1//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that ARM uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "arm-isel"
16#include "ARMISelLowering.h"
17#include "ARM.h"
18#include "ARMCallingConv.h"
19#include "ARMConstantPoolValue.h"
20#include "ARMMachineFunctionInfo.h"
21#include "ARMPerfectShuffle.h"
22#include "ARMSubtarget.h"
23#include "ARMTargetMachine.h"
24#include "ARMTargetObjectFile.h"
25#include "MCTargetDesc/ARMAddressingModes.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/ADT/StringExtras.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/IntrinsicLowering.h"
30#include "llvm/CodeGen/MachineBasicBlock.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/SelectionDAG.h"
37#include "llvm/IR/CallingConv.h"
38#include "llvm/IR/Constants.h"
39#include "llvm/IR/Function.h"
40#include "llvm/IR/GlobalValue.h"
41#include "llvm/IR/Instruction.h"
42#include "llvm/IR/Instructions.h"
43#include "llvm/IR/Intrinsics.h"
44#include "llvm/IR/Type.h"
45#include "llvm/MC/MCSectionMachO.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/ErrorHandling.h"
48#include "llvm/Support/MathExtras.h"
49#include "llvm/Support/raw_ostream.h"
50#include "llvm/Target/TargetOptions.h"
51using namespace llvm;
52
53STATISTIC(NumTailCalls, "Number of tail calls");
54STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
55STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
56
57// This option should go away when tail calls fully work.
58static cl::opt<bool>
59EnableARMTailCalls("arm-tail-calls", cl::Hidden,
60  cl::desc("Generate tail calls (TEMPORARY OPTION)."),
61  cl::init(false));
62
63cl::opt<bool>
64EnableARMLongCalls("arm-long-calls", cl::Hidden,
65  cl::desc("Generate calls via indirect call instructions"),
66  cl::init(false));
67
68static cl::opt<bool>
69ARMInterworking("arm-interworking", cl::Hidden,
70  cl::desc("Enable / disable ARM interworking (for debugging only)"),
71  cl::init(true));
72
73namespace {
74  class ARMCCState : public CCState {
75  public:
76    ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
77               const TargetMachine &TM, SmallVectorImpl<CCValAssign> &locs,
78               LLVMContext &C, ParmContext PC)
79        : CCState(CC, isVarArg, MF, TM, locs, C) {
80      assert(((PC == Call) || (PC == Prologue)) &&
81             "ARMCCState users must specify whether their context is call"
82             "or prologue generation.");
83      CallOrPrologue = PC;
84    }
85  };
86}
87
88// The APCS parameter registers.
89static const uint16_t GPRArgRegs[] = {
90  ARM::R0, ARM::R1, ARM::R2, ARM::R3
91};
92
93void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
94                                       MVT PromotedBitwiseVT) {
95  if (VT != PromotedLdStVT) {
96    setOperationAction(ISD::LOAD, VT, Promote);
97    AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
98
99    setOperationAction(ISD::STORE, VT, Promote);
100    AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
101  }
102
103  MVT ElemTy = VT.getVectorElementType();
104  if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
105    setOperationAction(ISD::SETCC, VT, Custom);
106  setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
107  setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
108  if (ElemTy == MVT::i32) {
109    setOperationAction(ISD::SINT_TO_FP, VT, Custom);
110    setOperationAction(ISD::UINT_TO_FP, VT, Custom);
111    setOperationAction(ISD::FP_TO_SINT, VT, Custom);
112    setOperationAction(ISD::FP_TO_UINT, VT, Custom);
113  } else {
114    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
115    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
116    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
117    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
118  }
119  setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
120  setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
121  setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
122  setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
123  setOperationAction(ISD::SELECT,            VT, Expand);
124  setOperationAction(ISD::SELECT_CC,         VT, Expand);
125  setOperationAction(ISD::VSELECT,           VT, Expand);
126  setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
127  if (VT.isInteger()) {
128    setOperationAction(ISD::SHL, VT, Custom);
129    setOperationAction(ISD::SRA, VT, Custom);
130    setOperationAction(ISD::SRL, VT, Custom);
131  }
132
133  // Promote all bit-wise operations.
134  if (VT.isInteger() && VT != PromotedBitwiseVT) {
135    setOperationAction(ISD::AND, VT, Promote);
136    AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
137    setOperationAction(ISD::OR,  VT, Promote);
138    AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
139    setOperationAction(ISD::XOR, VT, Promote);
140    AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
141  }
142
143  // Neon does not support vector divide/remainder operations.
144  setOperationAction(ISD::SDIV, VT, Expand);
145  setOperationAction(ISD::UDIV, VT, Expand);
146  setOperationAction(ISD::FDIV, VT, Expand);
147  setOperationAction(ISD::SREM, VT, Expand);
148  setOperationAction(ISD::UREM, VT, Expand);
149  setOperationAction(ISD::FREM, VT, Expand);
150}
151
152void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
153  addRegisterClass(VT, &ARM::DPRRegClass);
154  addTypeForNEON(VT, MVT::f64, MVT::v2i32);
155}
156
157void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
158  addRegisterClass(VT, &ARM::QPRRegClass);
159  addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
160}
161
162static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
163  if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
164    return new TargetLoweringObjectFileMachO();
165
166  return new ARMElfTargetObjectFile();
167}
168
169ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
170    : TargetLowering(TM, createTLOF(TM)) {
171  Subtarget = &TM.getSubtarget<ARMSubtarget>();
172  RegInfo = TM.getRegisterInfo();
173  Itins = TM.getInstrItineraryData();
174
175  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
176
177  if (Subtarget->isTargetDarwin()) {
178    // Uses VFP for Thumb libfuncs if available.
179    if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
180      // Single-precision floating-point arithmetic.
181      setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
182      setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
183      setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
184      setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
185
186      // Double-precision floating-point arithmetic.
187      setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
188      setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
189      setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
190      setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
191
192      // Single-precision comparisons.
193      setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
194      setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
195      setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
196      setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
197      setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
198      setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
199      setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp");
200      setLibcallName(RTLIB::O_F32,   "__unordsf2vfp");
201
202      setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
203      setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
204      setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
205      setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
206      setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
207      setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
208      setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
209      setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
210
211      // Double-precision comparisons.
212      setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
213      setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
214      setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
215      setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
216      setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
217      setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
218      setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp");
219      setLibcallName(RTLIB::O_F64,   "__unorddf2vfp");
220
221      setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
222      setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
223      setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
224      setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
225      setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
226      setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
227      setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
228      setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
229
230      // Floating-point to integer conversions.
231      // i64 conversions are done via library routines even when generating VFP
232      // instructions, so use the same ones.
233      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
234      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
235      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
236      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
237
238      // Conversions between floating types.
239      setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
240      setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp");
241
242      // Integer to floating-point conversions.
243      // i64 conversions are done via library routines even when generating VFP
244      // instructions, so use the same ones.
245      // FIXME: There appears to be some naming inconsistency in ARM libgcc:
246      // e.g., __floatunsidf vs. __floatunssidfvfp.
247      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
248      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
249      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
250      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
251    }
252  }
253
254  // These libcalls are not available in 32-bit.
255  setLibcallName(RTLIB::SHL_I128, 0);
256  setLibcallName(RTLIB::SRL_I128, 0);
257  setLibcallName(RTLIB::SRA_I128, 0);
258
259  if (Subtarget->isAAPCS_ABI() && !Subtarget->isTargetDarwin()) {
260    // Double-precision floating-point arithmetic helper functions
261    // RTABI chapter 4.1.2, Table 2
262    setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
263    setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
264    setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
265    setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
266    setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
267    setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
268    setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
269    setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
270
271    // Double-precision floating-point comparison helper functions
272    // RTABI chapter 4.1.2, Table 3
273    setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
274    setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
275    setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
276    setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
277    setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
278    setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
279    setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
280    setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
281    setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
282    setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
283    setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
284    setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
285    setLibcallName(RTLIB::UO_F64,  "__aeabi_dcmpun");
286    setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE);
287    setLibcallName(RTLIB::O_F64,   "__aeabi_dcmpun");
288    setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ);
289    setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
290    setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
291    setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
292    setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
293    setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
294    setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
295    setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
296    setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
297
298    // Single-precision floating-point arithmetic helper functions
299    // RTABI chapter 4.1.2, Table 4
300    setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
301    setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
302    setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
303    setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
304    setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
305    setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
306    setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
307    setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
308
309    // Single-precision floating-point comparison helper functions
310    // RTABI chapter 4.1.2, Table 5
311    setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
312    setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
313    setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
314    setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
315    setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
316    setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
317    setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
318    setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
319    setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
320    setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
321    setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
322    setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
323    setLibcallName(RTLIB::UO_F32,  "__aeabi_fcmpun");
324    setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE);
325    setLibcallName(RTLIB::O_F32,   "__aeabi_fcmpun");
326    setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ);
327    setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
328    setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
329    setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
330    setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
331    setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
332    setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
333    setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
334    setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
335
336    // Floating-point to integer conversions.
337    // RTABI chapter 4.1.2, Table 6
338    setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
339    setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
340    setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
341    setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
342    setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
343    setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
344    setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
345    setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
346    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
347    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
348    setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
349    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
350    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
351    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
352    setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
353    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
354
355    // Conversions between floating types.
356    // RTABI chapter 4.1.2, Table 7
357    setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
358    setLibcallName(RTLIB::FPEXT_F32_F64,   "__aeabi_f2d");
359    setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
360    setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
361
362    // Integer to floating-point conversions.
363    // RTABI chapter 4.1.2, Table 8
364    setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
365    setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
366    setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
367    setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
368    setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
369    setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
370    setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
371    setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
372    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
373    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
374    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
375    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
376    setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
377    setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
378    setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
379    setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
380
381    // Long long helper functions
382    // RTABI chapter 4.2, Table 9
383    setLibcallName(RTLIB::MUL_I64,  "__aeabi_lmul");
384    setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
385    setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
386    setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
387    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
388    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
389    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
390    setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
391    setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
392    setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
393
394    // Integer division functions
395    // RTABI chapter 4.3.1
396    setLibcallName(RTLIB::SDIV_I8,  "__aeabi_idiv");
397    setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
398    setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
399    setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
400    setLibcallName(RTLIB::UDIV_I8,  "__aeabi_uidiv");
401    setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
402    setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
403    setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
404    setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
405    setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
406    setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
407    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
408    setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
409    setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
410    setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
411    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
412
413    // Memory operations
414    // RTABI chapter 4.3.4
415    setLibcallName(RTLIB::MEMCPY,  "__aeabi_memcpy");
416    setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove");
417    setLibcallName(RTLIB::MEMSET,  "__aeabi_memset");
418    setLibcallCallingConv(RTLIB::MEMCPY, CallingConv::ARM_AAPCS);
419    setLibcallCallingConv(RTLIB::MEMMOVE, CallingConv::ARM_AAPCS);
420    setLibcallCallingConv(RTLIB::MEMSET, CallingConv::ARM_AAPCS);
421  }
422
423  // Use divmod compiler-rt calls for iOS 5.0 and later.
424  if (Subtarget->getTargetTriple().getOS() == Triple::IOS &&
425      !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
426    setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
427    setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
428  }
429
430  if (Subtarget->isThumb1Only())
431    addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
432  else
433    addRegisterClass(MVT::i32, &ARM::GPRRegClass);
434  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
435      !Subtarget->isThumb1Only()) {
436    addRegisterClass(MVT::f32, &ARM::SPRRegClass);
437    if (!Subtarget->isFPOnlySP())
438      addRegisterClass(MVT::f64, &ARM::DPRRegClass);
439
440    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
441  }
442
443  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
444       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
445    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
446         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
447      setTruncStoreAction((MVT::SimpleValueType)VT,
448                          (MVT::SimpleValueType)InnerVT, Expand);
449    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
450    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
451    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
452  }
453
454  setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
455
456  if (Subtarget->hasNEON()) {
457    addDRTypeForNEON(MVT::v2f32);
458    addDRTypeForNEON(MVT::v8i8);
459    addDRTypeForNEON(MVT::v4i16);
460    addDRTypeForNEON(MVT::v2i32);
461    addDRTypeForNEON(MVT::v1i64);
462
463    addQRTypeForNEON(MVT::v4f32);
464    addQRTypeForNEON(MVT::v2f64);
465    addQRTypeForNEON(MVT::v16i8);
466    addQRTypeForNEON(MVT::v8i16);
467    addQRTypeForNEON(MVT::v4i32);
468    addQRTypeForNEON(MVT::v2i64);
469
470    // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
471    // neither Neon nor VFP support any arithmetic operations on it.
472    // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
473    // supported for v4f32.
474    setOperationAction(ISD::FADD, MVT::v2f64, Expand);
475    setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
476    setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
477    // FIXME: Code duplication: FDIV and FREM are expanded always, see
478    // ARMTargetLowering::addTypeForNEON method for details.
479    setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
480    setOperationAction(ISD::FREM, MVT::v2f64, Expand);
481    // FIXME: Create unittest.
482    // In another words, find a way when "copysign" appears in DAG with vector
483    // operands.
484    setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
485    // FIXME: Code duplication: SETCC has custom operation action, see
486    // ARMTargetLowering::addTypeForNEON method for details.
487    setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
488    // FIXME: Create unittest for FNEG and for FABS.
489    setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
490    setOperationAction(ISD::FABS, MVT::v2f64, Expand);
491    setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
492    setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
493    setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
494    setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
495    setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
496    setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
497    setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
498    setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
499    setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
500    setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
501    // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
502    setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
503    setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
504    setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
505    setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
506    setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
507    setOperationAction(ISD::FMA, MVT::v2f64, Expand);
508
509    setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
510    setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
511    setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
512    setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
513    setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
514    setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
515    setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
516    setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
517    setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
518    setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
519    setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
520    setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
521    setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
522    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
523    setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
524
525    // Mark v2f32 intrinsics.
526    setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
527    setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
528    setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
529    setOperationAction(ISD::FPOWI, MVT::v2f32, Expand);
530    setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
531    setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
532    setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
533    setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
534    setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
535    setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
536    setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
537    setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
538    setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
539    setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
540    setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
541
542    // Neon does not support some operations on v1i64 and v2i64 types.
543    setOperationAction(ISD::MUL, MVT::v1i64, Expand);
544    // Custom handling for some quad-vector types to detect VMULL.
545    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
546    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
547    setOperationAction(ISD::MUL, MVT::v2i64, Custom);
548    // Custom handling for some vector types to avoid expensive expansions
549    setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
550    setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
551    setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
552    setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
553    setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
554    setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
555    // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
556    // a destination type that is wider than the source, and nor does
557    // it have a FP_TO_[SU]INT instruction with a narrower destination than
558    // source.
559    setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
560    setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
561    setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
562    setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
563
564    setOperationAction(ISD::FP_ROUND,   MVT::v2f32, Expand);
565    setOperationAction(ISD::FP_EXTEND,  MVT::v2f64, Expand);
566
567    // Custom expand long extensions to vectors.
568    setOperationAction(ISD::SIGN_EXTEND, MVT::v8i32,  Custom);
569    setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32,  Custom);
570    setOperationAction(ISD::SIGN_EXTEND, MVT::v4i64,  Custom);
571    setOperationAction(ISD::ZERO_EXTEND, MVT::v4i64,  Custom);
572    setOperationAction(ISD::SIGN_EXTEND, MVT::v16i32, Custom);
573    setOperationAction(ISD::ZERO_EXTEND, MVT::v16i32, Custom);
574    setOperationAction(ISD::SIGN_EXTEND, MVT::v8i64,  Custom);
575    setOperationAction(ISD::ZERO_EXTEND, MVT::v8i64,  Custom);
576
577    // NEON does not have single instruction CTPOP for vectors with element
578    // types wider than 8-bits.  However, custom lowering can leverage the
579    // v8i8/v16i8 vcnt instruction.
580    setOperationAction(ISD::CTPOP,      MVT::v2i32, Custom);
581    setOperationAction(ISD::CTPOP,      MVT::v4i32, Custom);
582    setOperationAction(ISD::CTPOP,      MVT::v4i16, Custom);
583    setOperationAction(ISD::CTPOP,      MVT::v8i16, Custom);
584
585    // NEON only has FMA instructions as of VFP4.
586    if (!Subtarget->hasVFP4()) {
587      setOperationAction(ISD::FMA, MVT::v2f32, Expand);
588      setOperationAction(ISD::FMA, MVT::v4f32, Expand);
589    }
590
591    setTargetDAGCombine(ISD::INTRINSIC_VOID);
592    setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
593    setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
594    setTargetDAGCombine(ISD::SHL);
595    setTargetDAGCombine(ISD::SRL);
596    setTargetDAGCombine(ISD::SRA);
597    setTargetDAGCombine(ISD::SIGN_EXTEND);
598    setTargetDAGCombine(ISD::ZERO_EXTEND);
599    setTargetDAGCombine(ISD::ANY_EXTEND);
600    setTargetDAGCombine(ISD::SELECT_CC);
601    setTargetDAGCombine(ISD::BUILD_VECTOR);
602    setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
603    setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
604    setTargetDAGCombine(ISD::STORE);
605    setTargetDAGCombine(ISD::FP_TO_SINT);
606    setTargetDAGCombine(ISD::FP_TO_UINT);
607    setTargetDAGCombine(ISD::FDIV);
608
609    // It is legal to extload from v4i8 to v4i16 or v4i32.
610    MVT Tys[6] = {MVT::v8i8, MVT::v4i8, MVT::v2i8,
611                  MVT::v4i16, MVT::v2i16,
612                  MVT::v2i32};
613    for (unsigned i = 0; i < 6; ++i) {
614      setLoadExtAction(ISD::EXTLOAD, Tys[i], Legal);
615      setLoadExtAction(ISD::ZEXTLOAD, Tys[i], Legal);
616      setLoadExtAction(ISD::SEXTLOAD, Tys[i], Legal);
617    }
618  }
619
620  // ARM and Thumb2 support UMLAL/SMLAL.
621  if (!Subtarget->isThumb1Only())
622    setTargetDAGCombine(ISD::ADDC);
623
624
625  computeRegisterProperties();
626
627  // ARM does not have f32 extending load.
628  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
629
630  // ARM does not have i1 sign extending load.
631  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
632
633  // ARM supports all 4 flavors of integer indexed load / store.
634  if (!Subtarget->isThumb1Only()) {
635    for (unsigned im = (unsigned)ISD::PRE_INC;
636         im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
637      setIndexedLoadAction(im,  MVT::i1,  Legal);
638      setIndexedLoadAction(im,  MVT::i8,  Legal);
639      setIndexedLoadAction(im,  MVT::i16, Legal);
640      setIndexedLoadAction(im,  MVT::i32, Legal);
641      setIndexedStoreAction(im, MVT::i1,  Legal);
642      setIndexedStoreAction(im, MVT::i8,  Legal);
643      setIndexedStoreAction(im, MVT::i16, Legal);
644      setIndexedStoreAction(im, MVT::i32, Legal);
645    }
646  }
647
648  // i64 operation support.
649  setOperationAction(ISD::MUL,     MVT::i64, Expand);
650  setOperationAction(ISD::MULHU,   MVT::i32, Expand);
651  if (Subtarget->isThumb1Only()) {
652    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
653    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
654  }
655  if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
656      || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
657    setOperationAction(ISD::MULHS, MVT::i32, Expand);
658
659  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
660  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
661  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
662  setOperationAction(ISD::SRL,       MVT::i64, Custom);
663  setOperationAction(ISD::SRA,       MVT::i64, Custom);
664
665  if (!Subtarget->isThumb1Only()) {
666    // FIXME: We should do this for Thumb1 as well.
667    setOperationAction(ISD::ADDC,    MVT::i32, Custom);
668    setOperationAction(ISD::ADDE,    MVT::i32, Custom);
669    setOperationAction(ISD::SUBC,    MVT::i32, Custom);
670    setOperationAction(ISD::SUBE,    MVT::i32, Custom);
671  }
672
673  // ARM does not have ROTL.
674  setOperationAction(ISD::ROTL,  MVT::i32, Expand);
675  setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
676  setOperationAction(ISD::CTPOP, MVT::i32, Expand);
677  if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
678    setOperationAction(ISD::CTLZ, MVT::i32, Expand);
679
680  // These just redirect to CTTZ and CTLZ on ARM.
681  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i32  , Expand);
682  setOperationAction(ISD::CTLZ_ZERO_UNDEF  , MVT::i32  , Expand);
683
684  setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
685
686  // Only ARMv6 has BSWAP.
687  if (!Subtarget->hasV6Ops())
688    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
689
690  if (!(Subtarget->hasDivide() && Subtarget->isThumb2()) &&
691      !(Subtarget->hasDivideInARMMode() && !Subtarget->isThumb())) {
692    // These are expanded into libcalls if the cpu doesn't have HW divider.
693    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
694    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
695  }
696
697  // FIXME: Also set divmod for SREM on EABI
698  setOperationAction(ISD::SREM,  MVT::i32, Expand);
699  setOperationAction(ISD::UREM,  MVT::i32, Expand);
700  // Register based DivRem for AEABI (RTABI 4.2)
701  if (Subtarget->isTargetAEABI()) {
702    setLibcallName(RTLIB::SDIVREM_I8,  "__aeabi_idivmod");
703    setLibcallName(RTLIB::SDIVREM_I16, "__aeabi_idivmod");
704    setLibcallName(RTLIB::SDIVREM_I32, "__aeabi_idivmod");
705    setLibcallName(RTLIB::SDIVREM_I64, "__aeabi_ldivmod");
706    setLibcallName(RTLIB::UDIVREM_I8,  "__aeabi_uidivmod");
707    setLibcallName(RTLIB::UDIVREM_I16, "__aeabi_uidivmod");
708    setLibcallName(RTLIB::UDIVREM_I32, "__aeabi_uidivmod");
709    setLibcallName(RTLIB::UDIVREM_I64, "__aeabi_uldivmod");
710
711    setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::ARM_AAPCS);
712    setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::ARM_AAPCS);
713    setLibcallCallingConv(RTLIB::SDIVREM_I32, CallingConv::ARM_AAPCS);
714    setLibcallCallingConv(RTLIB::SDIVREM_I64, CallingConv::ARM_AAPCS);
715    setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::ARM_AAPCS);
716    setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::ARM_AAPCS);
717    setLibcallCallingConv(RTLIB::UDIVREM_I32, CallingConv::ARM_AAPCS);
718    setLibcallCallingConv(RTLIB::UDIVREM_I64, CallingConv::ARM_AAPCS);
719
720    setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
721    setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
722  } else {
723    setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
724    setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
725  }
726
727  setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
728  setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
729  setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
730  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
731  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
732
733  setOperationAction(ISD::TRAP, MVT::Other, Legal);
734
735  // Use the default implementation.
736  setOperationAction(ISD::VASTART,            MVT::Other, Custom);
737  setOperationAction(ISD::VAARG,              MVT::Other, Expand);
738  setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
739  setOperationAction(ISD::VAEND,              MVT::Other, Expand);
740  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
741  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
742
743  if (!Subtarget->isTargetDarwin()) {
744    // Non-Darwin platforms may return values in these registers via the
745    // personality function.
746    setExceptionPointerRegister(ARM::R0);
747    setExceptionSelectorRegister(ARM::R1);
748  }
749
750  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
751  // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
752  // the default expansion.
753  // FIXME: This should be checking for v6k, not just v6.
754  if (Subtarget->hasDataBarrier() ||
755      (Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
756    // membarrier needs custom lowering; the rest are legal and handled
757    // normally.
758    setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
759    // Custom lowering for 64-bit ops
760    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i64, Custom);
761    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i64, Custom);
762    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i64, Custom);
763    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i64, Custom);
764    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i64, Custom);
765    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i64, Custom);
766    setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i64, Custom);
767    setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i64, Custom);
768    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom);
769    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom);
770    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
771    // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
772    setInsertFencesForAtomic(true);
773  } else {
774    // Set them all for expansion, which will force libcalls.
775    setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other, Expand);
776    setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
777    setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
778    setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
779    setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
780    setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
781    setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
782    setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
783    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
784    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
785    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
786    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
787    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
788    // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
789    // Unordered/Monotonic case.
790    setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
791    setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
792  }
793
794  setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
795
796  // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
797  if (!Subtarget->hasV6Ops()) {
798    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
799    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
800  }
801  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
802
803  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
804      !Subtarget->isThumb1Only()) {
805    // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
806    // iff target supports vfp2.
807    setOperationAction(ISD::BITCAST, MVT::i64, Custom);
808    setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
809  }
810
811  // We want to custom lower some of our intrinsics.
812  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
813  if (Subtarget->isTargetDarwin()) {
814    setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
815    setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
816    setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
817  }
818
819  setOperationAction(ISD::SETCC,     MVT::i32, Expand);
820  setOperationAction(ISD::SETCC,     MVT::f32, Expand);
821  setOperationAction(ISD::SETCC,     MVT::f64, Expand);
822  setOperationAction(ISD::SELECT,    MVT::i32, Custom);
823  setOperationAction(ISD::SELECT,    MVT::f32, Custom);
824  setOperationAction(ISD::SELECT,    MVT::f64, Custom);
825  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
826  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
827  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
828
829  setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
830  setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
831  setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
832  setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
833  setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
834
835  // We don't support sin/cos/fmod/copysign/pow
836  setOperationAction(ISD::FSIN,      MVT::f64, Expand);
837  setOperationAction(ISD::FSIN,      MVT::f32, Expand);
838  setOperationAction(ISD::FCOS,      MVT::f32, Expand);
839  setOperationAction(ISD::FCOS,      MVT::f64, Expand);
840  setOperationAction(ISD::FSINCOS,   MVT::f64, Expand);
841  setOperationAction(ISD::FSINCOS,   MVT::f32, Expand);
842  setOperationAction(ISD::FREM,      MVT::f64, Expand);
843  setOperationAction(ISD::FREM,      MVT::f32, Expand);
844  if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
845      !Subtarget->isThumb1Only()) {
846    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
847    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
848  }
849  setOperationAction(ISD::FPOW,      MVT::f64, Expand);
850  setOperationAction(ISD::FPOW,      MVT::f32, Expand);
851
852  if (!Subtarget->hasVFP4()) {
853    setOperationAction(ISD::FMA, MVT::f64, Expand);
854    setOperationAction(ISD::FMA, MVT::f32, Expand);
855  }
856
857  // Various VFP goodness
858  if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) {
859    // int <-> fp are custom expanded into bit_convert + ARMISD ops.
860    if (Subtarget->hasVFP2()) {
861      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
862      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
863      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
864      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
865    }
866    // Special handling for half-precision FP.
867    if (!Subtarget->hasFP16()) {
868      setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
869      setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
870    }
871  }
872
873  // We have target-specific dag combine patterns for the following nodes:
874  // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
875  setTargetDAGCombine(ISD::ADD);
876  setTargetDAGCombine(ISD::SUB);
877  setTargetDAGCombine(ISD::MUL);
878  setTargetDAGCombine(ISD::AND);
879  setTargetDAGCombine(ISD::OR);
880  setTargetDAGCombine(ISD::XOR);
881
882  if (Subtarget->hasV6Ops())
883    setTargetDAGCombine(ISD::SRL);
884
885  setStackPointerRegisterToSaveRestore(ARM::SP);
886
887  if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() ||
888      !Subtarget->hasVFP2())
889    setSchedulingPreference(Sched::RegPressure);
890  else
891    setSchedulingPreference(Sched::Hybrid);
892
893  //// temporary - rewrite interface to use type
894  MaxStoresPerMemset = 8;
895  MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
896  MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
897  MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 4 : 2;
898  MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
899  MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 4 : 2;
900
901  // On ARM arguments smaller than 4 bytes are extended, so all arguments
902  // are at least 4 bytes aligned.
903  setMinStackArgumentAlignment(4);
904
905  // Prefer likely predicted branches to selects on out-of-order cores.
906  PredictableSelectIsExpensive = Subtarget->isLikeA9();
907
908  setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
909}
910
911// FIXME: It might make sense to define the representative register class as the
912// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
913// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
914// SPR's representative would be DPR_VFP2. This should work well if register
915// pressure tracking were modified such that a register use would increment the
916// pressure of the register class's representative and all of it's super
917// classes' representatives transitively. We have not implemented this because
918// of the difficulty prior to coalescing of modeling operand register classes
919// due to the common occurrence of cross class copies and subregister insertions
920// and extractions.
921std::pair<const TargetRegisterClass*, uint8_t>
922ARMTargetLowering::findRepresentativeClass(MVT VT) const{
923  const TargetRegisterClass *RRC = 0;
924  uint8_t Cost = 1;
925  switch (VT.SimpleTy) {
926  default:
927    return TargetLowering::findRepresentativeClass(VT);
928  // Use DPR as representative register class for all floating point
929  // and vector types. Since there are 32 SPR registers and 32 DPR registers so
930  // the cost is 1 for both f32 and f64.
931  case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
932  case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
933    RRC = &ARM::DPRRegClass;
934    // When NEON is used for SP, only half of the register file is available
935    // because operations that define both SP and DP results will be constrained
936    // to the VFP2 class (D0-D15). We currently model this constraint prior to
937    // coalescing by double-counting the SP regs. See the FIXME above.
938    if (Subtarget->useNEONForSinglePrecisionFP())
939      Cost = 2;
940    break;
941  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
942  case MVT::v4f32: case MVT::v2f64:
943    RRC = &ARM::DPRRegClass;
944    Cost = 2;
945    break;
946  case MVT::v4i64:
947    RRC = &ARM::DPRRegClass;
948    Cost = 4;
949    break;
950  case MVT::v8i64:
951    RRC = &ARM::DPRRegClass;
952    Cost = 8;
953    break;
954  }
955  return std::make_pair(RRC, Cost);
956}
957
958const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
959  switch (Opcode) {
960  default: return 0;
961  case ARMISD::Wrapper:       return "ARMISD::Wrapper";
962  case ARMISD::WrapperDYN:    return "ARMISD::WrapperDYN";
963  case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
964  case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
965  case ARMISD::CALL:          return "ARMISD::CALL";
966  case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
967  case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
968  case ARMISD::tCALL:         return "ARMISD::tCALL";
969  case ARMISD::BRCOND:        return "ARMISD::BRCOND";
970  case ARMISD::BR_JT:         return "ARMISD::BR_JT";
971  case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
972  case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
973  case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
974  case ARMISD::CMP:           return "ARMISD::CMP";
975  case ARMISD::CMN:           return "ARMISD::CMN";
976  case ARMISD::CMPZ:          return "ARMISD::CMPZ";
977  case ARMISD::CMPFP:         return "ARMISD::CMPFP";
978  case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
979  case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
980  case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
981
982  case ARMISD::CMOV:          return "ARMISD::CMOV";
983
984  case ARMISD::RBIT:          return "ARMISD::RBIT";
985
986  case ARMISD::FTOSI:         return "ARMISD::FTOSI";
987  case ARMISD::FTOUI:         return "ARMISD::FTOUI";
988  case ARMISD::SITOF:         return "ARMISD::SITOF";
989  case ARMISD::UITOF:         return "ARMISD::UITOF";
990
991  case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
992  case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
993  case ARMISD::RRX:           return "ARMISD::RRX";
994
995  case ARMISD::ADDC:          return "ARMISD::ADDC";
996  case ARMISD::ADDE:          return "ARMISD::ADDE";
997  case ARMISD::SUBC:          return "ARMISD::SUBC";
998  case ARMISD::SUBE:          return "ARMISD::SUBE";
999
1000  case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
1001  case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
1002
1003  case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
1004  case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
1005
1006  case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
1007
1008  case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
1009
1010  case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
1011
1012  case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER";
1013  case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
1014
1015  case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
1016
1017  case ARMISD::VCEQ:          return "ARMISD::VCEQ";
1018  case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
1019  case ARMISD::VCGE:          return "ARMISD::VCGE";
1020  case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
1021  case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
1022  case ARMISD::VCGEU:         return "ARMISD::VCGEU";
1023  case ARMISD::VCGT:          return "ARMISD::VCGT";
1024  case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
1025  case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
1026  case ARMISD::VCGTU:         return "ARMISD::VCGTU";
1027  case ARMISD::VTST:          return "ARMISD::VTST";
1028
1029  case ARMISD::VSHL:          return "ARMISD::VSHL";
1030  case ARMISD::VSHRs:         return "ARMISD::VSHRs";
1031  case ARMISD::VSHRu:         return "ARMISD::VSHRu";
1032  case ARMISD::VSHLLs:        return "ARMISD::VSHLLs";
1033  case ARMISD::VSHLLu:        return "ARMISD::VSHLLu";
1034  case ARMISD::VSHLLi:        return "ARMISD::VSHLLi";
1035  case ARMISD::VSHRN:         return "ARMISD::VSHRN";
1036  case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
1037  case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
1038  case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
1039  case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
1040  case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
1041  case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
1042  case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
1043  case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
1044  case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
1045  case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
1046  case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
1047  case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
1048  case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
1049  case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
1050  case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
1051  case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
1052  case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
1053  case ARMISD::VDUP:          return "ARMISD::VDUP";
1054  case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
1055  case ARMISD::VEXT:          return "ARMISD::VEXT";
1056  case ARMISD::VREV64:        return "ARMISD::VREV64";
1057  case ARMISD::VREV32:        return "ARMISD::VREV32";
1058  case ARMISD::VREV16:        return "ARMISD::VREV16";
1059  case ARMISD::VZIP:          return "ARMISD::VZIP";
1060  case ARMISD::VUZP:          return "ARMISD::VUZP";
1061  case ARMISD::VTRN:          return "ARMISD::VTRN";
1062  case ARMISD::VTBL1:         return "ARMISD::VTBL1";
1063  case ARMISD::VTBL2:         return "ARMISD::VTBL2";
1064  case ARMISD::VMULLs:        return "ARMISD::VMULLs";
1065  case ARMISD::VMULLu:        return "ARMISD::VMULLu";
1066  case ARMISD::UMLAL:         return "ARMISD::UMLAL";
1067  case ARMISD::SMLAL:         return "ARMISD::SMLAL";
1068  case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
1069  case ARMISD::FMAX:          return "ARMISD::FMAX";
1070  case ARMISD::FMIN:          return "ARMISD::FMIN";
1071  case ARMISD::BFI:           return "ARMISD::BFI";
1072  case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
1073  case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
1074  case ARMISD::VBSL:          return "ARMISD::VBSL";
1075  case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
1076  case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
1077  case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
1078  case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
1079  case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
1080  case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
1081  case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
1082  case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
1083  case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
1084  case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
1085  case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
1086  case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
1087  case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
1088  case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
1089  case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
1090  case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
1091  case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
1092  case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
1093  case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
1094  case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
1095
1096  case ARMISD::ATOMADD64_DAG:     return "ATOMADD64_DAG";
1097  case ARMISD::ATOMSUB64_DAG:     return "ATOMSUB64_DAG";
1098  case ARMISD::ATOMOR64_DAG:      return "ATOMOR64_DAG";
1099  case ARMISD::ATOMXOR64_DAG:     return "ATOMXOR64_DAG";
1100  case ARMISD::ATOMAND64_DAG:     return "ATOMAND64_DAG";
1101  case ARMISD::ATOMNAND64_DAG:    return "ATOMNAND64_DAG";
1102  case ARMISD::ATOMSWAP64_DAG:    return "ATOMSWAP64_DAG";
1103  case ARMISD::ATOMCMPXCHG64_DAG: return "ATOMCMPXCHG64_DAG";
1104  case ARMISD::ATOMMIN64_DAG:     return "ATOMMIN64_DAG";
1105  case ARMISD::ATOMUMIN64_DAG:    return "ATOMUMIN64_DAG";
1106  case ARMISD::ATOMMAX64_DAG:     return "ATOMMAX64_DAG";
1107  case ARMISD::ATOMUMAX64_DAG:    return "ATOMUMAX64_DAG";
1108  }
1109}
1110
1111EVT ARMTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
1112  if (!VT.isVector()) return getPointerTy();
1113  return VT.changeVectorElementTypeToInteger();
1114}
1115
1116/// getRegClassFor - Return the register class that should be used for the
1117/// specified value type.
1118const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const {
1119  // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1120  // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1121  // load / store 4 to 8 consecutive D registers.
1122  if (Subtarget->hasNEON()) {
1123    if (VT == MVT::v4i64)
1124      return &ARM::QQPRRegClass;
1125    if (VT == MVT::v8i64)
1126      return &ARM::QQQQPRRegClass;
1127  }
1128  return TargetLowering::getRegClassFor(VT);
1129}
1130
1131// Create a fast isel object.
1132FastISel *
1133ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1134                                  const TargetLibraryInfo *libInfo) const {
1135  return ARM::createFastISel(funcInfo, libInfo);
1136}
1137
1138/// getMaximalGlobalOffset - Returns the maximal possible offset which can
1139/// be used for loads / stores from the global.
1140unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
1141  return (Subtarget->isThumb1Only() ? 127 : 4095);
1142}
1143
1144Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1145  unsigned NumVals = N->getNumValues();
1146  if (!NumVals)
1147    return Sched::RegPressure;
1148
1149  for (unsigned i = 0; i != NumVals; ++i) {
1150    EVT VT = N->getValueType(i);
1151    if (VT == MVT::Glue || VT == MVT::Other)
1152      continue;
1153    if (VT.isFloatingPoint() || VT.isVector())
1154      return Sched::ILP;
1155  }
1156
1157  if (!N->isMachineOpcode())
1158    return Sched::RegPressure;
1159
1160  // Load are scheduled for latency even if there instruction itinerary
1161  // is not available.
1162  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
1163  const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1164
1165  if (MCID.getNumDefs() == 0)
1166    return Sched::RegPressure;
1167  if (!Itins->isEmpty() &&
1168      Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1169    return Sched::ILP;
1170
1171  return Sched::RegPressure;
1172}
1173
1174//===----------------------------------------------------------------------===//
1175// Lowering Code
1176//===----------------------------------------------------------------------===//
1177
1178/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1179static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1180  switch (CC) {
1181  default: llvm_unreachable("Unknown condition code!");
1182  case ISD::SETNE:  return ARMCC::NE;
1183  case ISD::SETEQ:  return ARMCC::EQ;
1184  case ISD::SETGT:  return ARMCC::GT;
1185  case ISD::SETGE:  return ARMCC::GE;
1186  case ISD::SETLT:  return ARMCC::LT;
1187  case ISD::SETLE:  return ARMCC::LE;
1188  case ISD::SETUGT: return ARMCC::HI;
1189  case ISD::SETUGE: return ARMCC::HS;
1190  case ISD::SETULT: return ARMCC::LO;
1191  case ISD::SETULE: return ARMCC::LS;
1192  }
1193}
1194
1195/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1196static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1197                        ARMCC::CondCodes &CondCode2) {
1198  CondCode2 = ARMCC::AL;
1199  switch (CC) {
1200  default: llvm_unreachable("Unknown FP condition!");
1201  case ISD::SETEQ:
1202  case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1203  case ISD::SETGT:
1204  case ISD::SETOGT: CondCode = ARMCC::GT; break;
1205  case ISD::SETGE:
1206  case ISD::SETOGE: CondCode = ARMCC::GE; break;
1207  case ISD::SETOLT: CondCode = ARMCC::MI; break;
1208  case ISD::SETOLE: CondCode = ARMCC::LS; break;
1209  case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1210  case ISD::SETO:   CondCode = ARMCC::VC; break;
1211  case ISD::SETUO:  CondCode = ARMCC::VS; break;
1212  case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1213  case ISD::SETUGT: CondCode = ARMCC::HI; break;
1214  case ISD::SETUGE: CondCode = ARMCC::PL; break;
1215  case ISD::SETLT:
1216  case ISD::SETULT: CondCode = ARMCC::LT; break;
1217  case ISD::SETLE:
1218  case ISD::SETULE: CondCode = ARMCC::LE; break;
1219  case ISD::SETNE:
1220  case ISD::SETUNE: CondCode = ARMCC::NE; break;
1221  }
1222}
1223
1224//===----------------------------------------------------------------------===//
1225//                      Calling Convention Implementation
1226//===----------------------------------------------------------------------===//
1227
1228#include "ARMGenCallingConv.inc"
1229
1230/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1231/// given CallingConvention value.
1232CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1233                                                 bool Return,
1234                                                 bool isVarArg) const {
1235  switch (CC) {
1236  default:
1237    llvm_unreachable("Unsupported calling convention");
1238  case CallingConv::Fast:
1239    if (Subtarget->hasVFP2() && !isVarArg) {
1240      if (!Subtarget->isAAPCS_ABI())
1241        return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1242      // For AAPCS ABI targets, just use VFP variant of the calling convention.
1243      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1244    }
1245    // Fallthrough
1246  case CallingConv::C: {
1247    // Use target triple & subtarget features to do actual dispatch.
1248    if (!Subtarget->isAAPCS_ABI())
1249      return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1250    else if (Subtarget->hasVFP2() &&
1251             getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1252             !isVarArg)
1253      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1254    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1255  }
1256  case CallingConv::ARM_AAPCS_VFP:
1257    if (!isVarArg)
1258      return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1259    // Fallthrough
1260  case CallingConv::ARM_AAPCS:
1261    return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1262  case CallingConv::ARM_APCS:
1263    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1264  case CallingConv::GHC:
1265    return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
1266  }
1267}
1268
1269/// LowerCallResult - Lower the result values of a call into the
1270/// appropriate copies out of appropriate physical registers.
1271SDValue
1272ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1273                                   CallingConv::ID CallConv, bool isVarArg,
1274                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1275                                   SDLoc dl, SelectionDAG &DAG,
1276                                   SmallVectorImpl<SDValue> &InVals,
1277                                   bool isThisReturn, SDValue ThisVal) const {
1278
1279  // Assign locations to each value returned by this call.
1280  SmallVector<CCValAssign, 16> RVLocs;
1281  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1282                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
1283  CCInfo.AnalyzeCallResult(Ins,
1284                           CCAssignFnForNode(CallConv, /* Return*/ true,
1285                                             isVarArg));
1286
1287  // Copy all of the result registers out of their specified physreg.
1288  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1289    CCValAssign VA = RVLocs[i];
1290
1291    // Pass 'this' value directly from the argument to return value, to avoid
1292    // reg unit interference
1293    if (i == 0 && isThisReturn) {
1294      assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
1295             "unexpected return calling convention register assignment");
1296      InVals.push_back(ThisVal);
1297      continue;
1298    }
1299
1300    SDValue Val;
1301    if (VA.needsCustom()) {
1302      // Handle f64 or half of a v2f64.
1303      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1304                                      InFlag);
1305      Chain = Lo.getValue(1);
1306      InFlag = Lo.getValue(2);
1307      VA = RVLocs[++i]; // skip ahead to next loc
1308      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1309                                      InFlag);
1310      Chain = Hi.getValue(1);
1311      InFlag = Hi.getValue(2);
1312      Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1313
1314      if (VA.getLocVT() == MVT::v2f64) {
1315        SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1316        Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1317                          DAG.getConstant(0, MVT::i32));
1318
1319        VA = RVLocs[++i]; // skip ahead to next loc
1320        Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1321        Chain = Lo.getValue(1);
1322        InFlag = Lo.getValue(2);
1323        VA = RVLocs[++i]; // skip ahead to next loc
1324        Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1325        Chain = Hi.getValue(1);
1326        InFlag = Hi.getValue(2);
1327        Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1328        Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1329                          DAG.getConstant(1, MVT::i32));
1330      }
1331    } else {
1332      Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1333                               InFlag);
1334      Chain = Val.getValue(1);
1335      InFlag = Val.getValue(2);
1336    }
1337
1338    switch (VA.getLocInfo()) {
1339    default: llvm_unreachable("Unknown loc info!");
1340    case CCValAssign::Full: break;
1341    case CCValAssign::BCvt:
1342      Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1343      break;
1344    }
1345
1346    InVals.push_back(Val);
1347  }
1348
1349  return Chain;
1350}
1351
1352/// LowerMemOpCallTo - Store the argument to the stack.
1353SDValue
1354ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
1355                                    SDValue StackPtr, SDValue Arg,
1356                                    SDLoc dl, SelectionDAG &DAG,
1357                                    const CCValAssign &VA,
1358                                    ISD::ArgFlagsTy Flags) const {
1359  unsigned LocMemOffset = VA.getLocMemOffset();
1360  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1361  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1362  return DAG.getStore(Chain, dl, Arg, PtrOff,
1363                      MachinePointerInfo::getStack(LocMemOffset),
1364                      false, false, 0);
1365}
1366
1367void ARMTargetLowering::PassF64ArgInRegs(SDLoc dl, SelectionDAG &DAG,
1368                                         SDValue Chain, SDValue &Arg,
1369                                         RegsToPassVector &RegsToPass,
1370                                         CCValAssign &VA, CCValAssign &NextVA,
1371                                         SDValue &StackPtr,
1372                                         SmallVectorImpl<SDValue> &MemOpChains,
1373                                         ISD::ArgFlagsTy Flags) const {
1374
1375  SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1376                              DAG.getVTList(MVT::i32, MVT::i32), Arg);
1377  RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
1378
1379  if (NextVA.isRegLoc())
1380    RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
1381  else {
1382    assert(NextVA.isMemLoc());
1383    if (StackPtr.getNode() == 0)
1384      StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1385
1386    MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
1387                                           dl, DAG, NextVA,
1388                                           Flags));
1389  }
1390}
1391
1392/// LowerCall - Lowering a call into a callseq_start <-
1393/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1394/// nodes.
1395SDValue
1396ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1397                             SmallVectorImpl<SDValue> &InVals) const {
1398  SelectionDAG &DAG                     = CLI.DAG;
1399  SDLoc &dl                          = CLI.DL;
1400  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1401  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1402  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1403  SDValue Chain                         = CLI.Chain;
1404  SDValue Callee                        = CLI.Callee;
1405  bool &isTailCall                      = CLI.IsTailCall;
1406  CallingConv::ID CallConv              = CLI.CallConv;
1407  bool doesNotRet                       = CLI.DoesNotReturn;
1408  bool isVarArg                         = CLI.IsVarArg;
1409
1410  MachineFunction &MF = DAG.getMachineFunction();
1411  bool isStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1412  bool isThisReturn   = false;
1413  bool isSibCall      = false;
1414  // Disable tail calls if they're not supported.
1415  if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
1416    isTailCall = false;
1417  if (isTailCall) {
1418    // Check if it's really possible to do a tail call.
1419    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1420                    isVarArg, isStructRet, MF.getFunction()->hasStructRetAttr(),
1421                                                   Outs, OutVals, Ins, DAG);
1422    // We don't support GuaranteedTailCallOpt for ARM, only automatically
1423    // detected sibcalls.
1424    if (isTailCall) {
1425      ++NumTailCalls;
1426      isSibCall = true;
1427    }
1428  }
1429
1430  // Analyze operands of the call, assigning locations to each operand.
1431  SmallVector<CCValAssign, 16> ArgLocs;
1432  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1433                 getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
1434  CCInfo.AnalyzeCallOperands(Outs,
1435                             CCAssignFnForNode(CallConv, /* Return*/ false,
1436                                               isVarArg));
1437
1438  // Get a count of how many bytes are to be pushed on the stack.
1439  unsigned NumBytes = CCInfo.getNextStackOffset();
1440
1441  // For tail calls, memory operands are available in our caller's stack.
1442  if (isSibCall)
1443    NumBytes = 0;
1444
1445  // Adjust the stack pointer for the new arguments...
1446  // These operations are automatically eliminated by the prolog/epilog pass
1447  if (!isSibCall)
1448    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
1449                                 dl);
1450
1451  SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
1452
1453  RegsToPassVector RegsToPass;
1454  SmallVector<SDValue, 8> MemOpChains;
1455
1456  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1457  // of tail call optimization, arguments are handled later.
1458  for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1459       i != e;
1460       ++i, ++realArgIdx) {
1461    CCValAssign &VA = ArgLocs[i];
1462    SDValue Arg = OutVals[realArgIdx];
1463    ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1464    bool isByVal = Flags.isByVal();
1465
1466    // Promote the value if needed.
1467    switch (VA.getLocInfo()) {
1468    default: llvm_unreachable("Unknown loc info!");
1469    case CCValAssign::Full: break;
1470    case CCValAssign::SExt:
1471      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1472      break;
1473    case CCValAssign::ZExt:
1474      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1475      break;
1476    case CCValAssign::AExt:
1477      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1478      break;
1479    case CCValAssign::BCvt:
1480      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1481      break;
1482    }
1483
1484    // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1485    if (VA.needsCustom()) {
1486      if (VA.getLocVT() == MVT::v2f64) {
1487        SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1488                                  DAG.getConstant(0, MVT::i32));
1489        SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1490                                  DAG.getConstant(1, MVT::i32));
1491
1492        PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1493                         VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1494
1495        VA = ArgLocs[++i]; // skip ahead to next loc
1496        if (VA.isRegLoc()) {
1497          PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1498                           VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1499        } else {
1500          assert(VA.isMemLoc());
1501
1502          MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1503                                                 dl, DAG, VA, Flags));
1504        }
1505      } else {
1506        PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1507                         StackPtr, MemOpChains, Flags);
1508      }
1509    } else if (VA.isRegLoc()) {
1510      if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i32) {
1511        assert(VA.getLocVT() == MVT::i32 &&
1512               "unexpected calling convention register assignment");
1513        assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
1514               "unexpected use of 'returned'");
1515        isThisReturn = true;
1516      }
1517      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1518    } else if (isByVal) {
1519      assert(VA.isMemLoc());
1520      unsigned offset = 0;
1521
1522      // True if this byval aggregate will be split between registers
1523      // and memory.
1524      unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
1525      unsigned CurByValIdx = CCInfo.getInRegsParamsProceed();
1526
1527      if (CurByValIdx < ByValArgsCount) {
1528
1529        unsigned RegBegin, RegEnd;
1530        CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
1531
1532        EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1533        unsigned int i, j;
1534        for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
1535          SDValue Const = DAG.getConstant(4*i, MVT::i32);
1536          SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1537          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1538                                     MachinePointerInfo(),
1539                                     false, false, false, 0);
1540          MemOpChains.push_back(Load.getValue(1));
1541          RegsToPass.push_back(std::make_pair(j, Load));
1542        }
1543
1544        // If parameter size outsides register area, "offset" value
1545        // helps us to calculate stack slot for remained part properly.
1546        offset = RegEnd - RegBegin;
1547
1548        CCInfo.nextInRegsParam();
1549      }
1550
1551      if (Flags.getByValSize() > 4*offset) {
1552        unsigned LocMemOffset = VA.getLocMemOffset();
1553        SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
1554        SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
1555                                  StkPtrOff);
1556        SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
1557        SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
1558        SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
1559                                           MVT::i32);
1560        SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), MVT::i32);
1561
1562        SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
1563        SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
1564        MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
1565                                          Ops, array_lengthof(Ops)));
1566      }
1567    } else if (!isSibCall) {
1568      assert(VA.isMemLoc());
1569
1570      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1571                                             dl, DAG, VA, Flags));
1572    }
1573  }
1574
1575  if (!MemOpChains.empty())
1576    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1577                        &MemOpChains[0], MemOpChains.size());
1578
1579  // Build a sequence of copy-to-reg nodes chained together with token chain
1580  // and flag operands which copy the outgoing args into the appropriate regs.
1581  SDValue InFlag;
1582  // Tail call byval lowering might overwrite argument registers so in case of
1583  // tail call optimization the copies to registers are lowered later.
1584  if (!isTailCall)
1585    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1586      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1587                               RegsToPass[i].second, InFlag);
1588      InFlag = Chain.getValue(1);
1589    }
1590
1591  // For tail calls lower the arguments to the 'real' stack slot.
1592  if (isTailCall) {
1593    // Force all the incoming stack arguments to be loaded from the stack
1594    // before any new outgoing arguments are stored to the stack, because the
1595    // outgoing stack slots may alias the incoming argument stack slots, and
1596    // the alias isn't otherwise explicit. This is slightly more conservative
1597    // than necessary, because it means that each store effectively depends
1598    // on every argument instead of just those arguments it would clobber.
1599
1600    // Do not flag preceding copytoreg stuff together with the following stuff.
1601    InFlag = SDValue();
1602    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1603      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1604                               RegsToPass[i].second, InFlag);
1605      InFlag = Chain.getValue(1);
1606    }
1607    InFlag = SDValue();
1608  }
1609
1610  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1611  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1612  // node so that legalize doesn't hack it.
1613  bool isDirect = false;
1614  bool isARMFunc = false;
1615  bool isLocalARMFunc = false;
1616  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1617
1618  if (EnableARMLongCalls) {
1619    assert (getTargetMachine().getRelocationModel() == Reloc::Static
1620            && "long-calls with non-static relocation model!");
1621    // Handle a global address or an external symbol. If it's not one of
1622    // those, the target's already in a register, so we don't need to do
1623    // anything extra.
1624    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1625      const GlobalValue *GV = G->getGlobal();
1626      // Create a constant pool entry for the callee address
1627      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1628      ARMConstantPoolValue *CPV =
1629        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
1630
1631      // Get the address of the callee into a register
1632      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1633      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1634      Callee = DAG.getLoad(getPointerTy(), dl,
1635                           DAG.getEntryNode(), CPAddr,
1636                           MachinePointerInfo::getConstantPool(),
1637                           false, false, false, 0);
1638    } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1639      const char *Sym = S->getSymbol();
1640
1641      // Create a constant pool entry for the callee address
1642      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1643      ARMConstantPoolValue *CPV =
1644        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1645                                      ARMPCLabelIndex, 0);
1646      // Get the address of the callee into a register
1647      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1648      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1649      Callee = DAG.getLoad(getPointerTy(), dl,
1650                           DAG.getEntryNode(), CPAddr,
1651                           MachinePointerInfo::getConstantPool(),
1652                           false, false, false, 0);
1653    }
1654  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1655    const GlobalValue *GV = G->getGlobal();
1656    isDirect = true;
1657    bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
1658    bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
1659                   getTargetMachine().getRelocationModel() != Reloc::Static;
1660    isARMFunc = !Subtarget->isThumb() || isStub;
1661    // ARM call to a local ARM function is predicable.
1662    isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
1663    // tBX takes a register source operand.
1664    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1665      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1666      ARMConstantPoolValue *CPV =
1667        ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 4);
1668      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1669      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1670      Callee = DAG.getLoad(getPointerTy(), dl,
1671                           DAG.getEntryNode(), CPAddr,
1672                           MachinePointerInfo::getConstantPool(),
1673                           false, false, false, 0);
1674      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1675      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1676                           getPointerTy(), Callee, PICLabel);
1677    } else {
1678      // On ELF targets for PIC code, direct calls should go through the PLT
1679      unsigned OpFlags = 0;
1680      if (Subtarget->isTargetELF() &&
1681          getTargetMachine().getRelocationModel() == Reloc::PIC_)
1682        OpFlags = ARMII::MO_PLT;
1683      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
1684    }
1685  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1686    isDirect = true;
1687    bool isStub = Subtarget->isTargetDarwin() &&
1688                  getTargetMachine().getRelocationModel() != Reloc::Static;
1689    isARMFunc = !Subtarget->isThumb() || isStub;
1690    // tBX takes a register source operand.
1691    const char *Sym = S->getSymbol();
1692    if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1693      unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1694      ARMConstantPoolValue *CPV =
1695        ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1696                                      ARMPCLabelIndex, 4);
1697      SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
1698      CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1699      Callee = DAG.getLoad(getPointerTy(), dl,
1700                           DAG.getEntryNode(), CPAddr,
1701                           MachinePointerInfo::getConstantPool(),
1702                           false, false, false, 0);
1703      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
1704      Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
1705                           getPointerTy(), Callee, PICLabel);
1706    } else {
1707      unsigned OpFlags = 0;
1708      // On ELF targets for PIC code, direct calls should go through the PLT
1709      if (Subtarget->isTargetELF() &&
1710                  getTargetMachine().getRelocationModel() == Reloc::PIC_)
1711        OpFlags = ARMII::MO_PLT;
1712      Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
1713    }
1714  }
1715
1716  // FIXME: handle tail calls differently.
1717  unsigned CallOpc;
1718  bool HasMinSizeAttr = MF.getFunction()->getAttributes().
1719    hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
1720  if (Subtarget->isThumb()) {
1721    if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1722      CallOpc = ARMISD::CALL_NOLINK;
1723    else
1724      CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
1725  } else {
1726    if (!isDirect && !Subtarget->hasV5TOps())
1727      CallOpc = ARMISD::CALL_NOLINK;
1728    else if (doesNotRet && isDirect && Subtarget->hasRAS() &&
1729               // Emit regular call when code size is the priority
1730               !HasMinSizeAttr)
1731      // "mov lr, pc; b _foo" to avoid confusing the RSP
1732      CallOpc = ARMISD::CALL_NOLINK;
1733    else
1734      CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
1735  }
1736
1737  std::vector<SDValue> Ops;
1738  Ops.push_back(Chain);
1739  Ops.push_back(Callee);
1740
1741  // Add argument registers to the end of the list so that they are known live
1742  // into the call.
1743  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1744    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1745                                  RegsToPass[i].second.getValueType()));
1746
1747  // Add a register mask operand representing the call-preserved registers.
1748  const uint32_t *Mask;
1749  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
1750  const ARMBaseRegisterInfo *ARI = static_cast<const ARMBaseRegisterInfo*>(TRI);
1751  if (isThisReturn) {
1752    // For 'this' returns, use the R0-preserving mask if applicable
1753    Mask = ARI->getThisReturnPreservedMask(CallConv);
1754    if (!Mask) {
1755      // Set isThisReturn to false if the calling convention is not one that
1756      // allows 'returned' to be modeled in this way, so LowerCallResult does
1757      // not try to pass 'this' straight through
1758      isThisReturn = false;
1759      Mask = ARI->getCallPreservedMask(CallConv);
1760    }
1761  } else
1762    Mask = ARI->getCallPreservedMask(CallConv);
1763
1764  assert(Mask && "Missing call preserved mask for calling convention");
1765  Ops.push_back(DAG.getRegisterMask(Mask));
1766
1767  if (InFlag.getNode())
1768    Ops.push_back(InFlag);
1769
1770  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1771  if (isTailCall)
1772    return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1773
1774  // Returns a chain and a flag for retval copy to use.
1775  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
1776  InFlag = Chain.getValue(1);
1777
1778  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1779                             DAG.getIntPtrConstant(0, true), InFlag, dl);
1780  if (!Ins.empty())
1781    InFlag = Chain.getValue(1);
1782
1783  // Handle result values, copying them out of physregs into vregs that we
1784  // return.
1785  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
1786                         InVals, isThisReturn,
1787                         isThisReturn ? OutVals[0] : SDValue());
1788}
1789
1790/// HandleByVal - Every parameter *after* a byval parameter is passed
1791/// on the stack.  Remember the next parameter register to allocate,
1792/// and then confiscate the rest of the parameter registers to insure
1793/// this.
1794void
1795ARMTargetLowering::HandleByVal(
1796    CCState *State, unsigned &size, unsigned Align) const {
1797  unsigned reg = State->AllocateReg(GPRArgRegs, 4);
1798  assert((State->getCallOrPrologue() == Prologue ||
1799          State->getCallOrPrologue() == Call) &&
1800         "unhandled ParmContext");
1801
1802  // For in-prologue parameters handling, we also introduce stack offset
1803  // for byval registers: see CallingConvLower.cpp, CCState::HandleByVal.
1804  // This behaviour outsides AAPCS rules (5.5 Parameters Passing) of how
1805  // NSAA should be evaluted (NSAA means "next stacked argument address").
1806  // So: NextStackOffset = NSAAOffset + SizeOfByValParamsStoredInRegs.
1807  // Then: NSAAOffset = NextStackOffset - SizeOfByValParamsStoredInRegs.
1808  unsigned NSAAOffset = State->getNextStackOffset();
1809  if (State->getCallOrPrologue() != Call) {
1810    for (unsigned i = 0, e = State->getInRegsParamsCount(); i != e; ++i) {
1811      unsigned RB, RE;
1812      State->getInRegsParamInfo(i, RB, RE);
1813      assert(NSAAOffset >= (RE-RB)*4 &&
1814             "Stack offset for byval regs doesn't introduced anymore?");
1815      NSAAOffset -= (RE-RB)*4;
1816    }
1817  }
1818  if ((ARM::R0 <= reg) && (reg <= ARM::R3)) {
1819    if (Subtarget->isAAPCS_ABI() && Align > 4) {
1820      unsigned AlignInRegs = Align / 4;
1821      unsigned Waste = (ARM::R4 - reg) % AlignInRegs;
1822      for (unsigned i = 0; i < Waste; ++i)
1823        reg = State->AllocateReg(GPRArgRegs, 4);
1824    }
1825    if (reg != 0) {
1826      unsigned excess = 4 * (ARM::R4 - reg);
1827
1828      // Special case when NSAA != SP and parameter size greater than size of
1829      // all remained GPR regs. In that case we can't split parameter, we must
1830      // send it to stack. We also must set NCRN to R4, so waste all
1831      // remained registers.
1832      if (Subtarget->isAAPCS_ABI() && NSAAOffset != 0 && size > excess) {
1833        while (State->AllocateReg(GPRArgRegs, 4))
1834          ;
1835        return;
1836      }
1837
1838      // First register for byval parameter is the first register that wasn't
1839      // allocated before this method call, so it would be "reg".
1840      // If parameter is small enough to be saved in range [reg, r4), then
1841      // the end (first after last) register would be reg + param-size-in-regs,
1842      // else parameter would be splitted between registers and stack,
1843      // end register would be r4 in this case.
1844      unsigned ByValRegBegin = reg;
1845      unsigned ByValRegEnd = (size < excess) ? reg + size/4 : (unsigned)ARM::R4;
1846      State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
1847      // Note, first register is allocated in the beginning of function already,
1848      // allocate remained amount of registers we need.
1849      for (unsigned i = reg+1; i != ByValRegEnd; ++i)
1850        State->AllocateReg(GPRArgRegs, 4);
1851      // At a call site, a byval parameter that is split between
1852      // registers and memory needs its size truncated here.  In a
1853      // function prologue, such byval parameters are reassembled in
1854      // memory, and are not truncated.
1855      if (State->getCallOrPrologue() == Call) {
1856        // Make remained size equal to 0 in case, when
1857        // the whole structure may be stored into registers.
1858        if (size < excess)
1859          size = 0;
1860        else
1861          size -= excess;
1862      }
1863    }
1864  }
1865}
1866
1867/// MatchingStackOffset - Return true if the given stack call argument is
1868/// already available in the same position (relatively) of the caller's
1869/// incoming argument stack.
1870static
1871bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
1872                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
1873                         const TargetInstrInfo *TII) {
1874  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
1875  int FI = INT_MAX;
1876  if (Arg.getOpcode() == ISD::CopyFromReg) {
1877    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
1878    if (!TargetRegisterInfo::isVirtualRegister(VR))
1879      return false;
1880    MachineInstr *Def = MRI->getVRegDef(VR);
1881    if (!Def)
1882      return false;
1883    if (!Flags.isByVal()) {
1884      if (!TII->isLoadFromStackSlot(Def, FI))
1885        return false;
1886    } else {
1887      return false;
1888    }
1889  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
1890    if (Flags.isByVal())
1891      // ByVal argument is passed in as a pointer but it's now being
1892      // dereferenced. e.g.
1893      // define @foo(%struct.X* %A) {
1894      //   tail call @bar(%struct.X* byval %A)
1895      // }
1896      return false;
1897    SDValue Ptr = Ld->getBasePtr();
1898    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
1899    if (!FINode)
1900      return false;
1901    FI = FINode->getIndex();
1902  } else
1903    return false;
1904
1905  assert(FI != INT_MAX);
1906  if (!MFI->isFixedObjectIndex(FI))
1907    return false;
1908  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
1909}
1910
1911/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1912/// for tail call optimization. Targets which want to do tail call
1913/// optimization should implement this function.
1914bool
1915ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1916                                                     CallingConv::ID CalleeCC,
1917                                                     bool isVarArg,
1918                                                     bool isCalleeStructRet,
1919                                                     bool isCallerStructRet,
1920                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1921                                    const SmallVectorImpl<SDValue> &OutVals,
1922                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1923                                                     SelectionDAG& DAG) const {
1924  const Function *CallerF = DAG.getMachineFunction().getFunction();
1925  CallingConv::ID CallerCC = CallerF->getCallingConv();
1926  bool CCMatch = CallerCC == CalleeCC;
1927
1928  // Look for obvious safe cases to perform tail call optimization that do not
1929  // require ABI changes. This is what gcc calls sibcall.
1930
1931  // Do not sibcall optimize vararg calls unless the call site is not passing
1932  // any arguments.
1933  if (isVarArg && !Outs.empty())
1934    return false;
1935
1936  // Also avoid sibcall optimization if either caller or callee uses struct
1937  // return semantics.
1938  if (isCalleeStructRet || isCallerStructRet)
1939    return false;
1940
1941  // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
1942  // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
1943  // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
1944  // support in the assembler and linker to be used. This would need to be
1945  // fixed to fully support tail calls in Thumb1.
1946  //
1947  // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
1948  // LR.  This means if we need to reload LR, it takes an extra instructions,
1949  // which outweighs the value of the tail call; but here we don't know yet
1950  // whether LR is going to be used.  Probably the right approach is to
1951  // generate the tail call here and turn it back into CALL/RET in
1952  // emitEpilogue if LR is used.
1953
1954  // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
1955  // but we need to make sure there are enough registers; the only valid
1956  // registers are the 4 used for parameters.  We don't currently do this
1957  // case.
1958  if (Subtarget->isThumb1Only())
1959    return false;
1960
1961  // If the calling conventions do not match, then we'd better make sure the
1962  // results are returned in the same way as what the caller expects.
1963  if (!CCMatch) {
1964    SmallVector<CCValAssign, 16> RVLocs1;
1965    ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1966                       getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
1967    CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
1968
1969    SmallVector<CCValAssign, 16> RVLocs2;
1970    ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1971                       getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
1972    CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
1973
1974    if (RVLocs1.size() != RVLocs2.size())
1975      return false;
1976    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1977      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1978        return false;
1979      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1980        return false;
1981      if (RVLocs1[i].isRegLoc()) {
1982        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1983          return false;
1984      } else {
1985        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1986          return false;
1987      }
1988    }
1989  }
1990
1991  // If Caller's vararg or byval argument has been split between registers and
1992  // stack, do not perform tail call, since part of the argument is in caller's
1993  // local frame.
1994  const ARMFunctionInfo *AFI_Caller = DAG.getMachineFunction().
1995                                      getInfo<ARMFunctionInfo>();
1996  if (AFI_Caller->getArgRegsSaveSize())
1997    return false;
1998
1999  // If the callee takes no arguments then go on to check the results of the
2000  // call.
2001  if (!Outs.empty()) {
2002    // Check if stack adjustment is needed. For now, do not do this if any
2003    // argument is passed on the stack.
2004    SmallVector<CCValAssign, 16> ArgLocs;
2005    ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2006                      getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
2007    CCInfo.AnalyzeCallOperands(Outs,
2008                               CCAssignFnForNode(CalleeCC, false, isVarArg));
2009    if (CCInfo.getNextStackOffset()) {
2010      MachineFunction &MF = DAG.getMachineFunction();
2011
2012      // Check if the arguments are already laid out in the right way as
2013      // the caller's fixed stack objects.
2014      MachineFrameInfo *MFI = MF.getFrameInfo();
2015      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2016      const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2017      for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2018           i != e;
2019           ++i, ++realArgIdx) {
2020        CCValAssign &VA = ArgLocs[i];
2021        EVT RegVT = VA.getLocVT();
2022        SDValue Arg = OutVals[realArgIdx];
2023        ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2024        if (VA.getLocInfo() == CCValAssign::Indirect)
2025          return false;
2026        if (VA.needsCustom()) {
2027          // f64 and vector types are split into multiple registers or
2028          // register/stack-slot combinations.  The types will not match
2029          // the registers; give up on memory f64 refs until we figure
2030          // out what to do about this.
2031          if (!VA.isRegLoc())
2032            return false;
2033          if (!ArgLocs[++i].isRegLoc())
2034            return false;
2035          if (RegVT == MVT::v2f64) {
2036            if (!ArgLocs[++i].isRegLoc())
2037              return false;
2038            if (!ArgLocs[++i].isRegLoc())
2039              return false;
2040          }
2041        } else if (!VA.isRegLoc()) {
2042          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2043                                   MFI, MRI, TII))
2044            return false;
2045        }
2046      }
2047    }
2048  }
2049
2050  return true;
2051}
2052
2053bool
2054ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2055                                  MachineFunction &MF, bool isVarArg,
2056                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2057                                  LLVMContext &Context) const {
2058  SmallVector<CCValAssign, 16> RVLocs;
2059  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context);
2060  return CCInfo.CheckReturn(Outs, CCAssignFnForNode(CallConv, /*Return=*/true,
2061                                                    isVarArg));
2062}
2063
2064SDValue
2065ARMTargetLowering::LowerReturn(SDValue Chain,
2066                               CallingConv::ID CallConv, bool isVarArg,
2067                               const SmallVectorImpl<ISD::OutputArg> &Outs,
2068                               const SmallVectorImpl<SDValue> &OutVals,
2069                               SDLoc dl, SelectionDAG &DAG) const {
2070
2071  // CCValAssign - represent the assignment of the return value to a location.
2072  SmallVector<CCValAssign, 16> RVLocs;
2073
2074  // CCState - Info about the registers and stack slots.
2075  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2076                    getTargetMachine(), RVLocs, *DAG.getContext(), Call);
2077
2078  // Analyze outgoing return values.
2079  CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
2080                                               isVarArg));
2081
2082  SDValue Flag;
2083  SmallVector<SDValue, 4> RetOps;
2084  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2085
2086  // Copy the result values into the output registers.
2087  for (unsigned i = 0, realRVLocIdx = 0;
2088       i != RVLocs.size();
2089       ++i, ++realRVLocIdx) {
2090    CCValAssign &VA = RVLocs[i];
2091    assert(VA.isRegLoc() && "Can only return in registers!");
2092
2093    SDValue Arg = OutVals[realRVLocIdx];
2094
2095    switch (VA.getLocInfo()) {
2096    default: llvm_unreachable("Unknown loc info!");
2097    case CCValAssign::Full: break;
2098    case CCValAssign::BCvt:
2099      Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2100      break;
2101    }
2102
2103    if (VA.needsCustom()) {
2104      if (VA.getLocVT() == MVT::v2f64) {
2105        // Extract the first half and return it in two registers.
2106        SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2107                                   DAG.getConstant(0, MVT::i32));
2108        SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
2109                                       DAG.getVTList(MVT::i32, MVT::i32), Half);
2110
2111        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
2112        Flag = Chain.getValue(1);
2113        RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2114        VA = RVLocs[++i]; // skip ahead to next loc
2115        Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2116                                 HalfGPRs.getValue(1), Flag);
2117        Flag = Chain.getValue(1);
2118        RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2119        VA = RVLocs[++i]; // skip ahead to next loc
2120
2121        // Extract the 2nd half and fall through to handle it as an f64 value.
2122        Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2123                          DAG.getConstant(1, MVT::i32));
2124      }
2125      // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
2126      // available.
2127      SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2128                                  DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
2129      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
2130      Flag = Chain.getValue(1);
2131      RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2132      VA = RVLocs[++i]; // skip ahead to next loc
2133      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
2134                               Flag);
2135    } else
2136      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
2137
2138    // Guarantee that all emitted copies are
2139    // stuck together, avoiding something bad.
2140    Flag = Chain.getValue(1);
2141    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2142  }
2143
2144  // Update chain and glue.
2145  RetOps[0] = Chain;
2146  if (Flag.getNode())
2147    RetOps.push_back(Flag);
2148
2149  return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other,
2150                     RetOps.data(), RetOps.size());
2151}
2152
2153bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
2154  if (N->getNumValues() != 1)
2155    return false;
2156  if (!N->hasNUsesOfValue(1, 0))
2157    return false;
2158
2159  SDValue TCChain = Chain;
2160  SDNode *Copy = *N->use_begin();
2161  if (Copy->getOpcode() == ISD::CopyToReg) {
2162    // If the copy has a glue operand, we conservatively assume it isn't safe to
2163    // perform a tail call.
2164    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2165      return false;
2166    TCChain = Copy->getOperand(0);
2167  } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
2168    SDNode *VMov = Copy;
2169    // f64 returned in a pair of GPRs.
2170    SmallPtrSet<SDNode*, 2> Copies;
2171    for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2172         UI != UE; ++UI) {
2173      if (UI->getOpcode() != ISD::CopyToReg)
2174        return false;
2175      Copies.insert(*UI);
2176    }
2177    if (Copies.size() > 2)
2178      return false;
2179
2180    for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2181         UI != UE; ++UI) {
2182      SDValue UseChain = UI->getOperand(0);
2183      if (Copies.count(UseChain.getNode()))
2184        // Second CopyToReg
2185        Copy = *UI;
2186      else
2187        // First CopyToReg
2188        TCChain = UseChain;
2189    }
2190  } else if (Copy->getOpcode() == ISD::BITCAST) {
2191    // f32 returned in a single GPR.
2192    if (!Copy->hasOneUse())
2193      return false;
2194    Copy = *Copy->use_begin();
2195    if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
2196      return false;
2197    TCChain = Copy->getOperand(0);
2198  } else {
2199    return false;
2200  }
2201
2202  bool HasRet = false;
2203  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2204       UI != UE; ++UI) {
2205    if (UI->getOpcode() != ARMISD::RET_FLAG)
2206      return false;
2207    HasRet = true;
2208  }
2209
2210  if (!HasRet)
2211    return false;
2212
2213  Chain = TCChain;
2214  return true;
2215}
2216
2217bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
2218  if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
2219    return false;
2220
2221  if (!CI->isTailCall())
2222    return false;
2223
2224  return !Subtarget->isThumb1Only();
2225}
2226
2227// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2228// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2229// one of the above mentioned nodes. It has to be wrapped because otherwise
2230// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2231// be used to form addressing mode. These wrapped nodes will be selected
2232// into MOVi.
2233static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
2234  EVT PtrVT = Op.getValueType();
2235  // FIXME there is no actual debug info here
2236  SDLoc dl(Op);
2237  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2238  SDValue Res;
2239  if (CP->isMachineConstantPoolEntry())
2240    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2241                                    CP->getAlignment());
2242  else
2243    Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2244                                    CP->getAlignment());
2245  return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
2246}
2247
2248unsigned ARMTargetLowering::getJumpTableEncoding() const {
2249  return MachineJumpTableInfo::EK_Inline;
2250}
2251
2252SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
2253                                             SelectionDAG &DAG) const {
2254  MachineFunction &MF = DAG.getMachineFunction();
2255  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2256  unsigned ARMPCLabelIndex = 0;
2257  SDLoc DL(Op);
2258  EVT PtrVT = getPointerTy();
2259  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2260  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2261  SDValue CPAddr;
2262  if (RelocM == Reloc::Static) {
2263    CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
2264  } else {
2265    unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2266    ARMPCLabelIndex = AFI->createPICLabelUId();
2267    ARMConstantPoolValue *CPV =
2268      ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
2269                                      ARMCP::CPBlockAddress, PCAdj);
2270    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2271  }
2272  CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2273  SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
2274                               MachinePointerInfo::getConstantPool(),
2275                               false, false, false, 0);
2276  if (RelocM == Reloc::Static)
2277    return Result;
2278  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2279  return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2280}
2281
2282// Lower ISD::GlobalTLSAddress using the "general dynamic" model
2283SDValue
2284ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
2285                                                 SelectionDAG &DAG) const {
2286  SDLoc dl(GA);
2287  EVT PtrVT = getPointerTy();
2288  unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2289  MachineFunction &MF = DAG.getMachineFunction();
2290  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2291  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2292  ARMConstantPoolValue *CPV =
2293    ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2294                                    ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
2295  SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2296  Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
2297  Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
2298                         MachinePointerInfo::getConstantPool(),
2299                         false, false, false, 0);
2300  SDValue Chain = Argument.getValue(1);
2301
2302  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2303  Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
2304
2305  // call __tls_get_addr.
2306  ArgListTy Args;
2307  ArgListEntry Entry;
2308  Entry.Node = Argument;
2309  Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2310  Args.push_back(Entry);
2311  // FIXME: is there useful debug info available here?
2312  TargetLowering::CallLoweringInfo CLI(Chain,
2313                (Type *) Type::getInt32Ty(*DAG.getContext()),
2314                false, false, false, false,
2315                0, CallingConv::C, /*isTailCall=*/false,
2316                /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
2317                DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
2318  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2319  return CallResult.first;
2320}
2321
2322// Lower ISD::GlobalTLSAddress using the "initial exec" or
2323// "local exec" model.
2324SDValue
2325ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2326                                        SelectionDAG &DAG,
2327                                        TLSModel::Model model) const {
2328  const GlobalValue *GV = GA->getGlobal();
2329  SDLoc dl(GA);
2330  SDValue Offset;
2331  SDValue Chain = DAG.getEntryNode();
2332  EVT PtrVT = getPointerTy();
2333  // Get the Thread Pointer
2334  SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2335
2336  if (model == TLSModel::InitialExec) {
2337    MachineFunction &MF = DAG.getMachineFunction();
2338    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2339    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2340    // Initial exec model.
2341    unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2342    ARMConstantPoolValue *CPV =
2343      ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2344                                      ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2345                                      true);
2346    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2347    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2348    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2349                         MachinePointerInfo::getConstantPool(),
2350                         false, false, false, 0);
2351    Chain = Offset.getValue(1);
2352
2353    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2354    Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2355
2356    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2357                         MachinePointerInfo::getConstantPool(),
2358                         false, false, false, 0);
2359  } else {
2360    // local exec model
2361    assert(model == TLSModel::LocalExec);
2362    ARMConstantPoolValue *CPV =
2363      ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
2364    Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2365    Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2366    Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
2367                         MachinePointerInfo::getConstantPool(),
2368                         false, false, false, 0);
2369  }
2370
2371  // The address of the thread local variable is the add of the thread
2372  // pointer with the offset of the variable.
2373  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2374}
2375
2376SDValue
2377ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2378  // TODO: implement the "local dynamic" model
2379  assert(Subtarget->isTargetELF() &&
2380         "TLS not implemented for non-ELF targets");
2381  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2382
2383  TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
2384
2385  switch (model) {
2386    case TLSModel::GeneralDynamic:
2387    case TLSModel::LocalDynamic:
2388      return LowerToTLSGeneralDynamicModel(GA, DAG);
2389    case TLSModel::InitialExec:
2390    case TLSModel::LocalExec:
2391      return LowerToTLSExecModels(GA, DAG, model);
2392  }
2393  llvm_unreachable("bogus TLS model");
2394}
2395
2396SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2397                                                 SelectionDAG &DAG) const {
2398  EVT PtrVT = getPointerTy();
2399  SDLoc dl(Op);
2400  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2401  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2402    bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
2403    ARMConstantPoolValue *CPV =
2404      ARMConstantPoolConstant::Create(GV,
2405                                      UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
2406    SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2407    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2408    SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
2409                                 CPAddr,
2410                                 MachinePointerInfo::getConstantPool(),
2411                                 false, false, false, 0);
2412    SDValue Chain = Result.getValue(1);
2413    SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2414    Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
2415    if (!UseGOTOFF)
2416      Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2417                           MachinePointerInfo::getGOT(),
2418                           false, false, false, 0);
2419    return Result;
2420  }
2421
2422  // If we have T2 ops, we can materialize the address directly via movt/movw
2423  // pair. This is always cheaper.
2424  if (Subtarget->useMovt()) {
2425    ++NumMovwMovt;
2426    // FIXME: Once remat is capable of dealing with instructions with register
2427    // operands, expand this into two nodes.
2428    return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2429                       DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2430  } else {
2431    SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2432    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2433    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2434                       MachinePointerInfo::getConstantPool(),
2435                       false, false, false, 0);
2436  }
2437}
2438
2439SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2440                                                    SelectionDAG &DAG) const {
2441  EVT PtrVT = getPointerTy();
2442  SDLoc dl(Op);
2443  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2444  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2445
2446  // FIXME: Enable this for static codegen when tool issues are fixed.  Also
2447  // update ARMFastISel::ARMMaterializeGV.
2448  if (Subtarget->useMovt() && RelocM != Reloc::Static) {
2449    ++NumMovwMovt;
2450    // FIXME: Once remat is capable of dealing with instructions with register
2451    // operands, expand this into two nodes.
2452    if (RelocM == Reloc::Static)
2453      return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2454                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2455
2456    unsigned Wrapper = (RelocM == Reloc::PIC_)
2457      ? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
2458    SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
2459                                 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2460    if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2461      Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2462                           MachinePointerInfo::getGOT(),
2463                           false, false, false, 0);
2464    return Result;
2465  }
2466
2467  unsigned ARMPCLabelIndex = 0;
2468  SDValue CPAddr;
2469  if (RelocM == Reloc::Static) {
2470    CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2471  } else {
2472    ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2473    ARMPCLabelIndex = AFI->createPICLabelUId();
2474    unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
2475    ARMConstantPoolValue *CPV =
2476      ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue,
2477                                      PCAdj);
2478    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2479  }
2480  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2481
2482  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2483                               MachinePointerInfo::getConstantPool(),
2484                               false, false, false, 0);
2485  SDValue Chain = Result.getValue(1);
2486
2487  if (RelocM == Reloc::PIC_) {
2488    SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2489    Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2490  }
2491
2492  if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
2493    Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
2494                         false, false, false, 0);
2495
2496  return Result;
2497}
2498
2499SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
2500                                                    SelectionDAG &DAG) const {
2501  assert(Subtarget->isTargetELF() &&
2502         "GLOBAL OFFSET TABLE not implemented for non-ELF targets");
2503  MachineFunction &MF = DAG.getMachineFunction();
2504  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2505  unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2506  EVT PtrVT = getPointerTy();
2507  SDLoc dl(Op);
2508  unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2509  ARMConstantPoolValue *CPV =
2510    ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
2511                                  ARMPCLabelIndex, PCAdj);
2512  SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2513  CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2514  SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2515                               MachinePointerInfo::getConstantPool(),
2516                               false, false, false, 0);
2517  SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2518  return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2519}
2520
2521SDValue
2522ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2523  SDLoc dl(Op);
2524  SDValue Val = DAG.getConstant(0, MVT::i32);
2525  return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
2526                     DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
2527                     Op.getOperand(1), Val);
2528}
2529
2530SDValue
2531ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2532  SDLoc dl(Op);
2533  return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2534                     Op.getOperand(1), DAG.getConstant(0, MVT::i32));
2535}
2536
2537SDValue
2538ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2539                                          const ARMSubtarget *Subtarget) const {
2540  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2541  SDLoc dl(Op);
2542  switch (IntNo) {
2543  default: return SDValue();    // Don't custom lower most intrinsics.
2544  case Intrinsic::arm_thread_pointer: {
2545    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2546    return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2547  }
2548  case Intrinsic::eh_sjlj_lsda: {
2549    MachineFunction &MF = DAG.getMachineFunction();
2550    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2551    unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2552    EVT PtrVT = getPointerTy();
2553    Reloc::Model RelocM = getTargetMachine().getRelocationModel();
2554    SDValue CPAddr;
2555    unsigned PCAdj = (RelocM != Reloc::PIC_)
2556      ? 0 : (Subtarget->isThumb() ? 4 : 8);
2557    ARMConstantPoolValue *CPV =
2558      ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
2559                                      ARMCP::CPLSDA, PCAdj);
2560    CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2561    CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2562    SDValue Result =
2563      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
2564                  MachinePointerInfo::getConstantPool(),
2565                  false, false, false, 0);
2566
2567    if (RelocM == Reloc::PIC_) {
2568      SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
2569      Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2570    }
2571    return Result;
2572  }
2573  case Intrinsic::arm_neon_vmulls:
2574  case Intrinsic::arm_neon_vmullu: {
2575    unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2576      ? ARMISD::VMULLs : ARMISD::VMULLu;
2577    return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
2578                       Op.getOperand(1), Op.getOperand(2));
2579  }
2580  }
2581}
2582
2583static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
2584                                 const ARMSubtarget *Subtarget) {
2585  // FIXME: handle "fence singlethread" more efficiently.
2586  SDLoc dl(Op);
2587  if (!Subtarget->hasDataBarrier()) {
2588    // Some ARMv6 cpus can support data barriers with an mcr instruction.
2589    // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
2590    // here.
2591    assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
2592           "Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
2593    return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
2594                       DAG.getConstant(0, MVT::i32));
2595  }
2596
2597  ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
2598  AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
2599  unsigned Domain = ARM_MB::ISH;
2600  if (Subtarget->isSwift() && Ord == Release) {
2601    // Swift happens to implement ISHST barriers in a way that's compatible with
2602    // Release semantics but weaker than ISH so we'd be fools not to use
2603    // it. Beware: other processors probably don't!
2604    Domain = ARM_MB::ISHST;
2605  }
2606
2607  return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
2608                     DAG.getConstant(Domain, MVT::i32));
2609}
2610
2611static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
2612                             const ARMSubtarget *Subtarget) {
2613  // ARM pre v5TE and Thumb1 does not have preload instructions.
2614  if (!(Subtarget->isThumb2() ||
2615        (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
2616    // Just preserve the chain.
2617    return Op.getOperand(0);
2618
2619  SDLoc dl(Op);
2620  unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
2621  if (!isRead &&
2622      (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
2623    // ARMv7 with MP extension has PLDW.
2624    return Op.getOperand(0);
2625
2626  unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
2627  if (Subtarget->isThumb()) {
2628    // Invert the bits.
2629    isRead = ~isRead & 1;
2630    isData = ~isData & 1;
2631  }
2632
2633  return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
2634                     Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
2635                     DAG.getConstant(isData, MVT::i32));
2636}
2637
2638static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
2639  MachineFunction &MF = DAG.getMachineFunction();
2640  ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
2641
2642  // vastart just stores the address of the VarArgsFrameIndex slot into the
2643  // memory location argument.
2644  SDLoc dl(Op);
2645  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2646  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2647  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2648  return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
2649                      MachinePointerInfo(SV), false, false, 0);
2650}
2651
2652SDValue
2653ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
2654                                        SDValue &Root, SelectionDAG &DAG,
2655                                        SDLoc dl) const {
2656  MachineFunction &MF = DAG.getMachineFunction();
2657  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2658
2659  const TargetRegisterClass *RC;
2660  if (AFI->isThumb1OnlyFunction())
2661    RC = &ARM::tGPRRegClass;
2662  else
2663    RC = &ARM::GPRRegClass;
2664
2665  // Transform the arguments stored in physical registers into virtual ones.
2666  unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2667  SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2668
2669  SDValue ArgValue2;
2670  if (NextVA.isMemLoc()) {
2671    MachineFrameInfo *MFI = MF.getFrameInfo();
2672    int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
2673
2674    // Create load node to retrieve arguments from the stack.
2675    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2676    ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
2677                            MachinePointerInfo::getFixedStack(FI),
2678                            false, false, false, 0);
2679  } else {
2680    Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
2681    ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
2682  }
2683
2684  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
2685}
2686
2687void
2688ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
2689                                  unsigned InRegsParamRecordIdx,
2690                                  unsigned ArgSize,
2691                                  unsigned &ArgRegsSize,
2692                                  unsigned &ArgRegsSaveSize)
2693  const {
2694  unsigned NumGPRs;
2695  if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
2696    unsigned RBegin, REnd;
2697    CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
2698    NumGPRs = REnd - RBegin;
2699  } else {
2700    unsigned int firstUnalloced;
2701    firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
2702                                                sizeof(GPRArgRegs) /
2703                                                sizeof(GPRArgRegs[0]));
2704    NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
2705  }
2706
2707  unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
2708  ArgRegsSize = NumGPRs * 4;
2709
2710  // If parameter is split between stack and GPRs...
2711  if (NumGPRs && Align == 8 &&
2712      (ArgRegsSize < ArgSize ||
2713        InRegsParamRecordIdx >= CCInfo.getInRegsParamsCount())) {
2714    // Add padding for part of param recovered from GPRs, so
2715    // its last byte must be at address K*8 - 1.
2716    // We need to do it, since remained (stack) part of parameter has
2717    // stack alignment, and we need to "attach" "GPRs head" without gaps
2718    // to it:
2719    // Stack:
2720    // |---- 8 bytes block ----| |---- 8 bytes block ----| |---- 8 bytes...
2721    // [ [padding] [GPRs head] ] [        Tail passed via stack       ....
2722    //
2723    ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2724    unsigned Padding =
2725        ((ArgRegsSize + AFI->getArgRegsSaveSize() + Align - 1) & ~(Align-1)) -
2726        (ArgRegsSize + AFI->getArgRegsSaveSize());
2727    ArgRegsSaveSize = ArgRegsSize + Padding;
2728  } else
2729    // We don't need to extend regs save size for byval parameters if they
2730    // are passed via GPRs only.
2731    ArgRegsSaveSize = ArgRegsSize;
2732}
2733
2734// The remaining GPRs hold either the beginning of variable-argument
2735// data, or the beginning of an aggregate passed by value (usually
2736// byval).  Either way, we allocate stack slots adjacent to the data
2737// provided by our caller, and store the unallocated registers there.
2738// If this is a variadic function, the va_list pointer will begin with
2739// these values; otherwise, this reassembles a (byval) structure that
2740// was split between registers and memory.
2741// Return: The frame index registers were stored into.
2742int
2743ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
2744                                  SDLoc dl, SDValue &Chain,
2745                                  const Value *OrigArg,
2746                                  unsigned InRegsParamRecordIdx,
2747                                  unsigned OffsetFromOrigArg,
2748                                  unsigned ArgOffset,
2749                                  unsigned ArgSize,
2750                                  bool ForceMutable) const {
2751
2752  // Currently, two use-cases possible:
2753  // Case #1. Non var-args function, and we meet first byval parameter.
2754  //          Setup first unallocated register as first byval register;
2755  //          eat all remained registers
2756  //          (these two actions are performed by HandleByVal method).
2757  //          Then, here, we initialize stack frame with
2758  //          "store-reg" instructions.
2759  // Case #2. Var-args function, that doesn't contain byval parameters.
2760  //          The same: eat all remained unallocated registers,
2761  //          initialize stack frame.
2762
2763  MachineFunction &MF = DAG.getMachineFunction();
2764  MachineFrameInfo *MFI = MF.getFrameInfo();
2765  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2766  unsigned firstRegToSaveIndex, lastRegToSaveIndex;
2767  unsigned RBegin, REnd;
2768  if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
2769    CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
2770    firstRegToSaveIndex = RBegin - ARM::R0;
2771    lastRegToSaveIndex = REnd - ARM::R0;
2772  } else {
2773    firstRegToSaveIndex = CCInfo.getFirstUnallocated
2774      (GPRArgRegs, array_lengthof(GPRArgRegs));
2775    lastRegToSaveIndex = 4;
2776  }
2777
2778  unsigned ArgRegsSize, ArgRegsSaveSize;
2779  computeRegArea(CCInfo, MF, InRegsParamRecordIdx, ArgSize,
2780                 ArgRegsSize, ArgRegsSaveSize);
2781
2782  // Store any by-val regs to their spots on the stack so that they may be
2783  // loaded by deferencing the result of formal parameter pointer or va_next.
2784  // Note: once stack area for byval/varargs registers
2785  // was initialized, it can't be initialized again.
2786  if (ArgRegsSaveSize) {
2787
2788    unsigned Padding = ArgRegsSaveSize - ArgRegsSize;
2789
2790    if (Padding) {
2791      assert(AFI->getStoredByValParamsPadding() == 0 &&
2792             "The only parameter may be padded.");
2793      AFI->setStoredByValParamsPadding(Padding);
2794    }
2795
2796    int FrameIndex = MFI->CreateFixedObject(
2797                      ArgRegsSaveSize,
2798                      Padding + ArgOffset,
2799                      false);
2800    SDValue FIN = DAG.getFrameIndex(FrameIndex, getPointerTy());
2801
2802    SmallVector<SDValue, 4> MemOps;
2803    for (unsigned i = 0; firstRegToSaveIndex < lastRegToSaveIndex;
2804         ++firstRegToSaveIndex, ++i) {
2805      const TargetRegisterClass *RC;
2806      if (AFI->isThumb1OnlyFunction())
2807        RC = &ARM::tGPRRegClass;
2808      else
2809        RC = &ARM::GPRRegClass;
2810
2811      unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
2812      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2813      SDValue Store =
2814        DAG.getStore(Val.getValue(1), dl, Val, FIN,
2815                     MachinePointerInfo(OrigArg, OffsetFromOrigArg + 4*i),
2816                     false, false, 0);
2817      MemOps.push_back(Store);
2818      FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
2819                        DAG.getConstant(4, getPointerTy()));
2820    }
2821
2822    AFI->setArgRegsSaveSize(ArgRegsSaveSize + AFI->getArgRegsSaveSize());
2823
2824    if (!MemOps.empty())
2825      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2826                          &MemOps[0], MemOps.size());
2827    return FrameIndex;
2828  } else
2829    // This will point to the next argument passed via stack.
2830    return MFI->CreateFixedObject(
2831        4, AFI->getStoredByValParamsPadding() + ArgOffset, !ForceMutable);
2832}
2833
2834// Setup stack frame, the va_list pointer will start from.
2835void
2836ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
2837                                        SDLoc dl, SDValue &Chain,
2838                                        unsigned ArgOffset,
2839                                        bool ForceMutable) const {
2840  MachineFunction &MF = DAG.getMachineFunction();
2841  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2842
2843  // Try to store any remaining integer argument regs
2844  // to their spots on the stack so that they may be loaded by deferencing
2845  // the result of va_next.
2846  // If there is no regs to be stored, just point address after last
2847  // argument passed via stack.
2848  int FrameIndex =
2849    StoreByValRegs(CCInfo, DAG, dl, Chain, 0, CCInfo.getInRegsParamsCount(),
2850                   0, ArgOffset, 0, ForceMutable);
2851
2852  AFI->setVarArgsFrameIndex(FrameIndex);
2853}
2854
2855SDValue
2856ARMTargetLowering::LowerFormalArguments(SDValue Chain,
2857                                        CallingConv::ID CallConv, bool isVarArg,
2858                                        const SmallVectorImpl<ISD::InputArg>
2859                                          &Ins,
2860                                        SDLoc dl, SelectionDAG &DAG,
2861                                        SmallVectorImpl<SDValue> &InVals)
2862                                          const {
2863  MachineFunction &MF = DAG.getMachineFunction();
2864  MachineFrameInfo *MFI = MF.getFrameInfo();
2865
2866  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2867
2868  // Assign locations to all of the incoming arguments.
2869  SmallVector<CCValAssign, 16> ArgLocs;
2870  ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2871                    getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
2872  CCInfo.AnalyzeFormalArguments(Ins,
2873                                CCAssignFnForNode(CallConv, /* Return*/ false,
2874                                                  isVarArg));
2875
2876  SmallVector<SDValue, 16> ArgValues;
2877  int lastInsIndex = -1;
2878  SDValue ArgValue;
2879  Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
2880  unsigned CurArgIdx = 0;
2881
2882  // Initially ArgRegsSaveSize is zero.
2883  // Then we increase this value each time we meet byval parameter.
2884  // We also increase this value in case of varargs function.
2885  AFI->setArgRegsSaveSize(0);
2886
2887  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2888    CCValAssign &VA = ArgLocs[i];
2889    std::advance(CurOrigArg, Ins[VA.getValNo()].OrigArgIndex - CurArgIdx);
2890    CurArgIdx = Ins[VA.getValNo()].OrigArgIndex;
2891    // Arguments stored in registers.
2892    if (VA.isRegLoc()) {
2893      EVT RegVT = VA.getLocVT();
2894
2895      if (VA.needsCustom()) {
2896        // f64 and vector types are split up into multiple registers or
2897        // combinations of registers and stack slots.
2898        if (VA.getLocVT() == MVT::v2f64) {
2899          SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
2900                                                   Chain, DAG, dl);
2901          VA = ArgLocs[++i]; // skip ahead to next loc
2902          SDValue ArgValue2;
2903          if (VA.isMemLoc()) {
2904            int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
2905            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2906            ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
2907                                    MachinePointerInfo::getFixedStack(FI),
2908                                    false, false, false, 0);
2909          } else {
2910            ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
2911                                             Chain, DAG, dl);
2912          }
2913          ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2914          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2915                                 ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
2916          ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
2917                                 ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
2918        } else
2919          ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
2920
2921      } else {
2922        const TargetRegisterClass *RC;
2923
2924        if (RegVT == MVT::f32)
2925          RC = &ARM::SPRRegClass;
2926        else if (RegVT == MVT::f64)
2927          RC = &ARM::DPRRegClass;
2928        else if (RegVT == MVT::v2f64)
2929          RC = &ARM::QPRRegClass;
2930        else if (RegVT == MVT::i32)
2931          RC = AFI->isThumb1OnlyFunction() ?
2932            (const TargetRegisterClass*)&ARM::tGPRRegClass :
2933            (const TargetRegisterClass*)&ARM::GPRRegClass;
2934        else
2935          llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
2936
2937        // Transform the arguments in physical registers into virtual ones.
2938        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2939        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2940      }
2941
2942      // If this is an 8 or 16-bit value, it is really passed promoted
2943      // to 32 bits.  Insert an assert[sz]ext to capture this, then
2944      // truncate to the right size.
2945      switch (VA.getLocInfo()) {
2946      default: llvm_unreachable("Unknown loc info!");
2947      case CCValAssign::Full: break;
2948      case CCValAssign::BCvt:
2949        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2950        break;
2951      case CCValAssign::SExt:
2952        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2953                               DAG.getValueType(VA.getValVT()));
2954        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2955        break;
2956      case CCValAssign::ZExt:
2957        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2958                               DAG.getValueType(VA.getValVT()));
2959        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2960        break;
2961      }
2962
2963      InVals.push_back(ArgValue);
2964
2965    } else { // VA.isRegLoc()
2966
2967      // sanity check
2968      assert(VA.isMemLoc());
2969      assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
2970
2971      int index = ArgLocs[i].getValNo();
2972
2973      // Some Ins[] entries become multiple ArgLoc[] entries.
2974      // Process them only once.
2975      if (index != lastInsIndex)
2976        {
2977          ISD::ArgFlagsTy Flags = Ins[index].Flags;
2978          // FIXME: For now, all byval parameter objects are marked mutable.
2979          // This can be changed with more analysis.
2980          // In case of tail call optimization mark all arguments mutable.
2981          // Since they could be overwritten by lowering of arguments in case of
2982          // a tail call.
2983          if (Flags.isByVal()) {
2984            unsigned CurByValIndex = CCInfo.getInRegsParamsProceed();
2985            int FrameIndex = StoreByValRegs(
2986                CCInfo, DAG, dl, Chain, CurOrigArg,
2987                CurByValIndex,
2988                Ins[VA.getValNo()].PartOffset,
2989                VA.getLocMemOffset(),
2990                Flags.getByValSize(),
2991                true /*force mutable frames*/);
2992            InVals.push_back(DAG.getFrameIndex(FrameIndex, getPointerTy()));
2993            CCInfo.nextInRegsParam();
2994          } else {
2995            unsigned FIOffset = VA.getLocMemOffset() +
2996                                AFI->getStoredByValParamsPadding();
2997            int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
2998                                            FIOffset, true);
2999
3000            // Create load nodes to retrieve arguments from the stack.
3001            SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
3002            InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
3003                                         MachinePointerInfo::getFixedStack(FI),
3004                                         false, false, false, 0));
3005          }
3006          lastInsIndex = index;
3007        }
3008    }
3009  }
3010
3011  // varargs
3012  if (isVarArg)
3013    VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
3014                         CCInfo.getNextStackOffset());
3015
3016  return Chain;
3017}
3018
3019/// isFloatingPointZero - Return true if this is +0.0.
3020static bool isFloatingPointZero(SDValue Op) {
3021  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
3022    return CFP->getValueAPF().isPosZero();
3023  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
3024    // Maybe this has already been legalized into the constant pool?
3025    if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
3026      SDValue WrapperOp = Op.getOperand(1).getOperand(0);
3027      if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
3028        if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
3029          return CFP->getValueAPF().isPosZero();
3030    }
3031  }
3032  return false;
3033}
3034
3035/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
3036/// the given operands.
3037SDValue
3038ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
3039                             SDValue &ARMcc, SelectionDAG &DAG,
3040                             SDLoc dl) const {
3041  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
3042    unsigned C = RHSC->getZExtValue();
3043    if (!isLegalICmpImmediate(C)) {
3044      // Constant does not fit, try adjusting it by one?
3045      switch (CC) {
3046      default: break;
3047      case ISD::SETLT:
3048      case ISD::SETGE:
3049        if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
3050          CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
3051          RHS = DAG.getConstant(C-1, MVT::i32);
3052        }
3053        break;
3054      case ISD::SETULT:
3055      case ISD::SETUGE:
3056        if (C != 0 && isLegalICmpImmediate(C-1)) {
3057          CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
3058          RHS = DAG.getConstant(C-1, MVT::i32);
3059        }
3060        break;
3061      case ISD::SETLE:
3062      case ISD::SETGT:
3063        if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
3064          CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
3065          RHS = DAG.getConstant(C+1, MVT::i32);
3066        }
3067        break;
3068      case ISD::SETULE:
3069      case ISD::SETUGT:
3070        if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
3071          CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3072          RHS = DAG.getConstant(C+1, MVT::i32);
3073        }
3074        break;
3075      }
3076    }
3077  }
3078
3079  ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3080  ARMISD::NodeType CompareType;
3081  switch (CondCode) {
3082  default:
3083    CompareType = ARMISD::CMP;
3084    break;
3085  case ARMCC::EQ:
3086  case ARMCC::NE:
3087    // Uses only Z Flag
3088    CompareType = ARMISD::CMPZ;
3089    break;
3090  }
3091  ARMcc = DAG.getConstant(CondCode, MVT::i32);
3092  return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
3093}
3094
3095/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
3096SDValue
3097ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
3098                             SDLoc dl) const {
3099  SDValue Cmp;
3100  if (!isFloatingPointZero(RHS))
3101    Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
3102  else
3103    Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
3104  return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
3105}
3106
3107/// duplicateCmp - Glue values can have only one use, so this function
3108/// duplicates a comparison node.
3109SDValue
3110ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
3111  unsigned Opc = Cmp.getOpcode();
3112  SDLoc DL(Cmp);
3113  if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
3114    return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
3115
3116  assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
3117  Cmp = Cmp.getOperand(0);
3118  Opc = Cmp.getOpcode();
3119  if (Opc == ARMISD::CMPFP)
3120    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
3121  else {
3122    assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
3123    Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
3124  }
3125  return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
3126}
3127
3128SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3129  SDValue Cond = Op.getOperand(0);
3130  SDValue SelectTrue = Op.getOperand(1);
3131  SDValue SelectFalse = Op.getOperand(2);
3132  SDLoc dl(Op);
3133
3134  // Convert:
3135  //
3136  //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
3137  //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
3138  //
3139  if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
3140    const ConstantSDNode *CMOVTrue =
3141      dyn_cast<ConstantSDNode>(Cond.getOperand(0));
3142    const ConstantSDNode *CMOVFalse =
3143      dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3144
3145    if (CMOVTrue && CMOVFalse) {
3146      unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
3147      unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
3148
3149      SDValue True;
3150      SDValue False;
3151      if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
3152        True = SelectTrue;
3153        False = SelectFalse;
3154      } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
3155        True = SelectFalse;
3156        False = SelectTrue;
3157      }
3158
3159      if (True.getNode() && False.getNode()) {
3160        EVT VT = Op.getValueType();
3161        SDValue ARMcc = Cond.getOperand(2);
3162        SDValue CCR = Cond.getOperand(3);
3163        SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
3164        assert(True.getValueType() == VT);
3165        return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
3166      }
3167    }
3168  }
3169
3170  // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
3171  // undefined bits before doing a full-word comparison with zero.
3172  Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
3173                     DAG.getConstant(1, Cond.getValueType()));
3174
3175  return DAG.getSelectCC(dl, Cond,
3176                         DAG.getConstant(0, Cond.getValueType()),
3177                         SelectTrue, SelectFalse, ISD::SETNE);
3178}
3179
3180SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
3181  EVT VT = Op.getValueType();
3182  SDValue LHS = Op.getOperand(0);
3183  SDValue RHS = Op.getOperand(1);
3184  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3185  SDValue TrueVal = Op.getOperand(2);
3186  SDValue FalseVal = Op.getOperand(3);
3187  SDLoc dl(Op);
3188
3189  if (LHS.getValueType() == MVT::i32) {
3190    SDValue ARMcc;
3191    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3192    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3193    return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
3194  }
3195
3196  ARMCC::CondCodes CondCode, CondCode2;
3197  FPCCToARMCC(CC, CondCode, CondCode2);
3198
3199  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
3200  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
3201  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3202  SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
3203                               ARMcc, CCR, Cmp);
3204  if (CondCode2 != ARMCC::AL) {
3205    SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
3206    // FIXME: Needs another CMP because flag can have but one use.
3207    SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
3208    Result = DAG.getNode(ARMISD::CMOV, dl, VT,
3209                         Result, TrueVal, ARMcc2, CCR, Cmp2);
3210  }
3211  return Result;
3212}
3213
3214/// canChangeToInt - Given the fp compare operand, return true if it is suitable
3215/// to morph to an integer compare sequence.
3216static bool canChangeToInt(SDValue Op, bool &SeenZero,
3217                           const ARMSubtarget *Subtarget) {
3218  SDNode *N = Op.getNode();
3219  if (!N->hasOneUse())
3220    // Otherwise it requires moving the value from fp to integer registers.
3221    return false;
3222  if (!N->getNumValues())
3223    return false;
3224  EVT VT = Op.getValueType();
3225  if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
3226    // f32 case is generally profitable. f64 case only makes sense when vcmpe +
3227    // vmrs are very slow, e.g. cortex-a8.
3228    return false;
3229
3230  if (isFloatingPointZero(Op)) {
3231    SeenZero = true;
3232    return true;
3233  }
3234  return ISD::isNormalLoad(N);
3235}
3236
3237static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
3238  if (isFloatingPointZero(Op))
3239    return DAG.getConstant(0, MVT::i32);
3240
3241  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
3242    return DAG.getLoad(MVT::i32, SDLoc(Op),
3243                       Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
3244                       Ld->isVolatile(), Ld->isNonTemporal(),
3245                       Ld->isInvariant(), Ld->getAlignment());
3246
3247  llvm_unreachable("Unknown VFP cmp argument!");
3248}
3249
3250static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
3251                           SDValue &RetVal1, SDValue &RetVal2) {
3252  if (isFloatingPointZero(Op)) {
3253    RetVal1 = DAG.getConstant(0, MVT::i32);
3254    RetVal2 = DAG.getConstant(0, MVT::i32);
3255    return;
3256  }
3257
3258  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
3259    SDValue Ptr = Ld->getBasePtr();
3260    RetVal1 = DAG.getLoad(MVT::i32, SDLoc(Op),
3261                          Ld->getChain(), Ptr,
3262                          Ld->getPointerInfo(),
3263                          Ld->isVolatile(), Ld->isNonTemporal(),
3264                          Ld->isInvariant(), Ld->getAlignment());
3265
3266    EVT PtrType = Ptr.getValueType();
3267    unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
3268    SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(Op),
3269                                 PtrType, Ptr, DAG.getConstant(4, PtrType));
3270    RetVal2 = DAG.getLoad(MVT::i32, SDLoc(Op),
3271                          Ld->getChain(), NewPtr,
3272                          Ld->getPointerInfo().getWithOffset(4),
3273                          Ld->isVolatile(), Ld->isNonTemporal(),
3274                          Ld->isInvariant(), NewAlign);
3275    return;
3276  }
3277
3278  llvm_unreachable("Unknown VFP cmp argument!");
3279}
3280
3281/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
3282/// f32 and even f64 comparisons to integer ones.
3283SDValue
3284ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
3285  SDValue Chain = Op.getOperand(0);
3286  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3287  SDValue LHS = Op.getOperand(2);
3288  SDValue RHS = Op.getOperand(3);
3289  SDValue Dest = Op.getOperand(4);
3290  SDLoc dl(Op);
3291
3292  bool LHSSeenZero = false;
3293  bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
3294  bool RHSSeenZero = false;
3295  bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
3296  if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
3297    // If unsafe fp math optimization is enabled and there are no other uses of
3298    // the CMP operands, and the condition code is EQ or NE, we can optimize it
3299    // to an integer comparison.
3300    if (CC == ISD::SETOEQ)
3301      CC = ISD::SETEQ;
3302    else if (CC == ISD::SETUNE)
3303      CC = ISD::SETNE;
3304
3305    SDValue Mask = DAG.getConstant(0x7fffffff, MVT::i32);
3306    SDValue ARMcc;
3307    if (LHS.getValueType() == MVT::f32) {
3308      LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3309                        bitcastf32Toi32(LHS, DAG), Mask);
3310      RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
3311                        bitcastf32Toi32(RHS, DAG), Mask);
3312      SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3313      SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3314      return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3315                         Chain, Dest, ARMcc, CCR, Cmp);
3316    }
3317
3318    SDValue LHS1, LHS2;
3319    SDValue RHS1, RHS2;
3320    expandf64Toi32(LHS, DAG, LHS1, LHS2);
3321    expandf64Toi32(RHS, DAG, RHS1, RHS2);
3322    LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
3323    RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
3324    ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3325    ARMcc = DAG.getConstant(CondCode, MVT::i32);
3326    SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3327    SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
3328    return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
3329  }
3330
3331  return SDValue();
3332}
3333
3334SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3335  SDValue Chain = Op.getOperand(0);
3336  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3337  SDValue LHS = Op.getOperand(2);
3338  SDValue RHS = Op.getOperand(3);
3339  SDValue Dest = Op.getOperand(4);
3340  SDLoc dl(Op);
3341
3342  if (LHS.getValueType() == MVT::i32) {
3343    SDValue ARMcc;
3344    SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3345    SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3346    return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
3347                       Chain, Dest, ARMcc, CCR, Cmp);
3348  }
3349
3350  assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
3351
3352  if (getTargetMachine().Options.UnsafeFPMath &&
3353      (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
3354       CC == ISD::SETNE || CC == ISD::SETUNE)) {
3355    SDValue Result = OptimizeVFPBrcond(Op, DAG);
3356    if (Result.getNode())
3357      return Result;
3358  }
3359
3360  ARMCC::CondCodes CondCode, CondCode2;
3361  FPCCToARMCC(CC, CondCode, CondCode2);
3362
3363  SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
3364  SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
3365  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3366  SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
3367  SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
3368  SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3369  if (CondCode2 != ARMCC::AL) {
3370    ARMcc = DAG.getConstant(CondCode2, MVT::i32);
3371    SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
3372    Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
3373  }
3374  return Res;
3375}
3376
3377SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
3378  SDValue Chain = Op.getOperand(0);
3379  SDValue Table = Op.getOperand(1);
3380  SDValue Index = Op.getOperand(2);
3381  SDLoc dl(Op);
3382
3383  EVT PTy = getPointerTy();
3384  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
3385  ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
3386  SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
3387  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
3388  Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
3389  Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
3390  SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3391  if (Subtarget->isThumb2()) {
3392    // Thumb2 uses a two-level jump. That is, it jumps into the jump table
3393    // which does another jump to the destination. This also makes it easier
3394    // to translate it to TBB / TBH later.
3395    // FIXME: This might not work if the function is extremely large.
3396    return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
3397                       Addr, Op.getOperand(2), JTI, UId);
3398  }
3399  if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
3400    Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
3401                       MachinePointerInfo::getJumpTable(),
3402                       false, false, false, 0);
3403    Chain = Addr.getValue(1);
3404    Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
3405    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3406  } else {
3407    Addr = DAG.getLoad(PTy, dl, Chain, Addr,
3408                       MachinePointerInfo::getJumpTable(),
3409                       false, false, false, 0);
3410    Chain = Addr.getValue(1);
3411    return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
3412  }
3413}
3414
3415static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3416  EVT VT = Op.getValueType();
3417  SDLoc dl(Op);
3418
3419  if (Op.getValueType().getVectorElementType() == MVT::i32) {
3420    if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
3421      return Op;
3422    return DAG.UnrollVectorOp(Op.getNode());
3423  }
3424
3425  assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
3426         "Invalid type for custom lowering!");
3427  if (VT != MVT::v4i16)
3428    return DAG.UnrollVectorOp(Op.getNode());
3429
3430  Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
3431  return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
3432}
3433
3434static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
3435  EVT VT = Op.getValueType();
3436  if (VT.isVector())
3437    return LowerVectorFP_TO_INT(Op, DAG);
3438
3439  SDLoc dl(Op);
3440  unsigned Opc;
3441
3442  switch (Op.getOpcode()) {
3443  default: llvm_unreachable("Invalid opcode!");
3444  case ISD::FP_TO_SINT:
3445    Opc = ARMISD::FTOSI;
3446    break;
3447  case ISD::FP_TO_UINT:
3448    Opc = ARMISD::FTOUI;
3449    break;
3450  }
3451  Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
3452  return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3453}
3454
3455static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3456  EVT VT = Op.getValueType();
3457  SDLoc dl(Op);
3458
3459  if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
3460    if (VT.getVectorElementType() == MVT::f32)
3461      return Op;
3462    return DAG.UnrollVectorOp(Op.getNode());
3463  }
3464
3465  assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
3466         "Invalid type for custom lowering!");
3467  if (VT != MVT::v4f32)
3468    return DAG.UnrollVectorOp(Op.getNode());
3469
3470  unsigned CastOpc;
3471  unsigned Opc;
3472  switch (Op.getOpcode()) {
3473  default: llvm_unreachable("Invalid opcode!");
3474  case ISD::SINT_TO_FP:
3475    CastOpc = ISD::SIGN_EXTEND;
3476    Opc = ISD::SINT_TO_FP;
3477    break;
3478  case ISD::UINT_TO_FP:
3479    CastOpc = ISD::ZERO_EXTEND;
3480    Opc = ISD::UINT_TO_FP;
3481    break;
3482  }
3483
3484  Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
3485  return DAG.getNode(Opc, dl, VT, Op);
3486}
3487
3488static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3489  EVT VT = Op.getValueType();
3490  if (VT.isVector())
3491    return LowerVectorINT_TO_FP(Op, DAG);
3492
3493  SDLoc dl(Op);
3494  unsigned Opc;
3495
3496  switch (Op.getOpcode()) {
3497  default: llvm_unreachable("Invalid opcode!");
3498  case ISD::SINT_TO_FP:
3499    Opc = ARMISD::SITOF;
3500    break;
3501  case ISD::UINT_TO_FP:
3502    Opc = ARMISD::UITOF;
3503    break;
3504  }
3505
3506  Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
3507  return DAG.getNode(Opc, dl, VT, Op);
3508}
3509
3510SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
3511  // Implement fcopysign with a fabs and a conditional fneg.
3512  SDValue Tmp0 = Op.getOperand(0);
3513  SDValue Tmp1 = Op.getOperand(1);
3514  SDLoc dl(Op);
3515  EVT VT = Op.getValueType();
3516  EVT SrcVT = Tmp1.getValueType();
3517  bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
3518    Tmp0.getOpcode() == ARMISD::VMOVDRR;
3519  bool UseNEON = !InGPR && Subtarget->hasNEON();
3520
3521  if (UseNEON) {
3522    // Use VBSL to copy the sign bit.
3523    unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
3524    SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
3525                               DAG.getTargetConstant(EncodedVal, MVT::i32));
3526    EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
3527    if (VT == MVT::f64)
3528      Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3529                         DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
3530                         DAG.getConstant(32, MVT::i32));
3531    else /*if (VT == MVT::f32)*/
3532      Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
3533    if (SrcVT == MVT::f32) {
3534      Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
3535      if (VT == MVT::f64)
3536        Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
3537                           DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
3538                           DAG.getConstant(32, MVT::i32));
3539    } else if (VT == MVT::f32)
3540      Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
3541                         DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
3542                         DAG.getConstant(32, MVT::i32));
3543    Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
3544    Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
3545
3546    SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
3547                                            MVT::i32);
3548    AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
3549    SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
3550                                  DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
3551
3552    SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
3553                              DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
3554                              DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
3555    if (VT == MVT::f32) {
3556      Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
3557      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
3558                        DAG.getConstant(0, MVT::i32));
3559    } else {
3560      Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
3561    }
3562
3563    return Res;
3564  }
3565
3566  // Bitcast operand 1 to i32.
3567  if (SrcVT == MVT::f64)
3568    Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3569                       &Tmp1, 1).getValue(1);
3570  Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
3571
3572  // Or in the signbit with integer operations.
3573  SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
3574  SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
3575  Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
3576  if (VT == MVT::f32) {
3577    Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
3578                       DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
3579    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3580                       DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
3581  }
3582
3583  // f64: Or the high part with signbit and then combine two parts.
3584  Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
3585                     &Tmp0, 1);
3586  SDValue Lo = Tmp0.getValue(0);
3587  SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
3588  Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
3589  return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
3590}
3591
3592SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
3593  MachineFunction &MF = DAG.getMachineFunction();
3594  MachineFrameInfo *MFI = MF.getFrameInfo();
3595  MFI->setReturnAddressIsTaken(true);
3596
3597  EVT VT = Op.getValueType();
3598  SDLoc dl(Op);
3599  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3600  if (Depth) {
3601    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
3602    SDValue Offset = DAG.getConstant(4, MVT::i32);
3603    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
3604                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
3605                       MachinePointerInfo(), false, false, false, 0);
3606  }
3607
3608  // Return LR, which contains the return address. Mark it an implicit live-in.
3609  unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3610  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
3611}
3612
3613SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
3614  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3615  MFI->setFrameAddressIsTaken(true);
3616
3617  EVT VT = Op.getValueType();
3618  SDLoc dl(Op);  // FIXME probably not meaningful
3619  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3620  unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
3621    ? ARM::R7 : ARM::R11;
3622  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
3623  while (Depth--)
3624    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
3625                            MachinePointerInfo(),
3626                            false, false, false, 0);
3627  return FrameAddr;
3628}
3629
3630/// Custom Expand long vector extensions, where size(DestVec) > 2*size(SrcVec),
3631/// and size(DestVec) > 128-bits.
3632/// This is achieved by doing the one extension from the SrcVec, splitting the
3633/// result, extending these parts, and then concatenating these into the
3634/// destination.
3635static SDValue ExpandVectorExtension(SDNode *N, SelectionDAG &DAG) {
3636  SDValue Op = N->getOperand(0);
3637  EVT SrcVT = Op.getValueType();
3638  EVT DestVT = N->getValueType(0);
3639
3640  assert(DestVT.getSizeInBits() > 128 &&
3641         "Custom sext/zext expansion needs >128-bit vector.");
3642  // If this is a normal length extension, use the default expansion.
3643  if (SrcVT.getSizeInBits()*4 != DestVT.getSizeInBits() &&
3644      SrcVT.getSizeInBits()*8 != DestVT.getSizeInBits())
3645    return SDValue();
3646
3647  SDLoc dl(N);
3648  unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits();
3649  unsigned DestEltSize = DestVT.getVectorElementType().getSizeInBits();
3650  unsigned NumElts = SrcVT.getVectorNumElements();
3651  LLVMContext &Ctx = *DAG.getContext();
3652  SDValue Mid, SplitLo, SplitHi, ExtLo, ExtHi;
3653
3654  EVT MidVT = EVT::getVectorVT(Ctx, EVT::getIntegerVT(Ctx, SrcEltSize*2),
3655                               NumElts);
3656  EVT SplitVT = EVT::getVectorVT(Ctx, EVT::getIntegerVT(Ctx, SrcEltSize*2),
3657                                 NumElts/2);
3658  EVT ExtVT = EVT::getVectorVT(Ctx, EVT::getIntegerVT(Ctx, DestEltSize),
3659                               NumElts/2);
3660
3661  Mid = DAG.getNode(N->getOpcode(), dl, MidVT, Op);
3662  SplitLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SplitVT, Mid,
3663                        DAG.getIntPtrConstant(0));
3664  SplitHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SplitVT, Mid,
3665                        DAG.getIntPtrConstant(NumElts/2));
3666  ExtLo = DAG.getNode(N->getOpcode(), dl, ExtVT, SplitLo);
3667  ExtHi = DAG.getNode(N->getOpcode(), dl, ExtVT, SplitHi);
3668  return DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, ExtLo, ExtHi);
3669}
3670
3671/// ExpandBITCAST - If the target supports VFP, this function is called to
3672/// expand a bit convert where either the source or destination type is i64 to
3673/// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
3674/// operand type is illegal (e.g., v2f32 for a target that doesn't support
3675/// vectors), since the legalizer won't know what to do with that.
3676static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
3677  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3678  SDLoc dl(N);
3679  SDValue Op = N->getOperand(0);
3680
3681  // This function is only supposed to be called for i64 types, either as the
3682  // source or destination of the bit convert.
3683  EVT SrcVT = Op.getValueType();
3684  EVT DstVT = N->getValueType(0);
3685  assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
3686         "ExpandBITCAST called for non-i64 type");
3687
3688  // Turn i64->f64 into VMOVDRR.
3689  if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
3690    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3691                             DAG.getConstant(0, MVT::i32));
3692    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
3693                             DAG.getConstant(1, MVT::i32));
3694    return DAG.getNode(ISD::BITCAST, dl, DstVT,
3695                       DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
3696  }
3697
3698  // Turn f64->i64 into VMOVRRD.
3699  if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
3700    SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
3701                              DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
3702    // Merge the pieces into a single i64 value.
3703    return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
3704  }
3705
3706  return SDValue();
3707}
3708
3709/// getZeroVector - Returns a vector of specified type with all zero elements.
3710/// Zero vectors are used to represent vector negation and in those cases
3711/// will be implemented with the NEON VNEG instruction.  However, VNEG does
3712/// not support i64 elements, so sometimes the zero vectors will need to be
3713/// explicitly constructed.  Regardless, use a canonical VMOV to create the
3714/// zero vector.
3715static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, SDLoc dl) {
3716  assert(VT.isVector() && "Expected a vector type");
3717  // The canonical modified immediate encoding of a zero vector is....0!
3718  SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
3719  EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
3720  SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
3721  return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
3722}
3723
3724/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
3725/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3726SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
3727                                                SelectionDAG &DAG) const {
3728  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3729  EVT VT = Op.getValueType();
3730  unsigned VTBits = VT.getSizeInBits();
3731  SDLoc dl(Op);
3732  SDValue ShOpLo = Op.getOperand(0);
3733  SDValue ShOpHi = Op.getOperand(1);
3734  SDValue ShAmt  = Op.getOperand(2);
3735  SDValue ARMcc;
3736  unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
3737
3738  assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
3739
3740  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3741                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3742  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
3743  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3744                                   DAG.getConstant(VTBits, MVT::i32));
3745  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
3746  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3747  SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
3748
3749  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3750  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3751                          ARMcc, DAG, dl);
3752  SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
3753  SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
3754                           CCR, Cmp);
3755
3756  SDValue Ops[2] = { Lo, Hi };
3757  return DAG.getMergeValues(Ops, 2, dl);
3758}
3759
3760/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
3761/// i32 values and take a 2 x i32 value to shift plus a shift amount.
3762SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
3763                                               SelectionDAG &DAG) const {
3764  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
3765  EVT VT = Op.getValueType();
3766  unsigned VTBits = VT.getSizeInBits();
3767  SDLoc dl(Op);
3768  SDValue ShOpLo = Op.getOperand(0);
3769  SDValue ShOpHi = Op.getOperand(1);
3770  SDValue ShAmt  = Op.getOperand(2);
3771  SDValue ARMcc;
3772
3773  assert(Op.getOpcode() == ISD::SHL_PARTS);
3774  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
3775                                 DAG.getConstant(VTBits, MVT::i32), ShAmt);
3776  SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
3777  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
3778                                   DAG.getConstant(VTBits, MVT::i32));
3779  SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
3780  SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
3781
3782  SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
3783  SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3784  SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
3785                          ARMcc, DAG, dl);
3786  SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
3787  SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
3788                           CCR, Cmp);
3789
3790  SDValue Ops[2] = { Lo, Hi };
3791  return DAG.getMergeValues(Ops, 2, dl);
3792}
3793
3794SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3795                                            SelectionDAG &DAG) const {
3796  // The rounding mode is in bits 23:22 of the FPSCR.
3797  // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
3798  // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
3799  // so that the shift + and get folded into a bitfield extract.
3800  SDLoc dl(Op);
3801  SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
3802                              DAG.getConstant(Intrinsic::arm_get_fpscr,
3803                                              MVT::i32));
3804  SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
3805                                  DAG.getConstant(1U << 22, MVT::i32));
3806  SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
3807                              DAG.getConstant(22, MVT::i32));
3808  return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
3809                     DAG.getConstant(3, MVT::i32));
3810}
3811
3812static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
3813                         const ARMSubtarget *ST) {
3814  EVT VT = N->getValueType(0);
3815  SDLoc dl(N);
3816
3817  if (!ST->hasV6T2Ops())
3818    return SDValue();
3819
3820  SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
3821  return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
3822}
3823
3824/// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count
3825/// for each 16-bit element from operand, repeated.  The basic idea is to
3826/// leverage vcnt to get the 8-bit counts, gather and add the results.
3827///
3828/// Trace for v4i16:
3829/// input    = [v0    v1    v2    v3   ] (vi 16-bit element)
3830/// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element)
3831/// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi)
3832/// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6]
3833///            [b0 b1 b2 b3 b4 b5 b6 b7]
3834///           +[b1 b0 b3 b2 b5 b4 b7 b6]
3835/// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0,
3836/// vuzp:    = [k0 k1 k2 k3 k0 k1 k2 k3]  each ki is 8-bits)
3837static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) {
3838  EVT VT = N->getValueType(0);
3839  SDLoc DL(N);
3840
3841  EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
3842  SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0));
3843  SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0);
3844  SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1);
3845  SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2);
3846  return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3);
3847}
3848
3849/// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the
3850/// bit-count for each 16-bit element from the operand.  We need slightly
3851/// different sequencing for v4i16 and v8i16 to stay within NEON's available
3852/// 64/128-bit registers.
3853///
3854/// Trace for v4i16:
3855/// input           = [v0    v1    v2    v3    ] (vi 16-bit element)
3856/// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi)
3857/// v8i16:Extended  = [k0    k1    k2    k3    k0    k1    k2    k3    ]
3858/// v4i16:Extracted = [k0    k1    k2    k3    ]
3859static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) {
3860  EVT VT = N->getValueType(0);
3861  SDLoc DL(N);
3862
3863  SDValue BitCounts = getCTPOP16BitCounts(N, DAG);
3864  if (VT.is64BitVector()) {
3865    SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts);
3866    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended,
3867                       DAG.getIntPtrConstant(0));
3868  } else {
3869    SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8,
3870                                    BitCounts, DAG.getIntPtrConstant(0));
3871    return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted);
3872  }
3873}
3874
3875/// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the
3876/// bit-count for each 32-bit element from the operand.  The idea here is
3877/// to split the vector into 16-bit elements, leverage the 16-bit count
3878/// routine, and then combine the results.
3879///
3880/// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged):
3881/// input    = [v0    v1    ] (vi: 32-bit elements)
3882/// Bitcast  = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1])
3883/// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi)
3884/// vrev: N0 = [k1 k0 k3 k2 ]
3885///            [k0 k1 k2 k3 ]
3886///       N1 =+[k1 k0 k3 k2 ]
3887///            [k0 k2 k1 k3 ]
3888///       N2 =+[k1 k3 k0 k2 ]
3889///            [k0    k2    k1    k3    ]
3890/// Extended =+[k1    k3    k0    k2    ]
3891///            [k0    k2    ]
3892/// Extracted=+[k1    k3    ]
3893///
3894static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) {
3895  EVT VT = N->getValueType(0);
3896  SDLoc DL(N);
3897
3898  EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
3899
3900  SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0));
3901  SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG);
3902  SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16);
3903  SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0);
3904  SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1);
3905
3906  if (VT.is64BitVector()) {
3907    SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2);
3908    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended,
3909                       DAG.getIntPtrConstant(0));
3910  } else {
3911    SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2,
3912                                    DAG.getIntPtrConstant(0));
3913    return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted);
3914  }
3915}
3916
3917static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
3918                          const ARMSubtarget *ST) {
3919  EVT VT = N->getValueType(0);
3920
3921  assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
3922  assert((VT == MVT::v2i32 || VT == MVT::v4i32 ||
3923          VT == MVT::v4i16 || VT == MVT::v8i16) &&
3924         "Unexpected type for custom ctpop lowering");
3925
3926  if (VT.getVectorElementType() == MVT::i32)
3927    return lowerCTPOP32BitElements(N, DAG);
3928  else
3929    return lowerCTPOP16BitElements(N, DAG);
3930}
3931
3932static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
3933                          const ARMSubtarget *ST) {
3934  EVT VT = N->getValueType(0);
3935  SDLoc dl(N);
3936
3937  if (!VT.isVector())
3938    return SDValue();
3939
3940  // Lower vector shifts on NEON to use VSHL.
3941  assert(ST->hasNEON() && "unexpected vector shift");
3942
3943  // Left shifts translate directly to the vshiftu intrinsic.
3944  if (N->getOpcode() == ISD::SHL)
3945    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3946                       DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
3947                       N->getOperand(0), N->getOperand(1));
3948
3949  assert((N->getOpcode() == ISD::SRA ||
3950          N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
3951
3952  // NEON uses the same intrinsics for both left and right shifts.  For
3953  // right shifts, the shift amounts are negative, so negate the vector of
3954  // shift amounts.
3955  EVT ShiftVT = N->getOperand(1).getValueType();
3956  SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
3957                                     getZeroVector(ShiftVT, DAG, dl),
3958                                     N->getOperand(1));
3959  Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
3960                             Intrinsic::arm_neon_vshifts :
3961                             Intrinsic::arm_neon_vshiftu);
3962  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
3963                     DAG.getConstant(vshiftInt, MVT::i32),
3964                     N->getOperand(0), NegatedCount);
3965}
3966
3967static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
3968                                const ARMSubtarget *ST) {
3969  EVT VT = N->getValueType(0);
3970  SDLoc dl(N);
3971
3972  // We can get here for a node like i32 = ISD::SHL i32, i64
3973  if (VT != MVT::i64)
3974    return SDValue();
3975
3976  assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
3977         "Unknown shift to lower!");
3978
3979  // We only lower SRA, SRL of 1 here, all others use generic lowering.
3980  if (!isa<ConstantSDNode>(N->getOperand(1)) ||
3981      cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
3982    return SDValue();
3983
3984  // If we are in thumb mode, we don't have RRX.
3985  if (ST->isThumb1Only()) return SDValue();
3986
3987  // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
3988  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3989                           DAG.getConstant(0, MVT::i32));
3990  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
3991                           DAG.getConstant(1, MVT::i32));
3992
3993  // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
3994  // captures the result into a carry flag.
3995  unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
3996  Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
3997
3998  // The low part is an ARMISD::RRX operand, which shifts the carry in.
3999  Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
4000
4001  // Merge the pieces into a single i64 value.
4002 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
4003}
4004
4005static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
4006  SDValue TmpOp0, TmpOp1;
4007  bool Invert = false;
4008  bool Swap = false;
4009  unsigned Opc = 0;
4010
4011  SDValue Op0 = Op.getOperand(0);
4012  SDValue Op1 = Op.getOperand(1);
4013  SDValue CC = Op.getOperand(2);
4014  EVT VT = Op.getValueType();
4015  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4016  SDLoc dl(Op);
4017
4018  if (Op.getOperand(1).getValueType().isFloatingPoint()) {
4019    switch (SetCCOpcode) {
4020    default: llvm_unreachable("Illegal FP comparison");
4021    case ISD::SETUNE:
4022    case ISD::SETNE:  Invert = true; // Fallthrough
4023    case ISD::SETOEQ:
4024    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
4025    case ISD::SETOLT:
4026    case ISD::SETLT: Swap = true; // Fallthrough
4027    case ISD::SETOGT:
4028    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
4029    case ISD::SETOLE:
4030    case ISD::SETLE:  Swap = true; // Fallthrough
4031    case ISD::SETOGE:
4032    case ISD::SETGE: Opc = ARMISD::VCGE; break;
4033    case ISD::SETUGE: Swap = true; // Fallthrough
4034    case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
4035    case ISD::SETUGT: Swap = true; // Fallthrough
4036    case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
4037    case ISD::SETUEQ: Invert = true; // Fallthrough
4038    case ISD::SETONE:
4039      // Expand this to (OLT | OGT).
4040      TmpOp0 = Op0;
4041      TmpOp1 = Op1;
4042      Opc = ISD::OR;
4043      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
4044      Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
4045      break;
4046    case ISD::SETUO: Invert = true; // Fallthrough
4047    case ISD::SETO:
4048      // Expand this to (OLT | OGE).
4049      TmpOp0 = Op0;
4050      TmpOp1 = Op1;
4051      Opc = ISD::OR;
4052      Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
4053      Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
4054      break;
4055    }
4056  } else {
4057    // Integer comparisons.
4058    switch (SetCCOpcode) {
4059    default: llvm_unreachable("Illegal integer comparison");
4060    case ISD::SETNE:  Invert = true;
4061    case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
4062    case ISD::SETLT:  Swap = true;
4063    case ISD::SETGT:  Opc = ARMISD::VCGT; break;
4064    case ISD::SETLE:  Swap = true;
4065    case ISD::SETGE:  Opc = ARMISD::VCGE; break;
4066    case ISD::SETULT: Swap = true;
4067    case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
4068    case ISD::SETULE: Swap = true;
4069    case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
4070    }
4071
4072    // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
4073    if (Opc == ARMISD::VCEQ) {
4074
4075      SDValue AndOp;
4076      if (ISD::isBuildVectorAllZeros(Op1.getNode()))
4077        AndOp = Op0;
4078      else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
4079        AndOp = Op1;
4080
4081      // Ignore bitconvert.
4082      if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
4083        AndOp = AndOp.getOperand(0);
4084
4085      if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
4086        Opc = ARMISD::VTST;
4087        Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
4088        Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
4089        Invert = !Invert;
4090      }
4091    }
4092  }
4093
4094  if (Swap)
4095    std::swap(Op0, Op1);
4096
4097  // If one of the operands is a constant vector zero, attempt to fold the
4098  // comparison to a specialized compare-against-zero form.
4099  SDValue SingleOp;
4100  if (ISD::isBuildVectorAllZeros(Op1.getNode()))
4101    SingleOp = Op0;
4102  else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
4103    if (Opc == ARMISD::VCGE)
4104      Opc = ARMISD::VCLEZ;
4105    else if (Opc == ARMISD::VCGT)
4106      Opc = ARMISD::VCLTZ;
4107    SingleOp = Op1;
4108  }
4109
4110  SDValue Result;
4111  if (SingleOp.getNode()) {
4112    switch (Opc) {
4113    case ARMISD::VCEQ:
4114      Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
4115    case ARMISD::VCGE:
4116      Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
4117    case ARMISD::VCLEZ:
4118      Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
4119    case ARMISD::VCGT:
4120      Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
4121    case ARMISD::VCLTZ:
4122      Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
4123    default:
4124      Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
4125    }
4126  } else {
4127     Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
4128  }
4129
4130  if (Invert)
4131    Result = DAG.getNOT(dl, Result, VT);
4132
4133  return Result;
4134}
4135
4136/// isNEONModifiedImm - Check if the specified splat value corresponds to a
4137/// valid vector constant for a NEON instruction with a "modified immediate"
4138/// operand (e.g., VMOV).  If so, return the encoded value.
4139static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
4140                                 unsigned SplatBitSize, SelectionDAG &DAG,
4141                                 EVT &VT, bool is128Bits, NEONModImmType type) {
4142  unsigned OpCmode, Imm;
4143
4144  // SplatBitSize is set to the smallest size that splats the vector, so a
4145  // zero vector will always have SplatBitSize == 8.  However, NEON modified
4146  // immediate instructions others than VMOV do not support the 8-bit encoding
4147  // of a zero vector, and the default encoding of zero is supposed to be the
4148  // 32-bit version.
4149  if (SplatBits == 0)
4150    SplatBitSize = 32;
4151
4152  switch (SplatBitSize) {
4153  case 8:
4154    if (type != VMOVModImm)
4155      return SDValue();
4156    // Any 1-byte value is OK.  Op=0, Cmode=1110.
4157    assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
4158    OpCmode = 0xe;
4159    Imm = SplatBits;
4160    VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
4161    break;
4162
4163  case 16:
4164    // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
4165    VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
4166    if ((SplatBits & ~0xff) == 0) {
4167      // Value = 0x00nn: Op=x, Cmode=100x.
4168      OpCmode = 0x8;
4169      Imm = SplatBits;
4170      break;
4171    }
4172    if ((SplatBits & ~0xff00) == 0) {
4173      // Value = 0xnn00: Op=x, Cmode=101x.
4174      OpCmode = 0xa;
4175      Imm = SplatBits >> 8;
4176      break;
4177    }
4178    return SDValue();
4179
4180  case 32:
4181    // NEON's 32-bit VMOV supports splat values where:
4182    // * only one byte is nonzero, or
4183    // * the least significant byte is 0xff and the second byte is nonzero, or
4184    // * the least significant 2 bytes are 0xff and the third is nonzero.
4185    VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
4186    if ((SplatBits & ~0xff) == 0) {
4187      // Value = 0x000000nn: Op=x, Cmode=000x.
4188      OpCmode = 0;
4189      Imm = SplatBits;
4190      break;
4191    }
4192    if ((SplatBits & ~0xff00) == 0) {
4193      // Value = 0x0000nn00: Op=x, Cmode=001x.
4194      OpCmode = 0x2;
4195      Imm = SplatBits >> 8;
4196      break;
4197    }
4198    if ((SplatBits & ~0xff0000) == 0) {
4199      // Value = 0x00nn0000: Op=x, Cmode=010x.
4200      OpCmode = 0x4;
4201      Imm = SplatBits >> 16;
4202      break;
4203    }
4204    if ((SplatBits & ~0xff000000) == 0) {
4205      // Value = 0xnn000000: Op=x, Cmode=011x.
4206      OpCmode = 0x6;
4207      Imm = SplatBits >> 24;
4208      break;
4209    }
4210
4211    // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
4212    if (type == OtherModImm) return SDValue();
4213
4214    if ((SplatBits & ~0xffff) == 0 &&
4215        ((SplatBits | SplatUndef) & 0xff) == 0xff) {
4216      // Value = 0x0000nnff: Op=x, Cmode=1100.
4217      OpCmode = 0xc;
4218      Imm = SplatBits >> 8;
4219      SplatBits |= 0xff;
4220      break;
4221    }
4222
4223    if ((SplatBits & ~0xffffff) == 0 &&
4224        ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
4225      // Value = 0x00nnffff: Op=x, Cmode=1101.
4226      OpCmode = 0xd;
4227      Imm = SplatBits >> 16;
4228      SplatBits |= 0xffff;
4229      break;
4230    }
4231
4232    // Note: there are a few 32-bit splat values (specifically: 00ffff00,
4233    // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
4234    // VMOV.I32.  A (very) minor optimization would be to replicate the value
4235    // and fall through here to test for a valid 64-bit splat.  But, then the
4236    // caller would also need to check and handle the change in size.
4237    return SDValue();
4238
4239  case 64: {
4240    if (type != VMOVModImm)
4241      return SDValue();
4242    // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
4243    uint64_t BitMask = 0xff;
4244    uint64_t Val = 0;
4245    unsigned ImmMask = 1;
4246    Imm = 0;
4247    for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
4248      if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
4249        Val |= BitMask;
4250        Imm |= ImmMask;
4251      } else if ((SplatBits & BitMask) != 0) {
4252        return SDValue();
4253      }
4254      BitMask <<= 8;
4255      ImmMask <<= 1;
4256    }
4257    // Op=1, Cmode=1110.
4258    OpCmode = 0x1e;
4259    SplatBits = Val;
4260    VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
4261    break;
4262  }
4263
4264  default:
4265    llvm_unreachable("unexpected size for isNEONModifiedImm");
4266  }
4267
4268  unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
4269  return DAG.getTargetConstant(EncodedVal, MVT::i32);
4270}
4271
4272SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
4273                                           const ARMSubtarget *ST) const {
4274  if (!ST->useNEONForSinglePrecisionFP() || !ST->hasVFP3() || ST->hasD16())
4275    return SDValue();
4276
4277  ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
4278  assert(Op.getValueType() == MVT::f32 &&
4279         "ConstantFP custom lowering should only occur for f32.");
4280
4281  // Try splatting with a VMOV.f32...
4282  APFloat FPVal = CFP->getValueAPF();
4283  int ImmVal = ARM_AM::getFP32Imm(FPVal);
4284  if (ImmVal != -1) {
4285    SDLoc DL(Op);
4286    SDValue NewVal = DAG.getTargetConstant(ImmVal, MVT::i32);
4287    SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
4288                                      NewVal);
4289    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
4290                       DAG.getConstant(0, MVT::i32));
4291  }
4292
4293  // If that fails, try a VMOV.i32
4294  EVT VMovVT;
4295  unsigned iVal = FPVal.bitcastToAPInt().getZExtValue();
4296  SDValue NewVal = isNEONModifiedImm(iVal, 0, 32, DAG, VMovVT, false,
4297                                     VMOVModImm);
4298  if (NewVal != SDValue()) {
4299    SDLoc DL(Op);
4300    SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
4301                                      NewVal);
4302    SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
4303                                       VecConstant);
4304    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
4305                       DAG.getConstant(0, MVT::i32));
4306  }
4307
4308  // Finally, try a VMVN.i32
4309  NewVal = isNEONModifiedImm(~iVal & 0xffffffff, 0, 32, DAG, VMovVT, false,
4310                             VMVNModImm);
4311  if (NewVal != SDValue()) {
4312    SDLoc DL(Op);
4313    SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
4314    SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
4315                                       VecConstant);
4316    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
4317                       DAG.getConstant(0, MVT::i32));
4318  }
4319
4320  return SDValue();
4321}
4322
4323// check if an VEXT instruction can handle the shuffle mask when the
4324// vector sources of the shuffle are the same.
4325static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
4326  unsigned NumElts = VT.getVectorNumElements();
4327
4328  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
4329  if (M[0] < 0)
4330    return false;
4331
4332  Imm = M[0];
4333
4334  // If this is a VEXT shuffle, the immediate value is the index of the first
4335  // element.  The other shuffle indices must be the successive elements after
4336  // the first one.
4337  unsigned ExpectedElt = Imm;
4338  for (unsigned i = 1; i < NumElts; ++i) {
4339    // Increment the expected index.  If it wraps around, just follow it
4340    // back to index zero and keep going.
4341    ++ExpectedElt;
4342    if (ExpectedElt == NumElts)
4343      ExpectedElt = 0;
4344
4345    if (M[i] < 0) continue; // ignore UNDEF indices
4346    if (ExpectedElt != static_cast<unsigned>(M[i]))
4347      return false;
4348  }
4349
4350  return true;
4351}
4352
4353
4354static bool isVEXTMask(ArrayRef<int> M, EVT VT,
4355                       bool &ReverseVEXT, unsigned &Imm) {
4356  unsigned NumElts = VT.getVectorNumElements();
4357  ReverseVEXT = false;
4358
4359  // Assume that the first shuffle index is not UNDEF.  Fail if it is.
4360  if (M[0] < 0)
4361    return false;
4362
4363  Imm = M[0];
4364
4365  // If this is a VEXT shuffle, the immediate value is the index of the first
4366  // element.  The other shuffle indices must be the successive elements after
4367  // the first one.
4368  unsigned ExpectedElt = Imm;
4369  for (unsigned i = 1; i < NumElts; ++i) {
4370    // Increment the expected index.  If it wraps around, it may still be
4371    // a VEXT but the source vectors must be swapped.
4372    ExpectedElt += 1;
4373    if (ExpectedElt == NumElts * 2) {
4374      ExpectedElt = 0;
4375      ReverseVEXT = true;
4376    }
4377
4378    if (M[i] < 0) continue; // ignore UNDEF indices
4379    if (ExpectedElt != static_cast<unsigned>(M[i]))
4380      return false;
4381  }
4382
4383  // Adjust the index value if the source operands will be swapped.
4384  if (ReverseVEXT)
4385    Imm -= NumElts;
4386
4387  return true;
4388}
4389
4390/// isVREVMask - Check if a vector shuffle corresponds to a VREV
4391/// instruction with the specified blocksize.  (The order of the elements
4392/// within each block of the vector is reversed.)
4393static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
4394  assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
4395         "Only possible block sizes for VREV are: 16, 32, 64");
4396
4397  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4398  if (EltSz == 64)
4399    return false;
4400
4401  unsigned NumElts = VT.getVectorNumElements();
4402  unsigned BlockElts = M[0] + 1;
4403  // If the first shuffle index is UNDEF, be optimistic.
4404  if (M[0] < 0)
4405    BlockElts = BlockSize / EltSz;
4406
4407  if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
4408    return false;
4409
4410  for (unsigned i = 0; i < NumElts; ++i) {
4411    if (M[i] < 0) continue; // ignore UNDEF indices
4412    if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
4413      return false;
4414  }
4415
4416  return true;
4417}
4418
4419static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
4420  // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
4421  // range, then 0 is placed into the resulting vector. So pretty much any mask
4422  // of 8 elements can work here.
4423  return VT == MVT::v8i8 && M.size() == 8;
4424}
4425
4426static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4427  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4428  if (EltSz == 64)
4429    return false;
4430
4431  unsigned NumElts = VT.getVectorNumElements();
4432  WhichResult = (M[0] == 0 ? 0 : 1);
4433  for (unsigned i = 0; i < NumElts; i += 2) {
4434    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
4435        (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
4436      return false;
4437  }
4438  return true;
4439}
4440
4441/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
4442/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4443/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
4444static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4445  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4446  if (EltSz == 64)
4447    return false;
4448
4449  unsigned NumElts = VT.getVectorNumElements();
4450  WhichResult = (M[0] == 0 ? 0 : 1);
4451  for (unsigned i = 0; i < NumElts; i += 2) {
4452    if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
4453        (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
4454      return false;
4455  }
4456  return true;
4457}
4458
4459static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4460  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4461  if (EltSz == 64)
4462    return false;
4463
4464  unsigned NumElts = VT.getVectorNumElements();
4465  WhichResult = (M[0] == 0 ? 0 : 1);
4466  for (unsigned i = 0; i != NumElts; ++i) {
4467    if (M[i] < 0) continue; // ignore UNDEF indices
4468    if ((unsigned) M[i] != 2 * i + WhichResult)
4469      return false;
4470  }
4471
4472  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4473  if (VT.is64BitVector() && EltSz == 32)
4474    return false;
4475
4476  return true;
4477}
4478
4479/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
4480/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4481/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
4482static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4483  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4484  if (EltSz == 64)
4485    return false;
4486
4487  unsigned Half = VT.getVectorNumElements() / 2;
4488  WhichResult = (M[0] == 0 ? 0 : 1);
4489  for (unsigned j = 0; j != 2; ++j) {
4490    unsigned Idx = WhichResult;
4491    for (unsigned i = 0; i != Half; ++i) {
4492      int MIdx = M[i + j * Half];
4493      if (MIdx >= 0 && (unsigned) MIdx != Idx)
4494        return false;
4495      Idx += 2;
4496    }
4497  }
4498
4499  // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4500  if (VT.is64BitVector() && EltSz == 32)
4501    return false;
4502
4503  return true;
4504}
4505
4506static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
4507  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4508  if (EltSz == 64)
4509    return false;
4510
4511  unsigned NumElts = VT.getVectorNumElements();
4512  WhichResult = (M[0] == 0 ? 0 : 1);
4513  unsigned Idx = WhichResult * NumElts / 2;
4514  for (unsigned i = 0; i != NumElts; i += 2) {
4515    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
4516        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
4517      return false;
4518    Idx += 1;
4519  }
4520
4521  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4522  if (VT.is64BitVector() && EltSz == 32)
4523    return false;
4524
4525  return true;
4526}
4527
4528/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
4529/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
4530/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
4531static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
4532  unsigned EltSz = VT.getVectorElementType().getSizeInBits();
4533  if (EltSz == 64)
4534    return false;
4535
4536  unsigned NumElts = VT.getVectorNumElements();
4537  WhichResult = (M[0] == 0 ? 0 : 1);
4538  unsigned Idx = WhichResult * NumElts / 2;
4539  for (unsigned i = 0; i != NumElts; i += 2) {
4540    if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
4541        (M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
4542      return false;
4543    Idx += 1;
4544  }
4545
4546  // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
4547  if (VT.is64BitVector() && EltSz == 32)
4548    return false;
4549
4550  return true;
4551}
4552
4553/// \return true if this is a reverse operation on an vector.
4554static bool isReverseMask(ArrayRef<int> M, EVT VT) {
4555  unsigned NumElts = VT.getVectorNumElements();
4556  // Make sure the mask has the right size.
4557  if (NumElts != M.size())
4558      return false;
4559
4560  // Look for <15, ..., 3, -1, 1, 0>.
4561  for (unsigned i = 0; i != NumElts; ++i)
4562    if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
4563      return false;
4564
4565  return true;
4566}
4567
4568// If N is an integer constant that can be moved into a register in one
4569// instruction, return an SDValue of such a constant (will become a MOV
4570// instruction).  Otherwise return null.
4571static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
4572                                     const ARMSubtarget *ST, SDLoc dl) {
4573  uint64_t Val;
4574  if (!isa<ConstantSDNode>(N))
4575    return SDValue();
4576  Val = cast<ConstantSDNode>(N)->getZExtValue();
4577
4578  if (ST->isThumb1Only()) {
4579    if (Val <= 255 || ~Val <= 255)
4580      return DAG.getConstant(Val, MVT::i32);
4581  } else {
4582    if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
4583      return DAG.getConstant(Val, MVT::i32);
4584  }
4585  return SDValue();
4586}
4587
4588// If this is a case we can't handle, return null and let the default
4589// expansion code take care of it.
4590SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
4591                                             const ARMSubtarget *ST) const {
4592  BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
4593  SDLoc dl(Op);
4594  EVT VT = Op.getValueType();
4595
4596  APInt SplatBits, SplatUndef;
4597  unsigned SplatBitSize;
4598  bool HasAnyUndefs;
4599  if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
4600    if (SplatBitSize <= 64) {
4601      // Check if an immediate VMOV works.
4602      EVT VmovVT;
4603      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
4604                                      SplatUndef.getZExtValue(), SplatBitSize,
4605                                      DAG, VmovVT, VT.is128BitVector(),
4606                                      VMOVModImm);
4607      if (Val.getNode()) {
4608        SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
4609        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4610      }
4611
4612      // Try an immediate VMVN.
4613      uint64_t NegatedImm = (~SplatBits).getZExtValue();
4614      Val = isNEONModifiedImm(NegatedImm,
4615                                      SplatUndef.getZExtValue(), SplatBitSize,
4616                                      DAG, VmovVT, VT.is128BitVector(),
4617                                      VMVNModImm);
4618      if (Val.getNode()) {
4619        SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
4620        return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4621      }
4622
4623      // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
4624      if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
4625        int ImmVal = ARM_AM::getFP32Imm(SplatBits);
4626        if (ImmVal != -1) {
4627          SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
4628          return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
4629        }
4630      }
4631    }
4632  }
4633
4634  // Scan through the operands to see if only one value is used.
4635  //
4636  // As an optimisation, even if more than one value is used it may be more
4637  // profitable to splat with one value then change some lanes.
4638  //
4639  // Heuristically we decide to do this if the vector has a "dominant" value,
4640  // defined as splatted to more than half of the lanes.
4641  unsigned NumElts = VT.getVectorNumElements();
4642  bool isOnlyLowElement = true;
4643  bool usesOnlyOneValue = true;
4644  bool hasDominantValue = false;
4645  bool isConstant = true;
4646
4647  // Map of the number of times a particular SDValue appears in the
4648  // element list.
4649  DenseMap<SDValue, unsigned> ValueCounts;
4650  SDValue Value;
4651  for (unsigned i = 0; i < NumElts; ++i) {
4652    SDValue V = Op.getOperand(i);
4653    if (V.getOpcode() == ISD::UNDEF)
4654      continue;
4655    if (i > 0)
4656      isOnlyLowElement = false;
4657    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
4658      isConstant = false;
4659
4660    ValueCounts.insert(std::make_pair(V, 0));
4661    unsigned &Count = ValueCounts[V];
4662
4663    // Is this value dominant? (takes up more than half of the lanes)
4664    if (++Count > (NumElts / 2)) {
4665      hasDominantValue = true;
4666      Value = V;
4667    }
4668  }
4669  if (ValueCounts.size() != 1)
4670    usesOnlyOneValue = false;
4671  if (!Value.getNode() && ValueCounts.size() > 0)
4672    Value = ValueCounts.begin()->first;
4673
4674  if (ValueCounts.size() == 0)
4675    return DAG.getUNDEF(VT);
4676
4677  // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
4678  // Keep going if we are hitting this case.
4679  if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
4680    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
4681
4682  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4683
4684  // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
4685  // i32 and try again.
4686  if (hasDominantValue && EltSize <= 32) {
4687    if (!isConstant) {
4688      SDValue N;
4689
4690      // If we are VDUPing a value that comes directly from a vector, that will
4691      // cause an unnecessary move to and from a GPR, where instead we could
4692      // just use VDUPLANE. We can only do this if the lane being extracted
4693      // is at a constant index, as the VDUP from lane instructions only have
4694      // constant-index forms.
4695      if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4696          isa<ConstantSDNode>(Value->getOperand(1))) {
4697        // We need to create a new undef vector to use for the VDUPLANE if the
4698        // size of the vector from which we get the value is different than the
4699        // size of the vector that we need to create. We will insert the element
4700        // such that the register coalescer will remove unnecessary copies.
4701        if (VT != Value->getOperand(0).getValueType()) {
4702          ConstantSDNode *constIndex;
4703          constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1));
4704          assert(constIndex && "The index is not a constant!");
4705          unsigned index = constIndex->getAPIntValue().getLimitedValue() %
4706                             VT.getVectorNumElements();
4707          N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4708                 DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
4709                        Value, DAG.getConstant(index, MVT::i32)),
4710                           DAG.getConstant(index, MVT::i32));
4711        } else
4712          N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
4713                        Value->getOperand(0), Value->getOperand(1));
4714      } else
4715        N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
4716
4717      if (!usesOnlyOneValue) {
4718        // The dominant value was splatted as 'N', but we now have to insert
4719        // all differing elements.
4720        for (unsigned I = 0; I < NumElts; ++I) {
4721          if (Op.getOperand(I) == Value)
4722            continue;
4723          SmallVector<SDValue, 3> Ops;
4724          Ops.push_back(N);
4725          Ops.push_back(Op.getOperand(I));
4726          Ops.push_back(DAG.getConstant(I, MVT::i32));
4727          N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, &Ops[0], 3);
4728        }
4729      }
4730      return N;
4731    }
4732    if (VT.getVectorElementType().isFloatingPoint()) {
4733      SmallVector<SDValue, 8> Ops;
4734      for (unsigned i = 0; i < NumElts; ++i)
4735        Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4736                                  Op.getOperand(i)));
4737      EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
4738      SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
4739      Val = LowerBUILD_VECTOR(Val, DAG, ST);
4740      if (Val.getNode())
4741        return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4742    }
4743    if (usesOnlyOneValue) {
4744      SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
4745      if (isConstant && Val.getNode())
4746        return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
4747    }
4748  }
4749
4750  // If all elements are constants and the case above didn't get hit, fall back
4751  // to the default expansion, which will generate a load from the constant
4752  // pool.
4753  if (isConstant)
4754    return SDValue();
4755
4756  // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
4757  if (NumElts >= 4) {
4758    SDValue shuffle = ReconstructShuffle(Op, DAG);
4759    if (shuffle != SDValue())
4760      return shuffle;
4761  }
4762
4763  // Vectors with 32- or 64-bit elements can be built by directly assigning
4764  // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
4765  // will be legalized.
4766  if (EltSize >= 32) {
4767    // Do the expansion with floating-point types, since that is what the VFP
4768    // registers are defined to use, and since i64 is not legal.
4769    EVT EltVT = EVT::getFloatingPointVT(EltSize);
4770    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
4771    SmallVector<SDValue, 8> Ops;
4772    for (unsigned i = 0; i < NumElts; ++i)
4773      Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
4774    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
4775    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
4776  }
4777
4778  // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
4779  // know the default expansion would otherwise fall back on something even
4780  // worse. For a vector with one or two non-undef values, that's
4781  // scalar_to_vector for the elements followed by a shuffle (provided the
4782  // shuffle is valid for the target) and materialization element by element
4783  // on the stack followed by a load for everything else.
4784  if (!isConstant && !usesOnlyOneValue) {
4785    SDValue Vec = DAG.getUNDEF(VT);
4786    for (unsigned i = 0 ; i < NumElts; ++i) {
4787      SDValue V = Op.getOperand(i);
4788      if (V.getOpcode() == ISD::UNDEF)
4789        continue;
4790      SDValue LaneIdx = DAG.getConstant(i, MVT::i32);
4791      Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
4792    }
4793    return Vec;
4794  }
4795
4796  return SDValue();
4797}
4798
4799// Gather data to see if the operation can be modelled as a
4800// shuffle in combination with VEXTs.
4801SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
4802                                              SelectionDAG &DAG) const {
4803  SDLoc dl(Op);
4804  EVT VT = Op.getValueType();
4805  unsigned NumElts = VT.getVectorNumElements();
4806
4807  SmallVector<SDValue, 2> SourceVecs;
4808  SmallVector<unsigned, 2> MinElts;
4809  SmallVector<unsigned, 2> MaxElts;
4810
4811  for (unsigned i = 0; i < NumElts; ++i) {
4812    SDValue V = Op.getOperand(i);
4813    if (V.getOpcode() == ISD::UNDEF)
4814      continue;
4815    else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
4816      // A shuffle can only come from building a vector from various
4817      // elements of other vectors.
4818      return SDValue();
4819    } else if (V.getOperand(0).getValueType().getVectorElementType() !=
4820               VT.getVectorElementType()) {
4821      // This code doesn't know how to handle shuffles where the vector
4822      // element types do not match (this happens because type legalization
4823      // promotes the return type of EXTRACT_VECTOR_ELT).
4824      // FIXME: It might be appropriate to extend this code to handle
4825      // mismatched types.
4826      return SDValue();
4827    }
4828
4829    // Record this extraction against the appropriate vector if possible...
4830    SDValue SourceVec = V.getOperand(0);
4831    // If the element number isn't a constant, we can't effectively
4832    // analyze what's going on.
4833    if (!isa<ConstantSDNode>(V.getOperand(1)))
4834      return SDValue();
4835    unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
4836    bool FoundSource = false;
4837    for (unsigned j = 0; j < SourceVecs.size(); ++j) {
4838      if (SourceVecs[j] == SourceVec) {
4839        if (MinElts[j] > EltNo)
4840          MinElts[j] = EltNo;
4841        if (MaxElts[j] < EltNo)
4842          MaxElts[j] = EltNo;
4843        FoundSource = true;
4844        break;
4845      }
4846    }
4847
4848    // Or record a new source if not...
4849    if (!FoundSource) {
4850      SourceVecs.push_back(SourceVec);
4851      MinElts.push_back(EltNo);
4852      MaxElts.push_back(EltNo);
4853    }
4854  }
4855
4856  // Currently only do something sane when at most two source vectors
4857  // involved.
4858  if (SourceVecs.size() > 2)
4859    return SDValue();
4860
4861  SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
4862  int VEXTOffsets[2] = {0, 0};
4863
4864  // This loop extracts the usage patterns of the source vectors
4865  // and prepares appropriate SDValues for a shuffle if possible.
4866  for (unsigned i = 0; i < SourceVecs.size(); ++i) {
4867    if (SourceVecs[i].getValueType() == VT) {
4868      // No VEXT necessary
4869      ShuffleSrcs[i] = SourceVecs[i];
4870      VEXTOffsets[i] = 0;
4871      continue;
4872    } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
4873      // It probably isn't worth padding out a smaller vector just to
4874      // break it down again in a shuffle.
4875      return SDValue();
4876    }
4877
4878    // Since only 64-bit and 128-bit vectors are legal on ARM and
4879    // we've eliminated the other cases...
4880    assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
4881           "unexpected vector sizes in ReconstructShuffle");
4882
4883    if (MaxElts[i] - MinElts[i] >= NumElts) {
4884      // Span too large for a VEXT to cope
4885      return SDValue();
4886    }
4887
4888    if (MinElts[i] >= NumElts) {
4889      // The extraction can just take the second half
4890      VEXTOffsets[i] = NumElts;
4891      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4892                                   SourceVecs[i],
4893                                   DAG.getIntPtrConstant(NumElts));
4894    } else if (MaxElts[i] < NumElts) {
4895      // The extraction can just take the first half
4896      VEXTOffsets[i] = 0;
4897      ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4898                                   SourceVecs[i],
4899                                   DAG.getIntPtrConstant(0));
4900    } else {
4901      // An actual VEXT is needed
4902      VEXTOffsets[i] = MinElts[i];
4903      SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4904                                     SourceVecs[i],
4905                                     DAG.getIntPtrConstant(0));
4906      SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
4907                                     SourceVecs[i],
4908                                     DAG.getIntPtrConstant(NumElts));
4909      ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
4910                                   DAG.getConstant(VEXTOffsets[i], MVT::i32));
4911    }
4912  }
4913
4914  SmallVector<int, 8> Mask;
4915
4916  for (unsigned i = 0; i < NumElts; ++i) {
4917    SDValue Entry = Op.getOperand(i);
4918    if (Entry.getOpcode() == ISD::UNDEF) {
4919      Mask.push_back(-1);
4920      continue;
4921    }
4922
4923    SDValue ExtractVec = Entry.getOperand(0);
4924    int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
4925                                          .getOperand(1))->getSExtValue();
4926    if (ExtractVec == SourceVecs[0]) {
4927      Mask.push_back(ExtractElt - VEXTOffsets[0]);
4928    } else {
4929      Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
4930    }
4931  }
4932
4933  // Final check before we try to produce nonsense...
4934  if (isShuffleMaskLegal(Mask, VT))
4935    return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
4936                                &Mask[0]);
4937
4938  return SDValue();
4939}
4940
4941/// isShuffleMaskLegal - Targets can use this to indicate that they only
4942/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4943/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4944/// are assumed to be legal.
4945bool
4946ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
4947                                      EVT VT) const {
4948  if (VT.getVectorNumElements() == 4 &&
4949      (VT.is128BitVector() || VT.is64BitVector())) {
4950    unsigned PFIndexes[4];
4951    for (unsigned i = 0; i != 4; ++i) {
4952      if (M[i] < 0)
4953        PFIndexes[i] = 8;
4954      else
4955        PFIndexes[i] = M[i];
4956    }
4957
4958    // Compute the index in the perfect shuffle table.
4959    unsigned PFTableIndex =
4960      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4961    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4962    unsigned Cost = (PFEntry >> 30);
4963
4964    if (Cost <= 4)
4965      return true;
4966  }
4967
4968  bool ReverseVEXT;
4969  unsigned Imm, WhichResult;
4970
4971  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4972  return (EltSize >= 32 ||
4973          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
4974          isVREVMask(M, VT, 64) ||
4975          isVREVMask(M, VT, 32) ||
4976          isVREVMask(M, VT, 16) ||
4977          isVEXTMask(M, VT, ReverseVEXT, Imm) ||
4978          isVTBLMask(M, VT) ||
4979          isVTRNMask(M, VT, WhichResult) ||
4980          isVUZPMask(M, VT, WhichResult) ||
4981          isVZIPMask(M, VT, WhichResult) ||
4982          isVTRN_v_undef_Mask(M, VT, WhichResult) ||
4983          isVUZP_v_undef_Mask(M, VT, WhichResult) ||
4984          isVZIP_v_undef_Mask(M, VT, WhichResult) ||
4985          ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT)));
4986}
4987
4988/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4989/// the specified operations to build the shuffle.
4990static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4991                                      SDValue RHS, SelectionDAG &DAG,
4992                                      SDLoc dl) {
4993  unsigned OpNum = (PFEntry >> 26) & 0x0F;
4994  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4995  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4996
4997  enum {
4998    OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4999    OP_VREV,
5000    OP_VDUP0,
5001    OP_VDUP1,
5002    OP_VDUP2,
5003    OP_VDUP3,
5004    OP_VEXT1,
5005    OP_VEXT2,
5006    OP_VEXT3,
5007    OP_VUZPL, // VUZP, left result
5008    OP_VUZPR, // VUZP, right result
5009    OP_VZIPL, // VZIP, left result
5010    OP_VZIPR, // VZIP, right result
5011    OP_VTRNL, // VTRN, left result
5012    OP_VTRNR  // VTRN, right result
5013  };
5014
5015  if (OpNum == OP_COPY) {
5016    if (LHSID == (1*9+2)*9+3) return LHS;
5017    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
5018    return RHS;
5019  }
5020
5021  SDValue OpLHS, OpRHS;
5022  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5023  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5024  EVT VT = OpLHS.getValueType();
5025
5026  switch (OpNum) {
5027  default: llvm_unreachable("Unknown shuffle opcode!");
5028  case OP_VREV:
5029    // VREV divides the vector in half and swaps within the half.
5030    if (VT.getVectorElementType() == MVT::i32 ||
5031        VT.getVectorElementType() == MVT::f32)
5032      return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
5033    // vrev <4 x i16> -> VREV32
5034    if (VT.getVectorElementType() == MVT::i16)
5035      return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
5036    // vrev <4 x i8> -> VREV16
5037    assert(VT.getVectorElementType() == MVT::i8);
5038    return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
5039  case OP_VDUP0:
5040  case OP_VDUP1:
5041  case OP_VDUP2:
5042  case OP_VDUP3:
5043    return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
5044                       OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
5045  case OP_VEXT1:
5046  case OP_VEXT2:
5047  case OP_VEXT3:
5048    return DAG.getNode(ARMISD::VEXT, dl, VT,
5049                       OpLHS, OpRHS,
5050                       DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
5051  case OP_VUZPL:
5052  case OP_VUZPR:
5053    return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
5054                       OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
5055  case OP_VZIPL:
5056  case OP_VZIPR:
5057    return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
5058                       OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
5059  case OP_VTRNL:
5060  case OP_VTRNR:
5061    return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
5062                       OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
5063  }
5064}
5065
5066static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
5067                                       ArrayRef<int> ShuffleMask,
5068                                       SelectionDAG &DAG) {
5069  // Check to see if we can use the VTBL instruction.
5070  SDValue V1 = Op.getOperand(0);
5071  SDValue V2 = Op.getOperand(1);
5072  SDLoc DL(Op);
5073
5074  SmallVector<SDValue, 8> VTBLMask;
5075  for (ArrayRef<int>::iterator
5076         I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
5077    VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
5078
5079  if (V2.getNode()->getOpcode() == ISD::UNDEF)
5080    return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
5081                       DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
5082                                   &VTBLMask[0], 8));
5083
5084  return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
5085                     DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
5086                                 &VTBLMask[0], 8));
5087}
5088
5089static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
5090                                                      SelectionDAG &DAG) {
5091  SDLoc DL(Op);
5092  SDValue OpLHS = Op.getOperand(0);
5093  EVT VT = OpLHS.getValueType();
5094
5095  assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
5096         "Expect an v8i16/v16i8 type");
5097  OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
5098  // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
5099  // extract the first 8 bytes into the top double word and the last 8 bytes
5100  // into the bottom double word. The v8i16 case is similar.
5101  unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
5102  return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
5103                     DAG.getConstant(ExtractNum, MVT::i32));
5104}
5105
5106static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
5107  SDValue V1 = Op.getOperand(0);
5108  SDValue V2 = Op.getOperand(1);
5109  SDLoc dl(Op);
5110  EVT VT = Op.getValueType();
5111  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
5112
5113  // Convert shuffles that are directly supported on NEON to target-specific
5114  // DAG nodes, instead of keeping them as shuffles and matching them again
5115  // during code selection.  This is more efficient and avoids the possibility
5116  // of inconsistencies between legalization and selection.
5117  // FIXME: floating-point vectors should be canonicalized to integer vectors
5118  // of the same time so that they get CSEd properly.
5119  ArrayRef<int> ShuffleMask = SVN->getMask();
5120
5121  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
5122  if (EltSize <= 32) {
5123    if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
5124      int Lane = SVN->getSplatIndex();
5125      // If this is undef splat, generate it via "just" vdup, if possible.
5126      if (Lane == -1) Lane = 0;
5127
5128      // Test if V1 is a SCALAR_TO_VECTOR.
5129      if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5130        return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
5131      }
5132      // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
5133      // (and probably will turn into a SCALAR_TO_VECTOR once legalization
5134      // reaches it).
5135      if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
5136          !isa<ConstantSDNode>(V1.getOperand(0))) {
5137        bool IsScalarToVector = true;
5138        for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
5139          if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
5140            IsScalarToVector = false;
5141            break;
5142          }
5143        if (IsScalarToVector)
5144          return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
5145      }
5146      return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
5147                         DAG.getConstant(Lane, MVT::i32));
5148    }
5149
5150    bool ReverseVEXT;
5151    unsigned Imm;
5152    if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
5153      if (ReverseVEXT)
5154        std::swap(V1, V2);
5155      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
5156                         DAG.getConstant(Imm, MVT::i32));
5157    }
5158
5159    if (isVREVMask(ShuffleMask, VT, 64))
5160      return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
5161    if (isVREVMask(ShuffleMask, VT, 32))
5162      return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
5163    if (isVREVMask(ShuffleMask, VT, 16))
5164      return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
5165
5166    if (V2->getOpcode() == ISD::UNDEF &&
5167        isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
5168      return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
5169                         DAG.getConstant(Imm, MVT::i32));
5170    }
5171
5172    // Check for Neon shuffles that modify both input vectors in place.
5173    // If both results are used, i.e., if there are two shuffles with the same
5174    // source operands and with masks corresponding to both results of one of
5175    // these operations, DAG memoization will ensure that a single node is
5176    // used for both shuffles.
5177    unsigned WhichResult;
5178    if (isVTRNMask(ShuffleMask, VT, WhichResult))
5179      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
5180                         V1, V2).getValue(WhichResult);
5181    if (isVUZPMask(ShuffleMask, VT, WhichResult))
5182      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
5183                         V1, V2).getValue(WhichResult);
5184    if (isVZIPMask(ShuffleMask, VT, WhichResult))
5185      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
5186                         V1, V2).getValue(WhichResult);
5187
5188    if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
5189      return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
5190                         V1, V1).getValue(WhichResult);
5191    if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
5192      return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
5193                         V1, V1).getValue(WhichResult);
5194    if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
5195      return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
5196                         V1, V1).getValue(WhichResult);
5197  }
5198
5199  // If the shuffle is not directly supported and it has 4 elements, use
5200  // the PerfectShuffle-generated table to synthesize it from other shuffles.
5201  unsigned NumElts = VT.getVectorNumElements();
5202  if (NumElts == 4) {
5203    unsigned PFIndexes[4];
5204    for (unsigned i = 0; i != 4; ++i) {
5205      if (ShuffleMask[i] < 0)
5206        PFIndexes[i] = 8;
5207      else
5208        PFIndexes[i] = ShuffleMask[i];
5209    }
5210
5211    // Compute the index in the perfect shuffle table.
5212    unsigned PFTableIndex =
5213      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
5214    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5215    unsigned Cost = (PFEntry >> 30);
5216
5217    if (Cost <= 4)
5218      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5219  }
5220
5221  // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
5222  if (EltSize >= 32) {
5223    // Do the expansion with floating-point types, since that is what the VFP
5224    // registers are defined to use, and since i64 is not legal.
5225    EVT EltVT = EVT::getFloatingPointVT(EltSize);
5226    EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
5227    V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
5228    V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
5229    SmallVector<SDValue, 8> Ops;
5230    for (unsigned i = 0; i < NumElts; ++i) {
5231      if (ShuffleMask[i] < 0)
5232        Ops.push_back(DAG.getUNDEF(EltVT));
5233      else
5234        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
5235                                  ShuffleMask[i] < (int)NumElts ? V1 : V2,
5236                                  DAG.getConstant(ShuffleMask[i] & (NumElts-1),
5237                                                  MVT::i32)));
5238    }
5239    SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
5240    return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5241  }
5242
5243  if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
5244    return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
5245
5246  if (VT == MVT::v8i8) {
5247    SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
5248    if (NewOp.getNode())
5249      return NewOp;
5250  }
5251
5252  return SDValue();
5253}
5254
5255static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
5256  // INSERT_VECTOR_ELT is legal only for immediate indexes.
5257  SDValue Lane = Op.getOperand(2);
5258  if (!isa<ConstantSDNode>(Lane))
5259    return SDValue();
5260
5261  return Op;
5262}
5263
5264static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
5265  // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
5266  SDValue Lane = Op.getOperand(1);
5267  if (!isa<ConstantSDNode>(Lane))
5268    return SDValue();
5269
5270  SDValue Vec = Op.getOperand(0);
5271  if (Op.getValueType() == MVT::i32 &&
5272      Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
5273    SDLoc dl(Op);
5274    return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
5275  }
5276
5277  return Op;
5278}
5279
5280static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5281  // The only time a CONCAT_VECTORS operation can have legal types is when
5282  // two 64-bit vectors are concatenated to a 128-bit vector.
5283  assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
5284         "unexpected CONCAT_VECTORS");
5285  SDLoc dl(Op);
5286  SDValue Val = DAG.getUNDEF(MVT::v2f64);
5287  SDValue Op0 = Op.getOperand(0);
5288  SDValue Op1 = Op.getOperand(1);
5289  if (Op0.getOpcode() != ISD::UNDEF)
5290    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
5291                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
5292                      DAG.getIntPtrConstant(0));
5293  if (Op1.getOpcode() != ISD::UNDEF)
5294    Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
5295                      DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
5296                      DAG.getIntPtrConstant(1));
5297  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
5298}
5299
5300/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
5301/// element has been zero/sign-extended, depending on the isSigned parameter,
5302/// from an integer type half its size.
5303static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
5304                                   bool isSigned) {
5305  // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
5306  EVT VT = N->getValueType(0);
5307  if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
5308    SDNode *BVN = N->getOperand(0).getNode();
5309    if (BVN->getValueType(0) != MVT::v4i32 ||
5310        BVN->getOpcode() != ISD::BUILD_VECTOR)
5311      return false;
5312    unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
5313    unsigned HiElt = 1 - LoElt;
5314    ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
5315    ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
5316    ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
5317    ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
5318    if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
5319      return false;
5320    if (isSigned) {
5321      if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
5322          Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
5323        return true;
5324    } else {
5325      if (Hi0->isNullValue() && Hi1->isNullValue())
5326        return true;
5327    }
5328    return false;
5329  }
5330
5331  if (N->getOpcode() != ISD::BUILD_VECTOR)
5332    return false;
5333
5334  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5335    SDNode *Elt = N->getOperand(i).getNode();
5336    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
5337      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
5338      unsigned HalfSize = EltSize / 2;
5339      if (isSigned) {
5340        if (!isIntN(HalfSize, C->getSExtValue()))
5341          return false;
5342      } else {
5343        if (!isUIntN(HalfSize, C->getZExtValue()))
5344          return false;
5345      }
5346      continue;
5347    }
5348    return false;
5349  }
5350
5351  return true;
5352}
5353
5354/// isSignExtended - Check if a node is a vector value that is sign-extended
5355/// or a constant BUILD_VECTOR with sign-extended elements.
5356static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
5357  if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
5358    return true;
5359  if (isExtendedBUILD_VECTOR(N, DAG, true))
5360    return true;
5361  return false;
5362}
5363
5364/// isZeroExtended - Check if a node is a vector value that is zero-extended
5365/// or a constant BUILD_VECTOR with zero-extended elements.
5366static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
5367  if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
5368    return true;
5369  if (isExtendedBUILD_VECTOR(N, DAG, false))
5370    return true;
5371  return false;
5372}
5373
5374static EVT getExtensionTo64Bits(const EVT &OrigVT) {
5375  if (OrigVT.getSizeInBits() >= 64)
5376    return OrigVT;
5377
5378  assert(OrigVT.isSimple() && "Expecting a simple value type");
5379
5380  MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
5381  switch (OrigSimpleTy) {
5382  default: llvm_unreachable("Unexpected Vector Type");
5383  case MVT::v2i8:
5384  case MVT::v2i16:
5385     return MVT::v2i32;
5386  case MVT::v4i8:
5387    return  MVT::v4i16;
5388  }
5389}
5390
5391/// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
5392/// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
5393/// We insert the required extension here to get the vector to fill a D register.
5394static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
5395                                            const EVT &OrigTy,
5396                                            const EVT &ExtTy,
5397                                            unsigned ExtOpcode) {
5398  // The vector originally had a size of OrigTy. It was then extended to ExtTy.
5399  // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
5400  // 64-bits we need to insert a new extension so that it will be 64-bits.
5401  assert(ExtTy.is128BitVector() && "Unexpected extension size");
5402  if (OrigTy.getSizeInBits() >= 64)
5403    return N;
5404
5405  // Must extend size to at least 64 bits to be used as an operand for VMULL.
5406  EVT NewVT = getExtensionTo64Bits(OrigTy);
5407
5408  return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
5409}
5410
5411/// SkipLoadExtensionForVMULL - return a load of the original vector size that
5412/// does not do any sign/zero extension. If the original vector is less
5413/// than 64 bits, an appropriate extension will be added after the load to
5414/// reach a total size of 64 bits. We have to add the extension separately
5415/// because ARM does not have a sign/zero extending load for vectors.
5416static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
5417  EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
5418
5419  // The load already has the right type.
5420  if (ExtendedTy == LD->getMemoryVT())
5421    return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
5422                LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
5423                LD->isNonTemporal(), LD->isInvariant(),
5424                LD->getAlignment());
5425
5426  // We need to create a zextload/sextload. We cannot just create a load
5427  // followed by a zext/zext node because LowerMUL is also run during normal
5428  // operation legalization where we can't create illegal types.
5429  return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
5430                        LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
5431                        LD->getMemoryVT(), LD->isVolatile(),
5432                        LD->isNonTemporal(), LD->getAlignment());
5433}
5434
5435/// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
5436/// extending load, or BUILD_VECTOR with extended elements, return the
5437/// unextended value. The unextended vector should be 64 bits so that it can
5438/// be used as an operand to a VMULL instruction. If the original vector size
5439/// before extension is less than 64 bits we add a an extension to resize
5440/// the vector to 64 bits.
5441static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
5442  if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
5443    return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
5444                                        N->getOperand(0)->getValueType(0),
5445                                        N->getValueType(0),
5446                                        N->getOpcode());
5447
5448  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
5449    return SkipLoadExtensionForVMULL(LD, DAG);
5450
5451  // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
5452  // have been legalized as a BITCAST from v4i32.
5453  if (N->getOpcode() == ISD::BITCAST) {
5454    SDNode *BVN = N->getOperand(0).getNode();
5455    assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
5456           BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
5457    unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
5458    return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), MVT::v2i32,
5459                       BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
5460  }
5461  // Construct a new BUILD_VECTOR with elements truncated to half the size.
5462  assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
5463  EVT VT = N->getValueType(0);
5464  unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
5465  unsigned NumElts = VT.getVectorNumElements();
5466  MVT TruncVT = MVT::getIntegerVT(EltSize);
5467  SmallVector<SDValue, 8> Ops;
5468  for (unsigned i = 0; i != NumElts; ++i) {
5469    ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
5470    const APInt &CInt = C->getAPIntValue();
5471    // Element types smaller than 32 bits are not legal, so use i32 elements.
5472    // The values are implicitly truncated so sext vs. zext doesn't matter.
5473    Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32));
5474  }
5475  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
5476                     MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
5477}
5478
5479static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
5480  unsigned Opcode = N->getOpcode();
5481  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
5482    SDNode *N0 = N->getOperand(0).getNode();
5483    SDNode *N1 = N->getOperand(1).getNode();
5484    return N0->hasOneUse() && N1->hasOneUse() &&
5485      isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
5486  }
5487  return false;
5488}
5489
5490static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
5491  unsigned Opcode = N->getOpcode();
5492  if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
5493    SDNode *N0 = N->getOperand(0).getNode();
5494    SDNode *N1 = N->getOperand(1).getNode();
5495    return N0->hasOneUse() && N1->hasOneUse() &&
5496      isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
5497  }
5498  return false;
5499}
5500
5501static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
5502  // Multiplications are only custom-lowered for 128-bit vectors so that
5503  // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
5504  EVT VT = Op.getValueType();
5505  assert(VT.is128BitVector() && VT.isInteger() &&
5506         "unexpected type for custom-lowering ISD::MUL");
5507  SDNode *N0 = Op.getOperand(0).getNode();
5508  SDNode *N1 = Op.getOperand(1).getNode();
5509  unsigned NewOpc = 0;
5510  bool isMLA = false;
5511  bool isN0SExt = isSignExtended(N0, DAG);
5512  bool isN1SExt = isSignExtended(N1, DAG);
5513  if (isN0SExt && isN1SExt)
5514    NewOpc = ARMISD::VMULLs;
5515  else {
5516    bool isN0ZExt = isZeroExtended(N0, DAG);
5517    bool isN1ZExt = isZeroExtended(N1, DAG);
5518    if (isN0ZExt && isN1ZExt)
5519      NewOpc = ARMISD::VMULLu;
5520    else if (isN1SExt || isN1ZExt) {
5521      // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
5522      // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
5523      if (isN1SExt && isAddSubSExt(N0, DAG)) {
5524        NewOpc = ARMISD::VMULLs;
5525        isMLA = true;
5526      } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
5527        NewOpc = ARMISD::VMULLu;
5528        isMLA = true;
5529      } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
5530        std::swap(N0, N1);
5531        NewOpc = ARMISD::VMULLu;
5532        isMLA = true;
5533      }
5534    }
5535
5536    if (!NewOpc) {
5537      if (VT == MVT::v2i64)
5538        // Fall through to expand this.  It is not legal.
5539        return SDValue();
5540      else
5541        // Other vector multiplications are legal.
5542        return Op;
5543    }
5544  }
5545
5546  // Legalize to a VMULL instruction.
5547  SDLoc DL(Op);
5548  SDValue Op0;
5549  SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
5550  if (!isMLA) {
5551    Op0 = SkipExtensionForVMULL(N0, DAG);
5552    assert(Op0.getValueType().is64BitVector() &&
5553           Op1.getValueType().is64BitVector() &&
5554           "unexpected types for extended operands to VMULL");
5555    return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
5556  }
5557
5558  // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
5559  // isel lowering to take advantage of no-stall back to back vmul + vmla.
5560  //   vmull q0, d4, d6
5561  //   vmlal q0, d5, d6
5562  // is faster than
5563  //   vaddl q0, d4, d5
5564  //   vmovl q1, d6
5565  //   vmul  q0, q0, q1
5566  SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
5567  SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
5568  EVT Op1VT = Op1.getValueType();
5569  return DAG.getNode(N0->getOpcode(), DL, VT,
5570                     DAG.getNode(NewOpc, DL, VT,
5571                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
5572                     DAG.getNode(NewOpc, DL, VT,
5573                               DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
5574}
5575
5576static SDValue
5577LowerSDIV_v4i8(SDValue X, SDValue Y, SDLoc dl, SelectionDAG &DAG) {
5578  // Convert to float
5579  // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
5580  // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
5581  X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
5582  Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
5583  X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
5584  Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
5585  // Get reciprocal estimate.
5586  // float4 recip = vrecpeq_f32(yf);
5587  Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5588                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
5589  // Because char has a smaller range than uchar, we can actually get away
5590  // without any newton steps.  This requires that we use a weird bias
5591  // of 0xb000, however (again, this has been exhaustively tested).
5592  // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
5593  X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
5594  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
5595  Y = DAG.getConstant(0xb000, MVT::i32);
5596  Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
5597  X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
5598  X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
5599  // Convert back to short.
5600  X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
5601  X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
5602  return X;
5603}
5604
5605static SDValue
5606LowerSDIV_v4i16(SDValue N0, SDValue N1, SDLoc dl, SelectionDAG &DAG) {
5607  SDValue N2;
5608  // Convert to float.
5609  // float4 yf = vcvt_f32_s32(vmovl_s16(y));
5610  // float4 xf = vcvt_f32_s32(vmovl_s16(x));
5611  N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
5612  N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
5613  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
5614  N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
5615
5616  // Use reciprocal estimate and one refinement step.
5617  // float4 recip = vrecpeq_f32(yf);
5618  // recip *= vrecpsq_f32(yf, recip);
5619  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5620                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
5621  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5622                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5623                   N1, N2);
5624  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5625  // Because short has a smaller range than ushort, we can actually get away
5626  // with only a single newton step.  This requires that we use a weird bias
5627  // of 89, however (again, this has been exhaustively tested).
5628  // float4 result = as_float4(as_int4(xf*recip) + 0x89);
5629  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
5630  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
5631  N1 = DAG.getConstant(0x89, MVT::i32);
5632  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
5633  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
5634  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
5635  // Convert back to integer and return.
5636  // return vmovn_s32(vcvt_s32_f32(result));
5637  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
5638  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
5639  return N0;
5640}
5641
5642static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
5643  EVT VT = Op.getValueType();
5644  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
5645         "unexpected type for custom-lowering ISD::SDIV");
5646
5647  SDLoc dl(Op);
5648  SDValue N0 = Op.getOperand(0);
5649  SDValue N1 = Op.getOperand(1);
5650  SDValue N2, N3;
5651
5652  if (VT == MVT::v8i8) {
5653    N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
5654    N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
5655
5656    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5657                     DAG.getIntPtrConstant(4));
5658    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5659                     DAG.getIntPtrConstant(4));
5660    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5661                     DAG.getIntPtrConstant(0));
5662    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5663                     DAG.getIntPtrConstant(0));
5664
5665    N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
5666    N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
5667
5668    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
5669    N0 = LowerCONCAT_VECTORS(N0, DAG);
5670
5671    N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
5672    return N0;
5673  }
5674  return LowerSDIV_v4i16(N0, N1, dl, DAG);
5675}
5676
5677static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
5678  EVT VT = Op.getValueType();
5679  assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
5680         "unexpected type for custom-lowering ISD::UDIV");
5681
5682  SDLoc dl(Op);
5683  SDValue N0 = Op.getOperand(0);
5684  SDValue N1 = Op.getOperand(1);
5685  SDValue N2, N3;
5686
5687  if (VT == MVT::v8i8) {
5688    N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
5689    N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
5690
5691    N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5692                     DAG.getIntPtrConstant(4));
5693    N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5694                     DAG.getIntPtrConstant(4));
5695    N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
5696                     DAG.getIntPtrConstant(0));
5697    N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
5698                     DAG.getIntPtrConstant(0));
5699
5700    N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
5701    N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
5702
5703    N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
5704    N0 = LowerCONCAT_VECTORS(N0, DAG);
5705
5706    N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
5707                     DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
5708                     N0);
5709    return N0;
5710  }
5711
5712  // v4i16 sdiv ... Convert to float.
5713  // float4 yf = vcvt_f32_s32(vmovl_u16(y));
5714  // float4 xf = vcvt_f32_s32(vmovl_u16(x));
5715  N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
5716  N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
5717  N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
5718  SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
5719
5720  // Use reciprocal estimate and two refinement steps.
5721  // float4 recip = vrecpeq_f32(yf);
5722  // recip *= vrecpsq_f32(yf, recip);
5723  // recip *= vrecpsq_f32(yf, recip);
5724  N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5725                   DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
5726  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5727                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5728                   BN1, N2);
5729  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5730  N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
5731                   DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
5732                   BN1, N2);
5733  N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
5734  // Simply multiplying by the reciprocal estimate can leave us a few ulps
5735  // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
5736  // and that it will never cause us to return an answer too large).
5737  // float4 result = as_float4(as_int4(xf*recip) + 2);
5738  N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
5739  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
5740  N1 = DAG.getConstant(2, MVT::i32);
5741  N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
5742  N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
5743  N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
5744  // Convert back to integer and return.
5745  // return vmovn_u32(vcvt_s32_f32(result));
5746  N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
5747  N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
5748  return N0;
5749}
5750
5751static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
5752  EVT VT = Op.getNode()->getValueType(0);
5753  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
5754
5755  unsigned Opc;
5756  bool ExtraOp = false;
5757  switch (Op.getOpcode()) {
5758  default: llvm_unreachable("Invalid code");
5759  case ISD::ADDC: Opc = ARMISD::ADDC; break;
5760  case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
5761  case ISD::SUBC: Opc = ARMISD::SUBC; break;
5762  case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
5763  }
5764
5765  if (!ExtraOp)
5766    return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
5767                       Op.getOperand(1));
5768  return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
5769                     Op.getOperand(1), Op.getOperand(2));
5770}
5771
5772static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
5773  // Monotonic load/store is legal for all targets
5774  if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
5775    return Op;
5776
5777  // Aquire/Release load/store is not legal for targets without a
5778  // dmb or equivalent available.
5779  return SDValue();
5780}
5781
5782static void
5783ReplaceATOMIC_OP_64(SDNode *Node, SmallVectorImpl<SDValue>& Results,
5784                    SelectionDAG &DAG, unsigned NewOp) {
5785  SDLoc dl(Node);
5786  assert (Node->getValueType(0) == MVT::i64 &&
5787          "Only know how to expand i64 atomics");
5788
5789  SmallVector<SDValue, 6> Ops;
5790  Ops.push_back(Node->getOperand(0)); // Chain
5791  Ops.push_back(Node->getOperand(1)); // Ptr
5792  // Low part of Val1
5793  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5794                            Node->getOperand(2), DAG.getIntPtrConstant(0)));
5795  // High part of Val1
5796  Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5797                            Node->getOperand(2), DAG.getIntPtrConstant(1)));
5798  if (NewOp == ARMISD::ATOMCMPXCHG64_DAG) {
5799    // High part of Val1
5800    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5801                              Node->getOperand(3), DAG.getIntPtrConstant(0)));
5802    // High part of Val2
5803    Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5804                              Node->getOperand(3), DAG.getIntPtrConstant(1)));
5805  }
5806  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
5807  SDValue Result =
5808    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops.data(), Ops.size(), MVT::i64,
5809                            cast<MemSDNode>(Node)->getMemOperand());
5810  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1) };
5811  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
5812  Results.push_back(Result.getValue(2));
5813}
5814
5815static void ReplaceREADCYCLECOUNTER(SDNode *N,
5816                                    SmallVectorImpl<SDValue> &Results,
5817                                    SelectionDAG &DAG,
5818                                    const ARMSubtarget *Subtarget) {
5819  SDLoc DL(N);
5820  SDValue Cycles32, OutChain;
5821
5822  if (Subtarget->hasPerfMon()) {
5823    // Under Power Management extensions, the cycle-count is:
5824    //    mrc p15, #0, <Rt>, c9, c13, #0
5825    SDValue Ops[] = { N->getOperand(0), // Chain
5826                      DAG.getConstant(Intrinsic::arm_mrc, MVT::i32),
5827                      DAG.getConstant(15, MVT::i32),
5828                      DAG.getConstant(0, MVT::i32),
5829                      DAG.getConstant(9, MVT::i32),
5830                      DAG.getConstant(13, MVT::i32),
5831                      DAG.getConstant(0, MVT::i32)
5832    };
5833
5834    Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
5835                           DAG.getVTList(MVT::i32, MVT::Other), &Ops[0],
5836                           array_lengthof(Ops));
5837    OutChain = Cycles32.getValue(1);
5838  } else {
5839    // Intrinsic is defined to return 0 on unsupported platforms. Technically
5840    // there are older ARM CPUs that have implementation-specific ways of
5841    // obtaining this information (FIXME!).
5842    Cycles32 = DAG.getConstant(0, MVT::i32);
5843    OutChain = DAG.getEntryNode();
5844  }
5845
5846
5847  SDValue Cycles64 = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64,
5848                                 Cycles32, DAG.getConstant(0, MVT::i32));
5849  Results.push_back(Cycles64);
5850  Results.push_back(OutChain);
5851}
5852
5853SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5854  switch (Op.getOpcode()) {
5855  default: llvm_unreachable("Don't know how to custom lower this!");
5856  case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
5857  case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
5858  case ISD::GlobalAddress:
5859    return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
5860      LowerGlobalAddressELF(Op, DAG);
5861  case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
5862  case ISD::SELECT:        return LowerSELECT(Op, DAG);
5863  case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
5864  case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
5865  case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
5866  case ISD::VASTART:       return LowerVASTART(Op, DAG);
5867  case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
5868  case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
5869  case ISD::SINT_TO_FP:
5870  case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
5871  case ISD::FP_TO_SINT:
5872  case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
5873  case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
5874  case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
5875  case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
5876  case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
5877  case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
5878  case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
5879  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
5880                                                               Subtarget);
5881  case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
5882  case ISD::SHL:
5883  case ISD::SRL:
5884  case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
5885  case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
5886  case ISD::SRL_PARTS:
5887  case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
5888  case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget);
5889  case ISD::CTPOP:         return LowerCTPOP(Op.getNode(), DAG, Subtarget);
5890  case ISD::SETCC:         return LowerVSETCC(Op, DAG);
5891  case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
5892  case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
5893  case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
5894  case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
5895  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5896  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
5897  case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
5898  case ISD::MUL:           return LowerMUL(Op, DAG);
5899  case ISD::SDIV:          return LowerSDIV(Op, DAG);
5900  case ISD::UDIV:          return LowerUDIV(Op, DAG);
5901  case ISD::ADDC:
5902  case ISD::ADDE:
5903  case ISD::SUBC:
5904  case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
5905  case ISD::ATOMIC_LOAD:
5906  case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
5907  case ISD::SDIVREM:
5908  case ISD::UDIVREM:       return LowerDivRem(Op, DAG);
5909  }
5910}
5911
5912/// ReplaceNodeResults - Replace the results of node with an illegal result
5913/// type with new values built out of custom code.
5914void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
5915                                           SmallVectorImpl<SDValue>&Results,
5916                                           SelectionDAG &DAG) const {
5917  SDValue Res;
5918  switch (N->getOpcode()) {
5919  default:
5920    llvm_unreachable("Don't know how to custom expand this!");
5921  case ISD::BITCAST:
5922    Res = ExpandBITCAST(N, DAG);
5923    break;
5924  case ISD::SIGN_EXTEND:
5925  case ISD::ZERO_EXTEND:
5926    Res = ExpandVectorExtension(N, DAG);
5927    break;
5928  case ISD::SRL:
5929  case ISD::SRA:
5930    Res = Expand64BitShift(N, DAG, Subtarget);
5931    break;
5932  case ISD::READCYCLECOUNTER:
5933    ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
5934    return;
5935  case ISD::ATOMIC_LOAD_ADD:
5936    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMADD64_DAG);
5937    return;
5938  case ISD::ATOMIC_LOAD_AND:
5939    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMAND64_DAG);
5940    return;
5941  case ISD::ATOMIC_LOAD_NAND:
5942    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMNAND64_DAG);
5943    return;
5944  case ISD::ATOMIC_LOAD_OR:
5945    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMOR64_DAG);
5946    return;
5947  case ISD::ATOMIC_LOAD_SUB:
5948    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSUB64_DAG);
5949    return;
5950  case ISD::ATOMIC_LOAD_XOR:
5951    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMXOR64_DAG);
5952    return;
5953  case ISD::ATOMIC_SWAP:
5954    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSWAP64_DAG);
5955    return;
5956  case ISD::ATOMIC_CMP_SWAP:
5957    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMCMPXCHG64_DAG);
5958    return;
5959  case ISD::ATOMIC_LOAD_MIN:
5960    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMMIN64_DAG);
5961    return;
5962  case ISD::ATOMIC_LOAD_UMIN:
5963    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMUMIN64_DAG);
5964    return;
5965  case ISD::ATOMIC_LOAD_MAX:
5966    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMMAX64_DAG);
5967    return;
5968  case ISD::ATOMIC_LOAD_UMAX:
5969    ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMUMAX64_DAG);
5970    return;
5971  }
5972  if (Res.getNode())
5973    Results.push_back(Res);
5974}
5975
5976//===----------------------------------------------------------------------===//
5977//                           ARM Scheduler Hooks
5978//===----------------------------------------------------------------------===//
5979
5980MachineBasicBlock *
5981ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
5982                                     MachineBasicBlock *BB,
5983                                     unsigned Size) const {
5984  unsigned dest    = MI->getOperand(0).getReg();
5985  unsigned ptr     = MI->getOperand(1).getReg();
5986  unsigned oldval  = MI->getOperand(2).getReg();
5987  unsigned newval  = MI->getOperand(3).getReg();
5988  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5989  DebugLoc dl = MI->getDebugLoc();
5990  bool isThumb2 = Subtarget->isThumb2();
5991
5992  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5993  unsigned scratch = MRI.createVirtualRegister(isThumb2 ?
5994    (const TargetRegisterClass*)&ARM::rGPRRegClass :
5995    (const TargetRegisterClass*)&ARM::GPRRegClass);
5996
5997  if (isThumb2) {
5998    MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
5999    MRI.constrainRegClass(oldval, &ARM::rGPRRegClass);
6000    MRI.constrainRegClass(newval, &ARM::rGPRRegClass);
6001  }
6002
6003  unsigned ldrOpc, strOpc;
6004  switch (Size) {
6005  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
6006  case 1:
6007    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
6008    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
6009    break;
6010  case 2:
6011    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
6012    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
6013    break;
6014  case 4:
6015    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
6016    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
6017    break;
6018  }
6019
6020  MachineFunction *MF = BB->getParent();
6021  const BasicBlock *LLVM_BB = BB->getBasicBlock();
6022  MachineFunction::iterator It = BB;
6023  ++It; // insert the new blocks after the current block
6024
6025  MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
6026  MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
6027  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6028  MF->insert(It, loop1MBB);
6029  MF->insert(It, loop2MBB);
6030  MF->insert(It, exitMBB);
6031
6032  // Transfer the remainder of BB and its successor edges to exitMBB.
6033  exitMBB->splice(exitMBB->begin(), BB,
6034                  llvm::next(MachineBasicBlock::iterator(MI)),
6035                  BB->end());
6036  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6037
6038  //  thisMBB:
6039  //   ...
6040  //   fallthrough --> loop1MBB
6041  BB->addSuccessor(loop1MBB);
6042
6043  // loop1MBB:
6044  //   ldrex dest, [ptr]
6045  //   cmp dest, oldval
6046  //   bne exitMBB
6047  BB = loop1MBB;
6048  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
6049  if (ldrOpc == ARM::t2LDREX)
6050    MIB.addImm(0);
6051  AddDefaultPred(MIB);
6052  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6053                 .addReg(dest).addReg(oldval));
6054  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6055    .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
6056  BB->addSuccessor(loop2MBB);
6057  BB->addSuccessor(exitMBB);
6058
6059  // loop2MBB:
6060  //   strex scratch, newval, [ptr]
6061  //   cmp scratch, #0
6062  //   bne loop1MBB
6063  BB = loop2MBB;
6064  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr);
6065  if (strOpc == ARM::t2STREX)
6066    MIB.addImm(0);
6067  AddDefaultPred(MIB);
6068  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6069                 .addReg(scratch).addImm(0));
6070  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6071    .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
6072  BB->addSuccessor(loop1MBB);
6073  BB->addSuccessor(exitMBB);
6074
6075  //  exitMBB:
6076  //   ...
6077  BB = exitMBB;
6078
6079  MI->eraseFromParent();   // The instruction is gone now.
6080
6081  return BB;
6082}
6083
6084MachineBasicBlock *
6085ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
6086                                    unsigned Size, unsigned BinOpcode) const {
6087  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
6088  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6089
6090  const BasicBlock *LLVM_BB = BB->getBasicBlock();
6091  MachineFunction *MF = BB->getParent();
6092  MachineFunction::iterator It = BB;
6093  ++It;
6094
6095  unsigned dest = MI->getOperand(0).getReg();
6096  unsigned ptr = MI->getOperand(1).getReg();
6097  unsigned incr = MI->getOperand(2).getReg();
6098  DebugLoc dl = MI->getDebugLoc();
6099  bool isThumb2 = Subtarget->isThumb2();
6100
6101  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
6102  if (isThumb2) {
6103    MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
6104    MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
6105  }
6106
6107  unsigned ldrOpc, strOpc;
6108  switch (Size) {
6109  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
6110  case 1:
6111    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
6112    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
6113    break;
6114  case 2:
6115    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
6116    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
6117    break;
6118  case 4:
6119    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
6120    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
6121    break;
6122  }
6123
6124  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6125  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6126  MF->insert(It, loopMBB);
6127  MF->insert(It, exitMBB);
6128
6129  // Transfer the remainder of BB and its successor edges to exitMBB.
6130  exitMBB->splice(exitMBB->begin(), BB,
6131                  llvm::next(MachineBasicBlock::iterator(MI)),
6132                  BB->end());
6133  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6134
6135  const TargetRegisterClass *TRC = isThumb2 ?
6136    (const TargetRegisterClass*)&ARM::rGPRRegClass :
6137    (const TargetRegisterClass*)&ARM::GPRRegClass;
6138  unsigned scratch = MRI.createVirtualRegister(TRC);
6139  unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
6140
6141  //  thisMBB:
6142  //   ...
6143  //   fallthrough --> loopMBB
6144  BB->addSuccessor(loopMBB);
6145
6146  //  loopMBB:
6147  //   ldrex dest, ptr
6148  //   <binop> scratch2, dest, incr
6149  //   strex scratch, scratch2, ptr
6150  //   cmp scratch, #0
6151  //   bne- loopMBB
6152  //   fallthrough --> exitMBB
6153  BB = loopMBB;
6154  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
6155  if (ldrOpc == ARM::t2LDREX)
6156    MIB.addImm(0);
6157  AddDefaultPred(MIB);
6158  if (BinOpcode) {
6159    // operand order needs to go the other way for NAND
6160    if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
6161      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
6162                     addReg(incr).addReg(dest)).addReg(0);
6163    else
6164      AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
6165                     addReg(dest).addReg(incr)).addReg(0);
6166  }
6167
6168  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
6169  if (strOpc == ARM::t2STREX)
6170    MIB.addImm(0);
6171  AddDefaultPred(MIB);
6172  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6173                 .addReg(scratch).addImm(0));
6174  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6175    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
6176
6177  BB->addSuccessor(loopMBB);
6178  BB->addSuccessor(exitMBB);
6179
6180  //  exitMBB:
6181  //   ...
6182  BB = exitMBB;
6183
6184  MI->eraseFromParent();   // The instruction is gone now.
6185
6186  return BB;
6187}
6188
6189MachineBasicBlock *
6190ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
6191                                          MachineBasicBlock *BB,
6192                                          unsigned Size,
6193                                          bool signExtend,
6194                                          ARMCC::CondCodes Cond) const {
6195  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6196
6197  const BasicBlock *LLVM_BB = BB->getBasicBlock();
6198  MachineFunction *MF = BB->getParent();
6199  MachineFunction::iterator It = BB;
6200  ++It;
6201
6202  unsigned dest = MI->getOperand(0).getReg();
6203  unsigned ptr = MI->getOperand(1).getReg();
6204  unsigned incr = MI->getOperand(2).getReg();
6205  unsigned oldval = dest;
6206  DebugLoc dl = MI->getDebugLoc();
6207  bool isThumb2 = Subtarget->isThumb2();
6208
6209  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
6210  if (isThumb2) {
6211    MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
6212    MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
6213  }
6214
6215  unsigned ldrOpc, strOpc, extendOpc;
6216  switch (Size) {
6217  default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
6218  case 1:
6219    ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
6220    strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
6221    extendOpc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
6222    break;
6223  case 2:
6224    ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
6225    strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
6226    extendOpc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
6227    break;
6228  case 4:
6229    ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
6230    strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
6231    extendOpc = 0;
6232    break;
6233  }
6234
6235  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6236  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6237  MF->insert(It, loopMBB);
6238  MF->insert(It, exitMBB);
6239
6240  // Transfer the remainder of BB and its successor edges to exitMBB.
6241  exitMBB->splice(exitMBB->begin(), BB,
6242                  llvm::next(MachineBasicBlock::iterator(MI)),
6243                  BB->end());
6244  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6245
6246  const TargetRegisterClass *TRC = isThumb2 ?
6247    (const TargetRegisterClass*)&ARM::rGPRRegClass :
6248    (const TargetRegisterClass*)&ARM::GPRRegClass;
6249  unsigned scratch = MRI.createVirtualRegister(TRC);
6250  unsigned scratch2 = MRI.createVirtualRegister(TRC);
6251
6252  //  thisMBB:
6253  //   ...
6254  //   fallthrough --> loopMBB
6255  BB->addSuccessor(loopMBB);
6256
6257  //  loopMBB:
6258  //   ldrex dest, ptr
6259  //   (sign extend dest, if required)
6260  //   cmp dest, incr
6261  //   cmov.cond scratch2, incr, dest
6262  //   strex scratch, scratch2, ptr
6263  //   cmp scratch, #0
6264  //   bne- loopMBB
6265  //   fallthrough --> exitMBB
6266  BB = loopMBB;
6267  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
6268  if (ldrOpc == ARM::t2LDREX)
6269    MIB.addImm(0);
6270  AddDefaultPred(MIB);
6271
6272  // Sign extend the value, if necessary.
6273  if (signExtend && extendOpc) {
6274    oldval = MRI.createVirtualRegister(&ARM::GPRRegClass);
6275    AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval)
6276                     .addReg(dest)
6277                     .addImm(0));
6278  }
6279
6280  // Build compare and cmov instructions.
6281  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
6282                 .addReg(oldval).addReg(incr));
6283  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
6284         .addReg(incr).addReg(oldval).addImm(Cond).addReg(ARM::CPSR);
6285
6286  MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
6287  if (strOpc == ARM::t2STREX)
6288    MIB.addImm(0);
6289  AddDefaultPred(MIB);
6290  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6291                 .addReg(scratch).addImm(0));
6292  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6293    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
6294
6295  BB->addSuccessor(loopMBB);
6296  BB->addSuccessor(exitMBB);
6297
6298  //  exitMBB:
6299  //   ...
6300  BB = exitMBB;
6301
6302  MI->eraseFromParent();   // The instruction is gone now.
6303
6304  return BB;
6305}
6306
6307MachineBasicBlock *
6308ARMTargetLowering::EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB,
6309                                      unsigned Op1, unsigned Op2,
6310                                      bool NeedsCarry, bool IsCmpxchg,
6311                                      bool IsMinMax, ARMCC::CondCodes CC) const {
6312  // This also handles ATOMIC_SWAP, indicated by Op1==0.
6313  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6314
6315  const BasicBlock *LLVM_BB = BB->getBasicBlock();
6316  MachineFunction *MF = BB->getParent();
6317  MachineFunction::iterator It = BB;
6318  ++It;
6319
6320  unsigned destlo = MI->getOperand(0).getReg();
6321  unsigned desthi = MI->getOperand(1).getReg();
6322  unsigned ptr = MI->getOperand(2).getReg();
6323  unsigned vallo = MI->getOperand(3).getReg();
6324  unsigned valhi = MI->getOperand(4).getReg();
6325  DebugLoc dl = MI->getDebugLoc();
6326  bool isThumb2 = Subtarget->isThumb2();
6327
6328  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
6329  if (isThumb2) {
6330    MRI.constrainRegClass(destlo, &ARM::rGPRRegClass);
6331    MRI.constrainRegClass(desthi, &ARM::rGPRRegClass);
6332    MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
6333  }
6334
6335  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6336  MachineBasicBlock *contBB = 0, *cont2BB = 0;
6337  if (IsCmpxchg || IsMinMax)
6338    contBB = MF->CreateMachineBasicBlock(LLVM_BB);
6339  if (IsCmpxchg)
6340    cont2BB = MF->CreateMachineBasicBlock(LLVM_BB);
6341  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
6342
6343  MF->insert(It, loopMBB);
6344  if (IsCmpxchg || IsMinMax) MF->insert(It, contBB);
6345  if (IsCmpxchg) MF->insert(It, cont2BB);
6346  MF->insert(It, exitMBB);
6347
6348  // Transfer the remainder of BB and its successor edges to exitMBB.
6349  exitMBB->splice(exitMBB->begin(), BB,
6350                  llvm::next(MachineBasicBlock::iterator(MI)),
6351                  BB->end());
6352  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6353
6354  const TargetRegisterClass *TRC = isThumb2 ?
6355    (const TargetRegisterClass*)&ARM::tGPRRegClass :
6356    (const TargetRegisterClass*)&ARM::GPRRegClass;
6357  unsigned storesuccess = MRI.createVirtualRegister(TRC);
6358
6359  //  thisMBB:
6360  //   ...
6361  //   fallthrough --> loopMBB
6362  BB->addSuccessor(loopMBB);
6363
6364  //  loopMBB:
6365  //   ldrexd r2, r3, ptr
6366  //   <binopa> r0, r2, incr
6367  //   <binopb> r1, r3, incr
6368  //   strexd storesuccess, r0, r1, ptr
6369  //   cmp storesuccess, #0
6370  //   bne- loopMBB
6371  //   fallthrough --> exitMBB
6372  BB = loopMBB;
6373
6374  // Load
6375  if (isThumb2) {
6376    AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2LDREXD))
6377                   .addReg(destlo, RegState::Define)
6378                   .addReg(desthi, RegState::Define)
6379                   .addReg(ptr));
6380  } else {
6381    unsigned GPRPair0 = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
6382    AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::LDREXD))
6383                   .addReg(GPRPair0, RegState::Define).addReg(ptr));
6384    // Copy r2/r3 into dest.  (This copy will normally be coalesced.)
6385    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), destlo)
6386      .addReg(GPRPair0, 0, ARM::gsub_0);
6387    BuildMI(BB, dl, TII->get(TargetOpcode::COPY), desthi)
6388      .addReg(GPRPair0, 0, ARM::gsub_1);
6389  }
6390
6391  unsigned StoreLo, StoreHi;
6392  if (IsCmpxchg) {
6393    // Add early exit
6394    for (unsigned i = 0; i < 2; i++) {
6395      AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr :
6396                                                         ARM::CMPrr))
6397                     .addReg(i == 0 ? destlo : desthi)
6398                     .addReg(i == 0 ? vallo : valhi));
6399      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6400        .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
6401      BB->addSuccessor(exitMBB);
6402      BB->addSuccessor(i == 0 ? contBB : cont2BB);
6403      BB = (i == 0 ? contBB : cont2BB);
6404    }
6405
6406    // Copy to physregs for strexd
6407    StoreLo = MI->getOperand(5).getReg();
6408    StoreHi = MI->getOperand(6).getReg();
6409  } else if (Op1) {
6410    // Perform binary operation
6411    unsigned tmpRegLo = MRI.createVirtualRegister(TRC);
6412    AddDefaultPred(BuildMI(BB, dl, TII->get(Op1), tmpRegLo)
6413                   .addReg(destlo).addReg(vallo))
6414        .addReg(NeedsCarry ? ARM::CPSR : 0, getDefRegState(NeedsCarry));
6415    unsigned tmpRegHi = MRI.createVirtualRegister(TRC);
6416    AddDefaultPred(BuildMI(BB, dl, TII->get(Op2), tmpRegHi)
6417                   .addReg(desthi).addReg(valhi))
6418        .addReg(IsMinMax ? ARM::CPSR : 0, getDefRegState(IsMinMax));
6419
6420    StoreLo = tmpRegLo;
6421    StoreHi = tmpRegHi;
6422  } else {
6423    // Copy to physregs for strexd
6424    StoreLo = vallo;
6425    StoreHi = valhi;
6426  }
6427  if (IsMinMax) {
6428    // Compare and branch to exit block.
6429    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6430      .addMBB(exitMBB).addImm(CC).addReg(ARM::CPSR);
6431    BB->addSuccessor(exitMBB);
6432    BB->addSuccessor(contBB);
6433    BB = contBB;
6434    StoreLo = vallo;
6435    StoreHi = valhi;
6436  }
6437
6438  // Store
6439  if (isThumb2) {
6440    AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2STREXD), storesuccess)
6441                   .addReg(StoreLo).addReg(StoreHi).addReg(ptr));
6442  } else {
6443    // Marshal a pair...
6444    unsigned StorePair = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
6445    unsigned UndefPair = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
6446    unsigned r1 = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
6447    BuildMI(BB, dl, TII->get(TargetOpcode::IMPLICIT_DEF), UndefPair);
6448    BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), r1)
6449      .addReg(UndefPair)
6450      .addReg(StoreLo)
6451      .addImm(ARM::gsub_0);
6452    BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), StorePair)
6453      .addReg(r1)
6454      .addReg(StoreHi)
6455      .addImm(ARM::gsub_1);
6456
6457    // ...and store it
6458    AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::STREXD), storesuccess)
6459                   .addReg(StorePair).addReg(ptr));
6460  }
6461  // Cmp+jump
6462  AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
6463                 .addReg(storesuccess).addImm(0));
6464  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
6465    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
6466
6467  BB->addSuccessor(loopMBB);
6468  BB->addSuccessor(exitMBB);
6469
6470  //  exitMBB:
6471  //   ...
6472  BB = exitMBB;
6473
6474  MI->eraseFromParent();   // The instruction is gone now.
6475
6476  return BB;
6477}
6478
6479/// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
6480/// registers the function context.
6481void ARMTargetLowering::
6482SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
6483                       MachineBasicBlock *DispatchBB, int FI) const {
6484  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6485  DebugLoc dl = MI->getDebugLoc();
6486  MachineFunction *MF = MBB->getParent();
6487  MachineRegisterInfo *MRI = &MF->getRegInfo();
6488  MachineConstantPool *MCP = MF->getConstantPool();
6489  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
6490  const Function *F = MF->getFunction();
6491
6492  bool isThumb = Subtarget->isThumb();
6493  bool isThumb2 = Subtarget->isThumb2();
6494
6495  unsigned PCLabelId = AFI->createPICLabelUId();
6496  unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
6497  ARMConstantPoolValue *CPV =
6498    ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
6499  unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
6500
6501  const TargetRegisterClass *TRC = isThumb ?
6502    (const TargetRegisterClass*)&ARM::tGPRRegClass :
6503    (const TargetRegisterClass*)&ARM::GPRRegClass;
6504
6505  // Grab constant pool and fixed stack memory operands.
6506  MachineMemOperand *CPMMO =
6507    MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
6508                             MachineMemOperand::MOLoad, 4, 4);
6509
6510  MachineMemOperand *FIMMOSt =
6511    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
6512                             MachineMemOperand::MOStore, 4, 4);
6513
6514  // Load the address of the dispatch MBB into the jump buffer.
6515  if (isThumb2) {
6516    // Incoming value: jbuf
6517    //   ldr.n  r5, LCPI1_1
6518    //   orr    r5, r5, #1
6519    //   add    r5, pc
6520    //   str    r5, [$jbuf, #+4] ; &jbuf[1]
6521    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6522    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
6523                   .addConstantPoolIndex(CPI)
6524                   .addMemOperand(CPMMO));
6525    // Set the low bit because of thumb mode.
6526    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6527    AddDefaultCC(
6528      AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
6529                     .addReg(NewVReg1, RegState::Kill)
6530                     .addImm(0x01)));
6531    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6532    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
6533      .addReg(NewVReg2, RegState::Kill)
6534      .addImm(PCLabelId);
6535    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
6536                   .addReg(NewVReg3, RegState::Kill)
6537                   .addFrameIndex(FI)
6538                   .addImm(36)  // &jbuf[1] :: pc
6539                   .addMemOperand(FIMMOSt));
6540  } else if (isThumb) {
6541    // Incoming value: jbuf
6542    //   ldr.n  r1, LCPI1_4
6543    //   add    r1, pc
6544    //   mov    r2, #1
6545    //   orrs   r1, r2
6546    //   add    r2, $jbuf, #+4 ; &jbuf[1]
6547    //   str    r1, [r2]
6548    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6549    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
6550                   .addConstantPoolIndex(CPI)
6551                   .addMemOperand(CPMMO));
6552    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6553    BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
6554      .addReg(NewVReg1, RegState::Kill)
6555      .addImm(PCLabelId);
6556    // Set the low bit because of thumb mode.
6557    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6558    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
6559                   .addReg(ARM::CPSR, RegState::Define)
6560                   .addImm(1));
6561    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6562    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
6563                   .addReg(ARM::CPSR, RegState::Define)
6564                   .addReg(NewVReg2, RegState::Kill)
6565                   .addReg(NewVReg3, RegState::Kill));
6566    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6567    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5)
6568                   .addFrameIndex(FI)
6569                   .addImm(36)); // &jbuf[1] :: pc
6570    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
6571                   .addReg(NewVReg4, RegState::Kill)
6572                   .addReg(NewVReg5, RegState::Kill)
6573                   .addImm(0)
6574                   .addMemOperand(FIMMOSt));
6575  } else {
6576    // Incoming value: jbuf
6577    //   ldr  r1, LCPI1_1
6578    //   add  r1, pc, r1
6579    //   str  r1, [$jbuf, #+4] ; &jbuf[1]
6580    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6581    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12),  NewVReg1)
6582                   .addConstantPoolIndex(CPI)
6583                   .addImm(0)
6584                   .addMemOperand(CPMMO));
6585    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6586    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
6587                   .addReg(NewVReg1, RegState::Kill)
6588                   .addImm(PCLabelId));
6589    AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
6590                   .addReg(NewVReg2, RegState::Kill)
6591                   .addFrameIndex(FI)
6592                   .addImm(36)  // &jbuf[1] :: pc
6593                   .addMemOperand(FIMMOSt));
6594  }
6595}
6596
6597MachineBasicBlock *ARMTargetLowering::
6598EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
6599  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6600  DebugLoc dl = MI->getDebugLoc();
6601  MachineFunction *MF = MBB->getParent();
6602  MachineRegisterInfo *MRI = &MF->getRegInfo();
6603  ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
6604  MachineFrameInfo *MFI = MF->getFrameInfo();
6605  int FI = MFI->getFunctionContextIndex();
6606
6607  const TargetRegisterClass *TRC = Subtarget->isThumb() ?
6608    (const TargetRegisterClass*)&ARM::tGPRRegClass :
6609    (const TargetRegisterClass*)&ARM::GPRnopcRegClass;
6610
6611  // Get a mapping of the call site numbers to all of the landing pads they're
6612  // associated with.
6613  DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
6614  unsigned MaxCSNum = 0;
6615  MachineModuleInfo &MMI = MF->getMMI();
6616  for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
6617       ++BB) {
6618    if (!BB->isLandingPad()) continue;
6619
6620    // FIXME: We should assert that the EH_LABEL is the first MI in the landing
6621    // pad.
6622    for (MachineBasicBlock::iterator
6623           II = BB->begin(), IE = BB->end(); II != IE; ++II) {
6624      if (!II->isEHLabel()) continue;
6625
6626      MCSymbol *Sym = II->getOperand(0).getMCSymbol();
6627      if (!MMI.hasCallSiteLandingPad(Sym)) continue;
6628
6629      SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
6630      for (SmallVectorImpl<unsigned>::iterator
6631             CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
6632           CSI != CSE; ++CSI) {
6633        CallSiteNumToLPad[*CSI].push_back(BB);
6634        MaxCSNum = std::max(MaxCSNum, *CSI);
6635      }
6636      break;
6637    }
6638  }
6639
6640  // Get an ordered list of the machine basic blocks for the jump table.
6641  std::vector<MachineBasicBlock*> LPadList;
6642  SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
6643  LPadList.reserve(CallSiteNumToLPad.size());
6644  for (unsigned I = 1; I <= MaxCSNum; ++I) {
6645    SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
6646    for (SmallVectorImpl<MachineBasicBlock*>::iterator
6647           II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
6648      LPadList.push_back(*II);
6649      InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
6650    }
6651  }
6652
6653  assert(!LPadList.empty() &&
6654         "No landing pad destinations for the dispatch jump table!");
6655
6656  // Create the jump table and associated information.
6657  MachineJumpTableInfo *JTI =
6658    MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
6659  unsigned MJTI = JTI->createJumpTableIndex(LPadList);
6660  unsigned UId = AFI->createJumpTableUId();
6661  Reloc::Model RelocM = getTargetMachine().getRelocationModel();
6662
6663  // Create the MBBs for the dispatch code.
6664
6665  // Shove the dispatch's address into the return slot in the function context.
6666  MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
6667  DispatchBB->setIsLandingPad();
6668
6669  MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
6670  unsigned trap_opcode;
6671  if (Subtarget->isThumb())
6672    trap_opcode = ARM::tTRAP;
6673  else
6674    trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
6675
6676  BuildMI(TrapBB, dl, TII->get(trap_opcode));
6677  DispatchBB->addSuccessor(TrapBB);
6678
6679  MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
6680  DispatchBB->addSuccessor(DispContBB);
6681
6682  // Insert and MBBs.
6683  MF->insert(MF->end(), DispatchBB);
6684  MF->insert(MF->end(), DispContBB);
6685  MF->insert(MF->end(), TrapBB);
6686
6687  // Insert code into the entry block that creates and registers the function
6688  // context.
6689  SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
6690
6691  MachineMemOperand *FIMMOLd =
6692    MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
6693                             MachineMemOperand::MOLoad |
6694                             MachineMemOperand::MOVolatile, 4, 4);
6695
6696  MachineInstrBuilder MIB;
6697  MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
6698
6699  const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
6700  const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
6701
6702  // Add a register mask with no preserved registers.  This results in all
6703  // registers being marked as clobbered.
6704  MIB.addRegMask(RI.getNoPreservedMask());
6705
6706  unsigned NumLPads = LPadList.size();
6707  if (Subtarget->isThumb2()) {
6708    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6709    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
6710                   .addFrameIndex(FI)
6711                   .addImm(4)
6712                   .addMemOperand(FIMMOLd));
6713
6714    if (NumLPads < 256) {
6715      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
6716                     .addReg(NewVReg1)
6717                     .addImm(LPadList.size()));
6718    } else {
6719      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6720      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
6721                     .addImm(NumLPads & 0xFFFF));
6722
6723      unsigned VReg2 = VReg1;
6724      if ((NumLPads & 0xFFFF0000) != 0) {
6725        VReg2 = MRI->createVirtualRegister(TRC);
6726        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
6727                       .addReg(VReg1)
6728                       .addImm(NumLPads >> 16));
6729      }
6730
6731      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
6732                     .addReg(NewVReg1)
6733                     .addReg(VReg2));
6734    }
6735
6736    BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
6737      .addMBB(TrapBB)
6738      .addImm(ARMCC::HI)
6739      .addReg(ARM::CPSR);
6740
6741    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6742    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
6743                   .addJumpTableIndex(MJTI)
6744                   .addImm(UId));
6745
6746    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6747    AddDefaultCC(
6748      AddDefaultPred(
6749        BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
6750        .addReg(NewVReg3, RegState::Kill)
6751        .addReg(NewVReg1)
6752        .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
6753
6754    BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
6755      .addReg(NewVReg4, RegState::Kill)
6756      .addReg(NewVReg1)
6757      .addJumpTableIndex(MJTI)
6758      .addImm(UId);
6759  } else if (Subtarget->isThumb()) {
6760    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6761    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
6762                   .addFrameIndex(FI)
6763                   .addImm(1)
6764                   .addMemOperand(FIMMOLd));
6765
6766    if (NumLPads < 256) {
6767      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
6768                     .addReg(NewVReg1)
6769                     .addImm(NumLPads));
6770    } else {
6771      MachineConstantPool *ConstantPool = MF->getConstantPool();
6772      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6773      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
6774
6775      // MachineConstantPool wants an explicit alignment.
6776      unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
6777      if (Align == 0)
6778        Align = getDataLayout()->getTypeAllocSize(C->getType());
6779      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6780
6781      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6782      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
6783                     .addReg(VReg1, RegState::Define)
6784                     .addConstantPoolIndex(Idx));
6785      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
6786                     .addReg(NewVReg1)
6787                     .addReg(VReg1));
6788    }
6789
6790    BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
6791      .addMBB(TrapBB)
6792      .addImm(ARMCC::HI)
6793      .addReg(ARM::CPSR);
6794
6795    unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
6796    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
6797                   .addReg(ARM::CPSR, RegState::Define)
6798                   .addReg(NewVReg1)
6799                   .addImm(2));
6800
6801    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6802    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
6803                   .addJumpTableIndex(MJTI)
6804                   .addImm(UId));
6805
6806    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6807    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
6808                   .addReg(ARM::CPSR, RegState::Define)
6809                   .addReg(NewVReg2, RegState::Kill)
6810                   .addReg(NewVReg3));
6811
6812    MachineMemOperand *JTMMOLd =
6813      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
6814                               MachineMemOperand::MOLoad, 4, 4);
6815
6816    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6817    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
6818                   .addReg(NewVReg4, RegState::Kill)
6819                   .addImm(0)
6820                   .addMemOperand(JTMMOLd));
6821
6822    unsigned NewVReg6 = NewVReg5;
6823    if (RelocM == Reloc::PIC_) {
6824      NewVReg6 = MRI->createVirtualRegister(TRC);
6825      AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
6826                     .addReg(ARM::CPSR, RegState::Define)
6827                     .addReg(NewVReg5, RegState::Kill)
6828                     .addReg(NewVReg3));
6829    }
6830
6831    BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
6832      .addReg(NewVReg6, RegState::Kill)
6833      .addJumpTableIndex(MJTI)
6834      .addImm(UId);
6835  } else {
6836    unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
6837    AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
6838                   .addFrameIndex(FI)
6839                   .addImm(4)
6840                   .addMemOperand(FIMMOLd));
6841
6842    if (NumLPads < 256) {
6843      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
6844                     .addReg(NewVReg1)
6845                     .addImm(NumLPads));
6846    } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
6847      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6848      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
6849                     .addImm(NumLPads & 0xFFFF));
6850
6851      unsigned VReg2 = VReg1;
6852      if ((NumLPads & 0xFFFF0000) != 0) {
6853        VReg2 = MRI->createVirtualRegister(TRC);
6854        AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
6855                       .addReg(VReg1)
6856                       .addImm(NumLPads >> 16));
6857      }
6858
6859      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
6860                     .addReg(NewVReg1)
6861                     .addReg(VReg2));
6862    } else {
6863      MachineConstantPool *ConstantPool = MF->getConstantPool();
6864      Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
6865      const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
6866
6867      // MachineConstantPool wants an explicit alignment.
6868      unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
6869      if (Align == 0)
6870        Align = getDataLayout()->getTypeAllocSize(C->getType());
6871      unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
6872
6873      unsigned VReg1 = MRI->createVirtualRegister(TRC);
6874      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
6875                     .addReg(VReg1, RegState::Define)
6876                     .addConstantPoolIndex(Idx)
6877                     .addImm(0));
6878      AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
6879                     .addReg(NewVReg1)
6880                     .addReg(VReg1, RegState::Kill));
6881    }
6882
6883    BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
6884      .addMBB(TrapBB)
6885      .addImm(ARMCC::HI)
6886      .addReg(ARM::CPSR);
6887
6888    unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
6889    AddDefaultCC(
6890      AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
6891                     .addReg(NewVReg1)
6892                     .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
6893    unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
6894    AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
6895                   .addJumpTableIndex(MJTI)
6896                   .addImm(UId));
6897
6898    MachineMemOperand *JTMMOLd =
6899      MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
6900                               MachineMemOperand::MOLoad, 4, 4);
6901    unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
6902    AddDefaultPred(
6903      BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
6904      .addReg(NewVReg3, RegState::Kill)
6905      .addReg(NewVReg4)
6906      .addImm(0)
6907      .addMemOperand(JTMMOLd));
6908
6909    if (RelocM == Reloc::PIC_) {
6910      BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
6911        .addReg(NewVReg5, RegState::Kill)
6912        .addReg(NewVReg4)
6913        .addJumpTableIndex(MJTI)
6914        .addImm(UId);
6915    } else {
6916      BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
6917        .addReg(NewVReg5, RegState::Kill)
6918        .addJumpTableIndex(MJTI)
6919        .addImm(UId);
6920    }
6921  }
6922
6923  // Add the jump table entries as successors to the MBB.
6924  SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
6925  for (std::vector<MachineBasicBlock*>::iterator
6926         I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
6927    MachineBasicBlock *CurMBB = *I;
6928    if (SeenMBBs.insert(CurMBB))
6929      DispContBB->addSuccessor(CurMBB);
6930  }
6931
6932  // N.B. the order the invoke BBs are processed in doesn't matter here.
6933  const uint16_t *SavedRegs = RI.getCalleeSavedRegs(MF);
6934  SmallVector<MachineBasicBlock*, 64> MBBLPads;
6935  for (SmallPtrSet<MachineBasicBlock*, 64>::iterator
6936         I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) {
6937    MachineBasicBlock *BB = *I;
6938
6939    // Remove the landing pad successor from the invoke block and replace it
6940    // with the new dispatch block.
6941    SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
6942                                                  BB->succ_end());
6943    while (!Successors.empty()) {
6944      MachineBasicBlock *SMBB = Successors.pop_back_val();
6945      if (SMBB->isLandingPad()) {
6946        BB->removeSuccessor(SMBB);
6947        MBBLPads.push_back(SMBB);
6948      }
6949    }
6950
6951    BB->addSuccessor(DispatchBB);
6952
6953    // Find the invoke call and mark all of the callee-saved registers as
6954    // 'implicit defined' so that they're spilled. This prevents code from
6955    // moving instructions to before the EH block, where they will never be
6956    // executed.
6957    for (MachineBasicBlock::reverse_iterator
6958           II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
6959      if (!II->isCall()) continue;
6960
6961      DenseMap<unsigned, bool> DefRegs;
6962      for (MachineInstr::mop_iterator
6963             OI = II->operands_begin(), OE = II->operands_end();
6964           OI != OE; ++OI) {
6965        if (!OI->isReg()) continue;
6966        DefRegs[OI->getReg()] = true;
6967      }
6968
6969      MachineInstrBuilder MIB(*MF, &*II);
6970
6971      for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
6972        unsigned Reg = SavedRegs[i];
6973        if (Subtarget->isThumb2() &&
6974            !ARM::tGPRRegClass.contains(Reg) &&
6975            !ARM::hGPRRegClass.contains(Reg))
6976          continue;
6977        if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
6978          continue;
6979        if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
6980          continue;
6981        if (!DefRegs[Reg])
6982          MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
6983      }
6984
6985      break;
6986    }
6987  }
6988
6989  // Mark all former landing pads as non-landing pads. The dispatch is the only
6990  // landing pad now.
6991  for (SmallVectorImpl<MachineBasicBlock*>::iterator
6992         I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
6993    (*I)->setIsLandingPad(false);
6994
6995  // The instruction is gone now.
6996  MI->eraseFromParent();
6997
6998  return MBB;
6999}
7000
7001static
7002MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
7003  for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
7004       E = MBB->succ_end(); I != E; ++I)
7005    if (*I != Succ)
7006      return *I;
7007  llvm_unreachable("Expecting a BB with two successors!");
7008}
7009
7010MachineBasicBlock *ARMTargetLowering::
7011EmitStructByval(MachineInstr *MI, MachineBasicBlock *BB) const {
7012  // This pseudo instruction has 3 operands: dst, src, size
7013  // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
7014  // Otherwise, we will generate unrolled scalar copies.
7015  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7016  const BasicBlock *LLVM_BB = BB->getBasicBlock();
7017  MachineFunction::iterator It = BB;
7018  ++It;
7019
7020  unsigned dest = MI->getOperand(0).getReg();
7021  unsigned src = MI->getOperand(1).getReg();
7022  unsigned SizeVal = MI->getOperand(2).getImm();
7023  unsigned Align = MI->getOperand(3).getImm();
7024  DebugLoc dl = MI->getDebugLoc();
7025
7026  bool isThumb2 = Subtarget->isThumb2();
7027  MachineFunction *MF = BB->getParent();
7028  MachineRegisterInfo &MRI = MF->getRegInfo();
7029  unsigned ldrOpc, strOpc, UnitSize = 0;
7030
7031  const TargetRegisterClass *TRC = isThumb2 ?
7032    (const TargetRegisterClass*)&ARM::tGPRRegClass :
7033    (const TargetRegisterClass*)&ARM::GPRRegClass;
7034  const TargetRegisterClass *TRC_Vec = 0;
7035
7036  if (Align & 1) {
7037    ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
7038    strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
7039    UnitSize = 1;
7040  } else if (Align & 2) {
7041    ldrOpc = isThumb2 ? ARM::t2LDRH_POST : ARM::LDRH_POST;
7042    strOpc = isThumb2 ? ARM::t2STRH_POST : ARM::STRH_POST;
7043    UnitSize = 2;
7044  } else {
7045    // Check whether we can use NEON instructions.
7046    if (!MF->getFunction()->getAttributes().
7047          hasAttribute(AttributeSet::FunctionIndex,
7048                       Attribute::NoImplicitFloat) &&
7049        Subtarget->hasNEON()) {
7050      if ((Align % 16 == 0) && SizeVal >= 16) {
7051        ldrOpc = ARM::VLD1q32wb_fixed;
7052        strOpc = ARM::VST1q32wb_fixed;
7053        UnitSize = 16;
7054        TRC_Vec = (const TargetRegisterClass*)&ARM::DPairRegClass;
7055      }
7056      else if ((Align % 8 == 0) && SizeVal >= 8) {
7057        ldrOpc = ARM::VLD1d32wb_fixed;
7058        strOpc = ARM::VST1d32wb_fixed;
7059        UnitSize = 8;
7060        TRC_Vec = (const TargetRegisterClass*)&ARM::DPRRegClass;
7061      }
7062    }
7063    // Can't use NEON instructions.
7064    if (UnitSize == 0) {
7065      ldrOpc = isThumb2 ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
7066      strOpc = isThumb2 ? ARM::t2STR_POST : ARM::STR_POST_IMM;
7067      UnitSize = 4;
7068    }
7069  }
7070
7071  unsigned BytesLeft = SizeVal % UnitSize;
7072  unsigned LoopSize = SizeVal - BytesLeft;
7073
7074  if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
7075    // Use LDR and STR to copy.
7076    // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
7077    // [destOut] = STR_POST(scratch, destIn, UnitSize)
7078    unsigned srcIn = src;
7079    unsigned destIn = dest;
7080    for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
7081      unsigned scratch = MRI.createVirtualRegister(UnitSize >= 8 ? TRC_Vec:TRC);
7082      unsigned srcOut = MRI.createVirtualRegister(TRC);
7083      unsigned destOut = MRI.createVirtualRegister(TRC);
7084      if (UnitSize >= 8) {
7085        AddDefaultPred(BuildMI(*BB, MI, dl,
7086          TII->get(ldrOpc), scratch)
7087          .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(0));
7088
7089        AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
7090          .addReg(destIn).addImm(0).addReg(scratch));
7091      } else if (isThumb2) {
7092        AddDefaultPred(BuildMI(*BB, MI, dl,
7093          TII->get(ldrOpc), scratch)
7094          .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(UnitSize));
7095
7096        AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
7097          .addReg(scratch).addReg(destIn)
7098          .addImm(UnitSize));
7099      } else {
7100        AddDefaultPred(BuildMI(*BB, MI, dl,
7101          TII->get(ldrOpc), scratch)
7102          .addReg(srcOut, RegState::Define).addReg(srcIn).addReg(0)
7103          .addImm(UnitSize));
7104
7105        AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
7106          .addReg(scratch).addReg(destIn)
7107          .addReg(0).addImm(UnitSize));
7108      }
7109      srcIn = srcOut;
7110      destIn = destOut;
7111    }
7112
7113    // Handle the leftover bytes with LDRB and STRB.
7114    // [scratch, srcOut] = LDRB_POST(srcIn, 1)
7115    // [destOut] = STRB_POST(scratch, destIn, 1)
7116    ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
7117    strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
7118    for (unsigned i = 0; i < BytesLeft; i++) {
7119      unsigned scratch = MRI.createVirtualRegister(TRC);
7120      unsigned srcOut = MRI.createVirtualRegister(TRC);
7121      unsigned destOut = MRI.createVirtualRegister(TRC);
7122      if (isThumb2) {
7123        AddDefaultPred(BuildMI(*BB, MI, dl,
7124          TII->get(ldrOpc),scratch)
7125          .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1));
7126
7127        AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
7128          .addReg(scratch).addReg(destIn)
7129          .addReg(0).addImm(1));
7130      } else {
7131        AddDefaultPred(BuildMI(*BB, MI, dl,
7132          TII->get(ldrOpc),scratch)
7133          .addReg(srcOut, RegState::Define).addReg(srcIn)
7134          .addReg(0).addImm(1));
7135
7136        AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
7137          .addReg(scratch).addReg(destIn)
7138          .addReg(0).addImm(1));
7139      }
7140      srcIn = srcOut;
7141      destIn = destOut;
7142    }
7143    MI->eraseFromParent();   // The instruction is gone now.
7144    return BB;
7145  }
7146
7147  // Expand the pseudo op to a loop.
7148  // thisMBB:
7149  //   ...
7150  //   movw varEnd, # --> with thumb2
7151  //   movt varEnd, #
7152  //   ldrcp varEnd, idx --> without thumb2
7153  //   fallthrough --> loopMBB
7154  // loopMBB:
7155  //   PHI varPhi, varEnd, varLoop
7156  //   PHI srcPhi, src, srcLoop
7157  //   PHI destPhi, dst, destLoop
7158  //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
7159  //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
7160  //   subs varLoop, varPhi, #UnitSize
7161  //   bne loopMBB
7162  //   fallthrough --> exitMBB
7163  // exitMBB:
7164  //   epilogue to handle left-over bytes
7165  //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
7166  //   [destOut] = STRB_POST(scratch, destLoop, 1)
7167  MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
7168  MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
7169  MF->insert(It, loopMBB);
7170  MF->insert(It, exitMBB);
7171
7172  // Transfer the remainder of BB and its successor edges to exitMBB.
7173  exitMBB->splice(exitMBB->begin(), BB,
7174                  llvm::next(MachineBasicBlock::iterator(MI)),
7175                  BB->end());
7176  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
7177
7178  // Load an immediate to varEnd.
7179  unsigned varEnd = MRI.createVirtualRegister(TRC);
7180  if (isThumb2) {
7181    unsigned VReg1 = varEnd;
7182    if ((LoopSize & 0xFFFF0000) != 0)
7183      VReg1 = MRI.createVirtualRegister(TRC);
7184    AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVi16), VReg1)
7185                   .addImm(LoopSize & 0xFFFF));
7186
7187    if ((LoopSize & 0xFFFF0000) != 0)
7188      AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVTi16), varEnd)
7189                     .addReg(VReg1)
7190                     .addImm(LoopSize >> 16));
7191  } else {
7192    MachineConstantPool *ConstantPool = MF->getConstantPool();
7193    Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
7194    const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
7195
7196    // MachineConstantPool wants an explicit alignment.
7197    unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
7198    if (Align == 0)
7199      Align = getDataLayout()->getTypeAllocSize(C->getType());
7200    unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
7201
7202    AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::LDRcp))
7203                   .addReg(varEnd, RegState::Define)
7204                   .addConstantPoolIndex(Idx)
7205                   .addImm(0));
7206  }
7207  BB->addSuccessor(loopMBB);
7208
7209  // Generate the loop body:
7210  //   varPhi = PHI(varLoop, varEnd)
7211  //   srcPhi = PHI(srcLoop, src)
7212  //   destPhi = PHI(destLoop, dst)
7213  MachineBasicBlock *entryBB = BB;
7214  BB = loopMBB;
7215  unsigned varLoop = MRI.createVirtualRegister(TRC);
7216  unsigned varPhi = MRI.createVirtualRegister(TRC);
7217  unsigned srcLoop = MRI.createVirtualRegister(TRC);
7218  unsigned srcPhi = MRI.createVirtualRegister(TRC);
7219  unsigned destLoop = MRI.createVirtualRegister(TRC);
7220  unsigned destPhi = MRI.createVirtualRegister(TRC);
7221
7222  BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
7223    .addReg(varLoop).addMBB(loopMBB)
7224    .addReg(varEnd).addMBB(entryBB);
7225  BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
7226    .addReg(srcLoop).addMBB(loopMBB)
7227    .addReg(src).addMBB(entryBB);
7228  BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
7229    .addReg(destLoop).addMBB(loopMBB)
7230    .addReg(dest).addMBB(entryBB);
7231
7232  //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
7233  //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
7234  unsigned scratch = MRI.createVirtualRegister(UnitSize >= 8 ? TRC_Vec:TRC);
7235  if (UnitSize >= 8) {
7236    AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
7237      .addReg(srcLoop, RegState::Define).addReg(srcPhi).addImm(0));
7238
7239    AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
7240      .addReg(destPhi).addImm(0).addReg(scratch));
7241  } else if (isThumb2) {
7242    AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
7243      .addReg(srcLoop, RegState::Define).addReg(srcPhi).addImm(UnitSize));
7244
7245    AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
7246      .addReg(scratch).addReg(destPhi)
7247      .addImm(UnitSize));
7248  } else {
7249    AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
7250      .addReg(srcLoop, RegState::Define).addReg(srcPhi).addReg(0)
7251      .addImm(UnitSize));
7252
7253    AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
7254      .addReg(scratch).addReg(destPhi)
7255      .addReg(0).addImm(UnitSize));
7256  }
7257
7258  // Decrement loop variable by UnitSize.
7259  MachineInstrBuilder MIB = BuildMI(BB, dl,
7260    TII->get(isThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
7261  AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize)));
7262  MIB->getOperand(5).setReg(ARM::CPSR);
7263  MIB->getOperand(5).setIsDef(true);
7264
7265  BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
7266    .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
7267
7268  // loopMBB can loop back to loopMBB or fall through to exitMBB.
7269  BB->addSuccessor(loopMBB);
7270  BB->addSuccessor(exitMBB);
7271
7272  // Add epilogue to handle BytesLeft.
7273  BB = exitMBB;
7274  MachineInstr *StartOfExit = exitMBB->begin();
7275  ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
7276  strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
7277
7278  //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
7279  //   [destOut] = STRB_POST(scratch, destLoop, 1)
7280  unsigned srcIn = srcLoop;
7281  unsigned destIn = destLoop;
7282  for (unsigned i = 0; i < BytesLeft; i++) {
7283    unsigned scratch = MRI.createVirtualRegister(TRC);
7284    unsigned srcOut = MRI.createVirtualRegister(TRC);
7285    unsigned destOut = MRI.createVirtualRegister(TRC);
7286    if (isThumb2) {
7287      AddDefaultPred(BuildMI(*BB, StartOfExit, dl,
7288        TII->get(ldrOpc),scratch)
7289        .addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1));
7290
7291      AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(strOpc), destOut)
7292        .addReg(scratch).addReg(destIn)
7293        .addImm(1));
7294    } else {
7295      AddDefaultPred(BuildMI(*BB, StartOfExit, dl,
7296        TII->get(ldrOpc),scratch)
7297        .addReg(srcOut, RegState::Define).addReg(srcIn).addReg(0).addImm(1));
7298
7299      AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(strOpc), destOut)
7300        .addReg(scratch).addReg(destIn)
7301        .addReg(0).addImm(1));
7302    }
7303    srcIn = srcOut;
7304    destIn = destOut;
7305  }
7306
7307  MI->eraseFromParent();   // The instruction is gone now.
7308  return BB;
7309}
7310
7311MachineBasicBlock *
7312ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
7313                                               MachineBasicBlock *BB) const {
7314  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7315  DebugLoc dl = MI->getDebugLoc();
7316  bool isThumb2 = Subtarget->isThumb2();
7317  switch (MI->getOpcode()) {
7318  default: {
7319    MI->dump();
7320    llvm_unreachable("Unexpected instr type to insert");
7321  }
7322  // The Thumb2 pre-indexed stores have the same MI operands, they just
7323  // define them differently in the .td files from the isel patterns, so
7324  // they need pseudos.
7325  case ARM::t2STR_preidx:
7326    MI->setDesc(TII->get(ARM::t2STR_PRE));
7327    return BB;
7328  case ARM::t2STRB_preidx:
7329    MI->setDesc(TII->get(ARM::t2STRB_PRE));
7330    return BB;
7331  case ARM::t2STRH_preidx:
7332    MI->setDesc(TII->get(ARM::t2STRH_PRE));
7333    return BB;
7334
7335  case ARM::STRi_preidx:
7336  case ARM::STRBi_preidx: {
7337    unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
7338      ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
7339    // Decode the offset.
7340    unsigned Offset = MI->getOperand(4).getImm();
7341    bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
7342    Offset = ARM_AM::getAM2Offset(Offset);
7343    if (isSub)
7344      Offset = -Offset;
7345
7346    MachineMemOperand *MMO = *MI->memoperands_begin();
7347    BuildMI(*BB, MI, dl, TII->get(NewOpc))
7348      .addOperand(MI->getOperand(0))  // Rn_wb
7349      .addOperand(MI->getOperand(1))  // Rt
7350      .addOperand(MI->getOperand(2))  // Rn
7351      .addImm(Offset)                 // offset (skip GPR==zero_reg)
7352      .addOperand(MI->getOperand(5))  // pred
7353      .addOperand(MI->getOperand(6))
7354      .addMemOperand(MMO);
7355    MI->eraseFromParent();
7356    return BB;
7357  }
7358  case ARM::STRr_preidx:
7359  case ARM::STRBr_preidx:
7360  case ARM::STRH_preidx: {
7361    unsigned NewOpc;
7362    switch (MI->getOpcode()) {
7363    default: llvm_unreachable("unexpected opcode!");
7364    case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
7365    case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
7366    case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
7367    }
7368    MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
7369    for (unsigned i = 0; i < MI->getNumOperands(); ++i)
7370      MIB.addOperand(MI->getOperand(i));
7371    MI->eraseFromParent();
7372    return BB;
7373  }
7374  case ARM::ATOMIC_LOAD_ADD_I8:
7375     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
7376  case ARM::ATOMIC_LOAD_ADD_I16:
7377     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
7378  case ARM::ATOMIC_LOAD_ADD_I32:
7379     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
7380
7381  case ARM::ATOMIC_LOAD_AND_I8:
7382     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
7383  case ARM::ATOMIC_LOAD_AND_I16:
7384     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
7385  case ARM::ATOMIC_LOAD_AND_I32:
7386     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
7387
7388  case ARM::ATOMIC_LOAD_OR_I8:
7389     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
7390  case ARM::ATOMIC_LOAD_OR_I16:
7391     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
7392  case ARM::ATOMIC_LOAD_OR_I32:
7393     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
7394
7395  case ARM::ATOMIC_LOAD_XOR_I8:
7396     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
7397  case ARM::ATOMIC_LOAD_XOR_I16:
7398     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
7399  case ARM::ATOMIC_LOAD_XOR_I32:
7400     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
7401
7402  case ARM::ATOMIC_LOAD_NAND_I8:
7403     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
7404  case ARM::ATOMIC_LOAD_NAND_I16:
7405     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
7406  case ARM::ATOMIC_LOAD_NAND_I32:
7407     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
7408
7409  case ARM::ATOMIC_LOAD_SUB_I8:
7410     return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
7411  case ARM::ATOMIC_LOAD_SUB_I16:
7412     return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
7413  case ARM::ATOMIC_LOAD_SUB_I32:
7414     return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
7415
7416  case ARM::ATOMIC_LOAD_MIN_I8:
7417     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
7418  case ARM::ATOMIC_LOAD_MIN_I16:
7419     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
7420  case ARM::ATOMIC_LOAD_MIN_I32:
7421     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
7422
7423  case ARM::ATOMIC_LOAD_MAX_I8:
7424     return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
7425  case ARM::ATOMIC_LOAD_MAX_I16:
7426     return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
7427  case ARM::ATOMIC_LOAD_MAX_I32:
7428     return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
7429
7430  case ARM::ATOMIC_LOAD_UMIN_I8:
7431     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
7432  case ARM::ATOMIC_LOAD_UMIN_I16:
7433     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
7434  case ARM::ATOMIC_LOAD_UMIN_I32:
7435     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
7436
7437  case ARM::ATOMIC_LOAD_UMAX_I8:
7438     return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
7439  case ARM::ATOMIC_LOAD_UMAX_I16:
7440     return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
7441  case ARM::ATOMIC_LOAD_UMAX_I32:
7442     return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
7443
7444  case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0);
7445  case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
7446  case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
7447
7448  case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1);
7449  case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
7450  case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
7451
7452
7453  case ARM::ATOMADD6432:
7454    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr,
7455                              isThumb2 ? ARM::t2ADCrr : ARM::ADCrr,
7456                              /*NeedsCarry*/ true);
7457  case ARM::ATOMSUB6432:
7458    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
7459                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
7460                              /*NeedsCarry*/ true);
7461  case ARM::ATOMOR6432:
7462    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr,
7463                              isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
7464  case ARM::ATOMXOR6432:
7465    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2EORrr : ARM::EORrr,
7466                              isThumb2 ? ARM::t2EORrr : ARM::EORrr);
7467  case ARM::ATOMAND6432:
7468    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr,
7469                              isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
7470  case ARM::ATOMSWAP6432:
7471    return EmitAtomicBinary64(MI, BB, 0, 0, false);
7472  case ARM::ATOMCMPXCHG6432:
7473    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
7474                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
7475                              /*NeedsCarry*/ false, /*IsCmpxchg*/true);
7476  case ARM::ATOMMIN6432:
7477    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
7478                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
7479                              /*NeedsCarry*/ true, /*IsCmpxchg*/false,
7480                              /*IsMinMax*/ true, ARMCC::LT);
7481  case ARM::ATOMMAX6432:
7482    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
7483                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
7484                              /*NeedsCarry*/ true, /*IsCmpxchg*/false,
7485                              /*IsMinMax*/ true, ARMCC::GE);
7486  case ARM::ATOMUMIN6432:
7487    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
7488                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
7489                              /*NeedsCarry*/ true, /*IsCmpxchg*/false,
7490                              /*IsMinMax*/ true, ARMCC::LO);
7491  case ARM::ATOMUMAX6432:
7492    return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
7493                              isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
7494                              /*NeedsCarry*/ true, /*IsCmpxchg*/false,
7495                              /*IsMinMax*/ true, ARMCC::HS);
7496
7497  case ARM::tMOVCCr_pseudo: {
7498    // To "insert" a SELECT_CC instruction, we actually have to insert the
7499    // diamond control-flow pattern.  The incoming instruction knows the
7500    // destination vreg to set, the condition code register to branch on, the
7501    // true/false values to select between, and a branch opcode to use.
7502    const BasicBlock *LLVM_BB = BB->getBasicBlock();
7503    MachineFunction::iterator It = BB;
7504    ++It;
7505
7506    //  thisMBB:
7507    //  ...
7508    //   TrueVal = ...
7509    //   cmpTY ccX, r1, r2
7510    //   bCC copy1MBB
7511    //   fallthrough --> copy0MBB
7512    MachineBasicBlock *thisMBB  = BB;
7513    MachineFunction *F = BB->getParent();
7514    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
7515    MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
7516    F->insert(It, copy0MBB);
7517    F->insert(It, sinkMBB);
7518
7519    // Transfer the remainder of BB and its successor edges to sinkMBB.
7520    sinkMBB->splice(sinkMBB->begin(), BB,
7521                    llvm::next(MachineBasicBlock::iterator(MI)),
7522                    BB->end());
7523    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
7524
7525    BB->addSuccessor(copy0MBB);
7526    BB->addSuccessor(sinkMBB);
7527
7528    BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
7529      .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
7530
7531    //  copy0MBB:
7532    //   %FalseValue = ...
7533    //   # fallthrough to sinkMBB
7534    BB = copy0MBB;
7535
7536    // Update machine-CFG edges
7537    BB->addSuccessor(sinkMBB);
7538
7539    //  sinkMBB:
7540    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7541    //  ...
7542    BB = sinkMBB;
7543    BuildMI(*BB, BB->begin(), dl,
7544            TII->get(ARM::PHI), MI->getOperand(0).getReg())
7545      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7546      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7547
7548    MI->eraseFromParent();   // The pseudo instruction is gone now.
7549    return BB;
7550  }
7551
7552  case ARM::BCCi64:
7553  case ARM::BCCZi64: {
7554    // If there is an unconditional branch to the other successor, remove it.
7555    BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
7556
7557    // Compare both parts that make up the double comparison separately for
7558    // equality.
7559    bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
7560
7561    unsigned LHS1 = MI->getOperand(1).getReg();
7562    unsigned LHS2 = MI->getOperand(2).getReg();
7563    if (RHSisZero) {
7564      AddDefaultPred(BuildMI(BB, dl,
7565                             TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
7566                     .addReg(LHS1).addImm(0));
7567      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
7568        .addReg(LHS2).addImm(0)
7569        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
7570    } else {
7571      unsigned RHS1 = MI->getOperand(3).getReg();
7572      unsigned RHS2 = MI->getOperand(4).getReg();
7573      AddDefaultPred(BuildMI(BB, dl,
7574                             TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
7575                     .addReg(LHS1).addReg(RHS1));
7576      BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
7577        .addReg(LHS2).addReg(RHS2)
7578        .addImm(ARMCC::EQ).addReg(ARM::CPSR);
7579    }
7580
7581    MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
7582    MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
7583    if (MI->getOperand(0).getImm() == ARMCC::NE)
7584      std::swap(destMBB, exitMBB);
7585
7586    BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
7587      .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
7588    if (isThumb2)
7589      AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
7590    else
7591      BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
7592
7593    MI->eraseFromParent();   // The pseudo instruction is gone now.
7594    return BB;
7595  }
7596
7597  case ARM::Int_eh_sjlj_setjmp:
7598  case ARM::Int_eh_sjlj_setjmp_nofp:
7599  case ARM::tInt_eh_sjlj_setjmp:
7600  case ARM::t2Int_eh_sjlj_setjmp:
7601  case ARM::t2Int_eh_sjlj_setjmp_nofp:
7602    EmitSjLjDispatchBlock(MI, BB);
7603    return BB;
7604
7605  case ARM::ABS:
7606  case ARM::t2ABS: {
7607    // To insert an ABS instruction, we have to insert the
7608    // diamond control-flow pattern.  The incoming instruction knows the
7609    // source vreg to test against 0, the destination vreg to set,
7610    // the condition code register to branch on, the
7611    // true/false values to select between, and a branch opcode to use.
7612    // It transforms
7613    //     V1 = ABS V0
7614    // into
7615    //     V2 = MOVS V0
7616    //     BCC                      (branch to SinkBB if V0 >= 0)
7617    //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
7618    //     SinkBB: V1 = PHI(V2, V3)
7619    const BasicBlock *LLVM_BB = BB->getBasicBlock();
7620    MachineFunction::iterator BBI = BB;
7621    ++BBI;
7622    MachineFunction *Fn = BB->getParent();
7623    MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
7624    MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
7625    Fn->insert(BBI, RSBBB);
7626    Fn->insert(BBI, SinkBB);
7627
7628    unsigned int ABSSrcReg = MI->getOperand(1).getReg();
7629    unsigned int ABSDstReg = MI->getOperand(0).getReg();
7630    bool isThumb2 = Subtarget->isThumb2();
7631    MachineRegisterInfo &MRI = Fn->getRegInfo();
7632    // In Thumb mode S must not be specified if source register is the SP or
7633    // PC and if destination register is the SP, so restrict register class
7634    unsigned NewRsbDstReg = MRI.createVirtualRegister(isThumb2 ?
7635      (const TargetRegisterClass*)&ARM::rGPRRegClass :
7636      (const TargetRegisterClass*)&ARM::GPRRegClass);
7637
7638    // Transfer the remainder of BB and its successor edges to sinkMBB.
7639    SinkBB->splice(SinkBB->begin(), BB,
7640      llvm::next(MachineBasicBlock::iterator(MI)),
7641      BB->end());
7642    SinkBB->transferSuccessorsAndUpdatePHIs(BB);
7643
7644    BB->addSuccessor(RSBBB);
7645    BB->addSuccessor(SinkBB);
7646
7647    // fall through to SinkMBB
7648    RSBBB->addSuccessor(SinkBB);
7649
7650    // insert a cmp at the end of BB
7651    AddDefaultPred(BuildMI(BB, dl,
7652                           TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
7653                   .addReg(ABSSrcReg).addImm(0));
7654
7655    // insert a bcc with opposite CC to ARMCC::MI at the end of BB
7656    BuildMI(BB, dl,
7657      TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
7658      .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
7659
7660    // insert rsbri in RSBBB
7661    // Note: BCC and rsbri will be converted into predicated rsbmi
7662    // by if-conversion pass
7663    BuildMI(*RSBBB, RSBBB->begin(), dl,
7664      TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
7665      .addReg(ABSSrcReg, RegState::Kill)
7666      .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
7667
7668    // insert PHI in SinkBB,
7669    // reuse ABSDstReg to not change uses of ABS instruction
7670    BuildMI(*SinkBB, SinkBB->begin(), dl,
7671      TII->get(ARM::PHI), ABSDstReg)
7672      .addReg(NewRsbDstReg).addMBB(RSBBB)
7673      .addReg(ABSSrcReg).addMBB(BB);
7674
7675    // remove ABS instruction
7676    MI->eraseFromParent();
7677
7678    // return last added BB
7679    return SinkBB;
7680  }
7681  case ARM::COPY_STRUCT_BYVAL_I32:
7682    ++NumLoopByVals;
7683    return EmitStructByval(MI, BB);
7684  }
7685}
7686
7687void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
7688                                                      SDNode *Node) const {
7689  if (!MI->hasPostISelHook()) {
7690    assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
7691           "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'");
7692    return;
7693  }
7694
7695  const MCInstrDesc *MCID = &MI->getDesc();
7696  // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
7697  // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
7698  // operand is still set to noreg. If needed, set the optional operand's
7699  // register to CPSR, and remove the redundant implicit def.
7700  //
7701  // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
7702
7703  // Rename pseudo opcodes.
7704  unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
7705  if (NewOpc) {
7706    const ARMBaseInstrInfo *TII =
7707      static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo());
7708    MCID = &TII->get(NewOpc);
7709
7710    assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
7711           "converted opcode should be the same except for cc_out");
7712
7713    MI->setDesc(*MCID);
7714
7715    // Add the optional cc_out operand
7716    MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
7717  }
7718  unsigned ccOutIdx = MCID->getNumOperands() - 1;
7719
7720  // Any ARM instruction that sets the 's' bit should specify an optional
7721  // "cc_out" operand in the last operand position.
7722  if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
7723    assert(!NewOpc && "Optional cc_out operand required");
7724    return;
7725  }
7726  // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
7727  // since we already have an optional CPSR def.
7728  bool definesCPSR = false;
7729  bool deadCPSR = false;
7730  for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
7731       i != e; ++i) {
7732    const MachineOperand &MO = MI->getOperand(i);
7733    if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
7734      definesCPSR = true;
7735      if (MO.isDead())
7736        deadCPSR = true;
7737      MI->RemoveOperand(i);
7738      break;
7739    }
7740  }
7741  if (!definesCPSR) {
7742    assert(!NewOpc && "Optional cc_out operand required");
7743    return;
7744  }
7745  assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
7746  if (deadCPSR) {
7747    assert(!MI->getOperand(ccOutIdx).getReg() &&
7748           "expect uninitialized optional cc_out operand");
7749    return;
7750  }
7751
7752  // If this instruction was defined with an optional CPSR def and its dag node
7753  // had a live implicit CPSR def, then activate the optional CPSR def.
7754  MachineOperand &MO = MI->getOperand(ccOutIdx);
7755  MO.setReg(ARM::CPSR);
7756  MO.setIsDef(true);
7757}
7758
7759//===----------------------------------------------------------------------===//
7760//                           ARM Optimization Hooks
7761//===----------------------------------------------------------------------===//
7762
7763// Helper function that checks if N is a null or all ones constant.
7764static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
7765  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
7766  if (!C)
7767    return false;
7768  return AllOnes ? C->isAllOnesValue() : C->isNullValue();
7769}
7770
7771// Return true if N is conditionally 0 or all ones.
7772// Detects these expressions where cc is an i1 value:
7773//
7774//   (select cc 0, y)   [AllOnes=0]
7775//   (select cc y, 0)   [AllOnes=0]
7776//   (zext cc)          [AllOnes=0]
7777//   (sext cc)          [AllOnes=0/1]
7778//   (select cc -1, y)  [AllOnes=1]
7779//   (select cc y, -1)  [AllOnes=1]
7780//
7781// Invert is set when N is the null/all ones constant when CC is false.
7782// OtherOp is set to the alternative value of N.
7783static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
7784                                       SDValue &CC, bool &Invert,
7785                                       SDValue &OtherOp,
7786                                       SelectionDAG &DAG) {
7787  switch (N->getOpcode()) {
7788  default: return false;
7789  case ISD::SELECT: {
7790    CC = N->getOperand(0);
7791    SDValue N1 = N->getOperand(1);
7792    SDValue N2 = N->getOperand(2);
7793    if (isZeroOrAllOnes(N1, AllOnes)) {
7794      Invert = false;
7795      OtherOp = N2;
7796      return true;
7797    }
7798    if (isZeroOrAllOnes(N2, AllOnes)) {
7799      Invert = true;
7800      OtherOp = N1;
7801      return true;
7802    }
7803    return false;
7804  }
7805  case ISD::ZERO_EXTEND:
7806    // (zext cc) can never be the all ones value.
7807    if (AllOnes)
7808      return false;
7809    // Fall through.
7810  case ISD::SIGN_EXTEND: {
7811    EVT VT = N->getValueType(0);
7812    CC = N->getOperand(0);
7813    if (CC.getValueType() != MVT::i1)
7814      return false;
7815    Invert = !AllOnes;
7816    if (AllOnes)
7817      // When looking for an AllOnes constant, N is an sext, and the 'other'
7818      // value is 0.
7819      OtherOp = DAG.getConstant(0, VT);
7820    else if (N->getOpcode() == ISD::ZERO_EXTEND)
7821      // When looking for a 0 constant, N can be zext or sext.
7822      OtherOp = DAG.getConstant(1, VT);
7823    else
7824      OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
7825    return true;
7826  }
7827  }
7828}
7829
7830// Combine a constant select operand into its use:
7831//
7832//   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
7833//   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
7834//   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
7835//   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
7836//   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
7837//
7838// The transform is rejected if the select doesn't have a constant operand that
7839// is null, or all ones when AllOnes is set.
7840//
7841// Also recognize sext/zext from i1:
7842//
7843//   (add (zext cc), x) -> (select cc (add x, 1), x)
7844//   (add (sext cc), x) -> (select cc (add x, -1), x)
7845//
7846// These transformations eventually create predicated instructions.
7847//
7848// @param N       The node to transform.
7849// @param Slct    The N operand that is a select.
7850// @param OtherOp The other N operand (x above).
7851// @param DCI     Context.
7852// @param AllOnes Require the select constant to be all ones instead of null.
7853// @returns The new node, or SDValue() on failure.
7854static
7855SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
7856                            TargetLowering::DAGCombinerInfo &DCI,
7857                            bool AllOnes = false) {
7858  SelectionDAG &DAG = DCI.DAG;
7859  EVT VT = N->getValueType(0);
7860  SDValue NonConstantVal;
7861  SDValue CCOp;
7862  bool SwapSelectOps;
7863  if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
7864                                  NonConstantVal, DAG))
7865    return SDValue();
7866
7867  // Slct is now know to be the desired identity constant when CC is true.
7868  SDValue TrueVal = OtherOp;
7869  SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
7870                                 OtherOp, NonConstantVal);
7871  // Unless SwapSelectOps says CC should be false.
7872  if (SwapSelectOps)
7873    std::swap(TrueVal, FalseVal);
7874
7875  return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
7876                     CCOp, TrueVal, FalseVal);
7877}
7878
7879// Attempt combineSelectAndUse on each operand of a commutative operator N.
7880static
7881SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
7882                                       TargetLowering::DAGCombinerInfo &DCI) {
7883  SDValue N0 = N->getOperand(0);
7884  SDValue N1 = N->getOperand(1);
7885  if (N0.getNode()->hasOneUse()) {
7886    SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes);
7887    if (Result.getNode())
7888      return Result;
7889  }
7890  if (N1.getNode()->hasOneUse()) {
7891    SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes);
7892    if (Result.getNode())
7893      return Result;
7894  }
7895  return SDValue();
7896}
7897
7898// AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
7899// (only after legalization).
7900static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
7901                                 TargetLowering::DAGCombinerInfo &DCI,
7902                                 const ARMSubtarget *Subtarget) {
7903
7904  // Only perform optimization if after legalize, and if NEON is available. We
7905  // also expected both operands to be BUILD_VECTORs.
7906  if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
7907      || N0.getOpcode() != ISD::BUILD_VECTOR
7908      || N1.getOpcode() != ISD::BUILD_VECTOR)
7909    return SDValue();
7910
7911  // Check output type since VPADDL operand elements can only be 8, 16, or 32.
7912  EVT VT = N->getValueType(0);
7913  if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
7914    return SDValue();
7915
7916  // Check that the vector operands are of the right form.
7917  // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
7918  // operands, where N is the size of the formed vector.
7919  // Each EXTRACT_VECTOR should have the same input vector and odd or even
7920  // index such that we have a pair wise add pattern.
7921
7922  // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
7923  if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7924    return SDValue();
7925  SDValue Vec = N0->getOperand(0)->getOperand(0);
7926  SDNode *V = Vec.getNode();
7927  unsigned nextIndex = 0;
7928
7929  // For each operands to the ADD which are BUILD_VECTORs,
7930  // check to see if each of their operands are an EXTRACT_VECTOR with
7931  // the same vector and appropriate index.
7932  for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
7933    if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
7934        && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
7935
7936      SDValue ExtVec0 = N0->getOperand(i);
7937      SDValue ExtVec1 = N1->getOperand(i);
7938
7939      // First operand is the vector, verify its the same.
7940      if (V != ExtVec0->getOperand(0).getNode() ||
7941          V != ExtVec1->getOperand(0).getNode())
7942        return SDValue();
7943
7944      // Second is the constant, verify its correct.
7945      ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
7946      ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
7947
7948      // For the constant, we want to see all the even or all the odd.
7949      if (!C0 || !C1 || C0->getZExtValue() != nextIndex
7950          || C1->getZExtValue() != nextIndex+1)
7951        return SDValue();
7952
7953      // Increment index.
7954      nextIndex+=2;
7955    } else
7956      return SDValue();
7957  }
7958
7959  // Create VPADDL node.
7960  SelectionDAG &DAG = DCI.DAG;
7961  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7962
7963  // Build operand list.
7964  SmallVector<SDValue, 8> Ops;
7965  Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
7966                                TLI.getPointerTy()));
7967
7968  // Input is the vector.
7969  Ops.push_back(Vec);
7970
7971  // Get widened type and narrowed type.
7972  MVT widenType;
7973  unsigned numElem = VT.getVectorNumElements();
7974  switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
7975    case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
7976    case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
7977    case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
7978    default:
7979      llvm_unreachable("Invalid vector element type for padd optimization.");
7980  }
7981
7982  SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N),
7983                            widenType, &Ops[0], Ops.size());
7984  return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, tmp);
7985}
7986
7987static SDValue findMUL_LOHI(SDValue V) {
7988  if (V->getOpcode() == ISD::UMUL_LOHI ||
7989      V->getOpcode() == ISD::SMUL_LOHI)
7990    return V;
7991  return SDValue();
7992}
7993
7994static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode,
7995                                     TargetLowering::DAGCombinerInfo &DCI,
7996                                     const ARMSubtarget *Subtarget) {
7997
7998  if (Subtarget->isThumb1Only()) return SDValue();
7999
8000  // Only perform the checks after legalize when the pattern is available.
8001  if (DCI.isBeforeLegalize()) return SDValue();
8002
8003  // Look for multiply add opportunities.
8004  // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
8005  // each add nodes consumes a value from ISD::UMUL_LOHI and there is
8006  // a glue link from the first add to the second add.
8007  // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
8008  // a S/UMLAL instruction.
8009  //          loAdd   UMUL_LOHI
8010  //            \    / :lo    \ :hi
8011  //             \  /          \          [no multiline comment]
8012  //              ADDC         |  hiAdd
8013  //                 \ :glue  /  /
8014  //                  \      /  /
8015  //                    ADDE
8016  //
8017  assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC");
8018  SDValue AddcOp0 = AddcNode->getOperand(0);
8019  SDValue AddcOp1 = AddcNode->getOperand(1);
8020
8021  // Check if the two operands are from the same mul_lohi node.
8022  if (AddcOp0.getNode() == AddcOp1.getNode())
8023    return SDValue();
8024
8025  assert(AddcNode->getNumValues() == 2 &&
8026         AddcNode->getValueType(0) == MVT::i32 &&
8027         "Expect ADDC with two result values. First: i32");
8028
8029  // Check that we have a glued ADDC node.
8030  if (AddcNode->getValueType(1) != MVT::Glue)
8031    return SDValue();
8032
8033  // Check that the ADDC adds the low result of the S/UMUL_LOHI.
8034  if (AddcOp0->getOpcode() != ISD::UMUL_LOHI &&
8035      AddcOp0->getOpcode() != ISD::SMUL_LOHI &&
8036      AddcOp1->getOpcode() != ISD::UMUL_LOHI &&
8037      AddcOp1->getOpcode() != ISD::SMUL_LOHI)
8038    return SDValue();
8039
8040  // Look for the glued ADDE.
8041  SDNode* AddeNode = AddcNode->getGluedUser();
8042  if (AddeNode == NULL)
8043    return SDValue();
8044
8045  // Make sure it is really an ADDE.
8046  if (AddeNode->getOpcode() != ISD::ADDE)
8047    return SDValue();
8048
8049  assert(AddeNode->getNumOperands() == 3 &&
8050         AddeNode->getOperand(2).getValueType() == MVT::Glue &&
8051         "ADDE node has the wrong inputs");
8052
8053  // Check for the triangle shape.
8054  SDValue AddeOp0 = AddeNode->getOperand(0);
8055  SDValue AddeOp1 = AddeNode->getOperand(1);
8056
8057  // Make sure that the ADDE operands are not coming from the same node.
8058  if (AddeOp0.getNode() == AddeOp1.getNode())
8059    return SDValue();
8060
8061  // Find the MUL_LOHI node walking up ADDE's operands.
8062  bool IsLeftOperandMUL = false;
8063  SDValue MULOp = findMUL_LOHI(AddeOp0);
8064  if (MULOp == SDValue())
8065   MULOp = findMUL_LOHI(AddeOp1);
8066  else
8067    IsLeftOperandMUL = true;
8068  if (MULOp == SDValue())
8069     return SDValue();
8070
8071  // Figure out the right opcode.
8072  unsigned Opc = MULOp->getOpcode();
8073  unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
8074
8075  // Figure out the high and low input values to the MLAL node.
8076  SDValue* HiMul = &MULOp;
8077  SDValue* HiAdd = NULL;
8078  SDValue* LoMul = NULL;
8079  SDValue* LowAdd = NULL;
8080
8081  if (IsLeftOperandMUL)
8082    HiAdd = &AddeOp1;
8083  else
8084    HiAdd = &AddeOp0;
8085
8086
8087  if (AddcOp0->getOpcode() == Opc) {
8088    LoMul = &AddcOp0;
8089    LowAdd = &AddcOp1;
8090  }
8091  if (AddcOp1->getOpcode() == Opc) {
8092    LoMul = &AddcOp1;
8093    LowAdd = &AddcOp0;
8094  }
8095
8096  if (LoMul == NULL)
8097    return SDValue();
8098
8099  if (LoMul->getNode() != HiMul->getNode())
8100    return SDValue();
8101
8102  // Create the merged node.
8103  SelectionDAG &DAG = DCI.DAG;
8104
8105  // Build operand list.
8106  SmallVector<SDValue, 8> Ops;
8107  Ops.push_back(LoMul->getOperand(0));
8108  Ops.push_back(LoMul->getOperand(1));
8109  Ops.push_back(*LowAdd);
8110  Ops.push_back(*HiAdd);
8111
8112  SDValue MLALNode =  DAG.getNode(FinalOpc, SDLoc(AddcNode),
8113                                 DAG.getVTList(MVT::i32, MVT::i32),
8114                                 &Ops[0], Ops.size());
8115
8116  // Replace the ADDs' nodes uses by the MLA node's values.
8117  SDValue HiMLALResult(MLALNode.getNode(), 1);
8118  DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
8119
8120  SDValue LoMLALResult(MLALNode.getNode(), 0);
8121  DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
8122
8123  // Return original node to notify the driver to stop replacing.
8124  SDValue resNode(AddcNode, 0);
8125  return resNode;
8126}
8127
8128/// PerformADDCCombine - Target-specific dag combine transform from
8129/// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL.
8130static SDValue PerformADDCCombine(SDNode *N,
8131                                 TargetLowering::DAGCombinerInfo &DCI,
8132                                 const ARMSubtarget *Subtarget) {
8133
8134  return AddCombineTo64bitMLAL(N, DCI, Subtarget);
8135
8136}
8137
8138/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
8139/// operands N0 and N1.  This is a helper for PerformADDCombine that is
8140/// called with the default operands, and if that fails, with commuted
8141/// operands.
8142static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
8143                                          TargetLowering::DAGCombinerInfo &DCI,
8144                                          const ARMSubtarget *Subtarget){
8145
8146  // Attempt to create vpaddl for this add.
8147  SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
8148  if (Result.getNode())
8149    return Result;
8150
8151  // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
8152  if (N0.getNode()->hasOneUse()) {
8153    SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
8154    if (Result.getNode()) return Result;
8155  }
8156  return SDValue();
8157}
8158
8159/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
8160///
8161static SDValue PerformADDCombine(SDNode *N,
8162                                 TargetLowering::DAGCombinerInfo &DCI,
8163                                 const ARMSubtarget *Subtarget) {
8164  SDValue N0 = N->getOperand(0);
8165  SDValue N1 = N->getOperand(1);
8166
8167  // First try with the default operand order.
8168  SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
8169  if (Result.getNode())
8170    return Result;
8171
8172  // If that didn't work, try again with the operands commuted.
8173  return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
8174}
8175
8176/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
8177///
8178static SDValue PerformSUBCombine(SDNode *N,
8179                                 TargetLowering::DAGCombinerInfo &DCI) {
8180  SDValue N0 = N->getOperand(0);
8181  SDValue N1 = N->getOperand(1);
8182
8183  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
8184  if (N1.getNode()->hasOneUse()) {
8185    SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
8186    if (Result.getNode()) return Result;
8187  }
8188
8189  return SDValue();
8190}
8191
8192/// PerformVMULCombine
8193/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
8194/// special multiplier accumulator forwarding.
8195///   vmul d3, d0, d2
8196///   vmla d3, d1, d2
8197/// is faster than
8198///   vadd d3, d0, d1
8199///   vmul d3, d3, d2
8200static SDValue PerformVMULCombine(SDNode *N,
8201                                  TargetLowering::DAGCombinerInfo &DCI,
8202                                  const ARMSubtarget *Subtarget) {
8203  if (!Subtarget->hasVMLxForwarding())
8204    return SDValue();
8205
8206  SelectionDAG &DAG = DCI.DAG;
8207  SDValue N0 = N->getOperand(0);
8208  SDValue N1 = N->getOperand(1);
8209  unsigned Opcode = N0.getOpcode();
8210  if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
8211      Opcode != ISD::FADD && Opcode != ISD::FSUB) {
8212    Opcode = N1.getOpcode();
8213    if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
8214        Opcode != ISD::FADD && Opcode != ISD::FSUB)
8215      return SDValue();
8216    std::swap(N0, N1);
8217  }
8218
8219  EVT VT = N->getValueType(0);
8220  SDLoc DL(N);
8221  SDValue N00 = N0->getOperand(0);
8222  SDValue N01 = N0->getOperand(1);
8223  return DAG.getNode(Opcode, DL, VT,
8224                     DAG.getNode(ISD::MUL, DL, VT, N00, N1),
8225                     DAG.getNode(ISD::MUL, DL, VT, N01, N1));
8226}
8227
8228static SDValue PerformMULCombine(SDNode *N,
8229                                 TargetLowering::DAGCombinerInfo &DCI,
8230                                 const ARMSubtarget *Subtarget) {
8231  SelectionDAG &DAG = DCI.DAG;
8232
8233  if (Subtarget->isThumb1Only())
8234    return SDValue();
8235
8236  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
8237    return SDValue();
8238
8239  EVT VT = N->getValueType(0);
8240  if (VT.is64BitVector() || VT.is128BitVector())
8241    return PerformVMULCombine(N, DCI, Subtarget);
8242  if (VT != MVT::i32)
8243    return SDValue();
8244
8245  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
8246  if (!C)
8247    return SDValue();
8248
8249  int64_t MulAmt = C->getSExtValue();
8250  unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
8251
8252  ShiftAmt = ShiftAmt & (32 - 1);
8253  SDValue V = N->getOperand(0);
8254  SDLoc DL(N);
8255
8256  SDValue Res;
8257  MulAmt >>= ShiftAmt;
8258
8259  if (MulAmt >= 0) {
8260    if (isPowerOf2_32(MulAmt - 1)) {
8261      // (mul x, 2^N + 1) => (add (shl x, N), x)
8262      Res = DAG.getNode(ISD::ADD, DL, VT,
8263                        V,
8264                        DAG.getNode(ISD::SHL, DL, VT,
8265                                    V,
8266                                    DAG.getConstant(Log2_32(MulAmt - 1),
8267                                                    MVT::i32)));
8268    } else if (isPowerOf2_32(MulAmt + 1)) {
8269      // (mul x, 2^N - 1) => (sub (shl x, N), x)
8270      Res = DAG.getNode(ISD::SUB, DL, VT,
8271                        DAG.getNode(ISD::SHL, DL, VT,
8272                                    V,
8273                                    DAG.getConstant(Log2_32(MulAmt + 1),
8274                                                    MVT::i32)),
8275                        V);
8276    } else
8277      return SDValue();
8278  } else {
8279    uint64_t MulAmtAbs = -MulAmt;
8280    if (isPowerOf2_32(MulAmtAbs + 1)) {
8281      // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
8282      Res = DAG.getNode(ISD::SUB, DL, VT,
8283                        V,
8284                        DAG.getNode(ISD::SHL, DL, VT,
8285                                    V,
8286                                    DAG.getConstant(Log2_32(MulAmtAbs + 1),
8287                                                    MVT::i32)));
8288    } else if (isPowerOf2_32(MulAmtAbs - 1)) {
8289      // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
8290      Res = DAG.getNode(ISD::ADD, DL, VT,
8291                        V,
8292                        DAG.getNode(ISD::SHL, DL, VT,
8293                                    V,
8294                                    DAG.getConstant(Log2_32(MulAmtAbs-1),
8295                                                    MVT::i32)));
8296      Res = DAG.getNode(ISD::SUB, DL, VT,
8297                        DAG.getConstant(0, MVT::i32),Res);
8298
8299    } else
8300      return SDValue();
8301  }
8302
8303  if (ShiftAmt != 0)
8304    Res = DAG.getNode(ISD::SHL, DL, VT,
8305                      Res, DAG.getConstant(ShiftAmt, MVT::i32));
8306
8307  // Do not add new nodes to DAG combiner worklist.
8308  DCI.CombineTo(N, Res, false);
8309  return SDValue();
8310}
8311
8312static SDValue PerformANDCombine(SDNode *N,
8313                                 TargetLowering::DAGCombinerInfo &DCI,
8314                                 const ARMSubtarget *Subtarget) {
8315
8316  // Attempt to use immediate-form VBIC
8317  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
8318  SDLoc dl(N);
8319  EVT VT = N->getValueType(0);
8320  SelectionDAG &DAG = DCI.DAG;
8321
8322  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
8323    return SDValue();
8324
8325  APInt SplatBits, SplatUndef;
8326  unsigned SplatBitSize;
8327  bool HasAnyUndefs;
8328  if (BVN &&
8329      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
8330    if (SplatBitSize <= 64) {
8331      EVT VbicVT;
8332      SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
8333                                      SplatUndef.getZExtValue(), SplatBitSize,
8334                                      DAG, VbicVT, VT.is128BitVector(),
8335                                      OtherModImm);
8336      if (Val.getNode()) {
8337        SDValue Input =
8338          DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
8339        SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
8340        return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
8341      }
8342    }
8343  }
8344
8345  if (!Subtarget->isThumb1Only()) {
8346    // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
8347    SDValue Result = combineSelectAndUseCommutative(N, true, DCI);
8348    if (Result.getNode())
8349      return Result;
8350  }
8351
8352  return SDValue();
8353}
8354
8355/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
8356static SDValue PerformORCombine(SDNode *N,
8357                                TargetLowering::DAGCombinerInfo &DCI,
8358                                const ARMSubtarget *Subtarget) {
8359  // Attempt to use immediate-form VORR
8360  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
8361  SDLoc dl(N);
8362  EVT VT = N->getValueType(0);
8363  SelectionDAG &DAG = DCI.DAG;
8364
8365  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
8366    return SDValue();
8367
8368  APInt SplatBits, SplatUndef;
8369  unsigned SplatBitSize;
8370  bool HasAnyUndefs;
8371  if (BVN && Subtarget->hasNEON() &&
8372      BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
8373    if (SplatBitSize <= 64) {
8374      EVT VorrVT;
8375      SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
8376                                      SplatUndef.getZExtValue(), SplatBitSize,
8377                                      DAG, VorrVT, VT.is128BitVector(),
8378                                      OtherModImm);
8379      if (Val.getNode()) {
8380        SDValue Input =
8381          DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
8382        SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
8383        return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
8384      }
8385    }
8386  }
8387
8388  if (!Subtarget->isThumb1Only()) {
8389    // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
8390    SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
8391    if (Result.getNode())
8392      return Result;
8393  }
8394
8395  // The code below optimizes (or (and X, Y), Z).
8396  // The AND operand needs to have a single user to make these optimizations
8397  // profitable.
8398  SDValue N0 = N->getOperand(0);
8399  if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
8400    return SDValue();
8401  SDValue N1 = N->getOperand(1);
8402
8403  // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
8404  if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
8405      DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
8406    APInt SplatUndef;
8407    unsigned SplatBitSize;
8408    bool HasAnyUndefs;
8409
8410    APInt SplatBits0, SplatBits1;
8411    BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
8412    BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
8413    // Ensure that the second operand of both ands are constants
8414    if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
8415                                      HasAnyUndefs) && !HasAnyUndefs) {
8416        if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
8417                                          HasAnyUndefs) && !HasAnyUndefs) {
8418            // Ensure that the bit width of the constants are the same and that
8419            // the splat arguments are logical inverses as per the pattern we
8420            // are trying to simplify.
8421            if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
8422                SplatBits0 == ~SplatBits1) {
8423                // Canonicalize the vector type to make instruction selection
8424                // simpler.
8425                EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
8426                SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
8427                                             N0->getOperand(1),
8428                                             N0->getOperand(0),
8429                                             N1->getOperand(0));
8430                return DAG.getNode(ISD::BITCAST, dl, VT, Result);
8431            }
8432        }
8433    }
8434  }
8435
8436  // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
8437  // reasonable.
8438
8439  // BFI is only available on V6T2+
8440  if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
8441    return SDValue();
8442
8443  SDLoc DL(N);
8444  // 1) or (and A, mask), val => ARMbfi A, val, mask
8445  //      iff (val & mask) == val
8446  //
8447  // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
8448  //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
8449  //          && mask == ~mask2
8450  //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
8451  //          && ~mask == mask2
8452  //  (i.e., copy a bitfield value into another bitfield of the same width)
8453
8454  if (VT != MVT::i32)
8455    return SDValue();
8456
8457  SDValue N00 = N0.getOperand(0);
8458
8459  // The value and the mask need to be constants so we can verify this is
8460  // actually a bitfield set. If the mask is 0xffff, we can do better
8461  // via a movt instruction, so don't use BFI in that case.
8462  SDValue MaskOp = N0.getOperand(1);
8463  ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
8464  if (!MaskC)
8465    return SDValue();
8466  unsigned Mask = MaskC->getZExtValue();
8467  if (Mask == 0xffff)
8468    return SDValue();
8469  SDValue Res;
8470  // Case (1): or (and A, mask), val => ARMbfi A, val, mask
8471  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
8472  if (N1C) {
8473    unsigned Val = N1C->getZExtValue();
8474    if ((Val & ~Mask) != Val)
8475      return SDValue();
8476
8477    if (ARM::isBitFieldInvertedMask(Mask)) {
8478      Val >>= countTrailingZeros(~Mask);
8479
8480      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
8481                        DAG.getConstant(Val, MVT::i32),
8482                        DAG.getConstant(Mask, MVT::i32));
8483
8484      // Do not add new nodes to DAG combiner worklist.
8485      DCI.CombineTo(N, Res, false);
8486      return SDValue();
8487    }
8488  } else if (N1.getOpcode() == ISD::AND) {
8489    // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
8490    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
8491    if (!N11C)
8492      return SDValue();
8493    unsigned Mask2 = N11C->getZExtValue();
8494
8495    // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
8496    // as is to match.
8497    if (ARM::isBitFieldInvertedMask(Mask) &&
8498        (Mask == ~Mask2)) {
8499      // The pack halfword instruction works better for masks that fit it,
8500      // so use that when it's available.
8501      if (Subtarget->hasT2ExtractPack() &&
8502          (Mask == 0xffff || Mask == 0xffff0000))
8503        return SDValue();
8504      // 2a
8505      unsigned amt = countTrailingZeros(Mask2);
8506      Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
8507                        DAG.getConstant(amt, MVT::i32));
8508      Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
8509                        DAG.getConstant(Mask, MVT::i32));
8510      // Do not add new nodes to DAG combiner worklist.
8511      DCI.CombineTo(N, Res, false);
8512      return SDValue();
8513    } else if (ARM::isBitFieldInvertedMask(~Mask) &&
8514               (~Mask == Mask2)) {
8515      // The pack halfword instruction works better for masks that fit it,
8516      // so use that when it's available.
8517      if (Subtarget->hasT2ExtractPack() &&
8518          (Mask2 == 0xffff || Mask2 == 0xffff0000))
8519        return SDValue();
8520      // 2b
8521      unsigned lsb = countTrailingZeros(Mask);
8522      Res = DAG.getNode(ISD::SRL, DL, VT, N00,
8523                        DAG.getConstant(lsb, MVT::i32));
8524      Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
8525                        DAG.getConstant(Mask2, MVT::i32));
8526      // Do not add new nodes to DAG combiner worklist.
8527      DCI.CombineTo(N, Res, false);
8528      return SDValue();
8529    }
8530  }
8531
8532  if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
8533      N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
8534      ARM::isBitFieldInvertedMask(~Mask)) {
8535    // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
8536    // where lsb(mask) == #shamt and masked bits of B are known zero.
8537    SDValue ShAmt = N00.getOperand(1);
8538    unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
8539    unsigned LSB = countTrailingZeros(Mask);
8540    if (ShAmtC != LSB)
8541      return SDValue();
8542
8543    Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
8544                      DAG.getConstant(~Mask, MVT::i32));
8545
8546    // Do not add new nodes to DAG combiner worklist.
8547    DCI.CombineTo(N, Res, false);
8548  }
8549
8550  return SDValue();
8551}
8552
8553static SDValue PerformXORCombine(SDNode *N,
8554                                 TargetLowering::DAGCombinerInfo &DCI,
8555                                 const ARMSubtarget *Subtarget) {
8556  EVT VT = N->getValueType(0);
8557  SelectionDAG &DAG = DCI.DAG;
8558
8559  if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
8560    return SDValue();
8561
8562  if (!Subtarget->isThumb1Only()) {
8563    // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
8564    SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
8565    if (Result.getNode())
8566      return Result;
8567  }
8568
8569  return SDValue();
8570}
8571
8572/// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
8573/// the bits being cleared by the AND are not demanded by the BFI.
8574static SDValue PerformBFICombine(SDNode *N,
8575                                 TargetLowering::DAGCombinerInfo &DCI) {
8576  SDValue N1 = N->getOperand(1);
8577  if (N1.getOpcode() == ISD::AND) {
8578    ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
8579    if (!N11C)
8580      return SDValue();
8581    unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
8582    unsigned LSB = countTrailingZeros(~InvMask);
8583    unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
8584    unsigned Mask = (1 << Width)-1;
8585    unsigned Mask2 = N11C->getZExtValue();
8586    if ((Mask & (~Mask2)) == 0)
8587      return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
8588                             N->getOperand(0), N1.getOperand(0),
8589                             N->getOperand(2));
8590  }
8591  return SDValue();
8592}
8593
8594/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
8595/// ARMISD::VMOVRRD.
8596static SDValue PerformVMOVRRDCombine(SDNode *N,
8597                                     TargetLowering::DAGCombinerInfo &DCI) {
8598  // vmovrrd(vmovdrr x, y) -> x,y
8599  SDValue InDouble = N->getOperand(0);
8600  if (InDouble.getOpcode() == ARMISD::VMOVDRR)
8601    return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
8602
8603  // vmovrrd(load f64) -> (load i32), (load i32)
8604  SDNode *InNode = InDouble.getNode();
8605  if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
8606      InNode->getValueType(0) == MVT::f64 &&
8607      InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
8608      !cast<LoadSDNode>(InNode)->isVolatile()) {
8609    // TODO: Should this be done for non-FrameIndex operands?
8610    LoadSDNode *LD = cast<LoadSDNode>(InNode);
8611
8612    SelectionDAG &DAG = DCI.DAG;
8613    SDLoc DL(LD);
8614    SDValue BasePtr = LD->getBasePtr();
8615    SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
8616                                 LD->getPointerInfo(), LD->isVolatile(),
8617                                 LD->isNonTemporal(), LD->isInvariant(),
8618                                 LD->getAlignment());
8619
8620    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
8621                                    DAG.getConstant(4, MVT::i32));
8622    SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
8623                                 LD->getPointerInfo(), LD->isVolatile(),
8624                                 LD->isNonTemporal(), LD->isInvariant(),
8625                                 std::min(4U, LD->getAlignment() / 2));
8626
8627    DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
8628    SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
8629    DCI.RemoveFromWorklist(LD);
8630    DAG.DeleteNode(LD);
8631    return Result;
8632  }
8633
8634  return SDValue();
8635}
8636
8637/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
8638/// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
8639static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
8640  // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
8641  SDValue Op0 = N->getOperand(0);
8642  SDValue Op1 = N->getOperand(1);
8643  if (Op0.getOpcode() == ISD::BITCAST)
8644    Op0 = Op0.getOperand(0);
8645  if (Op1.getOpcode() == ISD::BITCAST)
8646    Op1 = Op1.getOperand(0);
8647  if (Op0.getOpcode() == ARMISD::VMOVRRD &&
8648      Op0.getNode() == Op1.getNode() &&
8649      Op0.getResNo() == 0 && Op1.getResNo() == 1)
8650    return DAG.getNode(ISD::BITCAST, SDLoc(N),
8651                       N->getValueType(0), Op0.getOperand(0));
8652  return SDValue();
8653}
8654
8655/// PerformSTORECombine - Target-specific dag combine xforms for
8656/// ISD::STORE.
8657static SDValue PerformSTORECombine(SDNode *N,
8658                                   TargetLowering::DAGCombinerInfo &DCI) {
8659  StoreSDNode *St = cast<StoreSDNode>(N);
8660  if (St->isVolatile())
8661    return SDValue();
8662
8663  // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
8664  // pack all of the elements in one place.  Next, store to memory in fewer
8665  // chunks.
8666  SDValue StVal = St->getValue();
8667  EVT VT = StVal.getValueType();
8668  if (St->isTruncatingStore() && VT.isVector()) {
8669    SelectionDAG &DAG = DCI.DAG;
8670    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8671    EVT StVT = St->getMemoryVT();
8672    unsigned NumElems = VT.getVectorNumElements();
8673    assert(StVT != VT && "Cannot truncate to the same type");
8674    unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
8675    unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
8676
8677    // From, To sizes and ElemCount must be pow of two
8678    if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
8679
8680    // We are going to use the original vector elt for storing.
8681    // Accumulated smaller vector elements must be a multiple of the store size.
8682    if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
8683
8684    unsigned SizeRatio  = FromEltSz / ToEltSz;
8685    assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
8686
8687    // Create a type on which we perform the shuffle.
8688    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
8689                                     NumElems*SizeRatio);
8690    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
8691
8692    SDLoc DL(St);
8693    SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
8694    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
8695    for (unsigned i = 0; i < NumElems; ++i) ShuffleVec[i] = i * SizeRatio;
8696
8697    // Can't shuffle using an illegal type.
8698    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
8699
8700    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
8701                                DAG.getUNDEF(WideVec.getValueType()),
8702                                ShuffleVec.data());
8703    // At this point all of the data is stored at the bottom of the
8704    // register. We now need to save it to mem.
8705
8706    // Find the largest store unit
8707    MVT StoreType = MVT::i8;
8708    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
8709         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
8710      MVT Tp = (MVT::SimpleValueType)tp;
8711      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
8712        StoreType = Tp;
8713    }
8714    // Didn't find a legal store type.
8715    if (!TLI.isTypeLegal(StoreType))
8716      return SDValue();
8717
8718    // Bitcast the original vector into a vector of store-size units
8719    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
8720            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
8721    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
8722    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
8723    SmallVector<SDValue, 8> Chains;
8724    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
8725                                        TLI.getPointerTy());
8726    SDValue BasePtr = St->getBasePtr();
8727
8728    // Perform one or more big stores into memory.
8729    unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
8730    for (unsigned I = 0; I < E; I++) {
8731      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
8732                                   StoreType, ShuffWide,
8733                                   DAG.getIntPtrConstant(I));
8734      SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
8735                                St->getPointerInfo(), St->isVolatile(),
8736                                St->isNonTemporal(), St->getAlignment());
8737      BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
8738                            Increment);
8739      Chains.push_back(Ch);
8740    }
8741    return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &Chains[0],
8742                       Chains.size());
8743  }
8744
8745  if (!ISD::isNormalStore(St))
8746    return SDValue();
8747
8748  // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
8749  // ARM stores of arguments in the same cache line.
8750  if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
8751      StVal.getNode()->hasOneUse()) {
8752    SelectionDAG  &DAG = DCI.DAG;
8753    SDLoc DL(St);
8754    SDValue BasePtr = St->getBasePtr();
8755    SDValue NewST1 = DAG.getStore(St->getChain(), DL,
8756                                  StVal.getNode()->getOperand(0), BasePtr,
8757                                  St->getPointerInfo(), St->isVolatile(),
8758                                  St->isNonTemporal(), St->getAlignment());
8759
8760    SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
8761                                    DAG.getConstant(4, MVT::i32));
8762    return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
8763                        OffsetPtr, St->getPointerInfo(), St->isVolatile(),
8764                        St->isNonTemporal(),
8765                        std::min(4U, St->getAlignment() / 2));
8766  }
8767
8768  if (StVal.getValueType() != MVT::i64 ||
8769      StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8770    return SDValue();
8771
8772  // Bitcast an i64 store extracted from a vector to f64.
8773  // Otherwise, the i64 value will be legalized to a pair of i32 values.
8774  SelectionDAG &DAG = DCI.DAG;
8775  SDLoc dl(StVal);
8776  SDValue IntVec = StVal.getOperand(0);
8777  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
8778                                 IntVec.getValueType().getVectorNumElements());
8779  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
8780  SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8781                               Vec, StVal.getOperand(1));
8782  dl = SDLoc(N);
8783  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
8784  // Make the DAGCombiner fold the bitcasts.
8785  DCI.AddToWorklist(Vec.getNode());
8786  DCI.AddToWorklist(ExtElt.getNode());
8787  DCI.AddToWorklist(V.getNode());
8788  return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
8789                      St->getPointerInfo(), St->isVolatile(),
8790                      St->isNonTemporal(), St->getAlignment(),
8791                      St->getTBAAInfo());
8792}
8793
8794/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
8795/// are normal, non-volatile loads.  If so, it is profitable to bitcast an
8796/// i64 vector to have f64 elements, since the value can then be loaded
8797/// directly into a VFP register.
8798static bool hasNormalLoadOperand(SDNode *N) {
8799  unsigned NumElts = N->getValueType(0).getVectorNumElements();
8800  for (unsigned i = 0; i < NumElts; ++i) {
8801    SDNode *Elt = N->getOperand(i).getNode();
8802    if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
8803      return true;
8804  }
8805  return false;
8806}
8807
8808/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
8809/// ISD::BUILD_VECTOR.
8810static SDValue PerformBUILD_VECTORCombine(SDNode *N,
8811                                          TargetLowering::DAGCombinerInfo &DCI){
8812  // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
8813  // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
8814  // into a pair of GPRs, which is fine when the value is used as a scalar,
8815  // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
8816  SelectionDAG &DAG = DCI.DAG;
8817  if (N->getNumOperands() == 2) {
8818    SDValue RV = PerformVMOVDRRCombine(N, DAG);
8819    if (RV.getNode())
8820      return RV;
8821  }
8822
8823  // Load i64 elements as f64 values so that type legalization does not split
8824  // them up into i32 values.
8825  EVT VT = N->getValueType(0);
8826  if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
8827    return SDValue();
8828  SDLoc dl(N);
8829  SmallVector<SDValue, 8> Ops;
8830  unsigned NumElts = VT.getVectorNumElements();
8831  for (unsigned i = 0; i < NumElts; ++i) {
8832    SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
8833    Ops.push_back(V);
8834    // Make the DAGCombiner fold the bitcast.
8835    DCI.AddToWorklist(V.getNode());
8836  }
8837  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
8838  SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
8839  return DAG.getNode(ISD::BITCAST, dl, VT, BV);
8840}
8841
8842/// \brief Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
8843static SDValue
8844PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
8845  // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
8846  // At that time, we may have inserted bitcasts from integer to float.
8847  // If these bitcasts have survived DAGCombine, change the lowering of this
8848  // BUILD_VECTOR in something more vector friendly, i.e., that does not
8849  // force to use floating point types.
8850
8851  // Make sure we can change the type of the vector.
8852  // This is possible iff:
8853  // 1. The vector is only used in a bitcast to a integer type. I.e.,
8854  //    1.1. Vector is used only once.
8855  //    1.2. Use is a bit convert to an integer type.
8856  // 2. The size of its operands are 32-bits (64-bits are not legal).
8857  EVT VT = N->getValueType(0);
8858  EVT EltVT = VT.getVectorElementType();
8859
8860  // Check 1.1. and 2.
8861  if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
8862    return SDValue();
8863
8864  // By construction, the input type must be float.
8865  assert(EltVT == MVT::f32 && "Unexpected type!");
8866
8867  // Check 1.2.
8868  SDNode *Use = *N->use_begin();
8869  if (Use->getOpcode() != ISD::BITCAST ||
8870      Use->getValueType(0).isFloatingPoint())
8871    return SDValue();
8872
8873  // Check profitability.
8874  // Model is, if more than half of the relevant operands are bitcast from
8875  // i32, turn the build_vector into a sequence of insert_vector_elt.
8876  // Relevant operands are everything that is not statically
8877  // (i.e., at compile time) bitcasted.
8878  unsigned NumOfBitCastedElts = 0;
8879  unsigned NumElts = VT.getVectorNumElements();
8880  unsigned NumOfRelevantElts = NumElts;
8881  for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
8882    SDValue Elt = N->getOperand(Idx);
8883    if (Elt->getOpcode() == ISD::BITCAST) {
8884      // Assume only bit cast to i32 will go away.
8885      if (Elt->getOperand(0).getValueType() == MVT::i32)
8886        ++NumOfBitCastedElts;
8887    } else if (Elt.getOpcode() == ISD::UNDEF || isa<ConstantSDNode>(Elt))
8888      // Constants are statically casted, thus do not count them as
8889      // relevant operands.
8890      --NumOfRelevantElts;
8891  }
8892
8893  // Check if more than half of the elements require a non-free bitcast.
8894  if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
8895    return SDValue();
8896
8897  SelectionDAG &DAG = DCI.DAG;
8898  // Create the new vector type.
8899  EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
8900  // Check if the type is legal.
8901  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8902  if (!TLI.isTypeLegal(VecVT))
8903    return SDValue();
8904
8905  // Combine:
8906  // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
8907  // => BITCAST INSERT_VECTOR_ELT
8908  //                      (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
8909  //                      (BITCAST EN), N.
8910  SDValue Vec = DAG.getUNDEF(VecVT);
8911  SDLoc dl(N);
8912  for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
8913    SDValue V = N->getOperand(Idx);
8914    if (V.getOpcode() == ISD::UNDEF)
8915      continue;
8916    if (V.getOpcode() == ISD::BITCAST &&
8917        V->getOperand(0).getValueType() == MVT::i32)
8918      // Fold obvious case.
8919      V = V.getOperand(0);
8920    else {
8921      V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
8922      // Make the DAGCombiner fold the bitcasts.
8923      DCI.AddToWorklist(V.getNode());
8924    }
8925    SDValue LaneIdx = DAG.getConstant(Idx, MVT::i32);
8926    Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
8927  }
8928  Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
8929  // Make the DAGCombiner fold the bitcasts.
8930  DCI.AddToWorklist(Vec.getNode());
8931  return Vec;
8932}
8933
8934/// PerformInsertEltCombine - Target-specific dag combine xforms for
8935/// ISD::INSERT_VECTOR_ELT.
8936static SDValue PerformInsertEltCombine(SDNode *N,
8937                                       TargetLowering::DAGCombinerInfo &DCI) {
8938  // Bitcast an i64 load inserted into a vector to f64.
8939  // Otherwise, the i64 value will be legalized to a pair of i32 values.
8940  EVT VT = N->getValueType(0);
8941  SDNode *Elt = N->getOperand(1).getNode();
8942  if (VT.getVectorElementType() != MVT::i64 ||
8943      !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
8944    return SDValue();
8945
8946  SelectionDAG &DAG = DCI.DAG;
8947  SDLoc dl(N);
8948  EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
8949                                 VT.getVectorNumElements());
8950  SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
8951  SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
8952  // Make the DAGCombiner fold the bitcasts.
8953  DCI.AddToWorklist(Vec.getNode());
8954  DCI.AddToWorklist(V.getNode());
8955  SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
8956                               Vec, V, N->getOperand(2));
8957  return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
8958}
8959
8960/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
8961/// ISD::VECTOR_SHUFFLE.
8962static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
8963  // The LLVM shufflevector instruction does not require the shuffle mask
8964  // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
8965  // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
8966  // operands do not match the mask length, they are extended by concatenating
8967  // them with undef vectors.  That is probably the right thing for other
8968  // targets, but for NEON it is better to concatenate two double-register
8969  // size vector operands into a single quad-register size vector.  Do that
8970  // transformation here:
8971  //   shuffle(concat(v1, undef), concat(v2, undef)) ->
8972  //   shuffle(concat(v1, v2), undef)
8973  SDValue Op0 = N->getOperand(0);
8974  SDValue Op1 = N->getOperand(1);
8975  if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
8976      Op1.getOpcode() != ISD::CONCAT_VECTORS ||
8977      Op0.getNumOperands() != 2 ||
8978      Op1.getNumOperands() != 2)
8979    return SDValue();
8980  SDValue Concat0Op1 = Op0.getOperand(1);
8981  SDValue Concat1Op1 = Op1.getOperand(1);
8982  if (Concat0Op1.getOpcode() != ISD::UNDEF ||
8983      Concat1Op1.getOpcode() != ISD::UNDEF)
8984    return SDValue();
8985  // Skip the transformation if any of the types are illegal.
8986  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8987  EVT VT = N->getValueType(0);
8988  if (!TLI.isTypeLegal(VT) ||
8989      !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
8990      !TLI.isTypeLegal(Concat1Op1.getValueType()))
8991    return SDValue();
8992
8993  SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
8994                                  Op0.getOperand(0), Op1.getOperand(0));
8995  // Translate the shuffle mask.
8996  SmallVector<int, 16> NewMask;
8997  unsigned NumElts = VT.getVectorNumElements();
8998  unsigned HalfElts = NumElts/2;
8999  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9000  for (unsigned n = 0; n < NumElts; ++n) {
9001    int MaskElt = SVN->getMaskElt(n);
9002    int NewElt = -1;
9003    if (MaskElt < (int)HalfElts)
9004      NewElt = MaskElt;
9005    else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
9006      NewElt = HalfElts + MaskElt - NumElts;
9007    NewMask.push_back(NewElt);
9008  }
9009  return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
9010                              DAG.getUNDEF(VT), NewMask.data());
9011}
9012
9013/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
9014/// NEON load/store intrinsics to merge base address updates.
9015static SDValue CombineBaseUpdate(SDNode *N,
9016                                 TargetLowering::DAGCombinerInfo &DCI) {
9017  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9018    return SDValue();
9019
9020  SelectionDAG &DAG = DCI.DAG;
9021  bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
9022                      N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
9023  unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
9024  SDValue Addr = N->getOperand(AddrOpIdx);
9025
9026  // Search for a use of the address operand that is an increment.
9027  for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
9028         UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
9029    SDNode *User = *UI;
9030    if (User->getOpcode() != ISD::ADD ||
9031        UI.getUse().getResNo() != Addr.getResNo())
9032      continue;
9033
9034    // Check that the add is independent of the load/store.  Otherwise, folding
9035    // it would create a cycle.
9036    if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
9037      continue;
9038
9039    // Find the new opcode for the updating load/store.
9040    bool isLoad = true;
9041    bool isLaneOp = false;
9042    unsigned NewOpc = 0;
9043    unsigned NumVecs = 0;
9044    if (isIntrinsic) {
9045      unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9046      switch (IntNo) {
9047      default: llvm_unreachable("unexpected intrinsic for Neon base update");
9048      case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
9049        NumVecs = 1; break;
9050      case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
9051        NumVecs = 2; break;
9052      case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
9053        NumVecs = 3; break;
9054      case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
9055        NumVecs = 4; break;
9056      case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
9057        NumVecs = 2; isLaneOp = true; break;
9058      case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
9059        NumVecs = 3; isLaneOp = true; break;
9060      case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
9061        NumVecs = 4; isLaneOp = true; break;
9062      case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
9063        NumVecs = 1; isLoad = false; break;
9064      case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
9065        NumVecs = 2; isLoad = false; break;
9066      case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
9067        NumVecs = 3; isLoad = false; break;
9068      case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
9069        NumVecs = 4; isLoad = false; break;
9070      case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
9071        NumVecs = 2; isLoad = false; isLaneOp = true; break;
9072      case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
9073        NumVecs = 3; isLoad = false; isLaneOp = true; break;
9074      case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
9075        NumVecs = 4; isLoad = false; isLaneOp = true; break;
9076      }
9077    } else {
9078      isLaneOp = true;
9079      switch (N->getOpcode()) {
9080      default: llvm_unreachable("unexpected opcode for Neon base update");
9081      case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
9082      case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
9083      case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
9084      }
9085    }
9086
9087    // Find the size of memory referenced by the load/store.
9088    EVT VecTy;
9089    if (isLoad)
9090      VecTy = N->getValueType(0);
9091    else
9092      VecTy = N->getOperand(AddrOpIdx+1).getValueType();
9093    unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
9094    if (isLaneOp)
9095      NumBytes /= VecTy.getVectorNumElements();
9096
9097    // If the increment is a constant, it must match the memory ref size.
9098    SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
9099    if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
9100      uint64_t IncVal = CInc->getZExtValue();
9101      if (IncVal != NumBytes)
9102        continue;
9103    } else if (NumBytes >= 3 * 16) {
9104      // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
9105      // separate instructions that make it harder to use a non-constant update.
9106      continue;
9107    }
9108
9109    // Create the new updating load/store node.
9110    EVT Tys[6];
9111    unsigned NumResultVecs = (isLoad ? NumVecs : 0);
9112    unsigned n;
9113    for (n = 0; n < NumResultVecs; ++n)
9114      Tys[n] = VecTy;
9115    Tys[n++] = MVT::i32;
9116    Tys[n] = MVT::Other;
9117    SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
9118    SmallVector<SDValue, 8> Ops;
9119    Ops.push_back(N->getOperand(0)); // incoming chain
9120    Ops.push_back(N->getOperand(AddrOpIdx));
9121    Ops.push_back(Inc);
9122    for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
9123      Ops.push_back(N->getOperand(i));
9124    }
9125    MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
9126    SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys,
9127                                           Ops.data(), Ops.size(),
9128                                           MemInt->getMemoryVT(),
9129                                           MemInt->getMemOperand());
9130
9131    // Update the uses.
9132    std::vector<SDValue> NewResults;
9133    for (unsigned i = 0; i < NumResultVecs; ++i) {
9134      NewResults.push_back(SDValue(UpdN.getNode(), i));
9135    }
9136    NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
9137    DCI.CombineTo(N, NewResults);
9138    DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
9139
9140    break;
9141  }
9142  return SDValue();
9143}
9144
9145/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
9146/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
9147/// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
9148/// return true.
9149static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
9150  SelectionDAG &DAG = DCI.DAG;
9151  EVT VT = N->getValueType(0);
9152  // vldN-dup instructions only support 64-bit vectors for N > 1.
9153  if (!VT.is64BitVector())
9154    return false;
9155
9156  // Check if the VDUPLANE operand is a vldN-dup intrinsic.
9157  SDNode *VLD = N->getOperand(0).getNode();
9158  if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
9159    return false;
9160  unsigned NumVecs = 0;
9161  unsigned NewOpc = 0;
9162  unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
9163  if (IntNo == Intrinsic::arm_neon_vld2lane) {
9164    NumVecs = 2;
9165    NewOpc = ARMISD::VLD2DUP;
9166  } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
9167    NumVecs = 3;
9168    NewOpc = ARMISD::VLD3DUP;
9169  } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
9170    NumVecs = 4;
9171    NewOpc = ARMISD::VLD4DUP;
9172  } else {
9173    return false;
9174  }
9175
9176  // First check that all the vldN-lane uses are VDUPLANEs and that the lane
9177  // numbers match the load.
9178  unsigned VLDLaneNo =
9179    cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
9180  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
9181       UI != UE; ++UI) {
9182    // Ignore uses of the chain result.
9183    if (UI.getUse().getResNo() == NumVecs)
9184      continue;
9185    SDNode *User = *UI;
9186    if (User->getOpcode() != ARMISD::VDUPLANE ||
9187        VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
9188      return false;
9189  }
9190
9191  // Create the vldN-dup node.
9192  EVT Tys[5];
9193  unsigned n;
9194  for (n = 0; n < NumVecs; ++n)
9195    Tys[n] = VT;
9196  Tys[n] = MVT::Other;
9197  SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
9198  SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
9199  MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
9200  SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
9201                                           Ops, 2, VLDMemInt->getMemoryVT(),
9202                                           VLDMemInt->getMemOperand());
9203
9204  // Update the uses.
9205  for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
9206       UI != UE; ++UI) {
9207    unsigned ResNo = UI.getUse().getResNo();
9208    // Ignore uses of the chain result.
9209    if (ResNo == NumVecs)
9210      continue;
9211    SDNode *User = *UI;
9212    DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
9213  }
9214
9215  // Now the vldN-lane intrinsic is dead except for its chain result.
9216  // Update uses of the chain.
9217  std::vector<SDValue> VLDDupResults;
9218  for (unsigned n = 0; n < NumVecs; ++n)
9219    VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
9220  VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
9221  DCI.CombineTo(VLD, VLDDupResults);
9222
9223  return true;
9224}
9225
9226/// PerformVDUPLANECombine - Target-specific dag combine xforms for
9227/// ARMISD::VDUPLANE.
9228static SDValue PerformVDUPLANECombine(SDNode *N,
9229                                      TargetLowering::DAGCombinerInfo &DCI) {
9230  SDValue Op = N->getOperand(0);
9231
9232  // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
9233  // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
9234  if (CombineVLDDUP(N, DCI))
9235    return SDValue(N, 0);
9236
9237  // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
9238  // redundant.  Ignore bit_converts for now; element sizes are checked below.
9239  while (Op.getOpcode() == ISD::BITCAST)
9240    Op = Op.getOperand(0);
9241  if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
9242    return SDValue();
9243
9244  // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
9245  unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
9246  // The canonical VMOV for a zero vector uses a 32-bit element size.
9247  unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9248  unsigned EltBits;
9249  if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
9250    EltSize = 8;
9251  EVT VT = N->getValueType(0);
9252  if (EltSize > VT.getVectorElementType().getSizeInBits())
9253    return SDValue();
9254
9255  return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
9256}
9257
9258// isConstVecPow2 - Return true if each vector element is a power of 2, all
9259// elements are the same constant, C, and Log2(C) ranges from 1 to 32.
9260static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
9261{
9262  integerPart cN;
9263  integerPart c0 = 0;
9264  for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
9265       I != E; I++) {
9266    ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
9267    if (!C)
9268      return false;
9269
9270    bool isExact;
9271    APFloat APF = C->getValueAPF();
9272    if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
9273        != APFloat::opOK || !isExact)
9274      return false;
9275
9276    c0 = (I == 0) ? cN : c0;
9277    if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
9278      return false;
9279  }
9280  C = c0;
9281  return true;
9282}
9283
9284/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
9285/// can replace combinations of VMUL and VCVT (floating-point to integer)
9286/// when the VMUL has a constant operand that is a power of 2.
9287///
9288/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
9289///  vmul.f32        d16, d17, d16
9290///  vcvt.s32.f32    d16, d16
9291/// becomes:
9292///  vcvt.s32.f32    d16, d16, #3
9293static SDValue PerformVCVTCombine(SDNode *N,
9294                                  TargetLowering::DAGCombinerInfo &DCI,
9295                                  const ARMSubtarget *Subtarget) {
9296  SelectionDAG &DAG = DCI.DAG;
9297  SDValue Op = N->getOperand(0);
9298
9299  if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
9300      Op.getOpcode() != ISD::FMUL)
9301    return SDValue();
9302
9303  uint64_t C;
9304  SDValue N0 = Op->getOperand(0);
9305  SDValue ConstVec = Op->getOperand(1);
9306  bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
9307
9308  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
9309      !isConstVecPow2(ConstVec, isSigned, C))
9310    return SDValue();
9311
9312  MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
9313  MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
9314  if (FloatTy.getSizeInBits() != 32 || IntTy.getSizeInBits() > 32) {
9315    // These instructions only exist converting from f32 to i32. We can handle
9316    // smaller integers by generating an extra truncate, but larger ones would
9317    // be lossy.
9318    return SDValue();
9319  }
9320
9321  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
9322    Intrinsic::arm_neon_vcvtfp2fxu;
9323  unsigned NumLanes = Op.getValueType().getVectorNumElements();
9324  SDValue FixConv =  DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N),
9325                                 NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
9326                                 DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
9327                                 DAG.getConstant(Log2_64(C), MVT::i32));
9328
9329  if (IntTy.getSizeInBits() < FloatTy.getSizeInBits())
9330    FixConv = DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), FixConv);
9331
9332  return FixConv;
9333}
9334
9335/// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
9336/// can replace combinations of VCVT (integer to floating-point) and VDIV
9337/// when the VDIV has a constant operand that is a power of 2.
9338///
9339/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
9340///  vcvt.f32.s32    d16, d16
9341///  vdiv.f32        d16, d17, d16
9342/// becomes:
9343///  vcvt.f32.s32    d16, d16, #3
9344static SDValue PerformVDIVCombine(SDNode *N,
9345                                  TargetLowering::DAGCombinerInfo &DCI,
9346                                  const ARMSubtarget *Subtarget) {
9347  SelectionDAG &DAG = DCI.DAG;
9348  SDValue Op = N->getOperand(0);
9349  unsigned OpOpcode = Op.getNode()->getOpcode();
9350
9351  if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
9352      (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
9353    return SDValue();
9354
9355  uint64_t C;
9356  SDValue ConstVec = N->getOperand(1);
9357  bool isSigned = OpOpcode == ISD::SINT_TO_FP;
9358
9359  if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
9360      !isConstVecPow2(ConstVec, isSigned, C))
9361    return SDValue();
9362
9363  MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
9364  MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
9365  if (FloatTy.getSizeInBits() != 32 || IntTy.getSizeInBits() > 32) {
9366    // These instructions only exist converting from i32 to f32. We can handle
9367    // smaller integers by generating an extra extend, but larger ones would
9368    // be lossy.
9369    return SDValue();
9370  }
9371
9372  SDValue ConvInput = Op.getOperand(0);
9373  unsigned NumLanes = Op.getValueType().getVectorNumElements();
9374  if (IntTy.getSizeInBits() < FloatTy.getSizeInBits())
9375    ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
9376                            SDLoc(N), NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
9377                            ConvInput);
9378
9379  unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
9380    Intrinsic::arm_neon_vcvtfxu2fp;
9381  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N),
9382                     Op.getValueType(),
9383                     DAG.getConstant(IntrinsicOpcode, MVT::i32),
9384                     ConvInput, DAG.getConstant(Log2_64(C), MVT::i32));
9385}
9386
9387/// Getvshiftimm - Check if this is a valid build_vector for the immediate
9388/// operand of a vector shift operation, where all the elements of the
9389/// build_vector must have the same constant integer value.
9390static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
9391  // Ignore bit_converts.
9392  while (Op.getOpcode() == ISD::BITCAST)
9393    Op = Op.getOperand(0);
9394  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
9395  APInt SplatBits, SplatUndef;
9396  unsigned SplatBitSize;
9397  bool HasAnyUndefs;
9398  if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
9399                                      HasAnyUndefs, ElementBits) ||
9400      SplatBitSize > ElementBits)
9401    return false;
9402  Cnt = SplatBits.getSExtValue();
9403  return true;
9404}
9405
9406/// isVShiftLImm - Check if this is a valid build_vector for the immediate
9407/// operand of a vector shift left operation.  That value must be in the range:
9408///   0 <= Value < ElementBits for a left shift; or
9409///   0 <= Value <= ElementBits for a long left shift.
9410static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
9411  assert(VT.isVector() && "vector shift count is not a vector type");
9412  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
9413  if (! getVShiftImm(Op, ElementBits, Cnt))
9414    return false;
9415  return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
9416}
9417
9418/// isVShiftRImm - Check if this is a valid build_vector for the immediate
9419/// operand of a vector shift right operation.  For a shift opcode, the value
9420/// is positive, but for an intrinsic the value count must be negative. The
9421/// absolute value must be in the range:
9422///   1 <= |Value| <= ElementBits for a right shift; or
9423///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
9424static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
9425                         int64_t &Cnt) {
9426  assert(VT.isVector() && "vector shift count is not a vector type");
9427  unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
9428  if (! getVShiftImm(Op, ElementBits, Cnt))
9429    return false;
9430  if (isIntrinsic)
9431    Cnt = -Cnt;
9432  return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
9433}
9434
9435/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
9436static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
9437  unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
9438  switch (IntNo) {
9439  default:
9440    // Don't do anything for most intrinsics.
9441    break;
9442
9443  // Vector shifts: check for immediate versions and lower them.
9444  // Note: This is done during DAG combining instead of DAG legalizing because
9445  // the build_vectors for 64-bit vector element shift counts are generally
9446  // not legal, and it is hard to see their values after they get legalized to
9447  // loads from a constant pool.
9448  case Intrinsic::arm_neon_vshifts:
9449  case Intrinsic::arm_neon_vshiftu:
9450  case Intrinsic::arm_neon_vshiftls:
9451  case Intrinsic::arm_neon_vshiftlu:
9452  case Intrinsic::arm_neon_vshiftn:
9453  case Intrinsic::arm_neon_vrshifts:
9454  case Intrinsic::arm_neon_vrshiftu:
9455  case Intrinsic::arm_neon_vrshiftn:
9456  case Intrinsic::arm_neon_vqshifts:
9457  case Intrinsic::arm_neon_vqshiftu:
9458  case Intrinsic::arm_neon_vqshiftsu:
9459  case Intrinsic::arm_neon_vqshiftns:
9460  case Intrinsic::arm_neon_vqshiftnu:
9461  case Intrinsic::arm_neon_vqshiftnsu:
9462  case Intrinsic::arm_neon_vqrshiftns:
9463  case Intrinsic::arm_neon_vqrshiftnu:
9464  case Intrinsic::arm_neon_vqrshiftnsu: {
9465    EVT VT = N->getOperand(1).getValueType();
9466    int64_t Cnt;
9467    unsigned VShiftOpc = 0;
9468
9469    switch (IntNo) {
9470    case Intrinsic::arm_neon_vshifts:
9471    case Intrinsic::arm_neon_vshiftu:
9472      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
9473        VShiftOpc = ARMISD::VSHL;
9474        break;
9475      }
9476      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
9477        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
9478                     ARMISD::VSHRs : ARMISD::VSHRu);
9479        break;
9480      }
9481      return SDValue();
9482
9483    case Intrinsic::arm_neon_vshiftls:
9484    case Intrinsic::arm_neon_vshiftlu:
9485      if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
9486        break;
9487      llvm_unreachable("invalid shift count for vshll intrinsic");
9488
9489    case Intrinsic::arm_neon_vrshifts:
9490    case Intrinsic::arm_neon_vrshiftu:
9491      if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
9492        break;
9493      return SDValue();
9494
9495    case Intrinsic::arm_neon_vqshifts:
9496    case Intrinsic::arm_neon_vqshiftu:
9497      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
9498        break;
9499      return SDValue();
9500
9501    case Intrinsic::arm_neon_vqshiftsu:
9502      if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
9503        break;
9504      llvm_unreachable("invalid shift count for vqshlu intrinsic");
9505
9506    case Intrinsic::arm_neon_vshiftn:
9507    case Intrinsic::arm_neon_vrshiftn:
9508    case Intrinsic::arm_neon_vqshiftns:
9509    case Intrinsic::arm_neon_vqshiftnu:
9510    case Intrinsic::arm_neon_vqshiftnsu:
9511    case Intrinsic::arm_neon_vqrshiftns:
9512    case Intrinsic::arm_neon_vqrshiftnu:
9513    case Intrinsic::arm_neon_vqrshiftnsu:
9514      // Narrowing shifts require an immediate right shift.
9515      if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
9516        break;
9517      llvm_unreachable("invalid shift count for narrowing vector shift "
9518                       "intrinsic");
9519
9520    default:
9521      llvm_unreachable("unhandled vector shift");
9522    }
9523
9524    switch (IntNo) {
9525    case Intrinsic::arm_neon_vshifts:
9526    case Intrinsic::arm_neon_vshiftu:
9527      // Opcode already set above.
9528      break;
9529    case Intrinsic::arm_neon_vshiftls:
9530    case Intrinsic::arm_neon_vshiftlu:
9531      if (Cnt == VT.getVectorElementType().getSizeInBits())
9532        VShiftOpc = ARMISD::VSHLLi;
9533      else
9534        VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
9535                     ARMISD::VSHLLs : ARMISD::VSHLLu);
9536      break;
9537    case Intrinsic::arm_neon_vshiftn:
9538      VShiftOpc = ARMISD::VSHRN; break;
9539    case Intrinsic::arm_neon_vrshifts:
9540      VShiftOpc = ARMISD::VRSHRs; break;
9541    case Intrinsic::arm_neon_vrshiftu:
9542      VShiftOpc = ARMISD::VRSHRu; break;
9543    case Intrinsic::arm_neon_vrshiftn:
9544      VShiftOpc = ARMISD::VRSHRN; break;
9545    case Intrinsic::arm_neon_vqshifts:
9546      VShiftOpc = ARMISD::VQSHLs; break;
9547    case Intrinsic::arm_neon_vqshiftu:
9548      VShiftOpc = ARMISD::VQSHLu; break;
9549    case Intrinsic::arm_neon_vqshiftsu:
9550      VShiftOpc = ARMISD::VQSHLsu; break;
9551    case Intrinsic::arm_neon_vqshiftns:
9552      VShiftOpc = ARMISD::VQSHRNs; break;
9553    case Intrinsic::arm_neon_vqshiftnu:
9554      VShiftOpc = ARMISD::VQSHRNu; break;
9555    case Intrinsic::arm_neon_vqshiftnsu:
9556      VShiftOpc = ARMISD::VQSHRNsu; break;
9557    case Intrinsic::arm_neon_vqrshiftns:
9558      VShiftOpc = ARMISD::VQRSHRNs; break;
9559    case Intrinsic::arm_neon_vqrshiftnu:
9560      VShiftOpc = ARMISD::VQRSHRNu; break;
9561    case Intrinsic::arm_neon_vqrshiftnsu:
9562      VShiftOpc = ARMISD::VQRSHRNsu; break;
9563    }
9564
9565    return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0),
9566                       N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
9567  }
9568
9569  case Intrinsic::arm_neon_vshiftins: {
9570    EVT VT = N->getOperand(1).getValueType();
9571    int64_t Cnt;
9572    unsigned VShiftOpc = 0;
9573
9574    if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
9575      VShiftOpc = ARMISD::VSLI;
9576    else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
9577      VShiftOpc = ARMISD::VSRI;
9578    else {
9579      llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
9580    }
9581
9582    return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0),
9583                       N->getOperand(1), N->getOperand(2),
9584                       DAG.getConstant(Cnt, MVT::i32));
9585  }
9586
9587  case Intrinsic::arm_neon_vqrshifts:
9588  case Intrinsic::arm_neon_vqrshiftu:
9589    // No immediate versions of these to check for.
9590    break;
9591  }
9592
9593  return SDValue();
9594}
9595
9596/// PerformShiftCombine - Checks for immediate versions of vector shifts and
9597/// lowers them.  As with the vector shift intrinsics, this is done during DAG
9598/// combining instead of DAG legalizing because the build_vectors for 64-bit
9599/// vector element shift counts are generally not legal, and it is hard to see
9600/// their values after they get legalized to loads from a constant pool.
9601static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
9602                                   const ARMSubtarget *ST) {
9603  EVT VT = N->getValueType(0);
9604  if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
9605    // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
9606    // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
9607    SDValue N1 = N->getOperand(1);
9608    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
9609      SDValue N0 = N->getOperand(0);
9610      if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
9611          DAG.MaskedValueIsZero(N0.getOperand(0),
9612                                APInt::getHighBitsSet(32, 16)))
9613        return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
9614    }
9615  }
9616
9617  // Nothing to be done for scalar shifts.
9618  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9619  if (!VT.isVector() || !TLI.isTypeLegal(VT))
9620    return SDValue();
9621
9622  assert(ST->hasNEON() && "unexpected vector shift");
9623  int64_t Cnt;
9624
9625  switch (N->getOpcode()) {
9626  default: llvm_unreachable("unexpected shift opcode");
9627
9628  case ISD::SHL:
9629    if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
9630      return DAG.getNode(ARMISD::VSHL, SDLoc(N), VT, N->getOperand(0),
9631                         DAG.getConstant(Cnt, MVT::i32));
9632    break;
9633
9634  case ISD::SRA:
9635  case ISD::SRL:
9636    if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
9637      unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
9638                            ARMISD::VSHRs : ARMISD::VSHRu);
9639      return DAG.getNode(VShiftOpc, SDLoc(N), VT, N->getOperand(0),
9640                         DAG.getConstant(Cnt, MVT::i32));
9641    }
9642  }
9643  return SDValue();
9644}
9645
9646/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
9647/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
9648static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
9649                                    const ARMSubtarget *ST) {
9650  SDValue N0 = N->getOperand(0);
9651
9652  // Check for sign- and zero-extensions of vector extract operations of 8-
9653  // and 16-bit vector elements.  NEON supports these directly.  They are
9654  // handled during DAG combining because type legalization will promote them
9655  // to 32-bit types and it is messy to recognize the operations after that.
9656  if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
9657    SDValue Vec = N0.getOperand(0);
9658    SDValue Lane = N0.getOperand(1);
9659    EVT VT = N->getValueType(0);
9660    EVT EltVT = N0.getValueType();
9661    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9662
9663    if (VT == MVT::i32 &&
9664        (EltVT == MVT::i8 || EltVT == MVT::i16) &&
9665        TLI.isTypeLegal(Vec.getValueType()) &&
9666        isa<ConstantSDNode>(Lane)) {
9667
9668      unsigned Opc = 0;
9669      switch (N->getOpcode()) {
9670      default: llvm_unreachable("unexpected opcode");
9671      case ISD::SIGN_EXTEND:
9672        Opc = ARMISD::VGETLANEs;
9673        break;
9674      case ISD::ZERO_EXTEND:
9675      case ISD::ANY_EXTEND:
9676        Opc = ARMISD::VGETLANEu;
9677        break;
9678      }
9679      return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
9680    }
9681  }
9682
9683  return SDValue();
9684}
9685
9686/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
9687/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
9688static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
9689                                       const ARMSubtarget *ST) {
9690  // If the target supports NEON, try to use vmax/vmin instructions for f32
9691  // selects like "x < y ? x : y".  Unless the NoNaNsFPMath option is set,
9692  // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is
9693  // a NaN; only do the transformation when it matches that behavior.
9694
9695  // For now only do this when using NEON for FP operations; if using VFP, it
9696  // is not obvious that the benefit outweighs the cost of switching to the
9697  // NEON pipeline.
9698  if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
9699      N->getValueType(0) != MVT::f32)
9700    return SDValue();
9701
9702  SDValue CondLHS = N->getOperand(0);
9703  SDValue CondRHS = N->getOperand(1);
9704  SDValue LHS = N->getOperand(2);
9705  SDValue RHS = N->getOperand(3);
9706  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
9707
9708  unsigned Opcode = 0;
9709  bool IsReversed;
9710  if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
9711    IsReversed = false; // x CC y ? x : y
9712  } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
9713    IsReversed = true ; // x CC y ? y : x
9714  } else {
9715    return SDValue();
9716  }
9717
9718  bool IsUnordered;
9719  switch (CC) {
9720  default: break;
9721  case ISD::SETOLT:
9722  case ISD::SETOLE:
9723  case ISD::SETLT:
9724  case ISD::SETLE:
9725  case ISD::SETULT:
9726  case ISD::SETULE:
9727    // If LHS is NaN, an ordered comparison will be false and the result will
9728    // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS
9729    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
9730    IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
9731    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
9732      break;
9733    // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
9734    // will return -0, so vmin can only be used for unsafe math or if one of
9735    // the operands is known to be nonzero.
9736    if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
9737        !DAG.getTarget().Options.UnsafeFPMath &&
9738        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9739      break;
9740    Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
9741    break;
9742
9743  case ISD::SETOGT:
9744  case ISD::SETOGE:
9745  case ISD::SETGT:
9746  case ISD::SETGE:
9747  case ISD::SETUGT:
9748  case ISD::SETUGE:
9749    // If LHS is NaN, an ordered comparison will be false and the result will
9750    // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS
9751    // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN.
9752    IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
9753    if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
9754      break;
9755    // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
9756    // will return +0, so vmax can only be used for unsafe math or if one of
9757    // the operands is known to be nonzero.
9758    if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
9759        !DAG.getTarget().Options.UnsafeFPMath &&
9760        !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9761      break;
9762    Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
9763    break;
9764  }
9765
9766  if (!Opcode)
9767    return SDValue();
9768  return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), LHS, RHS);
9769}
9770
9771/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
9772SDValue
9773ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
9774  SDValue Cmp = N->getOperand(4);
9775  if (Cmp.getOpcode() != ARMISD::CMPZ)
9776    // Only looking at EQ and NE cases.
9777    return SDValue();
9778
9779  EVT VT = N->getValueType(0);
9780  SDLoc dl(N);
9781  SDValue LHS = Cmp.getOperand(0);
9782  SDValue RHS = Cmp.getOperand(1);
9783  SDValue FalseVal = N->getOperand(0);
9784  SDValue TrueVal = N->getOperand(1);
9785  SDValue ARMcc = N->getOperand(2);
9786  ARMCC::CondCodes CC =
9787    (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
9788
9789  // Simplify
9790  //   mov     r1, r0
9791  //   cmp     r1, x
9792  //   mov     r0, y
9793  //   moveq   r0, x
9794  // to
9795  //   cmp     r0, x
9796  //   movne   r0, y
9797  //
9798  //   mov     r1, r0
9799  //   cmp     r1, x
9800  //   mov     r0, x
9801  //   movne   r0, y
9802  // to
9803  //   cmp     r0, x
9804  //   movne   r0, y
9805  /// FIXME: Turn this into a target neutral optimization?
9806  SDValue Res;
9807  if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
9808    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
9809                      N->getOperand(3), Cmp);
9810  } else if (CC == ARMCC::EQ && TrueVal == RHS) {
9811    SDValue ARMcc;
9812    SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
9813    Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
9814                      N->getOperand(3), NewCmp);
9815  }
9816
9817  if (Res.getNode()) {
9818    APInt KnownZero, KnownOne;
9819    DAG.ComputeMaskedBits(SDValue(N,0), KnownZero, KnownOne);
9820    // Capture demanded bits information that would be otherwise lost.
9821    if (KnownZero == 0xfffffffe)
9822      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
9823                        DAG.getValueType(MVT::i1));
9824    else if (KnownZero == 0xffffff00)
9825      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
9826                        DAG.getValueType(MVT::i8));
9827    else if (KnownZero == 0xffff0000)
9828      Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
9829                        DAG.getValueType(MVT::i16));
9830  }
9831
9832  return Res;
9833}
9834
9835SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
9836                                             DAGCombinerInfo &DCI) const {
9837  switch (N->getOpcode()) {
9838  default: break;
9839  case ISD::ADDC:       return PerformADDCCombine(N, DCI, Subtarget);
9840  case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
9841  case ISD::SUB:        return PerformSUBCombine(N, DCI);
9842  case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
9843  case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
9844  case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
9845  case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
9846  case ARMISD::BFI:     return PerformBFICombine(N, DCI);
9847  case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
9848  case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
9849  case ISD::STORE:      return PerformSTORECombine(N, DCI);
9850  case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
9851  case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
9852  case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
9853  case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
9854  case ISD::FP_TO_SINT:
9855  case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
9856  case ISD::FDIV:       return PerformVDIVCombine(N, DCI, Subtarget);
9857  case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
9858  case ISD::SHL:
9859  case ISD::SRA:
9860  case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
9861  case ISD::SIGN_EXTEND:
9862  case ISD::ZERO_EXTEND:
9863  case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
9864  case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
9865  case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
9866  case ARMISD::VLD2DUP:
9867  case ARMISD::VLD3DUP:
9868  case ARMISD::VLD4DUP:
9869    return CombineBaseUpdate(N, DCI);
9870  case ARMISD::BUILD_VECTOR:
9871    return PerformARMBUILD_VECTORCombine(N, DCI);
9872  case ISD::INTRINSIC_VOID:
9873  case ISD::INTRINSIC_W_CHAIN:
9874    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
9875    case Intrinsic::arm_neon_vld1:
9876    case Intrinsic::arm_neon_vld2:
9877    case Intrinsic::arm_neon_vld3:
9878    case Intrinsic::arm_neon_vld4:
9879    case Intrinsic::arm_neon_vld2lane:
9880    case Intrinsic::arm_neon_vld3lane:
9881    case Intrinsic::arm_neon_vld4lane:
9882    case Intrinsic::arm_neon_vst1:
9883    case Intrinsic::arm_neon_vst2:
9884    case Intrinsic::arm_neon_vst3:
9885    case Intrinsic::arm_neon_vst4:
9886    case Intrinsic::arm_neon_vst2lane:
9887    case Intrinsic::arm_neon_vst3lane:
9888    case Intrinsic::arm_neon_vst4lane:
9889      return CombineBaseUpdate(N, DCI);
9890    default: break;
9891    }
9892    break;
9893  }
9894  return SDValue();
9895}
9896
9897bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
9898                                                          EVT VT) const {
9899  return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
9900}
9901
9902bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
9903  // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
9904  bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
9905
9906  switch (VT.getSimpleVT().SimpleTy) {
9907  default:
9908    return false;
9909  case MVT::i8:
9910  case MVT::i16:
9911  case MVT::i32: {
9912    // Unaligned access can use (for example) LRDB, LRDH, LDR
9913    if (AllowsUnaligned) {
9914      if (Fast)
9915        *Fast = Subtarget->hasV7Ops();
9916      return true;
9917    }
9918    return false;
9919  }
9920  case MVT::f64:
9921  case MVT::v2f64: {
9922    // For any little-endian targets with neon, we can support unaligned ld/st
9923    // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
9924    // A big-endian target may also explictly support unaligned accesses
9925    if (Subtarget->hasNEON() && (AllowsUnaligned || isLittleEndian())) {
9926      if (Fast)
9927        *Fast = true;
9928      return true;
9929    }
9930    return false;
9931  }
9932  }
9933}
9934
9935static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
9936                       unsigned AlignCheck) {
9937  return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
9938          (DstAlign == 0 || DstAlign % AlignCheck == 0));
9939}
9940
9941EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
9942                                           unsigned DstAlign, unsigned SrcAlign,
9943                                           bool IsMemset, bool ZeroMemset,
9944                                           bool MemcpyStrSrc,
9945                                           MachineFunction &MF) const {
9946  const Function *F = MF.getFunction();
9947
9948  // See if we can use NEON instructions for this...
9949  if ((!IsMemset || ZeroMemset) &&
9950      Subtarget->hasNEON() &&
9951      !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
9952                                       Attribute::NoImplicitFloat)) {
9953    bool Fast;
9954    if (Size >= 16 &&
9955        (memOpAlign(SrcAlign, DstAlign, 16) ||
9956         (allowsUnalignedMemoryAccesses(MVT::v2f64, &Fast) && Fast))) {
9957      return MVT::v2f64;
9958    } else if (Size >= 8 &&
9959               (memOpAlign(SrcAlign, DstAlign, 8) ||
9960                (allowsUnalignedMemoryAccesses(MVT::f64, &Fast) && Fast))) {
9961      return MVT::f64;
9962    }
9963  }
9964
9965  // Lowering to i32/i16 if the size permits.
9966  if (Size >= 4)
9967    return MVT::i32;
9968  else if (Size >= 2)
9969    return MVT::i16;
9970
9971  // Let the target-independent logic figure it out.
9972  return MVT::Other;
9973}
9974
9975bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
9976  if (Val.getOpcode() != ISD::LOAD)
9977    return false;
9978
9979  EVT VT1 = Val.getValueType();
9980  if (!VT1.isSimple() || !VT1.isInteger() ||
9981      !VT2.isSimple() || !VT2.isInteger())
9982    return false;
9983
9984  switch (VT1.getSimpleVT().SimpleTy) {
9985  default: break;
9986  case MVT::i1:
9987  case MVT::i8:
9988  case MVT::i16:
9989    // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
9990    return true;
9991  }
9992
9993  return false;
9994}
9995
9996bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
9997  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
9998    return false;
9999
10000  if (!isTypeLegal(EVT::getEVT(Ty1)))
10001    return false;
10002
10003  assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
10004
10005  // Assuming the caller doesn't have a zeroext or signext return parameter,
10006  // truncation all the way down to i1 is valid.
10007  return true;
10008}
10009
10010
10011static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
10012  if (V < 0)
10013    return false;
10014
10015  unsigned Scale = 1;
10016  switch (VT.getSimpleVT().SimpleTy) {
10017  default: return false;
10018  case MVT::i1:
10019  case MVT::i8:
10020    // Scale == 1;
10021    break;
10022  case MVT::i16:
10023    // Scale == 2;
10024    Scale = 2;
10025    break;
10026  case MVT::i32:
10027    // Scale == 4;
10028    Scale = 4;
10029    break;
10030  }
10031
10032  if ((V & (Scale - 1)) != 0)
10033    return false;
10034  V /= Scale;
10035  return V == (V & ((1LL << 5) - 1));
10036}
10037
10038static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
10039                                      const ARMSubtarget *Subtarget) {
10040  bool isNeg = false;
10041  if (V < 0) {
10042    isNeg = true;
10043    V = - V;
10044  }
10045
10046  switch (VT.getSimpleVT().SimpleTy) {
10047  default: return false;
10048  case MVT::i1:
10049  case MVT::i8:
10050  case MVT::i16:
10051  case MVT::i32:
10052    // + imm12 or - imm8
10053    if (isNeg)
10054      return V == (V & ((1LL << 8) - 1));
10055    return V == (V & ((1LL << 12) - 1));
10056  case MVT::f32:
10057  case MVT::f64:
10058    // Same as ARM mode. FIXME: NEON?
10059    if (!Subtarget->hasVFP2())
10060      return false;
10061    if ((V & 3) != 0)
10062      return false;
10063    V >>= 2;
10064    return V == (V & ((1LL << 8) - 1));
10065  }
10066}
10067
10068/// isLegalAddressImmediate - Return true if the integer value can be used
10069/// as the offset of the target addressing mode for load / store of the
10070/// given type.
10071static bool isLegalAddressImmediate(int64_t V, EVT VT,
10072                                    const ARMSubtarget *Subtarget) {
10073  if (V == 0)
10074    return true;
10075
10076  if (!VT.isSimple())
10077    return false;
10078
10079  if (Subtarget->isThumb1Only())
10080    return isLegalT1AddressImmediate(V, VT);
10081  else if (Subtarget->isThumb2())
10082    return isLegalT2AddressImmediate(V, VT, Subtarget);
10083
10084  // ARM mode.
10085  if (V < 0)
10086    V = - V;
10087  switch (VT.getSimpleVT().SimpleTy) {
10088  default: return false;
10089  case MVT::i1:
10090  case MVT::i8:
10091  case MVT::i32:
10092    // +- imm12
10093    return V == (V & ((1LL << 12) - 1));
10094  case MVT::i16:
10095    // +- imm8
10096    return V == (V & ((1LL << 8) - 1));
10097  case MVT::f32:
10098  case MVT::f64:
10099    if (!Subtarget->hasVFP2()) // FIXME: NEON?
10100      return false;
10101    if ((V & 3) != 0)
10102      return false;
10103    V >>= 2;
10104    return V == (V & ((1LL << 8) - 1));
10105  }
10106}
10107
10108bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
10109                                                      EVT VT) const {
10110  int Scale = AM.Scale;
10111  if (Scale < 0)
10112    return false;
10113
10114  switch (VT.getSimpleVT().SimpleTy) {
10115  default: return false;
10116  case MVT::i1:
10117  case MVT::i8:
10118  case MVT::i16:
10119  case MVT::i32:
10120    if (Scale == 1)
10121      return true;
10122    // r + r << imm
10123    Scale = Scale & ~1;
10124    return Scale == 2 || Scale == 4 || Scale == 8;
10125  case MVT::i64:
10126    // r + r
10127    if (((unsigned)AM.HasBaseReg + Scale) <= 2)
10128      return true;
10129    return false;
10130  case MVT::isVoid:
10131    // Note, we allow "void" uses (basically, uses that aren't loads or
10132    // stores), because arm allows folding a scale into many arithmetic
10133    // operations.  This should be made more precise and revisited later.
10134
10135    // Allow r << imm, but the imm has to be a multiple of two.
10136    if (Scale & 1) return false;
10137    return isPowerOf2_32(Scale);
10138  }
10139}
10140
10141/// isLegalAddressingMode - Return true if the addressing mode represented
10142/// by AM is legal for this target, for a load/store of the specified type.
10143bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
10144                                              Type *Ty) const {
10145  EVT VT = getValueType(Ty, true);
10146  if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
10147    return false;
10148
10149  // Can never fold addr of global into load/store.
10150  if (AM.BaseGV)
10151    return false;
10152
10153  switch (AM.Scale) {
10154  case 0:  // no scale reg, must be "r+i" or "r", or "i".
10155    break;
10156  case 1:
10157    if (Subtarget->isThumb1Only())
10158      return false;
10159    // FALL THROUGH.
10160  default:
10161    // ARM doesn't support any R+R*scale+imm addr modes.
10162    if (AM.BaseOffs)
10163      return false;
10164
10165    if (!VT.isSimple())
10166      return false;
10167
10168    if (Subtarget->isThumb2())
10169      return isLegalT2ScaledAddressingMode(AM, VT);
10170
10171    int Scale = AM.Scale;
10172    switch (VT.getSimpleVT().SimpleTy) {
10173    default: return false;
10174    case MVT::i1:
10175    case MVT::i8:
10176    case MVT::i32:
10177      if (Scale < 0) Scale = -Scale;
10178      if (Scale == 1)
10179        return true;
10180      // r + r << imm
10181      return isPowerOf2_32(Scale & ~1);
10182    case MVT::i16:
10183    case MVT::i64:
10184      // r + r
10185      if (((unsigned)AM.HasBaseReg + Scale) <= 2)
10186        return true;
10187      return false;
10188
10189    case MVT::isVoid:
10190      // Note, we allow "void" uses (basically, uses that aren't loads or
10191      // stores), because arm allows folding a scale into many arithmetic
10192      // operations.  This should be made more precise and revisited later.
10193
10194      // Allow r << imm, but the imm has to be a multiple of two.
10195      if (Scale & 1) return false;
10196      return isPowerOf2_32(Scale);
10197    }
10198  }
10199  return true;
10200}
10201
10202/// isLegalICmpImmediate - Return true if the specified immediate is legal
10203/// icmp immediate, that is the target has icmp instructions which can compare
10204/// a register against the immediate without having to materialize the
10205/// immediate into a register.
10206bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
10207  // Thumb2 and ARM modes can use cmn for negative immediates.
10208  if (!Subtarget->isThumb())
10209    return ARM_AM::getSOImmVal(llvm::abs64(Imm)) != -1;
10210  if (Subtarget->isThumb2())
10211    return ARM_AM::getT2SOImmVal(llvm::abs64(Imm)) != -1;
10212  // Thumb1 doesn't have cmn, and only 8-bit immediates.
10213  return Imm >= 0 && Imm <= 255;
10214}
10215
10216/// isLegalAddImmediate - Return true if the specified immediate is a legal add
10217/// *or sub* immediate, that is the target has add or sub instructions which can
10218/// add a register with the immediate without having to materialize the
10219/// immediate into a register.
10220bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
10221  // Same encoding for add/sub, just flip the sign.
10222  int64_t AbsImm = llvm::abs64(Imm);
10223  if (!Subtarget->isThumb())
10224    return ARM_AM::getSOImmVal(AbsImm) != -1;
10225  if (Subtarget->isThumb2())
10226    return ARM_AM::getT2SOImmVal(AbsImm) != -1;
10227  // Thumb1 only has 8-bit unsigned immediate.
10228  return AbsImm >= 0 && AbsImm <= 255;
10229}
10230
10231static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
10232                                      bool isSEXTLoad, SDValue &Base,
10233                                      SDValue &Offset, bool &isInc,
10234                                      SelectionDAG &DAG) {
10235  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
10236    return false;
10237
10238  if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
10239    // AddressingMode 3
10240    Base = Ptr->getOperand(0);
10241    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
10242      int RHSC = (int)RHS->getZExtValue();
10243      if (RHSC < 0 && RHSC > -256) {
10244        assert(Ptr->getOpcode() == ISD::ADD);
10245        isInc = false;
10246        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
10247        return true;
10248      }
10249    }
10250    isInc = (Ptr->getOpcode() == ISD::ADD);
10251    Offset = Ptr->getOperand(1);
10252    return true;
10253  } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
10254    // AddressingMode 2
10255    if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
10256      int RHSC = (int)RHS->getZExtValue();
10257      if (RHSC < 0 && RHSC > -0x1000) {
10258        assert(Ptr->getOpcode() == ISD::ADD);
10259        isInc = false;
10260        Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
10261        Base = Ptr->getOperand(0);
10262        return true;
10263      }
10264    }
10265
10266    if (Ptr->getOpcode() == ISD::ADD) {
10267      isInc = true;
10268      ARM_AM::ShiftOpc ShOpcVal=
10269        ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
10270      if (ShOpcVal != ARM_AM::no_shift) {
10271        Base = Ptr->getOperand(1);
10272        Offset = Ptr->getOperand(0);
10273      } else {
10274        Base = Ptr->getOperand(0);
10275        Offset = Ptr->getOperand(1);
10276      }
10277      return true;
10278    }
10279
10280    isInc = (Ptr->getOpcode() == ISD::ADD);
10281    Base = Ptr->getOperand(0);
10282    Offset = Ptr->getOperand(1);
10283    return true;
10284  }
10285
10286  // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
10287  return false;
10288}
10289
10290static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
10291                                     bool isSEXTLoad, SDValue &Base,
10292                                     SDValue &Offset, bool &isInc,
10293                                     SelectionDAG &DAG) {
10294  if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
10295    return false;
10296
10297  Base = Ptr->getOperand(0);
10298  if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
10299    int RHSC = (int)RHS->getZExtValue();
10300    if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
10301      assert(Ptr->getOpcode() == ISD::ADD);
10302      isInc = false;
10303      Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
10304      return true;
10305    } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
10306      isInc = Ptr->getOpcode() == ISD::ADD;
10307      Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
10308      return true;
10309    }
10310  }
10311
10312  return false;
10313}
10314
10315/// getPreIndexedAddressParts - returns true by value, base pointer and
10316/// offset pointer and addressing mode by reference if the node's address
10317/// can be legally represented as pre-indexed load / store address.
10318bool
10319ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
10320                                             SDValue &Offset,
10321                                             ISD::MemIndexedMode &AM,
10322                                             SelectionDAG &DAG) const {
10323  if (Subtarget->isThumb1Only())
10324    return false;
10325
10326  EVT VT;
10327  SDValue Ptr;
10328  bool isSEXTLoad = false;
10329  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
10330    Ptr = LD->getBasePtr();
10331    VT  = LD->getMemoryVT();
10332    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
10333  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
10334    Ptr = ST->getBasePtr();
10335    VT  = ST->getMemoryVT();
10336  } else
10337    return false;
10338
10339  bool isInc;
10340  bool isLegal = false;
10341  if (Subtarget->isThumb2())
10342    isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
10343                                       Offset, isInc, DAG);
10344  else
10345    isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
10346                                        Offset, isInc, DAG);
10347  if (!isLegal)
10348    return false;
10349
10350  AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
10351  return true;
10352}
10353
10354/// getPostIndexedAddressParts - returns true by value, base pointer and
10355/// offset pointer and addressing mode by reference if this node can be
10356/// combined with a load / store to form a post-indexed load / store.
10357bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
10358                                                   SDValue &Base,
10359                                                   SDValue &Offset,
10360                                                   ISD::MemIndexedMode &AM,
10361                                                   SelectionDAG &DAG) const {
10362  if (Subtarget->isThumb1Only())
10363    return false;
10364
10365  EVT VT;
10366  SDValue Ptr;
10367  bool isSEXTLoad = false;
10368  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
10369    VT  = LD->getMemoryVT();
10370    Ptr = LD->getBasePtr();
10371    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
10372  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
10373    VT  = ST->getMemoryVT();
10374    Ptr = ST->getBasePtr();
10375  } else
10376    return false;
10377
10378  bool isInc;
10379  bool isLegal = false;
10380  if (Subtarget->isThumb2())
10381    isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
10382                                       isInc, DAG);
10383  else
10384    isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
10385                                        isInc, DAG);
10386  if (!isLegal)
10387    return false;
10388
10389  if (Ptr != Base) {
10390    // Swap base ptr and offset to catch more post-index load / store when
10391    // it's legal. In Thumb2 mode, offset must be an immediate.
10392    if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
10393        !Subtarget->isThumb2())
10394      std::swap(Base, Offset);
10395
10396    // Post-indexed load / store update the base pointer.
10397    if (Ptr != Base)
10398      return false;
10399  }
10400
10401  AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
10402  return true;
10403}
10404
10405void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
10406                                                       APInt &KnownZero,
10407                                                       APInt &KnownOne,
10408                                                       const SelectionDAG &DAG,
10409                                                       unsigned Depth) const {
10410  unsigned BitWidth = KnownOne.getBitWidth();
10411  KnownZero = KnownOne = APInt(BitWidth, 0);
10412  switch (Op.getOpcode()) {
10413  default: break;
10414  case ARMISD::ADDC:
10415  case ARMISD::ADDE:
10416  case ARMISD::SUBC:
10417  case ARMISD::SUBE:
10418    // These nodes' second result is a boolean
10419    if (Op.getResNo() == 0)
10420      break;
10421    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
10422    break;
10423  case ARMISD::CMOV: {
10424    // Bits are known zero/one if known on the LHS and RHS.
10425    DAG.ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
10426    if (KnownZero == 0 && KnownOne == 0) return;
10427
10428    APInt KnownZeroRHS, KnownOneRHS;
10429    DAG.ComputeMaskedBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
10430    KnownZero &= KnownZeroRHS;
10431    KnownOne  &= KnownOneRHS;
10432    return;
10433  }
10434  }
10435}
10436
10437//===----------------------------------------------------------------------===//
10438//                           ARM Inline Assembly Support
10439//===----------------------------------------------------------------------===//
10440
10441bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
10442  // Looking for "rev" which is V6+.
10443  if (!Subtarget->hasV6Ops())
10444    return false;
10445
10446  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
10447  std::string AsmStr = IA->getAsmString();
10448  SmallVector<StringRef, 4> AsmPieces;
10449  SplitString(AsmStr, AsmPieces, ";\n");
10450
10451  switch (AsmPieces.size()) {
10452  default: return false;
10453  case 1:
10454    AsmStr = AsmPieces[0];
10455    AsmPieces.clear();
10456    SplitString(AsmStr, AsmPieces, " \t,");
10457
10458    // rev $0, $1
10459    if (AsmPieces.size() == 3 &&
10460        AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
10461        IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
10462      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
10463      if (Ty && Ty->getBitWidth() == 32)
10464        return IntrinsicLowering::LowerToByteSwap(CI);
10465    }
10466    break;
10467  }
10468
10469  return false;
10470}
10471
10472/// getConstraintType - Given a constraint letter, return the type of
10473/// constraint it is for this target.
10474ARMTargetLowering::ConstraintType
10475ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
10476  if (Constraint.size() == 1) {
10477    switch (Constraint[0]) {
10478    default:  break;
10479    case 'l': return C_RegisterClass;
10480    case 'w': return C_RegisterClass;
10481    case 'h': return C_RegisterClass;
10482    case 'x': return C_RegisterClass;
10483    case 't': return C_RegisterClass;
10484    case 'j': return C_Other; // Constant for movw.
10485      // An address with a single base register. Due to the way we
10486      // currently handle addresses it is the same as an 'r' memory constraint.
10487    case 'Q': return C_Memory;
10488    }
10489  } else if (Constraint.size() == 2) {
10490    switch (Constraint[0]) {
10491    default: break;
10492    // All 'U+' constraints are addresses.
10493    case 'U': return C_Memory;
10494    }
10495  }
10496  return TargetLowering::getConstraintType(Constraint);
10497}
10498
10499/// Examine constraint type and operand type and determine a weight value.
10500/// This object must already have been set up with the operand type
10501/// and the current alternative constraint selected.
10502TargetLowering::ConstraintWeight
10503ARMTargetLowering::getSingleConstraintMatchWeight(
10504    AsmOperandInfo &info, const char *constraint) const {
10505  ConstraintWeight weight = CW_Invalid;
10506  Value *CallOperandVal = info.CallOperandVal;
10507    // If we don't have a value, we can't do a match,
10508    // but allow it at the lowest weight.
10509  if (CallOperandVal == NULL)
10510    return CW_Default;
10511  Type *type = CallOperandVal->getType();
10512  // Look at the constraint type.
10513  switch (*constraint) {
10514  default:
10515    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
10516    break;
10517  case 'l':
10518    if (type->isIntegerTy()) {
10519      if (Subtarget->isThumb())
10520        weight = CW_SpecificReg;
10521      else
10522        weight = CW_Register;
10523    }
10524    break;
10525  case 'w':
10526    if (type->isFloatingPointTy())
10527      weight = CW_Register;
10528    break;
10529  }
10530  return weight;
10531}
10532
10533typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
10534RCPair
10535ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
10536                                                MVT VT) const {
10537  if (Constraint.size() == 1) {
10538    // GCC ARM Constraint Letters
10539    switch (Constraint[0]) {
10540    case 'l': // Low regs or general regs.
10541      if (Subtarget->isThumb())
10542        return RCPair(0U, &ARM::tGPRRegClass);
10543      return RCPair(0U, &ARM::GPRRegClass);
10544    case 'h': // High regs or no regs.
10545      if (Subtarget->isThumb())
10546        return RCPair(0U, &ARM::hGPRRegClass);
10547      break;
10548    case 'r':
10549      return RCPair(0U, &ARM::GPRRegClass);
10550    case 'w':
10551      if (VT == MVT::f32)
10552        return RCPair(0U, &ARM::SPRRegClass);
10553      if (VT.getSizeInBits() == 64)
10554        return RCPair(0U, &ARM::DPRRegClass);
10555      if (VT.getSizeInBits() == 128)
10556        return RCPair(0U, &ARM::QPRRegClass);
10557      break;
10558    case 'x':
10559      if (VT == MVT::f32)
10560        return RCPair(0U, &ARM::SPR_8RegClass);
10561      if (VT.getSizeInBits() == 64)
10562        return RCPair(0U, &ARM::DPR_8RegClass);
10563      if (VT.getSizeInBits() == 128)
10564        return RCPair(0U, &ARM::QPR_8RegClass);
10565      break;
10566    case 't':
10567      if (VT == MVT::f32)
10568        return RCPair(0U, &ARM::SPRRegClass);
10569      break;
10570    }
10571  }
10572  if (StringRef("{cc}").equals_lower(Constraint))
10573    return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
10574
10575  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
10576}
10577
10578/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
10579/// vector.  If it is invalid, don't add anything to Ops.
10580void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
10581                                                     std::string &Constraint,
10582                                                     std::vector<SDValue>&Ops,
10583                                                     SelectionDAG &DAG) const {
10584  SDValue Result(0, 0);
10585
10586  // Currently only support length 1 constraints.
10587  if (Constraint.length() != 1) return;
10588
10589  char ConstraintLetter = Constraint[0];
10590  switch (ConstraintLetter) {
10591  default: break;
10592  case 'j':
10593  case 'I': case 'J': case 'K': case 'L':
10594  case 'M': case 'N': case 'O':
10595    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
10596    if (!C)
10597      return;
10598
10599    int64_t CVal64 = C->getSExtValue();
10600    int CVal = (int) CVal64;
10601    // None of these constraints allow values larger than 32 bits.  Check
10602    // that the value fits in an int.
10603    if (CVal != CVal64)
10604      return;
10605
10606    switch (ConstraintLetter) {
10607      case 'j':
10608        // Constant suitable for movw, must be between 0 and
10609        // 65535.
10610        if (Subtarget->hasV6T2Ops())
10611          if (CVal >= 0 && CVal <= 65535)
10612            break;
10613        return;
10614      case 'I':
10615        if (Subtarget->isThumb1Only()) {
10616          // This must be a constant between 0 and 255, for ADD
10617          // immediates.
10618          if (CVal >= 0 && CVal <= 255)
10619            break;
10620        } else if (Subtarget->isThumb2()) {
10621          // A constant that can be used as an immediate value in a
10622          // data-processing instruction.
10623          if (ARM_AM::getT2SOImmVal(CVal) != -1)
10624            break;
10625        } else {
10626          // A constant that can be used as an immediate value in a
10627          // data-processing instruction.
10628          if (ARM_AM::getSOImmVal(CVal) != -1)
10629            break;
10630        }
10631        return;
10632
10633      case 'J':
10634        if (Subtarget->isThumb()) {  // FIXME thumb2
10635          // This must be a constant between -255 and -1, for negated ADD
10636          // immediates. This can be used in GCC with an "n" modifier that
10637          // prints the negated value, for use with SUB instructions. It is
10638          // not useful otherwise but is implemented for compatibility.
10639          if (CVal >= -255 && CVal <= -1)
10640            break;
10641        } else {
10642          // This must be a constant between -4095 and 4095. It is not clear
10643          // what this constraint is intended for. Implemented for
10644          // compatibility with GCC.
10645          if (CVal >= -4095 && CVal <= 4095)
10646            break;
10647        }
10648        return;
10649
10650      case 'K':
10651        if (Subtarget->isThumb1Only()) {
10652          // A 32-bit value where only one byte has a nonzero value. Exclude
10653          // zero to match GCC. This constraint is used by GCC internally for
10654          // constants that can be loaded with a move/shift combination.
10655          // It is not useful otherwise but is implemented for compatibility.
10656          if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
10657            break;
10658        } else if (Subtarget->isThumb2()) {
10659          // A constant whose bitwise inverse can be used as an immediate
10660          // value in a data-processing instruction. This can be used in GCC
10661          // with a "B" modifier that prints the inverted value, for use with
10662          // BIC and MVN instructions. It is not useful otherwise but is
10663          // implemented for compatibility.
10664          if (ARM_AM::getT2SOImmVal(~CVal) != -1)
10665            break;
10666        } else {
10667          // A constant whose bitwise inverse can be used as an immediate
10668          // value in a data-processing instruction. This can be used in GCC
10669          // with a "B" modifier that prints the inverted value, for use with
10670          // BIC and MVN instructions. It is not useful otherwise but is
10671          // implemented for compatibility.
10672          if (ARM_AM::getSOImmVal(~CVal) != -1)
10673            break;
10674        }
10675        return;
10676
10677      case 'L':
10678        if (Subtarget->isThumb1Only()) {
10679          // This must be a constant between -7 and 7,
10680          // for 3-operand ADD/SUB immediate instructions.
10681          if (CVal >= -7 && CVal < 7)
10682            break;
10683        } else if (Subtarget->isThumb2()) {
10684          // A constant whose negation can be used as an immediate value in a
10685          // data-processing instruction. This can be used in GCC with an "n"
10686          // modifier that prints the negated value, for use with SUB
10687          // instructions. It is not useful otherwise but is implemented for
10688          // compatibility.
10689          if (ARM_AM::getT2SOImmVal(-CVal) != -1)
10690            break;
10691        } else {
10692          // A constant whose negation can be used as an immediate value in a
10693          // data-processing instruction. This can be used in GCC with an "n"
10694          // modifier that prints the negated value, for use with SUB
10695          // instructions. It is not useful otherwise but is implemented for
10696          // compatibility.
10697          if (ARM_AM::getSOImmVal(-CVal) != -1)
10698            break;
10699        }
10700        return;
10701
10702      case 'M':
10703        if (Subtarget->isThumb()) { // FIXME thumb2
10704          // This must be a multiple of 4 between 0 and 1020, for
10705          // ADD sp + immediate.
10706          if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
10707            break;
10708        } else {
10709          // A power of two or a constant between 0 and 32.  This is used in
10710          // GCC for the shift amount on shifted register operands, but it is
10711          // useful in general for any shift amounts.
10712          if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
10713            break;
10714        }
10715        return;
10716
10717      case 'N':
10718        if (Subtarget->isThumb()) {  // FIXME thumb2
10719          // This must be a constant between 0 and 31, for shift amounts.
10720          if (CVal >= 0 && CVal <= 31)
10721            break;
10722        }
10723        return;
10724
10725      case 'O':
10726        if (Subtarget->isThumb()) {  // FIXME thumb2
10727          // This must be a multiple of 4 between -508 and 508, for
10728          // ADD/SUB sp = sp + immediate.
10729          if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
10730            break;
10731        }
10732        return;
10733    }
10734    Result = DAG.getTargetConstant(CVal, Op.getValueType());
10735    break;
10736  }
10737
10738  if (Result.getNode()) {
10739    Ops.push_back(Result);
10740    return;
10741  }
10742  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
10743}
10744
10745SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
10746  assert(Subtarget->isTargetAEABI() && "Register-based DivRem lowering only");
10747  unsigned Opcode = Op->getOpcode();
10748  assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
10749      "Invalid opcode for Div/Rem lowering");
10750  bool isSigned = (Opcode == ISD::SDIVREM);
10751  EVT VT = Op->getValueType(0);
10752  Type *Ty = VT.getTypeForEVT(*DAG.getContext());
10753
10754  RTLIB::Libcall LC;
10755  switch (VT.getSimpleVT().SimpleTy) {
10756  default: llvm_unreachable("Unexpected request for libcall!");
10757  case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
10758  case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
10759  case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
10760  case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
10761  }
10762
10763  SDValue InChain = DAG.getEntryNode();
10764
10765  TargetLowering::ArgListTy Args;
10766  TargetLowering::ArgListEntry Entry;
10767  for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
10768    EVT ArgVT = Op->getOperand(i).getValueType();
10769    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
10770    Entry.Node = Op->getOperand(i);
10771    Entry.Ty = ArgTy;
10772    Entry.isSExt = isSigned;
10773    Entry.isZExt = !isSigned;
10774    Args.push_back(Entry);
10775  }
10776
10777  SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
10778                                         getPointerTy());
10779
10780  Type *RetTy = (Type*)StructType::get(Ty, Ty, NULL);
10781
10782  SDLoc dl(Op);
10783  TargetLowering::
10784  CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, true,
10785                    0, getLibcallCallingConv(LC), /*isTailCall=*/false,
10786                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
10787                    Callee, Args, DAG, dl);
10788  std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
10789
10790  return CallInfo.first;
10791}
10792
10793bool
10794ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
10795  // The ARM target isn't yet aware of offsets.
10796  return false;
10797}
10798
10799bool ARM::isBitFieldInvertedMask(unsigned v) {
10800  if (v == 0xffffffff)
10801    return false;
10802
10803  // there can be 1's on either or both "outsides", all the "inside"
10804  // bits must be 0's
10805  unsigned TO = CountTrailingOnes_32(v);
10806  unsigned LO = CountLeadingOnes_32(v);
10807  v = (v >> TO) << TO;
10808  v = (v << LO) >> LO;
10809  return v == 0;
10810}
10811
10812/// isFPImmLegal - Returns true if the target can instruction select the
10813/// specified FP immediate natively. If false, the legalizer will
10814/// materialize the FP immediate as a load from a constant pool.
10815bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
10816  if (!Subtarget->hasVFP3())
10817    return false;
10818  if (VT == MVT::f32)
10819    return ARM_AM::getFP32Imm(Imm) != -1;
10820  if (VT == MVT::f64)
10821    return ARM_AM::getFP64Imm(Imm) != -1;
10822  return false;
10823}
10824
10825/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
10826/// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
10827/// specified in the intrinsic calls.
10828bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
10829                                           const CallInst &I,
10830                                           unsigned Intrinsic) const {
10831  switch (Intrinsic) {
10832  case Intrinsic::arm_neon_vld1:
10833  case Intrinsic::arm_neon_vld2:
10834  case Intrinsic::arm_neon_vld3:
10835  case Intrinsic::arm_neon_vld4:
10836  case Intrinsic::arm_neon_vld2lane:
10837  case Intrinsic::arm_neon_vld3lane:
10838  case Intrinsic::arm_neon_vld4lane: {
10839    Info.opc = ISD::INTRINSIC_W_CHAIN;
10840    // Conservatively set memVT to the entire set of vectors loaded.
10841    uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
10842    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
10843    Info.ptrVal = I.getArgOperand(0);
10844    Info.offset = 0;
10845    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
10846    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
10847    Info.vol = false; // volatile loads with NEON intrinsics not supported
10848    Info.readMem = true;
10849    Info.writeMem = false;
10850    return true;
10851  }
10852  case Intrinsic::arm_neon_vst1:
10853  case Intrinsic::arm_neon_vst2:
10854  case Intrinsic::arm_neon_vst3:
10855  case Intrinsic::arm_neon_vst4:
10856  case Intrinsic::arm_neon_vst2lane:
10857  case Intrinsic::arm_neon_vst3lane:
10858  case Intrinsic::arm_neon_vst4lane: {
10859    Info.opc = ISD::INTRINSIC_VOID;
10860    // Conservatively set memVT to the entire set of vectors stored.
10861    unsigned NumElts = 0;
10862    for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
10863      Type *ArgTy = I.getArgOperand(ArgI)->getType();
10864      if (!ArgTy->isVectorTy())
10865        break;
10866      NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
10867    }
10868    Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
10869    Info.ptrVal = I.getArgOperand(0);
10870    Info.offset = 0;
10871    Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
10872    Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
10873    Info.vol = false; // volatile stores with NEON intrinsics not supported
10874    Info.readMem = false;
10875    Info.writeMem = true;
10876    return true;
10877  }
10878  case Intrinsic::arm_ldrex: {
10879    PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
10880    Info.opc = ISD::INTRINSIC_W_CHAIN;
10881    Info.memVT = MVT::getVT(PtrTy->getElementType());
10882    Info.ptrVal = I.getArgOperand(0);
10883    Info.offset = 0;
10884    Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
10885    Info.vol = true;
10886    Info.readMem = true;
10887    Info.writeMem = false;
10888    return true;
10889  }
10890  case Intrinsic::arm_strex: {
10891    PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
10892    Info.opc = ISD::INTRINSIC_W_CHAIN;
10893    Info.memVT = MVT::getVT(PtrTy->getElementType());
10894    Info.ptrVal = I.getArgOperand(1);
10895    Info.offset = 0;
10896    Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
10897    Info.vol = true;
10898    Info.readMem = false;
10899    Info.writeMem = true;
10900    return true;
10901  }
10902  case Intrinsic::arm_strexd: {
10903    Info.opc = ISD::INTRINSIC_W_CHAIN;
10904    Info.memVT = MVT::i64;
10905    Info.ptrVal = I.getArgOperand(2);
10906    Info.offset = 0;
10907    Info.align = 8;
10908    Info.vol = true;
10909    Info.readMem = false;
10910    Info.writeMem = true;
10911    return true;
10912  }
10913  case Intrinsic::arm_ldrexd: {
10914    Info.opc = ISD::INTRINSIC_W_CHAIN;
10915    Info.memVT = MVT::i64;
10916    Info.ptrVal = I.getArgOperand(0);
10917    Info.offset = 0;
10918    Info.align = 8;
10919    Info.vol = true;
10920    Info.readMem = true;
10921    Info.writeMem = false;
10922    return true;
10923  }
10924  default:
10925    break;
10926  }
10927
10928  return false;
10929}
10930