1//===-- NVPTXAsmPrinter.cpp - NVPTX LLVM assembly writer ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains a printer that converts from our internal representation
11// of machine-dependent LLVM code to NVPTX assembly language.
12//
13//===----------------------------------------------------------------------===//
14
15#include "NVPTXAsmPrinter.h"
16#include "MCTargetDesc/NVPTXMCAsmInfo.h"
17#include "NVPTX.h"
18#include "NVPTXInstrInfo.h"
19#include "NVPTXMCExpr.h"
20#include "NVPTXRegisterInfo.h"
21#include "NVPTXTargetMachine.h"
22#include "NVPTXUtilities.h"
23#include "cl_common_defines.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/Analysis/ConstantFolding.h"
26#include "llvm/Assembly/Writer.h"
27#include "llvm/CodeGen/Analysis.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/DebugInfo.h"
32#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/GlobalVariable.h"
35#include "llvm/IR/Module.h"
36#include "llvm/IR/Operator.h"
37#include "llvm/MC/MCStreamer.h"
38#include "llvm/MC/MCSymbol.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/FormattedStream.h"
42#include "llvm/Support/Path.h"
43#include "llvm/Support/TargetRegistry.h"
44#include "llvm/Support/TimeValue.h"
45#include "llvm/Target/Mangler.h"
46#include "llvm/Target/TargetLoweringObjectFile.h"
47#include <sstream>
48using namespace llvm;
49
50bool RegAllocNilUsed = true;
51
52#define DEPOTNAME "__local_depot"
53
54static cl::opt<bool>
55EmitLineNumbers("nvptx-emit-line-numbers",
56                cl::desc("NVPTX Specific: Emit Line numbers even without -G"),
57                cl::init(true));
58
59namespace llvm { bool InterleaveSrcInPtx = false; }
60
61static cl::opt<bool, true>
62InterleaveSrc("nvptx-emit-src", cl::ZeroOrMore,
63              cl::desc("NVPTX Specific: Emit source line in ptx file"),
64              cl::location(llvm::InterleaveSrcInPtx));
65
66namespace {
67/// DiscoverDependentGlobals - Return a set of GlobalVariables on which \p V
68/// depends.
69void DiscoverDependentGlobals(const Value *V,
70                              DenseSet<const GlobalVariable *> &Globals) {
71  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
72    Globals.insert(GV);
73  else {
74    if (const User *U = dyn_cast<User>(V)) {
75      for (unsigned i = 0, e = U->getNumOperands(); i != e; ++i) {
76        DiscoverDependentGlobals(U->getOperand(i), Globals);
77      }
78    }
79  }
80}
81
82/// VisitGlobalVariableForEmission - Add \p GV to the list of GlobalVariable
83/// instances to be emitted, but only after any dependents have been added
84/// first.
85void VisitGlobalVariableForEmission(
86    const GlobalVariable *GV, SmallVectorImpl<const GlobalVariable *> &Order,
87    DenseSet<const GlobalVariable *> &Visited,
88    DenseSet<const GlobalVariable *> &Visiting) {
89  // Have we already visited this one?
90  if (Visited.count(GV))
91    return;
92
93  // Do we have a circular dependency?
94  if (Visiting.count(GV))
95    report_fatal_error("Circular dependency found in global variable set");
96
97  // Start visiting this global
98  Visiting.insert(GV);
99
100  // Make sure we visit all dependents first
101  DenseSet<const GlobalVariable *> Others;
102  for (unsigned i = 0, e = GV->getNumOperands(); i != e; ++i)
103    DiscoverDependentGlobals(GV->getOperand(i), Others);
104
105  for (DenseSet<const GlobalVariable *>::iterator I = Others.begin(),
106                                                  E = Others.end();
107       I != E; ++I)
108    VisitGlobalVariableForEmission(*I, Order, Visited, Visiting);
109
110  // Now we can visit ourself
111  Order.push_back(GV);
112  Visited.insert(GV);
113  Visiting.erase(GV);
114}
115}
116
117// @TODO: This is a copy from AsmPrinter.cpp.  The function is static, so we
118// cannot just link to the existing version.
119/// LowerConstant - Lower the specified LLVM Constant to an MCExpr.
120///
121using namespace nvptx;
122const MCExpr *nvptx::LowerConstant(const Constant *CV, AsmPrinter &AP) {
123  MCContext &Ctx = AP.OutContext;
124
125  if (CV->isNullValue() || isa<UndefValue>(CV))
126    return MCConstantExpr::Create(0, Ctx);
127
128  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
129    return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
130
131  if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
132    return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
133
134  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
135    return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
136
137  const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
138  if (CE == 0)
139    llvm_unreachable("Unknown constant value to lower!");
140
141  switch (CE->getOpcode()) {
142  default:
143    // If the code isn't optimized, there may be outstanding folding
144    // opportunities. Attempt to fold the expression using DataLayout as a
145    // last resort before giving up.
146    if (Constant *C = ConstantFoldConstantExpression(CE, AP.TM.getDataLayout()))
147      if (C != CE)
148        return LowerConstant(C, AP);
149
150    // Otherwise report the problem to the user.
151    {
152      std::string S;
153      raw_string_ostream OS(S);
154      OS << "Unsupported expression in static initializer: ";
155      WriteAsOperand(OS, CE, /*PrintType=*/ false,
156                     !AP.MF ? 0 : AP.MF->getFunction()->getParent());
157      report_fatal_error(OS.str());
158    }
159  case Instruction::GetElementPtr: {
160    const DataLayout &TD = *AP.TM.getDataLayout();
161    // Generate a symbolic expression for the byte address
162    APInt OffsetAI(TD.getPointerSizeInBits(), 0);
163    cast<GEPOperator>(CE)->accumulateConstantOffset(TD, OffsetAI);
164
165    const MCExpr *Base = LowerConstant(CE->getOperand(0), AP);
166    if (!OffsetAI)
167      return Base;
168
169    int64_t Offset = OffsetAI.getSExtValue();
170    return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
171                                   Ctx);
172  }
173
174  case Instruction::Trunc:
175    // We emit the value and depend on the assembler to truncate the generated
176    // expression properly.  This is important for differences between
177    // blockaddress labels.  Since the two labels are in the same function, it
178    // is reasonable to treat their delta as a 32-bit value.
179  // FALL THROUGH.
180  case Instruction::BitCast:
181    return LowerConstant(CE->getOperand(0), AP);
182
183  case Instruction::IntToPtr: {
184    const DataLayout &TD = *AP.TM.getDataLayout();
185    // Handle casts to pointers by changing them into casts to the appropriate
186    // integer type.  This promotes constant folding and simplifies this code.
187    Constant *Op = CE->getOperand(0);
188    Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
189                                      false /*ZExt*/);
190    return LowerConstant(Op, AP);
191  }
192
193  case Instruction::PtrToInt: {
194    const DataLayout &TD = *AP.TM.getDataLayout();
195    // Support only foldable casts to/from pointers that can be eliminated by
196    // changing the pointer to the appropriately sized integer type.
197    Constant *Op = CE->getOperand(0);
198    Type *Ty = CE->getType();
199
200    const MCExpr *OpExpr = LowerConstant(Op, AP);
201
202    // We can emit the pointer value into this slot if the slot is an
203    // integer slot equal to the size of the pointer.
204    if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
205      return OpExpr;
206
207    // Otherwise the pointer is smaller than the resultant integer, mask off
208    // the high bits so we are sure to get a proper truncation if the input is
209    // a constant expr.
210    unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
211    const MCExpr *MaskExpr =
212        MCConstantExpr::Create(~0ULL >> (64 - InBits), Ctx);
213    return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
214  }
215
216    // The MC library also has a right-shift operator, but it isn't consistently
217  // signed or unsigned between different targets.
218  case Instruction::Add:
219  case Instruction::Sub:
220  case Instruction::Mul:
221  case Instruction::SDiv:
222  case Instruction::SRem:
223  case Instruction::Shl:
224  case Instruction::And:
225  case Instruction::Or:
226  case Instruction::Xor: {
227    const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP);
228    const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP);
229    switch (CE->getOpcode()) {
230    default:
231      llvm_unreachable("Unknown binary operator constant cast expr");
232    case Instruction::Add:
233      return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
234    case Instruction::Sub:
235      return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
236    case Instruction::Mul:
237      return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
238    case Instruction::SDiv:
239      return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
240    case Instruction::SRem:
241      return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
242    case Instruction::Shl:
243      return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
244    case Instruction::And:
245      return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
246    case Instruction::Or:
247      return MCBinaryExpr::CreateOr(LHS, RHS, Ctx);
248    case Instruction::Xor:
249      return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
250    }
251  }
252  }
253}
254
255void NVPTXAsmPrinter::emitLineNumberAsDotLoc(const MachineInstr &MI) {
256  if (!EmitLineNumbers)
257    return;
258  if (ignoreLoc(MI))
259    return;
260
261  DebugLoc curLoc = MI.getDebugLoc();
262
263  if (prevDebugLoc.isUnknown() && curLoc.isUnknown())
264    return;
265
266  if (prevDebugLoc == curLoc)
267    return;
268
269  prevDebugLoc = curLoc;
270
271  if (curLoc.isUnknown())
272    return;
273
274  const MachineFunction *MF = MI.getParent()->getParent();
275  //const TargetMachine &TM = MF->getTarget();
276
277  const LLVMContext &ctx = MF->getFunction()->getContext();
278  DIScope Scope(curLoc.getScope(ctx));
279
280  assert((!Scope || Scope.isScope()) &&
281    "Scope of a DebugLoc should be null or a DIScope.");
282  if (!Scope)
283     return;
284
285  StringRef fileName(Scope.getFilename());
286  StringRef dirName(Scope.getDirectory());
287  SmallString<128> FullPathName = dirName;
288  if (!dirName.empty() && !sys::path::is_absolute(fileName)) {
289    sys::path::append(FullPathName, fileName);
290    fileName = FullPathName.str();
291  }
292
293  if (filenameMap.find(fileName.str()) == filenameMap.end())
294    return;
295
296  // Emit the line from the source file.
297  if (llvm::InterleaveSrcInPtx)
298    this->emitSrcInText(fileName.str(), curLoc.getLine());
299
300  std::stringstream temp;
301  temp << "\t.loc " << filenameMap[fileName.str()] << " " << curLoc.getLine()
302       << " " << curLoc.getCol();
303  OutStreamer.EmitRawText(Twine(temp.str().c_str()));
304}
305
306void NVPTXAsmPrinter::EmitInstruction(const MachineInstr *MI) {
307  SmallString<128> Str;
308  raw_svector_ostream OS(Str);
309  if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)
310    emitLineNumberAsDotLoc(*MI);
311
312  MCInst Inst;
313  lowerToMCInst(MI, Inst);
314  OutStreamer.EmitInstruction(Inst);
315}
316
317void NVPTXAsmPrinter::lowerToMCInst(const MachineInstr *MI, MCInst &OutMI) {
318  OutMI.setOpcode(MI->getOpcode());
319
320  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
321    const MachineOperand &MO = MI->getOperand(i);
322
323    MCOperand MCOp;
324    if (lowerOperand(MO, MCOp))
325      OutMI.addOperand(MCOp);
326  }
327}
328
329bool NVPTXAsmPrinter::lowerOperand(const MachineOperand &MO,
330                                   MCOperand &MCOp) {
331  switch (MO.getType()) {
332  default: llvm_unreachable("unknown operand type");
333  case MachineOperand::MO_Register:
334    MCOp = MCOperand::CreateReg(encodeVirtualRegister(MO.getReg()));
335    break;
336  case MachineOperand::MO_Immediate:
337    MCOp = MCOperand::CreateImm(MO.getImm());
338    break;
339  case MachineOperand::MO_MachineBasicBlock:
340    MCOp = MCOperand::CreateExpr(MCSymbolRefExpr::Create(
341        MO.getMBB()->getSymbol(), OutContext));
342    break;
343  case MachineOperand::MO_ExternalSymbol:
344    MCOp = GetSymbolRef(MO, GetExternalSymbolSymbol(MO.getSymbolName()));
345    break;
346  case MachineOperand::MO_GlobalAddress:
347    MCOp = GetSymbolRef(MO, Mang->getSymbol(MO.getGlobal()));
348    break;
349  case MachineOperand::MO_FPImmediate: {
350    const ConstantFP *Cnt = MO.getFPImm();
351    APFloat Val = Cnt->getValueAPF();
352
353    switch (Cnt->getType()->getTypeID()) {
354    default: report_fatal_error("Unsupported FP type"); break;
355    case Type::FloatTyID:
356      MCOp = MCOperand::CreateExpr(
357        NVPTXFloatMCExpr::CreateConstantFPSingle(Val, OutContext));
358      break;
359    case Type::DoubleTyID:
360      MCOp = MCOperand::CreateExpr(
361        NVPTXFloatMCExpr::CreateConstantFPDouble(Val, OutContext));
362      break;
363    }
364    break;
365  }
366  }
367  return true;
368}
369
370unsigned NVPTXAsmPrinter::encodeVirtualRegister(unsigned Reg) {
371  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
372    const TargetRegisterClass *RC = MRI->getRegClass(Reg);
373
374    DenseMap<unsigned, unsigned> &RegMap = VRegMapping[RC];
375    unsigned RegNum = RegMap[Reg];
376
377    // Encode the register class in the upper 4 bits
378    // Must be kept in sync with NVPTXInstPrinter::printRegName
379    unsigned Ret = 0;
380    if (RC == &NVPTX::Int1RegsRegClass) {
381      Ret = (1 << 28);
382    } else if (RC == &NVPTX::Int16RegsRegClass) {
383      Ret = (2 << 28);
384    } else if (RC == &NVPTX::Int32RegsRegClass) {
385      Ret = (3 << 28);
386    } else if (RC == &NVPTX::Int64RegsRegClass) {
387      Ret = (4 << 28);
388    } else if (RC == &NVPTX::Float32RegsRegClass) {
389      Ret = (5 << 28);
390    } else if (RC == &NVPTX::Float64RegsRegClass) {
391      Ret = (6 << 28);
392    } else {
393      report_fatal_error("Bad register class");
394    }
395
396    // Insert the vreg number
397    Ret |= (RegNum & 0x0FFFFFFF);
398    return Ret;
399  } else {
400    // Some special-use registers are actually physical registers.
401    // Encode this as the register class ID of 0 and the real register ID.
402    return Reg & 0x0FFFFFFF;
403  }
404}
405
406MCOperand NVPTXAsmPrinter::GetSymbolRef(const MachineOperand &MO,
407                                        const MCSymbol *Symbol) {
408  const MCExpr *Expr;
409  Expr = MCSymbolRefExpr::Create(Symbol, MCSymbolRefExpr::VK_None,
410                                 OutContext);
411  return MCOperand::CreateExpr(Expr);
412}
413
414void NVPTXAsmPrinter::printReturnValStr(const Function *F, raw_ostream &O) {
415  const DataLayout *TD = TM.getDataLayout();
416  const TargetLowering *TLI = TM.getTargetLowering();
417
418  Type *Ty = F->getReturnType();
419
420  bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
421
422  if (Ty->getTypeID() == Type::VoidTyID)
423    return;
424
425  O << " (";
426
427  if (isABI) {
428    if (Ty->isPrimitiveType() || Ty->isIntegerTy()) {
429      unsigned size = 0;
430      if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty)) {
431        size = ITy->getBitWidth();
432        if (size < 32)
433          size = 32;
434      } else {
435        assert(Ty->isFloatingPointTy() && "Floating point type expected here");
436        size = Ty->getPrimitiveSizeInBits();
437      }
438
439      O << ".param .b" << size << " func_retval0";
440    } else if (isa<PointerType>(Ty)) {
441      O << ".param .b" << TLI->getPointerTy().getSizeInBits()
442        << " func_retval0";
443    } else {
444      if ((Ty->getTypeID() == Type::StructTyID) || isa<VectorType>(Ty)) {
445        SmallVector<EVT, 16> vtparts;
446        ComputeValueVTs(*TLI, Ty, vtparts);
447        unsigned totalsz = 0;
448        for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
449          unsigned elems = 1;
450          EVT elemtype = vtparts[i];
451          if (vtparts[i].isVector()) {
452            elems = vtparts[i].getVectorNumElements();
453            elemtype = vtparts[i].getVectorElementType();
454          }
455          for (unsigned j = 0, je = elems; j != je; ++j) {
456            unsigned sz = elemtype.getSizeInBits();
457            if (elemtype.isInteger() && (sz < 8))
458              sz = 8;
459            totalsz += sz / 8;
460          }
461        }
462        unsigned retAlignment = 0;
463        if (!llvm::getAlign(*F, 0, retAlignment))
464          retAlignment = TD->getABITypeAlignment(Ty);
465        O << ".param .align " << retAlignment << " .b8 func_retval0[" << totalsz
466          << "]";
467      } else
468        assert(false && "Unknown return type");
469    }
470  } else {
471    SmallVector<EVT, 16> vtparts;
472    ComputeValueVTs(*TLI, Ty, vtparts);
473    unsigned idx = 0;
474    for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
475      unsigned elems = 1;
476      EVT elemtype = vtparts[i];
477      if (vtparts[i].isVector()) {
478        elems = vtparts[i].getVectorNumElements();
479        elemtype = vtparts[i].getVectorElementType();
480      }
481
482      for (unsigned j = 0, je = elems; j != je; ++j) {
483        unsigned sz = elemtype.getSizeInBits();
484        if (elemtype.isInteger() && (sz < 32))
485          sz = 32;
486        O << ".reg .b" << sz << " func_retval" << idx;
487        if (j < je - 1)
488          O << ", ";
489        ++idx;
490      }
491      if (i < e - 1)
492        O << ", ";
493    }
494  }
495  O << ") ";
496  return;
497}
498
499void NVPTXAsmPrinter::printReturnValStr(const MachineFunction &MF,
500                                        raw_ostream &O) {
501  const Function *F = MF.getFunction();
502  printReturnValStr(F, O);
503}
504
505void NVPTXAsmPrinter::EmitFunctionEntryLabel() {
506  SmallString<128> Str;
507  raw_svector_ostream O(Str);
508
509  if (!GlobalsEmitted) {
510    emitGlobals(*MF->getFunction()->getParent());
511    GlobalsEmitted = true;
512  }
513
514  // Set up
515  MRI = &MF->getRegInfo();
516  F = MF->getFunction();
517  emitLinkageDirective(F, O);
518  if (llvm::isKernelFunction(*F))
519    O << ".entry ";
520  else {
521    O << ".func ";
522    printReturnValStr(*MF, O);
523  }
524
525  O << *CurrentFnSym;
526
527  emitFunctionParamList(*MF, O);
528
529  if (llvm::isKernelFunction(*F))
530    emitKernelFunctionDirectives(*F, O);
531
532  OutStreamer.EmitRawText(O.str());
533
534  prevDebugLoc = DebugLoc();
535}
536
537void NVPTXAsmPrinter::EmitFunctionBodyStart() {
538  VRegMapping.clear();
539  OutStreamer.EmitRawText(StringRef("{\n"));
540  setAndEmitFunctionVirtualRegisters(*MF);
541
542  SmallString<128> Str;
543  raw_svector_ostream O(Str);
544  emitDemotedVars(MF->getFunction(), O);
545  OutStreamer.EmitRawText(O.str());
546}
547
548void NVPTXAsmPrinter::EmitFunctionBodyEnd() {
549  OutStreamer.EmitRawText(StringRef("}\n"));
550  VRegMapping.clear();
551}
552
553void NVPTXAsmPrinter::emitKernelFunctionDirectives(const Function &F,
554                                                   raw_ostream &O) const {
555  // If the NVVM IR has some of reqntid* specified, then output
556  // the reqntid directive, and set the unspecified ones to 1.
557  // If none of reqntid* is specified, don't output reqntid directive.
558  unsigned reqntidx, reqntidy, reqntidz;
559  bool specified = false;
560  if (llvm::getReqNTIDx(F, reqntidx) == false)
561    reqntidx = 1;
562  else
563    specified = true;
564  if (llvm::getReqNTIDy(F, reqntidy) == false)
565    reqntidy = 1;
566  else
567    specified = true;
568  if (llvm::getReqNTIDz(F, reqntidz) == false)
569    reqntidz = 1;
570  else
571    specified = true;
572
573  if (specified)
574    O << ".reqntid " << reqntidx << ", " << reqntidy << ", " << reqntidz
575      << "\n";
576
577  // If the NVVM IR has some of maxntid* specified, then output
578  // the maxntid directive, and set the unspecified ones to 1.
579  // If none of maxntid* is specified, don't output maxntid directive.
580  unsigned maxntidx, maxntidy, maxntidz;
581  specified = false;
582  if (llvm::getMaxNTIDx(F, maxntidx) == false)
583    maxntidx = 1;
584  else
585    specified = true;
586  if (llvm::getMaxNTIDy(F, maxntidy) == false)
587    maxntidy = 1;
588  else
589    specified = true;
590  if (llvm::getMaxNTIDz(F, maxntidz) == false)
591    maxntidz = 1;
592  else
593    specified = true;
594
595  if (specified)
596    O << ".maxntid " << maxntidx << ", " << maxntidy << ", " << maxntidz
597      << "\n";
598
599  unsigned mincta;
600  if (llvm::getMinCTASm(F, mincta))
601    O << ".minnctapersm " << mincta << "\n";
602}
603
604void NVPTXAsmPrinter::getVirtualRegisterName(unsigned vr, bool isVec,
605                                             raw_ostream &O) {
606  const TargetRegisterClass *RC = MRI->getRegClass(vr);
607
608  DenseMap<unsigned, unsigned> &regmap = VRegMapping[RC];
609  unsigned mapped_vr = regmap[vr];
610
611  if (!isVec) {
612    O << getNVPTXRegClassStr(RC) << mapped_vr;
613    return;
614  }
615  report_fatal_error("Bad register!");
616}
617
618void NVPTXAsmPrinter::emitVirtualRegister(unsigned int vr, bool isVec,
619                                          raw_ostream &O) {
620  getVirtualRegisterName(vr, isVec, O);
621}
622
623void NVPTXAsmPrinter::printVecModifiedImmediate(
624    const MachineOperand &MO, const char *Modifier, raw_ostream &O) {
625  static const char vecelem[] = { '0', '1', '2', '3', '0', '1', '2', '3' };
626  int Imm = (int) MO.getImm();
627  if (0 == strcmp(Modifier, "vecelem"))
628    O << "_" << vecelem[Imm];
629  else if (0 == strcmp(Modifier, "vecv4comm1")) {
630    if ((Imm < 0) || (Imm > 3))
631      O << "//";
632  } else if (0 == strcmp(Modifier, "vecv4comm2")) {
633    if ((Imm < 4) || (Imm > 7))
634      O << "//";
635  } else if (0 == strcmp(Modifier, "vecv4pos")) {
636    if (Imm < 0)
637      Imm = 0;
638    O << "_" << vecelem[Imm % 4];
639  } else if (0 == strcmp(Modifier, "vecv2comm1")) {
640    if ((Imm < 0) || (Imm > 1))
641      O << "//";
642  } else if (0 == strcmp(Modifier, "vecv2comm2")) {
643    if ((Imm < 2) || (Imm > 3))
644      O << "//";
645  } else if (0 == strcmp(Modifier, "vecv2pos")) {
646    if (Imm < 0)
647      Imm = 0;
648    O << "_" << vecelem[Imm % 2];
649  } else
650    llvm_unreachable("Unknown Modifier on immediate operand");
651}
652
653
654
655void NVPTXAsmPrinter::emitDeclaration(const Function *F, raw_ostream &O) {
656
657  emitLinkageDirective(F, O);
658  if (llvm::isKernelFunction(*F))
659    O << ".entry ";
660  else
661    O << ".func ";
662  printReturnValStr(F, O);
663  O << *Mang->getSymbol(F) << "\n";
664  emitFunctionParamList(F, O);
665  O << ";\n";
666}
667
668static bool usedInGlobalVarDef(const Constant *C) {
669  if (!C)
670    return false;
671
672  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
673    if (GV->getName().str() == "llvm.used")
674      return false;
675    return true;
676  }
677
678  for (Value::const_use_iterator ui = C->use_begin(), ue = C->use_end();
679       ui != ue; ++ui) {
680    const Constant *C = dyn_cast<Constant>(*ui);
681    if (usedInGlobalVarDef(C))
682      return true;
683  }
684  return false;
685}
686
687static bool usedInOneFunc(const User *U, Function const *&oneFunc) {
688  if (const GlobalVariable *othergv = dyn_cast<GlobalVariable>(U)) {
689    if (othergv->getName().str() == "llvm.used")
690      return true;
691  }
692
693  if (const Instruction *instr = dyn_cast<Instruction>(U)) {
694    if (instr->getParent() && instr->getParent()->getParent()) {
695      const Function *curFunc = instr->getParent()->getParent();
696      if (oneFunc && (curFunc != oneFunc))
697        return false;
698      oneFunc = curFunc;
699      return true;
700    } else
701      return false;
702  }
703
704  if (const MDNode *md = dyn_cast<MDNode>(U))
705    if (md->hasName() && ((md->getName().str() == "llvm.dbg.gv") ||
706                          (md->getName().str() == "llvm.dbg.sp")))
707      return true;
708
709  for (User::const_use_iterator ui = U->use_begin(), ue = U->use_end();
710       ui != ue; ++ui) {
711    if (usedInOneFunc(*ui, oneFunc) == false)
712      return false;
713  }
714  return true;
715}
716
717/* Find out if a global variable can be demoted to local scope.
718 * Currently, this is valid for CUDA shared variables, which have local
719 * scope and global lifetime. So the conditions to check are :
720 * 1. Is the global variable in shared address space?
721 * 2. Does it have internal linkage?
722 * 3. Is the global variable referenced only in one function?
723 */
724static bool canDemoteGlobalVar(const GlobalVariable *gv, Function const *&f) {
725  if (gv->hasInternalLinkage() == false)
726    return false;
727  const PointerType *Pty = gv->getType();
728  if (Pty->getAddressSpace() != llvm::ADDRESS_SPACE_SHARED)
729    return false;
730
731  const Function *oneFunc = 0;
732
733  bool flag = usedInOneFunc(gv, oneFunc);
734  if (flag == false)
735    return false;
736  if (!oneFunc)
737    return false;
738  f = oneFunc;
739  return true;
740}
741
742static bool useFuncSeen(const Constant *C,
743                        llvm::DenseMap<const Function *, bool> &seenMap) {
744  for (Value::const_use_iterator ui = C->use_begin(), ue = C->use_end();
745       ui != ue; ++ui) {
746    if (const Constant *cu = dyn_cast<Constant>(*ui)) {
747      if (useFuncSeen(cu, seenMap))
748        return true;
749    } else if (const Instruction *I = dyn_cast<Instruction>(*ui)) {
750      const BasicBlock *bb = I->getParent();
751      if (!bb)
752        continue;
753      const Function *caller = bb->getParent();
754      if (!caller)
755        continue;
756      if (seenMap.find(caller) != seenMap.end())
757        return true;
758    }
759  }
760  return false;
761}
762
763void NVPTXAsmPrinter::emitDeclarations(const Module &M, raw_ostream &O) {
764  llvm::DenseMap<const Function *, bool> seenMap;
765  for (Module::const_iterator FI = M.begin(), FE = M.end(); FI != FE; ++FI) {
766    const Function *F = FI;
767
768    if (F->isDeclaration()) {
769      if (F->use_empty())
770        continue;
771      if (F->getIntrinsicID())
772        continue;
773      emitDeclaration(F, O);
774      continue;
775    }
776    for (Value::const_use_iterator iter = F->use_begin(),
777                                   iterEnd = F->use_end();
778         iter != iterEnd; ++iter) {
779      if (const Constant *C = dyn_cast<Constant>(*iter)) {
780        if (usedInGlobalVarDef(C)) {
781          // The use is in the initialization of a global variable
782          // that is a function pointer, so print a declaration
783          // for the original function
784          emitDeclaration(F, O);
785          break;
786        }
787        // Emit a declaration of this function if the function that
788        // uses this constant expr has already been seen.
789        if (useFuncSeen(C, seenMap)) {
790          emitDeclaration(F, O);
791          break;
792        }
793      }
794
795      if (!isa<Instruction>(*iter))
796        continue;
797      const Instruction *instr = cast<Instruction>(*iter);
798      const BasicBlock *bb = instr->getParent();
799      if (!bb)
800        continue;
801      const Function *caller = bb->getParent();
802      if (!caller)
803        continue;
804
805      // If a caller has already been seen, then the caller is
806      // appearing in the module before the callee. so print out
807      // a declaration for the callee.
808      if (seenMap.find(caller) != seenMap.end()) {
809        emitDeclaration(F, O);
810        break;
811      }
812    }
813    seenMap[F] = true;
814  }
815}
816
817void NVPTXAsmPrinter::recordAndEmitFilenames(Module &M) {
818  DebugInfoFinder DbgFinder;
819  DbgFinder.processModule(M);
820
821  unsigned i = 1;
822  for (DebugInfoFinder::iterator I = DbgFinder.compile_unit_begin(),
823                                 E = DbgFinder.compile_unit_end();
824       I != E; ++I) {
825    DICompileUnit DIUnit(*I);
826    StringRef Filename(DIUnit.getFilename());
827    StringRef Dirname(DIUnit.getDirectory());
828    SmallString<128> FullPathName = Dirname;
829    if (!Dirname.empty() && !sys::path::is_absolute(Filename)) {
830      sys::path::append(FullPathName, Filename);
831      Filename = FullPathName.str();
832    }
833    if (filenameMap.find(Filename.str()) != filenameMap.end())
834      continue;
835    filenameMap[Filename.str()] = i;
836    OutStreamer.EmitDwarfFileDirective(i, "", Filename.str());
837    ++i;
838  }
839
840  for (DebugInfoFinder::iterator I = DbgFinder.subprogram_begin(),
841                                 E = DbgFinder.subprogram_end();
842       I != E; ++I) {
843    DISubprogram SP(*I);
844    StringRef Filename(SP.getFilename());
845    StringRef Dirname(SP.getDirectory());
846    SmallString<128> FullPathName = Dirname;
847    if (!Dirname.empty() && !sys::path::is_absolute(Filename)) {
848      sys::path::append(FullPathName, Filename);
849      Filename = FullPathName.str();
850    }
851    if (filenameMap.find(Filename.str()) != filenameMap.end())
852      continue;
853    filenameMap[Filename.str()] = i;
854    ++i;
855  }
856}
857
858bool NVPTXAsmPrinter::doInitialization(Module &M) {
859
860  SmallString<128> Str1;
861  raw_svector_ostream OS1(Str1);
862
863  MMI = getAnalysisIfAvailable<MachineModuleInfo>();
864  MMI->AnalyzeModule(M);
865
866  // We need to call the parent's one explicitly.
867  //bool Result = AsmPrinter::doInitialization(M);
868
869  // Initialize TargetLoweringObjectFile.
870  const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
871      .Initialize(OutContext, TM);
872
873  Mang = new Mangler(OutContext, &TM);
874
875  // Emit header before any dwarf directives are emitted below.
876  emitHeader(M, OS1);
877  OutStreamer.EmitRawText(OS1.str());
878
879  // Already commented out
880  //bool Result = AsmPrinter::doInitialization(M);
881
882  // Emit module-level inline asm if it exists.
883  if (!M.getModuleInlineAsm().empty()) {
884    OutStreamer.AddComment("Start of file scope inline assembly");
885    OutStreamer.AddBlankLine();
886    OutStreamer.EmitRawText(StringRef(M.getModuleInlineAsm()));
887    OutStreamer.AddBlankLine();
888    OutStreamer.AddComment("End of file scope inline assembly");
889    OutStreamer.AddBlankLine();
890  }
891
892  if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)
893    recordAndEmitFilenames(M);
894
895  GlobalsEmitted = false;
896
897  return false; // success
898}
899
900void NVPTXAsmPrinter::emitGlobals(const Module &M) {
901  SmallString<128> Str2;
902  raw_svector_ostream OS2(Str2);
903
904  emitDeclarations(M, OS2);
905
906  // As ptxas does not support forward references of globals, we need to first
907  // sort the list of module-level globals in def-use order. We visit each
908  // global variable in order, and ensure that we emit it *after* its dependent
909  // globals. We use a little extra memory maintaining both a set and a list to
910  // have fast searches while maintaining a strict ordering.
911  SmallVector<const GlobalVariable *, 8> Globals;
912  DenseSet<const GlobalVariable *> GVVisited;
913  DenseSet<const GlobalVariable *> GVVisiting;
914
915  // Visit each global variable, in order
916  for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
917       I != E; ++I)
918    VisitGlobalVariableForEmission(I, Globals, GVVisited, GVVisiting);
919
920  assert(GVVisited.size() == M.getGlobalList().size() &&
921         "Missed a global variable");
922  assert(GVVisiting.size() == 0 && "Did not fully process a global variable");
923
924  // Print out module-level global variables in proper order
925  for (unsigned i = 0, e = Globals.size(); i != e; ++i)
926    printModuleLevelGV(Globals[i], OS2);
927
928  OS2 << '\n';
929
930  OutStreamer.EmitRawText(OS2.str());
931}
932
933void NVPTXAsmPrinter::emitHeader(Module &M, raw_ostream &O) {
934  O << "//\n";
935  O << "// Generated by LLVM NVPTX Back-End\n";
936  O << "//\n";
937  O << "\n";
938
939  unsigned PTXVersion = nvptxSubtarget.getPTXVersion();
940  O << ".version " << (PTXVersion / 10) << "." << (PTXVersion % 10) << "\n";
941
942  O << ".target ";
943  O << nvptxSubtarget.getTargetName();
944
945  if (nvptxSubtarget.getDrvInterface() == NVPTX::NVCL)
946    O << ", texmode_independent";
947  if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) {
948    if (!nvptxSubtarget.hasDouble())
949      O << ", map_f64_to_f32";
950  }
951
952  if (MAI->doesSupportDebugInformation())
953    O << ", debug";
954
955  O << "\n";
956
957  O << ".address_size ";
958  if (nvptxSubtarget.is64Bit())
959    O << "64";
960  else
961    O << "32";
962  O << "\n";
963
964  O << "\n";
965}
966
967bool NVPTXAsmPrinter::doFinalization(Module &M) {
968
969  // If we did not emit any functions, then the global declarations have not
970  // yet been emitted.
971  if (!GlobalsEmitted) {
972    emitGlobals(M);
973    GlobalsEmitted = true;
974  }
975
976  // XXX Temproarily remove global variables so that doFinalization() will not
977  // emit them again (global variables are emitted at beginning).
978
979  Module::GlobalListType &global_list = M.getGlobalList();
980  int i, n = global_list.size();
981  GlobalVariable **gv_array = new GlobalVariable *[n];
982
983  // first, back-up GlobalVariable in gv_array
984  i = 0;
985  for (Module::global_iterator I = global_list.begin(), E = global_list.end();
986       I != E; ++I)
987    gv_array[i++] = &*I;
988
989  // second, empty global_list
990  while (!global_list.empty())
991    global_list.remove(global_list.begin());
992
993  // call doFinalization
994  bool ret = AsmPrinter::doFinalization(M);
995
996  // now we restore global variables
997  for (i = 0; i < n; i++)
998    global_list.insert(global_list.end(), gv_array[i]);
999
1000  delete[] gv_array;
1001  return ret;
1002
1003  //bool Result = AsmPrinter::doFinalization(M);
1004  // Instead of calling the parents doFinalization, we may
1005  // clone parents doFinalization and customize here.
1006  // Currently, we if NVISA out the EmitGlobals() in
1007  // parent's doFinalization, which is too intrusive.
1008  //
1009  // Same for the doInitialization.
1010  //return Result;
1011}
1012
1013// This function emits appropriate linkage directives for
1014// functions and global variables.
1015//
1016// extern function declaration            -> .extern
1017// extern function definition             -> .visible
1018// external global variable with init     -> .visible
1019// external without init                  -> .extern
1020// appending                              -> not allowed, assert.
1021
1022void NVPTXAsmPrinter::emitLinkageDirective(const GlobalValue *V,
1023                                           raw_ostream &O) {
1024  if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) {
1025    if (V->hasExternalLinkage()) {
1026      if (isa<GlobalVariable>(V)) {
1027        const GlobalVariable *GVar = cast<GlobalVariable>(V);
1028        if (GVar) {
1029          if (GVar->hasInitializer())
1030            O << ".visible ";
1031          else
1032            O << ".extern ";
1033        }
1034      } else if (V->isDeclaration())
1035        O << ".extern ";
1036      else
1037        O << ".visible ";
1038    } else if (V->hasAppendingLinkage()) {
1039      std::string msg;
1040      msg.append("Error: ");
1041      msg.append("Symbol ");
1042      if (V->hasName())
1043        msg.append(V->getName().str());
1044      msg.append("has unsupported appending linkage type");
1045      llvm_unreachable(msg.c_str());
1046    }
1047  }
1048}
1049
1050void NVPTXAsmPrinter::printModuleLevelGV(const GlobalVariable *GVar,
1051                                         raw_ostream &O,
1052                                         bool processDemoted) {
1053
1054  // Skip meta data
1055  if (GVar->hasSection()) {
1056    if (GVar->getSection() == "llvm.metadata")
1057      return;
1058  }
1059
1060  const DataLayout *TD = TM.getDataLayout();
1061
1062  // GlobalVariables are always constant pointers themselves.
1063  const PointerType *PTy = GVar->getType();
1064  Type *ETy = PTy->getElementType();
1065
1066  if (GVar->hasExternalLinkage()) {
1067    if (GVar->hasInitializer())
1068      O << ".visible ";
1069    else
1070      O << ".extern ";
1071  }
1072
1073  if (llvm::isTexture(*GVar)) {
1074    O << ".global .texref " << llvm::getTextureName(*GVar) << ";\n";
1075    return;
1076  }
1077
1078  if (llvm::isSurface(*GVar)) {
1079    O << ".global .surfref " << llvm::getSurfaceName(*GVar) << ";\n";
1080    return;
1081  }
1082
1083  if (GVar->isDeclaration()) {
1084    // (extern) declarations, no definition or initializer
1085    // Currently the only known declaration is for an automatic __local
1086    // (.shared) promoted to global.
1087    emitPTXGlobalVariable(GVar, O);
1088    O << ";\n";
1089    return;
1090  }
1091
1092  if (llvm::isSampler(*GVar)) {
1093    O << ".global .samplerref " << llvm::getSamplerName(*GVar);
1094
1095    const Constant *Initializer = NULL;
1096    if (GVar->hasInitializer())
1097      Initializer = GVar->getInitializer();
1098    const ConstantInt *CI = NULL;
1099    if (Initializer)
1100      CI = dyn_cast<ConstantInt>(Initializer);
1101    if (CI) {
1102      unsigned sample = CI->getZExtValue();
1103
1104      O << " = { ";
1105
1106      for (int i = 0,
1107               addr = ((sample & __CLK_ADDRESS_MASK) >> __CLK_ADDRESS_BASE);
1108           i < 3; i++) {
1109        O << "addr_mode_" << i << " = ";
1110        switch (addr) {
1111        case 0:
1112          O << "wrap";
1113          break;
1114        case 1:
1115          O << "clamp_to_border";
1116          break;
1117        case 2:
1118          O << "clamp_to_edge";
1119          break;
1120        case 3:
1121          O << "wrap";
1122          break;
1123        case 4:
1124          O << "mirror";
1125          break;
1126        }
1127        O << ", ";
1128      }
1129      O << "filter_mode = ";
1130      switch ((sample & __CLK_FILTER_MASK) >> __CLK_FILTER_BASE) {
1131      case 0:
1132        O << "nearest";
1133        break;
1134      case 1:
1135        O << "linear";
1136        break;
1137      case 2:
1138        assert(0 && "Anisotropic filtering is not supported");
1139      default:
1140        O << "nearest";
1141        break;
1142      }
1143      if (!((sample & __CLK_NORMALIZED_MASK) >> __CLK_NORMALIZED_BASE)) {
1144        O << ", force_unnormalized_coords = 1";
1145      }
1146      O << " }";
1147    }
1148
1149    O << ";\n";
1150    return;
1151  }
1152
1153  if (GVar->hasPrivateLinkage()) {
1154
1155    if (!strncmp(GVar->getName().data(), "unrollpragma", 12))
1156      return;
1157
1158    // FIXME - need better way (e.g. Metadata) to avoid generating this global
1159    if (!strncmp(GVar->getName().data(), "filename", 8))
1160      return;
1161    if (GVar->use_empty())
1162      return;
1163  }
1164
1165  const Function *demotedFunc = 0;
1166  if (!processDemoted && canDemoteGlobalVar(GVar, demotedFunc)) {
1167    O << "// " << GVar->getName().str() << " has been demoted\n";
1168    if (localDecls.find(demotedFunc) != localDecls.end())
1169      localDecls[demotedFunc].push_back(GVar);
1170    else {
1171      std::vector<const GlobalVariable *> temp;
1172      temp.push_back(GVar);
1173      localDecls[demotedFunc] = temp;
1174    }
1175    return;
1176  }
1177
1178  O << ".";
1179  emitPTXAddressSpace(PTy->getAddressSpace(), O);
1180  if (GVar->getAlignment() == 0)
1181    O << " .align " << (int) TD->getPrefTypeAlignment(ETy);
1182  else
1183    O << " .align " << GVar->getAlignment();
1184
1185  if (ETy->isPrimitiveType() || ETy->isIntegerTy() || isa<PointerType>(ETy)) {
1186    O << " .";
1187    // Special case: ABI requires that we use .u8 for predicates
1188    if (ETy->isIntegerTy(1))
1189      O << "u8";
1190    else
1191      O << getPTXFundamentalTypeStr(ETy, false);
1192    O << " ";
1193    O << *Mang->getSymbol(GVar);
1194
1195    // Ptx allows variable initilization only for constant and global state
1196    // spaces.
1197    if (((PTy->getAddressSpace() == llvm::ADDRESS_SPACE_GLOBAL) ||
1198         (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST)) &&
1199        GVar->hasInitializer()) {
1200      const Constant *Initializer = GVar->getInitializer();
1201      if (!Initializer->isNullValue()) {
1202        O << " = ";
1203        printScalarConstant(Initializer, O);
1204      }
1205    }
1206  } else {
1207    unsigned int ElementSize = 0;
1208
1209    // Although PTX has direct support for struct type and array type and
1210    // LLVM IR is very similar to PTX, the LLVM CodeGen does not support for
1211    // targets that support these high level field accesses. Structs, arrays
1212    // and vectors are lowered into arrays of bytes.
1213    switch (ETy->getTypeID()) {
1214    case Type::StructTyID:
1215    case Type::ArrayTyID:
1216    case Type::VectorTyID:
1217      ElementSize = TD->getTypeStoreSize(ETy);
1218      // Ptx allows variable initilization only for constant and
1219      // global state spaces.
1220      if (((PTy->getAddressSpace() == llvm::ADDRESS_SPACE_GLOBAL) ||
1221           (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST)) &&
1222          GVar->hasInitializer()) {
1223        const Constant *Initializer = GVar->getInitializer();
1224        if (!isa<UndefValue>(Initializer) && !Initializer->isNullValue()) {
1225          AggBuffer aggBuffer(ElementSize, O, *this);
1226          bufferAggregateConstant(Initializer, &aggBuffer);
1227          if (aggBuffer.numSymbols) {
1228            if (nvptxSubtarget.is64Bit()) {
1229              O << " .u64 " << *Mang->getSymbol(GVar) << "[";
1230              O << ElementSize / 8;
1231            } else {
1232              O << " .u32 " << *Mang->getSymbol(GVar) << "[";
1233              O << ElementSize / 4;
1234            }
1235            O << "]";
1236          } else {
1237            O << " .b8 " << *Mang->getSymbol(GVar) << "[";
1238            O << ElementSize;
1239            O << "]";
1240          }
1241          O << " = {";
1242          aggBuffer.print();
1243          O << "}";
1244        } else {
1245          O << " .b8 " << *Mang->getSymbol(GVar);
1246          if (ElementSize) {
1247            O << "[";
1248            O << ElementSize;
1249            O << "]";
1250          }
1251        }
1252      } else {
1253        O << " .b8 " << *Mang->getSymbol(GVar);
1254        if (ElementSize) {
1255          O << "[";
1256          O << ElementSize;
1257          O << "]";
1258        }
1259      }
1260      break;
1261    default:
1262      assert(0 && "type not supported yet");
1263    }
1264
1265  }
1266  O << ";\n";
1267}
1268
1269void NVPTXAsmPrinter::emitDemotedVars(const Function *f, raw_ostream &O) {
1270  if (localDecls.find(f) == localDecls.end())
1271    return;
1272
1273  std::vector<const GlobalVariable *> &gvars = localDecls[f];
1274
1275  for (unsigned i = 0, e = gvars.size(); i != e; ++i) {
1276    O << "\t// demoted variable\n\t";
1277    printModuleLevelGV(gvars[i], O, true);
1278  }
1279}
1280
1281void NVPTXAsmPrinter::emitPTXAddressSpace(unsigned int AddressSpace,
1282                                          raw_ostream &O) const {
1283  switch (AddressSpace) {
1284  case llvm::ADDRESS_SPACE_LOCAL:
1285    O << "local";
1286    break;
1287  case llvm::ADDRESS_SPACE_GLOBAL:
1288    O << "global";
1289    break;
1290  case llvm::ADDRESS_SPACE_CONST:
1291    O << "const";
1292    break;
1293  case llvm::ADDRESS_SPACE_SHARED:
1294    O << "shared";
1295    break;
1296  default:
1297    report_fatal_error("Bad address space found while emitting PTX");
1298    break;
1299  }
1300}
1301
1302std::string
1303NVPTXAsmPrinter::getPTXFundamentalTypeStr(const Type *Ty, bool useB4PTR) const {
1304  switch (Ty->getTypeID()) {
1305  default:
1306    llvm_unreachable("unexpected type");
1307    break;
1308  case Type::IntegerTyID: {
1309    unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
1310    if (NumBits == 1)
1311      return "pred";
1312    else if (NumBits <= 64) {
1313      std::string name = "u";
1314      return name + utostr(NumBits);
1315    } else {
1316      llvm_unreachable("Integer too large");
1317      break;
1318    }
1319    break;
1320  }
1321  case Type::FloatTyID:
1322    return "f32";
1323  case Type::DoubleTyID:
1324    return "f64";
1325  case Type::PointerTyID:
1326    if (nvptxSubtarget.is64Bit())
1327      if (useB4PTR)
1328        return "b64";
1329      else
1330        return "u64";
1331    else if (useB4PTR)
1332      return "b32";
1333    else
1334      return "u32";
1335  }
1336  llvm_unreachable("unexpected type");
1337  return NULL;
1338}
1339
1340void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable *GVar,
1341                                            raw_ostream &O) {
1342
1343  const DataLayout *TD = TM.getDataLayout();
1344
1345  // GlobalVariables are always constant pointers themselves.
1346  const PointerType *PTy = GVar->getType();
1347  Type *ETy = PTy->getElementType();
1348
1349  O << ".";
1350  emitPTXAddressSpace(PTy->getAddressSpace(), O);
1351  if (GVar->getAlignment() == 0)
1352    O << " .align " << (int) TD->getPrefTypeAlignment(ETy);
1353  else
1354    O << " .align " << GVar->getAlignment();
1355
1356  if (ETy->isPrimitiveType() || ETy->isIntegerTy() || isa<PointerType>(ETy)) {
1357    O << " .";
1358    O << getPTXFundamentalTypeStr(ETy);
1359    O << " ";
1360    O << *Mang->getSymbol(GVar);
1361    return;
1362  }
1363
1364  int64_t ElementSize = 0;
1365
1366  // Although PTX has direct support for struct type and array type and LLVM IR
1367  // is very similar to PTX, the LLVM CodeGen does not support for targets that
1368  // support these high level field accesses. Structs and arrays are lowered
1369  // into arrays of bytes.
1370  switch (ETy->getTypeID()) {
1371  case Type::StructTyID:
1372  case Type::ArrayTyID:
1373  case Type::VectorTyID:
1374    ElementSize = TD->getTypeStoreSize(ETy);
1375    O << " .b8 " << *Mang->getSymbol(GVar) << "[";
1376    if (ElementSize) {
1377      O << itostr(ElementSize);
1378    }
1379    O << "]";
1380    break;
1381  default:
1382    assert(0 && "type not supported yet");
1383  }
1384  return;
1385}
1386
1387static unsigned int getOpenCLAlignment(const DataLayout *TD, Type *Ty) {
1388  if (Ty->isPrimitiveType() || Ty->isIntegerTy() || isa<PointerType>(Ty))
1389    return TD->getPrefTypeAlignment(Ty);
1390
1391  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
1392  if (ATy)
1393    return getOpenCLAlignment(TD, ATy->getElementType());
1394
1395  const VectorType *VTy = dyn_cast<VectorType>(Ty);
1396  if (VTy) {
1397    Type *ETy = VTy->getElementType();
1398    unsigned int numE = VTy->getNumElements();
1399    unsigned int alignE = TD->getPrefTypeAlignment(ETy);
1400    if (numE == 3)
1401      return 4 * alignE;
1402    else
1403      return numE * alignE;
1404  }
1405
1406  const StructType *STy = dyn_cast<StructType>(Ty);
1407  if (STy) {
1408    unsigned int alignStruct = 1;
1409    // Go through each element of the struct and find the
1410    // largest alignment.
1411    for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
1412      Type *ETy = STy->getElementType(i);
1413      unsigned int align = getOpenCLAlignment(TD, ETy);
1414      if (align > alignStruct)
1415        alignStruct = align;
1416    }
1417    return alignStruct;
1418  }
1419
1420  const FunctionType *FTy = dyn_cast<FunctionType>(Ty);
1421  if (FTy)
1422    return TD->getPointerPrefAlignment();
1423  return TD->getPrefTypeAlignment(Ty);
1424}
1425
1426void NVPTXAsmPrinter::printParamName(Function::const_arg_iterator I,
1427                                     int paramIndex, raw_ostream &O) {
1428  if ((nvptxSubtarget.getDrvInterface() == NVPTX::NVCL) ||
1429      (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA))
1430    O << *Mang->getSymbol(I->getParent()) << "_param_" << paramIndex;
1431  else {
1432    std::string argName = I->getName();
1433    const char *p = argName.c_str();
1434    while (*p) {
1435      if (*p == '.')
1436        O << "_";
1437      else
1438        O << *p;
1439      p++;
1440    }
1441  }
1442}
1443
1444void NVPTXAsmPrinter::printParamName(int paramIndex, raw_ostream &O) {
1445  Function::const_arg_iterator I, E;
1446  int i = 0;
1447
1448  if ((nvptxSubtarget.getDrvInterface() == NVPTX::NVCL) ||
1449      (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)) {
1450    O << *CurrentFnSym << "_param_" << paramIndex;
1451    return;
1452  }
1453
1454  for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, i++) {
1455    if (i == paramIndex) {
1456      printParamName(I, paramIndex, O);
1457      return;
1458    }
1459  }
1460  llvm_unreachable("paramIndex out of bound");
1461}
1462
1463void NVPTXAsmPrinter::emitFunctionParamList(const Function *F, raw_ostream &O) {
1464  const DataLayout *TD = TM.getDataLayout();
1465  const AttributeSet &PAL = F->getAttributes();
1466  const TargetLowering *TLI = TM.getTargetLowering();
1467  Function::const_arg_iterator I, E;
1468  unsigned paramIndex = 0;
1469  bool first = true;
1470  bool isKernelFunc = llvm::isKernelFunction(*F);
1471  bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
1472  MVT thePointerTy = TLI->getPointerTy();
1473
1474  O << "(\n";
1475
1476  for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, paramIndex++) {
1477    Type *Ty = I->getType();
1478
1479    if (!first)
1480      O << ",\n";
1481
1482    first = false;
1483
1484    // Handle image/sampler parameters
1485    if (llvm::isSampler(*I) || llvm::isImage(*I)) {
1486      if (llvm::isImage(*I)) {
1487        std::string sname = I->getName();
1488        if (llvm::isImageWriteOnly(*I))
1489          O << "\t.param .surfref " << *Mang->getSymbol(F) << "_param_"
1490            << paramIndex;
1491        else // Default image is read_only
1492          O << "\t.param .texref " << *Mang->getSymbol(F) << "_param_"
1493            << paramIndex;
1494      } else // Should be llvm::isSampler(*I)
1495        O << "\t.param .samplerref " << *Mang->getSymbol(F) << "_param_"
1496          << paramIndex;
1497      continue;
1498    }
1499
1500    if (PAL.hasAttribute(paramIndex + 1, Attribute::ByVal) == false) {
1501      if (Ty->isVectorTy()) {
1502        // Just print .param .b8 .align <a> .param[size];
1503        // <a> = PAL.getparamalignment
1504        // size = typeallocsize of element type
1505        unsigned align = PAL.getParamAlignment(paramIndex + 1);
1506        if (align == 0)
1507          align = TD->getABITypeAlignment(Ty);
1508
1509        unsigned sz = TD->getTypeAllocSize(Ty);
1510        O << "\t.param .align " << align << " .b8 ";
1511        printParamName(I, paramIndex, O);
1512        O << "[" << sz << "]";
1513
1514        continue;
1515      }
1516      // Just a scalar
1517      const PointerType *PTy = dyn_cast<PointerType>(Ty);
1518      if (isKernelFunc) {
1519        if (PTy) {
1520          // Special handling for pointer arguments to kernel
1521          O << "\t.param .u" << thePointerTy.getSizeInBits() << " ";
1522
1523          if (nvptxSubtarget.getDrvInterface() != NVPTX::CUDA) {
1524            Type *ETy = PTy->getElementType();
1525            int addrSpace = PTy->getAddressSpace();
1526            switch (addrSpace) {
1527            default:
1528              O << ".ptr ";
1529              break;
1530            case llvm::ADDRESS_SPACE_CONST:
1531              O << ".ptr .const ";
1532              break;
1533            case llvm::ADDRESS_SPACE_SHARED:
1534              O << ".ptr .shared ";
1535              break;
1536            case llvm::ADDRESS_SPACE_GLOBAL:
1537              O << ".ptr .global ";
1538              break;
1539            }
1540            O << ".align " << (int) getOpenCLAlignment(TD, ETy) << " ";
1541          }
1542          printParamName(I, paramIndex, O);
1543          continue;
1544        }
1545
1546        // non-pointer scalar to kernel func
1547        O << "\t.param .";
1548        // Special case: predicate operands become .u8 types
1549        if (Ty->isIntegerTy(1))
1550          O << "u8";
1551        else
1552          O << getPTXFundamentalTypeStr(Ty);
1553        O << " ";
1554        printParamName(I, paramIndex, O);
1555        continue;
1556      }
1557      // Non-kernel function, just print .param .b<size> for ABI
1558      // and .reg .b<size> for non ABY
1559      unsigned sz = 0;
1560      if (isa<IntegerType>(Ty)) {
1561        sz = cast<IntegerType>(Ty)->getBitWidth();
1562        if (sz < 32)
1563          sz = 32;
1564      } else if (isa<PointerType>(Ty))
1565        sz = thePointerTy.getSizeInBits();
1566      else
1567        sz = Ty->getPrimitiveSizeInBits();
1568      if (isABI)
1569        O << "\t.param .b" << sz << " ";
1570      else
1571        O << "\t.reg .b" << sz << " ";
1572      printParamName(I, paramIndex, O);
1573      continue;
1574    }
1575
1576    // param has byVal attribute. So should be a pointer
1577    const PointerType *PTy = dyn_cast<PointerType>(Ty);
1578    assert(PTy && "Param with byval attribute should be a pointer type");
1579    Type *ETy = PTy->getElementType();
1580
1581    if (isABI || isKernelFunc) {
1582      // Just print .param .b8 .align <a> .param[size];
1583      // <a> = PAL.getparamalignment
1584      // size = typeallocsize of element type
1585      unsigned align = PAL.getParamAlignment(paramIndex + 1);
1586      if (align == 0)
1587        align = TD->getABITypeAlignment(ETy);
1588
1589      unsigned sz = TD->getTypeAllocSize(ETy);
1590      O << "\t.param .align " << align << " .b8 ";
1591      printParamName(I, paramIndex, O);
1592      O << "[" << sz << "]";
1593      continue;
1594    } else {
1595      // Split the ETy into constituent parts and
1596      // print .param .b<size> <name> for each part.
1597      // Further, if a part is vector, print the above for
1598      // each vector element.
1599      SmallVector<EVT, 16> vtparts;
1600      ComputeValueVTs(*TLI, ETy, vtparts);
1601      for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
1602        unsigned elems = 1;
1603        EVT elemtype = vtparts[i];
1604        if (vtparts[i].isVector()) {
1605          elems = vtparts[i].getVectorNumElements();
1606          elemtype = vtparts[i].getVectorElementType();
1607        }
1608
1609        for (unsigned j = 0, je = elems; j != je; ++j) {
1610          unsigned sz = elemtype.getSizeInBits();
1611          if (elemtype.isInteger() && (sz < 32))
1612            sz = 32;
1613          O << "\t.reg .b" << sz << " ";
1614          printParamName(I, paramIndex, O);
1615          if (j < je - 1)
1616            O << ",\n";
1617          ++paramIndex;
1618        }
1619        if (i < e - 1)
1620          O << ",\n";
1621      }
1622      --paramIndex;
1623      continue;
1624    }
1625  }
1626
1627  O << "\n)\n";
1628}
1629
1630void NVPTXAsmPrinter::emitFunctionParamList(const MachineFunction &MF,
1631                                            raw_ostream &O) {
1632  const Function *F = MF.getFunction();
1633  emitFunctionParamList(F, O);
1634}
1635
1636void NVPTXAsmPrinter::setAndEmitFunctionVirtualRegisters(
1637    const MachineFunction &MF) {
1638  SmallString<128> Str;
1639  raw_svector_ostream O(Str);
1640
1641  // Map the global virtual register number to a register class specific
1642  // virtual register number starting from 1 with that class.
1643  const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
1644  //unsigned numRegClasses = TRI->getNumRegClasses();
1645
1646  // Emit the Fake Stack Object
1647  const MachineFrameInfo *MFI = MF.getFrameInfo();
1648  int NumBytes = (int) MFI->getStackSize();
1649  if (NumBytes) {
1650    O << "\t.local .align " << MFI->getMaxAlignment() << " .b8 \t" << DEPOTNAME
1651      << getFunctionNumber() << "[" << NumBytes << "];\n";
1652    if (nvptxSubtarget.is64Bit()) {
1653      O << "\t.reg .b64 \t%SP;\n";
1654      O << "\t.reg .b64 \t%SPL;\n";
1655    } else {
1656      O << "\t.reg .b32 \t%SP;\n";
1657      O << "\t.reg .b32 \t%SPL;\n";
1658    }
1659  }
1660
1661  // Go through all virtual registers to establish the mapping between the
1662  // global virtual
1663  // register number and the per class virtual register number.
1664  // We use the per class virtual register number in the ptx output.
1665  unsigned int numVRs = MRI->getNumVirtRegs();
1666  for (unsigned i = 0; i < numVRs; i++) {
1667    unsigned int vr = TRI->index2VirtReg(i);
1668    const TargetRegisterClass *RC = MRI->getRegClass(vr);
1669    DenseMap<unsigned, unsigned> &regmap = VRegMapping[RC];
1670    int n = regmap.size();
1671    regmap.insert(std::make_pair(vr, n + 1));
1672  }
1673
1674  // Emit register declarations
1675  // @TODO: Extract out the real register usage
1676  // O << "\t.reg .pred %p<" << NVPTXNumRegisters << ">;\n";
1677  // O << "\t.reg .s16 %rc<" << NVPTXNumRegisters << ">;\n";
1678  // O << "\t.reg .s16 %rs<" << NVPTXNumRegisters << ">;\n";
1679  // O << "\t.reg .s32 %r<" << NVPTXNumRegisters << ">;\n";
1680  // O << "\t.reg .s64 %rl<" << NVPTXNumRegisters << ">;\n";
1681  // O << "\t.reg .f32 %f<" << NVPTXNumRegisters << ">;\n";
1682  // O << "\t.reg .f64 %fl<" << NVPTXNumRegisters << ">;\n";
1683
1684  // Emit declaration of the virtual registers or 'physical' registers for
1685  // each register class
1686  for (unsigned i=0; i< TRI->getNumRegClasses(); i++) {
1687    const TargetRegisterClass *RC = TRI->getRegClass(i);
1688    DenseMap<unsigned, unsigned> &regmap = VRegMapping[RC];
1689    std::string rcname = getNVPTXRegClassName(RC);
1690    std::string rcStr = getNVPTXRegClassStr(RC);
1691    int n = regmap.size();
1692
1693    // Only declare those registers that may be used.
1694    if (n) {
1695       O << "\t.reg " << rcname << " \t" << rcStr << "<" << (n+1)
1696         << ">;\n";
1697    }
1698  }
1699
1700  OutStreamer.EmitRawText(O.str());
1701}
1702
1703void NVPTXAsmPrinter::printFPConstant(const ConstantFP *Fp, raw_ostream &O) {
1704  APFloat APF = APFloat(Fp->getValueAPF()); // make a copy
1705  bool ignored;
1706  unsigned int numHex;
1707  const char *lead;
1708
1709  if (Fp->getType()->getTypeID() == Type::FloatTyID) {
1710    numHex = 8;
1711    lead = "0f";
1712    APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &ignored);
1713  } else if (Fp->getType()->getTypeID() == Type::DoubleTyID) {
1714    numHex = 16;
1715    lead = "0d";
1716    APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
1717  } else
1718    llvm_unreachable("unsupported fp type");
1719
1720  APInt API = APF.bitcastToAPInt();
1721  std::string hexstr(utohexstr(API.getZExtValue()));
1722  O << lead;
1723  if (hexstr.length() < numHex)
1724    O << std::string(numHex - hexstr.length(), '0');
1725  O << utohexstr(API.getZExtValue());
1726}
1727
1728void NVPTXAsmPrinter::printScalarConstant(const Constant *CPV, raw_ostream &O) {
1729  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
1730    O << CI->getValue();
1731    return;
1732  }
1733  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CPV)) {
1734    printFPConstant(CFP, O);
1735    return;
1736  }
1737  if (isa<ConstantPointerNull>(CPV)) {
1738    O << "0";
1739    return;
1740  }
1741  if (const GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
1742    O << *Mang->getSymbol(GVar);
1743    return;
1744  }
1745  if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1746    const Value *v = Cexpr->stripPointerCasts();
1747    if (const GlobalValue *GVar = dyn_cast<GlobalValue>(v)) {
1748      O << *Mang->getSymbol(GVar);
1749      return;
1750    } else {
1751      O << *LowerConstant(CPV, *this);
1752      return;
1753    }
1754  }
1755  llvm_unreachable("Not scalar type found in printScalarConstant()");
1756}
1757
1758void NVPTXAsmPrinter::bufferLEByte(const Constant *CPV, int Bytes,
1759                                   AggBuffer *aggBuffer) {
1760
1761  const DataLayout *TD = TM.getDataLayout();
1762
1763  if (isa<UndefValue>(CPV) || CPV->isNullValue()) {
1764    int s = TD->getTypeAllocSize(CPV->getType());
1765    if (s < Bytes)
1766      s = Bytes;
1767    aggBuffer->addZeros(s);
1768    return;
1769  }
1770
1771  unsigned char *ptr;
1772  switch (CPV->getType()->getTypeID()) {
1773
1774  case Type::IntegerTyID: {
1775    const Type *ETy = CPV->getType();
1776    if (ETy == Type::getInt8Ty(CPV->getContext())) {
1777      unsigned char c =
1778          (unsigned char)(dyn_cast<ConstantInt>(CPV))->getZExtValue();
1779      ptr = &c;
1780      aggBuffer->addBytes(ptr, 1, Bytes);
1781    } else if (ETy == Type::getInt16Ty(CPV->getContext())) {
1782      short int16 = (short)(dyn_cast<ConstantInt>(CPV))->getZExtValue();
1783      ptr = (unsigned char *)&int16;
1784      aggBuffer->addBytes(ptr, 2, Bytes);
1785    } else if (ETy == Type::getInt32Ty(CPV->getContext())) {
1786      if (const ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
1787        int int32 = (int)(constInt->getZExtValue());
1788        ptr = (unsigned char *)&int32;
1789        aggBuffer->addBytes(ptr, 4, Bytes);
1790        break;
1791      } else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1792        if (const ConstantInt *constInt = dyn_cast<ConstantInt>(
1793                ConstantFoldConstantExpression(Cexpr, TD))) {
1794          int int32 = (int)(constInt->getZExtValue());
1795          ptr = (unsigned char *)&int32;
1796          aggBuffer->addBytes(ptr, 4, Bytes);
1797          break;
1798        }
1799        if (Cexpr->getOpcode() == Instruction::PtrToInt) {
1800          Value *v = Cexpr->getOperand(0)->stripPointerCasts();
1801          aggBuffer->addSymbol(v);
1802          aggBuffer->addZeros(4);
1803          break;
1804        }
1805      }
1806      llvm_unreachable("unsupported integer const type");
1807    } else if (ETy == Type::getInt64Ty(CPV->getContext())) {
1808      if (const ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) {
1809        long long int64 = (long long)(constInt->getZExtValue());
1810        ptr = (unsigned char *)&int64;
1811        aggBuffer->addBytes(ptr, 8, Bytes);
1812        break;
1813      } else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1814        if (const ConstantInt *constInt = dyn_cast<ConstantInt>(
1815                ConstantFoldConstantExpression(Cexpr, TD))) {
1816          long long int64 = (long long)(constInt->getZExtValue());
1817          ptr = (unsigned char *)&int64;
1818          aggBuffer->addBytes(ptr, 8, Bytes);
1819          break;
1820        }
1821        if (Cexpr->getOpcode() == Instruction::PtrToInt) {
1822          Value *v = Cexpr->getOperand(0)->stripPointerCasts();
1823          aggBuffer->addSymbol(v);
1824          aggBuffer->addZeros(8);
1825          break;
1826        }
1827      }
1828      llvm_unreachable("unsupported integer const type");
1829    } else
1830      llvm_unreachable("unsupported integer const type");
1831    break;
1832  }
1833  case Type::FloatTyID:
1834  case Type::DoubleTyID: {
1835    const ConstantFP *CFP = dyn_cast<ConstantFP>(CPV);
1836    const Type *Ty = CFP->getType();
1837    if (Ty == Type::getFloatTy(CPV->getContext())) {
1838      float float32 = (float) CFP->getValueAPF().convertToFloat();
1839      ptr = (unsigned char *)&float32;
1840      aggBuffer->addBytes(ptr, 4, Bytes);
1841    } else if (Ty == Type::getDoubleTy(CPV->getContext())) {
1842      double float64 = CFP->getValueAPF().convertToDouble();
1843      ptr = (unsigned char *)&float64;
1844      aggBuffer->addBytes(ptr, 8, Bytes);
1845    } else {
1846      llvm_unreachable("unsupported fp const type");
1847    }
1848    break;
1849  }
1850  case Type::PointerTyID: {
1851    if (const GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) {
1852      aggBuffer->addSymbol(GVar);
1853    } else if (const ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) {
1854      const Value *v = Cexpr->stripPointerCasts();
1855      aggBuffer->addSymbol(v);
1856    }
1857    unsigned int s = TD->getTypeAllocSize(CPV->getType());
1858    aggBuffer->addZeros(s);
1859    break;
1860  }
1861
1862  case Type::ArrayTyID:
1863  case Type::VectorTyID:
1864  case Type::StructTyID: {
1865    if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV) ||
1866        isa<ConstantStruct>(CPV)) {
1867      int ElementSize = TD->getTypeAllocSize(CPV->getType());
1868      bufferAggregateConstant(CPV, aggBuffer);
1869      if (Bytes > ElementSize)
1870        aggBuffer->addZeros(Bytes - ElementSize);
1871    } else if (isa<ConstantAggregateZero>(CPV))
1872      aggBuffer->addZeros(Bytes);
1873    else
1874      llvm_unreachable("Unexpected Constant type");
1875    break;
1876  }
1877
1878  default:
1879    llvm_unreachable("unsupported type");
1880  }
1881}
1882
1883void NVPTXAsmPrinter::bufferAggregateConstant(const Constant *CPV,
1884                                              AggBuffer *aggBuffer) {
1885  const DataLayout *TD = TM.getDataLayout();
1886  int Bytes;
1887
1888  // Old constants
1889  if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV)) {
1890    if (CPV->getNumOperands())
1891      for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i)
1892        bufferLEByte(cast<Constant>(CPV->getOperand(i)), 0, aggBuffer);
1893    return;
1894  }
1895
1896  if (const ConstantDataSequential *CDS =
1897          dyn_cast<ConstantDataSequential>(CPV)) {
1898    if (CDS->getNumElements())
1899      for (unsigned i = 0; i < CDS->getNumElements(); ++i)
1900        bufferLEByte(cast<Constant>(CDS->getElementAsConstant(i)), 0,
1901                     aggBuffer);
1902    return;
1903  }
1904
1905  if (isa<ConstantStruct>(CPV)) {
1906    if (CPV->getNumOperands()) {
1907      StructType *ST = cast<StructType>(CPV->getType());
1908      for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i) {
1909        if (i == (e - 1))
1910          Bytes = TD->getStructLayout(ST)->getElementOffset(0) +
1911                  TD->getTypeAllocSize(ST) -
1912                  TD->getStructLayout(ST)->getElementOffset(i);
1913        else
1914          Bytes = TD->getStructLayout(ST)->getElementOffset(i + 1) -
1915                  TD->getStructLayout(ST)->getElementOffset(i);
1916        bufferLEByte(cast<Constant>(CPV->getOperand(i)), Bytes, aggBuffer);
1917      }
1918    }
1919    return;
1920  }
1921  llvm_unreachable("unsupported constant type in printAggregateConstant()");
1922}
1923
1924// buildTypeNameMap - Run through symbol table looking for type names.
1925//
1926
1927bool NVPTXAsmPrinter::isImageType(const Type *Ty) {
1928
1929  std::map<const Type *, std::string>::iterator PI = TypeNameMap.find(Ty);
1930
1931  if (PI != TypeNameMap.end() && (!PI->second.compare("struct._image1d_t") ||
1932                                  !PI->second.compare("struct._image2d_t") ||
1933                                  !PI->second.compare("struct._image3d_t")))
1934    return true;
1935
1936  return false;
1937}
1938
1939
1940bool NVPTXAsmPrinter::ignoreLoc(const MachineInstr &MI) {
1941  switch (MI.getOpcode()) {
1942  default:
1943    return false;
1944  case NVPTX::CallArgBeginInst:
1945  case NVPTX::CallArgEndInst0:
1946  case NVPTX::CallArgEndInst1:
1947  case NVPTX::CallArgF32:
1948  case NVPTX::CallArgF64:
1949  case NVPTX::CallArgI16:
1950  case NVPTX::CallArgI32:
1951  case NVPTX::CallArgI32imm:
1952  case NVPTX::CallArgI64:
1953  case NVPTX::CallArgParam:
1954  case NVPTX::CallVoidInst:
1955  case NVPTX::CallVoidInstReg:
1956  case NVPTX::Callseq_End:
1957  case NVPTX::CallVoidInstReg64:
1958  case NVPTX::DeclareParamInst:
1959  case NVPTX::DeclareRetMemInst:
1960  case NVPTX::DeclareRetRegInst:
1961  case NVPTX::DeclareRetScalarInst:
1962  case NVPTX::DeclareScalarParamInst:
1963  case NVPTX::DeclareScalarRegInst:
1964  case NVPTX::StoreParamF32:
1965  case NVPTX::StoreParamF64:
1966  case NVPTX::StoreParamI16:
1967  case NVPTX::StoreParamI32:
1968  case NVPTX::StoreParamI64:
1969  case NVPTX::StoreParamI8:
1970  case NVPTX::StoreRetvalF32:
1971  case NVPTX::StoreRetvalF64:
1972  case NVPTX::StoreRetvalI16:
1973  case NVPTX::StoreRetvalI32:
1974  case NVPTX::StoreRetvalI64:
1975  case NVPTX::StoreRetvalI8:
1976  case NVPTX::LastCallArgF32:
1977  case NVPTX::LastCallArgF64:
1978  case NVPTX::LastCallArgI16:
1979  case NVPTX::LastCallArgI32:
1980  case NVPTX::LastCallArgI32imm:
1981  case NVPTX::LastCallArgI64:
1982  case NVPTX::LastCallArgParam:
1983  case NVPTX::LoadParamMemF32:
1984  case NVPTX::LoadParamMemF64:
1985  case NVPTX::LoadParamMemI16:
1986  case NVPTX::LoadParamMemI32:
1987  case NVPTX::LoadParamMemI64:
1988  case NVPTX::LoadParamMemI8:
1989  case NVPTX::PrototypeInst:
1990  case NVPTX::DBG_VALUE:
1991    return true;
1992  }
1993  return false;
1994}
1995
1996// Force static initialization.
1997extern "C" void LLVMInitializeNVPTXBackendAsmPrinter() {
1998  RegisterAsmPrinter<NVPTXAsmPrinter> X(TheNVPTXTarget32);
1999  RegisterAsmPrinter<NVPTXAsmPrinter> Y(TheNVPTXTarget64);
2000}
2001
2002void NVPTXAsmPrinter::emitSrcInText(StringRef filename, unsigned line) {
2003  std::stringstream temp;
2004  LineReader *reader = this->getReader(filename.str());
2005  temp << "\n//";
2006  temp << filename.str();
2007  temp << ":";
2008  temp << line;
2009  temp << " ";
2010  temp << reader->readLine(line);
2011  temp << "\n";
2012  this->OutStreamer.EmitRawText(Twine(temp.str()));
2013}
2014
2015LineReader *NVPTXAsmPrinter::getReader(std::string filename) {
2016  if (reader == NULL) {
2017    reader = new LineReader(filename);
2018  }
2019
2020  if (reader->fileName() != filename) {
2021    delete reader;
2022    reader = new LineReader(filename);
2023  }
2024
2025  return reader;
2026}
2027
2028std::string LineReader::readLine(unsigned lineNum) {
2029  if (lineNum < theCurLine) {
2030    theCurLine = 0;
2031    fstr.seekg(0, std::ios::beg);
2032  }
2033  while (theCurLine < lineNum) {
2034    fstr.getline(buff, 500);
2035    theCurLine++;
2036  }
2037  return buff;
2038}
2039
2040// Force static initialization.
2041extern "C" void LLVMInitializeNVPTXAsmPrinter() {
2042  RegisterAsmPrinter<NVPTXAsmPrinter> X(TheNVPTXTarget32);
2043  RegisterAsmPrinter<NVPTXAsmPrinter> Y(TheNVPTXTarget64);
2044}
2045