1//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that PPC uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
16#define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
17
18#include "PPC.h"
19#include "PPCInstrInfo.h"
20#include "PPCRegisterInfo.h"
21#include "PPCSubtarget.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/Target/TargetLowering.h"
25
26namespace llvm {
27  namespace PPCISD {
28    enum NodeType {
29      // Start the numbering where the builtin ops and target ops leave off.
30      FIRST_NUMBER = ISD::BUILTIN_OP_END,
31
32      /// FSEL - Traditional three-operand fsel node.
33      ///
34      FSEL,
35
36      /// FCFID - The FCFID instruction, taking an f64 operand and producing
37      /// and f64 value containing the FP representation of the integer that
38      /// was temporarily in the f64 operand.
39      FCFID,
40
41      /// Newer FCFID[US] integer-to-floating-point conversion instructions for
42      /// unsigned integers and single-precision outputs.
43      FCFIDU, FCFIDS, FCFIDUS,
44
45      /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
46      /// operand, producing an f64 value containing the integer representation
47      /// of that FP value.
48      FCTIDZ, FCTIWZ,
49
50      /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
51      /// unsigned integers.
52      FCTIDUZ, FCTIWUZ,
53
54      /// Reciprocal estimate instructions (unary FP ops).
55      FRE, FRSQRTE,
56
57      // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
58      // three v4f32 operands and producing a v4f32 result.
59      VMADDFP, VNMSUBFP,
60
61      /// VPERM - The PPC VPERM Instruction.
62      ///
63      VPERM,
64
65      /// Hi/Lo - These represent the high and low 16-bit parts of a global
66      /// address respectively.  These nodes have two operands, the first of
67      /// which must be a TargetGlobalAddress, and the second of which must be a
68      /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
69      /// though these are usually folded into other nodes.
70      Hi, Lo,
71
72      TOC_ENTRY,
73
74      /// The following three target-specific nodes are used for calls through
75      /// function pointers in the 64-bit SVR4 ABI.
76
77      /// Restore the TOC from the TOC save area of the current stack frame.
78      /// This is basically a hard coded load instruction which additionally
79      /// takes/produces a flag.
80      TOC_RESTORE,
81
82      /// Like a regular LOAD but additionally taking/producing a flag.
83      LOAD,
84
85      /// LOAD into r2 (also taking/producing a flag). Like TOC_RESTORE, this is
86      /// a hard coded load instruction.
87      LOAD_TOC,
88
89      /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
90      /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
91      /// compute an allocation on the stack.
92      DYNALLOC,
93
94      /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
95      /// at function entry, used for PIC code.
96      GlobalBaseReg,
97
98      /// These nodes represent the 32-bit PPC shifts that operate on 6-bit
99      /// shift amounts.  These nodes are generated by the multi-precision shift
100      /// code.
101      SRL, SRA, SHL,
102
103      /// CALL - A direct function call.
104      /// CALL_NOP is a call with the special NOP which follows 64-bit
105      /// SVR4 calls.
106      CALL, CALL_NOP,
107
108      /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
109      /// MTCTR instruction.
110      MTCTR,
111
112      /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
113      /// BCTRL instruction.
114      BCTRL,
115
116      /// Return with a flag operand, matched by 'blr'
117      RET_FLAG,
118
119      /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
120      /// This copies the bits corresponding to the specified CRREG into the
121      /// resultant GPR.  Bits corresponding to other CR regs are undefined.
122      MFOCRF,
123
124      // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
125      EH_SJLJ_SETJMP,
126
127      // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
128      EH_SJLJ_LONGJMP,
129
130      /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
131      /// instructions.  For lack of better number, we use the opcode number
132      /// encoding for the OPC field to identify the compare.  For example, 838
133      /// is VCMPGTSH.
134      VCMP,
135
136      /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
137      /// altivec VCMP*o instructions.  For lack of better number, we use the
138      /// opcode number encoding for the OPC field to identify the compare.  For
139      /// example, 838 is VCMPGTSH.
140      VCMPo,
141
142      /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
143      /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
144      /// condition register to branch on, OPC is the branch opcode to use (e.g.
145      /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
146      /// an optional input flag argument.
147      COND_BRANCH,
148
149      /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
150      /// loops.
151      BDNZ, BDZ,
152
153      /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
154      /// towards zero.  Used only as part of the long double-to-int
155      /// conversion sequence.
156      FADDRTZ,
157
158      /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
159      MFFS,
160
161      /// LARX = This corresponds to PPC l{w|d}arx instrcution: load and
162      /// reserve indexed. This is used to implement atomic operations.
163      LARX,
164
165      /// STCX = This corresponds to PPC stcx. instrcution: store conditional
166      /// indexed. This is used to implement atomic operations.
167      STCX,
168
169      /// TC_RETURN - A tail call return.
170      ///   operand #0 chain
171      ///   operand #1 callee (register or absolute)
172      ///   operand #2 stack adjustment
173      ///   operand #3 optional in flag
174      TC_RETURN,
175
176      /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
177      CR6SET,
178      CR6UNSET,
179
180      /// G8RC = ADDIS_GOT_TPREL_HA %X2, Symbol - Used by the initial-exec
181      /// TLS model, produces an ADDIS8 instruction that adds the GOT
182      /// base to sym\@got\@tprel\@ha.
183      ADDIS_GOT_TPREL_HA,
184
185      /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
186      /// TLS model, produces a LD instruction with base register G8RReg
187      /// and offset sym\@got\@tprel\@l.  This completes the addition that
188      /// finds the offset of "sym" relative to the thread pointer.
189      LD_GOT_TPREL_L,
190
191      /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
192      /// model, produces an ADD instruction that adds the contents of
193      /// G8RReg to the thread pointer.  Symbol contains a relocation
194      /// sym\@tls which is to be replaced by the thread pointer and
195      /// identifies to the linker that the instruction is part of a
196      /// TLS sequence.
197      ADD_TLS,
198
199      /// G8RC = ADDIS_TLSGD_HA %X2, Symbol - For the general-dynamic TLS
200      /// model, produces an ADDIS8 instruction that adds the GOT base
201      /// register to sym\@got\@tlsgd\@ha.
202      ADDIS_TLSGD_HA,
203
204      /// G8RC = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
205      /// model, produces an ADDI8 instruction that adds G8RReg to
206      /// sym\@got\@tlsgd\@l.
207      ADDI_TLSGD_L,
208
209      /// G8RC = GET_TLS_ADDR %X3, Symbol - For the general-dynamic TLS
210      /// model, produces a call to __tls_get_addr(sym\@tlsgd).
211      GET_TLS_ADDR,
212
213      /// G8RC = ADDIS_TLSLD_HA %X2, Symbol - For the local-dynamic TLS
214      /// model, produces an ADDIS8 instruction that adds the GOT base
215      /// register to sym\@got\@tlsld\@ha.
216      ADDIS_TLSLD_HA,
217
218      /// G8RC = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
219      /// model, produces an ADDI8 instruction that adds G8RReg to
220      /// sym\@got\@tlsld\@l.
221      ADDI_TLSLD_L,
222
223      /// G8RC = GET_TLSLD_ADDR %X3, Symbol - For the local-dynamic TLS
224      /// model, produces a call to __tls_get_addr(sym\@tlsld).
225      GET_TLSLD_ADDR,
226
227      /// G8RC = ADDIS_DTPREL_HA %X3, Symbol, Chain - For the
228      /// local-dynamic TLS model, produces an ADDIS8 instruction
229      /// that adds X3 to sym\@dtprel\@ha. The Chain operand is needed
230      /// to tie this in place following a copy to %X3 from the result
231      /// of a GET_TLSLD_ADDR.
232      ADDIS_DTPREL_HA,
233
234      /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
235      /// model, produces an ADDI8 instruction that adds G8RReg to
236      /// sym\@got\@dtprel\@l.
237      ADDI_DTPREL_L,
238
239      /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
240      /// during instruction selection to optimize a BUILD_VECTOR into
241      /// operations on splats.  This is necessary to avoid losing these
242      /// optimizations due to constant folding.
243      VADD_SPLAT,
244
245      /// CHAIN = SC CHAIN, Imm128 - System call.  The 7-bit unsigned
246      /// operand identifies the operating system entry point.
247      SC,
248
249      /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
250      /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
251      /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
252      /// i32.
253      STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,
254
255      /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
256      /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
257      /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
258      /// or i32.
259      LBRX,
260
261      /// STFIWX - The STFIWX instruction.  The first operand is an input token
262      /// chain, then an f64 value to store, then an address to store it to.
263      STFIWX,
264
265      /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
266      /// load which sign-extends from a 32-bit integer value into the
267      /// destination 64-bit register.
268      LFIWAX,
269
270      /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
271      /// load which zero-extends from a 32-bit integer value into the
272      /// destination 64-bit register.
273      LFIWZX,
274
275      /// G8RC = ADDIS_TOC_HA %X2, Symbol - For medium and large code model,
276      /// produces an ADDIS8 instruction that adds the TOC base register to
277      /// sym\@toc\@ha.
278      ADDIS_TOC_HA,
279
280      /// G8RC = LD_TOC_L Symbol, G8RReg - For medium and large code model,
281      /// produces a LD instruction with base register G8RReg and offset
282      /// sym\@toc\@l. Preceded by an ADDIS_TOC_HA to form a full 32-bit offset.
283      LD_TOC_L,
284
285      /// G8RC = ADDI_TOC_L G8RReg, Symbol - For medium code model, produces
286      /// an ADDI8 instruction that adds G8RReg to sym\@toc\@l.
287      /// Preceded by an ADDIS_TOC_HA to form a full 32-bit offset.
288      ADDI_TOC_L
289    };
290  }
291
292  /// Define some predicates that are used for node matching.
293  namespace PPC {
294    /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
295    /// VPKUHUM instruction.
296    bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
297
298    /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
299    /// VPKUWUM instruction.
300    bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
301
302    /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
303    /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
304    bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
305                            bool isUnary);
306
307    /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
308    /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
309    bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
310                            bool isUnary);
311
312    /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
313    /// amount, otherwise return -1.
314    int isVSLDOIShuffleMask(SDNode *N, bool isUnary);
315
316    /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
317    /// specifies a splat of a single element that is suitable for input to
318    /// VSPLTB/VSPLTH/VSPLTW.
319    bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
320
321    /// isAllNegativeZeroVector - Returns true if all elements of build_vector
322    /// are -0.0.
323    bool isAllNegativeZeroVector(SDNode *N);
324
325    /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
326    /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
327    unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize);
328
329    /// get_VSPLTI_elt - If this is a build_vector of constants which can be
330    /// formed by using a vspltis[bhw] instruction of the specified element
331    /// size, return the constant being splatted.  The ByteSize field indicates
332    /// the number of bytes of each element [124] -> [bhw].
333    SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
334  }
335
336  class PPCTargetLowering : public TargetLowering {
337    const PPCSubtarget &PPCSubTarget;
338
339  public:
340    explicit PPCTargetLowering(PPCTargetMachine &TM);
341
342    /// getTargetNodeName() - This method returns the name of a target specific
343    /// DAG node.
344    virtual const char *getTargetNodeName(unsigned Opcode) const;
345
346    virtual MVT getScalarShiftAmountTy(EVT LHSTy) const { return MVT::i32; }
347
348    /// getSetCCResultType - Return the ISD::SETCC ValueType
349    virtual EVT getSetCCResultType(LLVMContext &Context, EVT VT) const;
350
351    /// getPreIndexedAddressParts - returns true by value, base pointer and
352    /// offset pointer and addressing mode by reference if the node's address
353    /// can be legally represented as pre-indexed load / store address.
354    virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
355                                           SDValue &Offset,
356                                           ISD::MemIndexedMode &AM,
357                                           SelectionDAG &DAG) const;
358
359    /// SelectAddressRegReg - Given the specified addressed, check to see if it
360    /// can be represented as an indexed [r+r] operation.  Returns false if it
361    /// can be more efficiently represented with [r+imm].
362    bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
363                             SelectionDAG &DAG) const;
364
365    /// SelectAddressRegImm - Returns true if the address N can be represented
366    /// by a base register plus a signed 16-bit displacement [r+imm], and if it
367    /// is not better represented as reg+reg.  If Aligned is true, only accept
368    /// displacements suitable for STD and friends, i.e. multiples of 4.
369    bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
370                             SelectionDAG &DAG, bool Aligned) const;
371
372    /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
373    /// represented as an indexed [r+r] operation.
374    bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
375                                 SelectionDAG &DAG) const;
376
377    Sched::Preference getSchedulingPreference(SDNode *N) const;
378
379    /// LowerOperation - Provide custom lowering hooks for some operations.
380    ///
381    virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
382
383    /// ReplaceNodeResults - Replace the results of node with an illegal result
384    /// type with new values built out of custom code.
385    ///
386    virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
387                                    SelectionDAG &DAG) const;
388
389    virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
390
391    virtual void computeMaskedBitsForTargetNode(const SDValue Op,
392                                                APInt &KnownZero,
393                                                APInt &KnownOne,
394                                                const SelectionDAG &DAG,
395                                                unsigned Depth = 0) const;
396
397    virtual MachineBasicBlock *
398      EmitInstrWithCustomInserter(MachineInstr *MI,
399                                  MachineBasicBlock *MBB) const;
400    MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
401                                        MachineBasicBlock *MBB, bool is64Bit,
402                                        unsigned BinOpcode) const;
403    MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI,
404                                                MachineBasicBlock *MBB,
405                                            bool is8bit, unsigned Opcode) const;
406
407    MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI,
408                                        MachineBasicBlock *MBB) const;
409
410    MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI,
411                                         MachineBasicBlock *MBB) const;
412
413    ConstraintType getConstraintType(const std::string &Constraint) const;
414
415    /// Examine constraint string and operand type and determine a weight value.
416    /// The operand object must already have been set up with the operand type.
417    ConstraintWeight getSingleConstraintMatchWeight(
418      AsmOperandInfo &info, const char *constraint) const;
419
420    std::pair<unsigned, const TargetRegisterClass*>
421      getRegForInlineAsmConstraint(const std::string &Constraint,
422                                   MVT VT) const;
423
424    /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
425    /// function arguments in the caller parameter area.  This is the actual
426    /// alignment, not its logarithm.
427    unsigned getByValTypeAlignment(Type *Ty) const;
428
429    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
430    /// vector.  If it is invalid, don't add anything to Ops.
431    virtual void LowerAsmOperandForConstraint(SDValue Op,
432                                              std::string &Constraint,
433                                              std::vector<SDValue> &Ops,
434                                              SelectionDAG &DAG) const;
435
436    /// isLegalAddressingMode - Return true if the addressing mode represented
437    /// by AM is legal for this target, for a load/store of the specified type.
438    virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty)const;
439
440    virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
441
442    /// getOptimalMemOpType - Returns the target specific optimal type for load
443    /// and store operations as a result of memset, memcpy, and memmove
444    /// lowering. If DstAlign is zero that means it's safe to destination
445    /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
446    /// means there isn't a need to check it against alignment requirement,
447    /// probably because the source does not need to be loaded. If 'IsMemset' is
448    /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
449    /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
450    /// source is constant so it does not need to be loaded.
451    /// It returns EVT::Other if the type should be determined using generic
452    /// target-independent logic.
453    virtual EVT
454    getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
455                        bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
456                        MachineFunction &MF) const;
457
458    /// Is unaligned memory access allowed for the given type, and is it fast
459    /// relative to software emulation.
460    virtual bool allowsUnalignedMemoryAccesses(EVT VT, bool *Fast = 0) const;
461
462    /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
463    /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
464    /// expanded to FMAs when this method returns true, otherwise fmuladd is
465    /// expanded to fmul + fadd.
466    virtual bool isFMAFasterThanFMulAndFAdd(EVT VT) const;
467
468    /// createFastISel - This method returns a target-specific FastISel object,
469    /// or null if the target does not support "fast" instruction selection.
470    virtual FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
471                                     const TargetLibraryInfo *LibInfo) const;
472
473  private:
474    SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
475    SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
476
477    bool
478    IsEligibleForTailCallOptimization(SDValue Callee,
479                                      CallingConv::ID CalleeCC,
480                                      bool isVarArg,
481                                      const SmallVectorImpl<ISD::InputArg> &Ins,
482                                      SelectionDAG& DAG) const;
483
484    SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
485                                         int SPDiff,
486                                         SDValue Chain,
487                                         SDValue &LROpOut,
488                                         SDValue &FPOpOut,
489                                         bool isDarwinABI,
490                                         SDLoc dl) const;
491
492    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
493    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
494    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
495    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
496    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
497    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
498    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
499    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
500    SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
501    SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
502    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
503                         const PPCSubtarget &Subtarget) const;
504    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG,
505                       const PPCSubtarget &Subtarget) const;
506    SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG,
507                        const PPCSubtarget &Subtarget) const;
508    SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
509                                const PPCSubtarget &Subtarget) const;
510    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
511                                      const PPCSubtarget &Subtarget) const;
512    SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
513    SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, SDLoc dl) const;
514    SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
515    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
516    SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
517    SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
518    SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
519    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
520    SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
521    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
522    SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
523    SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
524
525    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
526                            CallingConv::ID CallConv, bool isVarArg,
527                            const SmallVectorImpl<ISD::InputArg> &Ins,
528                            SDLoc dl, SelectionDAG &DAG,
529                            SmallVectorImpl<SDValue> &InVals) const;
530    SDValue FinishCall(CallingConv::ID CallConv, SDLoc dl, bool isTailCall,
531                       bool isVarArg,
532                       SelectionDAG &DAG,
533                       SmallVector<std::pair<unsigned, SDValue>, 8>
534                         &RegsToPass,
535                       SDValue InFlag, SDValue Chain,
536                       SDValue &Callee,
537                       int SPDiff, unsigned NumBytes,
538                       const SmallVectorImpl<ISD::InputArg> &Ins,
539                       SmallVectorImpl<SDValue> &InVals) const;
540
541    virtual SDValue
542      LowerFormalArguments(SDValue Chain,
543                           CallingConv::ID CallConv, bool isVarArg,
544                           const SmallVectorImpl<ISD::InputArg> &Ins,
545                           SDLoc dl, SelectionDAG &DAG,
546                           SmallVectorImpl<SDValue> &InVals) const;
547
548    virtual SDValue
549      LowerCall(TargetLowering::CallLoweringInfo &CLI,
550                SmallVectorImpl<SDValue> &InVals) const;
551
552    virtual bool
553      CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
554                   bool isVarArg,
555                   const SmallVectorImpl<ISD::OutputArg> &Outs,
556                   LLVMContext &Context) const;
557
558    virtual SDValue
559      LowerReturn(SDValue Chain,
560                  CallingConv::ID CallConv, bool isVarArg,
561                  const SmallVectorImpl<ISD::OutputArg> &Outs,
562                  const SmallVectorImpl<SDValue> &OutVals,
563                  SDLoc dl, SelectionDAG &DAG) const;
564
565    SDValue
566      extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, SelectionDAG &DAG,
567                        SDValue ArgVal, SDLoc dl) const;
568
569    void
570      setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG,
571                         unsigned nAltivecParamsAtEnd,
572                         unsigned MinReservedArea, bool isPPC64) const;
573
574    SDValue
575      LowerFormalArguments_Darwin(SDValue Chain,
576                                  CallingConv::ID CallConv, bool isVarArg,
577                                  const SmallVectorImpl<ISD::InputArg> &Ins,
578                                  SDLoc dl, SelectionDAG &DAG,
579                                  SmallVectorImpl<SDValue> &InVals) const;
580    SDValue
581      LowerFormalArguments_64SVR4(SDValue Chain,
582                                  CallingConv::ID CallConv, bool isVarArg,
583                                  const SmallVectorImpl<ISD::InputArg> &Ins,
584                                  SDLoc dl, SelectionDAG &DAG,
585                                  SmallVectorImpl<SDValue> &InVals) const;
586    SDValue
587      LowerFormalArguments_32SVR4(SDValue Chain,
588                                  CallingConv::ID CallConv, bool isVarArg,
589                                  const SmallVectorImpl<ISD::InputArg> &Ins,
590                                  SDLoc dl, SelectionDAG &DAG,
591                                  SmallVectorImpl<SDValue> &InVals) const;
592
593    SDValue
594      createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
595                                 SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
596                                 SelectionDAG &DAG, SDLoc dl) const;
597
598    SDValue
599      LowerCall_Darwin(SDValue Chain, SDValue Callee,
600                       CallingConv::ID CallConv,
601                       bool isVarArg, bool isTailCall,
602                       const SmallVectorImpl<ISD::OutputArg> &Outs,
603                       const SmallVectorImpl<SDValue> &OutVals,
604                       const SmallVectorImpl<ISD::InputArg> &Ins,
605                       SDLoc dl, SelectionDAG &DAG,
606                       SmallVectorImpl<SDValue> &InVals) const;
607    SDValue
608      LowerCall_64SVR4(SDValue Chain, SDValue Callee,
609                       CallingConv::ID CallConv,
610                       bool isVarArg, bool isTailCall,
611                       const SmallVectorImpl<ISD::OutputArg> &Outs,
612                       const SmallVectorImpl<SDValue> &OutVals,
613                       const SmallVectorImpl<ISD::InputArg> &Ins,
614                       SDLoc dl, SelectionDAG &DAG,
615                       SmallVectorImpl<SDValue> &InVals) const;
616    SDValue
617    LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallingConv::ID CallConv,
618                     bool isVarArg, bool isTailCall,
619                     const SmallVectorImpl<ISD::OutputArg> &Outs,
620                     const SmallVectorImpl<SDValue> &OutVals,
621                     const SmallVectorImpl<ISD::InputArg> &Ins,
622                     SDLoc dl, SelectionDAG &DAG,
623                     SmallVectorImpl<SDValue> &InVals) const;
624
625    SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
626    SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
627
628    SDValue DAGCombineFastRecip(SDValue Op, DAGCombinerInfo &DCI) const;
629    SDValue DAGCombineFastRecipFSQRT(SDValue Op, DAGCombinerInfo &DCI) const;
630  };
631
632  namespace PPC {
633    FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
634                             const TargetLibraryInfo *LibInfo);
635  }
636
637  bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
638                                  CCValAssign::LocInfo &LocInfo,
639                                  ISD::ArgFlagsTy &ArgFlags,
640                                  CCState &State);
641
642  bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
643                                         MVT &LocVT,
644                                         CCValAssign::LocInfo &LocInfo,
645                                         ISD::ArgFlagsTy &ArgFlags,
646                                         CCState &State);
647
648  bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
649                                           MVT &LocVT,
650                                           CCValAssign::LocInfo &LocInfo,
651                                           ISD::ArgFlagsTy &ArgFlags,
652                                           CCState &State);
653}
654
655#endif   // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
656