1      SUBROUTINE SSBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
2*     .. Scalar Arguments ..
3      REAL ALPHA,BETA
4      INTEGER INCX,INCY,K,LDA,N
5      CHARACTER UPLO
6*     ..
7*     .. Array Arguments ..
8      REAL A(LDA,*),X(*),Y(*)
9*     ..
10*
11*  Purpose
12*  =======
13*
14*  SSBMV  performs the matrix-vector  operation
15*
16*     y := alpha*A*x + beta*y,
17*
18*  where alpha and beta are scalars, x and y are n element vectors and
19*  A is an n by n symmetric band matrix, with k super-diagonals.
20*
21*  Arguments
22*  ==========
23*
24*  UPLO   - CHARACTER*1.
25*           On entry, UPLO specifies whether the upper or lower
26*           triangular part of the band matrix A is being supplied as
27*           follows:
28*
29*              UPLO = 'U' or 'u'   The upper triangular part of A is
30*                                  being supplied.
31*
32*              UPLO = 'L' or 'l'   The lower triangular part of A is
33*                                  being supplied.
34*
35*           Unchanged on exit.
36*
37*  N      - INTEGER.
38*           On entry, N specifies the order of the matrix A.
39*           N must be at least zero.
40*           Unchanged on exit.
41*
42*  K      - INTEGER.
43*           On entry, K specifies the number of super-diagonals of the
44*           matrix A. K must satisfy  0 .le. K.
45*           Unchanged on exit.
46*
47*  ALPHA  - REAL            .
48*           On entry, ALPHA specifies the scalar alpha.
49*           Unchanged on exit.
50*
51*  A      - REAL             array of DIMENSION ( LDA, n ).
52*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
53*           by n part of the array A must contain the upper triangular
54*           band part of the symmetric matrix, supplied column by
55*           column, with the leading diagonal of the matrix in row
56*           ( k + 1 ) of the array, the first super-diagonal starting at
57*           position 2 in row k, and so on. The top left k by k triangle
58*           of the array A is not referenced.
59*           The following program segment will transfer the upper
60*           triangular part of a symmetric band matrix from conventional
61*           full matrix storage to band storage:
62*
63*                 DO 20, J = 1, N
64*                    M = K + 1 - J
65*                    DO 10, I = MAX( 1, J - K ), J
66*                       A( M + I, J ) = matrix( I, J )
67*              10    CONTINUE
68*              20 CONTINUE
69*
70*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
71*           by n part of the array A must contain the lower triangular
72*           band part of the symmetric matrix, supplied column by
73*           column, with the leading diagonal of the matrix in row 1 of
74*           the array, the first sub-diagonal starting at position 1 in
75*           row 2, and so on. The bottom right k by k triangle of the
76*           array A is not referenced.
77*           The following program segment will transfer the lower
78*           triangular part of a symmetric band matrix from conventional
79*           full matrix storage to band storage:
80*
81*                 DO 20, J = 1, N
82*                    M = 1 - J
83*                    DO 10, I = J, MIN( N, J + K )
84*                       A( M + I, J ) = matrix( I, J )
85*              10    CONTINUE
86*              20 CONTINUE
87*
88*           Unchanged on exit.
89*
90*  LDA    - INTEGER.
91*           On entry, LDA specifies the first dimension of A as declared
92*           in the calling (sub) program. LDA must be at least
93*           ( k + 1 ).
94*           Unchanged on exit.
95*
96*  X      - REAL             array of DIMENSION at least
97*           ( 1 + ( n - 1 )*abs( INCX ) ).
98*           Before entry, the incremented array X must contain the
99*           vector x.
100*           Unchanged on exit.
101*
102*  INCX   - INTEGER.
103*           On entry, INCX specifies the increment for the elements of
104*           X. INCX must not be zero.
105*           Unchanged on exit.
106*
107*  BETA   - REAL            .
108*           On entry, BETA specifies the scalar beta.
109*           Unchanged on exit.
110*
111*  Y      - REAL             array of DIMENSION at least
112*           ( 1 + ( n - 1 )*abs( INCY ) ).
113*           Before entry, the incremented array Y must contain the
114*           vector y. On exit, Y is overwritten by the updated vector y.
115*
116*  INCY   - INTEGER.
117*           On entry, INCY specifies the increment for the elements of
118*           Y. INCY must not be zero.
119*           Unchanged on exit.
120*
121*  Further Details
122*  ===============
123*
124*  Level 2 Blas routine.
125*
126*  -- Written on 22-October-1986.
127*     Jack Dongarra, Argonne National Lab.
128*     Jeremy Du Croz, Nag Central Office.
129*     Sven Hammarling, Nag Central Office.
130*     Richard Hanson, Sandia National Labs.
131*
132*  =====================================================================
133*
134*     .. Parameters ..
135      REAL ONE,ZERO
136      PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)
137*     ..
138*     .. Local Scalars ..
139      REAL TEMP1,TEMP2
140      INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L
141*     ..
142*     .. External Functions ..
143      LOGICAL LSAME
144      EXTERNAL LSAME
145*     ..
146*     .. External Subroutines ..
147      EXTERNAL XERBLA
148*     ..
149*     .. Intrinsic Functions ..
150      INTRINSIC MAX,MIN
151*     ..
152*
153*     Test the input parameters.
154*
155      INFO = 0
156      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
157          INFO = 1
158      ELSE IF (N.LT.0) THEN
159          INFO = 2
160      ELSE IF (K.LT.0) THEN
161          INFO = 3
162      ELSE IF (LDA.LT. (K+1)) THEN
163          INFO = 6
164      ELSE IF (INCX.EQ.0) THEN
165          INFO = 8
166      ELSE IF (INCY.EQ.0) THEN
167          INFO = 11
168      END IF
169      IF (INFO.NE.0) THEN
170          CALL XERBLA('SSBMV ',INFO)
171          RETURN
172      END IF
173*
174*     Quick return if possible.
175*
176      IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
177*
178*     Set up the start points in  X  and  Y.
179*
180      IF (INCX.GT.0) THEN
181          KX = 1
182      ELSE
183          KX = 1 - (N-1)*INCX
184      END IF
185      IF (INCY.GT.0) THEN
186          KY = 1
187      ELSE
188          KY = 1 - (N-1)*INCY
189      END IF
190*
191*     Start the operations. In this version the elements of the array A
192*     are accessed sequentially with one pass through A.
193*
194*     First form  y := beta*y.
195*
196      IF (BETA.NE.ONE) THEN
197          IF (INCY.EQ.1) THEN
198              IF (BETA.EQ.ZERO) THEN
199                  DO 10 I = 1,N
200                      Y(I) = ZERO
201   10             CONTINUE
202              ELSE
203                  DO 20 I = 1,N
204                      Y(I) = BETA*Y(I)
205   20             CONTINUE
206              END IF
207          ELSE
208              IY = KY
209              IF (BETA.EQ.ZERO) THEN
210                  DO 30 I = 1,N
211                      Y(IY) = ZERO
212                      IY = IY + INCY
213   30             CONTINUE
214              ELSE
215                  DO 40 I = 1,N
216                      Y(IY) = BETA*Y(IY)
217                      IY = IY + INCY
218   40             CONTINUE
219              END IF
220          END IF
221      END IF
222      IF (ALPHA.EQ.ZERO) RETURN
223      IF (LSAME(UPLO,'U')) THEN
224*
225*        Form  y  when upper triangle of A is stored.
226*
227          KPLUS1 = K + 1
228          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
229              DO 60 J = 1,N
230                  TEMP1 = ALPHA*X(J)
231                  TEMP2 = ZERO
232                  L = KPLUS1 - J
233                  DO 50 I = MAX(1,J-K),J - 1
234                      Y(I) = Y(I) + TEMP1*A(L+I,J)
235                      TEMP2 = TEMP2 + A(L+I,J)*X(I)
236   50             CONTINUE
237                  Y(J) = Y(J) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2
238   60         CONTINUE
239          ELSE
240              JX = KX
241              JY = KY
242              DO 80 J = 1,N
243                  TEMP1 = ALPHA*X(JX)
244                  TEMP2 = ZERO
245                  IX = KX
246                  IY = KY
247                  L = KPLUS1 - J
248                  DO 70 I = MAX(1,J-K),J - 1
249                      Y(IY) = Y(IY) + TEMP1*A(L+I,J)
250                      TEMP2 = TEMP2 + A(L+I,J)*X(IX)
251                      IX = IX + INCX
252                      IY = IY + INCY
253   70             CONTINUE
254                  Y(JY) = Y(JY) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2
255                  JX = JX + INCX
256                  JY = JY + INCY
257                  IF (J.GT.K) THEN
258                      KX = KX + INCX
259                      KY = KY + INCY
260                  END IF
261   80         CONTINUE
262          END IF
263      ELSE
264*
265*        Form  y  when lower triangle of A is stored.
266*
267          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
268              DO 100 J = 1,N
269                  TEMP1 = ALPHA*X(J)
270                  TEMP2 = ZERO
271                  Y(J) = Y(J) + TEMP1*A(1,J)
272                  L = 1 - J
273                  DO 90 I = J + 1,MIN(N,J+K)
274                      Y(I) = Y(I) + TEMP1*A(L+I,J)
275                      TEMP2 = TEMP2 + A(L+I,J)*X(I)
276   90             CONTINUE
277                  Y(J) = Y(J) + ALPHA*TEMP2
278  100         CONTINUE
279          ELSE
280              JX = KX
281              JY = KY
282              DO 120 J = 1,N
283                  TEMP1 = ALPHA*X(JX)
284                  TEMP2 = ZERO
285                  Y(JY) = Y(JY) + TEMP1*A(1,J)
286                  L = 1 - J
287                  IX = JX
288                  IY = JY
289                  DO 110 I = J + 1,MIN(N,J+K)
290                      IX = IX + INCX
291                      IY = IY + INCY
292                      Y(IY) = Y(IY) + TEMP1*A(L+I,J)
293                      TEMP2 = TEMP2 + A(L+I,J)*X(IX)
294  110             CONTINUE
295                  Y(JY) = Y(JY) + ALPHA*TEMP2
296                  JX = JX + INCX
297                  JY = JY + INCY
298  120         CONTINUE
299          END IF
300      END IF
301*
302      RETURN
303*
304*     End of SSBMV .
305*
306      END
307