1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/ADT/SmallPtrSet.h"
16#include "llvm/AutoUpgrade.h"
17#include "llvm/IR/CallingConv.h"
18#include "llvm/IR/Constants.h"
19#include "llvm/IR/DerivedTypes.h"
20#include "llvm/IR/InlineAsm.h"
21#include "llvm/IR/Instructions.h"
22#include "llvm/IR/Module.h"
23#include "llvm/IR/Operator.h"
24#include "llvm/IR/ValueSymbolTable.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27using namespace llvm;
28
29static std::string getTypeString(Type *T) {
30  std::string Result;
31  raw_string_ostream Tmp(Result);
32  Tmp << *T;
33  return Tmp.str();
34}
35
36/// Run: module ::= toplevelentity*
37bool LLParser::Run() {
38  // Prime the lexer.
39  Lex.Lex();
40
41  return ParseTopLevelEntities() ||
42         ValidateEndOfModule();
43}
44
45/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
46/// module.
47bool LLParser::ValidateEndOfModule() {
48  // Handle any instruction metadata forward references.
49  if (!ForwardRefInstMetadata.empty()) {
50    for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
51         I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
52         I != E; ++I) {
53      Instruction *Inst = I->first;
54      const std::vector<MDRef> &MDList = I->second;
55
56      for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
57        unsigned SlotNo = MDList[i].MDSlot;
58
59        if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
60          return Error(MDList[i].Loc, "use of undefined metadata '!" +
61                       Twine(SlotNo) + "'");
62        Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
63      }
64    }
65    ForwardRefInstMetadata.clear();
66  }
67
68  // Handle any function attribute group forward references.
69  for (std::map<Value*, std::vector<unsigned> >::iterator
70         I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end();
71         I != E; ++I) {
72    Value *V = I->first;
73    std::vector<unsigned> &Vec = I->second;
74    AttrBuilder B;
75
76    for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end();
77         VI != VE; ++VI)
78      B.merge(NumberedAttrBuilders[*VI]);
79
80    if (Function *Fn = dyn_cast<Function>(V)) {
81      AttributeSet AS = Fn->getAttributes();
82      AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
83      AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
84                               AS.getFnAttributes());
85
86      FnAttrs.merge(B);
87
88      // If the alignment was parsed as an attribute, move to the alignment
89      // field.
90      if (FnAttrs.hasAlignmentAttr()) {
91        Fn->setAlignment(FnAttrs.getAlignment());
92        FnAttrs.removeAttribute(Attribute::Alignment);
93      }
94
95      AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
96                            AttributeSet::get(Context,
97                                              AttributeSet::FunctionIndex,
98                                              FnAttrs));
99      Fn->setAttributes(AS);
100    } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
101      AttributeSet AS = CI->getAttributes();
102      AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
103      AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
104                               AS.getFnAttributes());
105      FnAttrs.merge(B);
106      AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
107                            AttributeSet::get(Context,
108                                              AttributeSet::FunctionIndex,
109                                              FnAttrs));
110      CI->setAttributes(AS);
111    } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
112      AttributeSet AS = II->getAttributes();
113      AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
114      AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
115                               AS.getFnAttributes());
116      FnAttrs.merge(B);
117      AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
118                            AttributeSet::get(Context,
119                                              AttributeSet::FunctionIndex,
120                                              FnAttrs));
121      II->setAttributes(AS);
122    } else {
123      llvm_unreachable("invalid object with forward attribute group reference");
124    }
125  }
126
127  // If there are entries in ForwardRefBlockAddresses at this point, they are
128  // references after the function was defined.  Resolve those now.
129  while (!ForwardRefBlockAddresses.empty()) {
130    // Okay, we are referencing an already-parsed function, resolve them now.
131    Function *TheFn = 0;
132    const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
133    if (Fn.Kind == ValID::t_GlobalName)
134      TheFn = M->getFunction(Fn.StrVal);
135    else if (Fn.UIntVal < NumberedVals.size())
136      TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
137
138    if (TheFn == 0)
139      return Error(Fn.Loc, "unknown function referenced by blockaddress");
140
141    // Resolve all these references.
142    if (ResolveForwardRefBlockAddresses(TheFn,
143                                      ForwardRefBlockAddresses.begin()->second,
144                                        0))
145      return true;
146
147    ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
148  }
149
150  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i)
151    if (NumberedTypes[i].second.isValid())
152      return Error(NumberedTypes[i].second,
153                   "use of undefined type '%" + Twine(i) + "'");
154
155  for (StringMap<std::pair<Type*, LocTy> >::iterator I =
156       NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
157    if (I->second.second.isValid())
158      return Error(I->second.second,
159                   "use of undefined type named '" + I->getKey() + "'");
160
161  if (!ForwardRefVals.empty())
162    return Error(ForwardRefVals.begin()->second.second,
163                 "use of undefined value '@" + ForwardRefVals.begin()->first +
164                 "'");
165
166  if (!ForwardRefValIDs.empty())
167    return Error(ForwardRefValIDs.begin()->second.second,
168                 "use of undefined value '@" +
169                 Twine(ForwardRefValIDs.begin()->first) + "'");
170
171  if (!ForwardRefMDNodes.empty())
172    return Error(ForwardRefMDNodes.begin()->second.second,
173                 "use of undefined metadata '!" +
174                 Twine(ForwardRefMDNodes.begin()->first) + "'");
175
176
177  // Look for intrinsic functions and CallInst that need to be upgraded
178  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
179    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
180
181  return false;
182}
183
184bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
185                             std::vector<std::pair<ValID, GlobalValue*> > &Refs,
186                                               PerFunctionState *PFS) {
187  // Loop over all the references, resolving them.
188  for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
189    BasicBlock *Res;
190    if (PFS) {
191      if (Refs[i].first.Kind == ValID::t_LocalName)
192        Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
193      else
194        Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
195    } else if (Refs[i].first.Kind == ValID::t_LocalID) {
196      return Error(Refs[i].first.Loc,
197       "cannot take address of numeric label after the function is defined");
198    } else {
199      Res = dyn_cast_or_null<BasicBlock>(
200                     TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
201    }
202
203    if (Res == 0)
204      return Error(Refs[i].first.Loc,
205                   "referenced value is not a basic block");
206
207    // Get the BlockAddress for this and update references to use it.
208    BlockAddress *BA = BlockAddress::get(TheFn, Res);
209    Refs[i].second->replaceAllUsesWith(BA);
210    Refs[i].second->eraseFromParent();
211  }
212  return false;
213}
214
215
216//===----------------------------------------------------------------------===//
217// Top-Level Entities
218//===----------------------------------------------------------------------===//
219
220bool LLParser::ParseTopLevelEntities() {
221  while (1) {
222    switch (Lex.getKind()) {
223    default:         return TokError("expected top-level entity");
224    case lltok::Eof: return false;
225    case lltok::kw_declare: if (ParseDeclare()) return true; break;
226    case lltok::kw_define:  if (ParseDefine()) return true; break;
227    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
228    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
229    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
230    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
231    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
232    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
233    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
234    case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
235    case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
236
237    // The Global variable production with no name can have many different
238    // optional leading prefixes, the production is:
239    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
240    //               OptionalAddrSpace OptionalUnNammedAddr
241    //               ('constant'|'global') ...
242    case lltok::kw_private:             // OptionalLinkage
243    case lltok::kw_linker_private:      // OptionalLinkage
244    case lltok::kw_linker_private_weak: // OptionalLinkage
245    case lltok::kw_linker_private_weak_def_auto: // FIXME: backwards compat.
246    case lltok::kw_internal:            // OptionalLinkage
247    case lltok::kw_weak:                // OptionalLinkage
248    case lltok::kw_weak_odr:            // OptionalLinkage
249    case lltok::kw_linkonce:            // OptionalLinkage
250    case lltok::kw_linkonce_odr:        // OptionalLinkage
251    case lltok::kw_linkonce_odr_auto_hide: // OptionalLinkage
252    case lltok::kw_appending:           // OptionalLinkage
253    case lltok::kw_dllexport:           // OptionalLinkage
254    case lltok::kw_common:              // OptionalLinkage
255    case lltok::kw_dllimport:           // OptionalLinkage
256    case lltok::kw_extern_weak:         // OptionalLinkage
257    case lltok::kw_external: {          // OptionalLinkage
258      unsigned Linkage, Visibility;
259      if (ParseOptionalLinkage(Linkage) ||
260          ParseOptionalVisibility(Visibility) ||
261          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
262        return true;
263      break;
264    }
265    case lltok::kw_default:       // OptionalVisibility
266    case lltok::kw_hidden:        // OptionalVisibility
267    case lltok::kw_protected: {   // OptionalVisibility
268      unsigned Visibility;
269      if (ParseOptionalVisibility(Visibility) ||
270          ParseGlobal("", SMLoc(), 0, false, Visibility))
271        return true;
272      break;
273    }
274
275    case lltok::kw_thread_local:  // OptionalThreadLocal
276    case lltok::kw_addrspace:     // OptionalAddrSpace
277    case lltok::kw_constant:      // GlobalType
278    case lltok::kw_global:        // GlobalType
279      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
280      break;
281
282    case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
283    }
284  }
285}
286
287
288/// toplevelentity
289///   ::= 'module' 'asm' STRINGCONSTANT
290bool LLParser::ParseModuleAsm() {
291  assert(Lex.getKind() == lltok::kw_module);
292  Lex.Lex();
293
294  std::string AsmStr;
295  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
296      ParseStringConstant(AsmStr)) return true;
297
298  M->appendModuleInlineAsm(AsmStr);
299  return false;
300}
301
302/// toplevelentity
303///   ::= 'target' 'triple' '=' STRINGCONSTANT
304///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
305bool LLParser::ParseTargetDefinition() {
306  assert(Lex.getKind() == lltok::kw_target);
307  std::string Str;
308  switch (Lex.Lex()) {
309  default: return TokError("unknown target property");
310  case lltok::kw_triple:
311    Lex.Lex();
312    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
313        ParseStringConstant(Str))
314      return true;
315    M->setTargetTriple(Str);
316    return false;
317  case lltok::kw_datalayout:
318    Lex.Lex();
319    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
320        ParseStringConstant(Str))
321      return true;
322    M->setDataLayout(Str);
323    return false;
324  }
325}
326
327/// toplevelentity
328///   ::= 'deplibs' '=' '[' ']'
329///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
330/// FIXME: Remove in 4.0. Currently parse, but ignore.
331bool LLParser::ParseDepLibs() {
332  assert(Lex.getKind() == lltok::kw_deplibs);
333  Lex.Lex();
334  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
335      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
336    return true;
337
338  if (EatIfPresent(lltok::rsquare))
339    return false;
340
341  do {
342    std::string Str;
343    if (ParseStringConstant(Str)) return true;
344  } while (EatIfPresent(lltok::comma));
345
346  return ParseToken(lltok::rsquare, "expected ']' at end of list");
347}
348
349/// ParseUnnamedType:
350///   ::= LocalVarID '=' 'type' type
351bool LLParser::ParseUnnamedType() {
352  LocTy TypeLoc = Lex.getLoc();
353  unsigned TypeID = Lex.getUIntVal();
354  Lex.Lex(); // eat LocalVarID;
355
356  if (ParseToken(lltok::equal, "expected '=' after name") ||
357      ParseToken(lltok::kw_type, "expected 'type' after '='"))
358    return true;
359
360  if (TypeID >= NumberedTypes.size())
361    NumberedTypes.resize(TypeID+1);
362
363  Type *Result = 0;
364  if (ParseStructDefinition(TypeLoc, "",
365                            NumberedTypes[TypeID], Result)) return true;
366
367  if (!isa<StructType>(Result)) {
368    std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
369    if (Entry.first)
370      return Error(TypeLoc, "non-struct types may not be recursive");
371    Entry.first = Result;
372    Entry.second = SMLoc();
373  }
374
375  return false;
376}
377
378
379/// toplevelentity
380///   ::= LocalVar '=' 'type' type
381bool LLParser::ParseNamedType() {
382  std::string Name = Lex.getStrVal();
383  LocTy NameLoc = Lex.getLoc();
384  Lex.Lex();  // eat LocalVar.
385
386  if (ParseToken(lltok::equal, "expected '=' after name") ||
387      ParseToken(lltok::kw_type, "expected 'type' after name"))
388    return true;
389
390  Type *Result = 0;
391  if (ParseStructDefinition(NameLoc, Name,
392                            NamedTypes[Name], Result)) return true;
393
394  if (!isa<StructType>(Result)) {
395    std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
396    if (Entry.first)
397      return Error(NameLoc, "non-struct types may not be recursive");
398    Entry.first = Result;
399    Entry.second = SMLoc();
400  }
401
402  return false;
403}
404
405
406/// toplevelentity
407///   ::= 'declare' FunctionHeader
408bool LLParser::ParseDeclare() {
409  assert(Lex.getKind() == lltok::kw_declare);
410  Lex.Lex();
411
412  Function *F;
413  return ParseFunctionHeader(F, false);
414}
415
416/// toplevelentity
417///   ::= 'define' FunctionHeader '{' ...
418bool LLParser::ParseDefine() {
419  assert(Lex.getKind() == lltok::kw_define);
420  Lex.Lex();
421
422  Function *F;
423  return ParseFunctionHeader(F, true) ||
424         ParseFunctionBody(*F);
425}
426
427/// ParseGlobalType
428///   ::= 'constant'
429///   ::= 'global'
430bool LLParser::ParseGlobalType(bool &IsConstant) {
431  if (Lex.getKind() == lltok::kw_constant)
432    IsConstant = true;
433  else if (Lex.getKind() == lltok::kw_global)
434    IsConstant = false;
435  else {
436    IsConstant = false;
437    return TokError("expected 'global' or 'constant'");
438  }
439  Lex.Lex();
440  return false;
441}
442
443/// ParseUnnamedGlobal:
444///   OptionalVisibility ALIAS ...
445///   OptionalLinkage OptionalVisibility ...   -> global variable
446///   GlobalID '=' OptionalVisibility ALIAS ...
447///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
448bool LLParser::ParseUnnamedGlobal() {
449  unsigned VarID = NumberedVals.size();
450  std::string Name;
451  LocTy NameLoc = Lex.getLoc();
452
453  // Handle the GlobalID form.
454  if (Lex.getKind() == lltok::GlobalID) {
455    if (Lex.getUIntVal() != VarID)
456      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
457                   Twine(VarID) + "'");
458    Lex.Lex(); // eat GlobalID;
459
460    if (ParseToken(lltok::equal, "expected '=' after name"))
461      return true;
462  }
463
464  bool HasLinkage;
465  unsigned Linkage, Visibility;
466  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
467      ParseOptionalVisibility(Visibility))
468    return true;
469
470  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
471    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
472  return ParseAlias(Name, NameLoc, Visibility);
473}
474
475/// ParseNamedGlobal:
476///   GlobalVar '=' OptionalVisibility ALIAS ...
477///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
478bool LLParser::ParseNamedGlobal() {
479  assert(Lex.getKind() == lltok::GlobalVar);
480  LocTy NameLoc = Lex.getLoc();
481  std::string Name = Lex.getStrVal();
482  Lex.Lex();
483
484  bool HasLinkage;
485  unsigned Linkage, Visibility;
486  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
487      ParseOptionalLinkage(Linkage, HasLinkage) ||
488      ParseOptionalVisibility(Visibility))
489    return true;
490
491  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
492    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
493  return ParseAlias(Name, NameLoc, Visibility);
494}
495
496// MDString:
497//   ::= '!' STRINGCONSTANT
498bool LLParser::ParseMDString(MDString *&Result) {
499  std::string Str;
500  if (ParseStringConstant(Str)) return true;
501  Result = MDString::get(Context, Str);
502  return false;
503}
504
505// MDNode:
506//   ::= '!' MDNodeNumber
507//
508/// This version of ParseMDNodeID returns the slot number and null in the case
509/// of a forward reference.
510bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
511  // !{ ..., !42, ... }
512  if (ParseUInt32(SlotNo)) return true;
513
514  // Check existing MDNode.
515  if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
516    Result = NumberedMetadata[SlotNo];
517  else
518    Result = 0;
519  return false;
520}
521
522bool LLParser::ParseMDNodeID(MDNode *&Result) {
523  // !{ ..., !42, ... }
524  unsigned MID = 0;
525  if (ParseMDNodeID(Result, MID)) return true;
526
527  // If not a forward reference, just return it now.
528  if (Result) return false;
529
530  // Otherwise, create MDNode forward reference.
531  MDNode *FwdNode = MDNode::getTemporary(Context, None);
532  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
533
534  if (NumberedMetadata.size() <= MID)
535    NumberedMetadata.resize(MID+1);
536  NumberedMetadata[MID] = FwdNode;
537  Result = FwdNode;
538  return false;
539}
540
541/// ParseNamedMetadata:
542///   !foo = !{ !1, !2 }
543bool LLParser::ParseNamedMetadata() {
544  assert(Lex.getKind() == lltok::MetadataVar);
545  std::string Name = Lex.getStrVal();
546  Lex.Lex();
547
548  if (ParseToken(lltok::equal, "expected '=' here") ||
549      ParseToken(lltok::exclaim, "Expected '!' here") ||
550      ParseToken(lltok::lbrace, "Expected '{' here"))
551    return true;
552
553  NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
554  if (Lex.getKind() != lltok::rbrace)
555    do {
556      if (ParseToken(lltok::exclaim, "Expected '!' here"))
557        return true;
558
559      MDNode *N = 0;
560      if (ParseMDNodeID(N)) return true;
561      NMD->addOperand(N);
562    } while (EatIfPresent(lltok::comma));
563
564  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
565    return true;
566
567  return false;
568}
569
570/// ParseStandaloneMetadata:
571///   !42 = !{...}
572bool LLParser::ParseStandaloneMetadata() {
573  assert(Lex.getKind() == lltok::exclaim);
574  Lex.Lex();
575  unsigned MetadataID = 0;
576
577  LocTy TyLoc;
578  Type *Ty = 0;
579  SmallVector<Value *, 16> Elts;
580  if (ParseUInt32(MetadataID) ||
581      ParseToken(lltok::equal, "expected '=' here") ||
582      ParseType(Ty, TyLoc) ||
583      ParseToken(lltok::exclaim, "Expected '!' here") ||
584      ParseToken(lltok::lbrace, "Expected '{' here") ||
585      ParseMDNodeVector(Elts, NULL) ||
586      ParseToken(lltok::rbrace, "expected end of metadata node"))
587    return true;
588
589  MDNode *Init = MDNode::get(Context, Elts);
590
591  // See if this was forward referenced, if so, handle it.
592  std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
593    FI = ForwardRefMDNodes.find(MetadataID);
594  if (FI != ForwardRefMDNodes.end()) {
595    MDNode *Temp = FI->second.first;
596    Temp->replaceAllUsesWith(Init);
597    MDNode::deleteTemporary(Temp);
598    ForwardRefMDNodes.erase(FI);
599
600    assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
601  } else {
602    if (MetadataID >= NumberedMetadata.size())
603      NumberedMetadata.resize(MetadataID+1);
604
605    if (NumberedMetadata[MetadataID] != 0)
606      return TokError("Metadata id is already used");
607    NumberedMetadata[MetadataID] = Init;
608  }
609
610  return false;
611}
612
613/// ParseAlias:
614///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
615/// Aliasee
616///   ::= TypeAndValue
617///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
618///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
619///
620/// Everything through visibility has already been parsed.
621///
622bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
623                          unsigned Visibility) {
624  assert(Lex.getKind() == lltok::kw_alias);
625  Lex.Lex();
626  unsigned Linkage;
627  LocTy LinkageLoc = Lex.getLoc();
628  if (ParseOptionalLinkage(Linkage))
629    return true;
630
631  if (Linkage != GlobalValue::ExternalLinkage &&
632      Linkage != GlobalValue::WeakAnyLinkage &&
633      Linkage != GlobalValue::WeakODRLinkage &&
634      Linkage != GlobalValue::InternalLinkage &&
635      Linkage != GlobalValue::PrivateLinkage &&
636      Linkage != GlobalValue::LinkerPrivateLinkage &&
637      Linkage != GlobalValue::LinkerPrivateWeakLinkage)
638    return Error(LinkageLoc, "invalid linkage type for alias");
639
640  Constant *Aliasee;
641  LocTy AliaseeLoc = Lex.getLoc();
642  if (Lex.getKind() != lltok::kw_bitcast &&
643      Lex.getKind() != lltok::kw_getelementptr) {
644    if (ParseGlobalTypeAndValue(Aliasee)) return true;
645  } else {
646    // The bitcast dest type is not present, it is implied by the dest type.
647    ValID ID;
648    if (ParseValID(ID)) return true;
649    if (ID.Kind != ValID::t_Constant)
650      return Error(AliaseeLoc, "invalid aliasee");
651    Aliasee = ID.ConstantVal;
652  }
653
654  if (!Aliasee->getType()->isPointerTy())
655    return Error(AliaseeLoc, "alias must have pointer type");
656
657  // Okay, create the alias but do not insert it into the module yet.
658  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
659                                    (GlobalValue::LinkageTypes)Linkage, Name,
660                                    Aliasee);
661  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
662
663  // See if this value already exists in the symbol table.  If so, it is either
664  // a redefinition or a definition of a forward reference.
665  if (GlobalValue *Val = M->getNamedValue(Name)) {
666    // See if this was a redefinition.  If so, there is no entry in
667    // ForwardRefVals.
668    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
669      I = ForwardRefVals.find(Name);
670    if (I == ForwardRefVals.end())
671      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
672
673    // Otherwise, this was a definition of forward ref.  Verify that types
674    // agree.
675    if (Val->getType() != GA->getType())
676      return Error(NameLoc,
677              "forward reference and definition of alias have different types");
678
679    // If they agree, just RAUW the old value with the alias and remove the
680    // forward ref info.
681    Val->replaceAllUsesWith(GA);
682    Val->eraseFromParent();
683    ForwardRefVals.erase(I);
684  }
685
686  // Insert into the module, we know its name won't collide now.
687  M->getAliasList().push_back(GA);
688  assert(GA->getName() == Name && "Should not be a name conflict!");
689
690  return false;
691}
692
693/// ParseGlobal
694///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
695///       OptionalAddrSpace OptionalUnNammedAddr
696///       OptionalExternallyInitialized GlobalType Type Const
697///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
698///       OptionalAddrSpace OptionalUnNammedAddr
699///       OptionalExternallyInitialized GlobalType Type Const
700///
701/// Everything through visibility has been parsed already.
702///
703bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
704                           unsigned Linkage, bool HasLinkage,
705                           unsigned Visibility) {
706  unsigned AddrSpace;
707  bool IsConstant, UnnamedAddr, IsExternallyInitialized;
708  GlobalVariable::ThreadLocalMode TLM;
709  LocTy UnnamedAddrLoc;
710  LocTy IsExternallyInitializedLoc;
711  LocTy TyLoc;
712
713  Type *Ty = 0;
714  if (ParseOptionalThreadLocal(TLM) ||
715      ParseOptionalAddrSpace(AddrSpace) ||
716      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
717                         &UnnamedAddrLoc) ||
718      ParseOptionalToken(lltok::kw_externally_initialized,
719                         IsExternallyInitialized,
720                         &IsExternallyInitializedLoc) ||
721      ParseGlobalType(IsConstant) ||
722      ParseType(Ty, TyLoc))
723    return true;
724
725  // If the linkage is specified and is external, then no initializer is
726  // present.
727  Constant *Init = 0;
728  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
729                      Linkage != GlobalValue::ExternalWeakLinkage &&
730                      Linkage != GlobalValue::ExternalLinkage)) {
731    if (ParseGlobalValue(Ty, Init))
732      return true;
733  }
734
735  if (Ty->isFunctionTy() || Ty->isLabelTy())
736    return Error(TyLoc, "invalid type for global variable");
737
738  GlobalVariable *GV = 0;
739
740  // See if the global was forward referenced, if so, use the global.
741  if (!Name.empty()) {
742    if (GlobalValue *GVal = M->getNamedValue(Name)) {
743      if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
744        return Error(NameLoc, "redefinition of global '@" + Name + "'");
745      GV = cast<GlobalVariable>(GVal);
746    }
747  } else {
748    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
749      I = ForwardRefValIDs.find(NumberedVals.size());
750    if (I != ForwardRefValIDs.end()) {
751      GV = cast<GlobalVariable>(I->second.first);
752      ForwardRefValIDs.erase(I);
753    }
754  }
755
756  if (GV == 0) {
757    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
758                            Name, 0, GlobalVariable::NotThreadLocal,
759                            AddrSpace);
760  } else {
761    if (GV->getType()->getElementType() != Ty)
762      return Error(TyLoc,
763            "forward reference and definition of global have different types");
764
765    // Move the forward-reference to the correct spot in the module.
766    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
767  }
768
769  if (Name.empty())
770    NumberedVals.push_back(GV);
771
772  // Set the parsed properties on the global.
773  if (Init)
774    GV->setInitializer(Init);
775  GV->setConstant(IsConstant);
776  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
777  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
778  GV->setExternallyInitialized(IsExternallyInitialized);
779  GV->setThreadLocalMode(TLM);
780  GV->setUnnamedAddr(UnnamedAddr);
781
782  // Parse attributes on the global.
783  while (Lex.getKind() == lltok::comma) {
784    Lex.Lex();
785
786    if (Lex.getKind() == lltok::kw_section) {
787      Lex.Lex();
788      GV->setSection(Lex.getStrVal());
789      if (ParseToken(lltok::StringConstant, "expected global section string"))
790        return true;
791    } else if (Lex.getKind() == lltok::kw_align) {
792      unsigned Alignment;
793      if (ParseOptionalAlignment(Alignment)) return true;
794      GV->setAlignment(Alignment);
795    } else {
796      TokError("unknown global variable property!");
797    }
798  }
799
800  return false;
801}
802
803/// ParseUnnamedAttrGrp
804///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
805bool LLParser::ParseUnnamedAttrGrp() {
806  assert(Lex.getKind() == lltok::kw_attributes);
807  LocTy AttrGrpLoc = Lex.getLoc();
808  Lex.Lex();
809
810  assert(Lex.getKind() == lltok::AttrGrpID);
811  unsigned VarID = Lex.getUIntVal();
812  std::vector<unsigned> unused;
813  LocTy BuiltinLoc;
814  Lex.Lex();
815
816  if (ParseToken(lltok::equal, "expected '=' here") ||
817      ParseToken(lltok::lbrace, "expected '{' here") ||
818      ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
819                                 BuiltinLoc) ||
820      ParseToken(lltok::rbrace, "expected end of attribute group"))
821    return true;
822
823  if (!NumberedAttrBuilders[VarID].hasAttributes())
824    return Error(AttrGrpLoc, "attribute group has no attributes");
825
826  return false;
827}
828
829/// ParseFnAttributeValuePairs
830///   ::= <attr> | <attr> '=' <value>
831bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
832                                          std::vector<unsigned> &FwdRefAttrGrps,
833                                          bool inAttrGrp, LocTy &BuiltinLoc) {
834  bool HaveError = false;
835
836  B.clear();
837
838  while (true) {
839    lltok::Kind Token = Lex.getKind();
840    if (Token == lltok::kw_builtin)
841      BuiltinLoc = Lex.getLoc();
842    switch (Token) {
843    default:
844      if (!inAttrGrp) return HaveError;
845      return Error(Lex.getLoc(), "unterminated attribute group");
846    case lltok::rbrace:
847      // Finished.
848      return false;
849
850    case lltok::AttrGrpID: {
851      // Allow a function to reference an attribute group:
852      //
853      //   define void @foo() #1 { ... }
854      if (inAttrGrp)
855        HaveError |=
856          Error(Lex.getLoc(),
857              "cannot have an attribute group reference in an attribute group");
858
859      unsigned AttrGrpNum = Lex.getUIntVal();
860      if (inAttrGrp) break;
861
862      // Save the reference to the attribute group. We'll fill it in later.
863      FwdRefAttrGrps.push_back(AttrGrpNum);
864      break;
865    }
866    // Target-dependent attributes:
867    case lltok::StringConstant: {
868      std::string Attr = Lex.getStrVal();
869      Lex.Lex();
870      std::string Val;
871      if (EatIfPresent(lltok::equal) &&
872          ParseStringConstant(Val))
873        return true;
874
875      B.addAttribute(Attr, Val);
876      continue;
877    }
878
879    // Target-independent attributes:
880    case lltok::kw_align: {
881      // As a hack, we allow function alignment to be initially parsed as an
882      // attribute on a function declaration/definition or added to an attribute
883      // group and later moved to the alignment field.
884      unsigned Alignment;
885      if (inAttrGrp) {
886        Lex.Lex();
887        if (ParseToken(lltok::equal, "expected '=' here") ||
888            ParseUInt32(Alignment))
889          return true;
890      } else {
891        if (ParseOptionalAlignment(Alignment))
892          return true;
893      }
894      B.addAlignmentAttr(Alignment);
895      continue;
896    }
897    case lltok::kw_alignstack: {
898      unsigned Alignment;
899      if (inAttrGrp) {
900        Lex.Lex();
901        if (ParseToken(lltok::equal, "expected '=' here") ||
902            ParseUInt32(Alignment))
903          return true;
904      } else {
905        if (ParseOptionalStackAlignment(Alignment))
906          return true;
907      }
908      B.addStackAlignmentAttr(Alignment);
909      continue;
910    }
911    case lltok::kw_alwaysinline:      B.addAttribute(Attribute::AlwaysInline); break;
912    case lltok::kw_builtin:           B.addAttribute(Attribute::Builtin); break;
913    case lltok::kw_cold:              B.addAttribute(Attribute::Cold); break;
914    case lltok::kw_inlinehint:        B.addAttribute(Attribute::InlineHint); break;
915    case lltok::kw_minsize:           B.addAttribute(Attribute::MinSize); break;
916    case lltok::kw_naked:             B.addAttribute(Attribute::Naked); break;
917    case lltok::kw_nobuiltin:         B.addAttribute(Attribute::NoBuiltin); break;
918    case lltok::kw_noduplicate:       B.addAttribute(Attribute::NoDuplicate); break;
919    case lltok::kw_noimplicitfloat:   B.addAttribute(Attribute::NoImplicitFloat); break;
920    case lltok::kw_noinline:          B.addAttribute(Attribute::NoInline); break;
921    case lltok::kw_nonlazybind:       B.addAttribute(Attribute::NonLazyBind); break;
922    case lltok::kw_noredzone:         B.addAttribute(Attribute::NoRedZone); break;
923    case lltok::kw_noreturn:          B.addAttribute(Attribute::NoReturn); break;
924    case lltok::kw_nounwind:          B.addAttribute(Attribute::NoUnwind); break;
925    case lltok::kw_optsize:           B.addAttribute(Attribute::OptimizeForSize); break;
926    case lltok::kw_readnone:          B.addAttribute(Attribute::ReadNone); break;
927    case lltok::kw_readonly:          B.addAttribute(Attribute::ReadOnly); break;
928    case lltok::kw_returns_twice:     B.addAttribute(Attribute::ReturnsTwice); break;
929    case lltok::kw_ssp:               B.addAttribute(Attribute::StackProtect); break;
930    case lltok::kw_sspreq:            B.addAttribute(Attribute::StackProtectReq); break;
931    case lltok::kw_sspstrong:         B.addAttribute(Attribute::StackProtectStrong); break;
932    case lltok::kw_sanitize_address:  B.addAttribute(Attribute::SanitizeAddress); break;
933    case lltok::kw_sanitize_thread:   B.addAttribute(Attribute::SanitizeThread); break;
934    case lltok::kw_sanitize_memory:   B.addAttribute(Attribute::SanitizeMemory); break;
935    case lltok::kw_uwtable:           B.addAttribute(Attribute::UWTable); break;
936
937    // Error handling.
938    case lltok::kw_inreg:
939    case lltok::kw_signext:
940    case lltok::kw_zeroext:
941      HaveError |=
942        Error(Lex.getLoc(),
943              "invalid use of attribute on a function");
944      break;
945    case lltok::kw_byval:
946    case lltok::kw_nest:
947    case lltok::kw_noalias:
948    case lltok::kw_nocapture:
949    case lltok::kw_returned:
950    case lltok::kw_sret:
951      HaveError |=
952        Error(Lex.getLoc(),
953              "invalid use of parameter-only attribute on a function");
954      break;
955    }
956
957    Lex.Lex();
958  }
959}
960
961//===----------------------------------------------------------------------===//
962// GlobalValue Reference/Resolution Routines.
963//===----------------------------------------------------------------------===//
964
965/// GetGlobalVal - Get a value with the specified name or ID, creating a
966/// forward reference record if needed.  This can return null if the value
967/// exists but does not have the right type.
968GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
969                                    LocTy Loc) {
970  PointerType *PTy = dyn_cast<PointerType>(Ty);
971  if (PTy == 0) {
972    Error(Loc, "global variable reference must have pointer type");
973    return 0;
974  }
975
976  // Look this name up in the normal function symbol table.
977  GlobalValue *Val =
978    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
979
980  // If this is a forward reference for the value, see if we already created a
981  // forward ref record.
982  if (Val == 0) {
983    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
984      I = ForwardRefVals.find(Name);
985    if (I != ForwardRefVals.end())
986      Val = I->second.first;
987  }
988
989  // If we have the value in the symbol table or fwd-ref table, return it.
990  if (Val) {
991    if (Val->getType() == Ty) return Val;
992    Error(Loc, "'@" + Name + "' defined with type '" +
993          getTypeString(Val->getType()) + "'");
994    return 0;
995  }
996
997  // Otherwise, create a new forward reference for this value and remember it.
998  GlobalValue *FwdVal;
999  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1000    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
1001  else
1002    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
1003                                GlobalValue::ExternalWeakLinkage, 0, Name,
1004                                0, GlobalVariable::NotThreadLocal,
1005                                PTy->getAddressSpace());
1006
1007  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1008  return FwdVal;
1009}
1010
1011GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1012  PointerType *PTy = dyn_cast<PointerType>(Ty);
1013  if (PTy == 0) {
1014    Error(Loc, "global variable reference must have pointer type");
1015    return 0;
1016  }
1017
1018  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1019
1020  // If this is a forward reference for the value, see if we already created a
1021  // forward ref record.
1022  if (Val == 0) {
1023    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
1024      I = ForwardRefValIDs.find(ID);
1025    if (I != ForwardRefValIDs.end())
1026      Val = I->second.first;
1027  }
1028
1029  // If we have the value in the symbol table or fwd-ref table, return it.
1030  if (Val) {
1031    if (Val->getType() == Ty) return Val;
1032    Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1033          getTypeString(Val->getType()) + "'");
1034    return 0;
1035  }
1036
1037  // Otherwise, create a new forward reference for this value and remember it.
1038  GlobalValue *FwdVal;
1039  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1040    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
1041  else
1042    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
1043                                GlobalValue::ExternalWeakLinkage, 0, "");
1044
1045  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1046  return FwdVal;
1047}
1048
1049
1050//===----------------------------------------------------------------------===//
1051// Helper Routines.
1052//===----------------------------------------------------------------------===//
1053
1054/// ParseToken - If the current token has the specified kind, eat it and return
1055/// success.  Otherwise, emit the specified error and return failure.
1056bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1057  if (Lex.getKind() != T)
1058    return TokError(ErrMsg);
1059  Lex.Lex();
1060  return false;
1061}
1062
1063/// ParseStringConstant
1064///   ::= StringConstant
1065bool LLParser::ParseStringConstant(std::string &Result) {
1066  if (Lex.getKind() != lltok::StringConstant)
1067    return TokError("expected string constant");
1068  Result = Lex.getStrVal();
1069  Lex.Lex();
1070  return false;
1071}
1072
1073/// ParseUInt32
1074///   ::= uint32
1075bool LLParser::ParseUInt32(unsigned &Val) {
1076  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1077    return TokError("expected integer");
1078  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1079  if (Val64 != unsigned(Val64))
1080    return TokError("expected 32-bit integer (too large)");
1081  Val = Val64;
1082  Lex.Lex();
1083  return false;
1084}
1085
1086/// ParseTLSModel
1087///   := 'localdynamic'
1088///   := 'initialexec'
1089///   := 'localexec'
1090bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1091  switch (Lex.getKind()) {
1092    default:
1093      return TokError("expected localdynamic, initialexec or localexec");
1094    case lltok::kw_localdynamic:
1095      TLM = GlobalVariable::LocalDynamicTLSModel;
1096      break;
1097    case lltok::kw_initialexec:
1098      TLM = GlobalVariable::InitialExecTLSModel;
1099      break;
1100    case lltok::kw_localexec:
1101      TLM = GlobalVariable::LocalExecTLSModel;
1102      break;
1103  }
1104
1105  Lex.Lex();
1106  return false;
1107}
1108
1109/// ParseOptionalThreadLocal
1110///   := /*empty*/
1111///   := 'thread_local'
1112///   := 'thread_local' '(' tlsmodel ')'
1113bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1114  TLM = GlobalVariable::NotThreadLocal;
1115  if (!EatIfPresent(lltok::kw_thread_local))
1116    return false;
1117
1118  TLM = GlobalVariable::GeneralDynamicTLSModel;
1119  if (Lex.getKind() == lltok::lparen) {
1120    Lex.Lex();
1121    return ParseTLSModel(TLM) ||
1122      ParseToken(lltok::rparen, "expected ')' after thread local model");
1123  }
1124  return false;
1125}
1126
1127/// ParseOptionalAddrSpace
1128///   := /*empty*/
1129///   := 'addrspace' '(' uint32 ')'
1130bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1131  AddrSpace = 0;
1132  if (!EatIfPresent(lltok::kw_addrspace))
1133    return false;
1134  return ParseToken(lltok::lparen, "expected '(' in address space") ||
1135         ParseUInt32(AddrSpace) ||
1136         ParseToken(lltok::rparen, "expected ')' in address space");
1137}
1138
1139/// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1140bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1141  bool HaveError = false;
1142
1143  B.clear();
1144
1145  while (1) {
1146    lltok::Kind Token = Lex.getKind();
1147    switch (Token) {
1148    default:  // End of attributes.
1149      return HaveError;
1150    case lltok::kw_align: {
1151      unsigned Alignment;
1152      if (ParseOptionalAlignment(Alignment))
1153        return true;
1154      B.addAlignmentAttr(Alignment);
1155      continue;
1156    }
1157    case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1158    case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1159    case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1160    case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1161    case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1162    case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1163    case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1164    case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1165    case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1166    case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1167    case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1168
1169    case lltok::kw_alignstack:
1170    case lltok::kw_alwaysinline:
1171    case lltok::kw_builtin:
1172    case lltok::kw_inlinehint:
1173    case lltok::kw_minsize:
1174    case lltok::kw_naked:
1175    case lltok::kw_nobuiltin:
1176    case lltok::kw_noduplicate:
1177    case lltok::kw_noimplicitfloat:
1178    case lltok::kw_noinline:
1179    case lltok::kw_nonlazybind:
1180    case lltok::kw_noredzone:
1181    case lltok::kw_noreturn:
1182    case lltok::kw_nounwind:
1183    case lltok::kw_optsize:
1184    case lltok::kw_returns_twice:
1185    case lltok::kw_sanitize_address:
1186    case lltok::kw_sanitize_memory:
1187    case lltok::kw_sanitize_thread:
1188    case lltok::kw_ssp:
1189    case lltok::kw_sspreq:
1190    case lltok::kw_sspstrong:
1191    case lltok::kw_uwtable:
1192      HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1193      break;
1194    }
1195
1196    Lex.Lex();
1197  }
1198}
1199
1200/// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1201bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1202  bool HaveError = false;
1203
1204  B.clear();
1205
1206  while (1) {
1207    lltok::Kind Token = Lex.getKind();
1208    switch (Token) {
1209    default:  // End of attributes.
1210      return HaveError;
1211    case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1212    case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1213    case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1214    case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1215
1216    // Error handling.
1217    case lltok::kw_align:
1218    case lltok::kw_byval:
1219    case lltok::kw_nest:
1220    case lltok::kw_nocapture:
1221    case lltok::kw_returned:
1222    case lltok::kw_sret:
1223      HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1224      break;
1225
1226    case lltok::kw_alignstack:
1227    case lltok::kw_alwaysinline:
1228    case lltok::kw_builtin:
1229    case lltok::kw_cold:
1230    case lltok::kw_inlinehint:
1231    case lltok::kw_minsize:
1232    case lltok::kw_naked:
1233    case lltok::kw_nobuiltin:
1234    case lltok::kw_noduplicate:
1235    case lltok::kw_noimplicitfloat:
1236    case lltok::kw_noinline:
1237    case lltok::kw_nonlazybind:
1238    case lltok::kw_noredzone:
1239    case lltok::kw_noreturn:
1240    case lltok::kw_nounwind:
1241    case lltok::kw_optsize:
1242    case lltok::kw_returns_twice:
1243    case lltok::kw_sanitize_address:
1244    case lltok::kw_sanitize_memory:
1245    case lltok::kw_sanitize_thread:
1246    case lltok::kw_ssp:
1247    case lltok::kw_sspreq:
1248    case lltok::kw_sspstrong:
1249    case lltok::kw_uwtable:
1250      HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1251      break;
1252
1253    case lltok::kw_readnone:
1254    case lltok::kw_readonly:
1255      HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1256    }
1257
1258    Lex.Lex();
1259  }
1260}
1261
1262/// ParseOptionalLinkage
1263///   ::= /*empty*/
1264///   ::= 'private'
1265///   ::= 'linker_private'
1266///   ::= 'linker_private_weak'
1267///   ::= 'internal'
1268///   ::= 'weak'
1269///   ::= 'weak_odr'
1270///   ::= 'linkonce'
1271///   ::= 'linkonce_odr'
1272///   ::= 'linkonce_odr_auto_hide'
1273///   ::= 'available_externally'
1274///   ::= 'appending'
1275///   ::= 'dllexport'
1276///   ::= 'common'
1277///   ::= 'dllimport'
1278///   ::= 'extern_weak'
1279///   ::= 'external'
1280bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1281  HasLinkage = false;
1282  switch (Lex.getKind()) {
1283  default:                       Res=GlobalValue::ExternalLinkage; return false;
1284  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
1285  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
1286  case lltok::kw_linker_private_weak:
1287    Res = GlobalValue::LinkerPrivateWeakLinkage;
1288    break;
1289  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
1290  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
1291  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
1292  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
1293  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
1294  case lltok::kw_linkonce_odr_auto_hide:
1295  case lltok::kw_linker_private_weak_def_auto: // FIXME: For backwards compat.
1296    Res = GlobalValue::LinkOnceODRAutoHideLinkage;
1297    break;
1298  case lltok::kw_available_externally:
1299    Res = GlobalValue::AvailableExternallyLinkage;
1300    break;
1301  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
1302  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
1303  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
1304  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
1305  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1306  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1307  }
1308  Lex.Lex();
1309  HasLinkage = true;
1310  return false;
1311}
1312
1313/// ParseOptionalVisibility
1314///   ::= /*empty*/
1315///   ::= 'default'
1316///   ::= 'hidden'
1317///   ::= 'protected'
1318///
1319bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1320  switch (Lex.getKind()) {
1321  default:                  Res = GlobalValue::DefaultVisibility; return false;
1322  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1323  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1324  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1325  }
1326  Lex.Lex();
1327  return false;
1328}
1329
1330/// ParseOptionalCallingConv
1331///   ::= /*empty*/
1332///   ::= 'ccc'
1333///   ::= 'fastcc'
1334///   ::= 'kw_intel_ocl_bicc'
1335///   ::= 'coldcc'
1336///   ::= 'x86_stdcallcc'
1337///   ::= 'x86_fastcallcc'
1338///   ::= 'x86_thiscallcc'
1339///   ::= 'arm_apcscc'
1340///   ::= 'arm_aapcscc'
1341///   ::= 'arm_aapcs_vfpcc'
1342///   ::= 'msp430_intrcc'
1343///   ::= 'ptx_kernel'
1344///   ::= 'ptx_device'
1345///   ::= 'spir_func'
1346///   ::= 'spir_kernel'
1347///   ::= 'x86_64_sysvcc'
1348///   ::= 'x86_64_win64cc'
1349///   ::= 'cc' UINT
1350///
1351bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1352  switch (Lex.getKind()) {
1353  default:                       CC = CallingConv::C; return false;
1354  case lltok::kw_ccc:            CC = CallingConv::C; break;
1355  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1356  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1357  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1358  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1359  case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1360  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1361  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1362  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1363  case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1364  case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1365  case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1366  case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1367  case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1368  case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1369  case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1370  case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break;
1371  case lltok::kw_cc: {
1372      unsigned ArbitraryCC;
1373      Lex.Lex();
1374      if (ParseUInt32(ArbitraryCC))
1375        return true;
1376      CC = static_cast<CallingConv::ID>(ArbitraryCC);
1377      return false;
1378    }
1379  }
1380
1381  Lex.Lex();
1382  return false;
1383}
1384
1385/// ParseInstructionMetadata
1386///   ::= !dbg !42 (',' !dbg !57)*
1387bool LLParser::ParseInstructionMetadata(Instruction *Inst,
1388                                        PerFunctionState *PFS) {
1389  do {
1390    if (Lex.getKind() != lltok::MetadataVar)
1391      return TokError("expected metadata after comma");
1392
1393    std::string Name = Lex.getStrVal();
1394    unsigned MDK = M->getMDKindID(Name);
1395    Lex.Lex();
1396
1397    MDNode *Node;
1398    SMLoc Loc = Lex.getLoc();
1399
1400    if (ParseToken(lltok::exclaim, "expected '!' here"))
1401      return true;
1402
1403    // This code is similar to that of ParseMetadataValue, however it needs to
1404    // have special-case code for a forward reference; see the comments on
1405    // ForwardRefInstMetadata for details. Also, MDStrings are not supported
1406    // at the top level here.
1407    if (Lex.getKind() == lltok::lbrace) {
1408      ValID ID;
1409      if (ParseMetadataListValue(ID, PFS))
1410        return true;
1411      assert(ID.Kind == ValID::t_MDNode);
1412      Inst->setMetadata(MDK, ID.MDNodeVal);
1413    } else {
1414      unsigned NodeID = 0;
1415      if (ParseMDNodeID(Node, NodeID))
1416        return true;
1417      if (Node) {
1418        // If we got the node, add it to the instruction.
1419        Inst->setMetadata(MDK, Node);
1420      } else {
1421        MDRef R = { Loc, MDK, NodeID };
1422        // Otherwise, remember that this should be resolved later.
1423        ForwardRefInstMetadata[Inst].push_back(R);
1424      }
1425    }
1426
1427    // If this is the end of the list, we're done.
1428  } while (EatIfPresent(lltok::comma));
1429  return false;
1430}
1431
1432/// ParseOptionalAlignment
1433///   ::= /* empty */
1434///   ::= 'align' 4
1435bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1436  Alignment = 0;
1437  if (!EatIfPresent(lltok::kw_align))
1438    return false;
1439  LocTy AlignLoc = Lex.getLoc();
1440  if (ParseUInt32(Alignment)) return true;
1441  if (!isPowerOf2_32(Alignment))
1442    return Error(AlignLoc, "alignment is not a power of two");
1443  if (Alignment > Value::MaximumAlignment)
1444    return Error(AlignLoc, "huge alignments are not supported yet");
1445  return false;
1446}
1447
1448/// ParseOptionalCommaAlign
1449///   ::=
1450///   ::= ',' align 4
1451///
1452/// This returns with AteExtraComma set to true if it ate an excess comma at the
1453/// end.
1454bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1455                                       bool &AteExtraComma) {
1456  AteExtraComma = false;
1457  while (EatIfPresent(lltok::comma)) {
1458    // Metadata at the end is an early exit.
1459    if (Lex.getKind() == lltok::MetadataVar) {
1460      AteExtraComma = true;
1461      return false;
1462    }
1463
1464    if (Lex.getKind() != lltok::kw_align)
1465      return Error(Lex.getLoc(), "expected metadata or 'align'");
1466
1467    if (ParseOptionalAlignment(Alignment)) return true;
1468  }
1469
1470  return false;
1471}
1472
1473/// ParseScopeAndOrdering
1474///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1475///   else: ::=
1476///
1477/// This sets Scope and Ordering to the parsed values.
1478bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1479                                     AtomicOrdering &Ordering) {
1480  if (!isAtomic)
1481    return false;
1482
1483  Scope = CrossThread;
1484  if (EatIfPresent(lltok::kw_singlethread))
1485    Scope = SingleThread;
1486  switch (Lex.getKind()) {
1487  default: return TokError("Expected ordering on atomic instruction");
1488  case lltok::kw_unordered: Ordering = Unordered; break;
1489  case lltok::kw_monotonic: Ordering = Monotonic; break;
1490  case lltok::kw_acquire: Ordering = Acquire; break;
1491  case lltok::kw_release: Ordering = Release; break;
1492  case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
1493  case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
1494  }
1495  Lex.Lex();
1496  return false;
1497}
1498
1499/// ParseOptionalStackAlignment
1500///   ::= /* empty */
1501///   ::= 'alignstack' '(' 4 ')'
1502bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1503  Alignment = 0;
1504  if (!EatIfPresent(lltok::kw_alignstack))
1505    return false;
1506  LocTy ParenLoc = Lex.getLoc();
1507  if (!EatIfPresent(lltok::lparen))
1508    return Error(ParenLoc, "expected '('");
1509  LocTy AlignLoc = Lex.getLoc();
1510  if (ParseUInt32(Alignment)) return true;
1511  ParenLoc = Lex.getLoc();
1512  if (!EatIfPresent(lltok::rparen))
1513    return Error(ParenLoc, "expected ')'");
1514  if (!isPowerOf2_32(Alignment))
1515    return Error(AlignLoc, "stack alignment is not a power of two");
1516  return false;
1517}
1518
1519/// ParseIndexList - This parses the index list for an insert/extractvalue
1520/// instruction.  This sets AteExtraComma in the case where we eat an extra
1521/// comma at the end of the line and find that it is followed by metadata.
1522/// Clients that don't allow metadata can call the version of this function that
1523/// only takes one argument.
1524///
1525/// ParseIndexList
1526///    ::=  (',' uint32)+
1527///
1528bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1529                              bool &AteExtraComma) {
1530  AteExtraComma = false;
1531
1532  if (Lex.getKind() != lltok::comma)
1533    return TokError("expected ',' as start of index list");
1534
1535  while (EatIfPresent(lltok::comma)) {
1536    if (Lex.getKind() == lltok::MetadataVar) {
1537      AteExtraComma = true;
1538      return false;
1539    }
1540    unsigned Idx = 0;
1541    if (ParseUInt32(Idx)) return true;
1542    Indices.push_back(Idx);
1543  }
1544
1545  return false;
1546}
1547
1548//===----------------------------------------------------------------------===//
1549// Type Parsing.
1550//===----------------------------------------------------------------------===//
1551
1552/// ParseType - Parse a type.
1553bool LLParser::ParseType(Type *&Result, bool AllowVoid) {
1554  SMLoc TypeLoc = Lex.getLoc();
1555  switch (Lex.getKind()) {
1556  default:
1557    return TokError("expected type");
1558  case lltok::Type:
1559    // Type ::= 'float' | 'void' (etc)
1560    Result = Lex.getTyVal();
1561    Lex.Lex();
1562    break;
1563  case lltok::lbrace:
1564    // Type ::= StructType
1565    if (ParseAnonStructType(Result, false))
1566      return true;
1567    break;
1568  case lltok::lsquare:
1569    // Type ::= '[' ... ']'
1570    Lex.Lex(); // eat the lsquare.
1571    if (ParseArrayVectorType(Result, false))
1572      return true;
1573    break;
1574  case lltok::less: // Either vector or packed struct.
1575    // Type ::= '<' ... '>'
1576    Lex.Lex();
1577    if (Lex.getKind() == lltok::lbrace) {
1578      if (ParseAnonStructType(Result, true) ||
1579          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1580        return true;
1581    } else if (ParseArrayVectorType(Result, true))
1582      return true;
1583    break;
1584  case lltok::LocalVar: {
1585    // Type ::= %foo
1586    std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1587
1588    // If the type hasn't been defined yet, create a forward definition and
1589    // remember where that forward def'n was seen (in case it never is defined).
1590    if (Entry.first == 0) {
1591      Entry.first = StructType::create(Context, Lex.getStrVal());
1592      Entry.second = Lex.getLoc();
1593    }
1594    Result = Entry.first;
1595    Lex.Lex();
1596    break;
1597  }
1598
1599  case lltok::LocalVarID: {
1600    // Type ::= %4
1601    if (Lex.getUIntVal() >= NumberedTypes.size())
1602      NumberedTypes.resize(Lex.getUIntVal()+1);
1603    std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1604
1605    // If the type hasn't been defined yet, create a forward definition and
1606    // remember where that forward def'n was seen (in case it never is defined).
1607    if (Entry.first == 0) {
1608      Entry.first = StructType::create(Context);
1609      Entry.second = Lex.getLoc();
1610    }
1611    Result = Entry.first;
1612    Lex.Lex();
1613    break;
1614  }
1615  }
1616
1617  // Parse the type suffixes.
1618  while (1) {
1619    switch (Lex.getKind()) {
1620    // End of type.
1621    default:
1622      if (!AllowVoid && Result->isVoidTy())
1623        return Error(TypeLoc, "void type only allowed for function results");
1624      return false;
1625
1626    // Type ::= Type '*'
1627    case lltok::star:
1628      if (Result->isLabelTy())
1629        return TokError("basic block pointers are invalid");
1630      if (Result->isVoidTy())
1631        return TokError("pointers to void are invalid - use i8* instead");
1632      if (!PointerType::isValidElementType(Result))
1633        return TokError("pointer to this type is invalid");
1634      Result = PointerType::getUnqual(Result);
1635      Lex.Lex();
1636      break;
1637
1638    // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1639    case lltok::kw_addrspace: {
1640      if (Result->isLabelTy())
1641        return TokError("basic block pointers are invalid");
1642      if (Result->isVoidTy())
1643        return TokError("pointers to void are invalid; use i8* instead");
1644      if (!PointerType::isValidElementType(Result))
1645        return TokError("pointer to this type is invalid");
1646      unsigned AddrSpace;
1647      if (ParseOptionalAddrSpace(AddrSpace) ||
1648          ParseToken(lltok::star, "expected '*' in address space"))
1649        return true;
1650
1651      Result = PointerType::get(Result, AddrSpace);
1652      break;
1653    }
1654
1655    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1656    case lltok::lparen:
1657      if (ParseFunctionType(Result))
1658        return true;
1659      break;
1660    }
1661  }
1662}
1663
1664/// ParseParameterList
1665///    ::= '(' ')'
1666///    ::= '(' Arg (',' Arg)* ')'
1667///  Arg
1668///    ::= Type OptionalAttributes Value OptionalAttributes
1669bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1670                                  PerFunctionState &PFS) {
1671  if (ParseToken(lltok::lparen, "expected '(' in call"))
1672    return true;
1673
1674  unsigned AttrIndex = 1;
1675  while (Lex.getKind() != lltok::rparen) {
1676    // If this isn't the first argument, we need a comma.
1677    if (!ArgList.empty() &&
1678        ParseToken(lltok::comma, "expected ',' in argument list"))
1679      return true;
1680
1681    // Parse the argument.
1682    LocTy ArgLoc;
1683    Type *ArgTy = 0;
1684    AttrBuilder ArgAttrs;
1685    Value *V;
1686    if (ParseType(ArgTy, ArgLoc))
1687      return true;
1688
1689    // Otherwise, handle normal operands.
1690    if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
1691      return true;
1692    ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(),
1693                                                             AttrIndex++,
1694                                                             ArgAttrs)));
1695  }
1696
1697  Lex.Lex();  // Lex the ')'.
1698  return false;
1699}
1700
1701
1702
1703/// ParseArgumentList - Parse the argument list for a function type or function
1704/// prototype.
1705///   ::= '(' ArgTypeListI ')'
1706/// ArgTypeListI
1707///   ::= /*empty*/
1708///   ::= '...'
1709///   ::= ArgTypeList ',' '...'
1710///   ::= ArgType (',' ArgType)*
1711///
1712bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
1713                                 bool &isVarArg){
1714  isVarArg = false;
1715  assert(Lex.getKind() == lltok::lparen);
1716  Lex.Lex(); // eat the (.
1717
1718  if (Lex.getKind() == lltok::rparen) {
1719    // empty
1720  } else if (Lex.getKind() == lltok::dotdotdot) {
1721    isVarArg = true;
1722    Lex.Lex();
1723  } else {
1724    LocTy TypeLoc = Lex.getLoc();
1725    Type *ArgTy = 0;
1726    AttrBuilder Attrs;
1727    std::string Name;
1728
1729    if (ParseType(ArgTy) ||
1730        ParseOptionalParamAttrs(Attrs)) return true;
1731
1732    if (ArgTy->isVoidTy())
1733      return Error(TypeLoc, "argument can not have void type");
1734
1735    if (Lex.getKind() == lltok::LocalVar) {
1736      Name = Lex.getStrVal();
1737      Lex.Lex();
1738    }
1739
1740    if (!FunctionType::isValidArgumentType(ArgTy))
1741      return Error(TypeLoc, "invalid type for function argument");
1742
1743    unsigned AttrIndex = 1;
1744    ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
1745                              AttributeSet::get(ArgTy->getContext(),
1746                                                AttrIndex++, Attrs), Name));
1747
1748    while (EatIfPresent(lltok::comma)) {
1749      // Handle ... at end of arg list.
1750      if (EatIfPresent(lltok::dotdotdot)) {
1751        isVarArg = true;
1752        break;
1753      }
1754
1755      // Otherwise must be an argument type.
1756      TypeLoc = Lex.getLoc();
1757      if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
1758
1759      if (ArgTy->isVoidTy())
1760        return Error(TypeLoc, "argument can not have void type");
1761
1762      if (Lex.getKind() == lltok::LocalVar) {
1763        Name = Lex.getStrVal();
1764        Lex.Lex();
1765      } else {
1766        Name = "";
1767      }
1768
1769      if (!ArgTy->isFirstClassType())
1770        return Error(TypeLoc, "invalid type for function argument");
1771
1772      ArgList.push_back(ArgInfo(TypeLoc, ArgTy,
1773                                AttributeSet::get(ArgTy->getContext(),
1774                                                  AttrIndex++, Attrs),
1775                                Name));
1776    }
1777  }
1778
1779  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1780}
1781
1782/// ParseFunctionType
1783///  ::= Type ArgumentList OptionalAttrs
1784bool LLParser::ParseFunctionType(Type *&Result) {
1785  assert(Lex.getKind() == lltok::lparen);
1786
1787  if (!FunctionType::isValidReturnType(Result))
1788    return TokError("invalid function return type");
1789
1790  SmallVector<ArgInfo, 8> ArgList;
1791  bool isVarArg;
1792  if (ParseArgumentList(ArgList, isVarArg))
1793    return true;
1794
1795  // Reject names on the arguments lists.
1796  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1797    if (!ArgList[i].Name.empty())
1798      return Error(ArgList[i].Loc, "argument name invalid in function type");
1799    if (ArgList[i].Attrs.hasAttributes(i + 1))
1800      return Error(ArgList[i].Loc,
1801                   "argument attributes invalid in function type");
1802  }
1803
1804  SmallVector<Type*, 16> ArgListTy;
1805  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1806    ArgListTy.push_back(ArgList[i].Ty);
1807
1808  Result = FunctionType::get(Result, ArgListTy, isVarArg);
1809  return false;
1810}
1811
1812/// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
1813/// other structs.
1814bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
1815  SmallVector<Type*, 8> Elts;
1816  if (ParseStructBody(Elts)) return true;
1817
1818  Result = StructType::get(Context, Elts, Packed);
1819  return false;
1820}
1821
1822/// ParseStructDefinition - Parse a struct in a 'type' definition.
1823bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
1824                                     std::pair<Type*, LocTy> &Entry,
1825                                     Type *&ResultTy) {
1826  // If the type was already defined, diagnose the redefinition.
1827  if (Entry.first && !Entry.second.isValid())
1828    return Error(TypeLoc, "redefinition of type");
1829
1830  // If we have opaque, just return without filling in the definition for the
1831  // struct.  This counts as a definition as far as the .ll file goes.
1832  if (EatIfPresent(lltok::kw_opaque)) {
1833    // This type is being defined, so clear the location to indicate this.
1834    Entry.second = SMLoc();
1835
1836    // If this type number has never been uttered, create it.
1837    if (Entry.first == 0)
1838      Entry.first = StructType::create(Context, Name);
1839    ResultTy = Entry.first;
1840    return false;
1841  }
1842
1843  // If the type starts with '<', then it is either a packed struct or a vector.
1844  bool isPacked = EatIfPresent(lltok::less);
1845
1846  // If we don't have a struct, then we have a random type alias, which we
1847  // accept for compatibility with old files.  These types are not allowed to be
1848  // forward referenced and not allowed to be recursive.
1849  if (Lex.getKind() != lltok::lbrace) {
1850    if (Entry.first)
1851      return Error(TypeLoc, "forward references to non-struct type");
1852
1853    ResultTy = 0;
1854    if (isPacked)
1855      return ParseArrayVectorType(ResultTy, true);
1856    return ParseType(ResultTy);
1857  }
1858
1859  // This type is being defined, so clear the location to indicate this.
1860  Entry.second = SMLoc();
1861
1862  // If this type number has never been uttered, create it.
1863  if (Entry.first == 0)
1864    Entry.first = StructType::create(Context, Name);
1865
1866  StructType *STy = cast<StructType>(Entry.first);
1867
1868  SmallVector<Type*, 8> Body;
1869  if (ParseStructBody(Body) ||
1870      (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
1871    return true;
1872
1873  STy->setBody(Body, isPacked);
1874  ResultTy = STy;
1875  return false;
1876}
1877
1878
1879/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1880///   StructType
1881///     ::= '{' '}'
1882///     ::= '{' Type (',' Type)* '}'
1883///     ::= '<' '{' '}' '>'
1884///     ::= '<' '{' Type (',' Type)* '}' '>'
1885bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
1886  assert(Lex.getKind() == lltok::lbrace);
1887  Lex.Lex(); // Consume the '{'
1888
1889  // Handle the empty struct.
1890  if (EatIfPresent(lltok::rbrace))
1891    return false;
1892
1893  LocTy EltTyLoc = Lex.getLoc();
1894  Type *Ty = 0;
1895  if (ParseType(Ty)) return true;
1896  Body.push_back(Ty);
1897
1898  if (!StructType::isValidElementType(Ty))
1899    return Error(EltTyLoc, "invalid element type for struct");
1900
1901  while (EatIfPresent(lltok::comma)) {
1902    EltTyLoc = Lex.getLoc();
1903    if (ParseType(Ty)) return true;
1904
1905    if (!StructType::isValidElementType(Ty))
1906      return Error(EltTyLoc, "invalid element type for struct");
1907
1908    Body.push_back(Ty);
1909  }
1910
1911  return ParseToken(lltok::rbrace, "expected '}' at end of struct");
1912}
1913
1914/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1915/// token has already been consumed.
1916///   Type
1917///     ::= '[' APSINTVAL 'x' Types ']'
1918///     ::= '<' APSINTVAL 'x' Types '>'
1919bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
1920  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1921      Lex.getAPSIntVal().getBitWidth() > 64)
1922    return TokError("expected number in address space");
1923
1924  LocTy SizeLoc = Lex.getLoc();
1925  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1926  Lex.Lex();
1927
1928  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1929      return true;
1930
1931  LocTy TypeLoc = Lex.getLoc();
1932  Type *EltTy = 0;
1933  if (ParseType(EltTy)) return true;
1934
1935  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1936                 "expected end of sequential type"))
1937    return true;
1938
1939  if (isVector) {
1940    if (Size == 0)
1941      return Error(SizeLoc, "zero element vector is illegal");
1942    if ((unsigned)Size != Size)
1943      return Error(SizeLoc, "size too large for vector");
1944    if (!VectorType::isValidElementType(EltTy))
1945      return Error(TypeLoc, "invalid vector element type");
1946    Result = VectorType::get(EltTy, unsigned(Size));
1947  } else {
1948    if (!ArrayType::isValidElementType(EltTy))
1949      return Error(TypeLoc, "invalid array element type");
1950    Result = ArrayType::get(EltTy, Size);
1951  }
1952  return false;
1953}
1954
1955//===----------------------------------------------------------------------===//
1956// Function Semantic Analysis.
1957//===----------------------------------------------------------------------===//
1958
1959LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1960                                             int functionNumber)
1961  : P(p), F(f), FunctionNumber(functionNumber) {
1962
1963  // Insert unnamed arguments into the NumberedVals list.
1964  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1965       AI != E; ++AI)
1966    if (!AI->hasName())
1967      NumberedVals.push_back(AI);
1968}
1969
1970LLParser::PerFunctionState::~PerFunctionState() {
1971  // If there were any forward referenced non-basicblock values, delete them.
1972  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1973       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1974    if (!isa<BasicBlock>(I->second.first)) {
1975      I->second.first->replaceAllUsesWith(
1976                           UndefValue::get(I->second.first->getType()));
1977      delete I->second.first;
1978      I->second.first = 0;
1979    }
1980
1981  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1982       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1983    if (!isa<BasicBlock>(I->second.first)) {
1984      I->second.first->replaceAllUsesWith(
1985                           UndefValue::get(I->second.first->getType()));
1986      delete I->second.first;
1987      I->second.first = 0;
1988    }
1989}
1990
1991bool LLParser::PerFunctionState::FinishFunction() {
1992  // Check to see if someone took the address of labels in this block.
1993  if (!P.ForwardRefBlockAddresses.empty()) {
1994    ValID FunctionID;
1995    if (!F.getName().empty()) {
1996      FunctionID.Kind = ValID::t_GlobalName;
1997      FunctionID.StrVal = F.getName();
1998    } else {
1999      FunctionID.Kind = ValID::t_GlobalID;
2000      FunctionID.UIntVal = FunctionNumber;
2001    }
2002
2003    std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
2004      FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
2005    if (FRBAI != P.ForwardRefBlockAddresses.end()) {
2006      // Resolve all these references.
2007      if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
2008        return true;
2009
2010      P.ForwardRefBlockAddresses.erase(FRBAI);
2011    }
2012  }
2013
2014  if (!ForwardRefVals.empty())
2015    return P.Error(ForwardRefVals.begin()->second.second,
2016                   "use of undefined value '%" + ForwardRefVals.begin()->first +
2017                   "'");
2018  if (!ForwardRefValIDs.empty())
2019    return P.Error(ForwardRefValIDs.begin()->second.second,
2020                   "use of undefined value '%" +
2021                   Twine(ForwardRefValIDs.begin()->first) + "'");
2022  return false;
2023}
2024
2025
2026/// GetVal - Get a value with the specified name or ID, creating a
2027/// forward reference record if needed.  This can return null if the value
2028/// exists but does not have the right type.
2029Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
2030                                          Type *Ty, LocTy Loc) {
2031  // Look this name up in the normal function symbol table.
2032  Value *Val = F.getValueSymbolTable().lookup(Name);
2033
2034  // If this is a forward reference for the value, see if we already created a
2035  // forward ref record.
2036  if (Val == 0) {
2037    std::map<std::string, std::pair<Value*, LocTy> >::iterator
2038      I = ForwardRefVals.find(Name);
2039    if (I != ForwardRefVals.end())
2040      Val = I->second.first;
2041  }
2042
2043  // If we have the value in the symbol table or fwd-ref table, return it.
2044  if (Val) {
2045    if (Val->getType() == Ty) return Val;
2046    if (Ty->isLabelTy())
2047      P.Error(Loc, "'%" + Name + "' is not a basic block");
2048    else
2049      P.Error(Loc, "'%" + Name + "' defined with type '" +
2050              getTypeString(Val->getType()) + "'");
2051    return 0;
2052  }
2053
2054  // Don't make placeholders with invalid type.
2055  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
2056    P.Error(Loc, "invalid use of a non-first-class type");
2057    return 0;
2058  }
2059
2060  // Otherwise, create a new forward reference for this value and remember it.
2061  Value *FwdVal;
2062  if (Ty->isLabelTy())
2063    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2064  else
2065    FwdVal = new Argument(Ty, Name);
2066
2067  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2068  return FwdVal;
2069}
2070
2071Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
2072                                          LocTy Loc) {
2073  // Look this name up in the normal function symbol table.
2074  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
2075
2076  // If this is a forward reference for the value, see if we already created a
2077  // forward ref record.
2078  if (Val == 0) {
2079    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
2080      I = ForwardRefValIDs.find(ID);
2081    if (I != ForwardRefValIDs.end())
2082      Val = I->second.first;
2083  }
2084
2085  // If we have the value in the symbol table or fwd-ref table, return it.
2086  if (Val) {
2087    if (Val->getType() == Ty) return Val;
2088    if (Ty->isLabelTy())
2089      P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2090    else
2091      P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2092              getTypeString(Val->getType()) + "'");
2093    return 0;
2094  }
2095
2096  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
2097    P.Error(Loc, "invalid use of a non-first-class type");
2098    return 0;
2099  }
2100
2101  // Otherwise, create a new forward reference for this value and remember it.
2102  Value *FwdVal;
2103  if (Ty->isLabelTy())
2104    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2105  else
2106    FwdVal = new Argument(Ty);
2107
2108  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2109  return FwdVal;
2110}
2111
2112/// SetInstName - After an instruction is parsed and inserted into its
2113/// basic block, this installs its name.
2114bool LLParser::PerFunctionState::SetInstName(int NameID,
2115                                             const std::string &NameStr,
2116                                             LocTy NameLoc, Instruction *Inst) {
2117  // If this instruction has void type, it cannot have a name or ID specified.
2118  if (Inst->getType()->isVoidTy()) {
2119    if (NameID != -1 || !NameStr.empty())
2120      return P.Error(NameLoc, "instructions returning void cannot have a name");
2121    return false;
2122  }
2123
2124  // If this was a numbered instruction, verify that the instruction is the
2125  // expected value and resolve any forward references.
2126  if (NameStr.empty()) {
2127    // If neither a name nor an ID was specified, just use the next ID.
2128    if (NameID == -1)
2129      NameID = NumberedVals.size();
2130
2131    if (unsigned(NameID) != NumberedVals.size())
2132      return P.Error(NameLoc, "instruction expected to be numbered '%" +
2133                     Twine(NumberedVals.size()) + "'");
2134
2135    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
2136      ForwardRefValIDs.find(NameID);
2137    if (FI != ForwardRefValIDs.end()) {
2138      if (FI->second.first->getType() != Inst->getType())
2139        return P.Error(NameLoc, "instruction forward referenced with type '" +
2140                       getTypeString(FI->second.first->getType()) + "'");
2141      FI->second.first->replaceAllUsesWith(Inst);
2142      delete FI->second.first;
2143      ForwardRefValIDs.erase(FI);
2144    }
2145
2146    NumberedVals.push_back(Inst);
2147    return false;
2148  }
2149
2150  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2151  std::map<std::string, std::pair<Value*, LocTy> >::iterator
2152    FI = ForwardRefVals.find(NameStr);
2153  if (FI != ForwardRefVals.end()) {
2154    if (FI->second.first->getType() != Inst->getType())
2155      return P.Error(NameLoc, "instruction forward referenced with type '" +
2156                     getTypeString(FI->second.first->getType()) + "'");
2157    FI->second.first->replaceAllUsesWith(Inst);
2158    delete FI->second.first;
2159    ForwardRefVals.erase(FI);
2160  }
2161
2162  // Set the name on the instruction.
2163  Inst->setName(NameStr);
2164
2165  if (Inst->getName() != NameStr)
2166    return P.Error(NameLoc, "multiple definition of local value named '" +
2167                   NameStr + "'");
2168  return false;
2169}
2170
2171/// GetBB - Get a basic block with the specified name or ID, creating a
2172/// forward reference record if needed.
2173BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2174                                              LocTy Loc) {
2175  return cast_or_null<BasicBlock>(GetVal(Name,
2176                                        Type::getLabelTy(F.getContext()), Loc));
2177}
2178
2179BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2180  return cast_or_null<BasicBlock>(GetVal(ID,
2181                                        Type::getLabelTy(F.getContext()), Loc));
2182}
2183
2184/// DefineBB - Define the specified basic block, which is either named or
2185/// unnamed.  If there is an error, this returns null otherwise it returns
2186/// the block being defined.
2187BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2188                                                 LocTy Loc) {
2189  BasicBlock *BB;
2190  if (Name.empty())
2191    BB = GetBB(NumberedVals.size(), Loc);
2192  else
2193    BB = GetBB(Name, Loc);
2194  if (BB == 0) return 0; // Already diagnosed error.
2195
2196  // Move the block to the end of the function.  Forward ref'd blocks are
2197  // inserted wherever they happen to be referenced.
2198  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2199
2200  // Remove the block from forward ref sets.
2201  if (Name.empty()) {
2202    ForwardRefValIDs.erase(NumberedVals.size());
2203    NumberedVals.push_back(BB);
2204  } else {
2205    // BB forward references are already in the function symbol table.
2206    ForwardRefVals.erase(Name);
2207  }
2208
2209  return BB;
2210}
2211
2212//===----------------------------------------------------------------------===//
2213// Constants.
2214//===----------------------------------------------------------------------===//
2215
2216/// ParseValID - Parse an abstract value that doesn't necessarily have a
2217/// type implied.  For example, if we parse "4" we don't know what integer type
2218/// it has.  The value will later be combined with its type and checked for
2219/// sanity.  PFS is used to convert function-local operands of metadata (since
2220/// metadata operands are not just parsed here but also converted to values).
2221/// PFS can be null when we are not parsing metadata values inside a function.
2222bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2223  ID.Loc = Lex.getLoc();
2224  switch (Lex.getKind()) {
2225  default: return TokError("expected value token");
2226  case lltok::GlobalID:  // @42
2227    ID.UIntVal = Lex.getUIntVal();
2228    ID.Kind = ValID::t_GlobalID;
2229    break;
2230  case lltok::GlobalVar:  // @foo
2231    ID.StrVal = Lex.getStrVal();
2232    ID.Kind = ValID::t_GlobalName;
2233    break;
2234  case lltok::LocalVarID:  // %42
2235    ID.UIntVal = Lex.getUIntVal();
2236    ID.Kind = ValID::t_LocalID;
2237    break;
2238  case lltok::LocalVar:  // %foo
2239    ID.StrVal = Lex.getStrVal();
2240    ID.Kind = ValID::t_LocalName;
2241    break;
2242  case lltok::exclaim:   // !42, !{...}, or !"foo"
2243    return ParseMetadataValue(ID, PFS);
2244  case lltok::APSInt:
2245    ID.APSIntVal = Lex.getAPSIntVal();
2246    ID.Kind = ValID::t_APSInt;
2247    break;
2248  case lltok::APFloat:
2249    ID.APFloatVal = Lex.getAPFloatVal();
2250    ID.Kind = ValID::t_APFloat;
2251    break;
2252  case lltok::kw_true:
2253    ID.ConstantVal = ConstantInt::getTrue(Context);
2254    ID.Kind = ValID::t_Constant;
2255    break;
2256  case lltok::kw_false:
2257    ID.ConstantVal = ConstantInt::getFalse(Context);
2258    ID.Kind = ValID::t_Constant;
2259    break;
2260  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2261  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2262  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2263
2264  case lltok::lbrace: {
2265    // ValID ::= '{' ConstVector '}'
2266    Lex.Lex();
2267    SmallVector<Constant*, 16> Elts;
2268    if (ParseGlobalValueVector(Elts) ||
2269        ParseToken(lltok::rbrace, "expected end of struct constant"))
2270      return true;
2271
2272    ID.ConstantStructElts = new Constant*[Elts.size()];
2273    ID.UIntVal = Elts.size();
2274    memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2275    ID.Kind = ValID::t_ConstantStruct;
2276    return false;
2277  }
2278  case lltok::less: {
2279    // ValID ::= '<' ConstVector '>'         --> Vector.
2280    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2281    Lex.Lex();
2282    bool isPackedStruct = EatIfPresent(lltok::lbrace);
2283
2284    SmallVector<Constant*, 16> Elts;
2285    LocTy FirstEltLoc = Lex.getLoc();
2286    if (ParseGlobalValueVector(Elts) ||
2287        (isPackedStruct &&
2288         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2289        ParseToken(lltok::greater, "expected end of constant"))
2290      return true;
2291
2292    if (isPackedStruct) {
2293      ID.ConstantStructElts = new Constant*[Elts.size()];
2294      memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2295      ID.UIntVal = Elts.size();
2296      ID.Kind = ValID::t_PackedConstantStruct;
2297      return false;
2298    }
2299
2300    if (Elts.empty())
2301      return Error(ID.Loc, "constant vector must not be empty");
2302
2303    if (!Elts[0]->getType()->isIntegerTy() &&
2304        !Elts[0]->getType()->isFloatingPointTy() &&
2305        !Elts[0]->getType()->isPointerTy())
2306      return Error(FirstEltLoc,
2307            "vector elements must have integer, pointer or floating point type");
2308
2309    // Verify that all the vector elements have the same type.
2310    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2311      if (Elts[i]->getType() != Elts[0]->getType())
2312        return Error(FirstEltLoc,
2313                     "vector element #" + Twine(i) +
2314                    " is not of type '" + getTypeString(Elts[0]->getType()));
2315
2316    ID.ConstantVal = ConstantVector::get(Elts);
2317    ID.Kind = ValID::t_Constant;
2318    return false;
2319  }
2320  case lltok::lsquare: {   // Array Constant
2321    Lex.Lex();
2322    SmallVector<Constant*, 16> Elts;
2323    LocTy FirstEltLoc = Lex.getLoc();
2324    if (ParseGlobalValueVector(Elts) ||
2325        ParseToken(lltok::rsquare, "expected end of array constant"))
2326      return true;
2327
2328    // Handle empty element.
2329    if (Elts.empty()) {
2330      // Use undef instead of an array because it's inconvenient to determine
2331      // the element type at this point, there being no elements to examine.
2332      ID.Kind = ValID::t_EmptyArray;
2333      return false;
2334    }
2335
2336    if (!Elts[0]->getType()->isFirstClassType())
2337      return Error(FirstEltLoc, "invalid array element type: " +
2338                   getTypeString(Elts[0]->getType()));
2339
2340    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2341
2342    // Verify all elements are correct type!
2343    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2344      if (Elts[i]->getType() != Elts[0]->getType())
2345        return Error(FirstEltLoc,
2346                     "array element #" + Twine(i) +
2347                     " is not of type '" + getTypeString(Elts[0]->getType()));
2348    }
2349
2350    ID.ConstantVal = ConstantArray::get(ATy, Elts);
2351    ID.Kind = ValID::t_Constant;
2352    return false;
2353  }
2354  case lltok::kw_c:  // c "foo"
2355    Lex.Lex();
2356    ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2357                                                  false);
2358    if (ParseToken(lltok::StringConstant, "expected string")) return true;
2359    ID.Kind = ValID::t_Constant;
2360    return false;
2361
2362  case lltok::kw_asm: {
2363    // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2364    //             STRINGCONSTANT
2365    bool HasSideEffect, AlignStack, AsmDialect;
2366    Lex.Lex();
2367    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2368        ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2369        ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2370        ParseStringConstant(ID.StrVal) ||
2371        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2372        ParseToken(lltok::StringConstant, "expected constraint string"))
2373      return true;
2374    ID.StrVal2 = Lex.getStrVal();
2375    ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2376      (unsigned(AsmDialect)<<2);
2377    ID.Kind = ValID::t_InlineAsm;
2378    return false;
2379  }
2380
2381  case lltok::kw_blockaddress: {
2382    // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2383    Lex.Lex();
2384
2385    ValID Fn, Label;
2386    LocTy FnLoc, LabelLoc;
2387
2388    if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2389        ParseValID(Fn) ||
2390        ParseToken(lltok::comma, "expected comma in block address expression")||
2391        ParseValID(Label) ||
2392        ParseToken(lltok::rparen, "expected ')' in block address expression"))
2393      return true;
2394
2395    if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2396      return Error(Fn.Loc, "expected function name in blockaddress");
2397    if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2398      return Error(Label.Loc, "expected basic block name in blockaddress");
2399
2400    // Make a global variable as a placeholder for this reference.
2401    GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2402                                           false, GlobalValue::InternalLinkage,
2403                                                0, "");
2404    ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2405    ID.ConstantVal = FwdRef;
2406    ID.Kind = ValID::t_Constant;
2407    return false;
2408  }
2409
2410  case lltok::kw_trunc:
2411  case lltok::kw_zext:
2412  case lltok::kw_sext:
2413  case lltok::kw_fptrunc:
2414  case lltok::kw_fpext:
2415  case lltok::kw_bitcast:
2416  case lltok::kw_uitofp:
2417  case lltok::kw_sitofp:
2418  case lltok::kw_fptoui:
2419  case lltok::kw_fptosi:
2420  case lltok::kw_inttoptr:
2421  case lltok::kw_ptrtoint: {
2422    unsigned Opc = Lex.getUIntVal();
2423    Type *DestTy = 0;
2424    Constant *SrcVal;
2425    Lex.Lex();
2426    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2427        ParseGlobalTypeAndValue(SrcVal) ||
2428        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2429        ParseType(DestTy) ||
2430        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2431      return true;
2432    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2433      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2434                   getTypeString(SrcVal->getType()) + "' to '" +
2435                   getTypeString(DestTy) + "'");
2436    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2437                                                 SrcVal, DestTy);
2438    ID.Kind = ValID::t_Constant;
2439    return false;
2440  }
2441  case lltok::kw_extractvalue: {
2442    Lex.Lex();
2443    Constant *Val;
2444    SmallVector<unsigned, 4> Indices;
2445    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2446        ParseGlobalTypeAndValue(Val) ||
2447        ParseIndexList(Indices) ||
2448        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2449      return true;
2450
2451    if (!Val->getType()->isAggregateType())
2452      return Error(ID.Loc, "extractvalue operand must be aggregate type");
2453    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2454      return Error(ID.Loc, "invalid indices for extractvalue");
2455    ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2456    ID.Kind = ValID::t_Constant;
2457    return false;
2458  }
2459  case lltok::kw_insertvalue: {
2460    Lex.Lex();
2461    Constant *Val0, *Val1;
2462    SmallVector<unsigned, 4> Indices;
2463    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2464        ParseGlobalTypeAndValue(Val0) ||
2465        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2466        ParseGlobalTypeAndValue(Val1) ||
2467        ParseIndexList(Indices) ||
2468        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2469      return true;
2470    if (!Val0->getType()->isAggregateType())
2471      return Error(ID.Loc, "insertvalue operand must be aggregate type");
2472    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
2473      return Error(ID.Loc, "invalid indices for insertvalue");
2474    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2475    ID.Kind = ValID::t_Constant;
2476    return false;
2477  }
2478  case lltok::kw_icmp:
2479  case lltok::kw_fcmp: {
2480    unsigned PredVal, Opc = Lex.getUIntVal();
2481    Constant *Val0, *Val1;
2482    Lex.Lex();
2483    if (ParseCmpPredicate(PredVal, Opc) ||
2484        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2485        ParseGlobalTypeAndValue(Val0) ||
2486        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2487        ParseGlobalTypeAndValue(Val1) ||
2488        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2489      return true;
2490
2491    if (Val0->getType() != Val1->getType())
2492      return Error(ID.Loc, "compare operands must have the same type");
2493
2494    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2495
2496    if (Opc == Instruction::FCmp) {
2497      if (!Val0->getType()->isFPOrFPVectorTy())
2498        return Error(ID.Loc, "fcmp requires floating point operands");
2499      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2500    } else {
2501      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2502      if (!Val0->getType()->isIntOrIntVectorTy() &&
2503          !Val0->getType()->getScalarType()->isPointerTy())
2504        return Error(ID.Loc, "icmp requires pointer or integer operands");
2505      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2506    }
2507    ID.Kind = ValID::t_Constant;
2508    return false;
2509  }
2510
2511  // Binary Operators.
2512  case lltok::kw_add:
2513  case lltok::kw_fadd:
2514  case lltok::kw_sub:
2515  case lltok::kw_fsub:
2516  case lltok::kw_mul:
2517  case lltok::kw_fmul:
2518  case lltok::kw_udiv:
2519  case lltok::kw_sdiv:
2520  case lltok::kw_fdiv:
2521  case lltok::kw_urem:
2522  case lltok::kw_srem:
2523  case lltok::kw_frem:
2524  case lltok::kw_shl:
2525  case lltok::kw_lshr:
2526  case lltok::kw_ashr: {
2527    bool NUW = false;
2528    bool NSW = false;
2529    bool Exact = false;
2530    unsigned Opc = Lex.getUIntVal();
2531    Constant *Val0, *Val1;
2532    Lex.Lex();
2533    LocTy ModifierLoc = Lex.getLoc();
2534    if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2535        Opc == Instruction::Mul || Opc == Instruction::Shl) {
2536      if (EatIfPresent(lltok::kw_nuw))
2537        NUW = true;
2538      if (EatIfPresent(lltok::kw_nsw)) {
2539        NSW = true;
2540        if (EatIfPresent(lltok::kw_nuw))
2541          NUW = true;
2542      }
2543    } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2544               Opc == Instruction::LShr || Opc == Instruction::AShr) {
2545      if (EatIfPresent(lltok::kw_exact))
2546        Exact = true;
2547    }
2548    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2549        ParseGlobalTypeAndValue(Val0) ||
2550        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2551        ParseGlobalTypeAndValue(Val1) ||
2552        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2553      return true;
2554    if (Val0->getType() != Val1->getType())
2555      return Error(ID.Loc, "operands of constexpr must have same type");
2556    if (!Val0->getType()->isIntOrIntVectorTy()) {
2557      if (NUW)
2558        return Error(ModifierLoc, "nuw only applies to integer operations");
2559      if (NSW)
2560        return Error(ModifierLoc, "nsw only applies to integer operations");
2561    }
2562    // Check that the type is valid for the operator.
2563    switch (Opc) {
2564    case Instruction::Add:
2565    case Instruction::Sub:
2566    case Instruction::Mul:
2567    case Instruction::UDiv:
2568    case Instruction::SDiv:
2569    case Instruction::URem:
2570    case Instruction::SRem:
2571    case Instruction::Shl:
2572    case Instruction::AShr:
2573    case Instruction::LShr:
2574      if (!Val0->getType()->isIntOrIntVectorTy())
2575        return Error(ID.Loc, "constexpr requires integer operands");
2576      break;
2577    case Instruction::FAdd:
2578    case Instruction::FSub:
2579    case Instruction::FMul:
2580    case Instruction::FDiv:
2581    case Instruction::FRem:
2582      if (!Val0->getType()->isFPOrFPVectorTy())
2583        return Error(ID.Loc, "constexpr requires fp operands");
2584      break;
2585    default: llvm_unreachable("Unknown binary operator!");
2586    }
2587    unsigned Flags = 0;
2588    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2589    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2590    if (Exact) Flags |= PossiblyExactOperator::IsExact;
2591    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2592    ID.ConstantVal = C;
2593    ID.Kind = ValID::t_Constant;
2594    return false;
2595  }
2596
2597  // Logical Operations
2598  case lltok::kw_and:
2599  case lltok::kw_or:
2600  case lltok::kw_xor: {
2601    unsigned Opc = Lex.getUIntVal();
2602    Constant *Val0, *Val1;
2603    Lex.Lex();
2604    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2605        ParseGlobalTypeAndValue(Val0) ||
2606        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2607        ParseGlobalTypeAndValue(Val1) ||
2608        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2609      return true;
2610    if (Val0->getType() != Val1->getType())
2611      return Error(ID.Loc, "operands of constexpr must have same type");
2612    if (!Val0->getType()->isIntOrIntVectorTy())
2613      return Error(ID.Loc,
2614                   "constexpr requires integer or integer vector operands");
2615    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2616    ID.Kind = ValID::t_Constant;
2617    return false;
2618  }
2619
2620  case lltok::kw_getelementptr:
2621  case lltok::kw_shufflevector:
2622  case lltok::kw_insertelement:
2623  case lltok::kw_extractelement:
2624  case lltok::kw_select: {
2625    unsigned Opc = Lex.getUIntVal();
2626    SmallVector<Constant*, 16> Elts;
2627    bool InBounds = false;
2628    Lex.Lex();
2629    if (Opc == Instruction::GetElementPtr)
2630      InBounds = EatIfPresent(lltok::kw_inbounds);
2631    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2632        ParseGlobalValueVector(Elts) ||
2633        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2634      return true;
2635
2636    if (Opc == Instruction::GetElementPtr) {
2637      if (Elts.size() == 0 ||
2638          !Elts[0]->getType()->getScalarType()->isPointerTy())
2639        return Error(ID.Loc, "getelementptr requires pointer operand");
2640
2641      ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2642      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices))
2643        return Error(ID.Loc, "invalid indices for getelementptr");
2644      ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices,
2645                                                      InBounds);
2646    } else if (Opc == Instruction::Select) {
2647      if (Elts.size() != 3)
2648        return Error(ID.Loc, "expected three operands to select");
2649      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2650                                                              Elts[2]))
2651        return Error(ID.Loc, Reason);
2652      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2653    } else if (Opc == Instruction::ShuffleVector) {
2654      if (Elts.size() != 3)
2655        return Error(ID.Loc, "expected three operands to shufflevector");
2656      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2657        return Error(ID.Loc, "invalid operands to shufflevector");
2658      ID.ConstantVal =
2659                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2660    } else if (Opc == Instruction::ExtractElement) {
2661      if (Elts.size() != 2)
2662        return Error(ID.Loc, "expected two operands to extractelement");
2663      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2664        return Error(ID.Loc, "invalid extractelement operands");
2665      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2666    } else {
2667      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2668      if (Elts.size() != 3)
2669      return Error(ID.Loc, "expected three operands to insertelement");
2670      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2671        return Error(ID.Loc, "invalid insertelement operands");
2672      ID.ConstantVal =
2673                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2674    }
2675
2676    ID.Kind = ValID::t_Constant;
2677    return false;
2678  }
2679  }
2680
2681  Lex.Lex();
2682  return false;
2683}
2684
2685/// ParseGlobalValue - Parse a global value with the specified type.
2686bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
2687  C = 0;
2688  ValID ID;
2689  Value *V = NULL;
2690  bool Parsed = ParseValID(ID) ||
2691                ConvertValIDToValue(Ty, ID, V, NULL);
2692  if (V && !(C = dyn_cast<Constant>(V)))
2693    return Error(ID.Loc, "global values must be constants");
2694  return Parsed;
2695}
2696
2697bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2698  Type *Ty = 0;
2699  return ParseType(Ty) ||
2700         ParseGlobalValue(Ty, V);
2701}
2702
2703/// ParseGlobalValueVector
2704///   ::= /*empty*/
2705///   ::= TypeAndValue (',' TypeAndValue)*
2706bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2707  // Empty list.
2708  if (Lex.getKind() == lltok::rbrace ||
2709      Lex.getKind() == lltok::rsquare ||
2710      Lex.getKind() == lltok::greater ||
2711      Lex.getKind() == lltok::rparen)
2712    return false;
2713
2714  Constant *C;
2715  if (ParseGlobalTypeAndValue(C)) return true;
2716  Elts.push_back(C);
2717
2718  while (EatIfPresent(lltok::comma)) {
2719    if (ParseGlobalTypeAndValue(C)) return true;
2720    Elts.push_back(C);
2721  }
2722
2723  return false;
2724}
2725
2726bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
2727  assert(Lex.getKind() == lltok::lbrace);
2728  Lex.Lex();
2729
2730  SmallVector<Value*, 16> Elts;
2731  if (ParseMDNodeVector(Elts, PFS) ||
2732      ParseToken(lltok::rbrace, "expected end of metadata node"))
2733    return true;
2734
2735  ID.MDNodeVal = MDNode::get(Context, Elts);
2736  ID.Kind = ValID::t_MDNode;
2737  return false;
2738}
2739
2740/// ParseMetadataValue
2741///  ::= !42
2742///  ::= !{...}
2743///  ::= !"string"
2744bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
2745  assert(Lex.getKind() == lltok::exclaim);
2746  Lex.Lex();
2747
2748  // MDNode:
2749  // !{ ... }
2750  if (Lex.getKind() == lltok::lbrace)
2751    return ParseMetadataListValue(ID, PFS);
2752
2753  // Standalone metadata reference
2754  // !42
2755  if (Lex.getKind() == lltok::APSInt) {
2756    if (ParseMDNodeID(ID.MDNodeVal)) return true;
2757    ID.Kind = ValID::t_MDNode;
2758    return false;
2759  }
2760
2761  // MDString:
2762  //   ::= '!' STRINGCONSTANT
2763  if (ParseMDString(ID.MDStringVal)) return true;
2764  ID.Kind = ValID::t_MDString;
2765  return false;
2766}
2767
2768
2769//===----------------------------------------------------------------------===//
2770// Function Parsing.
2771//===----------------------------------------------------------------------===//
2772
2773bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
2774                                   PerFunctionState *PFS) {
2775  if (Ty->isFunctionTy())
2776    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2777
2778  switch (ID.Kind) {
2779  case ValID::t_LocalID:
2780    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2781    V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2782    return (V == 0);
2783  case ValID::t_LocalName:
2784    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2785    V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2786    return (V == 0);
2787  case ValID::t_InlineAsm: {
2788    PointerType *PTy = dyn_cast<PointerType>(Ty);
2789    FunctionType *FTy =
2790      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2791    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2792      return Error(ID.Loc, "invalid type for inline asm constraint string");
2793    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1,
2794                       (ID.UIntVal>>1)&1, (InlineAsm::AsmDialect(ID.UIntVal>>2)));
2795    return false;
2796  }
2797  case ValID::t_MDNode:
2798    if (!Ty->isMetadataTy())
2799      return Error(ID.Loc, "metadata value must have metadata type");
2800    V = ID.MDNodeVal;
2801    return false;
2802  case ValID::t_MDString:
2803    if (!Ty->isMetadataTy())
2804      return Error(ID.Loc, "metadata value must have metadata type");
2805    V = ID.MDStringVal;
2806    return false;
2807  case ValID::t_GlobalName:
2808    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2809    return V == 0;
2810  case ValID::t_GlobalID:
2811    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2812    return V == 0;
2813  case ValID::t_APSInt:
2814    if (!Ty->isIntegerTy())
2815      return Error(ID.Loc, "integer constant must have integer type");
2816    ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2817    V = ConstantInt::get(Context, ID.APSIntVal);
2818    return false;
2819  case ValID::t_APFloat:
2820    if (!Ty->isFloatingPointTy() ||
2821        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2822      return Error(ID.Loc, "floating point constant invalid for type");
2823
2824    // The lexer has no type info, so builds all half, float, and double FP
2825    // constants as double.  Fix this here.  Long double does not need this.
2826    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
2827      bool Ignored;
2828      if (Ty->isHalfTy())
2829        ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
2830                              &Ignored);
2831      else if (Ty->isFloatTy())
2832        ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2833                              &Ignored);
2834    }
2835    V = ConstantFP::get(Context, ID.APFloatVal);
2836
2837    if (V->getType() != Ty)
2838      return Error(ID.Loc, "floating point constant does not have type '" +
2839                   getTypeString(Ty) + "'");
2840
2841    return false;
2842  case ValID::t_Null:
2843    if (!Ty->isPointerTy())
2844      return Error(ID.Loc, "null must be a pointer type");
2845    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2846    return false;
2847  case ValID::t_Undef:
2848    // FIXME: LabelTy should not be a first-class type.
2849    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2850      return Error(ID.Loc, "invalid type for undef constant");
2851    V = UndefValue::get(Ty);
2852    return false;
2853  case ValID::t_EmptyArray:
2854    if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2855      return Error(ID.Loc, "invalid empty array initializer");
2856    V = UndefValue::get(Ty);
2857    return false;
2858  case ValID::t_Zero:
2859    // FIXME: LabelTy should not be a first-class type.
2860    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2861      return Error(ID.Loc, "invalid type for null constant");
2862    V = Constant::getNullValue(Ty);
2863    return false;
2864  case ValID::t_Constant:
2865    if (ID.ConstantVal->getType() != Ty)
2866      return Error(ID.Loc, "constant expression type mismatch");
2867
2868    V = ID.ConstantVal;
2869    return false;
2870  case ValID::t_ConstantStruct:
2871  case ValID::t_PackedConstantStruct:
2872    if (StructType *ST = dyn_cast<StructType>(Ty)) {
2873      if (ST->getNumElements() != ID.UIntVal)
2874        return Error(ID.Loc,
2875                     "initializer with struct type has wrong # elements");
2876      if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
2877        return Error(ID.Loc, "packed'ness of initializer and type don't match");
2878
2879      // Verify that the elements are compatible with the structtype.
2880      for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
2881        if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
2882          return Error(ID.Loc, "element " + Twine(i) +
2883                    " of struct initializer doesn't match struct element type");
2884
2885      V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts,
2886                                               ID.UIntVal));
2887    } else
2888      return Error(ID.Loc, "constant expression type mismatch");
2889    return false;
2890  }
2891  llvm_unreachable("Invalid ValID");
2892}
2893
2894bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
2895  V = 0;
2896  ValID ID;
2897  return ParseValID(ID, PFS) ||
2898         ConvertValIDToValue(Ty, ID, V, PFS);
2899}
2900
2901bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
2902  Type *Ty = 0;
2903  return ParseType(Ty) ||
2904         ParseValue(Ty, V, PFS);
2905}
2906
2907bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2908                                      PerFunctionState &PFS) {
2909  Value *V;
2910  Loc = Lex.getLoc();
2911  if (ParseTypeAndValue(V, PFS)) return true;
2912  if (!isa<BasicBlock>(V))
2913    return Error(Loc, "expected a basic block");
2914  BB = cast<BasicBlock>(V);
2915  return false;
2916}
2917
2918
2919/// FunctionHeader
2920///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2921///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2922///       OptionalAlign OptGC
2923bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2924  // Parse the linkage.
2925  LocTy LinkageLoc = Lex.getLoc();
2926  unsigned Linkage;
2927
2928  unsigned Visibility;
2929  AttrBuilder RetAttrs;
2930  CallingConv::ID CC;
2931  Type *RetType = 0;
2932  LocTy RetTypeLoc = Lex.getLoc();
2933  if (ParseOptionalLinkage(Linkage) ||
2934      ParseOptionalVisibility(Visibility) ||
2935      ParseOptionalCallingConv(CC) ||
2936      ParseOptionalReturnAttrs(RetAttrs) ||
2937      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2938    return true;
2939
2940  // Verify that the linkage is ok.
2941  switch ((GlobalValue::LinkageTypes)Linkage) {
2942  case GlobalValue::ExternalLinkage:
2943    break; // always ok.
2944  case GlobalValue::DLLImportLinkage:
2945  case GlobalValue::ExternalWeakLinkage:
2946    if (isDefine)
2947      return Error(LinkageLoc, "invalid linkage for function definition");
2948    break;
2949  case GlobalValue::PrivateLinkage:
2950  case GlobalValue::LinkerPrivateLinkage:
2951  case GlobalValue::LinkerPrivateWeakLinkage:
2952  case GlobalValue::InternalLinkage:
2953  case GlobalValue::AvailableExternallyLinkage:
2954  case GlobalValue::LinkOnceAnyLinkage:
2955  case GlobalValue::LinkOnceODRLinkage:
2956  case GlobalValue::LinkOnceODRAutoHideLinkage:
2957  case GlobalValue::WeakAnyLinkage:
2958  case GlobalValue::WeakODRLinkage:
2959  case GlobalValue::DLLExportLinkage:
2960    if (!isDefine)
2961      return Error(LinkageLoc, "invalid linkage for function declaration");
2962    break;
2963  case GlobalValue::AppendingLinkage:
2964  case GlobalValue::CommonLinkage:
2965    return Error(LinkageLoc, "invalid function linkage type");
2966  }
2967
2968  if (!FunctionType::isValidReturnType(RetType))
2969    return Error(RetTypeLoc, "invalid function return type");
2970
2971  LocTy NameLoc = Lex.getLoc();
2972
2973  std::string FunctionName;
2974  if (Lex.getKind() == lltok::GlobalVar) {
2975    FunctionName = Lex.getStrVal();
2976  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2977    unsigned NameID = Lex.getUIntVal();
2978
2979    if (NameID != NumberedVals.size())
2980      return TokError("function expected to be numbered '%" +
2981                      Twine(NumberedVals.size()) + "'");
2982  } else {
2983    return TokError("expected function name");
2984  }
2985
2986  Lex.Lex();
2987
2988  if (Lex.getKind() != lltok::lparen)
2989    return TokError("expected '(' in function argument list");
2990
2991  SmallVector<ArgInfo, 8> ArgList;
2992  bool isVarArg;
2993  AttrBuilder FuncAttrs;
2994  std::vector<unsigned> FwdRefAttrGrps;
2995  LocTy BuiltinLoc;
2996  std::string Section;
2997  unsigned Alignment;
2998  std::string GC;
2999  bool UnnamedAddr;
3000  LocTy UnnamedAddrLoc;
3001
3002  if (ParseArgumentList(ArgList, isVarArg) ||
3003      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
3004                         &UnnamedAddrLoc) ||
3005      ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
3006                                 BuiltinLoc) ||
3007      (EatIfPresent(lltok::kw_section) &&
3008       ParseStringConstant(Section)) ||
3009      ParseOptionalAlignment(Alignment) ||
3010      (EatIfPresent(lltok::kw_gc) &&
3011       ParseStringConstant(GC)))
3012    return true;
3013
3014  if (FuncAttrs.contains(Attribute::Builtin))
3015    return Error(BuiltinLoc, "'builtin' attribute not valid on function");
3016
3017  // If the alignment was parsed as an attribute, move to the alignment field.
3018  if (FuncAttrs.hasAlignmentAttr()) {
3019    Alignment = FuncAttrs.getAlignment();
3020    FuncAttrs.removeAttribute(Attribute::Alignment);
3021  }
3022
3023  // Okay, if we got here, the function is syntactically valid.  Convert types
3024  // and do semantic checks.
3025  std::vector<Type*> ParamTypeList;
3026  SmallVector<AttributeSet, 8> Attrs;
3027
3028  if (RetAttrs.hasAttributes())
3029    Attrs.push_back(AttributeSet::get(RetType->getContext(),
3030                                      AttributeSet::ReturnIndex,
3031                                      RetAttrs));
3032
3033  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3034    ParamTypeList.push_back(ArgList[i].Ty);
3035    if (ArgList[i].Attrs.hasAttributes(i + 1)) {
3036      AttrBuilder B(ArgList[i].Attrs, i + 1);
3037      Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
3038    }
3039  }
3040
3041  if (FuncAttrs.hasAttributes())
3042    Attrs.push_back(AttributeSet::get(RetType->getContext(),
3043                                      AttributeSet::FunctionIndex,
3044                                      FuncAttrs));
3045
3046  AttributeSet PAL = AttributeSet::get(Context, Attrs);
3047
3048  if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
3049    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
3050
3051  FunctionType *FT =
3052    FunctionType::get(RetType, ParamTypeList, isVarArg);
3053  PointerType *PFT = PointerType::getUnqual(FT);
3054
3055  Fn = 0;
3056  if (!FunctionName.empty()) {
3057    // If this was a definition of a forward reference, remove the definition
3058    // from the forward reference table and fill in the forward ref.
3059    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
3060      ForwardRefVals.find(FunctionName);
3061    if (FRVI != ForwardRefVals.end()) {
3062      Fn = M->getFunction(FunctionName);
3063      if (!Fn)
3064        return Error(FRVI->second.second, "invalid forward reference to "
3065                     "function as global value!");
3066      if (Fn->getType() != PFT)
3067        return Error(FRVI->second.second, "invalid forward reference to "
3068                     "function '" + FunctionName + "' with wrong type!");
3069
3070      ForwardRefVals.erase(FRVI);
3071    } else if ((Fn = M->getFunction(FunctionName))) {
3072      // Reject redefinitions.
3073      return Error(NameLoc, "invalid redefinition of function '" +
3074                   FunctionName + "'");
3075    } else if (M->getNamedValue(FunctionName)) {
3076      return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
3077    }
3078
3079  } else {
3080    // If this is a definition of a forward referenced function, make sure the
3081    // types agree.
3082    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
3083      = ForwardRefValIDs.find(NumberedVals.size());
3084    if (I != ForwardRefValIDs.end()) {
3085      Fn = cast<Function>(I->second.first);
3086      if (Fn->getType() != PFT)
3087        return Error(NameLoc, "type of definition and forward reference of '@" +
3088                     Twine(NumberedVals.size()) + "' disagree");
3089      ForwardRefValIDs.erase(I);
3090    }
3091  }
3092
3093  if (Fn == 0)
3094    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
3095  else // Move the forward-reference to the correct spot in the module.
3096    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
3097
3098  if (FunctionName.empty())
3099    NumberedVals.push_back(Fn);
3100
3101  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
3102  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
3103  Fn->setCallingConv(CC);
3104  Fn->setAttributes(PAL);
3105  Fn->setUnnamedAddr(UnnamedAddr);
3106  Fn->setAlignment(Alignment);
3107  Fn->setSection(Section);
3108  if (!GC.empty()) Fn->setGC(GC.c_str());
3109  ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
3110
3111  // Add all of the arguments we parsed to the function.
3112  Function::arg_iterator ArgIt = Fn->arg_begin();
3113  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
3114    // If the argument has a name, insert it into the argument symbol table.
3115    if (ArgList[i].Name.empty()) continue;
3116
3117    // Set the name, if it conflicted, it will be auto-renamed.
3118    ArgIt->setName(ArgList[i].Name);
3119
3120    if (ArgIt->getName() != ArgList[i].Name)
3121      return Error(ArgList[i].Loc, "redefinition of argument '%" +
3122                   ArgList[i].Name + "'");
3123  }
3124
3125  return false;
3126}
3127
3128
3129/// ParseFunctionBody
3130///   ::= '{' BasicBlock+ '}'
3131///
3132bool LLParser::ParseFunctionBody(Function &Fn) {
3133  if (Lex.getKind() != lltok::lbrace)
3134    return TokError("expected '{' in function body");
3135  Lex.Lex();  // eat the {.
3136
3137  int FunctionNumber = -1;
3138  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
3139
3140  PerFunctionState PFS(*this, Fn, FunctionNumber);
3141
3142  // We need at least one basic block.
3143  if (Lex.getKind() == lltok::rbrace)
3144    return TokError("function body requires at least one basic block");
3145
3146  while (Lex.getKind() != lltok::rbrace)
3147    if (ParseBasicBlock(PFS)) return true;
3148
3149  // Eat the }.
3150  Lex.Lex();
3151
3152  // Verify function is ok.
3153  return PFS.FinishFunction();
3154}
3155
3156/// ParseBasicBlock
3157///   ::= LabelStr? Instruction*
3158bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
3159  // If this basic block starts out with a name, remember it.
3160  std::string Name;
3161  LocTy NameLoc = Lex.getLoc();
3162  if (Lex.getKind() == lltok::LabelStr) {
3163    Name = Lex.getStrVal();
3164    Lex.Lex();
3165  }
3166
3167  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
3168  if (BB == 0) return true;
3169
3170  std::string NameStr;
3171
3172  // Parse the instructions in this block until we get a terminator.
3173  Instruction *Inst;
3174  SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
3175  do {
3176    // This instruction may have three possibilities for a name: a) none
3177    // specified, b) name specified "%foo =", c) number specified: "%4 =".
3178    LocTy NameLoc = Lex.getLoc();
3179    int NameID = -1;
3180    NameStr = "";
3181
3182    if (Lex.getKind() == lltok::LocalVarID) {
3183      NameID = Lex.getUIntVal();
3184      Lex.Lex();
3185      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
3186        return true;
3187    } else if (Lex.getKind() == lltok::LocalVar) {
3188      NameStr = Lex.getStrVal();
3189      Lex.Lex();
3190      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
3191        return true;
3192    }
3193
3194    switch (ParseInstruction(Inst, BB, PFS)) {
3195    default: llvm_unreachable("Unknown ParseInstruction result!");
3196    case InstError: return true;
3197    case InstNormal:
3198      BB->getInstList().push_back(Inst);
3199
3200      // With a normal result, we check to see if the instruction is followed by
3201      // a comma and metadata.
3202      if (EatIfPresent(lltok::comma))
3203        if (ParseInstructionMetadata(Inst, &PFS))
3204          return true;
3205      break;
3206    case InstExtraComma:
3207      BB->getInstList().push_back(Inst);
3208
3209      // If the instruction parser ate an extra comma at the end of it, it
3210      // *must* be followed by metadata.
3211      if (ParseInstructionMetadata(Inst, &PFS))
3212        return true;
3213      break;
3214    }
3215
3216    // Set the name on the instruction.
3217    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
3218  } while (!isa<TerminatorInst>(Inst));
3219
3220  return false;
3221}
3222
3223//===----------------------------------------------------------------------===//
3224// Instruction Parsing.
3225//===----------------------------------------------------------------------===//
3226
3227/// ParseInstruction - Parse one of the many different instructions.
3228///
3229int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
3230                               PerFunctionState &PFS) {
3231  lltok::Kind Token = Lex.getKind();
3232  if (Token == lltok::Eof)
3233    return TokError("found end of file when expecting more instructions");
3234  LocTy Loc = Lex.getLoc();
3235  unsigned KeywordVal = Lex.getUIntVal();
3236  Lex.Lex();  // Eat the keyword.
3237
3238  switch (Token) {
3239  default:                    return Error(Loc, "expected instruction opcode");
3240  // Terminator Instructions.
3241  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
3242  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
3243  case lltok::kw_br:          return ParseBr(Inst, PFS);
3244  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
3245  case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
3246  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
3247  case lltok::kw_resume:      return ParseResume(Inst, PFS);
3248  // Binary Operators.
3249  case lltok::kw_add:
3250  case lltok::kw_sub:
3251  case lltok::kw_mul:
3252  case lltok::kw_shl: {
3253    bool NUW = EatIfPresent(lltok::kw_nuw);
3254    bool NSW = EatIfPresent(lltok::kw_nsw);
3255    if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
3256
3257    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
3258
3259    if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
3260    if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
3261    return false;
3262  }
3263  case lltok::kw_fadd:
3264  case lltok::kw_fsub:
3265  case lltok::kw_fmul:
3266  case lltok::kw_fdiv:
3267  case lltok::kw_frem: {
3268    FastMathFlags FMF = EatFastMathFlagsIfPresent();
3269    int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
3270    if (Res != 0)
3271      return Res;
3272    if (FMF.any())
3273      Inst->setFastMathFlags(FMF);
3274    return 0;
3275  }
3276
3277  case lltok::kw_sdiv:
3278  case lltok::kw_udiv:
3279  case lltok::kw_lshr:
3280  case lltok::kw_ashr: {
3281    bool Exact = EatIfPresent(lltok::kw_exact);
3282
3283    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
3284    if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
3285    return false;
3286  }
3287
3288  case lltok::kw_urem:
3289  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
3290  case lltok::kw_and:
3291  case lltok::kw_or:
3292  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
3293  case lltok::kw_icmp:
3294  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
3295  // Casts.
3296  case lltok::kw_trunc:
3297  case lltok::kw_zext:
3298  case lltok::kw_sext:
3299  case lltok::kw_fptrunc:
3300  case lltok::kw_fpext:
3301  case lltok::kw_bitcast:
3302  case lltok::kw_uitofp:
3303  case lltok::kw_sitofp:
3304  case lltok::kw_fptoui:
3305  case lltok::kw_fptosi:
3306  case lltok::kw_inttoptr:
3307  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
3308  // Other.
3309  case lltok::kw_select:         return ParseSelect(Inst, PFS);
3310  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
3311  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
3312  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
3313  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
3314  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
3315  case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
3316  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
3317  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
3318  // Memory.
3319  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
3320  case lltok::kw_load:           return ParseLoad(Inst, PFS);
3321  case lltok::kw_store:          return ParseStore(Inst, PFS);
3322  case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
3323  case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
3324  case lltok::kw_fence:          return ParseFence(Inst, PFS);
3325  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
3326  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
3327  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
3328  }
3329}
3330
3331/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
3332bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
3333  if (Opc == Instruction::FCmp) {
3334    switch (Lex.getKind()) {
3335    default: return TokError("expected fcmp predicate (e.g. 'oeq')");
3336    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
3337    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
3338    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
3339    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
3340    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
3341    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
3342    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
3343    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
3344    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
3345    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
3346    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
3347    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
3348    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
3349    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
3350    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
3351    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
3352    }
3353  } else {
3354    switch (Lex.getKind()) {
3355    default: return TokError("expected icmp predicate (e.g. 'eq')");
3356    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
3357    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
3358    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3359    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3360    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3361    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3362    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3363    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3364    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3365    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3366    }
3367  }
3368  Lex.Lex();
3369  return false;
3370}
3371
3372//===----------------------------------------------------------------------===//
3373// Terminator Instructions.
3374//===----------------------------------------------------------------------===//
3375
3376/// ParseRet - Parse a return instruction.
3377///   ::= 'ret' void (',' !dbg, !1)*
3378///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3379bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3380                        PerFunctionState &PFS) {
3381  SMLoc TypeLoc = Lex.getLoc();
3382  Type *Ty = 0;
3383  if (ParseType(Ty, true /*void allowed*/)) return true;
3384
3385  Type *ResType = PFS.getFunction().getReturnType();
3386
3387  if (Ty->isVoidTy()) {
3388    if (!ResType->isVoidTy())
3389      return Error(TypeLoc, "value doesn't match function result type '" +
3390                   getTypeString(ResType) + "'");
3391
3392    Inst = ReturnInst::Create(Context);
3393    return false;
3394  }
3395
3396  Value *RV;
3397  if (ParseValue(Ty, RV, PFS)) return true;
3398
3399  if (ResType != RV->getType())
3400    return Error(TypeLoc, "value doesn't match function result type '" +
3401                 getTypeString(ResType) + "'");
3402
3403  Inst = ReturnInst::Create(Context, RV);
3404  return false;
3405}
3406
3407
3408/// ParseBr
3409///   ::= 'br' TypeAndValue
3410///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3411bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3412  LocTy Loc, Loc2;
3413  Value *Op0;
3414  BasicBlock *Op1, *Op2;
3415  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3416
3417  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3418    Inst = BranchInst::Create(BB);
3419    return false;
3420  }
3421
3422  if (Op0->getType() != Type::getInt1Ty(Context))
3423    return Error(Loc, "branch condition must have 'i1' type");
3424
3425  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3426      ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3427      ParseToken(lltok::comma, "expected ',' after true destination") ||
3428      ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3429    return true;
3430
3431  Inst = BranchInst::Create(Op1, Op2, Op0);
3432  return false;
3433}
3434
3435/// ParseSwitch
3436///  Instruction
3437///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3438///  JumpTable
3439///    ::= (TypeAndValue ',' TypeAndValue)*
3440bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3441  LocTy CondLoc, BBLoc;
3442  Value *Cond;
3443  BasicBlock *DefaultBB;
3444  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3445      ParseToken(lltok::comma, "expected ',' after switch condition") ||
3446      ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3447      ParseToken(lltok::lsquare, "expected '[' with switch table"))
3448    return true;
3449
3450  if (!Cond->getType()->isIntegerTy())
3451    return Error(CondLoc, "switch condition must have integer type");
3452
3453  // Parse the jump table pairs.
3454  SmallPtrSet<Value*, 32> SeenCases;
3455  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3456  while (Lex.getKind() != lltok::rsquare) {
3457    Value *Constant;
3458    BasicBlock *DestBB;
3459
3460    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3461        ParseToken(lltok::comma, "expected ',' after case value") ||
3462        ParseTypeAndBasicBlock(DestBB, PFS))
3463      return true;
3464
3465    if (!SeenCases.insert(Constant))
3466      return Error(CondLoc, "duplicate case value in switch");
3467    if (!isa<ConstantInt>(Constant))
3468      return Error(CondLoc, "case value is not a constant integer");
3469
3470    Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3471  }
3472
3473  Lex.Lex();  // Eat the ']'.
3474
3475  SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3476  for (unsigned i = 0, e = Table.size(); i != e; ++i)
3477    SI->addCase(Table[i].first, Table[i].second);
3478  Inst = SI;
3479  return false;
3480}
3481
3482/// ParseIndirectBr
3483///  Instruction
3484///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3485bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3486  LocTy AddrLoc;
3487  Value *Address;
3488  if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3489      ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3490      ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3491    return true;
3492
3493  if (!Address->getType()->isPointerTy())
3494    return Error(AddrLoc, "indirectbr address must have pointer type");
3495
3496  // Parse the destination list.
3497  SmallVector<BasicBlock*, 16> DestList;
3498
3499  if (Lex.getKind() != lltok::rsquare) {
3500    BasicBlock *DestBB;
3501    if (ParseTypeAndBasicBlock(DestBB, PFS))
3502      return true;
3503    DestList.push_back(DestBB);
3504
3505    while (EatIfPresent(lltok::comma)) {
3506      if (ParseTypeAndBasicBlock(DestBB, PFS))
3507        return true;
3508      DestList.push_back(DestBB);
3509    }
3510  }
3511
3512  if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3513    return true;
3514
3515  IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3516  for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3517    IBI->addDestination(DestList[i]);
3518  Inst = IBI;
3519  return false;
3520}
3521
3522
3523/// ParseInvoke
3524///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3525///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3526bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3527  LocTy CallLoc = Lex.getLoc();
3528  AttrBuilder RetAttrs, FnAttrs;
3529  std::vector<unsigned> FwdRefAttrGrps;
3530  LocTy NoBuiltinLoc;
3531  CallingConv::ID CC;
3532  Type *RetType = 0;
3533  LocTy RetTypeLoc;
3534  ValID CalleeID;
3535  SmallVector<ParamInfo, 16> ArgList;
3536
3537  BasicBlock *NormalBB, *UnwindBB;
3538  if (ParseOptionalCallingConv(CC) ||
3539      ParseOptionalReturnAttrs(RetAttrs) ||
3540      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3541      ParseValID(CalleeID) ||
3542      ParseParameterList(ArgList, PFS) ||
3543      ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
3544                                 NoBuiltinLoc) ||
3545      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3546      ParseTypeAndBasicBlock(NormalBB, PFS) ||
3547      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3548      ParseTypeAndBasicBlock(UnwindBB, PFS))
3549    return true;
3550
3551  // If RetType is a non-function pointer type, then this is the short syntax
3552  // for the call, which means that RetType is just the return type.  Infer the
3553  // rest of the function argument types from the arguments that are present.
3554  PointerType *PFTy = 0;
3555  FunctionType *Ty = 0;
3556  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3557      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3558    // Pull out the types of all of the arguments...
3559    std::vector<Type*> ParamTypes;
3560    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3561      ParamTypes.push_back(ArgList[i].V->getType());
3562
3563    if (!FunctionType::isValidReturnType(RetType))
3564      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3565
3566    Ty = FunctionType::get(RetType, ParamTypes, false);
3567    PFTy = PointerType::getUnqual(Ty);
3568  }
3569
3570  // Look up the callee.
3571  Value *Callee;
3572  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3573
3574  // Set up the Attribute for the function.
3575  SmallVector<AttributeSet, 8> Attrs;
3576  if (RetAttrs.hasAttributes())
3577    Attrs.push_back(AttributeSet::get(RetType->getContext(),
3578                                      AttributeSet::ReturnIndex,
3579                                      RetAttrs));
3580
3581  SmallVector<Value*, 8> Args;
3582
3583  // Loop through FunctionType's arguments and ensure they are specified
3584  // correctly.  Also, gather any parameter attributes.
3585  FunctionType::param_iterator I = Ty->param_begin();
3586  FunctionType::param_iterator E = Ty->param_end();
3587  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3588    Type *ExpectedTy = 0;
3589    if (I != E) {
3590      ExpectedTy = *I++;
3591    } else if (!Ty->isVarArg()) {
3592      return Error(ArgList[i].Loc, "too many arguments specified");
3593    }
3594
3595    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3596      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3597                   getTypeString(ExpectedTy) + "'");
3598    Args.push_back(ArgList[i].V);
3599    if (ArgList[i].Attrs.hasAttributes(i + 1)) {
3600      AttrBuilder B(ArgList[i].Attrs, i + 1);
3601      Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
3602    }
3603  }
3604
3605  if (I != E)
3606    return Error(CallLoc, "not enough parameters specified for call");
3607
3608  if (FnAttrs.hasAttributes())
3609    Attrs.push_back(AttributeSet::get(RetType->getContext(),
3610                                      AttributeSet::FunctionIndex,
3611                                      FnAttrs));
3612
3613  // Finish off the Attribute and check them
3614  AttributeSet PAL = AttributeSet::get(Context, Attrs);
3615
3616  InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args);
3617  II->setCallingConv(CC);
3618  II->setAttributes(PAL);
3619  ForwardRefAttrGroups[II] = FwdRefAttrGrps;
3620  Inst = II;
3621  return false;
3622}
3623
3624/// ParseResume
3625///   ::= 'resume' TypeAndValue
3626bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
3627  Value *Exn; LocTy ExnLoc;
3628  if (ParseTypeAndValue(Exn, ExnLoc, PFS))
3629    return true;
3630
3631  ResumeInst *RI = ResumeInst::Create(Exn);
3632  Inst = RI;
3633  return false;
3634}
3635
3636//===----------------------------------------------------------------------===//
3637// Binary Operators.
3638//===----------------------------------------------------------------------===//
3639
3640/// ParseArithmetic
3641///  ::= ArithmeticOps TypeAndValue ',' Value
3642///
3643/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3644/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3645bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3646                               unsigned Opc, unsigned OperandType) {
3647  LocTy Loc; Value *LHS, *RHS;
3648  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3649      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3650      ParseValue(LHS->getType(), RHS, PFS))
3651    return true;
3652
3653  bool Valid;
3654  switch (OperandType) {
3655  default: llvm_unreachable("Unknown operand type!");
3656  case 0: // int or FP.
3657    Valid = LHS->getType()->isIntOrIntVectorTy() ||
3658            LHS->getType()->isFPOrFPVectorTy();
3659    break;
3660  case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3661  case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3662  }
3663
3664  if (!Valid)
3665    return Error(Loc, "invalid operand type for instruction");
3666
3667  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3668  return false;
3669}
3670
3671/// ParseLogical
3672///  ::= ArithmeticOps TypeAndValue ',' Value {
3673bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3674                            unsigned Opc) {
3675  LocTy Loc; Value *LHS, *RHS;
3676  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3677      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3678      ParseValue(LHS->getType(), RHS, PFS))
3679    return true;
3680
3681  if (!LHS->getType()->isIntOrIntVectorTy())
3682    return Error(Loc,"instruction requires integer or integer vector operands");
3683
3684  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3685  return false;
3686}
3687
3688
3689/// ParseCompare
3690///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3691///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3692bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3693                            unsigned Opc) {
3694  // Parse the integer/fp comparison predicate.
3695  LocTy Loc;
3696  unsigned Pred;
3697  Value *LHS, *RHS;
3698  if (ParseCmpPredicate(Pred, Opc) ||
3699      ParseTypeAndValue(LHS, Loc, PFS) ||
3700      ParseToken(lltok::comma, "expected ',' after compare value") ||
3701      ParseValue(LHS->getType(), RHS, PFS))
3702    return true;
3703
3704  if (Opc == Instruction::FCmp) {
3705    if (!LHS->getType()->isFPOrFPVectorTy())
3706      return Error(Loc, "fcmp requires floating point operands");
3707    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3708  } else {
3709    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3710    if (!LHS->getType()->isIntOrIntVectorTy() &&
3711        !LHS->getType()->getScalarType()->isPointerTy())
3712      return Error(Loc, "icmp requires integer operands");
3713    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3714  }
3715  return false;
3716}
3717
3718//===----------------------------------------------------------------------===//
3719// Other Instructions.
3720//===----------------------------------------------------------------------===//
3721
3722
3723/// ParseCast
3724///   ::= CastOpc TypeAndValue 'to' Type
3725bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3726                         unsigned Opc) {
3727  LocTy Loc;
3728  Value *Op;
3729  Type *DestTy = 0;
3730  if (ParseTypeAndValue(Op, Loc, PFS) ||
3731      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3732      ParseType(DestTy))
3733    return true;
3734
3735  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3736    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3737    return Error(Loc, "invalid cast opcode for cast from '" +
3738                 getTypeString(Op->getType()) + "' to '" +
3739                 getTypeString(DestTy) + "'");
3740  }
3741  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3742  return false;
3743}
3744
3745/// ParseSelect
3746///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3747bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3748  LocTy Loc;
3749  Value *Op0, *Op1, *Op2;
3750  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3751      ParseToken(lltok::comma, "expected ',' after select condition") ||
3752      ParseTypeAndValue(Op1, PFS) ||
3753      ParseToken(lltok::comma, "expected ',' after select value") ||
3754      ParseTypeAndValue(Op2, PFS))
3755    return true;
3756
3757  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3758    return Error(Loc, Reason);
3759
3760  Inst = SelectInst::Create(Op0, Op1, Op2);
3761  return false;
3762}
3763
3764/// ParseVA_Arg
3765///   ::= 'va_arg' TypeAndValue ',' Type
3766bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3767  Value *Op;
3768  Type *EltTy = 0;
3769  LocTy TypeLoc;
3770  if (ParseTypeAndValue(Op, PFS) ||
3771      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3772      ParseType(EltTy, TypeLoc))
3773    return true;
3774
3775  if (!EltTy->isFirstClassType())
3776    return Error(TypeLoc, "va_arg requires operand with first class type");
3777
3778  Inst = new VAArgInst(Op, EltTy);
3779  return false;
3780}
3781
3782/// ParseExtractElement
3783///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3784bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3785  LocTy Loc;
3786  Value *Op0, *Op1;
3787  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3788      ParseToken(lltok::comma, "expected ',' after extract value") ||
3789      ParseTypeAndValue(Op1, PFS))
3790    return true;
3791
3792  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3793    return Error(Loc, "invalid extractelement operands");
3794
3795  Inst = ExtractElementInst::Create(Op0, Op1);
3796  return false;
3797}
3798
3799/// ParseInsertElement
3800///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3801bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3802  LocTy Loc;
3803  Value *Op0, *Op1, *Op2;
3804  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3805      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3806      ParseTypeAndValue(Op1, PFS) ||
3807      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3808      ParseTypeAndValue(Op2, PFS))
3809    return true;
3810
3811  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3812    return Error(Loc, "invalid insertelement operands");
3813
3814  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3815  return false;
3816}
3817
3818/// ParseShuffleVector
3819///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3820bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3821  LocTy Loc;
3822  Value *Op0, *Op1, *Op2;
3823  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3824      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3825      ParseTypeAndValue(Op1, PFS) ||
3826      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3827      ParseTypeAndValue(Op2, PFS))
3828    return true;
3829
3830  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3831    return Error(Loc, "invalid shufflevector operands");
3832
3833  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3834  return false;
3835}
3836
3837/// ParsePHI
3838///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3839int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3840  Type *Ty = 0;  LocTy TypeLoc;
3841  Value *Op0, *Op1;
3842
3843  if (ParseType(Ty, TypeLoc) ||
3844      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3845      ParseValue(Ty, Op0, PFS) ||
3846      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3847      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3848      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3849    return true;
3850
3851  bool AteExtraComma = false;
3852  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3853  while (1) {
3854    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3855
3856    if (!EatIfPresent(lltok::comma))
3857      break;
3858
3859    if (Lex.getKind() == lltok::MetadataVar) {
3860      AteExtraComma = true;
3861      break;
3862    }
3863
3864    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3865        ParseValue(Ty, Op0, PFS) ||
3866        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3867        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3868        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3869      return true;
3870  }
3871
3872  if (!Ty->isFirstClassType())
3873    return Error(TypeLoc, "phi node must have first class type");
3874
3875  PHINode *PN = PHINode::Create(Ty, PHIVals.size());
3876  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3877    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3878  Inst = PN;
3879  return AteExtraComma ? InstExtraComma : InstNormal;
3880}
3881
3882/// ParseLandingPad
3883///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
3884/// Clause
3885///   ::= 'catch' TypeAndValue
3886///   ::= 'filter'
3887///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
3888bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
3889  Type *Ty = 0; LocTy TyLoc;
3890  Value *PersFn; LocTy PersFnLoc;
3891
3892  if (ParseType(Ty, TyLoc) ||
3893      ParseToken(lltok::kw_personality, "expected 'personality'") ||
3894      ParseTypeAndValue(PersFn, PersFnLoc, PFS))
3895    return true;
3896
3897  LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0);
3898  LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
3899
3900  while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
3901    LandingPadInst::ClauseType CT;
3902    if (EatIfPresent(lltok::kw_catch))
3903      CT = LandingPadInst::Catch;
3904    else if (EatIfPresent(lltok::kw_filter))
3905      CT = LandingPadInst::Filter;
3906    else
3907      return TokError("expected 'catch' or 'filter' clause type");
3908
3909    Value *V; LocTy VLoc;
3910    if (ParseTypeAndValue(V, VLoc, PFS)) {
3911      delete LP;
3912      return true;
3913    }
3914
3915    // A 'catch' type expects a non-array constant. A filter clause expects an
3916    // array constant.
3917    if (CT == LandingPadInst::Catch) {
3918      if (isa<ArrayType>(V->getType()))
3919        Error(VLoc, "'catch' clause has an invalid type");
3920    } else {
3921      if (!isa<ArrayType>(V->getType()))
3922        Error(VLoc, "'filter' clause has an invalid type");
3923    }
3924
3925    LP->addClause(V);
3926  }
3927
3928  Inst = LP;
3929  return false;
3930}
3931
3932/// ParseCall
3933///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3934///       ParameterList OptionalAttrs
3935bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3936                         bool isTail) {
3937  AttrBuilder RetAttrs, FnAttrs;
3938  std::vector<unsigned> FwdRefAttrGrps;
3939  LocTy BuiltinLoc;
3940  CallingConv::ID CC;
3941  Type *RetType = 0;
3942  LocTy RetTypeLoc;
3943  ValID CalleeID;
3944  SmallVector<ParamInfo, 16> ArgList;
3945  LocTy CallLoc = Lex.getLoc();
3946
3947  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3948      ParseOptionalCallingConv(CC) ||
3949      ParseOptionalReturnAttrs(RetAttrs) ||
3950      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3951      ParseValID(CalleeID) ||
3952      ParseParameterList(ArgList, PFS) ||
3953      ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
3954                                 BuiltinLoc))
3955    return true;
3956
3957  // If RetType is a non-function pointer type, then this is the short syntax
3958  // for the call, which means that RetType is just the return type.  Infer the
3959  // rest of the function argument types from the arguments that are present.
3960  PointerType *PFTy = 0;
3961  FunctionType *Ty = 0;
3962  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3963      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3964    // Pull out the types of all of the arguments...
3965    std::vector<Type*> ParamTypes;
3966    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3967      ParamTypes.push_back(ArgList[i].V->getType());
3968
3969    if (!FunctionType::isValidReturnType(RetType))
3970      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3971
3972    Ty = FunctionType::get(RetType, ParamTypes, false);
3973    PFTy = PointerType::getUnqual(Ty);
3974  }
3975
3976  // Look up the callee.
3977  Value *Callee;
3978  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3979
3980  // Set up the Attribute for the function.
3981  SmallVector<AttributeSet, 8> Attrs;
3982  if (RetAttrs.hasAttributes())
3983    Attrs.push_back(AttributeSet::get(RetType->getContext(),
3984                                      AttributeSet::ReturnIndex,
3985                                      RetAttrs));
3986
3987  SmallVector<Value*, 8> Args;
3988
3989  // Loop through FunctionType's arguments and ensure they are specified
3990  // correctly.  Also, gather any parameter attributes.
3991  FunctionType::param_iterator I = Ty->param_begin();
3992  FunctionType::param_iterator E = Ty->param_end();
3993  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3994    Type *ExpectedTy = 0;
3995    if (I != E) {
3996      ExpectedTy = *I++;
3997    } else if (!Ty->isVarArg()) {
3998      return Error(ArgList[i].Loc, "too many arguments specified");
3999    }
4000
4001    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
4002      return Error(ArgList[i].Loc, "argument is not of expected type '" +
4003                   getTypeString(ExpectedTy) + "'");
4004    Args.push_back(ArgList[i].V);
4005    if (ArgList[i].Attrs.hasAttributes(i + 1)) {
4006      AttrBuilder B(ArgList[i].Attrs, i + 1);
4007      Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
4008    }
4009  }
4010
4011  if (I != E)
4012    return Error(CallLoc, "not enough parameters specified for call");
4013
4014  if (FnAttrs.hasAttributes())
4015    Attrs.push_back(AttributeSet::get(RetType->getContext(),
4016                                      AttributeSet::FunctionIndex,
4017                                      FnAttrs));
4018
4019  // Finish off the Attribute and check them
4020  AttributeSet PAL = AttributeSet::get(Context, Attrs);
4021
4022  CallInst *CI = CallInst::Create(Callee, Args);
4023  CI->setTailCall(isTail);
4024  CI->setCallingConv(CC);
4025  CI->setAttributes(PAL);
4026  ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
4027  Inst = CI;
4028  return false;
4029}
4030
4031//===----------------------------------------------------------------------===//
4032// Memory Instructions.
4033//===----------------------------------------------------------------------===//
4034
4035/// ParseAlloc
4036///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
4037int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
4038  Value *Size = 0;
4039  LocTy SizeLoc;
4040  unsigned Alignment = 0;
4041  Type *Ty = 0;
4042  if (ParseType(Ty)) return true;
4043
4044  bool AteExtraComma = false;
4045  if (EatIfPresent(lltok::comma)) {
4046    if (Lex.getKind() == lltok::kw_align) {
4047      if (ParseOptionalAlignment(Alignment)) return true;
4048    } else if (Lex.getKind() == lltok::MetadataVar) {
4049      AteExtraComma = true;
4050    } else {
4051      if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
4052          ParseOptionalCommaAlign(Alignment, AteExtraComma))
4053        return true;
4054    }
4055  }
4056
4057  if (Size && !Size->getType()->isIntegerTy())
4058    return Error(SizeLoc, "element count must have integer type");
4059
4060  Inst = new AllocaInst(Ty, Size, Alignment);
4061  return AteExtraComma ? InstExtraComma : InstNormal;
4062}
4063
4064/// ParseLoad
4065///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
4066///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
4067///       'singlethread'? AtomicOrdering (',' 'align' i32)?
4068int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
4069  Value *Val; LocTy Loc;
4070  unsigned Alignment = 0;
4071  bool AteExtraComma = false;
4072  bool isAtomic = false;
4073  AtomicOrdering Ordering = NotAtomic;
4074  SynchronizationScope Scope = CrossThread;
4075
4076  if (Lex.getKind() == lltok::kw_atomic) {
4077    isAtomic = true;
4078    Lex.Lex();
4079  }
4080
4081  bool isVolatile = false;
4082  if (Lex.getKind() == lltok::kw_volatile) {
4083    isVolatile = true;
4084    Lex.Lex();
4085  }
4086
4087  if (ParseTypeAndValue(Val, Loc, PFS) ||
4088      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
4089      ParseOptionalCommaAlign(Alignment, AteExtraComma))
4090    return true;
4091
4092  if (!Val->getType()->isPointerTy() ||
4093      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
4094    return Error(Loc, "load operand must be a pointer to a first class type");
4095  if (isAtomic && !Alignment)
4096    return Error(Loc, "atomic load must have explicit non-zero alignment");
4097  if (Ordering == Release || Ordering == AcquireRelease)
4098    return Error(Loc, "atomic load cannot use Release ordering");
4099
4100  Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope);
4101  return AteExtraComma ? InstExtraComma : InstNormal;
4102}
4103
4104/// ParseStore
4105
4106///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
4107///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
4108///       'singlethread'? AtomicOrdering (',' 'align' i32)?
4109int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
4110  Value *Val, *Ptr; LocTy Loc, PtrLoc;
4111  unsigned Alignment = 0;
4112  bool AteExtraComma = false;
4113  bool isAtomic = false;
4114  AtomicOrdering Ordering = NotAtomic;
4115  SynchronizationScope Scope = CrossThread;
4116
4117  if (Lex.getKind() == lltok::kw_atomic) {
4118    isAtomic = true;
4119    Lex.Lex();
4120  }
4121
4122  bool isVolatile = false;
4123  if (Lex.getKind() == lltok::kw_volatile) {
4124    isVolatile = true;
4125    Lex.Lex();
4126  }
4127
4128  if (ParseTypeAndValue(Val, Loc, PFS) ||
4129      ParseToken(lltok::comma, "expected ',' after store operand") ||
4130      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
4131      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
4132      ParseOptionalCommaAlign(Alignment, AteExtraComma))
4133    return true;
4134
4135  if (!Ptr->getType()->isPointerTy())
4136    return Error(PtrLoc, "store operand must be a pointer");
4137  if (!Val->getType()->isFirstClassType())
4138    return Error(Loc, "store operand must be a first class value");
4139  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
4140    return Error(Loc, "stored value and pointer type do not match");
4141  if (isAtomic && !Alignment)
4142    return Error(Loc, "atomic store must have explicit non-zero alignment");
4143  if (Ordering == Acquire || Ordering == AcquireRelease)
4144    return Error(Loc, "atomic store cannot use Acquire ordering");
4145
4146  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
4147  return AteExtraComma ? InstExtraComma : InstNormal;
4148}
4149
4150/// ParseCmpXchg
4151///   ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue
4152///       'singlethread'? AtomicOrdering
4153int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
4154  Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
4155  bool AteExtraComma = false;
4156  AtomicOrdering Ordering = NotAtomic;
4157  SynchronizationScope Scope = CrossThread;
4158  bool isVolatile = false;
4159
4160  if (EatIfPresent(lltok::kw_volatile))
4161    isVolatile = true;
4162
4163  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
4164      ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
4165      ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
4166      ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
4167      ParseTypeAndValue(New, NewLoc, PFS) ||
4168      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
4169    return true;
4170
4171  if (Ordering == Unordered)
4172    return TokError("cmpxchg cannot be unordered");
4173  if (!Ptr->getType()->isPointerTy())
4174    return Error(PtrLoc, "cmpxchg operand must be a pointer");
4175  if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
4176    return Error(CmpLoc, "compare value and pointer type do not match");
4177  if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
4178    return Error(NewLoc, "new value and pointer type do not match");
4179  if (!New->getType()->isIntegerTy())
4180    return Error(NewLoc, "cmpxchg operand must be an integer");
4181  unsigned Size = New->getType()->getPrimitiveSizeInBits();
4182  if (Size < 8 || (Size & (Size - 1)))
4183    return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
4184                         " integer");
4185
4186  AtomicCmpXchgInst *CXI =
4187    new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope);
4188  CXI->setVolatile(isVolatile);
4189  Inst = CXI;
4190  return AteExtraComma ? InstExtraComma : InstNormal;
4191}
4192
4193/// ParseAtomicRMW
4194///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
4195///       'singlethread'? AtomicOrdering
4196int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
4197  Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
4198  bool AteExtraComma = false;
4199  AtomicOrdering Ordering = NotAtomic;
4200  SynchronizationScope Scope = CrossThread;
4201  bool isVolatile = false;
4202  AtomicRMWInst::BinOp Operation;
4203
4204  if (EatIfPresent(lltok::kw_volatile))
4205    isVolatile = true;
4206
4207  switch (Lex.getKind()) {
4208  default: return TokError("expected binary operation in atomicrmw");
4209  case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
4210  case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
4211  case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
4212  case lltok::kw_and: Operation = AtomicRMWInst::And; break;
4213  case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
4214  case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
4215  case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
4216  case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
4217  case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
4218  case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
4219  case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
4220  }
4221  Lex.Lex();  // Eat the operation.
4222
4223  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
4224      ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
4225      ParseTypeAndValue(Val, ValLoc, PFS) ||
4226      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
4227    return true;
4228
4229  if (Ordering == Unordered)
4230    return TokError("atomicrmw cannot be unordered");
4231  if (!Ptr->getType()->isPointerTy())
4232    return Error(PtrLoc, "atomicrmw operand must be a pointer");
4233  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
4234    return Error(ValLoc, "atomicrmw value and pointer type do not match");
4235  if (!Val->getType()->isIntegerTy())
4236    return Error(ValLoc, "atomicrmw operand must be an integer");
4237  unsigned Size = Val->getType()->getPrimitiveSizeInBits();
4238  if (Size < 8 || (Size & (Size - 1)))
4239    return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
4240                         " integer");
4241
4242  AtomicRMWInst *RMWI =
4243    new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
4244  RMWI->setVolatile(isVolatile);
4245  Inst = RMWI;
4246  return AteExtraComma ? InstExtraComma : InstNormal;
4247}
4248
4249/// ParseFence
4250///   ::= 'fence' 'singlethread'? AtomicOrdering
4251int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
4252  AtomicOrdering Ordering = NotAtomic;
4253  SynchronizationScope Scope = CrossThread;
4254  if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
4255    return true;
4256
4257  if (Ordering == Unordered)
4258    return TokError("fence cannot be unordered");
4259  if (Ordering == Monotonic)
4260    return TokError("fence cannot be monotonic");
4261
4262  Inst = new FenceInst(Context, Ordering, Scope);
4263  return InstNormal;
4264}
4265
4266/// ParseGetElementPtr
4267///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
4268int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
4269  Value *Ptr = 0;
4270  Value *Val = 0;
4271  LocTy Loc, EltLoc;
4272
4273  bool InBounds = EatIfPresent(lltok::kw_inbounds);
4274
4275  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
4276
4277  Type *BaseType = Ptr->getType();
4278  PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
4279  if (!BasePointerType)
4280    return Error(Loc, "base of getelementptr must be a pointer");
4281
4282  SmallVector<Value*, 16> Indices;
4283  bool AteExtraComma = false;
4284  while (EatIfPresent(lltok::comma)) {
4285    if (Lex.getKind() == lltok::MetadataVar) {
4286      AteExtraComma = true;
4287      break;
4288    }
4289    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
4290    if (!Val->getType()->getScalarType()->isIntegerTy())
4291      return Error(EltLoc, "getelementptr index must be an integer");
4292    if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy())
4293      return Error(EltLoc, "getelementptr index type missmatch");
4294    if (Val->getType()->isVectorTy()) {
4295      unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements();
4296      unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements();
4297      if (ValNumEl != PtrNumEl)
4298        return Error(EltLoc,
4299          "getelementptr vector index has a wrong number of elements");
4300    }
4301    Indices.push_back(Val);
4302  }
4303
4304  if (!Indices.empty() && !BasePointerType->getElementType()->isSized())
4305    return Error(Loc, "base element of getelementptr must be sized");
4306
4307  if (!GetElementPtrInst::getIndexedType(BaseType, Indices))
4308    return Error(Loc, "invalid getelementptr indices");
4309  Inst = GetElementPtrInst::Create(Ptr, Indices);
4310  if (InBounds)
4311    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
4312  return AteExtraComma ? InstExtraComma : InstNormal;
4313}
4314
4315/// ParseExtractValue
4316///   ::= 'extractvalue' TypeAndValue (',' uint32)+
4317int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
4318  Value *Val; LocTy Loc;
4319  SmallVector<unsigned, 4> Indices;
4320  bool AteExtraComma;
4321  if (ParseTypeAndValue(Val, Loc, PFS) ||
4322      ParseIndexList(Indices, AteExtraComma))
4323    return true;
4324
4325  if (!Val->getType()->isAggregateType())
4326    return Error(Loc, "extractvalue operand must be aggregate type");
4327
4328  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
4329    return Error(Loc, "invalid indices for extractvalue");
4330  Inst = ExtractValueInst::Create(Val, Indices);
4331  return AteExtraComma ? InstExtraComma : InstNormal;
4332}
4333
4334/// ParseInsertValue
4335///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
4336int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
4337  Value *Val0, *Val1; LocTy Loc0, Loc1;
4338  SmallVector<unsigned, 4> Indices;
4339  bool AteExtraComma;
4340  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
4341      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
4342      ParseTypeAndValue(Val1, Loc1, PFS) ||
4343      ParseIndexList(Indices, AteExtraComma))
4344    return true;
4345
4346  if (!Val0->getType()->isAggregateType())
4347    return Error(Loc0, "insertvalue operand must be aggregate type");
4348
4349  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
4350    return Error(Loc0, "invalid indices for insertvalue");
4351  Inst = InsertValueInst::Create(Val0, Val1, Indices);
4352  return AteExtraComma ? InstExtraComma : InstNormal;
4353}
4354
4355//===----------------------------------------------------------------------===//
4356// Embedded metadata.
4357//===----------------------------------------------------------------------===//
4358
4359/// ParseMDNodeVector
4360///   ::= Element (',' Element)*
4361/// Element
4362///   ::= 'null' | TypeAndValue
4363bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
4364                                 PerFunctionState *PFS) {
4365  // Check for an empty list.
4366  if (Lex.getKind() == lltok::rbrace)
4367    return false;
4368
4369  do {
4370    // Null is a special case since it is typeless.
4371    if (EatIfPresent(lltok::kw_null)) {
4372      Elts.push_back(0);
4373      continue;
4374    }
4375
4376    Value *V = 0;
4377    if (ParseTypeAndValue(V, PFS)) return true;
4378    Elts.push_back(V);
4379  } while (EatIfPresent(lltok::comma));
4380
4381  return false;
4382}
4383