1// This file is part of Eigen, a lightweight C++ template library 2// for linear algebra. 3// 4// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> 5// 6// This Source Code Form is subject to the terms of the Mozilla 7// Public License v. 2.0. If a copy of the MPL was not distributed 8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10#include "main.h" 11#include <Eigen/Geometry> 12#include <Eigen/LU> 13#include <Eigen/SVD> 14 15/* this test covers the following files: 16 Geometry/OrthoMethods.h 17*/ 18 19template<typename Scalar> void orthomethods_3() 20{ 21 typedef typename NumTraits<Scalar>::Real RealScalar; 22 typedef Matrix<Scalar,3,3> Matrix3; 23 typedef Matrix<Scalar,3,1> Vector3; 24 25 typedef Matrix<Scalar,4,1> Vector4; 26 27 Vector3 v0 = Vector3::Random(), 28 v1 = Vector3::Random(), 29 v2 = Vector3::Random(); 30 31 // cross product 32 VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).dot(v1), Scalar(1)); 33 VERIFY_IS_MUCH_SMALLER_THAN(v1.dot(v1.cross(v2)), Scalar(1)); 34 VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).dot(v2), Scalar(1)); 35 VERIFY_IS_MUCH_SMALLER_THAN(v2.dot(v1.cross(v2)), Scalar(1)); 36 Matrix3 mat3; 37 mat3 << v0.normalized(), 38 (v0.cross(v1)).normalized(), 39 (v0.cross(v1).cross(v0)).normalized(); 40 VERIFY(mat3.isUnitary()); 41 42 43 // colwise/rowwise cross product 44 mat3.setRandom(); 45 Vector3 vec3 = Vector3::Random(); 46 Matrix3 mcross; 47 int i = internal::random<int>(0,2); 48 mcross = mat3.colwise().cross(vec3); 49 VERIFY_IS_APPROX(mcross.col(i), mat3.col(i).cross(vec3)); 50 mcross = mat3.rowwise().cross(vec3); 51 VERIFY_IS_APPROX(mcross.row(i), mat3.row(i).cross(vec3)); 52 53 // cross3 54 Vector4 v40 = Vector4::Random(), 55 v41 = Vector4::Random(), 56 v42 = Vector4::Random(); 57 v40.w() = v41.w() = v42.w() = 0; 58 v42.template head<3>() = v40.template head<3>().cross(v41.template head<3>()); 59 VERIFY_IS_APPROX(v40.cross3(v41), v42); 60 61 // check mixed product 62 typedef Matrix<RealScalar, 3, 1> RealVector3; 63 RealVector3 rv1 = RealVector3::Random(); 64 VERIFY_IS_APPROX(v1.cross(rv1.template cast<Scalar>()), v1.cross(rv1)); 65 VERIFY_IS_APPROX(rv1.template cast<Scalar>().cross(v1), rv1.cross(v1)); 66} 67 68template<typename Scalar, int Size> void orthomethods(int size=Size) 69{ 70 typedef typename NumTraits<Scalar>::Real RealScalar; 71 typedef Matrix<Scalar,Size,1> VectorType; 72 typedef Matrix<Scalar,3,Size> Matrix3N; 73 typedef Matrix<Scalar,Size,3> MatrixN3; 74 typedef Matrix<Scalar,3,1> Vector3; 75 76 VectorType v0 = VectorType::Random(size); 77 78 // unitOrthogonal 79 VERIFY_IS_MUCH_SMALLER_THAN(v0.unitOrthogonal().dot(v0), Scalar(1)); 80 VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), RealScalar(1)); 81 82 if (size>=3) 83 { 84 v0.template head<2>().setZero(); 85 v0.tail(size-2).setRandom(); 86 87 VERIFY_IS_MUCH_SMALLER_THAN(v0.unitOrthogonal().dot(v0), Scalar(1)); 88 VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), RealScalar(1)); 89 } 90 91 // colwise/rowwise cross product 92 Vector3 vec3 = Vector3::Random(); 93 int i = internal::random<int>(0,size-1); 94 95 Matrix3N mat3N(3,size), mcross3N(3,size); 96 mat3N.setRandom(); 97 mcross3N = mat3N.colwise().cross(vec3); 98 VERIFY_IS_APPROX(mcross3N.col(i), mat3N.col(i).cross(vec3)); 99 100 MatrixN3 matN3(size,3), mcrossN3(size,3); 101 matN3.setRandom(); 102 mcrossN3 = matN3.rowwise().cross(vec3); 103 VERIFY_IS_APPROX(mcrossN3.row(i), matN3.row(i).cross(vec3)); 104} 105 106void test_geo_orthomethods() 107{ 108 for(int i = 0; i < g_repeat; i++) { 109 CALL_SUBTEST_1( orthomethods_3<float>() ); 110 CALL_SUBTEST_2( orthomethods_3<double>() ); 111 CALL_SUBTEST_4( orthomethods_3<std::complex<double> >() ); 112 CALL_SUBTEST_1( (orthomethods<float,2>()) ); 113 CALL_SUBTEST_2( (orthomethods<double,2>()) ); 114 CALL_SUBTEST_1( (orthomethods<float,3>()) ); 115 CALL_SUBTEST_2( (orthomethods<double,3>()) ); 116 CALL_SUBTEST_3( (orthomethods<float,7>()) ); 117 CALL_SUBTEST_4( (orthomethods<std::complex<double>,8>()) ); 118 CALL_SUBTEST_5( (orthomethods<float,Dynamic>(36)) ); 119 CALL_SUBTEST_6( (orthomethods<double,Dynamic>(35)) ); 120 } 121} 122