1//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution expander,
11// which is used to generate the code corresponding to a given scalar evolution
12// expression.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/ScalarEvolutionExpander.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/Analysis/LoopInfo.h"
19#include "llvm/Analysis/TargetTransformInfo.h"
20#include "llvm/IR/DataLayout.h"
21#include "llvm/IR/IntrinsicInst.h"
22#include "llvm/IR/LLVMContext.h"
23#include "llvm/Support/Debug.h"
24
25using namespace llvm;
26
27/// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
28/// reusing an existing cast if a suitable one exists, moving an existing
29/// cast if a suitable one exists but isn't in the right place, or
30/// creating a new one.
31Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
32                                       Instruction::CastOps Op,
33                                       BasicBlock::iterator IP) {
34  // This function must be called with the builder having a valid insertion
35  // point. It doesn't need to be the actual IP where the uses of the returned
36  // cast will be added, but it must dominate such IP.
37  // We use this precondition to produce a cast that will dominate all its
38  // uses. In particular, this is crucial for the case where the builder's
39  // insertion point *is* the point where we were asked to put the cast.
40  // Since we don't know the builder's insertion point is actually
41  // where the uses will be added (only that it dominates it), we are
42  // not allowed to move it.
43  BasicBlock::iterator BIP = Builder.GetInsertPoint();
44
45  Instruction *Ret = NULL;
46
47  // Check to see if there is already a cast!
48  for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
49       UI != E; ++UI) {
50    User *U = *UI;
51    if (U->getType() == Ty)
52      if (CastInst *CI = dyn_cast<CastInst>(U))
53        if (CI->getOpcode() == Op) {
54          // If the cast isn't where we want it, create a new cast at IP.
55          // Likewise, do not reuse a cast at BIP because it must dominate
56          // instructions that might be inserted before BIP.
57          if (BasicBlock::iterator(CI) != IP || BIP == IP) {
58            // Create a new cast, and leave the old cast in place in case
59            // it is being used as an insert point. Clear its operand
60            // so that it doesn't hold anything live.
61            Ret = CastInst::Create(Op, V, Ty, "", IP);
62            Ret->takeName(CI);
63            CI->replaceAllUsesWith(Ret);
64            CI->setOperand(0, UndefValue::get(V->getType()));
65            break;
66          }
67          Ret = CI;
68          break;
69        }
70  }
71
72  // Create a new cast.
73  if (!Ret)
74    Ret = CastInst::Create(Op, V, Ty, V->getName(), IP);
75
76  // We assert at the end of the function since IP might point to an
77  // instruction with different dominance properties than a cast
78  // (an invoke for example) and not dominate BIP (but the cast does).
79  assert(SE.DT->dominates(Ret, BIP));
80
81  rememberInstruction(Ret);
82  return Ret;
83}
84
85/// InsertNoopCastOfTo - Insert a cast of V to the specified type,
86/// which must be possible with a noop cast, doing what we can to share
87/// the casts.
88Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
89  Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
90  assert((Op == Instruction::BitCast ||
91          Op == Instruction::PtrToInt ||
92          Op == Instruction::IntToPtr) &&
93         "InsertNoopCastOfTo cannot perform non-noop casts!");
94  assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
95         "InsertNoopCastOfTo cannot change sizes!");
96
97  // Short-circuit unnecessary bitcasts.
98  if (Op == Instruction::BitCast) {
99    if (V->getType() == Ty)
100      return V;
101    if (CastInst *CI = dyn_cast<CastInst>(V)) {
102      if (CI->getOperand(0)->getType() == Ty)
103        return CI->getOperand(0);
104    }
105  }
106  // Short-circuit unnecessary inttoptr<->ptrtoint casts.
107  if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
108      SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
109    if (CastInst *CI = dyn_cast<CastInst>(V))
110      if ((CI->getOpcode() == Instruction::PtrToInt ||
111           CI->getOpcode() == Instruction::IntToPtr) &&
112          SE.getTypeSizeInBits(CI->getType()) ==
113          SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
114        return CI->getOperand(0);
115    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
116      if ((CE->getOpcode() == Instruction::PtrToInt ||
117           CE->getOpcode() == Instruction::IntToPtr) &&
118          SE.getTypeSizeInBits(CE->getType()) ==
119          SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
120        return CE->getOperand(0);
121  }
122
123  // Fold a cast of a constant.
124  if (Constant *C = dyn_cast<Constant>(V))
125    return ConstantExpr::getCast(Op, C, Ty);
126
127  // Cast the argument at the beginning of the entry block, after
128  // any bitcasts of other arguments.
129  if (Argument *A = dyn_cast<Argument>(V)) {
130    BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
131    while ((isa<BitCastInst>(IP) &&
132            isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
133            cast<BitCastInst>(IP)->getOperand(0) != A) ||
134           isa<DbgInfoIntrinsic>(IP) ||
135           isa<LandingPadInst>(IP))
136      ++IP;
137    return ReuseOrCreateCast(A, Ty, Op, IP);
138  }
139
140  // Cast the instruction immediately after the instruction.
141  Instruction *I = cast<Instruction>(V);
142  BasicBlock::iterator IP = I; ++IP;
143  if (InvokeInst *II = dyn_cast<InvokeInst>(I))
144    IP = II->getNormalDest()->begin();
145  while (isa<PHINode>(IP) || isa<LandingPadInst>(IP))
146    ++IP;
147  return ReuseOrCreateCast(I, Ty, Op, IP);
148}
149
150/// InsertBinop - Insert the specified binary operator, doing a small amount
151/// of work to avoid inserting an obviously redundant operation.
152Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
153                                 Value *LHS, Value *RHS) {
154  // Fold a binop with constant operands.
155  if (Constant *CLHS = dyn_cast<Constant>(LHS))
156    if (Constant *CRHS = dyn_cast<Constant>(RHS))
157      return ConstantExpr::get(Opcode, CLHS, CRHS);
158
159  // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
160  unsigned ScanLimit = 6;
161  BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
162  // Scanning starts from the last instruction before the insertion point.
163  BasicBlock::iterator IP = Builder.GetInsertPoint();
164  if (IP != BlockBegin) {
165    --IP;
166    for (; ScanLimit; --IP, --ScanLimit) {
167      // Don't count dbg.value against the ScanLimit, to avoid perturbing the
168      // generated code.
169      if (isa<DbgInfoIntrinsic>(IP))
170        ScanLimit++;
171      if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
172          IP->getOperand(1) == RHS)
173        return IP;
174      if (IP == BlockBegin) break;
175    }
176  }
177
178  // Save the original insertion point so we can restore it when we're done.
179  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
180  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
181
182  // Move the insertion point out of as many loops as we can.
183  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
184    if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
185    BasicBlock *Preheader = L->getLoopPreheader();
186    if (!Preheader) break;
187
188    // Ok, move up a level.
189    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
190  }
191
192  // If we haven't found this binop, insert it.
193  Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
194  BO->setDebugLoc(SaveInsertPt->getDebugLoc());
195  rememberInstruction(BO);
196
197  // Restore the original insert point.
198  if (SaveInsertBB)
199    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
200
201  return BO;
202}
203
204/// FactorOutConstant - Test if S is divisible by Factor, using signed
205/// division. If so, update S with Factor divided out and return true.
206/// S need not be evenly divisible if a reasonable remainder can be
207/// computed.
208/// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
209/// unnecessary; in its place, just signed-divide Ops[i] by the scale and
210/// check to see if the divide was folded.
211static bool FactorOutConstant(const SCEV *&S,
212                              const SCEV *&Remainder,
213                              const SCEV *Factor,
214                              ScalarEvolution &SE,
215                              const DataLayout *TD) {
216  // Everything is divisible by one.
217  if (Factor->isOne())
218    return true;
219
220  // x/x == 1.
221  if (S == Factor) {
222    S = SE.getConstant(S->getType(), 1);
223    return true;
224  }
225
226  // For a Constant, check for a multiple of the given factor.
227  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
228    // 0/x == 0.
229    if (C->isZero())
230      return true;
231    // Check for divisibility.
232    if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
233      ConstantInt *CI =
234        ConstantInt::get(SE.getContext(),
235                         C->getValue()->getValue().sdiv(
236                                                   FC->getValue()->getValue()));
237      // If the quotient is zero and the remainder is non-zero, reject
238      // the value at this scale. It will be considered for subsequent
239      // smaller scales.
240      if (!CI->isZero()) {
241        const SCEV *Div = SE.getConstant(CI);
242        S = Div;
243        Remainder =
244          SE.getAddExpr(Remainder,
245                        SE.getConstant(C->getValue()->getValue().srem(
246                                                  FC->getValue()->getValue())));
247        return true;
248      }
249    }
250  }
251
252  // In a Mul, check if there is a constant operand which is a multiple
253  // of the given factor.
254  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
255    if (TD) {
256      // With DataLayout, the size is known. Check if there is a constant
257      // operand which is a multiple of the given factor. If so, we can
258      // factor it.
259      const SCEVConstant *FC = cast<SCEVConstant>(Factor);
260      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
261        if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
262          SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
263          NewMulOps[0] =
264            SE.getConstant(C->getValue()->getValue().sdiv(
265                                                   FC->getValue()->getValue()));
266          S = SE.getMulExpr(NewMulOps);
267          return true;
268        }
269    } else {
270      // Without DataLayout, check if Factor can be factored out of any of the
271      // Mul's operands. If so, we can just remove it.
272      for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
273        const SCEV *SOp = M->getOperand(i);
274        const SCEV *Remainder = SE.getConstant(SOp->getType(), 0);
275        if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
276            Remainder->isZero()) {
277          SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
278          NewMulOps[i] = SOp;
279          S = SE.getMulExpr(NewMulOps);
280          return true;
281        }
282      }
283    }
284  }
285
286  // In an AddRec, check if both start and step are divisible.
287  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
288    const SCEV *Step = A->getStepRecurrence(SE);
289    const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
290    if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
291      return false;
292    if (!StepRem->isZero())
293      return false;
294    const SCEV *Start = A->getStart();
295    if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
296      return false;
297    S = SE.getAddRecExpr(Start, Step, A->getLoop(),
298                         A->getNoWrapFlags(SCEV::FlagNW));
299    return true;
300  }
301
302  return false;
303}
304
305/// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
306/// is the number of SCEVAddRecExprs present, which are kept at the end of
307/// the list.
308///
309static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
310                                Type *Ty,
311                                ScalarEvolution &SE) {
312  unsigned NumAddRecs = 0;
313  for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
314    ++NumAddRecs;
315  // Group Ops into non-addrecs and addrecs.
316  SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
317  SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
318  // Let ScalarEvolution sort and simplify the non-addrecs list.
319  const SCEV *Sum = NoAddRecs.empty() ?
320                    SE.getConstant(Ty, 0) :
321                    SE.getAddExpr(NoAddRecs);
322  // If it returned an add, use the operands. Otherwise it simplified
323  // the sum into a single value, so just use that.
324  Ops.clear();
325  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
326    Ops.append(Add->op_begin(), Add->op_end());
327  else if (!Sum->isZero())
328    Ops.push_back(Sum);
329  // Then append the addrecs.
330  Ops.append(AddRecs.begin(), AddRecs.end());
331}
332
333/// SplitAddRecs - Flatten a list of add operands, moving addrec start values
334/// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
335/// This helps expose more opportunities for folding parts of the expressions
336/// into GEP indices.
337///
338static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
339                         Type *Ty,
340                         ScalarEvolution &SE) {
341  // Find the addrecs.
342  SmallVector<const SCEV *, 8> AddRecs;
343  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
344    while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
345      const SCEV *Start = A->getStart();
346      if (Start->isZero()) break;
347      const SCEV *Zero = SE.getConstant(Ty, 0);
348      AddRecs.push_back(SE.getAddRecExpr(Zero,
349                                         A->getStepRecurrence(SE),
350                                         A->getLoop(),
351                                         A->getNoWrapFlags(SCEV::FlagNW)));
352      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
353        Ops[i] = Zero;
354        Ops.append(Add->op_begin(), Add->op_end());
355        e += Add->getNumOperands();
356      } else {
357        Ops[i] = Start;
358      }
359    }
360  if (!AddRecs.empty()) {
361    // Add the addrecs onto the end of the list.
362    Ops.append(AddRecs.begin(), AddRecs.end());
363    // Resort the operand list, moving any constants to the front.
364    SimplifyAddOperands(Ops, Ty, SE);
365  }
366}
367
368/// expandAddToGEP - Expand an addition expression with a pointer type into
369/// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
370/// BasicAliasAnalysis and other passes analyze the result. See the rules
371/// for getelementptr vs. inttoptr in
372/// http://llvm.org/docs/LangRef.html#pointeraliasing
373/// for details.
374///
375/// Design note: The correctness of using getelementptr here depends on
376/// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
377/// they may introduce pointer arithmetic which may not be safely converted
378/// into getelementptr.
379///
380/// Design note: It might seem desirable for this function to be more
381/// loop-aware. If some of the indices are loop-invariant while others
382/// aren't, it might seem desirable to emit multiple GEPs, keeping the
383/// loop-invariant portions of the overall computation outside the loop.
384/// However, there are a few reasons this is not done here. Hoisting simple
385/// arithmetic is a low-level optimization that often isn't very
386/// important until late in the optimization process. In fact, passes
387/// like InstructionCombining will combine GEPs, even if it means
388/// pushing loop-invariant computation down into loops, so even if the
389/// GEPs were split here, the work would quickly be undone. The
390/// LoopStrengthReduction pass, which is usually run quite late (and
391/// after the last InstructionCombining pass), takes care of hoisting
392/// loop-invariant portions of expressions, after considering what
393/// can be folded using target addressing modes.
394///
395Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
396                                    const SCEV *const *op_end,
397                                    PointerType *PTy,
398                                    Type *Ty,
399                                    Value *V) {
400  Type *ElTy = PTy->getElementType();
401  SmallVector<Value *, 4> GepIndices;
402  SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
403  bool AnyNonZeroIndices = false;
404
405  // Split AddRecs up into parts as either of the parts may be usable
406  // without the other.
407  SplitAddRecs(Ops, Ty, SE);
408
409  // Descend down the pointer's type and attempt to convert the other
410  // operands into GEP indices, at each level. The first index in a GEP
411  // indexes into the array implied by the pointer operand; the rest of
412  // the indices index into the element or field type selected by the
413  // preceding index.
414  for (;;) {
415    // If the scale size is not 0, attempt to factor out a scale for
416    // array indexing.
417    SmallVector<const SCEV *, 8> ScaledOps;
418    if (ElTy->isSized()) {
419      const SCEV *ElSize = SE.getSizeOfExpr(ElTy);
420      if (!ElSize->isZero()) {
421        SmallVector<const SCEV *, 8> NewOps;
422        for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
423          const SCEV *Op = Ops[i];
424          const SCEV *Remainder = SE.getConstant(Ty, 0);
425          if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
426            // Op now has ElSize factored out.
427            ScaledOps.push_back(Op);
428            if (!Remainder->isZero())
429              NewOps.push_back(Remainder);
430            AnyNonZeroIndices = true;
431          } else {
432            // The operand was not divisible, so add it to the list of operands
433            // we'll scan next iteration.
434            NewOps.push_back(Ops[i]);
435          }
436        }
437        // If we made any changes, update Ops.
438        if (!ScaledOps.empty()) {
439          Ops = NewOps;
440          SimplifyAddOperands(Ops, Ty, SE);
441        }
442      }
443    }
444
445    // Record the scaled array index for this level of the type. If
446    // we didn't find any operands that could be factored, tentatively
447    // assume that element zero was selected (since the zero offset
448    // would obviously be folded away).
449    Value *Scaled = ScaledOps.empty() ?
450                    Constant::getNullValue(Ty) :
451                    expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
452    GepIndices.push_back(Scaled);
453
454    // Collect struct field index operands.
455    while (StructType *STy = dyn_cast<StructType>(ElTy)) {
456      bool FoundFieldNo = false;
457      // An empty struct has no fields.
458      if (STy->getNumElements() == 0) break;
459      if (SE.TD) {
460        // With DataLayout, field offsets are known. See if a constant offset
461        // falls within any of the struct fields.
462        if (Ops.empty()) break;
463        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
464          if (SE.getTypeSizeInBits(C->getType()) <= 64) {
465            const StructLayout &SL = *SE.TD->getStructLayout(STy);
466            uint64_t FullOffset = C->getValue()->getZExtValue();
467            if (FullOffset < SL.getSizeInBytes()) {
468              unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
469              GepIndices.push_back(
470                  ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
471              ElTy = STy->getTypeAtIndex(ElIdx);
472              Ops[0] =
473                SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
474              AnyNonZeroIndices = true;
475              FoundFieldNo = true;
476            }
477          }
478      } else {
479        // Without DataLayout, just check for an offsetof expression of the
480        // appropriate struct type.
481        for (unsigned i = 0, e = Ops.size(); i != e; ++i)
482          if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i])) {
483            Type *CTy;
484            Constant *FieldNo;
485            if (U->isOffsetOf(CTy, FieldNo) && CTy == STy) {
486              GepIndices.push_back(FieldNo);
487              ElTy =
488                STy->getTypeAtIndex(cast<ConstantInt>(FieldNo)->getZExtValue());
489              Ops[i] = SE.getConstant(Ty, 0);
490              AnyNonZeroIndices = true;
491              FoundFieldNo = true;
492              break;
493            }
494          }
495      }
496      // If no struct field offsets were found, tentatively assume that
497      // field zero was selected (since the zero offset would obviously
498      // be folded away).
499      if (!FoundFieldNo) {
500        ElTy = STy->getTypeAtIndex(0u);
501        GepIndices.push_back(
502          Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
503      }
504    }
505
506    if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
507      ElTy = ATy->getElementType();
508    else
509      break;
510  }
511
512  // If none of the operands were convertible to proper GEP indices, cast
513  // the base to i8* and do an ugly getelementptr with that. It's still
514  // better than ptrtoint+arithmetic+inttoptr at least.
515  if (!AnyNonZeroIndices) {
516    // Cast the base to i8*.
517    V = InsertNoopCastOfTo(V,
518       Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
519
520    assert(!isa<Instruction>(V) ||
521           SE.DT->dominates(cast<Instruction>(V), Builder.GetInsertPoint()));
522
523    // Expand the operands for a plain byte offset.
524    Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
525
526    // Fold a GEP with constant operands.
527    if (Constant *CLHS = dyn_cast<Constant>(V))
528      if (Constant *CRHS = dyn_cast<Constant>(Idx))
529        return ConstantExpr::getGetElementPtr(CLHS, CRHS);
530
531    // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
532    unsigned ScanLimit = 6;
533    BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
534    // Scanning starts from the last instruction before the insertion point.
535    BasicBlock::iterator IP = Builder.GetInsertPoint();
536    if (IP != BlockBegin) {
537      --IP;
538      for (; ScanLimit; --IP, --ScanLimit) {
539        // Don't count dbg.value against the ScanLimit, to avoid perturbing the
540        // generated code.
541        if (isa<DbgInfoIntrinsic>(IP))
542          ScanLimit++;
543        if (IP->getOpcode() == Instruction::GetElementPtr &&
544            IP->getOperand(0) == V && IP->getOperand(1) == Idx)
545          return IP;
546        if (IP == BlockBegin) break;
547      }
548    }
549
550    // Save the original insertion point so we can restore it when we're done.
551    BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
552    BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
553
554    // Move the insertion point out of as many loops as we can.
555    while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
556      if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
557      BasicBlock *Preheader = L->getLoopPreheader();
558      if (!Preheader) break;
559
560      // Ok, move up a level.
561      Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
562    }
563
564    // Emit a GEP.
565    Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
566    rememberInstruction(GEP);
567
568    // Restore the original insert point.
569    if (SaveInsertBB)
570      restoreInsertPoint(SaveInsertBB, SaveInsertPt);
571
572    return GEP;
573  }
574
575  // Save the original insertion point so we can restore it when we're done.
576  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
577  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
578
579  // Move the insertion point out of as many loops as we can.
580  while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
581    if (!L->isLoopInvariant(V)) break;
582
583    bool AnyIndexNotLoopInvariant = false;
584    for (SmallVectorImpl<Value *>::const_iterator I = GepIndices.begin(),
585         E = GepIndices.end(); I != E; ++I)
586      if (!L->isLoopInvariant(*I)) {
587        AnyIndexNotLoopInvariant = true;
588        break;
589      }
590    if (AnyIndexNotLoopInvariant)
591      break;
592
593    BasicBlock *Preheader = L->getLoopPreheader();
594    if (!Preheader) break;
595
596    // Ok, move up a level.
597    Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
598  }
599
600  // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
601  // because ScalarEvolution may have changed the address arithmetic to
602  // compute a value which is beyond the end of the allocated object.
603  Value *Casted = V;
604  if (V->getType() != PTy)
605    Casted = InsertNoopCastOfTo(Casted, PTy);
606  Value *GEP = Builder.CreateGEP(Casted,
607                                 GepIndices,
608                                 "scevgep");
609  Ops.push_back(SE.getUnknown(GEP));
610  rememberInstruction(GEP);
611
612  // Restore the original insert point.
613  if (SaveInsertBB)
614    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
615
616  return expand(SE.getAddExpr(Ops));
617}
618
619/// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
620/// SCEV expansion. If they are nested, this is the most nested. If they are
621/// neighboring, pick the later.
622static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
623                                        DominatorTree &DT) {
624  if (!A) return B;
625  if (!B) return A;
626  if (A->contains(B)) return B;
627  if (B->contains(A)) return A;
628  if (DT.dominates(A->getHeader(), B->getHeader())) return B;
629  if (DT.dominates(B->getHeader(), A->getHeader())) return A;
630  return A; // Arbitrarily break the tie.
631}
632
633/// getRelevantLoop - Get the most relevant loop associated with the given
634/// expression, according to PickMostRelevantLoop.
635const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
636  // Test whether we've already computed the most relevant loop for this SCEV.
637  std::pair<DenseMap<const SCEV *, const Loop *>::iterator, bool> Pair =
638    RelevantLoops.insert(std::make_pair(S, static_cast<const Loop *>(0)));
639  if (!Pair.second)
640    return Pair.first->second;
641
642  if (isa<SCEVConstant>(S))
643    // A constant has no relevant loops.
644    return 0;
645  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
646    if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
647      return Pair.first->second = SE.LI->getLoopFor(I->getParent());
648    // A non-instruction has no relevant loops.
649    return 0;
650  }
651  if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
652    const Loop *L = 0;
653    if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
654      L = AR->getLoop();
655    for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end();
656         I != E; ++I)
657      L = PickMostRelevantLoop(L, getRelevantLoop(*I), *SE.DT);
658    return RelevantLoops[N] = L;
659  }
660  if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
661    const Loop *Result = getRelevantLoop(C->getOperand());
662    return RelevantLoops[C] = Result;
663  }
664  if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
665    const Loop *Result =
666      PickMostRelevantLoop(getRelevantLoop(D->getLHS()),
667                           getRelevantLoop(D->getRHS()),
668                           *SE.DT);
669    return RelevantLoops[D] = Result;
670  }
671  llvm_unreachable("Unexpected SCEV type!");
672}
673
674namespace {
675
676/// LoopCompare - Compare loops by PickMostRelevantLoop.
677class LoopCompare {
678  DominatorTree &DT;
679public:
680  explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
681
682  bool operator()(std::pair<const Loop *, const SCEV *> LHS,
683                  std::pair<const Loop *, const SCEV *> RHS) const {
684    // Keep pointer operands sorted at the end.
685    if (LHS.second->getType()->isPointerTy() !=
686        RHS.second->getType()->isPointerTy())
687      return LHS.second->getType()->isPointerTy();
688
689    // Compare loops with PickMostRelevantLoop.
690    if (LHS.first != RHS.first)
691      return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
692
693    // If one operand is a non-constant negative and the other is not,
694    // put the non-constant negative on the right so that a sub can
695    // be used instead of a negate and add.
696    if (LHS.second->isNonConstantNegative()) {
697      if (!RHS.second->isNonConstantNegative())
698        return false;
699    } else if (RHS.second->isNonConstantNegative())
700      return true;
701
702    // Otherwise they are equivalent according to this comparison.
703    return false;
704  }
705};
706
707}
708
709Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
710  Type *Ty = SE.getEffectiveSCEVType(S->getType());
711
712  // Collect all the add operands in a loop, along with their associated loops.
713  // Iterate in reverse so that constants are emitted last, all else equal, and
714  // so that pointer operands are inserted first, which the code below relies on
715  // to form more involved GEPs.
716  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
717  for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
718       E(S->op_begin()); I != E; ++I)
719    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
720
721  // Sort by loop. Use a stable sort so that constants follow non-constants and
722  // pointer operands precede non-pointer operands.
723  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
724
725  // Emit instructions to add all the operands. Hoist as much as possible
726  // out of loops, and form meaningful getelementptrs where possible.
727  Value *Sum = 0;
728  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
729       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
730    const Loop *CurLoop = I->first;
731    const SCEV *Op = I->second;
732    if (!Sum) {
733      // This is the first operand. Just expand it.
734      Sum = expand(Op);
735      ++I;
736    } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
737      // The running sum expression is a pointer. Try to form a getelementptr
738      // at this level with that as the base.
739      SmallVector<const SCEV *, 4> NewOps;
740      for (; I != E && I->first == CurLoop; ++I) {
741        // If the operand is SCEVUnknown and not instructions, peek through
742        // it, to enable more of it to be folded into the GEP.
743        const SCEV *X = I->second;
744        if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
745          if (!isa<Instruction>(U->getValue()))
746            X = SE.getSCEV(U->getValue());
747        NewOps.push_back(X);
748      }
749      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
750    } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
751      // The running sum is an integer, and there's a pointer at this level.
752      // Try to form a getelementptr. If the running sum is instructions,
753      // use a SCEVUnknown to avoid re-analyzing them.
754      SmallVector<const SCEV *, 4> NewOps;
755      NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
756                                               SE.getSCEV(Sum));
757      for (++I; I != E && I->first == CurLoop; ++I)
758        NewOps.push_back(I->second);
759      Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
760    } else if (Op->isNonConstantNegative()) {
761      // Instead of doing a negate and add, just do a subtract.
762      Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
763      Sum = InsertNoopCastOfTo(Sum, Ty);
764      Sum = InsertBinop(Instruction::Sub, Sum, W);
765      ++I;
766    } else {
767      // A simple add.
768      Value *W = expandCodeFor(Op, Ty);
769      Sum = InsertNoopCastOfTo(Sum, Ty);
770      // Canonicalize a constant to the RHS.
771      if (isa<Constant>(Sum)) std::swap(Sum, W);
772      Sum = InsertBinop(Instruction::Add, Sum, W);
773      ++I;
774    }
775  }
776
777  return Sum;
778}
779
780Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
781  Type *Ty = SE.getEffectiveSCEVType(S->getType());
782
783  // Collect all the mul operands in a loop, along with their associated loops.
784  // Iterate in reverse so that constants are emitted last, all else equal.
785  SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
786  for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
787       E(S->op_begin()); I != E; ++I)
788    OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
789
790  // Sort by loop. Use a stable sort so that constants follow non-constants.
791  std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
792
793  // Emit instructions to mul all the operands. Hoist as much as possible
794  // out of loops.
795  Value *Prod = 0;
796  for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
797       I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
798    const SCEV *Op = I->second;
799    if (!Prod) {
800      // This is the first operand. Just expand it.
801      Prod = expand(Op);
802      ++I;
803    } else if (Op->isAllOnesValue()) {
804      // Instead of doing a multiply by negative one, just do a negate.
805      Prod = InsertNoopCastOfTo(Prod, Ty);
806      Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
807      ++I;
808    } else {
809      // A simple mul.
810      Value *W = expandCodeFor(Op, Ty);
811      Prod = InsertNoopCastOfTo(Prod, Ty);
812      // Canonicalize a constant to the RHS.
813      if (isa<Constant>(Prod)) std::swap(Prod, W);
814      Prod = InsertBinop(Instruction::Mul, Prod, W);
815      ++I;
816    }
817  }
818
819  return Prod;
820}
821
822Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
823  Type *Ty = SE.getEffectiveSCEVType(S->getType());
824
825  Value *LHS = expandCodeFor(S->getLHS(), Ty);
826  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
827    const APInt &RHS = SC->getValue()->getValue();
828    if (RHS.isPowerOf2())
829      return InsertBinop(Instruction::LShr, LHS,
830                         ConstantInt::get(Ty, RHS.logBase2()));
831  }
832
833  Value *RHS = expandCodeFor(S->getRHS(), Ty);
834  return InsertBinop(Instruction::UDiv, LHS, RHS);
835}
836
837/// Move parts of Base into Rest to leave Base with the minimal
838/// expression that provides a pointer operand suitable for a
839/// GEP expansion.
840static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
841                              ScalarEvolution &SE) {
842  while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
843    Base = A->getStart();
844    Rest = SE.getAddExpr(Rest,
845                         SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
846                                          A->getStepRecurrence(SE),
847                                          A->getLoop(),
848                                          A->getNoWrapFlags(SCEV::FlagNW)));
849  }
850  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
851    Base = A->getOperand(A->getNumOperands()-1);
852    SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
853    NewAddOps.back() = Rest;
854    Rest = SE.getAddExpr(NewAddOps);
855    ExposePointerBase(Base, Rest, SE);
856  }
857}
858
859/// Determine if this is a well-behaved chain of instructions leading back to
860/// the PHI. If so, it may be reused by expanded expressions.
861bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
862                                         const Loop *L) {
863  if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
864      (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
865    return false;
866  // If any of the operands don't dominate the insert position, bail.
867  // Addrec operands are always loop-invariant, so this can only happen
868  // if there are instructions which haven't been hoisted.
869  if (L == IVIncInsertLoop) {
870    for (User::op_iterator OI = IncV->op_begin()+1,
871           OE = IncV->op_end(); OI != OE; ++OI)
872      if (Instruction *OInst = dyn_cast<Instruction>(OI))
873        if (!SE.DT->dominates(OInst, IVIncInsertPos))
874          return false;
875  }
876  // Advance to the next instruction.
877  IncV = dyn_cast<Instruction>(IncV->getOperand(0));
878  if (!IncV)
879    return false;
880
881  if (IncV->mayHaveSideEffects())
882    return false;
883
884  if (IncV != PN)
885    return true;
886
887  return isNormalAddRecExprPHI(PN, IncV, L);
888}
889
890/// getIVIncOperand returns an induction variable increment's induction
891/// variable operand.
892///
893/// If allowScale is set, any type of GEP is allowed as long as the nonIV
894/// operands dominate InsertPos.
895///
896/// If allowScale is not set, ensure that a GEP increment conforms to one of the
897/// simple patterns generated by getAddRecExprPHILiterally and
898/// expandAddtoGEP. If the pattern isn't recognized, return NULL.
899Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
900                                           Instruction *InsertPos,
901                                           bool allowScale) {
902  if (IncV == InsertPos)
903    return NULL;
904
905  switch (IncV->getOpcode()) {
906  default:
907    return NULL;
908  // Check for a simple Add/Sub or GEP of a loop invariant step.
909  case Instruction::Add:
910  case Instruction::Sub: {
911    Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
912    if (!OInst || SE.DT->dominates(OInst, InsertPos))
913      return dyn_cast<Instruction>(IncV->getOperand(0));
914    return NULL;
915  }
916  case Instruction::BitCast:
917    return dyn_cast<Instruction>(IncV->getOperand(0));
918  case Instruction::GetElementPtr:
919    for (Instruction::op_iterator I = IncV->op_begin()+1, E = IncV->op_end();
920         I != E; ++I) {
921      if (isa<Constant>(*I))
922        continue;
923      if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
924        if (!SE.DT->dominates(OInst, InsertPos))
925          return NULL;
926      }
927      if (allowScale) {
928        // allow any kind of GEP as long as it can be hoisted.
929        continue;
930      }
931      // This must be a pointer addition of constants (pretty), which is already
932      // handled, or some number of address-size elements (ugly). Ugly geps
933      // have 2 operands. i1* is used by the expander to represent an
934      // address-size element.
935      if (IncV->getNumOperands() != 2)
936        return NULL;
937      unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
938      if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
939          && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
940        return NULL;
941      break;
942    }
943    return dyn_cast<Instruction>(IncV->getOperand(0));
944  }
945}
946
947/// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
948/// it available to other uses in this loop. Recursively hoist any operands,
949/// until we reach a value that dominates InsertPos.
950bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
951  if (SE.DT->dominates(IncV, InsertPos))
952      return true;
953
954  // InsertPos must itself dominate IncV so that IncV's new position satisfies
955  // its existing users.
956  if (isa<PHINode>(InsertPos)
957      || !SE.DT->dominates(InsertPos->getParent(), IncV->getParent()))
958    return false;
959
960  // Check that the chain of IV operands leading back to Phi can be hoisted.
961  SmallVector<Instruction*, 4> IVIncs;
962  for(;;) {
963    Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
964    if (!Oper)
965      return false;
966    // IncV is safe to hoist.
967    IVIncs.push_back(IncV);
968    IncV = Oper;
969    if (SE.DT->dominates(IncV, InsertPos))
970      break;
971  }
972  for (SmallVectorImpl<Instruction*>::reverse_iterator I = IVIncs.rbegin(),
973         E = IVIncs.rend(); I != E; ++I) {
974    (*I)->moveBefore(InsertPos);
975  }
976  return true;
977}
978
979/// Determine if this cyclic phi is in a form that would have been generated by
980/// LSR. We don't care if the phi was actually expanded in this pass, as long
981/// as it is in a low-cost form, for example, no implied multiplication. This
982/// should match any patterns generated by getAddRecExprPHILiterally and
983/// expandAddtoGEP.
984bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
985                                           const Loop *L) {
986  for(Instruction *IVOper = IncV;
987      (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
988                                /*allowScale=*/false));) {
989    if (IVOper == PN)
990      return true;
991  }
992  return false;
993}
994
995/// expandIVInc - Expand an IV increment at Builder's current InsertPos.
996/// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
997/// need to materialize IV increments elsewhere to handle difficult situations.
998Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
999                                 Type *ExpandTy, Type *IntTy,
1000                                 bool useSubtract) {
1001  Value *IncV;
1002  // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
1003  if (ExpandTy->isPointerTy()) {
1004    PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
1005    // If the step isn't constant, don't use an implicitly scaled GEP, because
1006    // that would require a multiply inside the loop.
1007    if (!isa<ConstantInt>(StepV))
1008      GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
1009                                  GEPPtrTy->getAddressSpace());
1010    const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
1011    IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
1012    if (IncV->getType() != PN->getType()) {
1013      IncV = Builder.CreateBitCast(IncV, PN->getType());
1014      rememberInstruction(IncV);
1015    }
1016  } else {
1017    IncV = useSubtract ?
1018      Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
1019      Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
1020    rememberInstruction(IncV);
1021  }
1022  return IncV;
1023}
1024
1025/// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1026/// the base addrec, which is the addrec without any non-loop-dominating
1027/// values, and return the PHI.
1028PHINode *
1029SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
1030                                        const Loop *L,
1031                                        Type *ExpandTy,
1032                                        Type *IntTy) {
1033  assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
1034
1035  // Reuse a previously-inserted PHI, if present.
1036  BasicBlock *LatchBlock = L->getLoopLatch();
1037  if (LatchBlock) {
1038    for (BasicBlock::iterator I = L->getHeader()->begin();
1039         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1040      if (!SE.isSCEVable(PN->getType()) ||
1041          (SE.getEffectiveSCEVType(PN->getType()) !=
1042           SE.getEffectiveSCEVType(Normalized->getType())) ||
1043          SE.getSCEV(PN) != Normalized)
1044        continue;
1045
1046      Instruction *IncV =
1047        cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
1048
1049      if (LSRMode) {
1050        if (!isExpandedAddRecExprPHI(PN, IncV, L))
1051          continue;
1052        if (L == IVIncInsertLoop && !hoistIVInc(IncV, IVIncInsertPos))
1053          continue;
1054      }
1055      else {
1056        if (!isNormalAddRecExprPHI(PN, IncV, L))
1057          continue;
1058        if (L == IVIncInsertLoop)
1059          do {
1060            if (SE.DT->dominates(IncV, IVIncInsertPos))
1061              break;
1062            // Make sure the increment is where we want it. But don't move it
1063            // down past a potential existing post-inc user.
1064            IncV->moveBefore(IVIncInsertPos);
1065            IVIncInsertPos = IncV;
1066            IncV = cast<Instruction>(IncV->getOperand(0));
1067          } while (IncV != PN);
1068      }
1069      // Ok, the add recurrence looks usable.
1070      // Remember this PHI, even in post-inc mode.
1071      InsertedValues.insert(PN);
1072      // Remember the increment.
1073      rememberInstruction(IncV);
1074      return PN;
1075    }
1076  }
1077
1078  // Save the original insertion point so we can restore it when we're done.
1079  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1080  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1081
1082  // Another AddRec may need to be recursively expanded below. For example, if
1083  // this AddRec is quadratic, the StepV may itself be an AddRec in this
1084  // loop. Remove this loop from the PostIncLoops set before expanding such
1085  // AddRecs. Otherwise, we cannot find a valid position for the step
1086  // (i.e. StepV can never dominate its loop header).  Ideally, we could do
1087  // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1088  // so it's not worth implementing SmallPtrSet::swap.
1089  PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1090  PostIncLoops.clear();
1091
1092  // Expand code for the start value.
1093  Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
1094                                L->getHeader()->begin());
1095
1096  // StartV must be hoisted into L's preheader to dominate the new phi.
1097  assert(!isa<Instruction>(StartV) ||
1098         SE.DT->properlyDominates(cast<Instruction>(StartV)->getParent(),
1099                                  L->getHeader()));
1100
1101  // Expand code for the step value. Do this before creating the PHI so that PHI
1102  // reuse code doesn't see an incomplete PHI.
1103  const SCEV *Step = Normalized->getStepRecurrence(SE);
1104  // If the stride is negative, insert a sub instead of an add for the increment
1105  // (unless it's a constant, because subtracts of constants are canonicalized
1106  // to adds).
1107  bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1108  if (useSubtract)
1109    Step = SE.getNegativeSCEV(Step);
1110  // Expand the step somewhere that dominates the loop header.
1111  Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
1112
1113  // Create the PHI.
1114  BasicBlock *Header = L->getHeader();
1115  Builder.SetInsertPoint(Header, Header->begin());
1116  pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1117  PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1118                                  Twine(IVName) + ".iv");
1119  rememberInstruction(PN);
1120
1121  // Create the step instructions and populate the PHI.
1122  for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1123    BasicBlock *Pred = *HPI;
1124
1125    // Add a start value.
1126    if (!L->contains(Pred)) {
1127      PN->addIncoming(StartV, Pred);
1128      continue;
1129    }
1130
1131    // Create a step value and add it to the PHI.
1132    // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1133    // instructions at IVIncInsertPos.
1134    Instruction *InsertPos = L == IVIncInsertLoop ?
1135      IVIncInsertPos : Pred->getTerminator();
1136    Builder.SetInsertPoint(InsertPos);
1137    Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1138    if (isa<OverflowingBinaryOperator>(IncV)) {
1139      if (Normalized->getNoWrapFlags(SCEV::FlagNUW))
1140        cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1141      if (Normalized->getNoWrapFlags(SCEV::FlagNSW))
1142        cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1143    }
1144    PN->addIncoming(IncV, Pred);
1145  }
1146
1147  // Restore the original insert point.
1148  if (SaveInsertBB)
1149    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1150
1151  // After expanding subexpressions, restore the PostIncLoops set so the caller
1152  // can ensure that IVIncrement dominates the current uses.
1153  PostIncLoops = SavedPostIncLoops;
1154
1155  // Remember this PHI, even in post-inc mode.
1156  InsertedValues.insert(PN);
1157
1158  return PN;
1159}
1160
1161Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1162  Type *STy = S->getType();
1163  Type *IntTy = SE.getEffectiveSCEVType(STy);
1164  const Loop *L = S->getLoop();
1165
1166  // Determine a normalized form of this expression, which is the expression
1167  // before any post-inc adjustment is made.
1168  const SCEVAddRecExpr *Normalized = S;
1169  if (PostIncLoops.count(L)) {
1170    PostIncLoopSet Loops;
1171    Loops.insert(L);
1172    Normalized =
1173      cast<SCEVAddRecExpr>(TransformForPostIncUse(Normalize, S, 0, 0,
1174                                                  Loops, SE, *SE.DT));
1175  }
1176
1177  // Strip off any non-loop-dominating component from the addrec start.
1178  const SCEV *Start = Normalized->getStart();
1179  const SCEV *PostLoopOffset = 0;
1180  if (!SE.properlyDominates(Start, L->getHeader())) {
1181    PostLoopOffset = Start;
1182    Start = SE.getConstant(Normalized->getType(), 0);
1183    Normalized = cast<SCEVAddRecExpr>(
1184      SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1185                       Normalized->getLoop(),
1186                       Normalized->getNoWrapFlags(SCEV::FlagNW)));
1187  }
1188
1189  // Strip off any non-loop-dominating component from the addrec step.
1190  const SCEV *Step = Normalized->getStepRecurrence(SE);
1191  const SCEV *PostLoopScale = 0;
1192  if (!SE.dominates(Step, L->getHeader())) {
1193    PostLoopScale = Step;
1194    Step = SE.getConstant(Normalized->getType(), 1);
1195    Normalized =
1196      cast<SCEVAddRecExpr>(SE.getAddRecExpr(
1197                             Start, Step, Normalized->getLoop(),
1198                             Normalized->getNoWrapFlags(SCEV::FlagNW)));
1199  }
1200
1201  // Expand the core addrec. If we need post-loop scaling, force it to
1202  // expand to an integer type to avoid the need for additional casting.
1203  Type *ExpandTy = PostLoopScale ? IntTy : STy;
1204  PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy);
1205
1206  // Accommodate post-inc mode, if necessary.
1207  Value *Result;
1208  if (!PostIncLoops.count(L))
1209    Result = PN;
1210  else {
1211    // In PostInc mode, use the post-incremented value.
1212    BasicBlock *LatchBlock = L->getLoopLatch();
1213    assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1214    Result = PN->getIncomingValueForBlock(LatchBlock);
1215
1216    // For an expansion to use the postinc form, the client must call
1217    // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1218    // or dominated by IVIncInsertPos.
1219    if (isa<Instruction>(Result)
1220        && !SE.DT->dominates(cast<Instruction>(Result),
1221                             Builder.GetInsertPoint())) {
1222      // The induction variable's postinc expansion does not dominate this use.
1223      // IVUsers tries to prevent this case, so it is rare. However, it can
1224      // happen when an IVUser outside the loop is not dominated by the latch
1225      // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1226      // all cases. Consider a phi outide whose operand is replaced during
1227      // expansion with the value of the postinc user. Without fundamentally
1228      // changing the way postinc users are tracked, the only remedy is
1229      // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1230      // but hopefully expandCodeFor handles that.
1231      bool useSubtract =
1232        !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1233      if (useSubtract)
1234        Step = SE.getNegativeSCEV(Step);
1235      // Expand the step somewhere that dominates the loop header.
1236      BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1237      BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1238      Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
1239      // Restore the insertion point to the place where the caller has
1240      // determined dominates all uses.
1241      restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1242      Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1243    }
1244  }
1245
1246  // Re-apply any non-loop-dominating scale.
1247  if (PostLoopScale) {
1248    Result = InsertNoopCastOfTo(Result, IntTy);
1249    Result = Builder.CreateMul(Result,
1250                               expandCodeFor(PostLoopScale, IntTy));
1251    rememberInstruction(Result);
1252  }
1253
1254  // Re-apply any non-loop-dominating offset.
1255  if (PostLoopOffset) {
1256    if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1257      const SCEV *const OffsetArray[1] = { PostLoopOffset };
1258      Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
1259    } else {
1260      Result = InsertNoopCastOfTo(Result, IntTy);
1261      Result = Builder.CreateAdd(Result,
1262                                 expandCodeFor(PostLoopOffset, IntTy));
1263      rememberInstruction(Result);
1264    }
1265  }
1266
1267  return Result;
1268}
1269
1270Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1271  if (!CanonicalMode) return expandAddRecExprLiterally(S);
1272
1273  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1274  const Loop *L = S->getLoop();
1275
1276  // First check for an existing canonical IV in a suitable type.
1277  PHINode *CanonicalIV = 0;
1278  if (PHINode *PN = L->getCanonicalInductionVariable())
1279    if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1280      CanonicalIV = PN;
1281
1282  // Rewrite an AddRec in terms of the canonical induction variable, if
1283  // its type is more narrow.
1284  if (CanonicalIV &&
1285      SE.getTypeSizeInBits(CanonicalIV->getType()) >
1286      SE.getTypeSizeInBits(Ty)) {
1287    SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1288    for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1289      NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1290    Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1291                                       S->getNoWrapFlags(SCEV::FlagNW)));
1292    BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1293    BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1294    BasicBlock::iterator NewInsertPt =
1295      llvm::next(BasicBlock::iterator(cast<Instruction>(V)));
1296    while (isa<PHINode>(NewInsertPt) || isa<DbgInfoIntrinsic>(NewInsertPt) ||
1297           isa<LandingPadInst>(NewInsertPt))
1298      ++NewInsertPt;
1299    V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
1300                      NewInsertPt);
1301    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1302    return V;
1303  }
1304
1305  // {X,+,F} --> X + {0,+,F}
1306  if (!S->getStart()->isZero()) {
1307    SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
1308    NewOps[0] = SE.getConstant(Ty, 0);
1309    const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1310                                        S->getNoWrapFlags(SCEV::FlagNW));
1311
1312    // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1313    // comments on expandAddToGEP for details.
1314    const SCEV *Base = S->getStart();
1315    const SCEV *RestArray[1] = { Rest };
1316    // Dig into the expression to find the pointer base for a GEP.
1317    ExposePointerBase(Base, RestArray[0], SE);
1318    // If we found a pointer, expand the AddRec with a GEP.
1319    if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1320      // Make sure the Base isn't something exotic, such as a multiplied
1321      // or divided pointer value. In those cases, the result type isn't
1322      // actually a pointer type.
1323      if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1324        Value *StartV = expand(Base);
1325        assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1326        return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
1327      }
1328    }
1329
1330    // Just do a normal add. Pre-expand the operands to suppress folding.
1331    return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
1332                                SE.getUnknown(expand(Rest))));
1333  }
1334
1335  // If we don't yet have a canonical IV, create one.
1336  if (!CanonicalIV) {
1337    // Create and insert the PHI node for the induction variable in the
1338    // specified loop.
1339    BasicBlock *Header = L->getHeader();
1340    pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1341    CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1342                                  Header->begin());
1343    rememberInstruction(CanonicalIV);
1344
1345    Constant *One = ConstantInt::get(Ty, 1);
1346    for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1347      BasicBlock *HP = *HPI;
1348      if (L->contains(HP)) {
1349        // Insert a unit add instruction right before the terminator
1350        // corresponding to the back-edge.
1351        Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1352                                                     "indvar.next",
1353                                                     HP->getTerminator());
1354        Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1355        rememberInstruction(Add);
1356        CanonicalIV->addIncoming(Add, HP);
1357      } else {
1358        CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1359      }
1360    }
1361  }
1362
1363  // {0,+,1} --> Insert a canonical induction variable into the loop!
1364  if (S->isAffine() && S->getOperand(1)->isOne()) {
1365    assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1366           "IVs with types different from the canonical IV should "
1367           "already have been handled!");
1368    return CanonicalIV;
1369  }
1370
1371  // {0,+,F} --> {0,+,1} * F
1372
1373  // If this is a simple linear addrec, emit it now as a special case.
1374  if (S->isAffine())    // {0,+,F} --> i*F
1375    return
1376      expand(SE.getTruncateOrNoop(
1377        SE.getMulExpr(SE.getUnknown(CanonicalIV),
1378                      SE.getNoopOrAnyExtend(S->getOperand(1),
1379                                            CanonicalIV->getType())),
1380        Ty));
1381
1382  // If this is a chain of recurrences, turn it into a closed form, using the
1383  // folders, then expandCodeFor the closed form.  This allows the folders to
1384  // simplify the expression without having to build a bunch of special code
1385  // into this folder.
1386  const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1387
1388  // Promote S up to the canonical IV type, if the cast is foldable.
1389  const SCEV *NewS = S;
1390  const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1391  if (isa<SCEVAddRecExpr>(Ext))
1392    NewS = Ext;
1393
1394  const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1395  //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1396
1397  // Truncate the result down to the original type, if needed.
1398  const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1399  return expand(T);
1400}
1401
1402Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1403  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1404  Value *V = expandCodeFor(S->getOperand(),
1405                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1406  Value *I = Builder.CreateTrunc(V, Ty);
1407  rememberInstruction(I);
1408  return I;
1409}
1410
1411Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1412  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1413  Value *V = expandCodeFor(S->getOperand(),
1414                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1415  Value *I = Builder.CreateZExt(V, Ty);
1416  rememberInstruction(I);
1417  return I;
1418}
1419
1420Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1421  Type *Ty = SE.getEffectiveSCEVType(S->getType());
1422  Value *V = expandCodeFor(S->getOperand(),
1423                           SE.getEffectiveSCEVType(S->getOperand()->getType()));
1424  Value *I = Builder.CreateSExt(V, Ty);
1425  rememberInstruction(I);
1426  return I;
1427}
1428
1429Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1430  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1431  Type *Ty = LHS->getType();
1432  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1433    // In the case of mixed integer and pointer types, do the
1434    // rest of the comparisons as integer.
1435    if (S->getOperand(i)->getType() != Ty) {
1436      Ty = SE.getEffectiveSCEVType(Ty);
1437      LHS = InsertNoopCastOfTo(LHS, Ty);
1438    }
1439    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1440    Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1441    rememberInstruction(ICmp);
1442    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1443    rememberInstruction(Sel);
1444    LHS = Sel;
1445  }
1446  // In the case of mixed integer and pointer types, cast the
1447  // final result back to the pointer type.
1448  if (LHS->getType() != S->getType())
1449    LHS = InsertNoopCastOfTo(LHS, S->getType());
1450  return LHS;
1451}
1452
1453Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1454  Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1455  Type *Ty = LHS->getType();
1456  for (int i = S->getNumOperands()-2; i >= 0; --i) {
1457    // In the case of mixed integer and pointer types, do the
1458    // rest of the comparisons as integer.
1459    if (S->getOperand(i)->getType() != Ty) {
1460      Ty = SE.getEffectiveSCEVType(Ty);
1461      LHS = InsertNoopCastOfTo(LHS, Ty);
1462    }
1463    Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1464    Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1465    rememberInstruction(ICmp);
1466    Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1467    rememberInstruction(Sel);
1468    LHS = Sel;
1469  }
1470  // In the case of mixed integer and pointer types, cast the
1471  // final result back to the pointer type.
1472  if (LHS->getType() != S->getType())
1473    LHS = InsertNoopCastOfTo(LHS, S->getType());
1474  return LHS;
1475}
1476
1477Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
1478                                   Instruction *IP) {
1479  Builder.SetInsertPoint(IP->getParent(), IP);
1480  return expandCodeFor(SH, Ty);
1481}
1482
1483Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
1484  // Expand the code for this SCEV.
1485  Value *V = expand(SH);
1486  if (Ty) {
1487    assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1488           "non-trivial casts should be done with the SCEVs directly!");
1489    V = InsertNoopCastOfTo(V, Ty);
1490  }
1491  return V;
1492}
1493
1494Value *SCEVExpander::expand(const SCEV *S) {
1495  // Compute an insertion point for this SCEV object. Hoist the instructions
1496  // as far out in the loop nest as possible.
1497  Instruction *InsertPt = Builder.GetInsertPoint();
1498  for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
1499       L = L->getParentLoop())
1500    if (SE.isLoopInvariant(S, L)) {
1501      if (!L) break;
1502      if (BasicBlock *Preheader = L->getLoopPreheader())
1503        InsertPt = Preheader->getTerminator();
1504      else {
1505        // LSR sets the insertion point for AddRec start/step values to the
1506        // block start to simplify value reuse, even though it's an invalid
1507        // position. SCEVExpander must correct for this in all cases.
1508        InsertPt = L->getHeader()->getFirstInsertionPt();
1509      }
1510    } else {
1511      // If the SCEV is computable at this level, insert it into the header
1512      // after the PHIs (and after any other instructions that we've inserted
1513      // there) so that it is guaranteed to dominate any user inside the loop.
1514      if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1515        InsertPt = L->getHeader()->getFirstInsertionPt();
1516      while (InsertPt != Builder.GetInsertPoint()
1517             && (isInsertedInstruction(InsertPt)
1518                 || isa<DbgInfoIntrinsic>(InsertPt))) {
1519        InsertPt = llvm::next(BasicBlock::iterator(InsertPt));
1520      }
1521      break;
1522    }
1523
1524  // Check to see if we already expanded this here.
1525  std::map<std::pair<const SCEV *, Instruction *>, TrackingVH<Value> >::iterator
1526    I = InsertedExpressions.find(std::make_pair(S, InsertPt));
1527  if (I != InsertedExpressions.end())
1528    return I->second;
1529
1530  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1531  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1532  Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
1533
1534  // Expand the expression into instructions.
1535  Value *V = visit(S);
1536
1537  // Remember the expanded value for this SCEV at this location.
1538  //
1539  // This is independent of PostIncLoops. The mapped value simply materializes
1540  // the expression at this insertion point. If the mapped value happened to be
1541  // a postinc expansion, it could be reused by a non postinc user, but only if
1542  // its insertion point was already at the head of the loop.
1543  InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1544
1545  restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1546  return V;
1547}
1548
1549void SCEVExpander::rememberInstruction(Value *I) {
1550  if (!PostIncLoops.empty())
1551    InsertedPostIncValues.insert(I);
1552  else
1553    InsertedValues.insert(I);
1554}
1555
1556void SCEVExpander::restoreInsertPoint(BasicBlock *BB, BasicBlock::iterator I) {
1557  Builder.SetInsertPoint(BB, I);
1558}
1559
1560/// getOrInsertCanonicalInductionVariable - This method returns the
1561/// canonical induction variable of the specified type for the specified
1562/// loop (inserting one if there is none).  A canonical induction variable
1563/// starts at zero and steps by one on each iteration.
1564PHINode *
1565SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
1566                                                    Type *Ty) {
1567  assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
1568
1569  // Build a SCEV for {0,+,1}<L>.
1570  // Conservatively use FlagAnyWrap for now.
1571  const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
1572                                   SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
1573
1574  // Emit code for it.
1575  BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1576  BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1577  PHINode *V = cast<PHINode>(expandCodeFor(H, 0, L->getHeader()->begin()));
1578  if (SaveInsertBB)
1579    restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1580
1581  return V;
1582}
1583
1584/// Sort values by integer width for replaceCongruentIVs.
1585static bool width_descending(Value *lhs, Value *rhs) {
1586  // Put pointers at the back and make sure pointer < pointer = false.
1587  if (!lhs->getType()->isIntegerTy() || !rhs->getType()->isIntegerTy())
1588    return rhs->getType()->isIntegerTy() && !lhs->getType()->isIntegerTy();
1589  return rhs->getType()->getPrimitiveSizeInBits()
1590    < lhs->getType()->getPrimitiveSizeInBits();
1591}
1592
1593/// replaceCongruentIVs - Check for congruent phis in this loop header and
1594/// replace them with their most canonical representative. Return the number of
1595/// phis eliminated.
1596///
1597/// This does not depend on any SCEVExpander state but should be used in
1598/// the same context that SCEVExpander is used.
1599unsigned SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
1600                                           SmallVectorImpl<WeakVH> &DeadInsts,
1601                                           const TargetTransformInfo *TTI) {
1602  // Find integer phis in order of increasing width.
1603  SmallVector<PHINode*, 8> Phis;
1604  for (BasicBlock::iterator I = L->getHeader()->begin();
1605       PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
1606    Phis.push_back(Phi);
1607  }
1608  if (TTI)
1609    std::sort(Phis.begin(), Phis.end(), width_descending);
1610
1611  unsigned NumElim = 0;
1612  DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1613  // Process phis from wide to narrow. Mapping wide phis to the their truncation
1614  // so narrow phis can reuse them.
1615  for (SmallVectorImpl<PHINode*>::const_iterator PIter = Phis.begin(),
1616         PEnd = Phis.end(); PIter != PEnd; ++PIter) {
1617    PHINode *Phi = *PIter;
1618
1619    // Fold constant phis. They may be congruent to other constant phis and
1620    // would confuse the logic below that expects proper IVs.
1621    if (Value *V = Phi->hasConstantValue()) {
1622      Phi->replaceAllUsesWith(V);
1623      DeadInsts.push_back(Phi);
1624      ++NumElim;
1625      DEBUG_WITH_TYPE(DebugType, dbgs()
1626                      << "INDVARS: Eliminated constant iv: " << *Phi << '\n');
1627      continue;
1628    }
1629
1630    if (!SE.isSCEVable(Phi->getType()))
1631      continue;
1632
1633    PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
1634    if (!OrigPhiRef) {
1635      OrigPhiRef = Phi;
1636      if (Phi->getType()->isIntegerTy() && TTI
1637          && TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
1638        // This phi can be freely truncated to the narrowest phi type. Map the
1639        // truncated expression to it so it will be reused for narrow types.
1640        const SCEV *TruncExpr =
1641          SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
1642        ExprToIVMap[TruncExpr] = Phi;
1643      }
1644      continue;
1645    }
1646
1647    // Replacing a pointer phi with an integer phi or vice-versa doesn't make
1648    // sense.
1649    if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
1650      continue;
1651
1652    if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1653      Instruction *OrigInc =
1654        cast<Instruction>(OrigPhiRef->getIncomingValueForBlock(LatchBlock));
1655      Instruction *IsomorphicInc =
1656        cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1657
1658      // If this phi has the same width but is more canonical, replace the
1659      // original with it. As part of the "more canonical" determination,
1660      // respect a prior decision to use an IV chain.
1661      if (OrigPhiRef->getType() == Phi->getType()
1662          && !(ChainedPhis.count(Phi)
1663               || isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L))
1664          && (ChainedPhis.count(Phi)
1665              || isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
1666        std::swap(OrigPhiRef, Phi);
1667        std::swap(OrigInc, IsomorphicInc);
1668      }
1669      // Replacing the congruent phi is sufficient because acyclic redundancy
1670      // elimination, CSE/GVN, should handle the rest. However, once SCEV proves
1671      // that a phi is congruent, it's often the head of an IV user cycle that
1672      // is isomorphic with the original phi. It's worth eagerly cleaning up the
1673      // common case of a single IV increment so that DeleteDeadPHIs can remove
1674      // cycles that had postinc uses.
1675      const SCEV *TruncExpr = SE.getTruncateOrNoop(SE.getSCEV(OrigInc),
1676                                                   IsomorphicInc->getType());
1677      if (OrigInc != IsomorphicInc
1678          && TruncExpr == SE.getSCEV(IsomorphicInc)
1679          && ((isa<PHINode>(OrigInc) && isa<PHINode>(IsomorphicInc))
1680              || hoistIVInc(OrigInc, IsomorphicInc))) {
1681        DEBUG_WITH_TYPE(DebugType, dbgs()
1682                        << "INDVARS: Eliminated congruent iv.inc: "
1683                        << *IsomorphicInc << '\n');
1684        Value *NewInc = OrigInc;
1685        if (OrigInc->getType() != IsomorphicInc->getType()) {
1686          Instruction *IP = isa<PHINode>(OrigInc)
1687            ? (Instruction*)L->getHeader()->getFirstInsertionPt()
1688            : OrigInc->getNextNode();
1689          IRBuilder<> Builder(IP);
1690          Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
1691          NewInc = Builder.
1692            CreateTruncOrBitCast(OrigInc, IsomorphicInc->getType(), IVName);
1693        }
1694        IsomorphicInc->replaceAllUsesWith(NewInc);
1695        DeadInsts.push_back(IsomorphicInc);
1696      }
1697    }
1698    DEBUG_WITH_TYPE(DebugType, dbgs()
1699                    << "INDVARS: Eliminated congruent iv: " << *Phi << '\n');
1700    ++NumElim;
1701    Value *NewIV = OrigPhiRef;
1702    if (OrigPhiRef->getType() != Phi->getType()) {
1703      IRBuilder<> Builder(L->getHeader()->getFirstInsertionPt());
1704      Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
1705      NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
1706    }
1707    Phi->replaceAllUsesWith(NewIV);
1708    DeadInsts.push_back(Phi);
1709  }
1710  return NumElim;
1711}
1712
1713namespace {
1714// Search for a SCEV subexpression that is not safe to expand.  Any expression
1715// that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
1716// UDiv expressions. We don't know if the UDiv is derived from an IR divide
1717// instruction, but the important thing is that we prove the denominator is
1718// nonzero before expansion.
1719//
1720// IVUsers already checks that IV-derived expressions are safe. So this check is
1721// only needed when the expression includes some subexpression that is not IV
1722// derived.
1723//
1724// Currently, we only allow division by a nonzero constant here. If this is
1725// inadequate, we could easily allow division by SCEVUnknown by using
1726// ValueTracking to check isKnownNonZero().
1727struct SCEVFindUnsafe {
1728  bool IsUnsafe;
1729
1730  SCEVFindUnsafe(): IsUnsafe(false) {}
1731
1732  bool follow(const SCEV *S) {
1733    const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S);
1734    if (!D)
1735      return true;
1736    const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
1737    if (SC && !SC->getValue()->isZero())
1738      return true;
1739    IsUnsafe = true;
1740    return false;
1741  }
1742  bool isDone() const { return IsUnsafe; }
1743};
1744}
1745
1746namespace llvm {
1747bool isSafeToExpand(const SCEV *S) {
1748  SCEVFindUnsafe Search;
1749  visitAll(S, Search);
1750  return !Search.IsUnsafe;
1751}
1752}
1753