1//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass deletes dead arguments from internal functions.  Dead argument
11// elimination removes arguments which are directly dead, as well as arguments
12// only passed into function calls as dead arguments of other functions.  This
13// pass also deletes dead return values in a similar way.
14//
15// This pass is often useful as a cleanup pass to run after aggressive
16// interprocedural passes, which add possibly-dead arguments or return values.
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "deadargelim"
21#include "llvm/Transforms/IPO.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/DIBuilder.h"
27#include "llvm/DebugInfo.h"
28#include "llvm/IR/CallingConv.h"
29#include "llvm/IR/Constant.h"
30#include "llvm/IR/DerivedTypes.h"
31#include "llvm/IR/Instructions.h"
32#include "llvm/IR/IntrinsicInst.h"
33#include "llvm/IR/LLVMContext.h"
34#include "llvm/IR/Module.h"
35#include "llvm/Pass.h"
36#include "llvm/Support/CallSite.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/raw_ostream.h"
39#include <map>
40#include <set>
41using namespace llvm;
42
43STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
44STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
45STATISTIC(NumArgumentsReplacedWithUndef,
46          "Number of unread args replaced with undef");
47namespace {
48  /// DAE - The dead argument elimination pass.
49  ///
50  class DAE : public ModulePass {
51  public:
52
53    /// Struct that represents (part of) either a return value or a function
54    /// argument.  Used so that arguments and return values can be used
55    /// interchangeably.
56    struct RetOrArg {
57      RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
58               IsArg(IsArg) {}
59      const Function *F;
60      unsigned Idx;
61      bool IsArg;
62
63      /// Make RetOrArg comparable, so we can put it into a map.
64      bool operator<(const RetOrArg &O) const {
65        if (F != O.F)
66          return F < O.F;
67        else if (Idx != O.Idx)
68          return Idx < O.Idx;
69        else
70          return IsArg < O.IsArg;
71      }
72
73      /// Make RetOrArg comparable, so we can easily iterate the multimap.
74      bool operator==(const RetOrArg &O) const {
75        return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
76      }
77
78      std::string getDescription() const {
79        return std::string((IsArg ? "Argument #" : "Return value #"))
80               + utostr(Idx) + " of function " + F->getName().str();
81      }
82    };
83
84    /// Liveness enum - During our initial pass over the program, we determine
85    /// that things are either alive or maybe alive. We don't mark anything
86    /// explicitly dead (even if we know they are), since anything not alive
87    /// with no registered uses (in Uses) will never be marked alive and will
88    /// thus become dead in the end.
89    enum Liveness { Live, MaybeLive };
90
91    /// Convenience wrapper
92    RetOrArg CreateRet(const Function *F, unsigned Idx) {
93      return RetOrArg(F, Idx, false);
94    }
95    /// Convenience wrapper
96    RetOrArg CreateArg(const Function *F, unsigned Idx) {
97      return RetOrArg(F, Idx, true);
98    }
99
100    typedef std::multimap<RetOrArg, RetOrArg> UseMap;
101    /// This maps a return value or argument to any MaybeLive return values or
102    /// arguments it uses. This allows the MaybeLive values to be marked live
103    /// when any of its users is marked live.
104    /// For example (indices are left out for clarity):
105    ///  - Uses[ret F] = ret G
106    ///    This means that F calls G, and F returns the value returned by G.
107    ///  - Uses[arg F] = ret G
108    ///    This means that some function calls G and passes its result as an
109    ///    argument to F.
110    ///  - Uses[ret F] = arg F
111    ///    This means that F returns one of its own arguments.
112    ///  - Uses[arg F] = arg G
113    ///    This means that G calls F and passes one of its own (G's) arguments
114    ///    directly to F.
115    UseMap Uses;
116
117    typedef std::set<RetOrArg> LiveSet;
118    typedef std::set<const Function*> LiveFuncSet;
119
120    /// This set contains all values that have been determined to be live.
121    LiveSet LiveValues;
122    /// This set contains all values that are cannot be changed in any way.
123    LiveFuncSet LiveFunctions;
124
125    typedef SmallVector<RetOrArg, 5> UseVector;
126
127    // Map each LLVM function to corresponding metadata with debug info. If
128    // the function is replaced with another one, we should patch the pointer
129    // to LLVM function in metadata.
130    // As the code generation for module is finished (and DIBuilder is
131    // finalized) we assume that subprogram descriptors won't be changed, and
132    // they are stored in map for short duration anyway.
133    typedef DenseMap<Function*, DISubprogram> FunctionDIMap;
134    FunctionDIMap FunctionDIs;
135
136  protected:
137    // DAH uses this to specify a different ID.
138    explicit DAE(char &ID) : ModulePass(ID) {}
139
140  public:
141    static char ID; // Pass identification, replacement for typeid
142    DAE() : ModulePass(ID) {
143      initializeDAEPass(*PassRegistry::getPassRegistry());
144    }
145
146    bool runOnModule(Module &M);
147
148    virtual bool ShouldHackArguments() const { return false; }
149
150  private:
151    Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
152    Liveness SurveyUse(Value::const_use_iterator U, UseVector &MaybeLiveUses,
153                       unsigned RetValNum = 0);
154    Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses);
155
156    void CollectFunctionDIs(Module &M);
157    void SurveyFunction(const Function &F);
158    void MarkValue(const RetOrArg &RA, Liveness L,
159                   const UseVector &MaybeLiveUses);
160    void MarkLive(const RetOrArg &RA);
161    void MarkLive(const Function &F);
162    void PropagateLiveness(const RetOrArg &RA);
163    bool RemoveDeadStuffFromFunction(Function *F);
164    bool DeleteDeadVarargs(Function &Fn);
165    bool RemoveDeadArgumentsFromCallers(Function &Fn);
166  };
167}
168
169
170char DAE::ID = 0;
171INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
172
173namespace {
174  /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
175  /// deletes arguments to functions which are external.  This is only for use
176  /// by bugpoint.
177  struct DAH : public DAE {
178    static char ID;
179    DAH() : DAE(ID) {}
180
181    virtual bool ShouldHackArguments() const { return true; }
182  };
183}
184
185char DAH::ID = 0;
186INITIALIZE_PASS(DAH, "deadarghaX0r",
187                "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
188                false, false)
189
190/// createDeadArgEliminationPass - This pass removes arguments from functions
191/// which are not used by the body of the function.
192///
193ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
194ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
195
196/// CollectFunctionDIs - Map each function in the module to its debug info
197/// descriptor.
198void DAE::CollectFunctionDIs(Module &M) {
199  FunctionDIs.clear();
200
201  for (Module::named_metadata_iterator I = M.named_metadata_begin(),
202       E = M.named_metadata_end(); I != E; ++I) {
203    NamedMDNode &NMD = *I;
204    for (unsigned MDIndex = 0, MDNum = NMD.getNumOperands();
205         MDIndex < MDNum; ++MDIndex) {
206      MDNode *Node = NMD.getOperand(MDIndex);
207      if (!DIDescriptor(Node).isCompileUnit())
208        continue;
209      DICompileUnit CU(Node);
210      const DIArray &SPs = CU.getSubprograms();
211      for (unsigned SPIndex = 0, SPNum = SPs.getNumElements();
212           SPIndex < SPNum; ++SPIndex) {
213        DISubprogram SP(SPs.getElement(SPIndex));
214        assert((!SP || SP.isSubprogram()) &&
215          "A MDNode in subprograms of a CU should be null or a DISubprogram.");
216        if (!SP)
217          continue;
218        if (Function *F = SP.getFunction())
219          FunctionDIs[F] = SP;
220      }
221    }
222  }
223}
224
225/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
226/// llvm.vastart is never called, the varargs list is dead for the function.
227bool DAE::DeleteDeadVarargs(Function &Fn) {
228  assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
229  if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
230
231  // Ensure that the function is only directly called.
232  if (Fn.hasAddressTaken())
233    return false;
234
235  // Okay, we know we can transform this function if safe.  Scan its body
236  // looking for calls to llvm.vastart.
237  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
238    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
239      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
240        if (II->getIntrinsicID() == Intrinsic::vastart)
241          return false;
242      }
243    }
244  }
245
246  // If we get here, there are no calls to llvm.vastart in the function body,
247  // remove the "..." and adjust all the calls.
248
249  // Start by computing a new prototype for the function, which is the same as
250  // the old function, but doesn't have isVarArg set.
251  FunctionType *FTy = Fn.getFunctionType();
252
253  std::vector<Type*> Params(FTy->param_begin(), FTy->param_end());
254  FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
255                                                Params, false);
256  unsigned NumArgs = Params.size();
257
258  // Create the new function body and insert it into the module...
259  Function *NF = Function::Create(NFTy, Fn.getLinkage());
260  NF->copyAttributesFrom(&Fn);
261  Fn.getParent()->getFunctionList().insert(&Fn, NF);
262  NF->takeName(&Fn);
263
264  // Loop over all of the callers of the function, transforming the call sites
265  // to pass in a smaller number of arguments into the new function.
266  //
267  std::vector<Value*> Args;
268  for (Value::use_iterator I = Fn.use_begin(), E = Fn.use_end(); I != E; ) {
269    CallSite CS(*I++);
270    if (!CS)
271      continue;
272    Instruction *Call = CS.getInstruction();
273
274    // Pass all the same arguments.
275    Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
276
277    // Drop any attributes that were on the vararg arguments.
278    AttributeSet PAL = CS.getAttributes();
279    if (!PAL.isEmpty() && PAL.getSlotIndex(PAL.getNumSlots() - 1) > NumArgs) {
280      SmallVector<AttributeSet, 8> AttributesVec;
281      for (unsigned i = 0; PAL.getSlotIndex(i) <= NumArgs; ++i)
282        AttributesVec.push_back(PAL.getSlotAttributes(i));
283      if (PAL.hasAttributes(AttributeSet::FunctionIndex))
284        AttributesVec.push_back(AttributeSet::get(Fn.getContext(),
285                                                  PAL.getFnAttributes()));
286      PAL = AttributeSet::get(Fn.getContext(), AttributesVec);
287    }
288
289    Instruction *New;
290    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
291      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
292                               Args, "", Call);
293      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
294      cast<InvokeInst>(New)->setAttributes(PAL);
295    } else {
296      New = CallInst::Create(NF, Args, "", Call);
297      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
298      cast<CallInst>(New)->setAttributes(PAL);
299      if (cast<CallInst>(Call)->isTailCall())
300        cast<CallInst>(New)->setTailCall();
301    }
302    New->setDebugLoc(Call->getDebugLoc());
303
304    Args.clear();
305
306    if (!Call->use_empty())
307      Call->replaceAllUsesWith(New);
308
309    New->takeName(Call);
310
311    // Finally, remove the old call from the program, reducing the use-count of
312    // F.
313    Call->eraseFromParent();
314  }
315
316  // Since we have now created the new function, splice the body of the old
317  // function right into the new function, leaving the old rotting hulk of the
318  // function empty.
319  NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
320
321  // Loop over the argument list, transferring uses of the old arguments over to
322  // the new arguments, also transferring over the names as well.  While we're at
323  // it, remove the dead arguments from the DeadArguments list.
324  //
325  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
326       I2 = NF->arg_begin(); I != E; ++I, ++I2) {
327    // Move the name and users over to the new version.
328    I->replaceAllUsesWith(I2);
329    I2->takeName(I);
330  }
331
332  // Patch the pointer to LLVM function in debug info descriptor.
333  FunctionDIMap::iterator DI = FunctionDIs.find(&Fn);
334  if (DI != FunctionDIs.end())
335    DI->second.replaceFunction(NF);
336
337  // Fix up any BlockAddresses that refer to the function.
338  Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType()));
339  // Delete the bitcast that we just created, so that NF does not
340  // appear to be address-taken.
341  NF->removeDeadConstantUsers();
342  // Finally, nuke the old function.
343  Fn.eraseFromParent();
344  return true;
345}
346
347/// RemoveDeadArgumentsFromCallers - Checks if the given function has any
348/// arguments that are unused, and changes the caller parameters to be undefined
349/// instead.
350bool DAE::RemoveDeadArgumentsFromCallers(Function &Fn)
351{
352  if (Fn.isDeclaration() || Fn.mayBeOverridden())
353    return false;
354
355  // Functions with local linkage should already have been handled, except the
356  // fragile (variadic) ones which we can improve here.
357  if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg())
358    return false;
359
360  if (Fn.use_empty())
361    return false;
362
363  SmallVector<unsigned, 8> UnusedArgs;
364  for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
365       I != E; ++I) {
366    Argument *Arg = I;
367
368    if (Arg->use_empty() && !Arg->hasByValAttr())
369      UnusedArgs.push_back(Arg->getArgNo());
370  }
371
372  if (UnusedArgs.empty())
373    return false;
374
375  bool Changed = false;
376
377  for (Function::use_iterator I = Fn.use_begin(), E = Fn.use_end();
378       I != E; ++I) {
379    CallSite CS(*I);
380    if (!CS || !CS.isCallee(I))
381      continue;
382
383    // Now go through all unused args and replace them with "undef".
384    for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
385      unsigned ArgNo = UnusedArgs[I];
386
387      Value *Arg = CS.getArgument(ArgNo);
388      CS.setArgument(ArgNo, UndefValue::get(Arg->getType()));
389      ++NumArgumentsReplacedWithUndef;
390      Changed = true;
391    }
392  }
393
394  return Changed;
395}
396
397/// Convenience function that returns the number of return values. It returns 0
398/// for void functions and 1 for functions not returning a struct. It returns
399/// the number of struct elements for functions returning a struct.
400static unsigned NumRetVals(const Function *F) {
401  if (F->getReturnType()->isVoidTy())
402    return 0;
403  else if (StructType *STy = dyn_cast<StructType>(F->getReturnType()))
404    return STy->getNumElements();
405  else
406    return 1;
407}
408
409/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
410/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
411/// liveness of Use.
412DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
413  // We're live if our use or its Function is already marked as live.
414  if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
415    return Live;
416
417  // We're maybe live otherwise, but remember that we must become live if
418  // Use becomes live.
419  MaybeLiveUses.push_back(Use);
420  return MaybeLive;
421}
422
423
424/// SurveyUse - This looks at a single use of an argument or return value
425/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
426/// if it causes the used value to become MaybeLive.
427///
428/// RetValNum is the return value number to use when this use is used in a
429/// return instruction. This is used in the recursion, you should always leave
430/// it at 0.
431DAE::Liveness DAE::SurveyUse(Value::const_use_iterator U,
432                             UseVector &MaybeLiveUses, unsigned RetValNum) {
433    const User *V = *U;
434    if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
435      // The value is returned from a function. It's only live when the
436      // function's return value is live. We use RetValNum here, for the case
437      // that U is really a use of an insertvalue instruction that uses the
438      // original Use.
439      RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
440      // We might be live, depending on the liveness of Use.
441      return MarkIfNotLive(Use, MaybeLiveUses);
442    }
443    if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
444      if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
445          && IV->hasIndices())
446        // The use we are examining is inserted into an aggregate. Our liveness
447        // depends on all uses of that aggregate, but if it is used as a return
448        // value, only index at which we were inserted counts.
449        RetValNum = *IV->idx_begin();
450
451      // Note that if we are used as the aggregate operand to the insertvalue,
452      // we don't change RetValNum, but do survey all our uses.
453
454      Liveness Result = MaybeLive;
455      for (Value::const_use_iterator I = IV->use_begin(),
456           E = V->use_end(); I != E; ++I) {
457        Result = SurveyUse(I, MaybeLiveUses, RetValNum);
458        if (Result == Live)
459          break;
460      }
461      return Result;
462    }
463
464    if (ImmutableCallSite CS = V) {
465      const Function *F = CS.getCalledFunction();
466      if (F) {
467        // Used in a direct call.
468
469        // Find the argument number. We know for sure that this use is an
470        // argument, since if it was the function argument this would be an
471        // indirect call and the we know can't be looking at a value of the
472        // label type (for the invoke instruction).
473        unsigned ArgNo = CS.getArgumentNo(U);
474
475        if (ArgNo >= F->getFunctionType()->getNumParams())
476          // The value is passed in through a vararg! Must be live.
477          return Live;
478
479        assert(CS.getArgument(ArgNo)
480               == CS->getOperand(U.getOperandNo())
481               && "Argument is not where we expected it");
482
483        // Value passed to a normal call. It's only live when the corresponding
484        // argument to the called function turns out live.
485        RetOrArg Use = CreateArg(F, ArgNo);
486        return MarkIfNotLive(Use, MaybeLiveUses);
487      }
488    }
489    // Used in any other way? Value must be live.
490    return Live;
491}
492
493/// SurveyUses - This looks at all the uses of the given value
494/// Returns the Liveness deduced from the uses of this value.
495///
496/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
497/// the result is Live, MaybeLiveUses might be modified but its content should
498/// be ignored (since it might not be complete).
499DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) {
500  // Assume it's dead (which will only hold if there are no uses at all..).
501  Liveness Result = MaybeLive;
502  // Check each use.
503  for (Value::const_use_iterator I = V->use_begin(),
504       E = V->use_end(); I != E; ++I) {
505    Result = SurveyUse(I, MaybeLiveUses);
506    if (Result == Live)
507      break;
508  }
509  return Result;
510}
511
512// SurveyFunction - This performs the initial survey of the specified function,
513// checking out whether or not it uses any of its incoming arguments or whether
514// any callers use the return value.  This fills in the LiveValues set and Uses
515// map.
516//
517// We consider arguments of non-internal functions to be intrinsically alive as
518// well as arguments to functions which have their "address taken".
519//
520void DAE::SurveyFunction(const Function &F) {
521  unsigned RetCount = NumRetVals(&F);
522  // Assume all return values are dead
523  typedef SmallVector<Liveness, 5> RetVals;
524  RetVals RetValLiveness(RetCount, MaybeLive);
525
526  typedef SmallVector<UseVector, 5> RetUses;
527  // These vectors map each return value to the uses that make it MaybeLive, so
528  // we can add those to the Uses map if the return value really turns out to be
529  // MaybeLive. Initialized to a list of RetCount empty lists.
530  RetUses MaybeLiveRetUses(RetCount);
531
532  for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
533    if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
534      if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
535          != F.getFunctionType()->getReturnType()) {
536        // We don't support old style multiple return values.
537        MarkLive(F);
538        return;
539      }
540
541  if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
542    MarkLive(F);
543    return;
544  }
545
546  DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
547  // Keep track of the number of live retvals, so we can skip checks once all
548  // of them turn out to be live.
549  unsigned NumLiveRetVals = 0;
550  Type *STy = dyn_cast<StructType>(F.getReturnType());
551  // Loop all uses of the function.
552  for (Value::const_use_iterator I = F.use_begin(), E = F.use_end();
553       I != E; ++I) {
554    // If the function is PASSED IN as an argument, its address has been
555    // taken.
556    ImmutableCallSite CS(*I);
557    if (!CS || !CS.isCallee(I)) {
558      MarkLive(F);
559      return;
560    }
561
562    // If this use is anything other than a call site, the function is alive.
563    const Instruction *TheCall = CS.getInstruction();
564    if (!TheCall) {   // Not a direct call site?
565      MarkLive(F);
566      return;
567    }
568
569    // If we end up here, we are looking at a direct call to our function.
570
571    // Now, check how our return value(s) is/are used in this caller. Don't
572    // bother checking return values if all of them are live already.
573    if (NumLiveRetVals != RetCount) {
574      if (STy) {
575        // Check all uses of the return value.
576        for (Value::const_use_iterator I = TheCall->use_begin(),
577             E = TheCall->use_end(); I != E; ++I) {
578          const ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
579          if (Ext && Ext->hasIndices()) {
580            // This use uses a part of our return value, survey the uses of
581            // that part and store the results for this index only.
582            unsigned Idx = *Ext->idx_begin();
583            if (RetValLiveness[Idx] != Live) {
584              RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
585              if (RetValLiveness[Idx] == Live)
586                NumLiveRetVals++;
587            }
588          } else {
589            // Used by something else than extractvalue. Mark all return
590            // values as live.
591            for (unsigned i = 0; i != RetCount; ++i )
592              RetValLiveness[i] = Live;
593            NumLiveRetVals = RetCount;
594            break;
595          }
596        }
597      } else {
598        // Single return value
599        RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
600        if (RetValLiveness[0] == Live)
601          NumLiveRetVals = RetCount;
602      }
603    }
604  }
605
606  // Now we've inspected all callers, record the liveness of our return values.
607  for (unsigned i = 0; i != RetCount; ++i)
608    MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
609
610  DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
611
612  // Now, check all of our arguments.
613  unsigned i = 0;
614  UseVector MaybeLiveArgUses;
615  for (Function::const_arg_iterator AI = F.arg_begin(),
616       E = F.arg_end(); AI != E; ++AI, ++i) {
617    Liveness Result;
618    if (F.getFunctionType()->isVarArg()) {
619      // Variadic functions will already have a va_arg function expanded inside
620      // them, making them potentially very sensitive to ABI changes resulting
621      // from removing arguments entirely, so don't. For example AArch64 handles
622      // register and stack HFAs very differently, and this is reflected in the
623      // IR which has already been generated.
624      Result = Live;
625    } else {
626      // See what the effect of this use is (recording any uses that cause
627      // MaybeLive in MaybeLiveArgUses).
628      Result = SurveyUses(AI, MaybeLiveArgUses);
629    }
630
631    // Mark the result.
632    MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
633    // Clear the vector again for the next iteration.
634    MaybeLiveArgUses.clear();
635  }
636}
637
638/// MarkValue - This function marks the liveness of RA depending on L. If L is
639/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
640/// such that RA will be marked live if any use in MaybeLiveUses gets marked
641/// live later on.
642void DAE::MarkValue(const RetOrArg &RA, Liveness L,
643                    const UseVector &MaybeLiveUses) {
644  switch (L) {
645    case Live: MarkLive(RA); break;
646    case MaybeLive:
647    {
648      // Note any uses of this value, so this return value can be
649      // marked live whenever one of the uses becomes live.
650      for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
651           UE = MaybeLiveUses.end(); UI != UE; ++UI)
652        Uses.insert(std::make_pair(*UI, RA));
653      break;
654    }
655  }
656}
657
658/// MarkLive - Mark the given Function as alive, meaning that it cannot be
659/// changed in any way. Additionally,
660/// mark any values that are used as this function's parameters or by its return
661/// values (according to Uses) live as well.
662void DAE::MarkLive(const Function &F) {
663  DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
664  // Mark the function as live.
665  LiveFunctions.insert(&F);
666  // Mark all arguments as live.
667  for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
668    PropagateLiveness(CreateArg(&F, i));
669  // Mark all return values as live.
670  for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
671    PropagateLiveness(CreateRet(&F, i));
672}
673
674/// MarkLive - Mark the given return value or argument as live. Additionally,
675/// mark any values that are used by this value (according to Uses) live as
676/// well.
677void DAE::MarkLive(const RetOrArg &RA) {
678  if (LiveFunctions.count(RA.F))
679    return; // Function was already marked Live.
680
681  if (!LiveValues.insert(RA).second)
682    return; // We were already marked Live.
683
684  DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
685  PropagateLiveness(RA);
686}
687
688/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
689/// to any other values it uses (according to Uses).
690void DAE::PropagateLiveness(const RetOrArg &RA) {
691  // We don't use upper_bound (or equal_range) here, because our recursive call
692  // to ourselves is likely to cause the upper_bound (which is the first value
693  // not belonging to RA) to become erased and the iterator invalidated.
694  UseMap::iterator Begin = Uses.lower_bound(RA);
695  UseMap::iterator E = Uses.end();
696  UseMap::iterator I;
697  for (I = Begin; I != E && I->first == RA; ++I)
698    MarkLive(I->second);
699
700  // Erase RA from the Uses map (from the lower bound to wherever we ended up
701  // after the loop).
702  Uses.erase(Begin, I);
703}
704
705// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
706// that are not in LiveValues. Transform the function and all of the callees of
707// the function to not have these arguments and return values.
708//
709bool DAE::RemoveDeadStuffFromFunction(Function *F) {
710  // Don't modify fully live functions
711  if (LiveFunctions.count(F))
712    return false;
713
714  // Start by computing a new prototype for the function, which is the same as
715  // the old function, but has fewer arguments and a different return type.
716  FunctionType *FTy = F->getFunctionType();
717  std::vector<Type*> Params;
718
719  // Keep track of if we have a live 'returned' argument
720  bool HasLiveReturnedArg = false;
721
722  // Set up to build a new list of parameter attributes.
723  SmallVector<AttributeSet, 8> AttributesVec;
724  const AttributeSet &PAL = F->getAttributes();
725
726  // Remember which arguments are still alive.
727  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
728  // Construct the new parameter list from non-dead arguments. Also construct
729  // a new set of parameter attributes to correspond. Skip the first parameter
730  // attribute, since that belongs to the return value.
731  unsigned i = 0;
732  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
733       I != E; ++I, ++i) {
734    RetOrArg Arg = CreateArg(F, i);
735    if (LiveValues.erase(Arg)) {
736      Params.push_back(I->getType());
737      ArgAlive[i] = true;
738
739      // Get the original parameter attributes (skipping the first one, that is
740      // for the return value.
741      if (PAL.hasAttributes(i + 1)) {
742        AttrBuilder B(PAL, i + 1);
743        if (B.contains(Attribute::Returned))
744          HasLiveReturnedArg = true;
745        AttributesVec.
746          push_back(AttributeSet::get(F->getContext(), Params.size(), B));
747      }
748    } else {
749      ++NumArgumentsEliminated;
750      DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
751            << ") from " << F->getName() << "\n");
752    }
753  }
754
755  // Find out the new return value.
756  Type *RetTy = FTy->getReturnType();
757  Type *NRetTy = NULL;
758  unsigned RetCount = NumRetVals(F);
759
760  // -1 means unused, other numbers are the new index
761  SmallVector<int, 5> NewRetIdxs(RetCount, -1);
762  std::vector<Type*> RetTypes;
763
764  // If there is a function with a live 'returned' argument but a dead return
765  // value, then there are two possible actions:
766  // 1) Eliminate the return value and take off the 'returned' attribute on the
767  //    argument.
768  // 2) Retain the 'returned' attribute and treat the return value (but not the
769  //    entire function) as live so that it is not eliminated.
770  //
771  // It's not clear in the general case which option is more profitable because,
772  // even in the absence of explicit uses of the return value, code generation
773  // is free to use the 'returned' attribute to do things like eliding
774  // save/restores of registers across calls. Whether or not this happens is
775  // target and ABI-specific as well as depending on the amount of register
776  // pressure, so there's no good way for an IR-level pass to figure this out.
777  //
778  // Fortunately, the only places where 'returned' is currently generated by
779  // the FE are places where 'returned' is basically free and almost always a
780  // performance win, so the second option can just be used always for now.
781  //
782  // This should be revisited if 'returned' is ever applied more liberally.
783  if (RetTy->isVoidTy() || HasLiveReturnedArg) {
784    NRetTy = RetTy;
785  } else {
786    StructType *STy = dyn_cast<StructType>(RetTy);
787    if (STy)
788      // Look at each of the original return values individually.
789      for (unsigned i = 0; i != RetCount; ++i) {
790        RetOrArg Ret = CreateRet(F, i);
791        if (LiveValues.erase(Ret)) {
792          RetTypes.push_back(STy->getElementType(i));
793          NewRetIdxs[i] = RetTypes.size() - 1;
794        } else {
795          ++NumRetValsEliminated;
796          DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
797                << F->getName() << "\n");
798        }
799      }
800    else
801      // We used to return a single value.
802      if (LiveValues.erase(CreateRet(F, 0))) {
803        RetTypes.push_back(RetTy);
804        NewRetIdxs[0] = 0;
805      } else {
806        DEBUG(dbgs() << "DAE - Removing return value from " << F->getName()
807              << "\n");
808        ++NumRetValsEliminated;
809      }
810    if (RetTypes.size() > 1)
811      // More than one return type? Return a struct with them. Also, if we used
812      // to return a struct and didn't change the number of return values,
813      // return a struct again. This prevents changing {something} into
814      // something and {} into void.
815      // Make the new struct packed if we used to return a packed struct
816      // already.
817      NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
818    else if (RetTypes.size() == 1)
819      // One return type? Just a simple value then, but only if we didn't use to
820      // return a struct with that simple value before.
821      NRetTy = RetTypes.front();
822    else if (RetTypes.size() == 0)
823      // No return types? Make it void, but only if we didn't use to return {}.
824      NRetTy = Type::getVoidTy(F->getContext());
825  }
826
827  assert(NRetTy && "No new return type found?");
828
829  // The existing function return attributes.
830  AttributeSet RAttrs = PAL.getRetAttributes();
831
832  // Remove any incompatible attributes, but only if we removed all return
833  // values. Otherwise, ensure that we don't have any conflicting attributes
834  // here. Currently, this should not be possible, but special handling might be
835  // required when new return value attributes are added.
836  if (NRetTy->isVoidTy())
837    RAttrs =
838      AttributeSet::get(NRetTy->getContext(), AttributeSet::ReturnIndex,
839                        AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
840         removeAttributes(AttributeFuncs::
841                          typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
842                          AttributeSet::ReturnIndex));
843  else
844    assert(!AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
845             hasAttributes(AttributeFuncs::
846                           typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
847                           AttributeSet::ReturnIndex) &&
848           "Return attributes no longer compatible?");
849
850  if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
851    AttributesVec.push_back(AttributeSet::get(NRetTy->getContext(), RAttrs));
852
853  if (PAL.hasAttributes(AttributeSet::FunctionIndex))
854    AttributesVec.push_back(AttributeSet::get(F->getContext(),
855                                              PAL.getFnAttributes()));
856
857  // Reconstruct the AttributesList based on the vector we constructed.
858  AttributeSet NewPAL = AttributeSet::get(F->getContext(), AttributesVec);
859
860  // Create the new function type based on the recomputed parameters.
861  FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
862
863  // No change?
864  if (NFTy == FTy)
865    return false;
866
867  // Create the new function body and insert it into the module...
868  Function *NF = Function::Create(NFTy, F->getLinkage());
869  NF->copyAttributesFrom(F);
870  NF->setAttributes(NewPAL);
871  // Insert the new function before the old function, so we won't be processing
872  // it again.
873  F->getParent()->getFunctionList().insert(F, NF);
874  NF->takeName(F);
875
876  // Loop over all of the callers of the function, transforming the call sites
877  // to pass in a smaller number of arguments into the new function.
878  //
879  std::vector<Value*> Args;
880  while (!F->use_empty()) {
881    CallSite CS(F->use_back());
882    Instruction *Call = CS.getInstruction();
883
884    AttributesVec.clear();
885    const AttributeSet &CallPAL = CS.getAttributes();
886
887    // The call return attributes.
888    AttributeSet RAttrs = CallPAL.getRetAttributes();
889
890    // Adjust in case the function was changed to return void.
891    RAttrs =
892      AttributeSet::get(NF->getContext(), AttributeSet::ReturnIndex,
893                        AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
894        removeAttributes(AttributeFuncs::
895                         typeIncompatible(NF->getReturnType(),
896                                          AttributeSet::ReturnIndex),
897                         AttributeSet::ReturnIndex));
898    if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
899      AttributesVec.push_back(AttributeSet::get(NF->getContext(), RAttrs));
900
901    // Declare these outside of the loops, so we can reuse them for the second
902    // loop, which loops the varargs.
903    CallSite::arg_iterator I = CS.arg_begin();
904    unsigned i = 0;
905    // Loop over those operands, corresponding to the normal arguments to the
906    // original function, and add those that are still alive.
907    for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
908      if (ArgAlive[i]) {
909        Args.push_back(*I);
910        // Get original parameter attributes, but skip return attributes.
911        if (CallPAL.hasAttributes(i + 1)) {
912          AttrBuilder B(CallPAL, i + 1);
913          // If the return type has changed, then get rid of 'returned' on the
914          // call site. The alternative is to make all 'returned' attributes on
915          // call sites keep the return value alive just like 'returned'
916          // attributes on function declaration but it's less clearly a win
917          // and this is not an expected case anyway
918          if (NRetTy != RetTy && B.contains(Attribute::Returned))
919            B.removeAttribute(Attribute::Returned);
920          AttributesVec.
921            push_back(AttributeSet::get(F->getContext(), Args.size(), B));
922        }
923      }
924
925    // Push any varargs arguments on the list. Don't forget their attributes.
926    for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
927      Args.push_back(*I);
928      if (CallPAL.hasAttributes(i + 1)) {
929        AttrBuilder B(CallPAL, i + 1);
930        AttributesVec.
931          push_back(AttributeSet::get(F->getContext(), Args.size(), B));
932      }
933    }
934
935    if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
936      AttributesVec.push_back(AttributeSet::get(Call->getContext(),
937                                                CallPAL.getFnAttributes()));
938
939    // Reconstruct the AttributesList based on the vector we constructed.
940    AttributeSet NewCallPAL = AttributeSet::get(F->getContext(), AttributesVec);
941
942    Instruction *New;
943    if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
944      New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
945                               Args, "", Call);
946      cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
947      cast<InvokeInst>(New)->setAttributes(NewCallPAL);
948    } else {
949      New = CallInst::Create(NF, Args, "", Call);
950      cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
951      cast<CallInst>(New)->setAttributes(NewCallPAL);
952      if (cast<CallInst>(Call)->isTailCall())
953        cast<CallInst>(New)->setTailCall();
954    }
955    New->setDebugLoc(Call->getDebugLoc());
956
957    Args.clear();
958
959    if (!Call->use_empty()) {
960      if (New->getType() == Call->getType()) {
961        // Return type not changed? Just replace users then.
962        Call->replaceAllUsesWith(New);
963        New->takeName(Call);
964      } else if (New->getType()->isVoidTy()) {
965        // Our return value has uses, but they will get removed later on.
966        // Replace by null for now.
967        if (!Call->getType()->isX86_MMXTy())
968          Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
969      } else {
970        assert(RetTy->isStructTy() &&
971               "Return type changed, but not into a void. The old return type"
972               " must have been a struct!");
973        Instruction *InsertPt = Call;
974        if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
975          BasicBlock::iterator IP = II->getNormalDest()->begin();
976          while (isa<PHINode>(IP)) ++IP;
977          InsertPt = IP;
978        }
979
980        // We used to return a struct. Instead of doing smart stuff with all the
981        // uses of this struct, we will just rebuild it using
982        // extract/insertvalue chaining and let instcombine clean that up.
983        //
984        // Start out building up our return value from undef
985        Value *RetVal = UndefValue::get(RetTy);
986        for (unsigned i = 0; i != RetCount; ++i)
987          if (NewRetIdxs[i] != -1) {
988            Value *V;
989            if (RetTypes.size() > 1)
990              // We are still returning a struct, so extract the value from our
991              // return value
992              V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
993                                           InsertPt);
994            else
995              // We are now returning a single element, so just insert that
996              V = New;
997            // Insert the value at the old position
998            RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
999          }
1000        // Now, replace all uses of the old call instruction with the return
1001        // struct we built
1002        Call->replaceAllUsesWith(RetVal);
1003        New->takeName(Call);
1004      }
1005    }
1006
1007    // Finally, remove the old call from the program, reducing the use-count of
1008    // F.
1009    Call->eraseFromParent();
1010  }
1011
1012  // Since we have now created the new function, splice the body of the old
1013  // function right into the new function, leaving the old rotting hulk of the
1014  // function empty.
1015  NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
1016
1017  // Loop over the argument list, transferring uses of the old arguments over to
1018  // the new arguments, also transferring over the names as well.
1019  i = 0;
1020  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
1021       I2 = NF->arg_begin(); I != E; ++I, ++i)
1022    if (ArgAlive[i]) {
1023      // If this is a live argument, move the name and users over to the new
1024      // version.
1025      I->replaceAllUsesWith(I2);
1026      I2->takeName(I);
1027      ++I2;
1028    } else {
1029      // If this argument is dead, replace any uses of it with null constants
1030      // (these are guaranteed to become unused later on).
1031      if (!I->getType()->isX86_MMXTy())
1032        I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
1033    }
1034
1035  // If we change the return value of the function we must rewrite any return
1036  // instructions.  Check this now.
1037  if (F->getReturnType() != NF->getReturnType())
1038    for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
1039      if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
1040        Value *RetVal;
1041
1042        if (NFTy->getReturnType()->isVoidTy()) {
1043          RetVal = 0;
1044        } else {
1045          assert (RetTy->isStructTy());
1046          // The original return value was a struct, insert
1047          // extractvalue/insertvalue chains to extract only the values we need
1048          // to return and insert them into our new result.
1049          // This does generate messy code, but we'll let it to instcombine to
1050          // clean that up.
1051          Value *OldRet = RI->getOperand(0);
1052          // Start out building up our return value from undef
1053          RetVal = UndefValue::get(NRetTy);
1054          for (unsigned i = 0; i != RetCount; ++i)
1055            if (NewRetIdxs[i] != -1) {
1056              ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
1057                                                              "oldret", RI);
1058              if (RetTypes.size() > 1) {
1059                // We're still returning a struct, so reinsert the value into
1060                // our new return value at the new index
1061
1062                RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
1063                                                 "newret", RI);
1064              } else {
1065                // We are now only returning a simple value, so just return the
1066                // extracted value.
1067                RetVal = EV;
1068              }
1069            }
1070        }
1071        // Replace the return instruction with one returning the new return
1072        // value (possibly 0 if we became void).
1073        ReturnInst::Create(F->getContext(), RetVal, RI);
1074        BB->getInstList().erase(RI);
1075      }
1076
1077  // Patch the pointer to LLVM function in debug info descriptor.
1078  FunctionDIMap::iterator DI = FunctionDIs.find(F);
1079  if (DI != FunctionDIs.end())
1080    DI->second.replaceFunction(NF);
1081
1082  // Now that the old function is dead, delete it.
1083  F->eraseFromParent();
1084
1085  return true;
1086}
1087
1088bool DAE::runOnModule(Module &M) {
1089  bool Changed = false;
1090
1091  // Collect debug info descriptors for functions.
1092  CollectFunctionDIs(M);
1093
1094  // First pass: Do a simple check to see if any functions can have their "..."
1095  // removed.  We can do this if they never call va_start.  This loop cannot be
1096  // fused with the next loop, because deleting a function invalidates
1097  // information computed while surveying other functions.
1098  DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
1099  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1100    Function &F = *I++;
1101    if (F.getFunctionType()->isVarArg())
1102      Changed |= DeleteDeadVarargs(F);
1103  }
1104
1105  // Second phase:loop through the module, determining which arguments are live.
1106  // We assume all arguments are dead unless proven otherwise (allowing us to
1107  // determine that dead arguments passed into recursive functions are dead).
1108  //
1109  DEBUG(dbgs() << "DAE - Determining liveness\n");
1110  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
1111    SurveyFunction(*I);
1112
1113  // Now, remove all dead arguments and return values from each function in
1114  // turn.
1115  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1116    // Increment now, because the function will probably get removed (ie.
1117    // replaced by a new one).
1118    Function *F = I++;
1119    Changed |= RemoveDeadStuffFromFunction(F);
1120  }
1121
1122  // Finally, look for any unused parameters in functions with non-local
1123  // linkage and replace the passed in parameters with undef.
1124  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1125    Function& F = *I;
1126
1127    Changed |= RemoveDeadArgumentsFromCallers(F);
1128  }
1129
1130  return Changed;
1131}
1132