1//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that AArch64 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "aarch64-isel"
16#include "AArch64.h"
17#include "AArch64ISelLowering.h"
18#include "AArch64MachineFunctionInfo.h"
19#include "AArch64TargetMachine.h"
20#include "AArch64TargetObjectFile.h"
21#include "Utils/AArch64BaseInfo.h"
22#include "llvm/CodeGen/Analysis.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
28#include "llvm/IR/CallingConv.h"
29
30using namespace llvm;
31
32static TargetLoweringObjectFile *createTLOF(AArch64TargetMachine &TM) {
33  const AArch64Subtarget *Subtarget = &TM.getSubtarget<AArch64Subtarget>();
34
35  if (Subtarget->isTargetLinux())
36    return new AArch64LinuxTargetObjectFile();
37  if (Subtarget->isTargetELF())
38    return new TargetLoweringObjectFileELF();
39  llvm_unreachable("unknown subtarget type");
40}
41
42AArch64TargetLowering::AArch64TargetLowering(AArch64TargetMachine &TM)
43  : TargetLowering(TM, createTLOF(TM)), Itins(TM.getInstrItineraryData()) {
44
45  const AArch64Subtarget *Subtarget = &TM.getSubtarget<AArch64Subtarget>();
46
47  // SIMD compares set the entire lane's bits to 1
48  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
49
50  // Scalar register <-> type mapping
51  addRegisterClass(MVT::i32, &AArch64::GPR32RegClass);
52  addRegisterClass(MVT::i64, &AArch64::GPR64RegClass);
53  addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
54  addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
55  addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
56  addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
57
58  if (Subtarget->hasNEON()) {
59    // And the vectors
60    addRegisterClass(MVT::v8i8, &AArch64::VPR64RegClass);
61    addRegisterClass(MVT::v4i16, &AArch64::VPR64RegClass);
62    addRegisterClass(MVT::v2i32, &AArch64::VPR64RegClass);
63    addRegisterClass(MVT::v1i64, &AArch64::VPR64RegClass);
64    addRegisterClass(MVT::v2f32, &AArch64::VPR64RegClass);
65    addRegisterClass(MVT::v16i8, &AArch64::VPR128RegClass);
66    addRegisterClass(MVT::v8i16, &AArch64::VPR128RegClass);
67    addRegisterClass(MVT::v4i32, &AArch64::VPR128RegClass);
68    addRegisterClass(MVT::v2i64, &AArch64::VPR128RegClass);
69    addRegisterClass(MVT::v4f32, &AArch64::VPR128RegClass);
70    addRegisterClass(MVT::v2f64, &AArch64::VPR128RegClass);
71  }
72
73  computeRegisterProperties();
74
75  // We combine OR nodes for bitfield and NEON BSL operations.
76  setTargetDAGCombine(ISD::OR);
77
78  setTargetDAGCombine(ISD::AND);
79  setTargetDAGCombine(ISD::SRA);
80
81  // AArch64 does not have i1 loads, or much of anything for i1 really.
82  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
83  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
84  setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
85
86  setStackPointerRegisterToSaveRestore(AArch64::XSP);
87  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
88  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
89  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
90
91  // We'll lower globals to wrappers for selection.
92  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
93  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
94
95  // A64 instructions have the comparison predicate attached to the user of the
96  // result, but having a separate comparison is valuable for matching.
97  setOperationAction(ISD::BR_CC, MVT::i32, Custom);
98  setOperationAction(ISD::BR_CC, MVT::i64, Custom);
99  setOperationAction(ISD::BR_CC, MVT::f32, Custom);
100  setOperationAction(ISD::BR_CC, MVT::f64, Custom);
101
102  setOperationAction(ISD::SELECT, MVT::i32, Custom);
103  setOperationAction(ISD::SELECT, MVT::i64, Custom);
104  setOperationAction(ISD::SELECT, MVT::f32, Custom);
105  setOperationAction(ISD::SELECT, MVT::f64, Custom);
106
107  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
108  setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
109  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
110  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
111
112  setOperationAction(ISD::BRCOND, MVT::Other, Custom);
113
114  setOperationAction(ISD::SETCC, MVT::i32, Custom);
115  setOperationAction(ISD::SETCC, MVT::i64, Custom);
116  setOperationAction(ISD::SETCC, MVT::f32, Custom);
117  setOperationAction(ISD::SETCC, MVT::f64, Custom);
118
119  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
120  setOperationAction(ISD::JumpTable, MVT::i32, Custom);
121  setOperationAction(ISD::JumpTable, MVT::i64, Custom);
122
123  setOperationAction(ISD::VASTART, MVT::Other, Custom);
124  setOperationAction(ISD::VACOPY, MVT::Other, Custom);
125  setOperationAction(ISD::VAEND, MVT::Other, Expand);
126  setOperationAction(ISD::VAARG, MVT::Other, Expand);
127
128  setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
129
130  setOperationAction(ISD::ROTL, MVT::i32, Expand);
131  setOperationAction(ISD::ROTL, MVT::i64, Expand);
132
133  setOperationAction(ISD::UREM, MVT::i32, Expand);
134  setOperationAction(ISD::UREM, MVT::i64, Expand);
135  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
136  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
137
138  setOperationAction(ISD::SREM, MVT::i32, Expand);
139  setOperationAction(ISD::SREM, MVT::i64, Expand);
140  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
141  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
142
143  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
144  setOperationAction(ISD::CTPOP, MVT::i64, Expand);
145
146  // Legal floating-point operations.
147  setOperationAction(ISD::FABS, MVT::f32, Legal);
148  setOperationAction(ISD::FABS, MVT::f64, Legal);
149
150  setOperationAction(ISD::FCEIL, MVT::f32, Legal);
151  setOperationAction(ISD::FCEIL, MVT::f64, Legal);
152
153  setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
154  setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
155
156  setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
157  setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
158
159  setOperationAction(ISD::FNEG, MVT::f32, Legal);
160  setOperationAction(ISD::FNEG, MVT::f64, Legal);
161
162  setOperationAction(ISD::FRINT, MVT::f32, Legal);
163  setOperationAction(ISD::FRINT, MVT::f64, Legal);
164
165  setOperationAction(ISD::FSQRT, MVT::f32, Legal);
166  setOperationAction(ISD::FSQRT, MVT::f64, Legal);
167
168  setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
169  setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
170
171  setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
172  setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
173  setOperationAction(ISD::ConstantFP, MVT::f128, Legal);
174
175  // Illegal floating-point operations.
176  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
177  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
178
179  setOperationAction(ISD::FCOS, MVT::f32, Expand);
180  setOperationAction(ISD::FCOS, MVT::f64, Expand);
181
182  setOperationAction(ISD::FEXP, MVT::f32, Expand);
183  setOperationAction(ISD::FEXP, MVT::f64, Expand);
184
185  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
186  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
187
188  setOperationAction(ISD::FLOG, MVT::f32, Expand);
189  setOperationAction(ISD::FLOG, MVT::f64, Expand);
190
191  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
192  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
193
194  setOperationAction(ISD::FLOG10, MVT::f32, Expand);
195  setOperationAction(ISD::FLOG10, MVT::f64, Expand);
196
197  setOperationAction(ISD::FPOW, MVT::f32, Expand);
198  setOperationAction(ISD::FPOW, MVT::f64, Expand);
199
200  setOperationAction(ISD::FPOWI, MVT::f32, Expand);
201  setOperationAction(ISD::FPOWI, MVT::f64, Expand);
202
203  setOperationAction(ISD::FREM, MVT::f32, Expand);
204  setOperationAction(ISD::FREM, MVT::f64, Expand);
205
206  setOperationAction(ISD::FSIN, MVT::f32, Expand);
207  setOperationAction(ISD::FSIN, MVT::f64, Expand);
208
209  setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
210  setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
211
212  // Virtually no operation on f128 is legal, but LLVM can't expand them when
213  // there's a valid register class, so we need custom operations in most cases.
214  setOperationAction(ISD::FABS,       MVT::f128, Expand);
215  setOperationAction(ISD::FADD,       MVT::f128, Custom);
216  setOperationAction(ISD::FCOPYSIGN,  MVT::f128, Expand);
217  setOperationAction(ISD::FCOS,       MVT::f128, Expand);
218  setOperationAction(ISD::FDIV,       MVT::f128, Custom);
219  setOperationAction(ISD::FMA,        MVT::f128, Expand);
220  setOperationAction(ISD::FMUL,       MVT::f128, Custom);
221  setOperationAction(ISD::FNEG,       MVT::f128, Expand);
222  setOperationAction(ISD::FP_EXTEND,  MVT::f128, Expand);
223  setOperationAction(ISD::FP_ROUND,   MVT::f128, Expand);
224  setOperationAction(ISD::FPOW,       MVT::f128, Expand);
225  setOperationAction(ISD::FREM,       MVT::f128, Expand);
226  setOperationAction(ISD::FRINT,      MVT::f128, Expand);
227  setOperationAction(ISD::FSIN,       MVT::f128, Expand);
228  setOperationAction(ISD::FSINCOS,    MVT::f128, Expand);
229  setOperationAction(ISD::FSQRT,      MVT::f128, Expand);
230  setOperationAction(ISD::FSUB,       MVT::f128, Custom);
231  setOperationAction(ISD::FTRUNC,     MVT::f128, Expand);
232  setOperationAction(ISD::SETCC,      MVT::f128, Custom);
233  setOperationAction(ISD::BR_CC,      MVT::f128, Custom);
234  setOperationAction(ISD::SELECT,     MVT::f128, Expand);
235  setOperationAction(ISD::SELECT_CC,  MVT::f128, Custom);
236  setOperationAction(ISD::FP_EXTEND,  MVT::f128, Custom);
237
238  // Lowering for many of the conversions is actually specified by the non-f128
239  // type. The LowerXXX function will be trivial when f128 isn't involved.
240  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
241  setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
242  setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
243  setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
244  setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
245  setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
246  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
247  setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
248  setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
249  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
250  setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
251  setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
252  setOperationAction(ISD::FP_ROUND,  MVT::f32, Custom);
253  setOperationAction(ISD::FP_ROUND,  MVT::f64, Custom);
254
255  // This prevents LLVM trying to compress double constants into a floating
256  // constant-pool entry and trying to load from there. It's of doubtful benefit
257  // for A64: we'd need LDR followed by FCVT, I believe.
258  setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
259  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
260  setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
261
262  setTruncStoreAction(MVT::f128, MVT::f64, Expand);
263  setTruncStoreAction(MVT::f128, MVT::f32, Expand);
264  setTruncStoreAction(MVT::f128, MVT::f16, Expand);
265  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
266  setTruncStoreAction(MVT::f64, MVT::f16, Expand);
267  setTruncStoreAction(MVT::f32, MVT::f16, Expand);
268
269  setExceptionPointerRegister(AArch64::X0);
270  setExceptionSelectorRegister(AArch64::X1);
271
272  if (Subtarget->hasNEON()) {
273    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom);
274    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
275    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
276    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
277    setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom);
278    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
279    setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom);
280    setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
281    setOperationAction(ISD::BUILD_VECTOR, MVT::v2f32, Custom);
282    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
283    setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
284
285    setOperationAction(ISD::SETCC, MVT::v8i8, Custom);
286    setOperationAction(ISD::SETCC, MVT::v16i8, Custom);
287    setOperationAction(ISD::SETCC, MVT::v4i16, Custom);
288    setOperationAction(ISD::SETCC, MVT::v8i16, Custom);
289    setOperationAction(ISD::SETCC, MVT::v2i32, Custom);
290    setOperationAction(ISD::SETCC, MVT::v4i32, Custom);
291    setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
292    setOperationAction(ISD::SETCC, MVT::v2f32, Custom);
293    setOperationAction(ISD::SETCC, MVT::v4f32, Custom);
294    setOperationAction(ISD::SETCC, MVT::v2f64, Custom);
295  }
296}
297
298EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
299  // It's reasonably important that this value matches the "natural" legal
300  // promotion from i1 for scalar types. Otherwise LegalizeTypes can get itself
301  // in a twist (e.g. inserting an any_extend which then becomes i64 -> i64).
302  if (!VT.isVector()) return MVT::i32;
303  return VT.changeVectorElementTypeToInteger();
304}
305
306static void getExclusiveOperation(unsigned Size, AtomicOrdering Ord,
307                                  unsigned &LdrOpc,
308                                  unsigned &StrOpc) {
309  static const unsigned LoadBares[] = {AArch64::LDXR_byte, AArch64::LDXR_hword,
310                                       AArch64::LDXR_word, AArch64::LDXR_dword};
311  static const unsigned LoadAcqs[] = {AArch64::LDAXR_byte, AArch64::LDAXR_hword,
312                                     AArch64::LDAXR_word, AArch64::LDAXR_dword};
313  static const unsigned StoreBares[] = {AArch64::STXR_byte, AArch64::STXR_hword,
314                                       AArch64::STXR_word, AArch64::STXR_dword};
315  static const unsigned StoreRels[] = {AArch64::STLXR_byte,AArch64::STLXR_hword,
316                                     AArch64::STLXR_word, AArch64::STLXR_dword};
317
318  const unsigned *LoadOps, *StoreOps;
319  if (Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent)
320    LoadOps = LoadAcqs;
321  else
322    LoadOps = LoadBares;
323
324  if (Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent)
325    StoreOps = StoreRels;
326  else
327    StoreOps = StoreBares;
328
329  assert(isPowerOf2_32(Size) && Size <= 8 &&
330         "unsupported size for atomic binary op!");
331
332  LdrOpc = LoadOps[Log2_32(Size)];
333  StrOpc = StoreOps[Log2_32(Size)];
334}
335
336MachineBasicBlock *
337AArch64TargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
338                                        unsigned Size,
339                                        unsigned BinOpcode) const {
340  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
341  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
342
343  const BasicBlock *LLVM_BB = BB->getBasicBlock();
344  MachineFunction *MF = BB->getParent();
345  MachineFunction::iterator It = BB;
346  ++It;
347
348  unsigned dest = MI->getOperand(0).getReg();
349  unsigned ptr = MI->getOperand(1).getReg();
350  unsigned incr = MI->getOperand(2).getReg();
351  AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm());
352  DebugLoc dl = MI->getDebugLoc();
353
354  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
355
356  unsigned ldrOpc, strOpc;
357  getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
358
359  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
360  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
361  MF->insert(It, loopMBB);
362  MF->insert(It, exitMBB);
363
364  // Transfer the remainder of BB and its successor edges to exitMBB.
365  exitMBB->splice(exitMBB->begin(), BB,
366                  llvm::next(MachineBasicBlock::iterator(MI)),
367                  BB->end());
368  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
369
370  const TargetRegisterClass *TRC
371    = Size == 8 ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
372  unsigned scratch = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
373
374  //  thisMBB:
375  //   ...
376  //   fallthrough --> loopMBB
377  BB->addSuccessor(loopMBB);
378
379  //  loopMBB:
380  //   ldxr dest, ptr
381  //   <binop> scratch, dest, incr
382  //   stxr stxr_status, scratch, ptr
383  //   cbnz stxr_status, loopMBB
384  //   fallthrough --> exitMBB
385  BB = loopMBB;
386  BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
387  if (BinOpcode) {
388    // All arithmetic operations we'll be creating are designed to take an extra
389    // shift or extend operand, which we can conveniently set to zero.
390
391    // Operand order needs to go the other way for NAND.
392    if (BinOpcode == AArch64::BICwww_lsl || BinOpcode == AArch64::BICxxx_lsl)
393      BuildMI(BB, dl, TII->get(BinOpcode), scratch)
394        .addReg(incr).addReg(dest).addImm(0);
395    else
396      BuildMI(BB, dl, TII->get(BinOpcode), scratch)
397        .addReg(dest).addReg(incr).addImm(0);
398  }
399
400  // From the stxr, the register is GPR32; from the cmp it's GPR32wsp
401  unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
402  MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
403
404  BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(scratch).addReg(ptr);
405  BuildMI(BB, dl, TII->get(AArch64::CBNZw))
406    .addReg(stxr_status).addMBB(loopMBB);
407
408  BB->addSuccessor(loopMBB);
409  BB->addSuccessor(exitMBB);
410
411  //  exitMBB:
412  //   ...
413  BB = exitMBB;
414
415  MI->eraseFromParent();   // The instruction is gone now.
416
417  return BB;
418}
419
420MachineBasicBlock *
421AArch64TargetLowering::emitAtomicBinaryMinMax(MachineInstr *MI,
422                                              MachineBasicBlock *BB,
423                                              unsigned Size,
424                                              unsigned CmpOp,
425                                              A64CC::CondCodes Cond) const {
426  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
427
428  const BasicBlock *LLVM_BB = BB->getBasicBlock();
429  MachineFunction *MF = BB->getParent();
430  MachineFunction::iterator It = BB;
431  ++It;
432
433  unsigned dest = MI->getOperand(0).getReg();
434  unsigned ptr = MI->getOperand(1).getReg();
435  unsigned incr = MI->getOperand(2).getReg();
436  AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm());
437
438  unsigned oldval = dest;
439  DebugLoc dl = MI->getDebugLoc();
440
441  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
442  const TargetRegisterClass *TRC, *TRCsp;
443  if (Size == 8) {
444    TRC = &AArch64::GPR64RegClass;
445    TRCsp = &AArch64::GPR64xspRegClass;
446  } else {
447    TRC = &AArch64::GPR32RegClass;
448    TRCsp = &AArch64::GPR32wspRegClass;
449  }
450
451  unsigned ldrOpc, strOpc;
452  getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
453
454  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
455  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
456  MF->insert(It, loopMBB);
457  MF->insert(It, exitMBB);
458
459  // Transfer the remainder of BB and its successor edges to exitMBB.
460  exitMBB->splice(exitMBB->begin(), BB,
461                  llvm::next(MachineBasicBlock::iterator(MI)),
462                  BB->end());
463  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
464
465  unsigned scratch = MRI.createVirtualRegister(TRC);
466  MRI.constrainRegClass(scratch, TRCsp);
467
468  //  thisMBB:
469  //   ...
470  //   fallthrough --> loopMBB
471  BB->addSuccessor(loopMBB);
472
473  //  loopMBB:
474  //   ldxr dest, ptr
475  //   cmp incr, dest (, sign extend if necessary)
476  //   csel scratch, dest, incr, cond
477  //   stxr stxr_status, scratch, ptr
478  //   cbnz stxr_status, loopMBB
479  //   fallthrough --> exitMBB
480  BB = loopMBB;
481  BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
482
483  // Build compare and cmov instructions.
484  MRI.constrainRegClass(incr, TRCsp);
485  BuildMI(BB, dl, TII->get(CmpOp))
486    .addReg(incr).addReg(oldval).addImm(0);
487
488  BuildMI(BB, dl, TII->get(Size == 8 ? AArch64::CSELxxxc : AArch64::CSELwwwc),
489          scratch)
490    .addReg(oldval).addReg(incr).addImm(Cond);
491
492  unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
493  MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
494
495  BuildMI(BB, dl, TII->get(strOpc), stxr_status)
496    .addReg(scratch).addReg(ptr);
497  BuildMI(BB, dl, TII->get(AArch64::CBNZw))
498    .addReg(stxr_status).addMBB(loopMBB);
499
500  BB->addSuccessor(loopMBB);
501  BB->addSuccessor(exitMBB);
502
503  //  exitMBB:
504  //   ...
505  BB = exitMBB;
506
507  MI->eraseFromParent();   // The instruction is gone now.
508
509  return BB;
510}
511
512MachineBasicBlock *
513AArch64TargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
514                                         MachineBasicBlock *BB,
515                                         unsigned Size) const {
516  unsigned dest    = MI->getOperand(0).getReg();
517  unsigned ptr     = MI->getOperand(1).getReg();
518  unsigned oldval  = MI->getOperand(2).getReg();
519  unsigned newval  = MI->getOperand(3).getReg();
520  AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(4).getImm());
521  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
522  DebugLoc dl = MI->getDebugLoc();
523
524  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
525  const TargetRegisterClass *TRCsp;
526  TRCsp = Size == 8 ? &AArch64::GPR64xspRegClass : &AArch64::GPR32wspRegClass;
527
528  unsigned ldrOpc, strOpc;
529  getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
530
531  MachineFunction *MF = BB->getParent();
532  const BasicBlock *LLVM_BB = BB->getBasicBlock();
533  MachineFunction::iterator It = BB;
534  ++It; // insert the new blocks after the current block
535
536  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
537  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
538  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
539  MF->insert(It, loop1MBB);
540  MF->insert(It, loop2MBB);
541  MF->insert(It, exitMBB);
542
543  // Transfer the remainder of BB and its successor edges to exitMBB.
544  exitMBB->splice(exitMBB->begin(), BB,
545                  llvm::next(MachineBasicBlock::iterator(MI)),
546                  BB->end());
547  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
548
549  //  thisMBB:
550  //   ...
551  //   fallthrough --> loop1MBB
552  BB->addSuccessor(loop1MBB);
553
554  // loop1MBB:
555  //   ldxr dest, [ptr]
556  //   cmp dest, oldval
557  //   b.ne exitMBB
558  BB = loop1MBB;
559  BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
560
561  unsigned CmpOp = Size == 8 ? AArch64::CMPxx_lsl : AArch64::CMPww_lsl;
562  MRI.constrainRegClass(dest, TRCsp);
563  BuildMI(BB, dl, TII->get(CmpOp))
564    .addReg(dest).addReg(oldval).addImm(0);
565  BuildMI(BB, dl, TII->get(AArch64::Bcc))
566    .addImm(A64CC::NE).addMBB(exitMBB);
567  BB->addSuccessor(loop2MBB);
568  BB->addSuccessor(exitMBB);
569
570  // loop2MBB:
571  //   strex stxr_status, newval, [ptr]
572  //   cbnz stxr_status, loop1MBB
573  BB = loop2MBB;
574  unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
575  MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
576
577  BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(newval).addReg(ptr);
578  BuildMI(BB, dl, TII->get(AArch64::CBNZw))
579    .addReg(stxr_status).addMBB(loop1MBB);
580  BB->addSuccessor(loop1MBB);
581  BB->addSuccessor(exitMBB);
582
583  //  exitMBB:
584  //   ...
585  BB = exitMBB;
586
587  MI->eraseFromParent();   // The instruction is gone now.
588
589  return BB;
590}
591
592MachineBasicBlock *
593AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
594                                    MachineBasicBlock *MBB) const {
595  // We materialise the F128CSEL pseudo-instruction using conditional branches
596  // and loads, giving an instruciton sequence like:
597  //     str q0, [sp]
598  //     b.ne IfTrue
599  //     b Finish
600  // IfTrue:
601  //     str q1, [sp]
602  // Finish:
603  //     ldr q0, [sp]
604  //
605  // Using virtual registers would probably not be beneficial since COPY
606  // instructions are expensive for f128 (there's no actual instruction to
607  // implement them).
608  //
609  // An alternative would be to do an integer-CSEL on some address. E.g.:
610  //     mov x0, sp
611  //     add x1, sp, #16
612  //     str q0, [x0]
613  //     str q1, [x1]
614  //     csel x0, x0, x1, ne
615  //     ldr q0, [x0]
616  //
617  // It's unclear which approach is actually optimal.
618  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
619  MachineFunction *MF = MBB->getParent();
620  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
621  DebugLoc DL = MI->getDebugLoc();
622  MachineFunction::iterator It = MBB;
623  ++It;
624
625  unsigned DestReg = MI->getOperand(0).getReg();
626  unsigned IfTrueReg = MI->getOperand(1).getReg();
627  unsigned IfFalseReg = MI->getOperand(2).getReg();
628  unsigned CondCode = MI->getOperand(3).getImm();
629  bool NZCVKilled = MI->getOperand(4).isKill();
630
631  MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
632  MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
633  MF->insert(It, TrueBB);
634  MF->insert(It, EndBB);
635
636  // Transfer rest of current basic-block to EndBB
637  EndBB->splice(EndBB->begin(), MBB,
638                llvm::next(MachineBasicBlock::iterator(MI)),
639                MBB->end());
640  EndBB->transferSuccessorsAndUpdatePHIs(MBB);
641
642  // We need somewhere to store the f128 value needed.
643  int ScratchFI = MF->getFrameInfo()->CreateSpillStackObject(16, 16);
644
645  //     [... start of incoming MBB ...]
646  //     str qIFFALSE, [sp]
647  //     b.cc IfTrue
648  //     b Done
649  BuildMI(MBB, DL, TII->get(AArch64::LSFP128_STR))
650    .addReg(IfFalseReg)
651    .addFrameIndex(ScratchFI)
652    .addImm(0);
653  BuildMI(MBB, DL, TII->get(AArch64::Bcc))
654    .addImm(CondCode)
655    .addMBB(TrueBB);
656  BuildMI(MBB, DL, TII->get(AArch64::Bimm))
657    .addMBB(EndBB);
658  MBB->addSuccessor(TrueBB);
659  MBB->addSuccessor(EndBB);
660
661  // IfTrue:
662  //     str qIFTRUE, [sp]
663  BuildMI(TrueBB, DL, TII->get(AArch64::LSFP128_STR))
664    .addReg(IfTrueReg)
665    .addFrameIndex(ScratchFI)
666    .addImm(0);
667
668  // Note: fallthrough. We can rely on LLVM adding a branch if it reorders the
669  // blocks.
670  TrueBB->addSuccessor(EndBB);
671
672  // Done:
673  //     ldr qDEST, [sp]
674  //     [... rest of incoming MBB ...]
675  if (!NZCVKilled)
676    EndBB->addLiveIn(AArch64::NZCV);
677  MachineInstr *StartOfEnd = EndBB->begin();
678  BuildMI(*EndBB, StartOfEnd, DL, TII->get(AArch64::LSFP128_LDR), DestReg)
679    .addFrameIndex(ScratchFI)
680    .addImm(0);
681
682  MI->eraseFromParent();
683  return EndBB;
684}
685
686MachineBasicBlock *
687AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
688                                                 MachineBasicBlock *MBB) const {
689  switch (MI->getOpcode()) {
690  default: llvm_unreachable("Unhandled instruction with custom inserter");
691  case AArch64::F128CSEL:
692    return EmitF128CSEL(MI, MBB);
693  case AArch64::ATOMIC_LOAD_ADD_I8:
694    return emitAtomicBinary(MI, MBB, 1, AArch64::ADDwww_lsl);
695  case AArch64::ATOMIC_LOAD_ADD_I16:
696    return emitAtomicBinary(MI, MBB, 2, AArch64::ADDwww_lsl);
697  case AArch64::ATOMIC_LOAD_ADD_I32:
698    return emitAtomicBinary(MI, MBB, 4, AArch64::ADDwww_lsl);
699  case AArch64::ATOMIC_LOAD_ADD_I64:
700    return emitAtomicBinary(MI, MBB, 8, AArch64::ADDxxx_lsl);
701
702  case AArch64::ATOMIC_LOAD_SUB_I8:
703    return emitAtomicBinary(MI, MBB, 1, AArch64::SUBwww_lsl);
704  case AArch64::ATOMIC_LOAD_SUB_I16:
705    return emitAtomicBinary(MI, MBB, 2, AArch64::SUBwww_lsl);
706  case AArch64::ATOMIC_LOAD_SUB_I32:
707    return emitAtomicBinary(MI, MBB, 4, AArch64::SUBwww_lsl);
708  case AArch64::ATOMIC_LOAD_SUB_I64:
709    return emitAtomicBinary(MI, MBB, 8, AArch64::SUBxxx_lsl);
710
711  case AArch64::ATOMIC_LOAD_AND_I8:
712    return emitAtomicBinary(MI, MBB, 1, AArch64::ANDwww_lsl);
713  case AArch64::ATOMIC_LOAD_AND_I16:
714    return emitAtomicBinary(MI, MBB, 2, AArch64::ANDwww_lsl);
715  case AArch64::ATOMIC_LOAD_AND_I32:
716    return emitAtomicBinary(MI, MBB, 4, AArch64::ANDwww_lsl);
717  case AArch64::ATOMIC_LOAD_AND_I64:
718    return emitAtomicBinary(MI, MBB, 8, AArch64::ANDxxx_lsl);
719
720  case AArch64::ATOMIC_LOAD_OR_I8:
721    return emitAtomicBinary(MI, MBB, 1, AArch64::ORRwww_lsl);
722  case AArch64::ATOMIC_LOAD_OR_I16:
723    return emitAtomicBinary(MI, MBB, 2, AArch64::ORRwww_lsl);
724  case AArch64::ATOMIC_LOAD_OR_I32:
725    return emitAtomicBinary(MI, MBB, 4, AArch64::ORRwww_lsl);
726  case AArch64::ATOMIC_LOAD_OR_I64:
727    return emitAtomicBinary(MI, MBB, 8, AArch64::ORRxxx_lsl);
728
729  case AArch64::ATOMIC_LOAD_XOR_I8:
730    return emitAtomicBinary(MI, MBB, 1, AArch64::EORwww_lsl);
731  case AArch64::ATOMIC_LOAD_XOR_I16:
732    return emitAtomicBinary(MI, MBB, 2, AArch64::EORwww_lsl);
733  case AArch64::ATOMIC_LOAD_XOR_I32:
734    return emitAtomicBinary(MI, MBB, 4, AArch64::EORwww_lsl);
735  case AArch64::ATOMIC_LOAD_XOR_I64:
736    return emitAtomicBinary(MI, MBB, 8, AArch64::EORxxx_lsl);
737
738  case AArch64::ATOMIC_LOAD_NAND_I8:
739    return emitAtomicBinary(MI, MBB, 1, AArch64::BICwww_lsl);
740  case AArch64::ATOMIC_LOAD_NAND_I16:
741    return emitAtomicBinary(MI, MBB, 2, AArch64::BICwww_lsl);
742  case AArch64::ATOMIC_LOAD_NAND_I32:
743    return emitAtomicBinary(MI, MBB, 4, AArch64::BICwww_lsl);
744  case AArch64::ATOMIC_LOAD_NAND_I64:
745    return emitAtomicBinary(MI, MBB, 8, AArch64::BICxxx_lsl);
746
747  case AArch64::ATOMIC_LOAD_MIN_I8:
748    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::GT);
749  case AArch64::ATOMIC_LOAD_MIN_I16:
750    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::GT);
751  case AArch64::ATOMIC_LOAD_MIN_I32:
752    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::GT);
753  case AArch64::ATOMIC_LOAD_MIN_I64:
754    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::GT);
755
756  case AArch64::ATOMIC_LOAD_MAX_I8:
757    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::LT);
758  case AArch64::ATOMIC_LOAD_MAX_I16:
759    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::LT);
760  case AArch64::ATOMIC_LOAD_MAX_I32:
761    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LT);
762  case AArch64::ATOMIC_LOAD_MAX_I64:
763    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LT);
764
765  case AArch64::ATOMIC_LOAD_UMIN_I8:
766    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::HI);
767  case AArch64::ATOMIC_LOAD_UMIN_I16:
768    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::HI);
769  case AArch64::ATOMIC_LOAD_UMIN_I32:
770    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::HI);
771  case AArch64::ATOMIC_LOAD_UMIN_I64:
772    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::HI);
773
774  case AArch64::ATOMIC_LOAD_UMAX_I8:
775    return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::LO);
776  case AArch64::ATOMIC_LOAD_UMAX_I16:
777    return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::LO);
778  case AArch64::ATOMIC_LOAD_UMAX_I32:
779    return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LO);
780  case AArch64::ATOMIC_LOAD_UMAX_I64:
781    return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LO);
782
783  case AArch64::ATOMIC_SWAP_I8:
784    return emitAtomicBinary(MI, MBB, 1, 0);
785  case AArch64::ATOMIC_SWAP_I16:
786    return emitAtomicBinary(MI, MBB, 2, 0);
787  case AArch64::ATOMIC_SWAP_I32:
788    return emitAtomicBinary(MI, MBB, 4, 0);
789  case AArch64::ATOMIC_SWAP_I64:
790    return emitAtomicBinary(MI, MBB, 8, 0);
791
792  case AArch64::ATOMIC_CMP_SWAP_I8:
793    return emitAtomicCmpSwap(MI, MBB, 1);
794  case AArch64::ATOMIC_CMP_SWAP_I16:
795    return emitAtomicCmpSwap(MI, MBB, 2);
796  case AArch64::ATOMIC_CMP_SWAP_I32:
797    return emitAtomicCmpSwap(MI, MBB, 4);
798  case AArch64::ATOMIC_CMP_SWAP_I64:
799    return emitAtomicCmpSwap(MI, MBB, 8);
800  }
801}
802
803
804const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
805  switch (Opcode) {
806  case AArch64ISD::BR_CC:          return "AArch64ISD::BR_CC";
807  case AArch64ISD::Call:           return "AArch64ISD::Call";
808  case AArch64ISD::FPMOV:          return "AArch64ISD::FPMOV";
809  case AArch64ISD::GOTLoad:        return "AArch64ISD::GOTLoad";
810  case AArch64ISD::BFI:            return "AArch64ISD::BFI";
811  case AArch64ISD::EXTR:           return "AArch64ISD::EXTR";
812  case AArch64ISD::Ret:            return "AArch64ISD::Ret";
813  case AArch64ISD::SBFX:           return "AArch64ISD::SBFX";
814  case AArch64ISD::SELECT_CC:      return "AArch64ISD::SELECT_CC";
815  case AArch64ISD::SETCC:          return "AArch64ISD::SETCC";
816  case AArch64ISD::TC_RETURN:      return "AArch64ISD::TC_RETURN";
817  case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
818  case AArch64ISD::TLSDESCCALL:    return "AArch64ISD::TLSDESCCALL";
819  case AArch64ISD::WrapperLarge:   return "AArch64ISD::WrapperLarge";
820  case AArch64ISD::WrapperSmall:   return "AArch64ISD::WrapperSmall";
821
822  case AArch64ISD::NEON_BSL:
823    return "AArch64ISD::NEON_BSL";
824  case AArch64ISD::NEON_MOVIMM:
825    return "AArch64ISD::NEON_MOVIMM";
826  case AArch64ISD::NEON_MVNIMM:
827    return "AArch64ISD::NEON_MVNIMM";
828  case AArch64ISD::NEON_FMOVIMM:
829    return "AArch64ISD::NEON_FMOVIMM";
830  case AArch64ISD::NEON_CMP:
831    return "AArch64ISD::NEON_CMP";
832  case AArch64ISD::NEON_CMPZ:
833    return "AArch64ISD::NEON_CMPZ";
834  case AArch64ISD::NEON_TST:
835    return "AArch64ISD::NEON_TST";
836  default:
837    return NULL;
838  }
839}
840
841static const uint16_t AArch64FPRArgRegs[] = {
842  AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
843  AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7
844};
845static const unsigned NumFPRArgRegs = llvm::array_lengthof(AArch64FPRArgRegs);
846
847static const uint16_t AArch64ArgRegs[] = {
848  AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3,
849  AArch64::X4, AArch64::X5, AArch64::X6, AArch64::X7
850};
851static const unsigned NumArgRegs = llvm::array_lengthof(AArch64ArgRegs);
852
853static bool CC_AArch64NoMoreRegs(unsigned ValNo, MVT ValVT, MVT LocVT,
854                                 CCValAssign::LocInfo LocInfo,
855                                 ISD::ArgFlagsTy ArgFlags, CCState &State) {
856  // Mark all remaining general purpose registers as allocated. We don't
857  // backtrack: if (for example) an i128 gets put on the stack, no subsequent
858  // i64 will go in registers (C.11).
859  for (unsigned i = 0; i < NumArgRegs; ++i)
860    State.AllocateReg(AArch64ArgRegs[i]);
861
862  return false;
863}
864
865#include "AArch64GenCallingConv.inc"
866
867CCAssignFn *AArch64TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
868
869  switch(CC) {
870  default: llvm_unreachable("Unsupported calling convention");
871  case CallingConv::Fast:
872  case CallingConv::C:
873    return CC_A64_APCS;
874  }
875}
876
877void
878AArch64TargetLowering::SaveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG,
879                                           SDLoc DL, SDValue &Chain) const {
880  MachineFunction &MF = DAG.getMachineFunction();
881  MachineFrameInfo *MFI = MF.getFrameInfo();
882  AArch64MachineFunctionInfo *FuncInfo
883    = MF.getInfo<AArch64MachineFunctionInfo>();
884
885  SmallVector<SDValue, 8> MemOps;
886
887  unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(AArch64ArgRegs,
888                                                         NumArgRegs);
889  unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(AArch64FPRArgRegs,
890                                                         NumFPRArgRegs);
891
892  unsigned GPRSaveSize = 8 * (NumArgRegs - FirstVariadicGPR);
893  int GPRIdx = 0;
894  if (GPRSaveSize != 0) {
895    GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
896
897    SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
898
899    for (unsigned i = FirstVariadicGPR; i < NumArgRegs; ++i) {
900      unsigned VReg = MF.addLiveIn(AArch64ArgRegs[i], &AArch64::GPR64RegClass);
901      SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
902      SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
903                                   MachinePointerInfo::getStack(i * 8),
904                                   false, false, 0);
905      MemOps.push_back(Store);
906      FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
907                        DAG.getConstant(8, getPointerTy()));
908    }
909  }
910
911  unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
912  int FPRIdx = 0;
913  if (FPRSaveSize != 0) {
914    FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
915
916    SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
917
918    for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
919      unsigned VReg = MF.addLiveIn(AArch64FPRArgRegs[i],
920                                   &AArch64::FPR128RegClass);
921      SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
922      SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
923                                   MachinePointerInfo::getStack(i * 16),
924                                   false, false, 0);
925      MemOps.push_back(Store);
926      FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
927                        DAG.getConstant(16, getPointerTy()));
928    }
929  }
930
931  int StackIdx = MFI->CreateFixedObject(8, CCInfo.getNextStackOffset(), true);
932
933  FuncInfo->setVariadicStackIdx(StackIdx);
934  FuncInfo->setVariadicGPRIdx(GPRIdx);
935  FuncInfo->setVariadicGPRSize(GPRSaveSize);
936  FuncInfo->setVariadicFPRIdx(FPRIdx);
937  FuncInfo->setVariadicFPRSize(FPRSaveSize);
938
939  if (!MemOps.empty()) {
940    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0],
941                        MemOps.size());
942  }
943}
944
945
946SDValue
947AArch64TargetLowering::LowerFormalArguments(SDValue Chain,
948                                      CallingConv::ID CallConv, bool isVarArg,
949                                      const SmallVectorImpl<ISD::InputArg> &Ins,
950                                      SDLoc dl, SelectionDAG &DAG,
951                                      SmallVectorImpl<SDValue> &InVals) const {
952  MachineFunction &MF = DAG.getMachineFunction();
953  AArch64MachineFunctionInfo *FuncInfo
954    = MF.getInfo<AArch64MachineFunctionInfo>();
955  MachineFrameInfo *MFI = MF.getFrameInfo();
956  bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
957
958  SmallVector<CCValAssign, 16> ArgLocs;
959  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
960                 getTargetMachine(), ArgLocs, *DAG.getContext());
961  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
962
963  SmallVector<SDValue, 16> ArgValues;
964
965  SDValue ArgValue;
966  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
967    CCValAssign &VA = ArgLocs[i];
968    ISD::ArgFlagsTy Flags = Ins[i].Flags;
969
970    if (Flags.isByVal()) {
971      // Byval is used for small structs and HFAs in the PCS, but the system
972      // should work in a non-compliant manner for larger structs.
973      EVT PtrTy = getPointerTy();
974      int Size = Flags.getByValSize();
975      unsigned NumRegs = (Size + 7) / 8;
976
977      unsigned FrameIdx = MFI->CreateFixedObject(8 * NumRegs,
978                                                 VA.getLocMemOffset(),
979                                                 false);
980      SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
981      InVals.push_back(FrameIdxN);
982
983      continue;
984    } else if (VA.isRegLoc()) {
985      MVT RegVT = VA.getLocVT();
986      const TargetRegisterClass *RC = getRegClassFor(RegVT);
987      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
988
989      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
990    } else { // VA.isRegLoc()
991      assert(VA.isMemLoc());
992
993      int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
994                                      VA.getLocMemOffset(), true);
995
996      SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
997      ArgValue = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
998                             MachinePointerInfo::getFixedStack(FI),
999                             false, false, false, 0);
1000
1001
1002    }
1003
1004    switch (VA.getLocInfo()) {
1005    default: llvm_unreachable("Unknown loc info!");
1006    case CCValAssign::Full: break;
1007    case CCValAssign::BCvt:
1008      ArgValue = DAG.getNode(ISD::BITCAST,dl, VA.getValVT(), ArgValue);
1009      break;
1010    case CCValAssign::SExt:
1011    case CCValAssign::ZExt:
1012    case CCValAssign::AExt: {
1013      unsigned DestSize = VA.getValVT().getSizeInBits();
1014      unsigned DestSubReg;
1015
1016      switch (DestSize) {
1017      case 8: DestSubReg = AArch64::sub_8; break;
1018      case 16: DestSubReg = AArch64::sub_16; break;
1019      case 32: DestSubReg = AArch64::sub_32; break;
1020      case 64: DestSubReg = AArch64::sub_64; break;
1021      default: llvm_unreachable("Unexpected argument promotion");
1022      }
1023
1024      ArgValue = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
1025                                   VA.getValVT(), ArgValue,
1026                                   DAG.getTargetConstant(DestSubReg, MVT::i32)),
1027                         0);
1028      break;
1029    }
1030    }
1031
1032    InVals.push_back(ArgValue);
1033  }
1034
1035  if (isVarArg)
1036    SaveVarArgRegisters(CCInfo, DAG, dl, Chain);
1037
1038  unsigned StackArgSize = CCInfo.getNextStackOffset();
1039  if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
1040    // This is a non-standard ABI so by fiat I say we're allowed to make full
1041    // use of the stack area to be popped, which must be aligned to 16 bytes in
1042    // any case:
1043    StackArgSize = RoundUpToAlignment(StackArgSize, 16);
1044
1045    // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
1046    // a multiple of 16.
1047    FuncInfo->setArgumentStackToRestore(StackArgSize);
1048
1049    // This realignment carries over to the available bytes below. Our own
1050    // callers will guarantee the space is free by giving an aligned value to
1051    // CALLSEQ_START.
1052  }
1053  // Even if we're not expected to free up the space, it's useful to know how
1054  // much is there while considering tail calls (because we can reuse it).
1055  FuncInfo->setBytesInStackArgArea(StackArgSize);
1056
1057  return Chain;
1058}
1059
1060SDValue
1061AArch64TargetLowering::LowerReturn(SDValue Chain,
1062                                   CallingConv::ID CallConv, bool isVarArg,
1063                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
1064                                   const SmallVectorImpl<SDValue> &OutVals,
1065                                   SDLoc dl, SelectionDAG &DAG) const {
1066  // CCValAssign - represent the assignment of the return value to a location.
1067  SmallVector<CCValAssign, 16> RVLocs;
1068
1069  // CCState - Info about the registers and stack slots.
1070  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1071                 getTargetMachine(), RVLocs, *DAG.getContext());
1072
1073  // Analyze outgoing return values.
1074  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv));
1075
1076  SDValue Flag;
1077  SmallVector<SDValue, 4> RetOps(1, Chain);
1078
1079  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1080    // PCS: "If the type, T, of the result of a function is such that
1081    // void func(T arg) would require that arg be passed as a value in a
1082    // register (or set of registers) according to the rules in 5.4, then the
1083    // result is returned in the same registers as would be used for such an
1084    // argument.
1085    //
1086    // Otherwise, the caller shall reserve a block of memory of sufficient
1087    // size and alignment to hold the result. The address of the memory block
1088    // shall be passed as an additional argument to the function in x8."
1089    //
1090    // This is implemented in two places. The register-return values are dealt
1091    // with here, more complex returns are passed as an sret parameter, which
1092    // means we don't have to worry about it during actual return.
1093    CCValAssign &VA = RVLocs[i];
1094    assert(VA.isRegLoc() && "Only register-returns should be created by PCS");
1095
1096
1097    SDValue Arg = OutVals[i];
1098
1099    // There's no convenient note in the ABI about this as there is for normal
1100    // arguments, but it says return values are passed in the same registers as
1101    // an argument would be. I believe that includes the comments about
1102    // unspecified higher bits, putting the burden of widening on the *caller*
1103    // for return values.
1104    switch (VA.getLocInfo()) {
1105    default: llvm_unreachable("Unknown loc info");
1106    case CCValAssign::Full: break;
1107    case CCValAssign::SExt:
1108    case CCValAssign::ZExt:
1109    case CCValAssign::AExt:
1110      // Floating-point values should only be extended when they're going into
1111      // memory, which can't happen here so an integer extend is acceptable.
1112      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1113      break;
1114    case CCValAssign::BCvt:
1115      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1116      break;
1117    }
1118
1119    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1120    Flag = Chain.getValue(1);
1121    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1122  }
1123
1124  RetOps[0] = Chain;  // Update chain.
1125
1126  // Add the flag if we have it.
1127  if (Flag.getNode())
1128    RetOps.push_back(Flag);
1129
1130  return DAG.getNode(AArch64ISD::Ret, dl, MVT::Other,
1131                     &RetOps[0], RetOps.size());
1132}
1133
1134SDValue
1135AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
1136                                 SmallVectorImpl<SDValue> &InVals) const {
1137  SelectionDAG &DAG                     = CLI.DAG;
1138  SDLoc &dl                             = CLI.DL;
1139  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1140  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1141  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1142  SDValue Chain                         = CLI.Chain;
1143  SDValue Callee                        = CLI.Callee;
1144  bool &IsTailCall                      = CLI.IsTailCall;
1145  CallingConv::ID CallConv              = CLI.CallConv;
1146  bool IsVarArg                         = CLI.IsVarArg;
1147
1148  MachineFunction &MF = DAG.getMachineFunction();
1149  AArch64MachineFunctionInfo *FuncInfo
1150    = MF.getInfo<AArch64MachineFunctionInfo>();
1151  bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
1152  bool IsStructRet = !Outs.empty() && Outs[0].Flags.isSRet();
1153  bool IsSibCall = false;
1154
1155  if (IsTailCall) {
1156    IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1157                    IsVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1158                                                   Outs, OutVals, Ins, DAG);
1159
1160    // A sibling call is one where we're under the usual C ABI and not planning
1161    // to change that but can still do a tail call:
1162    if (!TailCallOpt && IsTailCall)
1163      IsSibCall = true;
1164  }
1165
1166  SmallVector<CCValAssign, 16> ArgLocs;
1167  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
1168                 getTargetMachine(), ArgLocs, *DAG.getContext());
1169  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1170
1171  // On AArch64 (and all other architectures I'm aware of) the most this has to
1172  // do is adjust the stack pointer.
1173  unsigned NumBytes = RoundUpToAlignment(CCInfo.getNextStackOffset(), 16);
1174  if (IsSibCall) {
1175    // Since we're not changing the ABI to make this a tail call, the memory
1176    // operands are already available in the caller's incoming argument space.
1177    NumBytes = 0;
1178  }
1179
1180  // FPDiff is the byte offset of the call's argument area from the callee's.
1181  // Stores to callee stack arguments will be placed in FixedStackSlots offset
1182  // by this amount for a tail call. In a sibling call it must be 0 because the
1183  // caller will deallocate the entire stack and the callee still expects its
1184  // arguments to begin at SP+0. Completely unused for non-tail calls.
1185  int FPDiff = 0;
1186
1187  if (IsTailCall && !IsSibCall) {
1188    unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
1189
1190    // FPDiff will be negative if this tail call requires more space than we
1191    // would automatically have in our incoming argument space. Positive if we
1192    // can actually shrink the stack.
1193    FPDiff = NumReusableBytes - NumBytes;
1194
1195    // The stack pointer must be 16-byte aligned at all times it's used for a
1196    // memory operation, which in practice means at *all* times and in
1197    // particular across call boundaries. Therefore our own arguments started at
1198    // a 16-byte aligned SP and the delta applied for the tail call should
1199    // satisfy the same constraint.
1200    assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
1201  }
1202
1203  if (!IsSibCall)
1204    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
1205                                 dl);
1206
1207  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, AArch64::XSP,
1208                                        getPointerTy());
1209
1210  SmallVector<SDValue, 8> MemOpChains;
1211  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1212
1213  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1214    CCValAssign &VA = ArgLocs[i];
1215    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1216    SDValue Arg = OutVals[i];
1217
1218    // Callee does the actual widening, so all extensions just use an implicit
1219    // definition of the rest of the Loc. Aesthetically, this would be nicer as
1220    // an ANY_EXTEND, but that isn't valid for floating-point types and this
1221    // alternative works on integer types too.
1222    switch (VA.getLocInfo()) {
1223    default: llvm_unreachable("Unknown loc info!");
1224    case CCValAssign::Full: break;
1225    case CCValAssign::SExt:
1226    case CCValAssign::ZExt:
1227    case CCValAssign::AExt: {
1228      unsigned SrcSize = VA.getValVT().getSizeInBits();
1229      unsigned SrcSubReg;
1230
1231      switch (SrcSize) {
1232      case 8: SrcSubReg = AArch64::sub_8; break;
1233      case 16: SrcSubReg = AArch64::sub_16; break;
1234      case 32: SrcSubReg = AArch64::sub_32; break;
1235      case 64: SrcSubReg = AArch64::sub_64; break;
1236      default: llvm_unreachable("Unexpected argument promotion");
1237      }
1238
1239      Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
1240                                    VA.getLocVT(),
1241                                    DAG.getUNDEF(VA.getLocVT()),
1242                                    Arg,
1243                                    DAG.getTargetConstant(SrcSubReg, MVT::i32)),
1244                    0);
1245
1246      break;
1247    }
1248    case CCValAssign::BCvt:
1249      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1250      break;
1251    }
1252
1253    if (VA.isRegLoc()) {
1254      // A normal register (sub-) argument. For now we just note it down because
1255      // we want to copy things into registers as late as possible to avoid
1256      // register-pressure (and possibly worse).
1257      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1258      continue;
1259    }
1260
1261    assert(VA.isMemLoc() && "unexpected argument location");
1262
1263    SDValue DstAddr;
1264    MachinePointerInfo DstInfo;
1265    if (IsTailCall) {
1266      uint32_t OpSize = Flags.isByVal() ? Flags.getByValSize() :
1267                                          VA.getLocVT().getSizeInBits();
1268      OpSize = (OpSize + 7) / 8;
1269      int32_t Offset = VA.getLocMemOffset() + FPDiff;
1270      int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
1271
1272      DstAddr = DAG.getFrameIndex(FI, getPointerTy());
1273      DstInfo = MachinePointerInfo::getFixedStack(FI);
1274
1275      // Make sure any stack arguments overlapping with where we're storing are
1276      // loaded before this eventual operation. Otherwise they'll be clobbered.
1277      Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
1278    } else {
1279      SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset());
1280
1281      DstAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1282      DstInfo = MachinePointerInfo::getStack(VA.getLocMemOffset());
1283    }
1284
1285    if (Flags.isByVal()) {
1286      SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i64);
1287      SDValue Cpy = DAG.getMemcpy(Chain, dl, DstAddr, Arg, SizeNode,
1288                                  Flags.getByValAlign(),
1289                                  /*isVolatile = */ false,
1290                                  /*alwaysInline = */ false,
1291                                  DstInfo, MachinePointerInfo(0));
1292      MemOpChains.push_back(Cpy);
1293    } else {
1294      // Normal stack argument, put it where it's needed.
1295      SDValue Store = DAG.getStore(Chain, dl, Arg, DstAddr, DstInfo,
1296                                   false, false, 0);
1297      MemOpChains.push_back(Store);
1298    }
1299  }
1300
1301  // The loads and stores generated above shouldn't clash with each
1302  // other. Combining them with this TokenFactor notes that fact for the rest of
1303  // the backend.
1304  if (!MemOpChains.empty())
1305    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1306                        &MemOpChains[0], MemOpChains.size());
1307
1308  // Most of the rest of the instructions need to be glued together; we don't
1309  // want assignments to actual registers used by a call to be rearranged by a
1310  // well-meaning scheduler.
1311  SDValue InFlag;
1312
1313  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1314    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1315                             RegsToPass[i].second, InFlag);
1316    InFlag = Chain.getValue(1);
1317  }
1318
1319  // The linker is responsible for inserting veneers when necessary to put a
1320  // function call destination in range, so we don't need to bother with a
1321  // wrapper here.
1322  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1323    const GlobalValue *GV = G->getGlobal();
1324    Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy());
1325  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1326    const char *Sym = S->getSymbol();
1327    Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
1328  }
1329
1330  // We don't usually want to end the call-sequence here because we would tidy
1331  // the frame up *after* the call, however in the ABI-changing tail-call case
1332  // we've carefully laid out the parameters so that when sp is reset they'll be
1333  // in the correct location.
1334  if (IsTailCall && !IsSibCall) {
1335    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1336                               DAG.getIntPtrConstant(0, true), InFlag, dl);
1337    InFlag = Chain.getValue(1);
1338  }
1339
1340  // We produce the following DAG scheme for the actual call instruction:
1341  //     (AArch64Call Chain, Callee, reg1, ..., regn, preserveMask, inflag?
1342  //
1343  // Most arguments aren't going to be used and just keep the values live as
1344  // far as LLVM is concerned. It's expected to be selected as simply "bl
1345  // callee" (for a direct, non-tail call).
1346  std::vector<SDValue> Ops;
1347  Ops.push_back(Chain);
1348  Ops.push_back(Callee);
1349
1350  if (IsTailCall) {
1351    // Each tail call may have to adjust the stack by a different amount, so
1352    // this information must travel along with the operation for eventual
1353    // consumption by emitEpilogue.
1354    Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
1355  }
1356
1357  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1358    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1359                                  RegsToPass[i].second.getValueType()));
1360
1361
1362  // Add a register mask operand representing the call-preserved registers. This
1363  // is used later in codegen to constrain register-allocation.
1364  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
1365  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
1366  assert(Mask && "Missing call preserved mask for calling convention");
1367  Ops.push_back(DAG.getRegisterMask(Mask));
1368
1369  // If we needed glue, put it in as the last argument.
1370  if (InFlag.getNode())
1371    Ops.push_back(InFlag);
1372
1373  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1374
1375  if (IsTailCall) {
1376    return DAG.getNode(AArch64ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1377  }
1378
1379  Chain = DAG.getNode(AArch64ISD::Call, dl, NodeTys, &Ops[0], Ops.size());
1380  InFlag = Chain.getValue(1);
1381
1382  // Now we can reclaim the stack, just as well do it before working out where
1383  // our return value is.
1384  if (!IsSibCall) {
1385    uint64_t CalleePopBytes
1386      = DoesCalleeRestoreStack(CallConv, TailCallOpt) ? NumBytes : 0;
1387
1388    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1389                               DAG.getIntPtrConstant(CalleePopBytes, true),
1390                               InFlag, dl);
1391    InFlag = Chain.getValue(1);
1392  }
1393
1394  return LowerCallResult(Chain, InFlag, CallConv,
1395                         IsVarArg, Ins, dl, DAG, InVals);
1396}
1397
1398SDValue
1399AArch64TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1400                                      CallingConv::ID CallConv, bool IsVarArg,
1401                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1402                                      SDLoc dl, SelectionDAG &DAG,
1403                                      SmallVectorImpl<SDValue> &InVals) const {
1404  // Assign locations to each value returned by this call.
1405  SmallVector<CCValAssign, 16> RVLocs;
1406  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
1407                 getTargetMachine(), RVLocs, *DAG.getContext());
1408  CCInfo.AnalyzeCallResult(Ins, CCAssignFnForNode(CallConv));
1409
1410  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1411    CCValAssign VA = RVLocs[i];
1412
1413    // Return values that are too big to fit into registers should use an sret
1414    // pointer, so this can be a lot simpler than the main argument code.
1415    assert(VA.isRegLoc() && "Memory locations not expected for call return");
1416
1417    SDValue Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1418                                     InFlag);
1419    Chain = Val.getValue(1);
1420    InFlag = Val.getValue(2);
1421
1422    switch (VA.getLocInfo()) {
1423    default: llvm_unreachable("Unknown loc info!");
1424    case CCValAssign::Full: break;
1425    case CCValAssign::BCvt:
1426      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1427      break;
1428    case CCValAssign::ZExt:
1429    case CCValAssign::SExt:
1430    case CCValAssign::AExt:
1431      // Floating-point arguments only get extended/truncated if they're going
1432      // in memory, so using the integer operation is acceptable here.
1433      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
1434      break;
1435    }
1436
1437    InVals.push_back(Val);
1438  }
1439
1440  return Chain;
1441}
1442
1443bool
1444AArch64TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1445                                    CallingConv::ID CalleeCC,
1446                                    bool IsVarArg,
1447                                    bool IsCalleeStructRet,
1448                                    bool IsCallerStructRet,
1449                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1450                                    const SmallVectorImpl<SDValue> &OutVals,
1451                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1452                                    SelectionDAG& DAG) const {
1453
1454  // For CallingConv::C this function knows whether the ABI needs
1455  // changing. That's not true for other conventions so they will have to opt in
1456  // manually.
1457  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1458    return false;
1459
1460  const MachineFunction &MF = DAG.getMachineFunction();
1461  const Function *CallerF = MF.getFunction();
1462  CallingConv::ID CallerCC = CallerF->getCallingConv();
1463  bool CCMatch = CallerCC == CalleeCC;
1464
1465  // Byval parameters hand the function a pointer directly into the stack area
1466  // we want to reuse during a tail call. Working around this *is* possible (see
1467  // X86) but less efficient and uglier in LowerCall.
1468  for (Function::const_arg_iterator i = CallerF->arg_begin(),
1469         e = CallerF->arg_end(); i != e; ++i)
1470    if (i->hasByValAttr())
1471      return false;
1472
1473  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
1474    if (IsTailCallConvention(CalleeCC) && CCMatch)
1475      return true;
1476    return false;
1477  }
1478
1479  // Now we search for cases where we can use a tail call without changing the
1480  // ABI. Sibcall is used in some places (particularly gcc) to refer to this
1481  // concept.
1482
1483  // I want anyone implementing a new calling convention to think long and hard
1484  // about this assert.
1485  assert((!IsVarArg || CalleeCC == CallingConv::C)
1486         && "Unexpected variadic calling convention");
1487
1488  if (IsVarArg && !Outs.empty()) {
1489    // At least two cases here: if caller is fastcc then we can't have any
1490    // memory arguments (we'd be expected to clean up the stack afterwards). If
1491    // caller is C then we could potentially use its argument area.
1492
1493    // FIXME: for now we take the most conservative of these in both cases:
1494    // disallow all variadic memory operands.
1495    SmallVector<CCValAssign, 16> ArgLocs;
1496    CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
1497                   getTargetMachine(), ArgLocs, *DAG.getContext());
1498
1499    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
1500    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
1501      if (!ArgLocs[i].isRegLoc())
1502        return false;
1503  }
1504
1505  // If the calling conventions do not match, then we'd better make sure the
1506  // results are returned in the same way as what the caller expects.
1507  if (!CCMatch) {
1508    SmallVector<CCValAssign, 16> RVLocs1;
1509    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1510                    getTargetMachine(), RVLocs1, *DAG.getContext());
1511    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC));
1512
1513    SmallVector<CCValAssign, 16> RVLocs2;
1514    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1515                    getTargetMachine(), RVLocs2, *DAG.getContext());
1516    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC));
1517
1518    if (RVLocs1.size() != RVLocs2.size())
1519      return false;
1520    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1521      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1522        return false;
1523      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1524        return false;
1525      if (RVLocs1[i].isRegLoc()) {
1526        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1527          return false;
1528      } else {
1529        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1530          return false;
1531      }
1532    }
1533  }
1534
1535  // Nothing more to check if the callee is taking no arguments
1536  if (Outs.empty())
1537    return true;
1538
1539  SmallVector<CCValAssign, 16> ArgLocs;
1540  CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
1541                 getTargetMachine(), ArgLocs, *DAG.getContext());
1542
1543  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
1544
1545  const AArch64MachineFunctionInfo *FuncInfo
1546    = MF.getInfo<AArch64MachineFunctionInfo>();
1547
1548  // If the stack arguments for this call would fit into our own save area then
1549  // the call can be made tail.
1550  return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
1551}
1552
1553bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
1554                                                   bool TailCallOpt) const {
1555  return CallCC == CallingConv::Fast && TailCallOpt;
1556}
1557
1558bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
1559  return CallCC == CallingConv::Fast;
1560}
1561
1562SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
1563                                                   SelectionDAG &DAG,
1564                                                   MachineFrameInfo *MFI,
1565                                                   int ClobberedFI) const {
1566  SmallVector<SDValue, 8> ArgChains;
1567  int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
1568  int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
1569
1570  // Include the original chain at the beginning of the list. When this is
1571  // used by target LowerCall hooks, this helps legalize find the
1572  // CALLSEQ_BEGIN node.
1573  ArgChains.push_back(Chain);
1574
1575  // Add a chain value for each stack argument corresponding
1576  for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1577         UE = DAG.getEntryNode().getNode()->use_end(); U != UE; ++U)
1578    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
1579      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
1580        if (FI->getIndex() < 0) {
1581          int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
1582          int64_t InLastByte = InFirstByte;
1583          InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
1584
1585          if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1586              (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1587            ArgChains.push_back(SDValue(L, 1));
1588        }
1589
1590   // Build a tokenfactor for all the chains.
1591   return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other,
1592                      &ArgChains[0], ArgChains.size());
1593}
1594
1595static A64CC::CondCodes IntCCToA64CC(ISD::CondCode CC) {
1596  switch (CC) {
1597  case ISD::SETEQ:  return A64CC::EQ;
1598  case ISD::SETGT:  return A64CC::GT;
1599  case ISD::SETGE:  return A64CC::GE;
1600  case ISD::SETLT:  return A64CC::LT;
1601  case ISD::SETLE:  return A64CC::LE;
1602  case ISD::SETNE:  return A64CC::NE;
1603  case ISD::SETUGT: return A64CC::HI;
1604  case ISD::SETUGE: return A64CC::HS;
1605  case ISD::SETULT: return A64CC::LO;
1606  case ISD::SETULE: return A64CC::LS;
1607  default: llvm_unreachable("Unexpected condition code");
1608  }
1609}
1610
1611bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Val) const {
1612  // icmp is implemented using adds/subs immediate, which take an unsigned
1613  // 12-bit immediate, optionally shifted left by 12 bits.
1614
1615  // Symmetric by using adds/subs
1616  if (Val < 0)
1617    Val = -Val;
1618
1619  return (Val & ~0xfff) == 0 || (Val & ~0xfff000) == 0;
1620}
1621
1622SDValue AArch64TargetLowering::getSelectableIntSetCC(SDValue LHS, SDValue RHS,
1623                                        ISD::CondCode CC, SDValue &A64cc,
1624                                        SelectionDAG &DAG, SDLoc &dl) const {
1625  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1626    int64_t C = 0;
1627    EVT VT = RHSC->getValueType(0);
1628    bool knownInvalid = false;
1629
1630    // I'm not convinced the rest of LLVM handles these edge cases properly, but
1631    // we can at least get it right.
1632    if (isSignedIntSetCC(CC)) {
1633      C = RHSC->getSExtValue();
1634    } else if (RHSC->getZExtValue() > INT64_MAX) {
1635      // A 64-bit constant not representable by a signed 64-bit integer is far
1636      // too big to fit into a SUBS immediate anyway.
1637      knownInvalid = true;
1638    } else {
1639      C = RHSC->getZExtValue();
1640    }
1641
1642    if (!knownInvalid && !isLegalICmpImmediate(C)) {
1643      // Constant does not fit, try adjusting it by one?
1644      switch (CC) {
1645      default: break;
1646      case ISD::SETLT:
1647      case ISD::SETGE:
1648        if (isLegalICmpImmediate(C-1)) {
1649          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1650          RHS = DAG.getConstant(C-1, VT);
1651        }
1652        break;
1653      case ISD::SETULT:
1654      case ISD::SETUGE:
1655        if (isLegalICmpImmediate(C-1)) {
1656          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1657          RHS = DAG.getConstant(C-1, VT);
1658        }
1659        break;
1660      case ISD::SETLE:
1661      case ISD::SETGT:
1662        if (isLegalICmpImmediate(C+1)) {
1663          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1664          RHS = DAG.getConstant(C+1, VT);
1665        }
1666        break;
1667      case ISD::SETULE:
1668      case ISD::SETUGT:
1669        if (isLegalICmpImmediate(C+1)) {
1670          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1671          RHS = DAG.getConstant(C+1, VT);
1672        }
1673        break;
1674      }
1675    }
1676  }
1677
1678  A64CC::CondCodes CondCode = IntCCToA64CC(CC);
1679  A64cc = DAG.getConstant(CondCode, MVT::i32);
1680  return DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
1681                     DAG.getCondCode(CC));
1682}
1683
1684static A64CC::CondCodes FPCCToA64CC(ISD::CondCode CC,
1685                                    A64CC::CondCodes &Alternative) {
1686  A64CC::CondCodes CondCode = A64CC::Invalid;
1687  Alternative = A64CC::Invalid;
1688
1689  switch (CC) {
1690  default: llvm_unreachable("Unknown FP condition!");
1691  case ISD::SETEQ:
1692  case ISD::SETOEQ: CondCode = A64CC::EQ; break;
1693  case ISD::SETGT:
1694  case ISD::SETOGT: CondCode = A64CC::GT; break;
1695  case ISD::SETGE:
1696  case ISD::SETOGE: CondCode = A64CC::GE; break;
1697  case ISD::SETOLT: CondCode = A64CC::MI; break;
1698  case ISD::SETOLE: CondCode = A64CC::LS; break;
1699  case ISD::SETONE: CondCode = A64CC::MI; Alternative = A64CC::GT; break;
1700  case ISD::SETO:   CondCode = A64CC::VC; break;
1701  case ISD::SETUO:  CondCode = A64CC::VS; break;
1702  case ISD::SETUEQ: CondCode = A64CC::EQ; Alternative = A64CC::VS; break;
1703  case ISD::SETUGT: CondCode = A64CC::HI; break;
1704  case ISD::SETUGE: CondCode = A64CC::PL; break;
1705  case ISD::SETLT:
1706  case ISD::SETULT: CondCode = A64CC::LT; break;
1707  case ISD::SETLE:
1708  case ISD::SETULE: CondCode = A64CC::LE; break;
1709  case ISD::SETNE:
1710  case ISD::SETUNE: CondCode = A64CC::NE; break;
1711  }
1712  return CondCode;
1713}
1714
1715SDValue
1716AArch64TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
1717  SDLoc DL(Op);
1718  EVT PtrVT = getPointerTy();
1719  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1720
1721  switch(getTargetMachine().getCodeModel()) {
1722  case CodeModel::Small:
1723    // The most efficient code is PC-relative anyway for the small memory model,
1724    // so we don't need to worry about relocation model.
1725    return DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
1726                       DAG.getTargetBlockAddress(BA, PtrVT, 0,
1727                                                 AArch64II::MO_NO_FLAG),
1728                       DAG.getTargetBlockAddress(BA, PtrVT, 0,
1729                                                 AArch64II::MO_LO12),
1730                       DAG.getConstant(/*Alignment=*/ 4, MVT::i32));
1731  case CodeModel::Large:
1732    return DAG.getNode(
1733      AArch64ISD::WrapperLarge, DL, PtrVT,
1734      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G3),
1735      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G2_NC),
1736      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G1_NC),
1737      DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G0_NC));
1738  default:
1739    llvm_unreachable("Only small and large code models supported now");
1740  }
1741}
1742
1743
1744// (BRCOND chain, val, dest)
1745SDValue
1746AArch64TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1747  SDLoc dl(Op);
1748  SDValue Chain = Op.getOperand(0);
1749  SDValue TheBit = Op.getOperand(1);
1750  SDValue DestBB = Op.getOperand(2);
1751
1752  // AArch64 BooleanContents is the default UndefinedBooleanContent, which means
1753  // that as the consumer we are responsible for ignoring rubbish in higher
1754  // bits.
1755  TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
1756                       DAG.getConstant(1, MVT::i32));
1757
1758  SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
1759                               DAG.getConstant(0, TheBit.getValueType()),
1760                               DAG.getCondCode(ISD::SETNE));
1761
1762  return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, Chain,
1763                     A64CMP, DAG.getConstant(A64CC::NE, MVT::i32),
1764                     DestBB);
1765}
1766
1767// (BR_CC chain, condcode, lhs, rhs, dest)
1768SDValue
1769AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
1770  SDLoc dl(Op);
1771  SDValue Chain = Op.getOperand(0);
1772  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1773  SDValue LHS = Op.getOperand(2);
1774  SDValue RHS = Op.getOperand(3);
1775  SDValue DestBB = Op.getOperand(4);
1776
1777  if (LHS.getValueType() == MVT::f128) {
1778    // f128 comparisons are lowered to runtime calls by a routine which sets
1779    // LHS, RHS and CC appropriately for the rest of this function to continue.
1780    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
1781
1782    // If softenSetCCOperands returned a scalar, we need to compare the result
1783    // against zero to select between true and false values.
1784    if (RHS.getNode() == 0) {
1785      RHS = DAG.getConstant(0, LHS.getValueType());
1786      CC = ISD::SETNE;
1787    }
1788  }
1789
1790  if (LHS.getValueType().isInteger()) {
1791    SDValue A64cc;
1792
1793    // Integers are handled in a separate function because the combinations of
1794    // immediates and tests can get hairy and we may want to fiddle things.
1795    SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
1796
1797    return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
1798                       Chain, CmpOp, A64cc, DestBB);
1799  }
1800
1801  // Note that some LLVM floating-point CondCodes can't be lowered to a single
1802  // conditional branch, hence FPCCToA64CC can set a second test, where either
1803  // passing is sufficient.
1804  A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
1805  CondCode = FPCCToA64CC(CC, Alternative);
1806  SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
1807  SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
1808                              DAG.getCondCode(CC));
1809  SDValue A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
1810                                 Chain, SetCC, A64cc, DestBB);
1811
1812  if (Alternative != A64CC::Invalid) {
1813    A64cc = DAG.getConstant(Alternative, MVT::i32);
1814    A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
1815                           A64BR_CC, SetCC, A64cc, DestBB);
1816
1817  }
1818
1819  return A64BR_CC;
1820}
1821
1822SDValue
1823AArch64TargetLowering::LowerF128ToCall(SDValue Op, SelectionDAG &DAG,
1824                                       RTLIB::Libcall Call) const {
1825  ArgListTy Args;
1826  ArgListEntry Entry;
1827  for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
1828    EVT ArgVT = Op.getOperand(i).getValueType();
1829    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1830    Entry.Node = Op.getOperand(i); Entry.Ty = ArgTy;
1831    Entry.isSExt = false;
1832    Entry.isZExt = false;
1833    Args.push_back(Entry);
1834  }
1835  SDValue Callee = DAG.getExternalSymbol(getLibcallName(Call), getPointerTy());
1836
1837  Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext());
1838
1839  // By default, the input chain to this libcall is the entry node of the
1840  // function. If the libcall is going to be emitted as a tail call then
1841  // isUsedByReturnOnly will change it to the right chain if the return
1842  // node which is being folded has a non-entry input chain.
1843  SDValue InChain = DAG.getEntryNode();
1844
1845  // isTailCall may be true since the callee does not reference caller stack
1846  // frame. Check if it's in the right position.
1847  SDValue TCChain = InChain;
1848  bool isTailCall = isInTailCallPosition(DAG, Op.getNode(), TCChain);
1849  if (isTailCall)
1850    InChain = TCChain;
1851
1852  TargetLowering::
1853  CallLoweringInfo CLI(InChain, RetTy, false, false, false, false,
1854                    0, getLibcallCallingConv(Call), isTailCall,
1855                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1856                    Callee, Args, DAG, SDLoc(Op));
1857  std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
1858
1859  if (!CallInfo.second.getNode())
1860    // It's a tailcall, return the chain (which is the DAG root).
1861    return DAG.getRoot();
1862
1863  return CallInfo.first;
1864}
1865
1866SDValue
1867AArch64TargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
1868  if (Op.getOperand(0).getValueType() != MVT::f128) {
1869    // It's legal except when f128 is involved
1870    return Op;
1871  }
1872
1873  RTLIB::Libcall LC;
1874  LC  = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
1875
1876  SDValue SrcVal = Op.getOperand(0);
1877  return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
1878                     /*isSigned*/ false, SDLoc(Op));
1879}
1880
1881SDValue
1882AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
1883  assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
1884
1885  RTLIB::Libcall LC;
1886  LC  = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
1887
1888  return LowerF128ToCall(Op, DAG, LC);
1889}
1890
1891SDValue
1892AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
1893                                      bool IsSigned) const {
1894  if (Op.getOperand(0).getValueType() != MVT::f128) {
1895    // It's legal except when f128 is involved
1896    return Op;
1897  }
1898
1899  RTLIB::Libcall LC;
1900  if (IsSigned)
1901    LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
1902  else
1903    LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
1904
1905  return LowerF128ToCall(Op, DAG, LC);
1906}
1907
1908SDValue
1909AArch64TargetLowering::LowerGlobalAddressELFLarge(SDValue Op,
1910                                                  SelectionDAG &DAG) const {
1911  assert(getTargetMachine().getCodeModel() == CodeModel::Large);
1912  assert(getTargetMachine().getRelocationModel() == Reloc::Static);
1913
1914  EVT PtrVT = getPointerTy();
1915  SDLoc dl(Op);
1916  const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
1917  const GlobalValue *GV = GN->getGlobal();
1918
1919  SDValue GlobalAddr = DAG.getNode(
1920      AArch64ISD::WrapperLarge, dl, PtrVT,
1921      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G3),
1922      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G2_NC),
1923      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G1_NC),
1924      DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G0_NC));
1925
1926  if (GN->getOffset() != 0)
1927    return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr,
1928                       DAG.getConstant(GN->getOffset(), PtrVT));
1929
1930  return GlobalAddr;
1931}
1932
1933SDValue
1934AArch64TargetLowering::LowerGlobalAddressELFSmall(SDValue Op,
1935                                                  SelectionDAG &DAG) const {
1936  assert(getTargetMachine().getCodeModel() == CodeModel::Small);
1937
1938  EVT PtrVT = getPointerTy();
1939  SDLoc dl(Op);
1940  const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
1941  const GlobalValue *GV = GN->getGlobal();
1942  unsigned Alignment = GV->getAlignment();
1943  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
1944  if (GV->isWeakForLinker() && GV->isDeclaration() && RelocM == Reloc::Static) {
1945    // Weak undefined symbols can't use ADRP/ADD pair since they should evaluate
1946    // to zero when they remain undefined. In PIC mode the GOT can take care of
1947    // this, but in absolute mode we use a constant pool load.
1948    SDValue PoolAddr;
1949    PoolAddr = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
1950                           DAG.getTargetConstantPool(GV, PtrVT, 0, 0,
1951                                                     AArch64II::MO_NO_FLAG),
1952                           DAG.getTargetConstantPool(GV, PtrVT, 0, 0,
1953                                                     AArch64II::MO_LO12),
1954                           DAG.getConstant(8, MVT::i32));
1955    SDValue GlobalAddr = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), PoolAddr,
1956                                     MachinePointerInfo::getConstantPool(),
1957                                     /*isVolatile=*/ false,
1958                                     /*isNonTemporal=*/ true,
1959                                     /*isInvariant=*/ true, 8);
1960    if (GN->getOffset() != 0)
1961      return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr,
1962                         DAG.getConstant(GN->getOffset(), PtrVT));
1963
1964    return GlobalAddr;
1965  }
1966
1967  if (Alignment == 0) {
1968    const PointerType *GVPtrTy = cast<PointerType>(GV->getType());
1969    if (GVPtrTy->getElementType()->isSized()) {
1970      Alignment
1971        = getDataLayout()->getABITypeAlignment(GVPtrTy->getElementType());
1972    } else {
1973      // Be conservative if we can't guess, not that it really matters:
1974      // functions and labels aren't valid for loads, and the methods used to
1975      // actually calculate an address work with any alignment.
1976      Alignment = 1;
1977    }
1978  }
1979
1980  unsigned char HiFixup, LoFixup;
1981  bool UseGOT = getSubtarget()->GVIsIndirectSymbol(GV, RelocM);
1982
1983  if (UseGOT) {
1984    HiFixup = AArch64II::MO_GOT;
1985    LoFixup = AArch64II::MO_GOT_LO12;
1986    Alignment = 8;
1987  } else {
1988    HiFixup = AArch64II::MO_NO_FLAG;
1989    LoFixup = AArch64II::MO_LO12;
1990  }
1991
1992  // AArch64's small model demands the following sequence:
1993  // ADRP x0, somewhere
1994  // ADD x0, x0, #:lo12:somewhere ; (or LDR directly).
1995  SDValue GlobalRef = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
1996                                  DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1997                                                             HiFixup),
1998                                  DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1999                                                             LoFixup),
2000                                  DAG.getConstant(Alignment, MVT::i32));
2001
2002  if (UseGOT) {
2003    GlobalRef = DAG.getNode(AArch64ISD::GOTLoad, dl, PtrVT, DAG.getEntryNode(),
2004                            GlobalRef);
2005  }
2006
2007  if (GN->getOffset() != 0)
2008    return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalRef,
2009                       DAG.getConstant(GN->getOffset(), PtrVT));
2010
2011  return GlobalRef;
2012}
2013
2014SDValue
2015AArch64TargetLowering::LowerGlobalAddressELF(SDValue Op,
2016                                             SelectionDAG &DAG) const {
2017  // TableGen doesn't have easy access to the CodeModel or RelocationModel, so
2018  // we make those distinctions here.
2019
2020  switch (getTargetMachine().getCodeModel()) {
2021  case CodeModel::Small:
2022    return LowerGlobalAddressELFSmall(Op, DAG);
2023  case CodeModel::Large:
2024    return LowerGlobalAddressELFLarge(Op, DAG);
2025  default:
2026    llvm_unreachable("Only small and large code models supported now");
2027  }
2028}
2029
2030SDValue AArch64TargetLowering::LowerTLSDescCall(SDValue SymAddr,
2031                                                SDValue DescAddr,
2032                                                SDLoc DL,
2033                                                SelectionDAG &DAG) const {
2034  EVT PtrVT = getPointerTy();
2035
2036  // The function we need to call is simply the first entry in the GOT for this
2037  // descriptor, load it in preparation.
2038  SDValue Func, Chain;
2039  Func = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
2040                     DescAddr);
2041
2042  // The function takes only one argument: the address of the descriptor itself
2043  // in X0.
2044  SDValue Glue;
2045  Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue);
2046  Glue = Chain.getValue(1);
2047
2048  // Finally, there's a special calling-convention which means that the lookup
2049  // must preserve all registers (except X0, obviously).
2050  const TargetRegisterInfo *TRI  = getTargetMachine().getRegisterInfo();
2051  const AArch64RegisterInfo *A64RI
2052    = static_cast<const AArch64RegisterInfo *>(TRI);
2053  const uint32_t *Mask = A64RI->getTLSDescCallPreservedMask();
2054
2055  // We're now ready to populate the argument list, as with a normal call:
2056  std::vector<SDValue> Ops;
2057  Ops.push_back(Chain);
2058  Ops.push_back(Func);
2059  Ops.push_back(SymAddr);
2060  Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT));
2061  Ops.push_back(DAG.getRegisterMask(Mask));
2062  Ops.push_back(Glue);
2063
2064  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2065  Chain = DAG.getNode(AArch64ISD::TLSDESCCALL, DL, NodeTys, &Ops[0],
2066                      Ops.size());
2067  Glue = Chain.getValue(1);
2068
2069  // After the call, the offset from TPIDR_EL0 is in X0, copy it out and pass it
2070  // back to the generic handling code.
2071  return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
2072}
2073
2074SDValue
2075AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
2076                                             SelectionDAG &DAG) const {
2077  assert(getSubtarget()->isTargetELF() &&
2078         "TLS not implemented for non-ELF targets");
2079  assert(getTargetMachine().getCodeModel() == CodeModel::Small
2080         && "TLS only supported in small memory model");
2081  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2082
2083  TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
2084
2085  SDValue TPOff;
2086  EVT PtrVT = getPointerTy();
2087  SDLoc DL(Op);
2088  const GlobalValue *GV = GA->getGlobal();
2089
2090  SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
2091
2092  if (Model == TLSModel::InitialExec) {
2093    TPOff = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
2094                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2095                                                   AArch64II::MO_GOTTPREL),
2096                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2097                                                   AArch64II::MO_GOTTPREL_LO12),
2098                        DAG.getConstant(8, MVT::i32));
2099    TPOff = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
2100                        TPOff);
2101  } else if (Model == TLSModel::LocalExec) {
2102    SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2103                                               AArch64II::MO_TPREL_G1);
2104    SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2105                                               AArch64II::MO_TPREL_G0_NC);
2106
2107    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
2108                                       DAG.getTargetConstant(1, MVT::i32)), 0);
2109    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT,
2110                                       TPOff, LoVar,
2111                                       DAG.getTargetConstant(0, MVT::i32)), 0);
2112  } else if (Model == TLSModel::GeneralDynamic) {
2113    // Accesses used in this sequence go via the TLS descriptor which lives in
2114    // the GOT. Prepare an address we can use to handle this.
2115    SDValue HiDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2116                                                AArch64II::MO_TLSDESC);
2117    SDValue LoDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2118                                                AArch64II::MO_TLSDESC_LO12);
2119    SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
2120                                   HiDesc, LoDesc,
2121                                   DAG.getConstant(8, MVT::i32));
2122    SDValue SymAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0);
2123
2124    TPOff = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);
2125  } else if (Model == TLSModel::LocalDynamic) {
2126    // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
2127    // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
2128    // the beginning of the module's TLS region, followed by a DTPREL offset
2129    // calculation.
2130
2131    // These accesses will need deduplicating if there's more than one.
2132    AArch64MachineFunctionInfo* MFI = DAG.getMachineFunction()
2133      .getInfo<AArch64MachineFunctionInfo>();
2134    MFI->incNumLocalDynamicTLSAccesses();
2135
2136
2137    // Get the location of _TLS_MODULE_BASE_:
2138    SDValue HiDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
2139                                                AArch64II::MO_TLSDESC);
2140    SDValue LoDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
2141                                                AArch64II::MO_TLSDESC_LO12);
2142    SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
2143                                   HiDesc, LoDesc,
2144                                   DAG.getConstant(8, MVT::i32));
2145    SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT);
2146
2147    ThreadBase = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);
2148
2149    // Get the variable's offset from _TLS_MODULE_BASE_
2150    SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2151                                               AArch64II::MO_DTPREL_G1);
2152    SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2153                                               AArch64II::MO_DTPREL_G0_NC);
2154
2155    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
2156                                       DAG.getTargetConstant(0, MVT::i32)), 0);
2157    TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT,
2158                                       TPOff, LoVar,
2159                                       DAG.getTargetConstant(0, MVT::i32)), 0);
2160  } else
2161      llvm_unreachable("Unsupported TLS access model");
2162
2163
2164  return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
2165}
2166
2167SDValue
2168AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG,
2169                                      bool IsSigned) const {
2170  if (Op.getValueType() != MVT::f128) {
2171    // Legal for everything except f128.
2172    return Op;
2173  }
2174
2175  RTLIB::Libcall LC;
2176  if (IsSigned)
2177    LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2178  else
2179    LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2180
2181  return LowerF128ToCall(Op, DAG, LC);
2182}
2183
2184
2185SDValue
2186AArch64TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2187  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2188  SDLoc dl(JT);
2189  EVT PtrVT = getPointerTy();
2190
2191  // When compiling PIC, jump tables get put in the code section so a static
2192  // relocation-style is acceptable for both cases.
2193  switch (getTargetMachine().getCodeModel()) {
2194  case CodeModel::Small:
2195    return DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
2196                       DAG.getTargetJumpTable(JT->getIndex(), PtrVT),
2197                       DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2198                                              AArch64II::MO_LO12),
2199                       DAG.getConstant(1, MVT::i32));
2200  case CodeModel::Large:
2201    return DAG.getNode(
2202      AArch64ISD::WrapperLarge, dl, PtrVT,
2203      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G3),
2204      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G2_NC),
2205      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G1_NC),
2206      DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G0_NC));
2207  default:
2208    llvm_unreachable("Only small and large code models supported now");
2209  }
2210}
2211
2212// (SELECT_CC lhs, rhs, iftrue, iffalse, condcode)
2213SDValue
2214AArch64TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
2215  SDLoc dl(Op);
2216  SDValue LHS = Op.getOperand(0);
2217  SDValue RHS = Op.getOperand(1);
2218  SDValue IfTrue = Op.getOperand(2);
2219  SDValue IfFalse = Op.getOperand(3);
2220  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2221
2222  if (LHS.getValueType() == MVT::f128) {
2223    // f128 comparisons are lowered to libcalls, but slot in nicely here
2224    // afterwards.
2225    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
2226
2227    // If softenSetCCOperands returned a scalar, we need to compare the result
2228    // against zero to select between true and false values.
2229    if (RHS.getNode() == 0) {
2230      RHS = DAG.getConstant(0, LHS.getValueType());
2231      CC = ISD::SETNE;
2232    }
2233  }
2234
2235  if (LHS.getValueType().isInteger()) {
2236    SDValue A64cc;
2237
2238    // Integers are handled in a separate function because the combinations of
2239    // immediates and tests can get hairy and we may want to fiddle things.
2240    SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
2241
2242    return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
2243                       CmpOp, IfTrue, IfFalse, A64cc);
2244  }
2245
2246  // Note that some LLVM floating-point CondCodes can't be lowered to a single
2247  // conditional branch, hence FPCCToA64CC can set a second test, where either
2248  // passing is sufficient.
2249  A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
2250  CondCode = FPCCToA64CC(CC, Alternative);
2251  SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
2252  SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
2253                              DAG.getCondCode(CC));
2254  SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl,
2255                                     Op.getValueType(),
2256                                     SetCC, IfTrue, IfFalse, A64cc);
2257
2258  if (Alternative != A64CC::Invalid) {
2259    A64cc = DAG.getConstant(Alternative, MVT::i32);
2260    A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
2261                               SetCC, IfTrue, A64SELECT_CC, A64cc);
2262
2263  }
2264
2265  return A64SELECT_CC;
2266}
2267
2268// (SELECT testbit, iftrue, iffalse)
2269SDValue
2270AArch64TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2271  SDLoc dl(Op);
2272  SDValue TheBit = Op.getOperand(0);
2273  SDValue IfTrue = Op.getOperand(1);
2274  SDValue IfFalse = Op.getOperand(2);
2275
2276  // AArch64 BooleanContents is the default UndefinedBooleanContent, which means
2277  // that as the consumer we are responsible for ignoring rubbish in higher
2278  // bits.
2279  TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
2280                       DAG.getConstant(1, MVT::i32));
2281  SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
2282                               DAG.getConstant(0, TheBit.getValueType()),
2283                               DAG.getCondCode(ISD::SETNE));
2284
2285  return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
2286                     A64CMP, IfTrue, IfFalse,
2287                     DAG.getConstant(A64CC::NE, MVT::i32));
2288}
2289
2290static SDValue LowerVectorSETCC(SDValue Op, SelectionDAG &DAG) {
2291  SDLoc DL(Op);
2292  SDValue LHS = Op.getOperand(0);
2293  SDValue RHS = Op.getOperand(1);
2294  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2295  EVT VT = Op.getValueType();
2296  bool Invert = false;
2297  SDValue Op0, Op1;
2298  unsigned Opcode;
2299
2300  if (LHS.getValueType().isInteger()) {
2301
2302    // Attempt to use Vector Integer Compare Mask Test instruction.
2303    // TST = icmp ne (and (op0, op1), zero).
2304    if (CC == ISD::SETNE) {
2305      if (((LHS.getOpcode() == ISD::AND) &&
2306           ISD::isBuildVectorAllZeros(RHS.getNode())) ||
2307          ((RHS.getOpcode() == ISD::AND) &&
2308           ISD::isBuildVectorAllZeros(LHS.getNode()))) {
2309
2310        SDValue AndOp = (LHS.getOpcode() == ISD::AND) ? LHS : RHS;
2311        SDValue NewLHS = DAG.getNode(ISD::BITCAST, DL, VT, AndOp.getOperand(0));
2312        SDValue NewRHS = DAG.getNode(ISD::BITCAST, DL, VT, AndOp.getOperand(1));
2313        return DAG.getNode(AArch64ISD::NEON_TST, DL, VT, NewLHS, NewRHS);
2314      }
2315    }
2316
2317    // Attempt to use Vector Integer Compare Mask against Zero instr (Signed).
2318    // Note: Compare against Zero does not support unsigned predicates.
2319    if ((ISD::isBuildVectorAllZeros(RHS.getNode()) ||
2320         ISD::isBuildVectorAllZeros(LHS.getNode())) &&
2321        !isUnsignedIntSetCC(CC)) {
2322
2323      // If LHS is the zero value, swap operands and CondCode.
2324      if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
2325        CC = getSetCCSwappedOperands(CC);
2326        Op0 = RHS;
2327      } else
2328        Op0 = LHS;
2329
2330      // Ensure valid CondCode for Compare Mask against Zero instruction:
2331      // EQ, GE, GT, LE, LT.
2332      if (ISD::SETNE == CC) {
2333        Invert = true;
2334        CC = ISD::SETEQ;
2335      }
2336
2337      // Using constant type to differentiate integer and FP compares with zero.
2338      Op1 = DAG.getConstant(0, MVT::i32);
2339      Opcode = AArch64ISD::NEON_CMPZ;
2340
2341    } else {
2342      // Attempt to use Vector Integer Compare Mask instr (Signed/Unsigned).
2343      // Ensure valid CondCode for Compare Mask instr: EQ, GE, GT, UGE, UGT.
2344      bool Swap = false;
2345      switch (CC) {
2346      default:
2347        llvm_unreachable("Illegal integer comparison.");
2348      case ISD::SETEQ:
2349      case ISD::SETGT:
2350      case ISD::SETGE:
2351      case ISD::SETUGT:
2352      case ISD::SETUGE:
2353        break;
2354      case ISD::SETNE:
2355        Invert = true;
2356        CC = ISD::SETEQ;
2357        break;
2358      case ISD::SETULT:
2359      case ISD::SETULE:
2360      case ISD::SETLT:
2361      case ISD::SETLE:
2362        Swap = true;
2363        CC = getSetCCSwappedOperands(CC);
2364      }
2365
2366      if (Swap)
2367        std::swap(LHS, RHS);
2368
2369      Opcode = AArch64ISD::NEON_CMP;
2370      Op0 = LHS;
2371      Op1 = RHS;
2372    }
2373
2374    // Generate Compare Mask instr or Compare Mask against Zero instr.
2375    SDValue NeonCmp =
2376        DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(CC));
2377
2378    if (Invert)
2379      NeonCmp = DAG.getNOT(DL, NeonCmp, VT);
2380
2381    return NeonCmp;
2382  }
2383
2384  // Now handle Floating Point cases.
2385  // Attempt to use Vector Floating Point Compare Mask against Zero instruction.
2386  if (ISD::isBuildVectorAllZeros(RHS.getNode()) ||
2387      ISD::isBuildVectorAllZeros(LHS.getNode())) {
2388
2389    // If LHS is the zero value, swap operands and CondCode.
2390    if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
2391      CC = getSetCCSwappedOperands(CC);
2392      Op0 = RHS;
2393    } else
2394      Op0 = LHS;
2395
2396    // Using constant type to differentiate integer and FP compares with zero.
2397    Op1 = DAG.getConstantFP(0, MVT::f32);
2398    Opcode = AArch64ISD::NEON_CMPZ;
2399  } else {
2400    // Attempt to use Vector Floating Point Compare Mask instruction.
2401    Op0 = LHS;
2402    Op1 = RHS;
2403    Opcode = AArch64ISD::NEON_CMP;
2404  }
2405
2406  SDValue NeonCmpAlt;
2407  // Some register compares have to be implemented with swapped CC and operands,
2408  // e.g.: OLT implemented as OGT with swapped operands.
2409  bool SwapIfRegArgs = false;
2410
2411  // Ensure valid CondCode for FP Compare Mask against Zero instruction:
2412  // EQ, GE, GT, LE, LT.
2413  // And ensure valid CondCode for FP Compare Mask instruction: EQ, GE, GT.
2414  switch (CC) {
2415  default:
2416    llvm_unreachable("Illegal FP comparison");
2417  case ISD::SETUNE:
2418  case ISD::SETNE:
2419    Invert = true; // Fallthrough
2420  case ISD::SETOEQ:
2421  case ISD::SETEQ:
2422    CC = ISD::SETEQ;
2423    break;
2424  case ISD::SETOLT:
2425  case ISD::SETLT:
2426    CC = ISD::SETLT;
2427    SwapIfRegArgs = true;
2428    break;
2429  case ISD::SETOGT:
2430  case ISD::SETGT:
2431    CC = ISD::SETGT;
2432    break;
2433  case ISD::SETOLE:
2434  case ISD::SETLE:
2435    CC = ISD::SETLE;
2436    SwapIfRegArgs = true;
2437    break;
2438  case ISD::SETOGE:
2439  case ISD::SETGE:
2440    CC = ISD::SETGE;
2441    break;
2442  case ISD::SETUGE:
2443    Invert = true;
2444    CC = ISD::SETLT;
2445    SwapIfRegArgs = true;
2446    break;
2447  case ISD::SETULE:
2448    Invert = true;
2449    CC = ISD::SETGT;
2450    break;
2451  case ISD::SETUGT:
2452    Invert = true;
2453    CC = ISD::SETLE;
2454    SwapIfRegArgs = true;
2455    break;
2456  case ISD::SETULT:
2457    Invert = true;
2458    CC = ISD::SETGE;
2459    break;
2460  case ISD::SETUEQ:
2461    Invert = true; // Fallthrough
2462  case ISD::SETONE:
2463    // Expand this to (OGT |OLT).
2464    NeonCmpAlt =
2465        DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(ISD::SETGT));
2466    CC = ISD::SETLT;
2467    SwapIfRegArgs = true;
2468    break;
2469  case ISD::SETUO:
2470    Invert = true; // Fallthrough
2471  case ISD::SETO:
2472    // Expand this to (OGE | OLT).
2473    NeonCmpAlt =
2474        DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(ISD::SETGE));
2475    CC = ISD::SETLT;
2476    SwapIfRegArgs = true;
2477    break;
2478  }
2479
2480  if (Opcode == AArch64ISD::NEON_CMP && SwapIfRegArgs) {
2481    CC = getSetCCSwappedOperands(CC);
2482    std::swap(Op0, Op1);
2483  }
2484
2485  // Generate FP Compare Mask instr or FP Compare Mask against Zero instr
2486  SDValue NeonCmp = DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(CC));
2487
2488  if (NeonCmpAlt.getNode())
2489    NeonCmp = DAG.getNode(ISD::OR, DL, VT, NeonCmp, NeonCmpAlt);
2490
2491  if (Invert)
2492    NeonCmp = DAG.getNOT(DL, NeonCmp, VT);
2493
2494  return NeonCmp;
2495}
2496
2497// (SETCC lhs, rhs, condcode)
2498SDValue
2499AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2500  SDLoc dl(Op);
2501  SDValue LHS = Op.getOperand(0);
2502  SDValue RHS = Op.getOperand(1);
2503  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2504  EVT VT = Op.getValueType();
2505
2506  if (VT.isVector())
2507    return LowerVectorSETCC(Op, DAG);
2508
2509  if (LHS.getValueType() == MVT::f128) {
2510    // f128 comparisons will be lowered to libcalls giving a valid LHS and RHS
2511    // for the rest of the function (some i32 or i64 values).
2512    softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
2513
2514    // If softenSetCCOperands returned a scalar, use it.
2515    if (RHS.getNode() == 0) {
2516      assert(LHS.getValueType() == Op.getValueType() &&
2517             "Unexpected setcc expansion!");
2518      return LHS;
2519    }
2520  }
2521
2522  if (LHS.getValueType().isInteger()) {
2523    SDValue A64cc;
2524
2525    // Integers are handled in a separate function because the combinations of
2526    // immediates and tests can get hairy and we may want to fiddle things.
2527    SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
2528
2529    return DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
2530                       CmpOp, DAG.getConstant(1, VT), DAG.getConstant(0, VT),
2531                       A64cc);
2532  }
2533
2534  // Note that some LLVM floating-point CondCodes can't be lowered to a single
2535  // conditional branch, hence FPCCToA64CC can set a second test, where either
2536  // passing is sufficient.
2537  A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
2538  CondCode = FPCCToA64CC(CC, Alternative);
2539  SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
2540  SDValue CmpOp = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
2541                              DAG.getCondCode(CC));
2542  SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
2543                                     CmpOp, DAG.getConstant(1, VT),
2544                                     DAG.getConstant(0, VT), A64cc);
2545
2546  if (Alternative != A64CC::Invalid) {
2547    A64cc = DAG.getConstant(Alternative, MVT::i32);
2548    A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp,
2549                               DAG.getConstant(1, VT), A64SELECT_CC, A64cc);
2550  }
2551
2552  return A64SELECT_CC;
2553}
2554
2555SDValue
2556AArch64TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
2557  const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2558  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2559
2560  // We have to make sure we copy the entire structure: 8+8+8+4+4 = 32 bytes
2561  // rather than just 8.
2562  return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op),
2563                       Op.getOperand(1), Op.getOperand(2),
2564                       DAG.getConstant(32, MVT::i32), 8, false, false,
2565                       MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV));
2566}
2567
2568SDValue
2569AArch64TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2570  // The layout of the va_list struct is specified in the AArch64 Procedure Call
2571  // Standard, section B.3.
2572  MachineFunction &MF = DAG.getMachineFunction();
2573  AArch64MachineFunctionInfo *FuncInfo
2574    = MF.getInfo<AArch64MachineFunctionInfo>();
2575  SDLoc DL(Op);
2576
2577  SDValue Chain = Op.getOperand(0);
2578  SDValue VAList = Op.getOperand(1);
2579  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2580  SmallVector<SDValue, 4> MemOps;
2581
2582  // void *__stack at offset 0
2583  SDValue Stack = DAG.getFrameIndex(FuncInfo->getVariadicStackIdx(),
2584                                    getPointerTy());
2585  MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
2586                                MachinePointerInfo(SV), false, false, 0));
2587
2588  // void *__gr_top at offset 8
2589  int GPRSize = FuncInfo->getVariadicGPRSize();
2590  if (GPRSize > 0) {
2591    SDValue GRTop, GRTopAddr;
2592
2593    GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2594                            DAG.getConstant(8, getPointerTy()));
2595
2596    GRTop = DAG.getFrameIndex(FuncInfo->getVariadicGPRIdx(), getPointerTy());
2597    GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
2598                        DAG.getConstant(GPRSize, getPointerTy()));
2599
2600    MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
2601                                  MachinePointerInfo(SV, 8),
2602                                  false, false, 0));
2603  }
2604
2605  // void *__vr_top at offset 16
2606  int FPRSize = FuncInfo->getVariadicFPRSize();
2607  if (FPRSize > 0) {
2608    SDValue VRTop, VRTopAddr;
2609    VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2610                            DAG.getConstant(16, getPointerTy()));
2611
2612    VRTop = DAG.getFrameIndex(FuncInfo->getVariadicFPRIdx(), getPointerTy());
2613    VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
2614                        DAG.getConstant(FPRSize, getPointerTy()));
2615
2616    MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
2617                                  MachinePointerInfo(SV, 16),
2618                                  false, false, 0));
2619  }
2620
2621  // int __gr_offs at offset 24
2622  SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2623                                   DAG.getConstant(24, getPointerTy()));
2624  MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
2625                                GROffsAddr, MachinePointerInfo(SV, 24),
2626                                false, false, 0));
2627
2628  // int __vr_offs at offset 28
2629  SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2630                                   DAG.getConstant(28, getPointerTy()));
2631  MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
2632                                VROffsAddr, MachinePointerInfo(SV, 28),
2633                                false, false, 0));
2634
2635  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0],
2636                     MemOps.size());
2637}
2638
2639SDValue
2640AArch64TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
2641  switch (Op.getOpcode()) {
2642  default: llvm_unreachable("Don't know how to custom lower this!");
2643  case ISD::FADD: return LowerF128ToCall(Op, DAG, RTLIB::ADD_F128);
2644  case ISD::FSUB: return LowerF128ToCall(Op, DAG, RTLIB::SUB_F128);
2645  case ISD::FMUL: return LowerF128ToCall(Op, DAG, RTLIB::MUL_F128);
2646  case ISD::FDIV: return LowerF128ToCall(Op, DAG, RTLIB::DIV_F128);
2647  case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, true);
2648  case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG, false);
2649  case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG, true);
2650  case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG, false);
2651  case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
2652  case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
2653
2654  case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
2655  case ISD::BRCOND: return LowerBRCOND(Op, DAG);
2656  case ISD::BR_CC: return LowerBR_CC(Op, DAG);
2657  case ISD::GlobalAddress: return LowerGlobalAddressELF(Op, DAG);
2658  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
2659  case ISD::JumpTable: return LowerJumpTable(Op, DAG);
2660  case ISD::SELECT: return LowerSELECT(Op, DAG);
2661  case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
2662  case ISD::SETCC: return LowerSETCC(Op, DAG);
2663  case ISD::VACOPY: return LowerVACOPY(Op, DAG);
2664  case ISD::VASTART: return LowerVASTART(Op, DAG);
2665  case ISD::BUILD_VECTOR:
2666    return LowerBUILD_VECTOR(Op, DAG, getSubtarget());
2667  }
2668
2669  return SDValue();
2670}
2671
2672/// Check if the specified splat value corresponds to a valid vector constant
2673/// for a Neon instruction with a "modified immediate" operand (e.g., MOVI).  If
2674/// so, return the encoded 8-bit immediate and the OpCmode instruction fields
2675/// values.
2676static bool isNeonModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
2677                              unsigned SplatBitSize, SelectionDAG &DAG,
2678                              bool is128Bits, NeonModImmType type, EVT &VT,
2679                              unsigned &Imm, unsigned &OpCmode) {
2680  switch (SplatBitSize) {
2681  default:
2682    llvm_unreachable("unexpected size for isNeonModifiedImm");
2683  case 8: {
2684    if (type != Neon_Mov_Imm)
2685      return false;
2686    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
2687    // Neon movi per byte: Op=0, Cmode=1110.
2688    OpCmode = 0xe;
2689    Imm = SplatBits;
2690    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
2691    break;
2692  }
2693  case 16: {
2694    // Neon move inst per halfword
2695    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
2696    if ((SplatBits & ~0xff) == 0) {
2697      // Value = 0x00nn is 0x00nn LSL 0
2698      // movi: Op=0, Cmode=1000; mvni: Op=1, Cmode=1000
2699      // bic:  Op=1, Cmode=1001;  orr:  Op=0, Cmode=1001
2700      // Op=x, Cmode=100y
2701      Imm = SplatBits;
2702      OpCmode = 0x8;
2703      break;
2704    }
2705    if ((SplatBits & ~0xff00) == 0) {
2706      // Value = 0xnn00 is 0x00nn LSL 8
2707      // movi: Op=0, Cmode=1010; mvni: Op=1, Cmode=1010
2708      // bic:  Op=1, Cmode=1011;  orr:  Op=0, Cmode=1011
2709      // Op=x, Cmode=101x
2710      Imm = SplatBits >> 8;
2711      OpCmode = 0xa;
2712      break;
2713    }
2714    // can't handle any other
2715    return false;
2716  }
2717
2718  case 32: {
2719    // First the LSL variants (MSL is unusable by some interested instructions).
2720
2721    // Neon move instr per word, shift zeros
2722    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
2723    if ((SplatBits & ~0xff) == 0) {
2724      // Value = 0x000000nn is 0x000000nn LSL 0
2725      // movi: Op=0, Cmode= 0000; mvni: Op=1, Cmode= 0000
2726      // bic:  Op=1, Cmode= 0001; orr:  Op=0, Cmode= 0001
2727      // Op=x, Cmode=000x
2728      Imm = SplatBits;
2729      OpCmode = 0;
2730      break;
2731    }
2732    if ((SplatBits & ~0xff00) == 0) {
2733      // Value = 0x0000nn00 is 0x000000nn LSL 8
2734      // movi: Op=0, Cmode= 0010;  mvni: Op=1, Cmode= 0010
2735      // bic:  Op=1, Cmode= 0011;  orr : Op=0, Cmode= 0011
2736      // Op=x, Cmode=001x
2737      Imm = SplatBits >> 8;
2738      OpCmode = 0x2;
2739      break;
2740    }
2741    if ((SplatBits & ~0xff0000) == 0) {
2742      // Value = 0x00nn0000 is 0x000000nn LSL 16
2743      // movi: Op=0, Cmode= 0100; mvni: Op=1, Cmode= 0100
2744      // bic:  Op=1, Cmode= 0101; orr:  Op=0, Cmode= 0101
2745      // Op=x, Cmode=010x
2746      Imm = SplatBits >> 16;
2747      OpCmode = 0x4;
2748      break;
2749    }
2750    if ((SplatBits & ~0xff000000) == 0) {
2751      // Value = 0xnn000000 is 0x000000nn LSL 24
2752      // movi: Op=0, Cmode= 0110; mvni: Op=1, Cmode= 0110
2753      // bic:  Op=1, Cmode= 0111; orr:  Op=0, Cmode= 0111
2754      // Op=x, Cmode=011x
2755      Imm = SplatBits >> 24;
2756      OpCmode = 0x6;
2757      break;
2758    }
2759
2760    // Now the MSL immediates.
2761
2762    // Neon move instr per word, shift ones
2763    if ((SplatBits & ~0xffff) == 0 &&
2764        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
2765      // Value = 0x0000nnff is 0x000000nn MSL 8
2766      // movi: Op=0, Cmode= 1100; mvni: Op=1, Cmode= 1100
2767      // Op=x, Cmode=1100
2768      Imm = SplatBits >> 8;
2769      OpCmode = 0xc;
2770      break;
2771    }
2772    if ((SplatBits & ~0xffffff) == 0 &&
2773        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
2774      // Value = 0x00nnffff is 0x000000nn MSL 16
2775      // movi: Op=1, Cmode= 1101; mvni: Op=1, Cmode= 1101
2776      // Op=x, Cmode=1101
2777      Imm = SplatBits >> 16;
2778      OpCmode = 0xd;
2779      break;
2780    }
2781    // can't handle any other
2782    return false;
2783  }
2784
2785  case 64: {
2786    if (type != Neon_Mov_Imm)
2787      return false;
2788    // Neon move instr bytemask, where each byte is either 0x00 or 0xff.
2789    // movi Op=1, Cmode=1110.
2790    OpCmode = 0x1e;
2791    uint64_t BitMask = 0xff;
2792    uint64_t Val = 0;
2793    unsigned ImmMask = 1;
2794    Imm = 0;
2795    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
2796      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
2797        Val |= BitMask;
2798        Imm |= ImmMask;
2799      } else if ((SplatBits & BitMask) != 0) {
2800        return false;
2801      }
2802      BitMask <<= 8;
2803      ImmMask <<= 1;
2804    }
2805    SplatBits = Val;
2806    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
2807    break;
2808  }
2809  }
2810
2811  return true;
2812}
2813
2814static SDValue PerformANDCombine(SDNode *N,
2815                                 TargetLowering::DAGCombinerInfo &DCI) {
2816
2817  SelectionDAG &DAG = DCI.DAG;
2818  SDLoc DL(N);
2819  EVT VT = N->getValueType(0);
2820
2821  // We're looking for an SRA/SHL pair which form an SBFX.
2822
2823  if (VT != MVT::i32 && VT != MVT::i64)
2824    return SDValue();
2825
2826  if (!isa<ConstantSDNode>(N->getOperand(1)))
2827    return SDValue();
2828
2829  uint64_t TruncMask = N->getConstantOperandVal(1);
2830  if (!isMask_64(TruncMask))
2831    return SDValue();
2832
2833  uint64_t Width = CountPopulation_64(TruncMask);
2834  SDValue Shift = N->getOperand(0);
2835
2836  if (Shift.getOpcode() != ISD::SRL)
2837    return SDValue();
2838
2839  if (!isa<ConstantSDNode>(Shift->getOperand(1)))
2840    return SDValue();
2841  uint64_t LSB = Shift->getConstantOperandVal(1);
2842
2843  if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
2844    return SDValue();
2845
2846  return DAG.getNode(AArch64ISD::UBFX, DL, VT, Shift.getOperand(0),
2847                     DAG.getConstant(LSB, MVT::i64),
2848                     DAG.getConstant(LSB + Width - 1, MVT::i64));
2849}
2850
2851/// For a true bitfield insert, the bits getting into that contiguous mask
2852/// should come from the low part of an existing value: they must be formed from
2853/// a compatible SHL operation (unless they're already low). This function
2854/// checks that condition and returns the least-significant bit that's
2855/// intended. If the operation not a field preparation, -1 is returned.
2856static int32_t getLSBForBFI(SelectionDAG &DAG, SDLoc DL, EVT VT,
2857                            SDValue &MaskedVal, uint64_t Mask) {
2858  if (!isShiftedMask_64(Mask))
2859    return -1;
2860
2861  // Now we need to alter MaskedVal so that it is an appropriate input for a BFI
2862  // instruction. BFI will do a left-shift by LSB before applying the mask we've
2863  // spotted, so in general we should pre-emptively "undo" that by making sure
2864  // the incoming bits have had a right-shift applied to them.
2865  //
2866  // This right shift, however, will combine with existing left/right shifts. In
2867  // the simplest case of a completely straight bitfield operation, it will be
2868  // expected to completely cancel out with an existing SHL. More complicated
2869  // cases (e.g. bitfield to bitfield copy) may still need a real shift before
2870  // the BFI.
2871
2872  uint64_t LSB = countTrailingZeros(Mask);
2873  int64_t ShiftRightRequired = LSB;
2874  if (MaskedVal.getOpcode() == ISD::SHL &&
2875      isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
2876    ShiftRightRequired -= MaskedVal.getConstantOperandVal(1);
2877    MaskedVal = MaskedVal.getOperand(0);
2878  } else if (MaskedVal.getOpcode() == ISD::SRL &&
2879             isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
2880    ShiftRightRequired += MaskedVal.getConstantOperandVal(1);
2881    MaskedVal = MaskedVal.getOperand(0);
2882  }
2883
2884  if (ShiftRightRequired > 0)
2885    MaskedVal = DAG.getNode(ISD::SRL, DL, VT, MaskedVal,
2886                            DAG.getConstant(ShiftRightRequired, MVT::i64));
2887  else if (ShiftRightRequired < 0) {
2888    // We could actually end up with a residual left shift, for example with
2889    // "struc.bitfield = val << 1".
2890    MaskedVal = DAG.getNode(ISD::SHL, DL, VT, MaskedVal,
2891                            DAG.getConstant(-ShiftRightRequired, MVT::i64));
2892  }
2893
2894  return LSB;
2895}
2896
2897/// Searches from N for an existing AArch64ISD::BFI node, possibly surrounded by
2898/// a mask and an extension. Returns true if a BFI was found and provides
2899/// information on its surroundings.
2900static bool findMaskedBFI(SDValue N, SDValue &BFI, uint64_t &Mask,
2901                          bool &Extended) {
2902  Extended = false;
2903  if (N.getOpcode() == ISD::ZERO_EXTEND) {
2904    Extended = true;
2905    N = N.getOperand(0);
2906  }
2907
2908  if (N.getOpcode() == ISD::AND && isa<ConstantSDNode>(N.getOperand(1))) {
2909    Mask = N->getConstantOperandVal(1);
2910    N = N.getOperand(0);
2911  } else {
2912    // Mask is the whole width.
2913    Mask = -1ULL >> (64 - N.getValueType().getSizeInBits());
2914  }
2915
2916  if (N.getOpcode() == AArch64ISD::BFI) {
2917    BFI = N;
2918    return true;
2919  }
2920
2921  return false;
2922}
2923
2924/// Try to combine a subtree (rooted at an OR) into a "masked BFI" node, which
2925/// is roughly equivalent to (and (BFI ...), mask). This form is used because it
2926/// can often be further combined with a larger mask. Ultimately, we want mask
2927/// to be 2^32-1 or 2^64-1 so the AND can be skipped.
2928static SDValue tryCombineToBFI(SDNode *N,
2929                               TargetLowering::DAGCombinerInfo &DCI,
2930                               const AArch64Subtarget *Subtarget) {
2931  SelectionDAG &DAG = DCI.DAG;
2932  SDLoc DL(N);
2933  EVT VT = N->getValueType(0);
2934
2935  assert(N->getOpcode() == ISD::OR && "Unexpected root");
2936
2937  // We need the LHS to be (and SOMETHING, MASK). Find out what that mask is or
2938  // abandon the effort.
2939  SDValue LHS = N->getOperand(0);
2940  if (LHS.getOpcode() != ISD::AND)
2941    return SDValue();
2942
2943  uint64_t LHSMask;
2944  if (isa<ConstantSDNode>(LHS.getOperand(1)))
2945    LHSMask = LHS->getConstantOperandVal(1);
2946  else
2947    return SDValue();
2948
2949  // We also need the RHS to be (and SOMETHING, MASK). Find out what that mask
2950  // is or abandon the effort.
2951  SDValue RHS = N->getOperand(1);
2952  if (RHS.getOpcode() != ISD::AND)
2953    return SDValue();
2954
2955  uint64_t RHSMask;
2956  if (isa<ConstantSDNode>(RHS.getOperand(1)))
2957    RHSMask = RHS->getConstantOperandVal(1);
2958  else
2959    return SDValue();
2960
2961  // Can't do anything if the masks are incompatible.
2962  if (LHSMask & RHSMask)
2963    return SDValue();
2964
2965  // Now we need one of the masks to be a contiguous field. Without loss of
2966  // generality that should be the RHS one.
2967  SDValue Bitfield = LHS.getOperand(0);
2968  if (getLSBForBFI(DAG, DL, VT, Bitfield, LHSMask) != -1) {
2969    // We know that LHS is a candidate new value, and RHS isn't already a better
2970    // one.
2971    std::swap(LHS, RHS);
2972    std::swap(LHSMask, RHSMask);
2973  }
2974
2975  // We've done our best to put the right operands in the right places, all we
2976  // can do now is check whether a BFI exists.
2977  Bitfield = RHS.getOperand(0);
2978  int32_t LSB = getLSBForBFI(DAG, DL, VT, Bitfield, RHSMask);
2979  if (LSB == -1)
2980    return SDValue();
2981
2982  uint32_t Width = CountPopulation_64(RHSMask);
2983  assert(Width && "Expected non-zero bitfield width");
2984
2985  SDValue BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
2986                            LHS.getOperand(0), Bitfield,
2987                            DAG.getConstant(LSB, MVT::i64),
2988                            DAG.getConstant(Width, MVT::i64));
2989
2990  // Mask is trivial
2991  if ((LHSMask | RHSMask) == (-1ULL >> (64 - VT.getSizeInBits())))
2992    return BFI;
2993
2994  return DAG.getNode(ISD::AND, DL, VT, BFI,
2995                     DAG.getConstant(LHSMask | RHSMask, VT));
2996}
2997
2998/// Search for the bitwise combining (with careful masks) of a MaskedBFI and its
2999/// original input. This is surprisingly common because SROA splits things up
3000/// into i8 chunks, so the originally detected MaskedBFI may actually only act
3001/// on the low (say) byte of a word. This is then orred into the rest of the
3002/// word afterwards.
3003///
3004/// Basic input: (or (and OLDFIELD, MASK1), (MaskedBFI MASK2, OLDFIELD, ...)).
3005///
3006/// If MASK1 and MASK2 are compatible, we can fold the whole thing into the
3007/// MaskedBFI. We can also deal with a certain amount of extend/truncate being
3008/// involved.
3009static SDValue tryCombineToLargerBFI(SDNode *N,
3010                                     TargetLowering::DAGCombinerInfo &DCI,
3011                                     const AArch64Subtarget *Subtarget) {
3012  SelectionDAG &DAG = DCI.DAG;
3013  SDLoc DL(N);
3014  EVT VT = N->getValueType(0);
3015
3016  // First job is to hunt for a MaskedBFI on either the left or right. Swap
3017  // operands if it's actually on the right.
3018  SDValue BFI;
3019  SDValue PossExtraMask;
3020  uint64_t ExistingMask = 0;
3021  bool Extended = false;
3022  if (findMaskedBFI(N->getOperand(0), BFI, ExistingMask, Extended))
3023    PossExtraMask = N->getOperand(1);
3024  else if (findMaskedBFI(N->getOperand(1), BFI, ExistingMask, Extended))
3025    PossExtraMask = N->getOperand(0);
3026  else
3027    return SDValue();
3028
3029  // We can only combine a BFI with another compatible mask.
3030  if (PossExtraMask.getOpcode() != ISD::AND ||
3031      !isa<ConstantSDNode>(PossExtraMask.getOperand(1)))
3032    return SDValue();
3033
3034  uint64_t ExtraMask = PossExtraMask->getConstantOperandVal(1);
3035
3036  // Masks must be compatible.
3037  if (ExtraMask & ExistingMask)
3038    return SDValue();
3039
3040  SDValue OldBFIVal = BFI.getOperand(0);
3041  SDValue NewBFIVal = BFI.getOperand(1);
3042  if (Extended) {
3043    // We skipped a ZERO_EXTEND above, so the input to the MaskedBFIs should be
3044    // 32-bit and we'll be forming a 64-bit MaskedBFI. The MaskedBFI arguments
3045    // need to be made compatible.
3046    assert(VT == MVT::i64 && BFI.getValueType() == MVT::i32
3047           && "Invalid types for BFI");
3048    OldBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, OldBFIVal);
3049    NewBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, NewBFIVal);
3050  }
3051
3052  // We need the MaskedBFI to be combined with a mask of the *same* value.
3053  if (PossExtraMask.getOperand(0) != OldBFIVal)
3054    return SDValue();
3055
3056  BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
3057                    OldBFIVal, NewBFIVal,
3058                    BFI.getOperand(2), BFI.getOperand(3));
3059
3060  // If the masking is trivial, we don't need to create it.
3061  if ((ExtraMask | ExistingMask) == (-1ULL >> (64 - VT.getSizeInBits())))
3062    return BFI;
3063
3064  return DAG.getNode(ISD::AND, DL, VT, BFI,
3065                     DAG.getConstant(ExtraMask | ExistingMask, VT));
3066}
3067
3068/// An EXTR instruction is made up of two shifts, ORed together. This helper
3069/// searches for and classifies those shifts.
3070static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
3071                         bool &FromHi) {
3072  if (N.getOpcode() == ISD::SHL)
3073    FromHi = false;
3074  else if (N.getOpcode() == ISD::SRL)
3075    FromHi = true;
3076  else
3077    return false;
3078
3079  if (!isa<ConstantSDNode>(N.getOperand(1)))
3080    return false;
3081
3082  ShiftAmount = N->getConstantOperandVal(1);
3083  Src = N->getOperand(0);
3084  return true;
3085}
3086
3087/// EXTR instruction extracts a contiguous chunk of bits from two existing
3088/// registers viewed as a high/low pair. This function looks for the pattern:
3089/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
3090/// EXTR. Can't quite be done in TableGen because the two immediates aren't
3091/// independent.
3092static SDValue tryCombineToEXTR(SDNode *N,
3093                                TargetLowering::DAGCombinerInfo &DCI) {
3094  SelectionDAG &DAG = DCI.DAG;
3095  SDLoc DL(N);
3096  EVT VT = N->getValueType(0);
3097
3098  assert(N->getOpcode() == ISD::OR && "Unexpected root");
3099
3100  if (VT != MVT::i32 && VT != MVT::i64)
3101    return SDValue();
3102
3103  SDValue LHS;
3104  uint32_t ShiftLHS = 0;
3105  bool LHSFromHi = 0;
3106  if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
3107    return SDValue();
3108
3109  SDValue RHS;
3110  uint32_t ShiftRHS = 0;
3111  bool RHSFromHi = 0;
3112  if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
3113    return SDValue();
3114
3115  // If they're both trying to come from the high part of the register, they're
3116  // not really an EXTR.
3117  if (LHSFromHi == RHSFromHi)
3118    return SDValue();
3119
3120  if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
3121    return SDValue();
3122
3123  if (LHSFromHi) {
3124    std::swap(LHS, RHS);
3125    std::swap(ShiftLHS, ShiftRHS);
3126  }
3127
3128  return DAG.getNode(AArch64ISD::EXTR, DL, VT,
3129                     LHS, RHS,
3130                     DAG.getConstant(ShiftRHS, MVT::i64));
3131}
3132
3133/// Target-specific dag combine xforms for ISD::OR
3134static SDValue PerformORCombine(SDNode *N,
3135                                TargetLowering::DAGCombinerInfo &DCI,
3136                                const AArch64Subtarget *Subtarget) {
3137
3138  SelectionDAG &DAG = DCI.DAG;
3139  SDLoc DL(N);
3140  EVT VT = N->getValueType(0);
3141
3142  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3143    return SDValue();
3144
3145  // Attempt to recognise bitfield-insert operations.
3146  SDValue Res = tryCombineToBFI(N, DCI, Subtarget);
3147  if (Res.getNode())
3148    return Res;
3149
3150  // Attempt to combine an existing MaskedBFI operation into one with a larger
3151  // mask.
3152  Res = tryCombineToLargerBFI(N, DCI, Subtarget);
3153  if (Res.getNode())
3154    return Res;
3155
3156  Res = tryCombineToEXTR(N, DCI);
3157  if (Res.getNode())
3158    return Res;
3159
3160  if (!Subtarget->hasNEON())
3161    return SDValue();
3162
3163  // Attempt to use vector immediate-form BSL
3164  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
3165
3166  SDValue N0 = N->getOperand(0);
3167  if (N0.getOpcode() != ISD::AND)
3168    return SDValue();
3169
3170  SDValue N1 = N->getOperand(1);
3171  if (N1.getOpcode() != ISD::AND)
3172    return SDValue();
3173
3174  if (VT.isVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
3175    APInt SplatUndef;
3176    unsigned SplatBitSize;
3177    bool HasAnyUndefs;
3178    BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
3179    APInt SplatBits0;
3180    if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
3181                                      HasAnyUndefs) &&
3182        !HasAnyUndefs) {
3183      BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
3184      APInt SplatBits1;
3185      if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
3186                                        HasAnyUndefs) &&
3187          !HasAnyUndefs && SplatBits0 == ~SplatBits1) {
3188        // Canonicalize the vector type to make instruction selection simpler.
3189        EVT CanonicalVT = VT.is128BitVector() ? MVT::v16i8 : MVT::v8i8;
3190        SDValue Result = DAG.getNode(AArch64ISD::NEON_BSL, DL, CanonicalVT,
3191                                     N0->getOperand(1), N0->getOperand(0),
3192                                     N1->getOperand(0));
3193        return DAG.getNode(ISD::BITCAST, DL, VT, Result);
3194      }
3195    }
3196  }
3197
3198  return SDValue();
3199}
3200
3201/// Target-specific dag combine xforms for ISD::SRA
3202static SDValue PerformSRACombine(SDNode *N,
3203                                 TargetLowering::DAGCombinerInfo &DCI) {
3204
3205  SelectionDAG &DAG = DCI.DAG;
3206  SDLoc DL(N);
3207  EVT VT = N->getValueType(0);
3208
3209  // We're looking for an SRA/SHL pair which form an SBFX.
3210
3211  if (VT != MVT::i32 && VT != MVT::i64)
3212    return SDValue();
3213
3214  if (!isa<ConstantSDNode>(N->getOperand(1)))
3215    return SDValue();
3216
3217  uint64_t ExtraSignBits = N->getConstantOperandVal(1);
3218  SDValue Shift = N->getOperand(0);
3219
3220  if (Shift.getOpcode() != ISD::SHL)
3221    return SDValue();
3222
3223  if (!isa<ConstantSDNode>(Shift->getOperand(1)))
3224    return SDValue();
3225
3226  uint64_t BitsOnLeft = Shift->getConstantOperandVal(1);
3227  uint64_t Width = VT.getSizeInBits() - ExtraSignBits;
3228  uint64_t LSB = VT.getSizeInBits() - Width - BitsOnLeft;
3229
3230  if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
3231    return SDValue();
3232
3233  return DAG.getNode(AArch64ISD::SBFX, DL, VT, Shift.getOperand(0),
3234                     DAG.getConstant(LSB, MVT::i64),
3235                     DAG.getConstant(LSB + Width - 1, MVT::i64));
3236}
3237
3238
3239SDValue
3240AArch64TargetLowering::PerformDAGCombine(SDNode *N,
3241                                         DAGCombinerInfo &DCI) const {
3242  switch (N->getOpcode()) {
3243  default: break;
3244  case ISD::AND: return PerformANDCombine(N, DCI);
3245  case ISD::OR: return PerformORCombine(N, DCI, getSubtarget());
3246  case ISD::SRA: return PerformSRACombine(N, DCI);
3247  }
3248  return SDValue();
3249}
3250
3251bool
3252AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
3253  VT = VT.getScalarType();
3254
3255  if (!VT.isSimple())
3256    return false;
3257
3258  switch (VT.getSimpleVT().SimpleTy) {
3259  case MVT::f16:
3260  case MVT::f32:
3261  case MVT::f64:
3262    return true;
3263  case MVT::f128:
3264    return false;
3265  default:
3266    break;
3267  }
3268
3269  return false;
3270}
3271
3272// If this is a case we can't handle, return null and let the default
3273// expansion code take care of it.
3274SDValue
3275AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
3276                                         const AArch64Subtarget *ST) const {
3277
3278  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3279  SDLoc DL(Op);
3280  EVT VT = Op.getValueType();
3281
3282  APInt SplatBits, SplatUndef;
3283  unsigned SplatBitSize;
3284  bool HasAnyUndefs;
3285
3286  // Note we favor lowering MOVI over MVNI.
3287  // This has implications on the definition of patterns in TableGen to select
3288  // BIC immediate instructions but not ORR immediate instructions.
3289  // If this lowering order is changed, TableGen patterns for BIC immediate and
3290  // ORR immediate instructions have to be updated.
3291  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3292    if (SplatBitSize <= 64) {
3293      // First attempt to use vector immediate-form MOVI
3294      EVT NeonMovVT;
3295      unsigned Imm = 0;
3296      unsigned OpCmode = 0;
3297
3298      if (isNeonModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
3299                            SplatBitSize, DAG, VT.is128BitVector(),
3300                            Neon_Mov_Imm, NeonMovVT, Imm, OpCmode)) {
3301        SDValue ImmVal = DAG.getTargetConstant(Imm, MVT::i32);
3302        SDValue OpCmodeVal = DAG.getConstant(OpCmode, MVT::i32);
3303
3304        if (ImmVal.getNode() && OpCmodeVal.getNode()) {
3305          SDValue NeonMov = DAG.getNode(AArch64ISD::NEON_MOVIMM, DL, NeonMovVT,
3306                                        ImmVal, OpCmodeVal);
3307          return DAG.getNode(ISD::BITCAST, DL, VT, NeonMov);
3308        }
3309      }
3310
3311      // Then attempt to use vector immediate-form MVNI
3312      uint64_t NegatedImm = (~SplatBits).getZExtValue();
3313      if (isNeonModifiedImm(NegatedImm, SplatUndef.getZExtValue(), SplatBitSize,
3314                            DAG, VT.is128BitVector(), Neon_Mvn_Imm, NeonMovVT,
3315                            Imm, OpCmode)) {
3316        SDValue ImmVal = DAG.getTargetConstant(Imm, MVT::i32);
3317        SDValue OpCmodeVal = DAG.getConstant(OpCmode, MVT::i32);
3318        if (ImmVal.getNode() && OpCmodeVal.getNode()) {
3319          SDValue NeonMov = DAG.getNode(AArch64ISD::NEON_MVNIMM, DL, NeonMovVT,
3320                                        ImmVal, OpCmodeVal);
3321          return DAG.getNode(ISD::BITCAST, DL, VT, NeonMov);
3322        }
3323      }
3324
3325      // Attempt to use vector immediate-form FMOV
3326      if (((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) ||
3327          (VT == MVT::v2f64 && SplatBitSize == 64)) {
3328        APFloat RealVal(
3329            SplatBitSize == 32 ? APFloat::IEEEsingle : APFloat::IEEEdouble,
3330            SplatBits);
3331        uint32_t ImmVal;
3332        if (A64Imms::isFPImm(RealVal, ImmVal)) {
3333          SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
3334          return DAG.getNode(AArch64ISD::NEON_FMOVIMM, DL, VT, Val);
3335        }
3336      }
3337    }
3338  }
3339  return SDValue();
3340}
3341
3342AArch64TargetLowering::ConstraintType
3343AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
3344  if (Constraint.size() == 1) {
3345    switch (Constraint[0]) {
3346    default: break;
3347    case 'w': // An FP/SIMD vector register
3348      return C_RegisterClass;
3349    case 'I': // Constant that can be used with an ADD instruction
3350    case 'J': // Constant that can be used with a SUB instruction
3351    case 'K': // Constant that can be used with a 32-bit logical instruction
3352    case 'L': // Constant that can be used with a 64-bit logical instruction
3353    case 'M': // Constant that can be used as a 32-bit MOV immediate
3354    case 'N': // Constant that can be used as a 64-bit MOV immediate
3355    case 'Y': // Floating point constant zero
3356    case 'Z': // Integer constant zero
3357      return C_Other;
3358    case 'Q': // A memory reference with base register and no offset
3359      return C_Memory;
3360    case 'S': // A symbolic address
3361      return C_Other;
3362    }
3363  }
3364
3365  // FIXME: Ump, Utf, Usa, Ush
3366  // Ump: A memory address suitable for ldp/stp in SI, DI, SF and DF modes,
3367  //      whatever they may be
3368  // Utf: A memory address suitable for ldp/stp in TF mode, whatever it may be
3369  // Usa: An absolute symbolic address
3370  // Ush: The high part (bits 32:12) of a pc-relative symbolic address
3371  assert(Constraint != "Ump" && Constraint != "Utf" && Constraint != "Usa"
3372         && Constraint != "Ush" && "Unimplemented constraints");
3373
3374  return TargetLowering::getConstraintType(Constraint);
3375}
3376
3377TargetLowering::ConstraintWeight
3378AArch64TargetLowering::getSingleConstraintMatchWeight(AsmOperandInfo &Info,
3379                                                const char *Constraint) const {
3380
3381  llvm_unreachable("Constraint weight unimplemented");
3382}
3383
3384void
3385AArch64TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3386                                                    std::string &Constraint,
3387                                                    std::vector<SDValue> &Ops,
3388                                                    SelectionDAG &DAG) const {
3389  SDValue Result(0, 0);
3390
3391  // Only length 1 constraints are C_Other.
3392  if (Constraint.size() != 1) return;
3393
3394  // Only C_Other constraints get lowered like this. That means constants for us
3395  // so return early if there's no hope the constraint can be lowered.
3396
3397  switch(Constraint[0]) {
3398  default: break;
3399  case 'I': case 'J': case 'K': case 'L':
3400  case 'M': case 'N': case 'Z': {
3401    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3402    if (!C)
3403      return;
3404
3405    uint64_t CVal = C->getZExtValue();
3406    uint32_t Bits;
3407
3408    switch (Constraint[0]) {
3409    default:
3410      // FIXME: 'M' and 'N' are MOV pseudo-insts -- unsupported in assembly. 'J'
3411      // is a peculiarly useless SUB constraint.
3412      llvm_unreachable("Unimplemented C_Other constraint");
3413    case 'I':
3414      if (CVal <= 0xfff)
3415        break;
3416      return;
3417    case 'K':
3418      if (A64Imms::isLogicalImm(32, CVal, Bits))
3419        break;
3420      return;
3421    case 'L':
3422      if (A64Imms::isLogicalImm(64, CVal, Bits))
3423        break;
3424      return;
3425    case 'Z':
3426      if (CVal == 0)
3427        break;
3428      return;
3429    }
3430
3431    Result = DAG.getTargetConstant(CVal, Op.getValueType());
3432    break;
3433  }
3434  case 'S': {
3435    // An absolute symbolic address or label reference.
3436    if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
3437      Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
3438                                          GA->getValueType(0));
3439    } else if (const BlockAddressSDNode *BA
3440                 = dyn_cast<BlockAddressSDNode>(Op)) {
3441      Result = DAG.getTargetBlockAddress(BA->getBlockAddress(),
3442                                         BA->getValueType(0));
3443    } else if (const ExternalSymbolSDNode *ES
3444                 = dyn_cast<ExternalSymbolSDNode>(Op)) {
3445      Result = DAG.getTargetExternalSymbol(ES->getSymbol(),
3446                                           ES->getValueType(0));
3447    } else
3448      return;
3449    break;
3450  }
3451  case 'Y':
3452    if (const ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
3453      if (CFP->isExactlyValue(0.0)) {
3454        Result = DAG.getTargetConstantFP(0.0, CFP->getValueType(0));
3455        break;
3456      }
3457    }
3458    return;
3459  }
3460
3461  if (Result.getNode()) {
3462    Ops.push_back(Result);
3463    return;
3464  }
3465
3466  // It's an unknown constraint for us. Let generic code have a go.
3467  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3468}
3469
3470std::pair<unsigned, const TargetRegisterClass*>
3471AArch64TargetLowering::getRegForInlineAsmConstraint(
3472                                                  const std::string &Constraint,
3473                                                  MVT VT) const {
3474  if (Constraint.size() == 1) {
3475    switch (Constraint[0]) {
3476    case 'r':
3477      if (VT.getSizeInBits() <= 32)
3478        return std::make_pair(0U, &AArch64::GPR32RegClass);
3479      else if (VT == MVT::i64)
3480        return std::make_pair(0U, &AArch64::GPR64RegClass);
3481      break;
3482    case 'w':
3483      if (VT == MVT::f16)
3484        return std::make_pair(0U, &AArch64::FPR16RegClass);
3485      else if (VT == MVT::f32)
3486        return std::make_pair(0U, &AArch64::FPR32RegClass);
3487      else if (VT == MVT::f64)
3488        return std::make_pair(0U, &AArch64::FPR64RegClass);
3489      else if (VT.getSizeInBits() == 64)
3490        return std::make_pair(0U, &AArch64::VPR64RegClass);
3491      else if (VT == MVT::f128)
3492        return std::make_pair(0U, &AArch64::FPR128RegClass);
3493      else if (VT.getSizeInBits() == 128)
3494        return std::make_pair(0U, &AArch64::VPR128RegClass);
3495      break;
3496    }
3497  }
3498
3499  // Use the default implementation in TargetLowering to convert the register
3500  // constraint into a member of a register class.
3501  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3502}
3503