT << 2) | (LO << 3) | (UNIT  << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|UnitDiag,false,ColMajor,ColMajor>::run);
108    func[TR    | (RIGHT << 2) | (LO << 3) | (UNIT  << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|UnitDiag,false,RowMajor,ColMajor>::run);
109    func[ADJ   | (RIGHT << 2) | (LO << 3) | (UNIT  << 4)] = (internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|UnitDiag,Conj, RowMajor,ColMajor>::run);
110
111    init = true;
112  }
113
114  Scalar* a = reinterpret_cast<Scalar*>(pa);
115  Scalar* b = reinterpret_cast<Scalar*>(pb);
116  Scalar  alpha = *reinterpret_cast<Scalar*>(palpha);
117
118  int info = 0;
119  if(SIDE(*side)==INVALID)                                            info = 1;
120  else if(UPLO(*uplo)==INVALID)                                       info = 2;
121  else if(OP(*opa)==INVALID)                                          info = 3;
122  else if(DIAG(*diag)==INVALID)                                       info = 4;
123  else if(*m<0)                                                       info = 5;
124  else if(*n<0)                                                       info = 6;
125  else if(*lda<std::max(1,(SIDE(*side)==LEFT)?*m:*n))                 info = 9;
126  else if(*ldb<std::max(1,*m))                                        info = 11;
127  if(info)
128    return xerbla_(SCALAR_SUFFIX_UP"TRSM ",&info,6);
129
130  int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4);
131
132  if(SIDE(*side)==LEFT)
133  {
134    internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*m);
135    func[code](*m, *n, a, *lda, b, *ldb, blocking);
136  }
137  else
138  {
139    internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*n);
140    func[code](*n, *m, a, *lda, b, *ldb, blocking);
141  }
142
143  if(alpha!=Scalar(1))
144    matrix(b,*m,*n,*ldb) *= alpha;
145
146  return 0;
147}
148
149
150// b = alpha*op(a)*b  for side = 'L'or'l'
151// b = alpha*b*op(a)  for side = 'R'or'r'
152int EIGEN_BLAS_FUNC(trmm)(char *side, char *uplo, char *opa, char *diag, int *m, int *n, RealScalar *palpha,  RealScalar *pa, int *lda, RealScalar *pb, int *ldb)
153{
154//   std::cerr << "in trmm " << *side << " " << *uplo << " " << *opa << " " << *diag << " " << *m << " " << *n << " " << *lda << " " << *ldb << " " << *palpha << "\n";
155  typedef void (*functype)(DenseIndex, DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, Scalar, internal::level3_blocking<Scalar,Scalar>&);
156  static functype func[32];
157  static bool init = false;
158  if(!init)
159  {
160    for(int k=0; k<32; ++k)
161      func[k] = 0;
162
163    func[NOTR  | (LEFT  << 2) | (UP << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0,          true, ColMajor,false,ColMajor,false,ColMajor>::run);
164    func[TR    | (LEFT  << 2) | (UP << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0,          true, RowMajor,false,ColMajor,false,ColMajor>::run);
165    func[ADJ   | (LEFT  << 2) | (UP << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0,          true, RowMajor,Conj, ColMajor,false,ColMajor>::run);
166
167    func[NOTR  | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0,          false,ColMajor,false,ColMajor,false,ColMajor>::run);
168    func[TR    | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0,          false,ColMajor,false,RowMajor,false,ColMajor>::run);
169    func[ADJ   | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0,          false,ColMajor,false,RowMajor,Conj, ColMajor>::run);
170
171    func[NOTR  | (LEFT  << 2) | (LO << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0,          true, ColMajor,false,ColMajor,false,ColMajor>::run);
172    func[TR    | (LEFT  << 2) | (LO << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0,          true, RowMajor,false,ColMajor,false,ColMajor>::run);
173    func[ADJ   | (LEFT  << 2) | (LO << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0,          true, RowMajor,Conj, ColMajor,false,ColMajor>::run);
174
175    func[NOTR  | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0,          false,ColMajor,false,ColMajor,false,ColMajor>::run);
176    func[TR    | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0,          false,ColMajor,false,RowMajor,false,ColMajor>::run);
177    func[ADJ   | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0,          false,ColMajor,false,RowMajor,Conj, ColMajor>::run);
178
179    func[NOTR  | (LEFT  << 2) | (UP << 3) | (UNIT  << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,true, ColMajor,false,ColMajor,false,ColMajor>::run);
180    func[TR    | (LEFT  << 2) | (UP << 3) | (UNIT  << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,true, RowMajor,false,ColMajor,false,ColMajor>::run);
181    func[ADJ   | (LEFT  << 2) | (UP << 3) | (UNIT  << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,true, RowMajor,Conj, ColMajor,false,ColMajor>::run);
182
183    func[NOTR  | (RIGHT << 2) | (UP << 3) | (UNIT  << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,false,ColMajor,false,ColMajor,false,ColMajor>::run);
184    func[TR    | (RIGHT << 2) | (UP << 3) | (UNIT  << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,false,ColMajor,false,RowMajor,false,ColMajor>::run);
185    func[ADJ   | (RIGHT << 2) | (UP << 3) | (UNIT  << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,false,ColMajor,false,RowMajor,Conj, ColMajor>::run);
186
187    func[NOTR  | (LEFT  << 2) | (LO << 3) | (UNIT  << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,true, ColMajor,false,ColMajor,false,ColMajor>::run);
188    func[TR    | (LEFT  << 2) | (LO << 3) | (UNIT  << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,true, RowMajor,false,ColMajor,false,ColMajor>::run);
189    func[ADJ   | (LEFT  << 2) | (LO << 3) | (UNIT  << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,true, RowMajor,Conj, ColMajor,false,ColMajor>::run);
190
191    func[NOTR  | (RIGHT << 2) | (LO << 3) | (UNIT  << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,false,ColMajor,false,ColMajor,false,ColMajor>::run);
192    func[TR    | (RIGHT << 2) | (LO << 3) | (UNIT  << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,false,ColMajor,false,RowMajor,false,ColMajor>::run);
193    func[ADJ   | (RIGHT << 2) | (LO << 3) | (UNIT  << 4)] = (internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,false,ColMajor,false,RowMajor,Conj, ColMajor>::run);
194
195    init = true;
196  }
197
198  Scalar* a = reinterpret_cast<Scalar*>(pa);
199  Scalar* b = reinterpret_cast<Scalar*>(pb);
200  Scalar  alpha = *reinterpret_cast<Scalar*>(palpha);
201
202  int info = 0;
203  if(SIDE(*side)==INVALID)                                            info = 1;
204  else if(UPLO(*uplo)==INVALID)                                       info = 2;
205  else if(OP(*opa)==INVALID)                                          info = 3;
206  else if(DIAG(*diag)==INVALID)                                       info = 4;
207  else if(*m<0)                                                       info = 5;
208  else if(*n<0)                                                       info = 6;
209  else if(*lda<std::max(1,(SIDE(*side)==LEFT)?*m:*n))                 info = 9;
210  else if(*ldb<std::max(1,*m))                                        info = 11;
211  if(info)
212    return xerbla_(SCALAR_SUFFIX_UP"TRMM ",&info,6);
213
214  int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4);
215
216  if(*m==0 || *n==0)
217    return 1;
218
219  // FIXME find a way to avoid this copy
220  Matrix<Scalar,Dynamic,Dynamic,ColMajor> tmp = matrix(b,*m,*n,*ldb);
221  matrix(b,*m,*n,*ldb).setZero();
222
223  if(SIDE(*side)==LEFT)
224  {
225    internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*m);
226    func[code](*m, *n, *m, a, *lda, tmp.data(), tmp.outerStride(), b, *ldb, alpha, blocking);
227  }
228  else
229  {
230    internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*n);
231    func[code](*m, *n, *n, tmp.data(), tmp.outerStride(), a, *lda, b, *ldb, alpha, blocking);
232  }
233  return 1;
234}
235
236// c = alpha*a*b + beta*c  for side = 'L'or'l'
237// c = alpha*b*a + beta*c  for side = 'R'or'r
238int EIGEN_BLAS_FUNC(symm)(char *side, char *uplo, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc)
239{
240//   std::cerr << "in symm " << *side << " " << *uplo << " " << *m << "x" << *n << " lda:" << *lda << " ldb:" << *ldb << " ldc:" << *ldc << " alpha:" << *palpha << " beta:" << *pbeta << "\n";
241  Scalar* a = reinterpret_cast<Scalar*>(pa);
242  Scalar* b = reinterpret_cast<Scalar*>(pb);
243  Scalar* c = reinterpret_cast<Scalar*>(pc);
244  Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
245  Scalar beta  = *reinterpret_cast<Scalar*>(pbeta);
246
247  int info = 0;
248  if(SIDE(*side)==INVALID)                                            info = 1;
249  else if(UPLO(*uplo)==INVALID)                                       info = 2;
250  else if(*m<0)                                                       info = 3;
251  else if(*n<0)                                                       info = 4;
252  else if(*lda<std::max(1,(SIDE(*side)==LEFT)?*m:*n))                 info = 7;
253  else if(*ldb<std::max(1,*m))                                        info = 9;
254  else if(*ldc<std::max(1,*m))                                        info = 12;
255  if(info)
256    return xerbla_(SCALAR_SUFFIX_UP"SYMM ",&info,6);
257
258  if(beta!=Scalar(1))
259  {
260    if(beta==Scalar(0)) matrix(c, *m, *n, *ldc).setZero();
261    else                matrix(c, *m, *n, *ldc) *= beta;
262  }
263
264  if(*m==0 || *n==0)
265  {
266    return 1;
267  }
268
269  #if ISCOMPLEX
270  // FIXME add support for symmetric complex matrix
271  int size = (SIDE(*side)==LEFT) ? (*m) : (*n);
272  Matrix<Scalar,Dynamic,Dynamic,ColMajor> matA(size,size);
273  if(UPLO(*uplo)==UP)
274  {
275    matA.triangularView<Upper>() = matrix(a,size,size,*lda);
276    matA.triangularView<Lower>() = matrix(a,size,size,*lda).transpose();
277  }
278  else if(UPLO(*uplo)==LO)
279  {
280    matA.triangularView<Lower>() = matrix(a,size,size,*lda);
281    matA.triangularView<Upper>() = matrix(a,size,size,*lda).transpose();
282  }
283  if(SIDE(*side)==LEFT)
284    matrix(c, *m, *n, *ldc) += alpha * matA * matrix(b, *m, *n, *ldb);
285  else if(SIDE(*side)==RIGHT)
286    matrix(c, *m, *n, *ldc) += alpha * matrix(b, *m, *n, *ldb) * matA;
287  #else
288  if(SIDE(*side)==LEFT)
289    if(UPLO(*uplo)==UP)       internal::product_selfadjoint_matrix<Scalar, DenseIndex, RowMajor,true,false, ColMajor,false,false, ColMajor>::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha);
290    else if(UPLO(*uplo)==LO)  internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor,true,false, ColMajor,false,false, ColMajor>::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha);
291    else                      return 0;
292  else if(SIDE(*side)==RIGHT)
293    if(UPLO(*uplo)==UP)       internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor,false,false, RowMajor,true,false, ColMajor>::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha);
294    else if(UPLO(*uplo)==LO)  internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor,false,false, ColMajor,true,false, ColMajor>::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha);
295    else                      return 0;
296  else
297    return 0;
298  #endif
299
300  return 0;
301}
302
303// c = alpha*a*a' + beta*c  for op = 'N'or'n'
304// c = alpha*a'*a + beta*c  for op = 'T'or't','C'or'c'
305int EIGEN_BLAS_FUNC(syrk)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pbeta, RealScalar *pc, int *ldc)
306{
307//   std::cerr << "in syrk " << *uplo << " " << *op << " " << *n << " " << *k << " " << *palpha << " " << *lda << " " << *pbeta << " " << *ldc << "\n";
308  typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, Scalar);
309  static functype func[8];
310
311  static bool init = false;
312  if(!init)
313  {
314    for(int k=0; k<8; ++k)
315      func[k] = 0;
316
317    func[NOTR  | (UP << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,ColMajor,Conj, Upper>::run);
318    func[TR    | (UP << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,false,Scalar,ColMajor,ColMajor,Conj, Upper>::run);
319    func[ADJ   | (UP << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,ColMajor,ColMajor,false,Upper>::run);
320
321    func[NOTR  | (LO << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,ColMajor,Conj, Lower>::run);
322    func[TR    | (LO << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,false,Scalar,ColMajor,ColMajor,Conj, Lower>::run);
323    func[ADJ   | (LO << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,ColMajor,ColMajor,false,Lower>::run);
324
325    init = true;
326  }
327
328  Scalar* a = reinterpret_cast<Scalar*>(pa);
329  Scalar* c = reinterpret_cast<Scalar*>(pc);
330  Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
331  Scalar beta  = *reinterpret_cast<Scalar*>(pbeta);
332
333  int info = 0;
334  if(UPLO(*uplo)==INVALID)                                            info = 1;
335  else if(OP(*op)==INVALID)                                           info = 2;
336  else if(*n<0)                                                       info = 3;
337  else if(*k<0)                                                       info = 4;
338  else if(*lda<std::max(1,(OP(*op)==NOTR)?*n:*k))                     info = 7;
339  else if(*ldc<std::max(1,*n))                                        info = 10;
340  if(info)
341    return xerbla_(SCALAR_SUFFIX_UP"SYRK ",&info,6);
342
343  if(beta!=Scalar(1))
344  {
345    if(UPLO(*uplo)==UP)
346      if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero();
347      else                matrix(c, *n, *n, *ldc).triangularView<Upper>() *= beta;
348    else
349      if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero();
350      else                matrix(c, *n, *n, *ldc).triangularView<Lower>() *= beta;
351  }
352
353  #if ISCOMPLEX
354  // FIXME add support for symmetric complex matrix
355  if(UPLO(*uplo)==UP)
356  {
357    if(OP(*op)==NOTR)
358      matrix(c, *n, *n, *ldc).triangularView<Upper>() += alpha * matrix(a,*n,*k,*lda) * matrix(a,*n,*k,*lda).transpose();
359    else
360      matrix(c, *n, *n, *ldc).triangularView<Upper>() += alpha * matrix(a,*k,*n,*lda).transpose() * matrix(a,*k,*n,*lda);
361  }
362  else
363  {
364    if(OP(*op)==NOTR)
365      matrix(c, *n, *n, *ldc).triangularView<Lower>() += alpha * matrix(a,*n,*k,*lda) * matrix(a,*n,*k,*lda).transpose();
366    else
367      matrix(c, *n, *n, *ldc).triangularView<Lower>() += alpha * matrix(a,*k,*n,*lda).transpose() * matrix(a,*k,*n,*lda);
368  }
369  #else
370  int code = OP(*op) | (UPLO(*uplo) << 2);
371  func[code](*n, *k, a, *lda, a, *lda, c, *ldc, alpha);
372  #endif
373
374  return 0;
375}
376
377// c = alpha*a*b' + alpha*b*a' + beta*c  for op = 'N'or'n'
378// c = alpha*a'*b + alpha*b'*a + beta*c  for op = 'T'or't'
379int EIGEN_BLAS_FUNC(syr2k)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc)
380{
381  Scalar* a = reinterpret_cast<Scalar*>(pa);
382  Scalar* b = reinterpret_cast<Scalar*>(pb);
383  Scalar* c = reinterpret_cast<Scalar*>(pc);
384  Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
385  Scalar beta  = *reinterpret_cast<Scalar*>(pbeta);
386
387  int info = 0;
388  if(UPLO(*uplo)==INVALID)                                            info = 1;
389  else if(OP(*op)==INVALID)                                           info = 2;
390  else if(*n<0)                                                       info = 3;
391  else if(*k<0)                                                       info = 4;
392  else if(*lda<std::max(1,(OP(*op)==NOTR)?*n:*k))                     info = 7;
393  else if(*ldb<std::max(1,(OP(*op)==NOTR)?*n:*k))                     info = 9;
394  else if(*ldc<std::max(1,*n))                                        info = 12;
395  if(info)
396    return xerbla_(SCALAR_SUFFIX_UP"SYR2K",&info,6);
397
398  if(beta!=Scalar(1))
399  {
400    if(UPLO(*uplo)==UP)
401      if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero();
402      else                matrix(c, *n, *n, *ldc).triangularView<Upper>() *= beta;
403    else
404      if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero();
405      else                matrix(c, *n, *n, *ldc).triangularView<Lower>() *= beta;
406  }
407
408  if(*k==0)
409    return 1;
410
411  if(OP(*op)==NOTR)
412  {
413    if(UPLO(*uplo)==UP)
414    {
415      matrix(c, *n, *n, *ldc).triangularView<Upper>()
416        += alpha *matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).transpose()
417        +  alpha*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).transpose();
418    }
419    else if(UPLO(*uplo)==LO)
420      matrix(c, *n, *n, *ldc).triangularView<Lower>()
421        += alpha*matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).transpose()
422        +  alpha*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).transpose();
423  }
424  else if(OP(*op)==TR || OP(*op)==ADJ)
425  {
426    if(UPLO(*uplo)==UP)
427      matrix(c, *n, *n, *ldc).triangularView<Upper>()
428        += alpha*matrix(a, *k, *n, *lda).transpose()*matrix(b, *k, *n, *ldb)
429        +  alpha*matrix(b, *k, *n, *ldb).transpose()*matrix(a, *k, *n, *lda);
430    else if(UPLO(*uplo)==LO)
431      matrix(c, *n, *n, *ldc).triangularView<Lower>()
432        += alpha*matrix(a, *k, *n, *lda).transpose()*matrix(b, *k, *n, *ldb)
433        +  alpha*matrix(b, *k, *n, *ldb).transpose()*matrix(a, *k, *n, *lda);
434  }
435
436  return 0;
437}
438
439
440#if ISCOMPLEX
441
442// c = alpha*a*b + beta*c  for side = 'L'or'l'
443// c = alpha*b*a + beta*c  for side = 'R'or'r
444int EIGEN_BLAS_FUNC(hemm)(char *side, char *uplo, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc)
445{
446  Scalar* a = reinterpret_cast<Scalar*>(pa);
447  Scalar* b = reinterpret_cast<Scalar*>(pb);
448  Scalar* c = reinterpret_cast<Scalar*>(pc);
449  Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
450  Scalar beta  = *reinterpret_cast<Scalar*>(pbeta);
451
452//   std::cerr << "in hemm " << *side << " " << *uplo << " " << *m << " " << *n << " " << alpha << " " << *lda << " " << beta << " " << *ldc << "\n";
453
454  int info = 0;
455  if(SIDE(*side)==INVALID)                                            info = 1;
456  else if(UPLO(*uplo)==INVALID)                                       info = 2;
457  else if(*m<0)                                                       info = 3;
458  else if(*n<0)                                                       info = 4;
459  else if(*lda<std::max(1,(SIDE(*side)==LEFT)?*m:*n))                 info = 7;
460  else if(*ldb<std::max(1,*m))                                        info = 9;
461  else if(*ldc<std::max(1,*m))                                        info = 12;
462  if(info)
463    return xerbla_(SCALAR_SUFFIX_UP"HEMM ",&info,6);
464
465  if(beta==Scalar(0))       matrix(c, *m, *n, *ldc).setZero();
466  else if(beta!=Scalar(1))  matrix(c, *m, *n, *ldc) *= beta;
467
468  if(*m==0 || *n==0)
469  {
470    return 1;
471  }
472
473  if(SIDE(*side)==LEFT)
474  {
475    if(UPLO(*uplo)==UP)       internal::product_selfadjoint_matrix<Scalar,DenseIndex,RowMajor,true,Conj,  ColMajor,false,false, ColMajor>
476                                ::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha);
477    else if(UPLO(*uplo)==LO)  internal::product_selfadjoint_matrix<Scalar,DenseIndex,ColMajor,true,false, ColMajor,false,false, ColMajor>
478                                ::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha);
479    else                      return 0;
480  }
481  else if(SIDE(*side)==RIGHT)
482  {
483    if(UPLO(*uplo)==UP)       matrix(c,*m,*n,*ldc) += alpha * matrix(b,*m,*n,*ldb) * matrix(a,*n,*n,*lda).selfadjointView<Upper>();/*internal::product_selfadjoint_matrix<Scalar,DenseIndex,ColMajor,false,false, RowMajor,true,Conj,  ColMajor>
484                                ::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha);*/
485    else if(UPLO(*uplo)==LO)  internal::product_selfadjoint_matrix<Scalar,DenseIndex,ColMajor,false,false, ColMajor,true,false, ColMajor>
486                                ::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha);
487    else                      return 0;
488  }
489  else
490  {
491    return 0;
492  }
493
494  return 0;
495}
496
497// c = alpha*a*conj(a') + beta*c  for op = 'N'or'n'
498// c = alpha*conj(a')*a + beta*c  for op  = 'C'or'c'
499int EIGEN_BLAS_FUNC(herk)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pbeta, RealScalar *pc, int *ldc)
500{
501  typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, Scalar);
502  static functype func[8];
503
504  static bool init = false;
505  if(!init)
506  {
507    for(int k=0; k<8; ++k)
508      func[k] = 0;
509
510    func[NOTR  | (UP << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,Conj, ColMajor,Upper>::run);
511    func[ADJ   | (UP << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,ColMajor,false,ColMajor,Upper>::run);
512
513    func[NOTR  | (LO << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,Conj, ColMajor,Lower>::run);
514    func[ADJ   | (LO << 2)] = (internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,ColMajor,false,ColMajor,Lower>::run);
515
516    init = true;
517  }
518
519  Scalar* a = reinterpret_cast<Scalar*>(pa);
520  Scalar* c = reinterpret_cast<Scalar*>(pc);
521  RealScalar alpha = *palpha;
522  RealScalar beta  = *pbeta;
523
524//   std::cerr << "in herk " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " " << beta << " " << *ldc << "\n";
525
526  int info = 0;
527  if(UPLO(*uplo)==INVALID)                                            info = 1;
528  else if((OP(*op)==INVALID) || (OP(*op)==TR))                        info = 2;
529  else if(*n<0)                                                       info = 3;
530  else if(*k<0)                                                       info = 4;
531  else if(*lda<std::max(1,(OP(*op)==NOTR)?*n:*k))                     info = 7;
532  else if(*ldc<std::max(1,*n))                                        info = 10;
533  if(info)
534    return xerbla_(SCALAR_SUFFIX_UP"HERK ",&info,6);
535
536  int code = OP(*op) | (UPLO(*uplo) << 2);
537
538  if(beta!=RealScalar(1))
539  {
540    if(UPLO(*uplo)==UP)
541      if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero();
542      else                matrix(c, *n, *n, *ldc).triangularView<StrictlyUpper>() *= beta;
543    else
544      if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero();
545      else                matrix(c, *n, *n, *ldc).triangularView<StrictlyLower>() *= beta;
546
547    if(beta!=Scalar(0))
548    {
549      matrix(c, *n, *n, *ldc).diagonal().real() *= beta;
550      matrix(c, *n, *n, *ldc).diagonal().imag().setZero();
551    }
552  }
553
554  if(*k>0 && alpha!=RealScalar(0))
555  {
556    func[code](*n, *k, a, *lda, a, *lda, c, *ldc, alpha);
557    matrix(c, *n, *n, *ldc).diagonal().imag().setZero();
558  }
559  return 0;
560}
561
562// c = alpha*a*conj(b') + conj(alpha)*b*conj(a') + beta*c,  for op = 'N'or'n'
563// c = alpha*conj(a')*b + conj(alpha)*conj(b')*a + beta*c,  for op = 'C'or'c'
564int EIGEN_BLAS_FUNC(her2k)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc)
565{
566  Scalar* a = reinterpret_cast<Scalar*>(pa);
567  Scalar* b = reinterpret_cast<Scalar*>(pb);
568  Scalar* c = reinterpret_cast<Scalar*>(pc);
569  Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
570  RealScalar beta  = *pbeta;
571
572  int info = 0;
573  if(UPLO(*uplo)==INVALID)                                            info = 1;
574  else if((OP(*op)==INVALID) || (OP(*op)==TR))                        info = 2;
575  else if(*n<0)                                                       info = 3;
576  else if(*k<0)                                                       info = 4;
577  else if(*lda<std::max(1,(OP(*op)==NOTR)?*n:*k))                     info = 7;
578  else if(*lda<std::max(1,(OP(*op)==NOTR)?*n:*k))                     info = 9;
579  else if(*ldc<std::max(1,*n))                                        info = 12;
580  if(info)
581    return xerbla_(SCALAR_SUFFIX_UP"HER2K",&info,6);
582
583  if(beta!=RealScalar(1))
584  {
585    if(UPLO(*uplo)==UP)
586      if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero();
587      else                matrix(c, *n, *n, *ldc).triangularView<StrictlyUpper>() *= beta;
588    else
589      if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero();
590      else                matrix(c, *n, *n, *ldc).triangularView<StrictlyLower>() *= beta;
591
592    if(beta!=Scalar(0))
593    {
594      matrix(c, *n, *n, *ldc).diagonal().real() *= beta;
595      matrix(c, *n, *n, *ldc).diagonal().imag().setZero();
596    }
597  }
598  else if(*k>0 && alpha!=Scalar(0))
599    matrix(c, *n, *n, *ldc).diagonal().imag().setZero();
600
601  if(*k==0)
602    return 1;
603
604  if(OP(*op)==NOTR)
605  {
606    if(UPLO(*uplo)==UP)
607    {
608      matrix(c, *n, *n, *ldc).triangularView<Upper>()
609        +=         alpha *matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).adjoint()
610        +  internal::conj(alpha)*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).adjoint();
611    }
612    else if(UPLO(*uplo)==LO)
613      matrix(c, *n, *n, *ldc).triangularView<Lower>()
614        += alpha*matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).adjoint()
615        +  internal::conj(alpha)*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).adjoint();
616  }
617  else if(OP(*op)==ADJ)
618  {
619    if(UPLO(*uplo)==UP)
620      matrix(c, *n, *n, *ldc).triangularView<Upper>()
621        += alpha*matrix(a, *k, *n, *lda).adjoint()*matrix(b, *k, *n, *ldb)
622        +  internal::conj(alpha)*matrix(b, *k, *n, *ldb).adjoint()*matrix(a, *k, *n, *lda);
623    else if(UPLO(*uplo)==LO)
624      matrix(c, *n, *n, *ldc).triangularView<Lower>()
625        += alpha*matrix(a, *k, *n, *lda).adjoint()*matrix(b, *k, *n, *ldb)
626        +  internal::conj(alpha)*matrix(b, *k, *n, *ldb).adjoint()*matrix(a, *k, *n, *lda);
627  }
628
629  return 1;
630}
631
632#endif // ISCOMPLEX
633