1//===- InstCombineCompares.cpp --------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitICmp and visitFCmp functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Analysis/ConstantFolding.h"
16#include "llvm/Analysis/InstructionSimplify.h"
17#include "llvm/Analysis/MemoryBuiltins.h"
18#include "llvm/IR/DataLayout.h"
19#include "llvm/IR/IntrinsicInst.h"
20#include "llvm/Support/ConstantRange.h"
21#include "llvm/Support/GetElementPtrTypeIterator.h"
22#include "llvm/Support/PatternMatch.h"
23#include "llvm/Target/TargetLibraryInfo.h"
24using namespace llvm;
25using namespace PatternMatch;
26
27static ConstantInt *getOne(Constant *C) {
28  return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
29}
30
31/// AddOne - Add one to a ConstantInt
32static Constant *AddOne(Constant *C) {
33  return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
34}
35/// SubOne - Subtract one from a ConstantInt
36static Constant *SubOne(Constant *C) {
37  return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
38}
39
40static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
41  return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
42}
43
44static bool HasAddOverflow(ConstantInt *Result,
45                           ConstantInt *In1, ConstantInt *In2,
46                           bool IsSigned) {
47  if (!IsSigned)
48    return Result->getValue().ult(In1->getValue());
49
50  if (In2->isNegative())
51    return Result->getValue().sgt(In1->getValue());
52  return Result->getValue().slt(In1->getValue());
53}
54
55/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
56/// overflowed for this type.
57static bool AddWithOverflow(Constant *&Result, Constant *In1,
58                            Constant *In2, bool IsSigned = false) {
59  Result = ConstantExpr::getAdd(In1, In2);
60
61  if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
62    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
63      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
64      if (HasAddOverflow(ExtractElement(Result, Idx),
65                         ExtractElement(In1, Idx),
66                         ExtractElement(In2, Idx),
67                         IsSigned))
68        return true;
69    }
70    return false;
71  }
72
73  return HasAddOverflow(cast<ConstantInt>(Result),
74                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
75                        IsSigned);
76}
77
78static bool HasSubOverflow(ConstantInt *Result,
79                           ConstantInt *In1, ConstantInt *In2,
80                           bool IsSigned) {
81  if (!IsSigned)
82    return Result->getValue().ugt(In1->getValue());
83
84  if (In2->isNegative())
85    return Result->getValue().slt(In1->getValue());
86
87  return Result->getValue().sgt(In1->getValue());
88}
89
90/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
91/// overflowed for this type.
92static bool SubWithOverflow(Constant *&Result, Constant *In1,
93                            Constant *In2, bool IsSigned = false) {
94  Result = ConstantExpr::getSub(In1, In2);
95
96  if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
97    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
98      Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
99      if (HasSubOverflow(ExtractElement(Result, Idx),
100                         ExtractElement(In1, Idx),
101                         ExtractElement(In2, Idx),
102                         IsSigned))
103        return true;
104    }
105    return false;
106  }
107
108  return HasSubOverflow(cast<ConstantInt>(Result),
109                        cast<ConstantInt>(In1), cast<ConstantInt>(In2),
110                        IsSigned);
111}
112
113/// isSignBitCheck - Given an exploded icmp instruction, return true if the
114/// comparison only checks the sign bit.  If it only checks the sign bit, set
115/// TrueIfSigned if the result of the comparison is true when the input value is
116/// signed.
117static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
118                           bool &TrueIfSigned) {
119  switch (pred) {
120  case ICmpInst::ICMP_SLT:   // True if LHS s< 0
121    TrueIfSigned = true;
122    return RHS->isZero();
123  case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
124    TrueIfSigned = true;
125    return RHS->isAllOnesValue();
126  case ICmpInst::ICMP_SGT:   // True if LHS s> -1
127    TrueIfSigned = false;
128    return RHS->isAllOnesValue();
129  case ICmpInst::ICMP_UGT:
130    // True if LHS u> RHS and RHS == high-bit-mask - 1
131    TrueIfSigned = true;
132    return RHS->isMaxValue(true);
133  case ICmpInst::ICMP_UGE:
134    // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
135    TrueIfSigned = true;
136    return RHS->getValue().isSignBit();
137  default:
138    return false;
139  }
140}
141
142/// Returns true if the exploded icmp can be expressed as a signed comparison
143/// to zero and updates the predicate accordingly.
144/// The signedness of the comparison is preserved.
145static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) {
146  if (!ICmpInst::isSigned(pred))
147    return false;
148
149  if (RHS->isZero())
150    return ICmpInst::isRelational(pred);
151
152  if (RHS->isOne()) {
153    if (pred == ICmpInst::ICMP_SLT) {
154      pred = ICmpInst::ICMP_SLE;
155      return true;
156    }
157  } else if (RHS->isAllOnesValue()) {
158    if (pred == ICmpInst::ICMP_SGT) {
159      pred = ICmpInst::ICMP_SGE;
160      return true;
161    }
162  }
163
164  return false;
165}
166
167// isHighOnes - Return true if the constant is of the form 1+0+.
168// This is the same as lowones(~X).
169static bool isHighOnes(const ConstantInt *CI) {
170  return (~CI->getValue() + 1).isPowerOf2();
171}
172
173/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
174/// set of known zero and one bits, compute the maximum and minimum values that
175/// could have the specified known zero and known one bits, returning them in
176/// min/max.
177static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
178                                                   const APInt& KnownOne,
179                                                   APInt& Min, APInt& Max) {
180  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
181         KnownZero.getBitWidth() == Min.getBitWidth() &&
182         KnownZero.getBitWidth() == Max.getBitWidth() &&
183         "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
184  APInt UnknownBits = ~(KnownZero|KnownOne);
185
186  // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
187  // bit if it is unknown.
188  Min = KnownOne;
189  Max = KnownOne|UnknownBits;
190
191  if (UnknownBits.isNegative()) { // Sign bit is unknown
192    Min.setBit(Min.getBitWidth()-1);
193    Max.clearBit(Max.getBitWidth()-1);
194  }
195}
196
197// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
198// a set of known zero and one bits, compute the maximum and minimum values that
199// could have the specified known zero and known one bits, returning them in
200// min/max.
201static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
202                                                     const APInt &KnownOne,
203                                                     APInt &Min, APInt &Max) {
204  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
205         KnownZero.getBitWidth() == Min.getBitWidth() &&
206         KnownZero.getBitWidth() == Max.getBitWidth() &&
207         "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
208  APInt UnknownBits = ~(KnownZero|KnownOne);
209
210  // The minimum value is when the unknown bits are all zeros.
211  Min = KnownOne;
212  // The maximum value is when the unknown bits are all ones.
213  Max = KnownOne|UnknownBits;
214}
215
216
217
218/// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
219///   cmp pred (load (gep GV, ...)), cmpcst
220/// where GV is a global variable with a constant initializer.  Try to simplify
221/// this into some simple computation that does not need the load.  For example
222/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
223///
224/// If AndCst is non-null, then the loaded value is masked with that constant
225/// before doing the comparison.  This handles cases like "A[i]&4 == 0".
226Instruction *InstCombiner::
227FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
228                             CmpInst &ICI, ConstantInt *AndCst) {
229  // We need TD information to know the pointer size unless this is inbounds.
230  if (!GEP->isInBounds() && TD == 0) return 0;
231
232  Constant *Init = GV->getInitializer();
233  if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
234    return 0;
235
236  uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
237  if (ArrayElementCount > 1024) return 0;  // Don't blow up on huge arrays.
238
239  // There are many forms of this optimization we can handle, for now, just do
240  // the simple index into a single-dimensional array.
241  //
242  // Require: GEP GV, 0, i {{, constant indices}}
243  if (GEP->getNumOperands() < 3 ||
244      !isa<ConstantInt>(GEP->getOperand(1)) ||
245      !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
246      isa<Constant>(GEP->getOperand(2)))
247    return 0;
248
249  // Check that indices after the variable are constants and in-range for the
250  // type they index.  Collect the indices.  This is typically for arrays of
251  // structs.
252  SmallVector<unsigned, 4> LaterIndices;
253
254  Type *EltTy = Init->getType()->getArrayElementType();
255  for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
256    ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
257    if (Idx == 0) return 0;  // Variable index.
258
259    uint64_t IdxVal = Idx->getZExtValue();
260    if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
261
262    if (StructType *STy = dyn_cast<StructType>(EltTy))
263      EltTy = STy->getElementType(IdxVal);
264    else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
265      if (IdxVal >= ATy->getNumElements()) return 0;
266      EltTy = ATy->getElementType();
267    } else {
268      return 0; // Unknown type.
269    }
270
271    LaterIndices.push_back(IdxVal);
272  }
273
274  enum { Overdefined = -3, Undefined = -2 };
275
276  // Variables for our state machines.
277
278  // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
279  // "i == 47 | i == 87", where 47 is the first index the condition is true for,
280  // and 87 is the second (and last) index.  FirstTrueElement is -2 when
281  // undefined, otherwise set to the first true element.  SecondTrueElement is
282  // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
283  int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
284
285  // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
286  // form "i != 47 & i != 87".  Same state transitions as for true elements.
287  int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
288
289  /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
290  /// define a state machine that triggers for ranges of values that the index
291  /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
292  /// This is -2 when undefined, -3 when overdefined, and otherwise the last
293  /// index in the range (inclusive).  We use -2 for undefined here because we
294  /// use relative comparisons and don't want 0-1 to match -1.
295  int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
296
297  // MagicBitvector - This is a magic bitvector where we set a bit if the
298  // comparison is true for element 'i'.  If there are 64 elements or less in
299  // the array, this will fully represent all the comparison results.
300  uint64_t MagicBitvector = 0;
301
302
303  // Scan the array and see if one of our patterns matches.
304  Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
305  for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
306    Constant *Elt = Init->getAggregateElement(i);
307    if (Elt == 0) return 0;
308
309    // If this is indexing an array of structures, get the structure element.
310    if (!LaterIndices.empty())
311      Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
312
313    // If the element is masked, handle it.
314    if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
315
316    // Find out if the comparison would be true or false for the i'th element.
317    Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
318                                                  CompareRHS, TD, TLI);
319    // If the result is undef for this element, ignore it.
320    if (isa<UndefValue>(C)) {
321      // Extend range state machines to cover this element in case there is an
322      // undef in the middle of the range.
323      if (TrueRangeEnd == (int)i-1)
324        TrueRangeEnd = i;
325      if (FalseRangeEnd == (int)i-1)
326        FalseRangeEnd = i;
327      continue;
328    }
329
330    // If we can't compute the result for any of the elements, we have to give
331    // up evaluating the entire conditional.
332    if (!isa<ConstantInt>(C)) return 0;
333
334    // Otherwise, we know if the comparison is true or false for this element,
335    // update our state machines.
336    bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
337
338    // State machine for single/double/range index comparison.
339    if (IsTrueForElt) {
340      // Update the TrueElement state machine.
341      if (FirstTrueElement == Undefined)
342        FirstTrueElement = TrueRangeEnd = i;  // First true element.
343      else {
344        // Update double-compare state machine.
345        if (SecondTrueElement == Undefined)
346          SecondTrueElement = i;
347        else
348          SecondTrueElement = Overdefined;
349
350        // Update range state machine.
351        if (TrueRangeEnd == (int)i-1)
352          TrueRangeEnd = i;
353        else
354          TrueRangeEnd = Overdefined;
355      }
356    } else {
357      // Update the FalseElement state machine.
358      if (FirstFalseElement == Undefined)
359        FirstFalseElement = FalseRangeEnd = i; // First false element.
360      else {
361        // Update double-compare state machine.
362        if (SecondFalseElement == Undefined)
363          SecondFalseElement = i;
364        else
365          SecondFalseElement = Overdefined;
366
367        // Update range state machine.
368        if (FalseRangeEnd == (int)i-1)
369          FalseRangeEnd = i;
370        else
371          FalseRangeEnd = Overdefined;
372      }
373    }
374
375
376    // If this element is in range, update our magic bitvector.
377    if (i < 64 && IsTrueForElt)
378      MagicBitvector |= 1ULL << i;
379
380    // If all of our states become overdefined, bail out early.  Since the
381    // predicate is expensive, only check it every 8 elements.  This is only
382    // really useful for really huge arrays.
383    if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
384        SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
385        FalseRangeEnd == Overdefined)
386      return 0;
387  }
388
389  // Now that we've scanned the entire array, emit our new comparison(s).  We
390  // order the state machines in complexity of the generated code.
391  Value *Idx = GEP->getOperand(2);
392
393  // If the index is larger than the pointer size of the target, truncate the
394  // index down like the GEP would do implicitly.  We don't have to do this for
395  // an inbounds GEP because the index can't be out of range.
396  if (!GEP->isInBounds() &&
397      Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits())
398    Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext()));
399
400  // If the comparison is only true for one or two elements, emit direct
401  // comparisons.
402  if (SecondTrueElement != Overdefined) {
403    // None true -> false.
404    if (FirstTrueElement == Undefined)
405      return ReplaceInstUsesWith(ICI, Builder->getFalse());
406
407    Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
408
409    // True for one element -> 'i == 47'.
410    if (SecondTrueElement == Undefined)
411      return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
412
413    // True for two elements -> 'i == 47 | i == 72'.
414    Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
415    Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
416    Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
417    return BinaryOperator::CreateOr(C1, C2);
418  }
419
420  // If the comparison is only false for one or two elements, emit direct
421  // comparisons.
422  if (SecondFalseElement != Overdefined) {
423    // None false -> true.
424    if (FirstFalseElement == Undefined)
425      return ReplaceInstUsesWith(ICI, Builder->getTrue());
426
427    Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
428
429    // False for one element -> 'i != 47'.
430    if (SecondFalseElement == Undefined)
431      return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
432
433    // False for two elements -> 'i != 47 & i != 72'.
434    Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
435    Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
436    Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
437    return BinaryOperator::CreateAnd(C1, C2);
438  }
439
440  // If the comparison can be replaced with a range comparison for the elements
441  // where it is true, emit the range check.
442  if (TrueRangeEnd != Overdefined) {
443    assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
444
445    // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
446    if (FirstTrueElement) {
447      Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
448      Idx = Builder->CreateAdd(Idx, Offs);
449    }
450
451    Value *End = ConstantInt::get(Idx->getType(),
452                                  TrueRangeEnd-FirstTrueElement+1);
453    return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
454  }
455
456  // False range check.
457  if (FalseRangeEnd != Overdefined) {
458    assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
459    // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
460    if (FirstFalseElement) {
461      Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
462      Idx = Builder->CreateAdd(Idx, Offs);
463    }
464
465    Value *End = ConstantInt::get(Idx->getType(),
466                                  FalseRangeEnd-FirstFalseElement);
467    return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
468  }
469
470
471  // If a magic bitvector captures the entire comparison state
472  // of this load, replace it with computation that does:
473  //   ((magic_cst >> i) & 1) != 0
474  {
475    Type *Ty = 0;
476
477    // Look for an appropriate type:
478    // - The type of Idx if the magic fits
479    // - The smallest fitting legal type if we have a DataLayout
480    // - Default to i32
481    if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
482      Ty = Idx->getType();
483    else if (TD)
484      Ty = TD->getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
485    else if (ArrayElementCount <= 32)
486      Ty = Type::getInt32Ty(Init->getContext());
487
488    if (Ty != 0) {
489      Value *V = Builder->CreateIntCast(Idx, Ty, false);
490      V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
491      V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
492      return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
493    }
494  }
495
496  return 0;
497}
498
499
500/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
501/// the *offset* implied by a GEP to zero.  For example, if we have &A[i], we
502/// want to return 'i' for "icmp ne i, 0".  Note that, in general, indices can
503/// be complex, and scales are involved.  The above expression would also be
504/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
505/// This later form is less amenable to optimization though, and we are allowed
506/// to generate the first by knowing that pointer arithmetic doesn't overflow.
507///
508/// If we can't emit an optimized form for this expression, this returns null.
509///
510static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {
511  DataLayout &TD = *IC.getDataLayout();
512  gep_type_iterator GTI = gep_type_begin(GEP);
513
514  // Check to see if this gep only has a single variable index.  If so, and if
515  // any constant indices are a multiple of its scale, then we can compute this
516  // in terms of the scale of the variable index.  For example, if the GEP
517  // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
518  // because the expression will cross zero at the same point.
519  unsigned i, e = GEP->getNumOperands();
520  int64_t Offset = 0;
521  for (i = 1; i != e; ++i, ++GTI) {
522    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
523      // Compute the aggregate offset of constant indices.
524      if (CI->isZero()) continue;
525
526      // Handle a struct index, which adds its field offset to the pointer.
527      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
528        Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
529      } else {
530        uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
531        Offset += Size*CI->getSExtValue();
532      }
533    } else {
534      // Found our variable index.
535      break;
536    }
537  }
538
539  // If there are no variable indices, we must have a constant offset, just
540  // evaluate it the general way.
541  if (i == e) return 0;
542
543  Value *VariableIdx = GEP->getOperand(i);
544  // Determine the scale factor of the variable element.  For example, this is
545  // 4 if the variable index is into an array of i32.
546  uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
547
548  // Verify that there are no other variable indices.  If so, emit the hard way.
549  for (++i, ++GTI; i != e; ++i, ++GTI) {
550    ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
551    if (!CI) return 0;
552
553    // Compute the aggregate offset of constant indices.
554    if (CI->isZero()) continue;
555
556    // Handle a struct index, which adds its field offset to the pointer.
557    if (StructType *STy = dyn_cast<StructType>(*GTI)) {
558      Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
559    } else {
560      uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
561      Offset += Size*CI->getSExtValue();
562    }
563  }
564
565  // Okay, we know we have a single variable index, which must be a
566  // pointer/array/vector index.  If there is no offset, life is simple, return
567  // the index.
568  unsigned IntPtrWidth = TD.getPointerSizeInBits();
569  if (Offset == 0) {
570    // Cast to intptrty in case a truncation occurs.  If an extension is needed,
571    // we don't need to bother extending: the extension won't affect where the
572    // computation crosses zero.
573    if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
574      Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
575      VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
576    }
577    return VariableIdx;
578  }
579
580  // Otherwise, there is an index.  The computation we will do will be modulo
581  // the pointer size, so get it.
582  uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
583
584  Offset &= PtrSizeMask;
585  VariableScale &= PtrSizeMask;
586
587  // To do this transformation, any constant index must be a multiple of the
588  // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
589  // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
590  // multiple of the variable scale.
591  int64_t NewOffs = Offset / (int64_t)VariableScale;
592  if (Offset != NewOffs*(int64_t)VariableScale)
593    return 0;
594
595  // Okay, we can do this evaluation.  Start by converting the index to intptr.
596  Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
597  if (VariableIdx->getType() != IntPtrTy)
598    VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
599                                            true /*Signed*/);
600  Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
601  return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
602}
603
604/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
605/// else.  At this point we know that the GEP is on the LHS of the comparison.
606Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
607                                       ICmpInst::Predicate Cond,
608                                       Instruction &I) {
609  // Don't transform signed compares of GEPs into index compares. Even if the
610  // GEP is inbounds, the final add of the base pointer can have signed overflow
611  // and would change the result of the icmp.
612  // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
613  // the maximum signed value for the pointer type.
614  if (ICmpInst::isSigned(Cond))
615    return 0;
616
617  // Look through bitcasts.
618  if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
619    RHS = BCI->getOperand(0);
620
621  Value *PtrBase = GEPLHS->getOperand(0);
622  if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
623    // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
624    // This transformation (ignoring the base and scales) is valid because we
625    // know pointers can't overflow since the gep is inbounds.  See if we can
626    // output an optimized form.
627    Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this);
628
629    // If not, synthesize the offset the hard way.
630    if (Offset == 0)
631      Offset = EmitGEPOffset(GEPLHS);
632    return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
633                        Constant::getNullValue(Offset->getType()));
634  } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
635    // If the base pointers are different, but the indices are the same, just
636    // compare the base pointer.
637    if (PtrBase != GEPRHS->getOperand(0)) {
638      bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
639      IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
640                        GEPRHS->getOperand(0)->getType();
641      if (IndicesTheSame)
642        for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
643          if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
644            IndicesTheSame = false;
645            break;
646          }
647
648      // If all indices are the same, just compare the base pointers.
649      if (IndicesTheSame)
650        return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
651
652      // If we're comparing GEPs with two base pointers that only differ in type
653      // and both GEPs have only constant indices or just one use, then fold
654      // the compare with the adjusted indices.
655      if (TD && GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
656          (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
657          (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
658          PtrBase->stripPointerCasts() ==
659            GEPRHS->getOperand(0)->stripPointerCasts()) {
660        Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
661                                         EmitGEPOffset(GEPLHS),
662                                         EmitGEPOffset(GEPRHS));
663        return ReplaceInstUsesWith(I, Cmp);
664      }
665
666      // Otherwise, the base pointers are different and the indices are
667      // different, bail out.
668      return 0;
669    }
670
671    // If one of the GEPs has all zero indices, recurse.
672    bool AllZeros = true;
673    for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
674      if (!isa<Constant>(GEPLHS->getOperand(i)) ||
675          !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
676        AllZeros = false;
677        break;
678      }
679    if (AllZeros)
680      return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
681                         ICmpInst::getSwappedPredicate(Cond), I);
682
683    // If the other GEP has all zero indices, recurse.
684    AllZeros = true;
685    for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
686      if (!isa<Constant>(GEPRHS->getOperand(i)) ||
687          !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
688        AllZeros = false;
689        break;
690      }
691    if (AllZeros)
692      return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
693
694    bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
695    if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
696      // If the GEPs only differ by one index, compare it.
697      unsigned NumDifferences = 0;  // Keep track of # differences.
698      unsigned DiffOperand = 0;     // The operand that differs.
699      for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
700        if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
701          if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
702                   GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
703            // Irreconcilable differences.
704            NumDifferences = 2;
705            break;
706          } else {
707            if (NumDifferences++) break;
708            DiffOperand = i;
709          }
710        }
711
712      if (NumDifferences == 0)   // SAME GEP?
713        return ReplaceInstUsesWith(I, // No comparison is needed here.
714                             Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond)));
715
716      else if (NumDifferences == 1 && GEPsInBounds) {
717        Value *LHSV = GEPLHS->getOperand(DiffOperand);
718        Value *RHSV = GEPRHS->getOperand(DiffOperand);
719        // Make sure we do a signed comparison here.
720        return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
721      }
722    }
723
724    // Only lower this if the icmp is the only user of the GEP or if we expect
725    // the result to fold to a constant!
726    if (TD &&
727        GEPsInBounds &&
728        (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
729        (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
730      // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
731      Value *L = EmitGEPOffset(GEPLHS);
732      Value *R = EmitGEPOffset(GEPRHS);
733      return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
734    }
735  }
736  return 0;
737}
738
739/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
740Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
741                                            Value *X, ConstantInt *CI,
742                                            ICmpInst::Predicate Pred,
743                                            Value *TheAdd) {
744  // If we have X+0, exit early (simplifying logic below) and let it get folded
745  // elsewhere.   icmp X+0, X  -> icmp X, X
746  if (CI->isZero()) {
747    bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
748    return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
749  }
750
751  // (X+4) == X -> false.
752  if (Pred == ICmpInst::ICMP_EQ)
753    return ReplaceInstUsesWith(ICI, Builder->getFalse());
754
755  // (X+4) != X -> true.
756  if (Pred == ICmpInst::ICMP_NE)
757    return ReplaceInstUsesWith(ICI, Builder->getTrue());
758
759  // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
760  // so the values can never be equal.  Similarly for all other "or equals"
761  // operators.
762
763  // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
764  // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
765  // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
766  if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
767    Value *R =
768      ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
769    return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
770  }
771
772  // (X+1) >u X        --> X <u (0-1)        --> X != 255
773  // (X+2) >u X        --> X <u (0-2)        --> X <u 254
774  // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
775  if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
776    return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
777
778  unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
779  ConstantInt *SMax = ConstantInt::get(X->getContext(),
780                                       APInt::getSignedMaxValue(BitWidth));
781
782  // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
783  // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
784  // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
785  // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
786  // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
787  // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
788  if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
789    return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
790
791  // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
792  // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
793  // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
794  // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
795  // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
796  // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
797
798  assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
799  Constant *C = Builder->getInt(CI->getValue()-1);
800  return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
801}
802
803/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
804/// and CmpRHS are both known to be integer constants.
805Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
806                                          ConstantInt *DivRHS) {
807  ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
808  const APInt &CmpRHSV = CmpRHS->getValue();
809
810  // FIXME: If the operand types don't match the type of the divide
811  // then don't attempt this transform. The code below doesn't have the
812  // logic to deal with a signed divide and an unsigned compare (and
813  // vice versa). This is because (x /s C1) <s C2  produces different
814  // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
815  // (x /u C1) <u C2.  Simply casting the operands and result won't
816  // work. :(  The if statement below tests that condition and bails
817  // if it finds it.
818  bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
819  if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
820    return 0;
821  if (DivRHS->isZero())
822    return 0; // The ProdOV computation fails on divide by zero.
823  if (DivIsSigned && DivRHS->isAllOnesValue())
824    return 0; // The overflow computation also screws up here
825  if (DivRHS->isOne()) {
826    // This eliminates some funny cases with INT_MIN.
827    ICI.setOperand(0, DivI->getOperand(0));   // X/1 == X.
828    return &ICI;
829  }
830
831  // Compute Prod = CI * DivRHS. We are essentially solving an equation
832  // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
833  // C2 (CI). By solving for X we can turn this into a range check
834  // instead of computing a divide.
835  Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
836
837  // Determine if the product overflows by seeing if the product is
838  // not equal to the divide. Make sure we do the same kind of divide
839  // as in the LHS instruction that we're folding.
840  bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
841                 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
842
843  // Get the ICmp opcode
844  ICmpInst::Predicate Pred = ICI.getPredicate();
845
846  /// If the division is known to be exact, then there is no remainder from the
847  /// divide, so the covered range size is unit, otherwise it is the divisor.
848  ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
849
850  // Figure out the interval that is being checked.  For example, a comparison
851  // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
852  // Compute this interval based on the constants involved and the signedness of
853  // the compare/divide.  This computes a half-open interval, keeping track of
854  // whether either value in the interval overflows.  After analysis each
855  // overflow variable is set to 0 if it's corresponding bound variable is valid
856  // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
857  int LoOverflow = 0, HiOverflow = 0;
858  Constant *LoBound = 0, *HiBound = 0;
859
860  if (!DivIsSigned) {  // udiv
861    // e.g. X/5 op 3  --> [15, 20)
862    LoBound = Prod;
863    HiOverflow = LoOverflow = ProdOV;
864    if (!HiOverflow) {
865      // If this is not an exact divide, then many values in the range collapse
866      // to the same result value.
867      HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
868    }
869
870  } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
871    if (CmpRHSV == 0) {       // (X / pos) op 0
872      // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
873      LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
874      HiBound = RangeSize;
875    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos
876      LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
877      HiOverflow = LoOverflow = ProdOV;
878      if (!HiOverflow)
879        HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
880    } else {                       // (X / pos) op neg
881      // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
882      HiBound = AddOne(Prod);
883      LoOverflow = HiOverflow = ProdOV ? -1 : 0;
884      if (!LoOverflow) {
885        ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
886        LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
887      }
888    }
889  } else if (DivRHS->isNegative()) { // Divisor is < 0.
890    if (DivI->isExact())
891      RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
892    if (CmpRHSV == 0) {       // (X / neg) op 0
893      // e.g. X/-5 op 0  --> [-4, 5)
894      LoBound = AddOne(RangeSize);
895      HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
896      if (HiBound == DivRHS) {     // -INTMIN = INTMIN
897        HiOverflow = 1;            // [INTMIN+1, overflow)
898        HiBound = 0;               // e.g. X/INTMIN = 0 --> X > INTMIN
899      }
900    } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos
901      // e.g. X/-5 op 3  --> [-19, -14)
902      HiBound = AddOne(Prod);
903      HiOverflow = LoOverflow = ProdOV ? -1 : 0;
904      if (!LoOverflow)
905        LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
906    } else {                       // (X / neg) op neg
907      LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
908      LoOverflow = HiOverflow = ProdOV;
909      if (!HiOverflow)
910        HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
911    }
912
913    // Dividing by a negative swaps the condition.  LT <-> GT
914    Pred = ICmpInst::getSwappedPredicate(Pred);
915  }
916
917  Value *X = DivI->getOperand(0);
918  switch (Pred) {
919  default: llvm_unreachable("Unhandled icmp opcode!");
920  case ICmpInst::ICMP_EQ:
921    if (LoOverflow && HiOverflow)
922      return ReplaceInstUsesWith(ICI, Builder->getFalse());
923    if (HiOverflow)
924      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
925                          ICmpInst::ICMP_UGE, X, LoBound);
926    if (LoOverflow)
927      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
928                          ICmpInst::ICMP_ULT, X, HiBound);
929    return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
930                                                    DivIsSigned, true));
931  case ICmpInst::ICMP_NE:
932    if (LoOverflow && HiOverflow)
933      return ReplaceInstUsesWith(ICI, Builder->getTrue());
934    if (HiOverflow)
935      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
936                          ICmpInst::ICMP_ULT, X, LoBound);
937    if (LoOverflow)
938      return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
939                          ICmpInst::ICMP_UGE, X, HiBound);
940    return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
941                                                    DivIsSigned, false));
942  case ICmpInst::ICMP_ULT:
943  case ICmpInst::ICMP_SLT:
944    if (LoOverflow == +1)   // Low bound is greater than input range.
945      return ReplaceInstUsesWith(ICI, Builder->getTrue());
946    if (LoOverflow == -1)   // Low bound is less than input range.
947      return ReplaceInstUsesWith(ICI, Builder->getFalse());
948    return new ICmpInst(Pred, X, LoBound);
949  case ICmpInst::ICMP_UGT:
950  case ICmpInst::ICMP_SGT:
951    if (HiOverflow == +1)       // High bound greater than input range.
952      return ReplaceInstUsesWith(ICI, Builder->getFalse());
953    if (HiOverflow == -1)       // High bound less than input range.
954      return ReplaceInstUsesWith(ICI, Builder->getTrue());
955    if (Pred == ICmpInst::ICMP_UGT)
956      return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
957    return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
958  }
959}
960
961/// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
962Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
963                                          ConstantInt *ShAmt) {
964  const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
965
966  // Check that the shift amount is in range.  If not, don't perform
967  // undefined shifts.  When the shift is visited it will be
968  // simplified.
969  uint32_t TypeBits = CmpRHSV.getBitWidth();
970  uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
971  if (ShAmtVal >= TypeBits || ShAmtVal == 0)
972    return 0;
973
974  if (!ICI.isEquality()) {
975    // If we have an unsigned comparison and an ashr, we can't simplify this.
976    // Similarly for signed comparisons with lshr.
977    if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
978      return 0;
979
980    // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
981    // by a power of 2.  Since we already have logic to simplify these,
982    // transform to div and then simplify the resultant comparison.
983    if (Shr->getOpcode() == Instruction::AShr &&
984        (!Shr->isExact() || ShAmtVal == TypeBits - 1))
985      return 0;
986
987    // Revisit the shift (to delete it).
988    Worklist.Add(Shr);
989
990    Constant *DivCst =
991      ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
992
993    Value *Tmp =
994      Shr->getOpcode() == Instruction::AShr ?
995      Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
996      Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
997
998    ICI.setOperand(0, Tmp);
999
1000    // If the builder folded the binop, just return it.
1001    BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
1002    if (TheDiv == 0)
1003      return &ICI;
1004
1005    // Otherwise, fold this div/compare.
1006    assert(TheDiv->getOpcode() == Instruction::SDiv ||
1007           TheDiv->getOpcode() == Instruction::UDiv);
1008
1009    Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
1010    assert(Res && "This div/cst should have folded!");
1011    return Res;
1012  }
1013
1014
1015  // If we are comparing against bits always shifted out, the
1016  // comparison cannot succeed.
1017  APInt Comp = CmpRHSV << ShAmtVal;
1018  ConstantInt *ShiftedCmpRHS = Builder->getInt(Comp);
1019  if (Shr->getOpcode() == Instruction::LShr)
1020    Comp = Comp.lshr(ShAmtVal);
1021  else
1022    Comp = Comp.ashr(ShAmtVal);
1023
1024  if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
1025    bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1026    Constant *Cst = Builder->getInt1(IsICMP_NE);
1027    return ReplaceInstUsesWith(ICI, Cst);
1028  }
1029
1030  // Otherwise, check to see if the bits shifted out are known to be zero.
1031  // If so, we can compare against the unshifted value:
1032  //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
1033  if (Shr->hasOneUse() && Shr->isExact())
1034    return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
1035
1036  if (Shr->hasOneUse()) {
1037    // Otherwise strength reduce the shift into an and.
1038    APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
1039    Constant *Mask = Builder->getInt(Val);
1040
1041    Value *And = Builder->CreateAnd(Shr->getOperand(0),
1042                                    Mask, Shr->getName()+".mask");
1043    return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
1044  }
1045  return 0;
1046}
1047
1048
1049/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
1050///
1051Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
1052                                                          Instruction *LHSI,
1053                                                          ConstantInt *RHS) {
1054  const APInt &RHSV = RHS->getValue();
1055
1056  switch (LHSI->getOpcode()) {
1057  case Instruction::Trunc:
1058    if (ICI.isEquality() && LHSI->hasOneUse()) {
1059      // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1060      // of the high bits truncated out of x are known.
1061      unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
1062             SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
1063      APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
1064      ComputeMaskedBits(LHSI->getOperand(0), KnownZero, KnownOne);
1065
1066      // If all the high bits are known, we can do this xform.
1067      if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
1068        // Pull in the high bits from known-ones set.
1069        APInt NewRHS = RHS->getValue().zext(SrcBits);
1070        NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits);
1071        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1072                            Builder->getInt(NewRHS));
1073      }
1074    }
1075    break;
1076
1077  case Instruction::Xor:         // (icmp pred (xor X, XorCST), CI)
1078    if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1079      // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1080      // fold the xor.
1081      if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
1082          (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
1083        Value *CompareVal = LHSI->getOperand(0);
1084
1085        // If the sign bit of the XorCST is not set, there is no change to
1086        // the operation, just stop using the Xor.
1087        if (!XorCST->isNegative()) {
1088          ICI.setOperand(0, CompareVal);
1089          Worklist.Add(LHSI);
1090          return &ICI;
1091        }
1092
1093        // Was the old condition true if the operand is positive?
1094        bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
1095
1096        // If so, the new one isn't.
1097        isTrueIfPositive ^= true;
1098
1099        if (isTrueIfPositive)
1100          return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
1101                              SubOne(RHS));
1102        else
1103          return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
1104                              AddOne(RHS));
1105      }
1106
1107      if (LHSI->hasOneUse()) {
1108        // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
1109        if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
1110          const APInt &SignBit = XorCST->getValue();
1111          ICmpInst::Predicate Pred = ICI.isSigned()
1112                                         ? ICI.getUnsignedPredicate()
1113                                         : ICI.getSignedPredicate();
1114          return new ICmpInst(Pred, LHSI->getOperand(0),
1115                              Builder->getInt(RHSV ^ SignBit));
1116        }
1117
1118        // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
1119        if (!ICI.isEquality() && XorCST->isMaxValue(true)) {
1120          const APInt &NotSignBit = XorCST->getValue();
1121          ICmpInst::Predicate Pred = ICI.isSigned()
1122                                         ? ICI.getUnsignedPredicate()
1123                                         : ICI.getSignedPredicate();
1124          Pred = ICI.getSwappedPredicate(Pred);
1125          return new ICmpInst(Pred, LHSI->getOperand(0),
1126                              Builder->getInt(RHSV ^ NotSignBit));
1127        }
1128      }
1129
1130      // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
1131      //   iff -C is a power of 2
1132      if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
1133          XorCST->getValue() == ~RHSV && (RHSV + 1).isPowerOf2())
1134        return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCST);
1135
1136      // (icmp ult (xor X, C), -C) -> (icmp uge X, C)
1137      //   iff -C is a power of 2
1138      if (ICI.getPredicate() == ICmpInst::ICMP_ULT &&
1139          XorCST->getValue() == -RHSV && RHSV.isPowerOf2())
1140        return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCST);
1141    }
1142    break;
1143  case Instruction::And:         // (icmp pred (and X, AndCST), RHS)
1144    if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
1145        LHSI->getOperand(0)->hasOneUse()) {
1146      ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
1147
1148      // If the LHS is an AND of a truncating cast, we can widen the
1149      // and/compare to be the input width without changing the value
1150      // produced, eliminating a cast.
1151      if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
1152        // We can do this transformation if either the AND constant does not
1153        // have its sign bit set or if it is an equality comparison.
1154        // Extending a relational comparison when we're checking the sign
1155        // bit would not work.
1156        if (ICI.isEquality() ||
1157            (!AndCST->isNegative() && RHSV.isNonNegative())) {
1158          Value *NewAnd =
1159            Builder->CreateAnd(Cast->getOperand(0),
1160                               ConstantExpr::getZExt(AndCST, Cast->getSrcTy()));
1161          NewAnd->takeName(LHSI);
1162          return new ICmpInst(ICI.getPredicate(), NewAnd,
1163                              ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
1164        }
1165      }
1166
1167      // If the LHS is an AND of a zext, and we have an equality compare, we can
1168      // shrink the and/compare to the smaller type, eliminating the cast.
1169      if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
1170        IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
1171        // Make sure we don't compare the upper bits, SimplifyDemandedBits
1172        // should fold the icmp to true/false in that case.
1173        if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
1174          Value *NewAnd =
1175            Builder->CreateAnd(Cast->getOperand(0),
1176                               ConstantExpr::getTrunc(AndCST, Ty));
1177          NewAnd->takeName(LHSI);
1178          return new ICmpInst(ICI.getPredicate(), NewAnd,
1179                              ConstantExpr::getTrunc(RHS, Ty));
1180        }
1181      }
1182
1183      // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
1184      // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
1185      // happens a LOT in code produced by the C front-end, for bitfield
1186      // access.
1187      BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
1188      if (Shift && !Shift->isShift())
1189        Shift = 0;
1190
1191      ConstantInt *ShAmt;
1192      ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
1193      Type *Ty = Shift ? Shift->getType() : 0;  // Type of the shift.
1194      Type *AndTy = AndCST->getType();          // Type of the and.
1195
1196      // We can fold this as long as we can't shift unknown bits
1197      // into the mask.  This can only happen with signed shift
1198      // rights, as they sign-extend.
1199      if (ShAmt) {
1200        bool CanFold = Shift->isLogicalShift();
1201        if (!CanFold) {
1202          // To test for the bad case of the signed shr, see if any
1203          // of the bits shifted in could be tested after the mask.
1204          uint32_t TyBits = Ty->getPrimitiveSizeInBits();
1205          int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
1206
1207          uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
1208          if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
1209               AndCST->getValue()) == 0)
1210            CanFold = true;
1211        }
1212
1213        if (CanFold) {
1214          Constant *NewCst;
1215          if (Shift->getOpcode() == Instruction::Shl)
1216            NewCst = ConstantExpr::getLShr(RHS, ShAmt);
1217          else
1218            NewCst = ConstantExpr::getShl(RHS, ShAmt);
1219
1220          // Check to see if we are shifting out any of the bits being
1221          // compared.
1222          if (ConstantExpr::get(Shift->getOpcode(),
1223                                       NewCst, ShAmt) != RHS) {
1224            // If we shifted bits out, the fold is not going to work out.
1225            // As a special case, check to see if this means that the
1226            // result is always true or false now.
1227            if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1228              return ReplaceInstUsesWith(ICI, Builder->getFalse());
1229            if (ICI.getPredicate() == ICmpInst::ICMP_NE)
1230              return ReplaceInstUsesWith(ICI, Builder->getTrue());
1231          } else {
1232            ICI.setOperand(1, NewCst);
1233            Constant *NewAndCST;
1234            if (Shift->getOpcode() == Instruction::Shl)
1235              NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
1236            else
1237              NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
1238            LHSI->setOperand(1, NewAndCST);
1239            LHSI->setOperand(0, Shift->getOperand(0));
1240            Worklist.Add(Shift); // Shift is dead.
1241            return &ICI;
1242          }
1243        }
1244      }
1245
1246      // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
1247      // preferable because it allows the C<<Y expression to be hoisted out
1248      // of a loop if Y is invariant and X is not.
1249      if (Shift && Shift->hasOneUse() && RHSV == 0 &&
1250          ICI.isEquality() && !Shift->isArithmeticShift() &&
1251          !isa<Constant>(Shift->getOperand(0))) {
1252        // Compute C << Y.
1253        Value *NS;
1254        if (Shift->getOpcode() == Instruction::LShr) {
1255          NS = Builder->CreateShl(AndCST, Shift->getOperand(1));
1256        } else {
1257          // Insert a logical shift.
1258          NS = Builder->CreateLShr(AndCST, Shift->getOperand(1));
1259        }
1260
1261        // Compute X & (C << Y).
1262        Value *NewAnd =
1263          Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
1264
1265        ICI.setOperand(0, NewAnd);
1266        return &ICI;
1267      }
1268
1269      // Replace ((X & AndCST) > RHSV) with ((X & AndCST) != 0), if any
1270      // bit set in (X & AndCST) will produce a result greater than RHSV.
1271      if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
1272        unsigned NTZ = AndCST->getValue().countTrailingZeros();
1273        if ((NTZ < AndCST->getBitWidth()) &&
1274            APInt::getOneBitSet(AndCST->getBitWidth(), NTZ).ugt(RHSV))
1275          return new ICmpInst(ICmpInst::ICMP_NE, LHSI,
1276                              Constant::getNullValue(RHS->getType()));
1277      }
1278    }
1279
1280    // Try to optimize things like "A[i]&42 == 0" to index computations.
1281    if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
1282      if (GetElementPtrInst *GEP =
1283          dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1284        if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1285          if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1286              !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
1287            ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
1288            if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
1289              return Res;
1290          }
1291    }
1292
1293    // X & -C == -C -> X >  u ~C
1294    // X & -C != -C -> X <= u ~C
1295    //   iff C is a power of 2
1296    if (ICI.isEquality() && RHS == LHSI->getOperand(1) && (-RHSV).isPowerOf2())
1297      return new ICmpInst(
1298          ICI.getPredicate() == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT
1299                                                  : ICmpInst::ICMP_ULE,
1300          LHSI->getOperand(0), SubOne(RHS));
1301    break;
1302
1303  case Instruction::Or: {
1304    if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
1305      break;
1306    Value *P, *Q;
1307    if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1308      // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1309      // -> and (icmp eq P, null), (icmp eq Q, null).
1310      Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
1311                                        Constant::getNullValue(P->getType()));
1312      Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
1313                                        Constant::getNullValue(Q->getType()));
1314      Instruction *Op;
1315      if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1316        Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
1317      else
1318        Op = BinaryOperator::CreateOr(ICIP, ICIQ);
1319      return Op;
1320    }
1321    break;
1322  }
1323
1324  case Instruction::Mul: {       // (icmp pred (mul X, Val), CI)
1325    ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1326    if (!Val) break;
1327
1328    // If this is a signed comparison to 0 and the mul is sign preserving,
1329    // use the mul LHS operand instead.
1330    ICmpInst::Predicate pred = ICI.getPredicate();
1331    if (isSignTest(pred, RHS) && !Val->isZero() &&
1332        cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
1333      return new ICmpInst(Val->isNegative() ?
1334                          ICmpInst::getSwappedPredicate(pred) : pred,
1335                          LHSI->getOperand(0),
1336                          Constant::getNullValue(RHS->getType()));
1337
1338    break;
1339  }
1340
1341  case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
1342    uint32_t TypeBits = RHSV.getBitWidth();
1343    ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1344    if (!ShAmt) {
1345      Value *X;
1346      // (1 << X) pred P2 -> X pred Log2(P2)
1347      if (match(LHSI, m_Shl(m_One(), m_Value(X)))) {
1348        bool RHSVIsPowerOf2 = RHSV.isPowerOf2();
1349        ICmpInst::Predicate Pred = ICI.getPredicate();
1350        if (ICI.isUnsigned()) {
1351          if (!RHSVIsPowerOf2) {
1352            // (1 << X) <  30 -> X <= 4
1353            // (1 << X) <= 30 -> X <= 4
1354            // (1 << X) >= 30 -> X >  4
1355            // (1 << X) >  30 -> X >  4
1356            if (Pred == ICmpInst::ICMP_ULT)
1357              Pred = ICmpInst::ICMP_ULE;
1358            else if (Pred == ICmpInst::ICMP_UGE)
1359              Pred = ICmpInst::ICMP_UGT;
1360          }
1361          unsigned RHSLog2 = RHSV.logBase2();
1362
1363          // (1 << X) >= 2147483648 -> X >= 31 -> X == 31
1364          // (1 << X) >  2147483648 -> X >  31 -> false
1365          // (1 << X) <= 2147483648 -> X <= 31 -> true
1366          // (1 << X) <  2147483648 -> X <  31 -> X != 31
1367          if (RHSLog2 == TypeBits-1) {
1368            if (Pred == ICmpInst::ICMP_UGE)
1369              Pred = ICmpInst::ICMP_EQ;
1370            else if (Pred == ICmpInst::ICMP_UGT)
1371              return ReplaceInstUsesWith(ICI, Builder->getFalse());
1372            else if (Pred == ICmpInst::ICMP_ULE)
1373              return ReplaceInstUsesWith(ICI, Builder->getTrue());
1374            else if (Pred == ICmpInst::ICMP_ULT)
1375              Pred = ICmpInst::ICMP_NE;
1376          }
1377
1378          return new ICmpInst(Pred, X,
1379                              ConstantInt::get(RHS->getType(), RHSLog2));
1380        } else if (ICI.isSigned()) {
1381          if (RHSV.isAllOnesValue()) {
1382            // (1 << X) <= -1 -> X == 31
1383            if (Pred == ICmpInst::ICMP_SLE)
1384              return new ICmpInst(ICmpInst::ICMP_EQ, X,
1385                                  ConstantInt::get(RHS->getType(), TypeBits-1));
1386
1387            // (1 << X) >  -1 -> X != 31
1388            if (Pred == ICmpInst::ICMP_SGT)
1389              return new ICmpInst(ICmpInst::ICMP_NE, X,
1390                                  ConstantInt::get(RHS->getType(), TypeBits-1));
1391          } else if (!RHSV) {
1392            // (1 << X) <  0 -> X == 31
1393            // (1 << X) <= 0 -> X == 31
1394            if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1395              return new ICmpInst(ICmpInst::ICMP_EQ, X,
1396                                  ConstantInt::get(RHS->getType(), TypeBits-1));
1397
1398            // (1 << X) >= 0 -> X != 31
1399            // (1 << X) >  0 -> X != 31
1400            if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
1401              return new ICmpInst(ICmpInst::ICMP_NE, X,
1402                                  ConstantInt::get(RHS->getType(), TypeBits-1));
1403          }
1404        } else if (ICI.isEquality()) {
1405          if (RHSVIsPowerOf2)
1406            return new ICmpInst(
1407                Pred, X, ConstantInt::get(RHS->getType(), RHSV.logBase2()));
1408
1409          return ReplaceInstUsesWith(
1410              ICI, Pred == ICmpInst::ICMP_EQ ? Builder->getFalse()
1411                                             : Builder->getTrue());
1412        }
1413      }
1414      break;
1415    }
1416
1417    // Check that the shift amount is in range.  If not, don't perform
1418    // undefined shifts.  When the shift is visited it will be
1419    // simplified.
1420    if (ShAmt->uge(TypeBits))
1421      break;
1422
1423    if (ICI.isEquality()) {
1424      // If we are comparing against bits always shifted out, the
1425      // comparison cannot succeed.
1426      Constant *Comp =
1427        ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
1428                                                                 ShAmt);
1429      if (Comp != RHS) {// Comparing against a bit that we know is zero.
1430        bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1431        Constant *Cst = Builder->getInt1(IsICMP_NE);
1432        return ReplaceInstUsesWith(ICI, Cst);
1433      }
1434
1435      // If the shift is NUW, then it is just shifting out zeros, no need for an
1436      // AND.
1437      if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
1438        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1439                            ConstantExpr::getLShr(RHS, ShAmt));
1440
1441      // If the shift is NSW and we compare to 0, then it is just shifting out
1442      // sign bits, no need for an AND either.
1443      if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0)
1444        return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1445                            ConstantExpr::getLShr(RHS, ShAmt));
1446
1447      if (LHSI->hasOneUse()) {
1448        // Otherwise strength reduce the shift into an and.
1449        uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1450        Constant *Mask = Builder->getInt(APInt::getLowBitsSet(TypeBits,
1451                                                          TypeBits - ShAmtVal));
1452
1453        Value *And =
1454          Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
1455        return new ICmpInst(ICI.getPredicate(), And,
1456                            ConstantExpr::getLShr(RHS, ShAmt));
1457      }
1458    }
1459
1460    // If this is a signed comparison to 0 and the shift is sign preserving,
1461    // use the shift LHS operand instead.
1462    ICmpInst::Predicate pred = ICI.getPredicate();
1463    if (isSignTest(pred, RHS) &&
1464        cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
1465      return new ICmpInst(pred,
1466                          LHSI->getOperand(0),
1467                          Constant::getNullValue(RHS->getType()));
1468
1469    // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1470    bool TrueIfSigned = false;
1471    if (LHSI->hasOneUse() &&
1472        isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
1473      // (X << 31) <s 0  --> (X&1) != 0
1474      Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
1475                                        APInt::getOneBitSet(TypeBits,
1476                                            TypeBits-ShAmt->getZExtValue()-1));
1477      Value *And =
1478        Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
1479      return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1480                          And, Constant::getNullValue(And->getType()));
1481    }
1482
1483    // Transform (icmp pred iM (shl iM %v, N), CI)
1484    // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N))
1485    // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N.
1486    // This enables to get rid of the shift in favor of a trunc which can be
1487    // free on the target. It has the additional benefit of comparing to a
1488    // smaller constant, which will be target friendly.
1489    unsigned Amt = ShAmt->getLimitedValue(TypeBits-1);
1490    if (LHSI->hasOneUse() &&
1491        Amt != 0 && RHSV.countTrailingZeros() >= Amt) {
1492      Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt);
1493      Constant *NCI = ConstantExpr::getTrunc(
1494                        ConstantExpr::getAShr(RHS,
1495                          ConstantInt::get(RHS->getType(), Amt)),
1496                        NTy);
1497      return new ICmpInst(ICI.getPredicate(),
1498                          Builder->CreateTrunc(LHSI->getOperand(0), NTy),
1499                          NCI);
1500    }
1501
1502    break;
1503  }
1504
1505  case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
1506  case Instruction::AShr: {
1507    // Handle equality comparisons of shift-by-constant.
1508    BinaryOperator *BO = cast<BinaryOperator>(LHSI);
1509    if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1510      if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
1511        return Res;
1512    }
1513
1514    // Handle exact shr's.
1515    if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
1516      if (RHSV.isMinValue())
1517        return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
1518    }
1519    break;
1520  }
1521
1522  case Instruction::SDiv:
1523  case Instruction::UDiv:
1524    // Fold: icmp pred ([us]div X, C1), C2 -> range test
1525    // Fold this div into the comparison, producing a range check.
1526    // Determine, based on the divide type, what the range is being
1527    // checked.  If there is an overflow on the low or high side, remember
1528    // it, otherwise compute the range [low, hi) bounding the new value.
1529    // See: InsertRangeTest above for the kinds of replacements possible.
1530    if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
1531      if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
1532                                          DivRHS))
1533        return R;
1534    break;
1535
1536  case Instruction::Sub: {
1537    ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(0));
1538    if (!LHSC) break;
1539    const APInt &LHSV = LHSC->getValue();
1540
1541    // C1-X <u C2 -> (X|(C2-1)) == C1
1542    //   iff C1 & (C2-1) == C2-1
1543    //       C2 is a power of 2
1544    if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
1545        RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == (RHSV - 1))
1546      return new ICmpInst(ICmpInst::ICMP_EQ,
1547                          Builder->CreateOr(LHSI->getOperand(1), RHSV - 1),
1548                          LHSC);
1549
1550    // C1-X >u C2 -> (X|C2) != C1
1551    //   iff C1 & C2 == C2
1552    //       C2+1 is a power of 2
1553    if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
1554        (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == RHSV)
1555      return new ICmpInst(ICmpInst::ICMP_NE,
1556                          Builder->CreateOr(LHSI->getOperand(1), RHSV), LHSC);
1557    break;
1558  }
1559
1560  case Instruction::Add:
1561    // Fold: icmp pred (add X, C1), C2
1562    if (!ICI.isEquality()) {
1563      ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1564      if (!LHSC) break;
1565      const APInt &LHSV = LHSC->getValue();
1566
1567      ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
1568                            .subtract(LHSV);
1569
1570      if (ICI.isSigned()) {
1571        if (CR.getLower().isSignBit()) {
1572          return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
1573                              Builder->getInt(CR.getUpper()));
1574        } else if (CR.getUpper().isSignBit()) {
1575          return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
1576                              Builder->getInt(CR.getLower()));
1577        }
1578      } else {
1579        if (CR.getLower().isMinValue()) {
1580          return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
1581                              Builder->getInt(CR.getUpper()));
1582        } else if (CR.getUpper().isMinValue()) {
1583          return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
1584                              Builder->getInt(CR.getLower()));
1585        }
1586      }
1587
1588      // X-C1 <u C2 -> (X & -C2) == C1
1589      //   iff C1 & (C2-1) == 0
1590      //       C2 is a power of 2
1591      if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
1592          RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == 0)
1593        return new ICmpInst(ICmpInst::ICMP_EQ,
1594                            Builder->CreateAnd(LHSI->getOperand(0), -RHSV),
1595                            ConstantExpr::getNeg(LHSC));
1596
1597      // X-C1 >u C2 -> (X & ~C2) != C1
1598      //   iff C1 & C2 == 0
1599      //       C2+1 is a power of 2
1600      if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
1601          (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == 0)
1602        return new ICmpInst(ICmpInst::ICMP_NE,
1603                            Builder->CreateAnd(LHSI->getOperand(0), ~RHSV),
1604                            ConstantExpr::getNeg(LHSC));
1605    }
1606    break;
1607  }
1608
1609  // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
1610  if (ICI.isEquality()) {
1611    bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1612
1613    // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
1614    // the second operand is a constant, simplify a bit.
1615    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
1616      switch (BO->getOpcode()) {
1617      case Instruction::SRem:
1618        // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
1619        if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
1620          const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
1621          if (V.sgt(1) && V.isPowerOf2()) {
1622            Value *NewRem =
1623              Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
1624                                  BO->getName());
1625            return new ICmpInst(ICI.getPredicate(), NewRem,
1626                                Constant::getNullValue(BO->getType()));
1627          }
1628        }
1629        break;
1630      case Instruction::Add:
1631        // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
1632        if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1633          if (BO->hasOneUse())
1634            return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1635                                ConstantExpr::getSub(RHS, BOp1C));
1636        } else if (RHSV == 0) {
1637          // Replace ((add A, B) != 0) with (A != -B) if A or B is
1638          // efficiently invertible, or if the add has just this one use.
1639          Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
1640
1641          if (Value *NegVal = dyn_castNegVal(BOp1))
1642            return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
1643          if (Value *NegVal = dyn_castNegVal(BOp0))
1644            return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
1645          if (BO->hasOneUse()) {
1646            Value *Neg = Builder->CreateNeg(BOp1);
1647            Neg->takeName(BO);
1648            return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
1649          }
1650        }
1651        break;
1652      case Instruction::Xor:
1653        // For the xor case, we can xor two constants together, eliminating
1654        // the explicit xor.
1655        if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
1656          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1657                              ConstantExpr::getXor(RHS, BOC));
1658        } else if (RHSV == 0) {
1659          // Replace ((xor A, B) != 0) with (A != B)
1660          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1661                              BO->getOperand(1));
1662        }
1663        break;
1664      case Instruction::Sub:
1665        // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
1666        if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
1667          if (BO->hasOneUse())
1668            return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
1669                                ConstantExpr::getSub(BOp0C, RHS));
1670        } else if (RHSV == 0) {
1671          // Replace ((sub A, B) != 0) with (A != B)
1672          return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1673                              BO->getOperand(1));
1674        }
1675        break;
1676      case Instruction::Or:
1677        // If bits are being or'd in that are not present in the constant we
1678        // are comparing against, then the comparison could never succeed!
1679        if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1680          Constant *NotCI = ConstantExpr::getNot(RHS);
1681          if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
1682            return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
1683        }
1684        break;
1685
1686      case Instruction::And:
1687        if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1688          // If bits are being compared against that are and'd out, then the
1689          // comparison can never succeed!
1690          if ((RHSV & ~BOC->getValue()) != 0)
1691            return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
1692
1693          // If we have ((X & C) == C), turn it into ((X & C) != 0).
1694          if (RHS == BOC && RHSV.isPowerOf2())
1695            return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
1696                                ICmpInst::ICMP_NE, LHSI,
1697                                Constant::getNullValue(RHS->getType()));
1698
1699          // Don't perform the following transforms if the AND has multiple uses
1700          if (!BO->hasOneUse())
1701            break;
1702
1703          // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
1704          if (BOC->getValue().isSignBit()) {
1705            Value *X = BO->getOperand(0);
1706            Constant *Zero = Constant::getNullValue(X->getType());
1707            ICmpInst::Predicate pred = isICMP_NE ?
1708              ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1709            return new ICmpInst(pred, X, Zero);
1710          }
1711
1712          // ((X & ~7) == 0) --> X < 8
1713          if (RHSV == 0 && isHighOnes(BOC)) {
1714            Value *X = BO->getOperand(0);
1715            Constant *NegX = ConstantExpr::getNeg(BOC);
1716            ICmpInst::Predicate pred = isICMP_NE ?
1717              ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1718            return new ICmpInst(pred, X, NegX);
1719          }
1720        }
1721        break;
1722      case Instruction::Mul:
1723        if (RHSV == 0 && BO->hasNoSignedWrap()) {
1724          if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1725            // The trivial case (mul X, 0) is handled by InstSimplify
1726            // General case : (mul X, C) != 0 iff X != 0
1727            //                (mul X, C) == 0 iff X == 0
1728            if (!BOC->isZero())
1729              return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1730                                  Constant::getNullValue(RHS->getType()));
1731          }
1732        }
1733        break;
1734      default: break;
1735      }
1736    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
1737      // Handle icmp {eq|ne} <intrinsic>, intcst.
1738      switch (II->getIntrinsicID()) {
1739      case Intrinsic::bswap:
1740        Worklist.Add(II);
1741        ICI.setOperand(0, II->getArgOperand(0));
1742        ICI.setOperand(1, Builder->getInt(RHSV.byteSwap()));
1743        return &ICI;
1744      case Intrinsic::ctlz:
1745      case Intrinsic::cttz:
1746        // ctz(A) == bitwidth(a)  ->  A == 0 and likewise for !=
1747        if (RHSV == RHS->getType()->getBitWidth()) {
1748          Worklist.Add(II);
1749          ICI.setOperand(0, II->getArgOperand(0));
1750          ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
1751          return &ICI;
1752        }
1753        break;
1754      case Intrinsic::ctpop:
1755        // popcount(A) == 0  ->  A == 0 and likewise for !=
1756        if (RHS->isZero()) {
1757          Worklist.Add(II);
1758          ICI.setOperand(0, II->getArgOperand(0));
1759          ICI.setOperand(1, RHS);
1760          return &ICI;
1761        }
1762        break;
1763      default:
1764        break;
1765      }
1766    }
1767  }
1768  return 0;
1769}
1770
1771/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
1772/// We only handle extending casts so far.
1773///
1774Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
1775  const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
1776  Value *LHSCIOp        = LHSCI->getOperand(0);
1777  Type *SrcTy     = LHSCIOp->getType();
1778  Type *DestTy    = LHSCI->getType();
1779  Value *RHSCIOp;
1780
1781  // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
1782  // integer type is the same size as the pointer type.
1783  if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
1784      TD->getPointerSizeInBits() ==
1785         cast<IntegerType>(DestTy)->getBitWidth()) {
1786    Value *RHSOp = 0;
1787    if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
1788      RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
1789    } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
1790      RHSOp = RHSC->getOperand(0);
1791      // If the pointer types don't match, insert a bitcast.
1792      if (LHSCIOp->getType() != RHSOp->getType())
1793        RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
1794    }
1795
1796    if (RHSOp)
1797      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
1798  }
1799
1800  // The code below only handles extension cast instructions, so far.
1801  // Enforce this.
1802  if (LHSCI->getOpcode() != Instruction::ZExt &&
1803      LHSCI->getOpcode() != Instruction::SExt)
1804    return 0;
1805
1806  bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
1807  bool isSignedCmp = ICI.isSigned();
1808
1809  if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
1810    // Not an extension from the same type?
1811    RHSCIOp = CI->getOperand(0);
1812    if (RHSCIOp->getType() != LHSCIOp->getType())
1813      return 0;
1814
1815    // If the signedness of the two casts doesn't agree (i.e. one is a sext
1816    // and the other is a zext), then we can't handle this.
1817    if (CI->getOpcode() != LHSCI->getOpcode())
1818      return 0;
1819
1820    // Deal with equality cases early.
1821    if (ICI.isEquality())
1822      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1823
1824    // A signed comparison of sign extended values simplifies into a
1825    // signed comparison.
1826    if (isSignedCmp && isSignedExt)
1827      return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1828
1829    // The other three cases all fold into an unsigned comparison.
1830    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
1831  }
1832
1833  // If we aren't dealing with a constant on the RHS, exit early
1834  ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
1835  if (!CI)
1836    return 0;
1837
1838  // Compute the constant that would happen if we truncated to SrcTy then
1839  // reextended to DestTy.
1840  Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
1841  Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
1842                                                Res1, DestTy);
1843
1844  // If the re-extended constant didn't change...
1845  if (Res2 == CI) {
1846    // Deal with equality cases early.
1847    if (ICI.isEquality())
1848      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1849
1850    // A signed comparison of sign extended values simplifies into a
1851    // signed comparison.
1852    if (isSignedExt && isSignedCmp)
1853      return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1854
1855    // The other three cases all fold into an unsigned comparison.
1856    return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
1857  }
1858
1859  // The re-extended constant changed so the constant cannot be represented
1860  // in the shorter type. Consequently, we cannot emit a simple comparison.
1861  // All the cases that fold to true or false will have already been handled
1862  // by SimplifyICmpInst, so only deal with the tricky case.
1863
1864  if (isSignedCmp || !isSignedExt)
1865    return 0;
1866
1867  // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
1868  // should have been folded away previously and not enter in here.
1869
1870  // We're performing an unsigned comp with a sign extended value.
1871  // This is true if the input is >= 0. [aka >s -1]
1872  Constant *NegOne = Constant::getAllOnesValue(SrcTy);
1873  Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
1874
1875  // Finally, return the value computed.
1876  if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
1877    return ReplaceInstUsesWith(ICI, Result);
1878
1879  assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
1880  return BinaryOperator::CreateNot(Result);
1881}
1882
1883/// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
1884///   I = icmp ugt (add (add A, B), CI2), CI1
1885/// If this is of the form:
1886///   sum = a + b
1887///   if (sum+128 >u 255)
1888/// Then replace it with llvm.sadd.with.overflow.i8.
1889///
1890static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1891                                          ConstantInt *CI2, ConstantInt *CI1,
1892                                          InstCombiner &IC) {
1893  // The transformation we're trying to do here is to transform this into an
1894  // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1895  // with a narrower add, and discard the add-with-constant that is part of the
1896  // range check (if we can't eliminate it, this isn't profitable).
1897
1898  // In order to eliminate the add-with-constant, the compare can be its only
1899  // use.
1900  Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1901  if (!AddWithCst->hasOneUse()) return 0;
1902
1903  // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1904  if (!CI2->getValue().isPowerOf2()) return 0;
1905  unsigned NewWidth = CI2->getValue().countTrailingZeros();
1906  if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return 0;
1907
1908  // The width of the new add formed is 1 more than the bias.
1909  ++NewWidth;
1910
1911  // Check to see that CI1 is an all-ones value with NewWidth bits.
1912  if (CI1->getBitWidth() == NewWidth ||
1913      CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1914    return 0;
1915
1916  // This is only really a signed overflow check if the inputs have been
1917  // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1918  // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1919  unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1920  if (IC.ComputeNumSignBits(A) < NeededSignBits ||
1921      IC.ComputeNumSignBits(B) < NeededSignBits)
1922    return 0;
1923
1924  // In order to replace the original add with a narrower
1925  // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1926  // and truncates that discard the high bits of the add.  Verify that this is
1927  // the case.
1928  Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1929  for (Value::use_iterator UI = OrigAdd->use_begin(), E = OrigAdd->use_end();
1930       UI != E; ++UI) {
1931    if (*UI == AddWithCst) continue;
1932
1933    // Only accept truncates for now.  We would really like a nice recursive
1934    // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1935    // chain to see which bits of a value are actually demanded.  If the
1936    // original add had another add which was then immediately truncated, we
1937    // could still do the transformation.
1938    TruncInst *TI = dyn_cast<TruncInst>(*UI);
1939    if (TI == 0 ||
1940        TI->getType()->getPrimitiveSizeInBits() > NewWidth) return 0;
1941  }
1942
1943  // If the pattern matches, truncate the inputs to the narrower type and
1944  // use the sadd_with_overflow intrinsic to efficiently compute both the
1945  // result and the overflow bit.
1946  Module *M = I.getParent()->getParent()->getParent();
1947
1948  Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1949  Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
1950                                       NewType);
1951
1952  InstCombiner::BuilderTy *Builder = IC.Builder;
1953
1954  // Put the new code above the original add, in case there are any uses of the
1955  // add between the add and the compare.
1956  Builder->SetInsertPoint(OrigAdd);
1957
1958  Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
1959  Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
1960  CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");
1961  Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
1962  Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
1963
1964  // The inner add was the result of the narrow add, zero extended to the
1965  // wider type.  Replace it with the result computed by the intrinsic.
1966  IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
1967
1968  // The original icmp gets replaced with the overflow value.
1969  return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1970}
1971
1972static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV,
1973                                     InstCombiner &IC) {
1974  // Don't bother doing this transformation for pointers, don't do it for
1975  // vectors.
1976  if (!isa<IntegerType>(OrigAddV->getType())) return 0;
1977
1978  // If the add is a constant expr, then we don't bother transforming it.
1979  Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV);
1980  if (OrigAdd == 0) return 0;
1981
1982  Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1);
1983
1984  // Put the new code above the original add, in case there are any uses of the
1985  // add between the add and the compare.
1986  InstCombiner::BuilderTy *Builder = IC.Builder;
1987  Builder->SetInsertPoint(OrigAdd);
1988
1989  Module *M = I.getParent()->getParent()->getParent();
1990  Type *Ty = LHS->getType();
1991  Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
1992  CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd");
1993  Value *Add = Builder->CreateExtractValue(Call, 0);
1994
1995  IC.ReplaceInstUsesWith(*OrigAdd, Add);
1996
1997  // The original icmp gets replaced with the overflow value.
1998  return ExtractValueInst::Create(Call, 1, "uadd.overflow");
1999}
2000
2001// DemandedBitsLHSMask - When performing a comparison against a constant,
2002// it is possible that not all the bits in the LHS are demanded.  This helper
2003// method computes the mask that IS demanded.
2004static APInt DemandedBitsLHSMask(ICmpInst &I,
2005                                 unsigned BitWidth, bool isSignCheck) {
2006  if (isSignCheck)
2007    return APInt::getSignBit(BitWidth);
2008
2009  ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
2010  if (!CI) return APInt::getAllOnesValue(BitWidth);
2011  const APInt &RHS = CI->getValue();
2012
2013  switch (I.getPredicate()) {
2014  // For a UGT comparison, we don't care about any bits that
2015  // correspond to the trailing ones of the comparand.  The value of these
2016  // bits doesn't impact the outcome of the comparison, because any value
2017  // greater than the RHS must differ in a bit higher than these due to carry.
2018  case ICmpInst::ICMP_UGT: {
2019    unsigned trailingOnes = RHS.countTrailingOnes();
2020    APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
2021    return ~lowBitsSet;
2022  }
2023
2024  // Similarly, for a ULT comparison, we don't care about the trailing zeros.
2025  // Any value less than the RHS must differ in a higher bit because of carries.
2026  case ICmpInst::ICMP_ULT: {
2027    unsigned trailingZeros = RHS.countTrailingZeros();
2028    APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
2029    return ~lowBitsSet;
2030  }
2031
2032  default:
2033    return APInt::getAllOnesValue(BitWidth);
2034  }
2035
2036}
2037
2038Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
2039  bool Changed = false;
2040  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2041
2042  /// Orders the operands of the compare so that they are listed from most
2043  /// complex to least complex.  This puts constants before unary operators,
2044  /// before binary operators.
2045  if (getComplexity(Op0) < getComplexity(Op1)) {
2046    I.swapOperands();
2047    std::swap(Op0, Op1);
2048    Changed = true;
2049  }
2050
2051  if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
2052    return ReplaceInstUsesWith(I, V);
2053
2054  // comparing -val or val with non-zero is the same as just comparing val
2055  // ie, abs(val) != 0 -> val != 0
2056  if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero()))
2057  {
2058    Value *Cond, *SelectTrue, *SelectFalse;
2059    if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
2060                            m_Value(SelectFalse)))) {
2061      if (Value *V = dyn_castNegVal(SelectTrue)) {
2062        if (V == SelectFalse)
2063          return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
2064      }
2065      else if (Value *V = dyn_castNegVal(SelectFalse)) {
2066        if (V == SelectTrue)
2067          return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
2068      }
2069    }
2070  }
2071
2072  Type *Ty = Op0->getType();
2073
2074  // icmp's with boolean values can always be turned into bitwise operations
2075  if (Ty->isIntegerTy(1)) {
2076    switch (I.getPredicate()) {
2077    default: llvm_unreachable("Invalid icmp instruction!");
2078    case ICmpInst::ICMP_EQ: {               // icmp eq i1 A, B -> ~(A^B)
2079      Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
2080      return BinaryOperator::CreateNot(Xor);
2081    }
2082    case ICmpInst::ICMP_NE:                  // icmp eq i1 A, B -> A^B
2083      return BinaryOperator::CreateXor(Op0, Op1);
2084
2085    case ICmpInst::ICMP_UGT:
2086      std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
2087      // FALL THROUGH
2088    case ICmpInst::ICMP_ULT:{               // icmp ult i1 A, B -> ~A & B
2089      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
2090      return BinaryOperator::CreateAnd(Not, Op1);
2091    }
2092    case ICmpInst::ICMP_SGT:
2093      std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
2094      // FALL THROUGH
2095    case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
2096      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
2097      return BinaryOperator::CreateAnd(Not, Op0);
2098    }
2099    case ICmpInst::ICMP_UGE:
2100      std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
2101      // FALL THROUGH
2102    case ICmpInst::ICMP_ULE: {               //  icmp ule i1 A, B -> ~A | B
2103      Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
2104      return BinaryOperator::CreateOr(Not, Op1);
2105    }
2106    case ICmpInst::ICMP_SGE:
2107      std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
2108      // FALL THROUGH
2109    case ICmpInst::ICMP_SLE: {               //  icmp sle i1 A, B -> A | ~B
2110      Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
2111      return BinaryOperator::CreateOr(Not, Op0);
2112    }
2113    }
2114  }
2115
2116  unsigned BitWidth = 0;
2117  if (Ty->isIntOrIntVectorTy())
2118    BitWidth = Ty->getScalarSizeInBits();
2119  else if (TD)  // Pointers require TD info to get their size.
2120    BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
2121
2122  bool isSignBit = false;
2123
2124  // See if we are doing a comparison with a constant.
2125  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2126    Value *A = 0, *B = 0;
2127
2128    // Match the following pattern, which is a common idiom when writing
2129    // overflow-safe integer arithmetic function.  The source performs an
2130    // addition in wider type, and explicitly checks for overflow using
2131    // comparisons against INT_MIN and INT_MAX.  Simplify this by using the
2132    // sadd_with_overflow intrinsic.
2133    //
2134    // TODO: This could probably be generalized to handle other overflow-safe
2135    // operations if we worked out the formulas to compute the appropriate
2136    // magic constants.
2137    //
2138    // sum = a + b
2139    // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
2140    {
2141    ConstantInt *CI2;    // I = icmp ugt (add (add A, B), CI2), CI
2142    if (I.getPredicate() == ICmpInst::ICMP_UGT &&
2143        match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
2144      if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
2145        return Res;
2146    }
2147
2148    // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
2149    if (I.isEquality() && CI->isZero() &&
2150        match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
2151      // (icmp cond A B) if cond is equality
2152      return new ICmpInst(I.getPredicate(), A, B);
2153    }
2154
2155    // If we have an icmp le or icmp ge instruction, turn it into the
2156    // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
2157    // them being folded in the code below.  The SimplifyICmpInst code has
2158    // already handled the edge cases for us, so we just assert on them.
2159    switch (I.getPredicate()) {
2160    default: break;
2161    case ICmpInst::ICMP_ULE:
2162      assert(!CI->isMaxValue(false));                 // A <=u MAX -> TRUE
2163      return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
2164                          Builder->getInt(CI->getValue()+1));
2165    case ICmpInst::ICMP_SLE:
2166      assert(!CI->isMaxValue(true));                  // A <=s MAX -> TRUE
2167      return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2168                          Builder->getInt(CI->getValue()+1));
2169    case ICmpInst::ICMP_UGE:
2170      assert(!CI->isMinValue(false));                 // A >=u MIN -> TRUE
2171      return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
2172                          Builder->getInt(CI->getValue()-1));
2173    case ICmpInst::ICMP_SGE:
2174      assert(!CI->isMinValue(true));                  // A >=s MIN -> TRUE
2175      return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
2176                          Builder->getInt(CI->getValue()-1));
2177    }
2178
2179    // If this comparison is a normal comparison, it demands all
2180    // bits, if it is a sign bit comparison, it only demands the sign bit.
2181    bool UnusedBit;
2182    isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
2183  }
2184
2185  // See if we can fold the comparison based on range information we can get
2186  // by checking whether bits are known to be zero or one in the input.
2187  if (BitWidth != 0) {
2188    APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
2189    APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
2190
2191    if (SimplifyDemandedBits(I.getOperandUse(0),
2192                             DemandedBitsLHSMask(I, BitWidth, isSignBit),
2193                             Op0KnownZero, Op0KnownOne, 0))
2194      return &I;
2195    if (SimplifyDemandedBits(I.getOperandUse(1),
2196                             APInt::getAllOnesValue(BitWidth),
2197                             Op1KnownZero, Op1KnownOne, 0))
2198      return &I;
2199
2200    // Given the known and unknown bits, compute a range that the LHS could be
2201    // in.  Compute the Min, Max and RHS values based on the known bits. For the
2202    // EQ and NE we use unsigned values.
2203    APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
2204    APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
2205    if (I.isSigned()) {
2206      ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
2207                                             Op0Min, Op0Max);
2208      ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
2209                                             Op1Min, Op1Max);
2210    } else {
2211      ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
2212                                               Op0Min, Op0Max);
2213      ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
2214                                               Op1Min, Op1Max);
2215    }
2216
2217    // If Min and Max are known to be the same, then SimplifyDemandedBits
2218    // figured out that the LHS is a constant.  Just constant fold this now so
2219    // that code below can assume that Min != Max.
2220    if (!isa<Constant>(Op0) && Op0Min == Op0Max)
2221      return new ICmpInst(I.getPredicate(),
2222                          ConstantInt::get(Op0->getType(), Op0Min), Op1);
2223    if (!isa<Constant>(Op1) && Op1Min == Op1Max)
2224      return new ICmpInst(I.getPredicate(), Op0,
2225                          ConstantInt::get(Op1->getType(), Op1Min));
2226
2227    // Based on the range information we know about the LHS, see if we can
2228    // simplify this comparison.  For example, (x&4) < 8 is always true.
2229    switch (I.getPredicate()) {
2230    default: llvm_unreachable("Unknown icmp opcode!");
2231    case ICmpInst::ICMP_EQ: {
2232      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
2233        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2234
2235      // If all bits are known zero except for one, then we know at most one
2236      // bit is set.   If the comparison is against zero, then this is a check
2237      // to see if *that* bit is set.
2238      APInt Op0KnownZeroInverted = ~Op0KnownZero;
2239      if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
2240        // If the LHS is an AND with the same constant, look through it.
2241        Value *LHS = 0;
2242        ConstantInt *LHSC = 0;
2243        if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
2244            LHSC->getValue() != Op0KnownZeroInverted)
2245          LHS = Op0;
2246
2247        // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
2248        // then turn "((1 << x)&8) == 0" into "x != 3".
2249        Value *X = 0;
2250        if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2251          unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
2252          return new ICmpInst(ICmpInst::ICMP_NE, X,
2253                              ConstantInt::get(X->getType(), CmpVal));
2254        }
2255
2256        // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
2257        // then turn "((8 >>u x)&1) == 0" into "x != 3".
2258        const APInt *CI;
2259        if (Op0KnownZeroInverted == 1 &&
2260            match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
2261          return new ICmpInst(ICmpInst::ICMP_NE, X,
2262                              ConstantInt::get(X->getType(),
2263                                               CI->countTrailingZeros()));
2264      }
2265
2266      break;
2267    }
2268    case ICmpInst::ICMP_NE: {
2269      if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
2270        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2271
2272      // If all bits are known zero except for one, then we know at most one
2273      // bit is set.   If the comparison is against zero, then this is a check
2274      // to see if *that* bit is set.
2275      APInt Op0KnownZeroInverted = ~Op0KnownZero;
2276      if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
2277        // If the LHS is an AND with the same constant, look through it.
2278        Value *LHS = 0;
2279        ConstantInt *LHSC = 0;
2280        if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
2281            LHSC->getValue() != Op0KnownZeroInverted)
2282          LHS = Op0;
2283
2284        // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
2285        // then turn "((1 << x)&8) != 0" into "x == 3".
2286        Value *X = 0;
2287        if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2288          unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
2289          return new ICmpInst(ICmpInst::ICMP_EQ, X,
2290                              ConstantInt::get(X->getType(), CmpVal));
2291        }
2292
2293        // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
2294        // then turn "((8 >>u x)&1) != 0" into "x == 3".
2295        const APInt *CI;
2296        if (Op0KnownZeroInverted == 1 &&
2297            match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
2298          return new ICmpInst(ICmpInst::ICMP_EQ, X,
2299                              ConstantInt::get(X->getType(),
2300                                               CI->countTrailingZeros()));
2301      }
2302
2303      break;
2304    }
2305    case ICmpInst::ICMP_ULT:
2306      if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B)
2307        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2308      if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B)
2309        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2310      if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B)
2311        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2312      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2313        if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C
2314          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2315                              Builder->getInt(CI->getValue()-1));
2316
2317        // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
2318        if (CI->isMinValue(true))
2319          return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
2320                           Constant::getAllOnesValue(Op0->getType()));
2321      }
2322      break;
2323    case ICmpInst::ICMP_UGT:
2324      if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B)
2325        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2326      if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B)
2327        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2328
2329      if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B)
2330        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2331      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2332        if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C
2333          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2334                              Builder->getInt(CI->getValue()+1));
2335
2336        // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
2337        if (CI->isMaxValue(true))
2338          return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2339                              Constant::getNullValue(Op0->getType()));
2340      }
2341      break;
2342    case ICmpInst::ICMP_SLT:
2343      if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C)
2344        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2345      if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C)
2346        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2347      if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B)
2348        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2349      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2350        if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C
2351          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2352                              Builder->getInt(CI->getValue()-1));
2353      }
2354      break;
2355    case ICmpInst::ICMP_SGT:
2356      if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B)
2357        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2358      if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B)
2359        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2360
2361      if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B)
2362        return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2363      if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2364        if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C
2365          return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2366                              Builder->getInt(CI->getValue()+1));
2367      }
2368      break;
2369    case ICmpInst::ICMP_SGE:
2370      assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
2371      if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B)
2372        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2373      if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B)
2374        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2375      break;
2376    case ICmpInst::ICMP_SLE:
2377      assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
2378      if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B)
2379        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2380      if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B)
2381        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2382      break;
2383    case ICmpInst::ICMP_UGE:
2384      assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
2385      if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B)
2386        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2387      if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B)
2388        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2389      break;
2390    case ICmpInst::ICMP_ULE:
2391      assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
2392      if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B)
2393        return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2394      if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B)
2395        return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2396      break;
2397    }
2398
2399    // Turn a signed comparison into an unsigned one if both operands
2400    // are known to have the same sign.
2401    if (I.isSigned() &&
2402        ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
2403         (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
2404      return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
2405  }
2406
2407  // Test if the ICmpInst instruction is used exclusively by a select as
2408  // part of a minimum or maximum operation. If so, refrain from doing
2409  // any other folding. This helps out other analyses which understand
2410  // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
2411  // and CodeGen. And in this case, at least one of the comparison
2412  // operands has at least one user besides the compare (the select),
2413  // which would often largely negate the benefit of folding anyway.
2414  if (I.hasOneUse())
2415    if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
2416      if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
2417          (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
2418        return 0;
2419
2420  // See if we are doing a comparison between a constant and an instruction that
2421  // can be folded into the comparison.
2422  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2423    // Since the RHS is a ConstantInt (CI), if the left hand side is an
2424    // instruction, see if that instruction also has constants so that the
2425    // instruction can be folded into the icmp
2426    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2427      if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
2428        return Res;
2429  }
2430
2431  // Handle icmp with constant (but not simple integer constant) RHS
2432  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2433    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2434      switch (LHSI->getOpcode()) {
2435      case Instruction::GetElementPtr:
2436          // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
2437        if (RHSC->isNullValue() &&
2438            cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
2439          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2440                  Constant::getNullValue(LHSI->getOperand(0)->getType()));
2441        break;
2442      case Instruction::PHI:
2443        // Only fold icmp into the PHI if the phi and icmp are in the same
2444        // block.  If in the same block, we're encouraging jump threading.  If
2445        // not, we are just pessimizing the code by making an i1 phi.
2446        if (LHSI->getParent() == I.getParent())
2447          if (Instruction *NV = FoldOpIntoPhi(I))
2448            return NV;
2449        break;
2450      case Instruction::Select: {
2451        // If either operand of the select is a constant, we can fold the
2452        // comparison into the select arms, which will cause one to be
2453        // constant folded and the select turned into a bitwise or.
2454        Value *Op1 = 0, *Op2 = 0;
2455        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
2456          Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2457        if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
2458          Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2459
2460        // We only want to perform this transformation if it will not lead to
2461        // additional code. This is true if either both sides of the select
2462        // fold to a constant (in which case the icmp is replaced with a select
2463        // which will usually simplify) or this is the only user of the
2464        // select (in which case we are trading a select+icmp for a simpler
2465        // select+icmp).
2466        if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
2467          if (!Op1)
2468            Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
2469                                      RHSC, I.getName());
2470          if (!Op2)
2471            Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
2472                                      RHSC, I.getName());
2473          return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2474        }
2475        break;
2476      }
2477      case Instruction::IntToPtr:
2478        // icmp pred inttoptr(X), null -> icmp pred X, 0
2479        if (RHSC->isNullValue() && TD &&
2480            TD->getIntPtrType(RHSC->getContext()) ==
2481               LHSI->getOperand(0)->getType())
2482          return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2483                        Constant::getNullValue(LHSI->getOperand(0)->getType()));
2484        break;
2485
2486      case Instruction::Load:
2487        // Try to optimize things like "A[i] > 4" to index computations.
2488        if (GetElementPtrInst *GEP =
2489              dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2490          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2491            if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2492                !cast<LoadInst>(LHSI)->isVolatile())
2493              if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2494                return Res;
2495        }
2496        break;
2497      }
2498  }
2499
2500  // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
2501  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
2502    if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
2503      return NI;
2504  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
2505    if (Instruction *NI = FoldGEPICmp(GEP, Op0,
2506                           ICmpInst::getSwappedPredicate(I.getPredicate()), I))
2507      return NI;
2508
2509  // Test to see if the operands of the icmp are casted versions of other
2510  // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
2511  // now.
2512  if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
2513    if (Op0->getType()->isPointerTy() &&
2514        (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2515      // We keep moving the cast from the left operand over to the right
2516      // operand, where it can often be eliminated completely.
2517      Op0 = CI->getOperand(0);
2518
2519      // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2520      // so eliminate it as well.
2521      if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
2522        Op1 = CI2->getOperand(0);
2523
2524      // If Op1 is a constant, we can fold the cast into the constant.
2525      if (Op0->getType() != Op1->getType()) {
2526        if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
2527          Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
2528        } else {
2529          // Otherwise, cast the RHS right before the icmp
2530          Op1 = Builder->CreateBitCast(Op1, Op0->getType());
2531        }
2532      }
2533      return new ICmpInst(I.getPredicate(), Op0, Op1);
2534    }
2535  }
2536
2537  if (isa<CastInst>(Op0)) {
2538    // Handle the special case of: icmp (cast bool to X), <cst>
2539    // This comes up when you have code like
2540    //   int X = A < B;
2541    //   if (X) ...
2542    // For generality, we handle any zero-extension of any operand comparison
2543    // with a constant or another cast from the same type.
2544    if (isa<Constant>(Op1) || isa<CastInst>(Op1))
2545      if (Instruction *R = visitICmpInstWithCastAndCast(I))
2546        return R;
2547  }
2548
2549  // Special logic for binary operators.
2550  BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
2551  BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
2552  if (BO0 || BO1) {
2553    CmpInst::Predicate Pred = I.getPredicate();
2554    bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
2555    if (BO0 && isa<OverflowingBinaryOperator>(BO0))
2556      NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
2557        (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
2558        (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
2559    if (BO1 && isa<OverflowingBinaryOperator>(BO1))
2560      NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
2561        (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
2562        (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
2563
2564    // Analyze the case when either Op0 or Op1 is an add instruction.
2565    // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
2566    Value *A = 0, *B = 0, *C = 0, *D = 0;
2567    if (BO0 && BO0->getOpcode() == Instruction::Add)
2568      A = BO0->getOperand(0), B = BO0->getOperand(1);
2569    if (BO1 && BO1->getOpcode() == Instruction::Add)
2570      C = BO1->getOperand(0), D = BO1->getOperand(1);
2571
2572    // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2573    if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
2574      return new ICmpInst(Pred, A == Op1 ? B : A,
2575                          Constant::getNullValue(Op1->getType()));
2576
2577    // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2578    if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
2579      return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
2580                          C == Op0 ? D : C);
2581
2582    // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
2583    if (A && C && (A == C || A == D || B == C || B == D) &&
2584        NoOp0WrapProblem && NoOp1WrapProblem &&
2585        // Try not to increase register pressure.
2586        BO0->hasOneUse() && BO1->hasOneUse()) {
2587      // Determine Y and Z in the form icmp (X+Y), (X+Z).
2588      Value *Y, *Z;
2589      if (A == C) {
2590        // C + B == C + D  ->  B == D
2591        Y = B;
2592        Z = D;
2593      } else if (A == D) {
2594        // D + B == C + D  ->  B == C
2595        Y = B;
2596        Z = C;
2597      } else if (B == C) {
2598        // A + C == C + D  ->  A == D
2599        Y = A;
2600        Z = D;
2601      } else {
2602        assert(B == D);
2603        // A + D == C + D  ->  A == C
2604        Y = A;
2605        Z = C;
2606      }
2607      return new ICmpInst(Pred, Y, Z);
2608    }
2609
2610    // icmp slt (X + -1), Y -> icmp sle X, Y
2611    if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
2612        match(B, m_AllOnes()))
2613      return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
2614
2615    // icmp sge (X + -1), Y -> icmp sgt X, Y
2616    if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
2617        match(B, m_AllOnes()))
2618      return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
2619
2620    // icmp sle (X + 1), Y -> icmp slt X, Y
2621    if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE &&
2622        match(B, m_One()))
2623      return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
2624
2625    // icmp sgt (X + 1), Y -> icmp sge X, Y
2626    if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT &&
2627        match(B, m_One()))
2628      return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
2629
2630    // if C1 has greater magnitude than C2:
2631    //  icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
2632    //  s.t. C3 = C1 - C2
2633    //
2634    // if C2 has greater magnitude than C1:
2635    //  icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
2636    //  s.t. C3 = C2 - C1
2637    if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
2638        (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
2639      if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
2640        if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
2641          const APInt &AP1 = C1->getValue();
2642          const APInt &AP2 = C2->getValue();
2643          if (AP1.isNegative() == AP2.isNegative()) {
2644            APInt AP1Abs = C1->getValue().abs();
2645            APInt AP2Abs = C2->getValue().abs();
2646            if (AP1Abs.uge(AP2Abs)) {
2647              ConstantInt *C3 = Builder->getInt(AP1 - AP2);
2648              Value *NewAdd = Builder->CreateNSWAdd(A, C3);
2649              return new ICmpInst(Pred, NewAdd, C);
2650            } else {
2651              ConstantInt *C3 = Builder->getInt(AP2 - AP1);
2652              Value *NewAdd = Builder->CreateNSWAdd(C, C3);
2653              return new ICmpInst(Pred, A, NewAdd);
2654            }
2655          }
2656        }
2657
2658
2659    // Analyze the case when either Op0 or Op1 is a sub instruction.
2660    // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
2661    A = 0; B = 0; C = 0; D = 0;
2662    if (BO0 && BO0->getOpcode() == Instruction::Sub)
2663      A = BO0->getOperand(0), B = BO0->getOperand(1);
2664    if (BO1 && BO1->getOpcode() == Instruction::Sub)
2665      C = BO1->getOperand(0), D = BO1->getOperand(1);
2666
2667    // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
2668    if (A == Op1 && NoOp0WrapProblem)
2669      return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
2670
2671    // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
2672    if (C == Op0 && NoOp1WrapProblem)
2673      return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
2674
2675    // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
2676    if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
2677        // Try not to increase register pressure.
2678        BO0->hasOneUse() && BO1->hasOneUse())
2679      return new ICmpInst(Pred, A, C);
2680
2681    // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
2682    if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
2683        // Try not to increase register pressure.
2684        BO0->hasOneUse() && BO1->hasOneUse())
2685      return new ICmpInst(Pred, D, B);
2686
2687    BinaryOperator *SRem = NULL;
2688    // icmp (srem X, Y), Y
2689    if (BO0 && BO0->getOpcode() == Instruction::SRem &&
2690        Op1 == BO0->getOperand(1))
2691      SRem = BO0;
2692    // icmp Y, (srem X, Y)
2693    else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
2694             Op0 == BO1->getOperand(1))
2695      SRem = BO1;
2696    if (SRem) {
2697      // We don't check hasOneUse to avoid increasing register pressure because
2698      // the value we use is the same value this instruction was already using.
2699      switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
2700        default: break;
2701        case ICmpInst::ICMP_EQ:
2702          return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2703        case ICmpInst::ICMP_NE:
2704          return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2705        case ICmpInst::ICMP_SGT:
2706        case ICmpInst::ICMP_SGE:
2707          return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
2708                              Constant::getAllOnesValue(SRem->getType()));
2709        case ICmpInst::ICMP_SLT:
2710        case ICmpInst::ICMP_SLE:
2711          return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
2712                              Constant::getNullValue(SRem->getType()));
2713      }
2714    }
2715
2716    if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
2717        BO0->hasOneUse() && BO1->hasOneUse() &&
2718        BO0->getOperand(1) == BO1->getOperand(1)) {
2719      switch (BO0->getOpcode()) {
2720      default: break;
2721      case Instruction::Add:
2722      case Instruction::Sub:
2723      case Instruction::Xor:
2724        if (I.isEquality())    // a+x icmp eq/ne b+x --> a icmp b
2725          return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2726                              BO1->getOperand(0));
2727        // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
2728        if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
2729          if (CI->getValue().isSignBit()) {
2730            ICmpInst::Predicate Pred = I.isSigned()
2731                                           ? I.getUnsignedPredicate()
2732                                           : I.getSignedPredicate();
2733            return new ICmpInst(Pred, BO0->getOperand(0),
2734                                BO1->getOperand(0));
2735          }
2736
2737          if (CI->isMaxValue(true)) {
2738            ICmpInst::Predicate Pred = I.isSigned()
2739                                           ? I.getUnsignedPredicate()
2740                                           : I.getSignedPredicate();
2741            Pred = I.getSwappedPredicate(Pred);
2742            return new ICmpInst(Pred, BO0->getOperand(0),
2743                                BO1->getOperand(0));
2744          }
2745        }
2746        break;
2747      case Instruction::Mul:
2748        if (!I.isEquality())
2749          break;
2750
2751        if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
2752          // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
2753          // Mask = -1 >> count-trailing-zeros(Cst).
2754          if (!CI->isZero() && !CI->isOne()) {
2755            const APInt &AP = CI->getValue();
2756            ConstantInt *Mask = ConstantInt::get(I.getContext(),
2757                                    APInt::getLowBitsSet(AP.getBitWidth(),
2758                                                         AP.getBitWidth() -
2759                                                    AP.countTrailingZeros()));
2760            Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
2761            Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
2762            return new ICmpInst(I.getPredicate(), And1, And2);
2763          }
2764        }
2765        break;
2766      case Instruction::UDiv:
2767      case Instruction::LShr:
2768        if (I.isSigned())
2769          break;
2770        // fall-through
2771      case Instruction::SDiv:
2772      case Instruction::AShr:
2773        if (!BO0->isExact() || !BO1->isExact())
2774          break;
2775        return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2776                            BO1->getOperand(0));
2777      case Instruction::Shl: {
2778        bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
2779        bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
2780        if (!NUW && !NSW)
2781          break;
2782        if (!NSW && I.isSigned())
2783          break;
2784        return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2785                            BO1->getOperand(0));
2786      }
2787      }
2788    }
2789  }
2790
2791  { Value *A, *B;
2792    // Transform (A & ~B) == 0 --> (A & B) != 0
2793    // and       (A & ~B) != 0 --> (A & B) == 0
2794    // if A is a power of 2.
2795    if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
2796        match(Op1, m_Zero()) && isKnownToBeAPowerOfTwo(A) && I.isEquality())
2797      return new ICmpInst(I.getInversePredicate(),
2798                          Builder->CreateAnd(A, B),
2799                          Op1);
2800
2801    // ~x < ~y --> y < x
2802    // ~x < cst --> ~cst < x
2803    if (match(Op0, m_Not(m_Value(A)))) {
2804      if (match(Op1, m_Not(m_Value(B))))
2805        return new ICmpInst(I.getPredicate(), B, A);
2806      if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
2807        return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
2808    }
2809
2810    // (a+b) <u a  --> llvm.uadd.with.overflow.
2811    // (a+b) <u b  --> llvm.uadd.with.overflow.
2812    if (I.getPredicate() == ICmpInst::ICMP_ULT &&
2813        match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2814        (Op1 == A || Op1 == B))
2815      if (Instruction *R = ProcessUAddIdiom(I, Op0, *this))
2816        return R;
2817
2818    // a >u (a+b)  --> llvm.uadd.with.overflow.
2819    // b >u (a+b)  --> llvm.uadd.with.overflow.
2820    if (I.getPredicate() == ICmpInst::ICMP_UGT &&
2821        match(Op1, m_Add(m_Value(A), m_Value(B))) &&
2822        (Op0 == A || Op0 == B))
2823      if (Instruction *R = ProcessUAddIdiom(I, Op1, *this))
2824        return R;
2825  }
2826
2827  if (I.isEquality()) {
2828    Value *A, *B, *C, *D;
2829
2830    if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
2831      if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
2832        Value *OtherVal = A == Op1 ? B : A;
2833        return new ICmpInst(I.getPredicate(), OtherVal,
2834                            Constant::getNullValue(A->getType()));
2835      }
2836
2837      if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
2838        // A^c1 == C^c2 --> A == C^(c1^c2)
2839        ConstantInt *C1, *C2;
2840        if (match(B, m_ConstantInt(C1)) &&
2841            match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
2842          Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue());
2843          Value *Xor = Builder->CreateXor(C, NC);
2844          return new ICmpInst(I.getPredicate(), A, Xor);
2845        }
2846
2847        // A^B == A^D -> B == D
2848        if (A == C) return new ICmpInst(I.getPredicate(), B, D);
2849        if (A == D) return new ICmpInst(I.getPredicate(), B, C);
2850        if (B == C) return new ICmpInst(I.getPredicate(), A, D);
2851        if (B == D) return new ICmpInst(I.getPredicate(), A, C);
2852      }
2853    }
2854
2855    if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2856        (A == Op0 || B == Op0)) {
2857      // A == (A^B)  ->  B == 0
2858      Value *OtherVal = A == Op0 ? B : A;
2859      return new ICmpInst(I.getPredicate(), OtherVal,
2860                          Constant::getNullValue(A->getType()));
2861    }
2862
2863    // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
2864    if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
2865        match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
2866      Value *X = 0, *Y = 0, *Z = 0;
2867
2868      if (A == C) {
2869        X = B; Y = D; Z = A;
2870      } else if (A == D) {
2871        X = B; Y = C; Z = A;
2872      } else if (B == C) {
2873        X = A; Y = D; Z = B;
2874      } else if (B == D) {
2875        X = A; Y = C; Z = B;
2876      }
2877
2878      if (X) {   // Build (X^Y) & Z
2879        Op1 = Builder->CreateXor(X, Y);
2880        Op1 = Builder->CreateAnd(Op1, Z);
2881        I.setOperand(0, Op1);
2882        I.setOperand(1, Constant::getNullValue(Op1->getType()));
2883        return &I;
2884      }
2885    }
2886
2887    // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
2888    // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
2889    ConstantInt *Cst1;
2890    if ((Op0->hasOneUse() &&
2891         match(Op0, m_ZExt(m_Value(A))) &&
2892         match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
2893        (Op1->hasOneUse() &&
2894         match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
2895         match(Op1, m_ZExt(m_Value(A))))) {
2896      APInt Pow2 = Cst1->getValue() + 1;
2897      if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
2898          Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
2899        return new ICmpInst(I.getPredicate(), A,
2900                            Builder->CreateTrunc(B, A->getType()));
2901    }
2902
2903    // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
2904    // "icmp (and X, mask), cst"
2905    uint64_t ShAmt = 0;
2906    if (Op0->hasOneUse() &&
2907        match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
2908                                           m_ConstantInt(ShAmt))))) &&
2909        match(Op1, m_ConstantInt(Cst1)) &&
2910        // Only do this when A has multiple uses.  This is most important to do
2911        // when it exposes other optimizations.
2912        !A->hasOneUse()) {
2913      unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
2914
2915      if (ShAmt < ASize) {
2916        APInt MaskV =
2917          APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
2918        MaskV <<= ShAmt;
2919
2920        APInt CmpV = Cst1->getValue().zext(ASize);
2921        CmpV <<= ShAmt;
2922
2923        Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
2924        return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
2925      }
2926    }
2927  }
2928
2929  {
2930    Value *X; ConstantInt *Cst;
2931    // icmp X+Cst, X
2932    if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
2933      return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0);
2934
2935    // icmp X, X+Cst
2936    if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
2937      return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1);
2938  }
2939  return Changed ? &I : 0;
2940}
2941
2942
2943
2944
2945
2946
2947/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
2948///
2949Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
2950                                                Instruction *LHSI,
2951                                                Constant *RHSC) {
2952  if (!isa<ConstantFP>(RHSC)) return 0;
2953  const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
2954
2955  // Get the width of the mantissa.  We don't want to hack on conversions that
2956  // might lose information from the integer, e.g. "i64 -> float"
2957  int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
2958  if (MantissaWidth == -1) return 0;  // Unknown.
2959
2960  // Check to see that the input is converted from an integer type that is small
2961  // enough that preserves all bits.  TODO: check here for "known" sign bits.
2962  // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
2963  unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
2964
2965  // If this is a uitofp instruction, we need an extra bit to hold the sign.
2966  bool LHSUnsigned = isa<UIToFPInst>(LHSI);
2967  if (LHSUnsigned)
2968    ++InputSize;
2969
2970  // If the conversion would lose info, don't hack on this.
2971  if ((int)InputSize > MantissaWidth)
2972    return 0;
2973
2974  // Otherwise, we can potentially simplify the comparison.  We know that it
2975  // will always come through as an integer value and we know the constant is
2976  // not a NAN (it would have been previously simplified).
2977  assert(!RHS.isNaN() && "NaN comparison not already folded!");
2978
2979  ICmpInst::Predicate Pred;
2980  switch (I.getPredicate()) {
2981  default: llvm_unreachable("Unexpected predicate!");
2982  case FCmpInst::FCMP_UEQ:
2983  case FCmpInst::FCMP_OEQ:
2984    Pred = ICmpInst::ICMP_EQ;
2985    break;
2986  case FCmpInst::FCMP_UGT:
2987  case FCmpInst::FCMP_OGT:
2988    Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
2989    break;
2990  case FCmpInst::FCMP_UGE:
2991  case FCmpInst::FCMP_OGE:
2992    Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
2993    break;
2994  case FCmpInst::FCMP_ULT:
2995  case FCmpInst::FCMP_OLT:
2996    Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
2997    break;
2998  case FCmpInst::FCMP_ULE:
2999  case FCmpInst::FCMP_OLE:
3000    Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
3001    break;
3002  case FCmpInst::FCMP_UNE:
3003  case FCmpInst::FCMP_ONE:
3004    Pred = ICmpInst::ICMP_NE;
3005    break;
3006  case FCmpInst::FCMP_ORD:
3007    return ReplaceInstUsesWith(I, Builder->getTrue());
3008  case FCmpInst::FCMP_UNO:
3009    return ReplaceInstUsesWith(I, Builder->getFalse());
3010  }
3011
3012  IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
3013
3014  // Now we know that the APFloat is a normal number, zero or inf.
3015
3016  // See if the FP constant is too large for the integer.  For example,
3017  // comparing an i8 to 300.0.
3018  unsigned IntWidth = IntTy->getScalarSizeInBits();
3019
3020  if (!LHSUnsigned) {
3021    // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
3022    // and large values.
3023    APFloat SMax(RHS.getSemantics());
3024    SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
3025                          APFloat::rmNearestTiesToEven);
3026    if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
3027      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
3028          Pred == ICmpInst::ICMP_SLE)
3029        return ReplaceInstUsesWith(I, Builder->getTrue());
3030      return ReplaceInstUsesWith(I, Builder->getFalse());
3031    }
3032  } else {
3033    // If the RHS value is > UnsignedMax, fold the comparison. This handles
3034    // +INF and large values.
3035    APFloat UMax(RHS.getSemantics());
3036    UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
3037                          APFloat::rmNearestTiesToEven);
3038    if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
3039      if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
3040          Pred == ICmpInst::ICMP_ULE)
3041        return ReplaceInstUsesWith(I, Builder->getTrue());
3042      return ReplaceInstUsesWith(I, Builder->getFalse());
3043    }
3044  }
3045
3046  if (!LHSUnsigned) {
3047    // See if the RHS value is < SignedMin.
3048    APFloat SMin(RHS.getSemantics());
3049    SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
3050                          APFloat::rmNearestTiesToEven);
3051    if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
3052      if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
3053          Pred == ICmpInst::ICMP_SGE)
3054        return ReplaceInstUsesWith(I, Builder->getTrue());
3055      return ReplaceInstUsesWith(I, Builder->getFalse());
3056    }
3057  } else {
3058    // See if the RHS value is < UnsignedMin.
3059    APFloat SMin(RHS.getSemantics());
3060    SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
3061                          APFloat::rmNearestTiesToEven);
3062    if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
3063      if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
3064          Pred == ICmpInst::ICMP_UGE)
3065        return ReplaceInstUsesWith(I, Builder->getTrue());
3066      return ReplaceInstUsesWith(I, Builder->getFalse());
3067    }
3068  }
3069
3070  // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
3071  // [0, UMAX], but it may still be fractional.  See if it is fractional by
3072  // casting the FP value to the integer value and back, checking for equality.
3073  // Don't do this for zero, because -0.0 is not fractional.
3074  Constant *RHSInt = LHSUnsigned
3075    ? ConstantExpr::getFPToUI(RHSC, IntTy)
3076    : ConstantExpr::getFPToSI(RHSC, IntTy);
3077  if (!RHS.isZero()) {
3078    bool Equal = LHSUnsigned
3079      ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
3080      : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
3081    if (!Equal) {
3082      // If we had a comparison against a fractional value, we have to adjust
3083      // the compare predicate and sometimes the value.  RHSC is rounded towards
3084      // zero at this point.
3085      switch (Pred) {
3086      default: llvm_unreachable("Unexpected integer comparison!");
3087      case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
3088        return ReplaceInstUsesWith(I, Builder->getTrue());
3089      case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
3090        return ReplaceInstUsesWith(I, Builder->getFalse());
3091      case ICmpInst::ICMP_ULE:
3092        // (float)int <= 4.4   --> int <= 4
3093        // (float)int <= -4.4  --> false
3094        if (RHS.isNegative())
3095          return ReplaceInstUsesWith(I, Builder->getFalse());
3096        break;
3097      case ICmpInst::ICMP_SLE:
3098        // (float)int <= 4.4   --> int <= 4
3099        // (float)int <= -4.4  --> int < -4
3100        if (RHS.isNegative())
3101          Pred = ICmpInst::ICMP_SLT;
3102        break;
3103      case ICmpInst::ICMP_ULT:
3104        // (float)int < -4.4   --> false
3105        // (float)int < 4.4    --> int <= 4
3106        if (RHS.isNegative())
3107          return ReplaceInstUsesWith(I, Builder->getFalse());
3108        Pred = ICmpInst::ICMP_ULE;
3109        break;
3110      case ICmpInst::ICMP_SLT:
3111        // (float)int < -4.4   --> int < -4
3112        // (float)int < 4.4    --> int <= 4
3113        if (!RHS.isNegative())
3114          Pred = ICmpInst::ICMP_SLE;
3115        break;
3116      case ICmpInst::ICMP_UGT:
3117        // (float)int > 4.4    --> int > 4
3118        // (float)int > -4.4   --> true
3119        if (RHS.isNegative())
3120          return ReplaceInstUsesWith(I, Builder->getTrue());
3121        break;
3122      case ICmpInst::ICMP_SGT:
3123        // (float)int > 4.4    --> int > 4
3124        // (float)int > -4.4   --> int >= -4
3125        if (RHS.isNegative())
3126          Pred = ICmpInst::ICMP_SGE;
3127        break;
3128      case ICmpInst::ICMP_UGE:
3129        // (float)int >= -4.4   --> true
3130        // (float)int >= 4.4    --> int > 4
3131        if (RHS.isNegative())
3132          return ReplaceInstUsesWith(I, Builder->getTrue());
3133        Pred = ICmpInst::ICMP_UGT;
3134        break;
3135      case ICmpInst::ICMP_SGE:
3136        // (float)int >= -4.4   --> int >= -4
3137        // (float)int >= 4.4    --> int > 4
3138        if (!RHS.isNegative())
3139          Pred = ICmpInst::ICMP_SGT;
3140        break;
3141      }
3142    }
3143  }
3144
3145  // Lower this FP comparison into an appropriate integer version of the
3146  // comparison.
3147  return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
3148}
3149
3150Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
3151  bool Changed = false;
3152
3153  /// Orders the operands of the compare so that they are listed from most
3154  /// complex to least complex.  This puts constants before unary operators,
3155  /// before binary operators.
3156  if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
3157    I.swapOperands();
3158    Changed = true;
3159  }
3160
3161  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3162
3163  if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
3164    return ReplaceInstUsesWith(I, V);
3165
3166  // Simplify 'fcmp pred X, X'
3167  if (Op0 == Op1) {
3168    switch (I.getPredicate()) {
3169    default: llvm_unreachable("Unknown predicate!");
3170    case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
3171    case FCmpInst::FCMP_ULT:    // True if unordered or less than
3172    case FCmpInst::FCMP_UGT:    // True if unordered or greater than
3173    case FCmpInst::FCMP_UNE:    // True if unordered or not equal
3174      // Canonicalize these to be 'fcmp uno %X, 0.0'.
3175      I.setPredicate(FCmpInst::FCMP_UNO);
3176      I.setOperand(1, Constant::getNullValue(Op0->getType()));
3177      return &I;
3178
3179    case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
3180    case FCmpInst::FCMP_OEQ:    // True if ordered and equal
3181    case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
3182    case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
3183      // Canonicalize these to be 'fcmp ord %X, 0.0'.
3184      I.setPredicate(FCmpInst::FCMP_ORD);
3185      I.setOperand(1, Constant::getNullValue(Op0->getType()));
3186      return &I;
3187    }
3188  }
3189
3190  // Handle fcmp with constant RHS
3191  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
3192    if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
3193      switch (LHSI->getOpcode()) {
3194      case Instruction::FPExt: {
3195        // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
3196        FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
3197        ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
3198        if (!RHSF)
3199          break;
3200
3201        const fltSemantics *Sem;
3202        // FIXME: This shouldn't be here.
3203        if (LHSExt->getSrcTy()->isHalfTy())
3204          Sem = &APFloat::IEEEhalf;
3205        else if (LHSExt->getSrcTy()->isFloatTy())
3206          Sem = &APFloat::IEEEsingle;
3207        else if (LHSExt->getSrcTy()->isDoubleTy())
3208          Sem = &APFloat::IEEEdouble;
3209        else if (LHSExt->getSrcTy()->isFP128Ty())
3210          Sem = &APFloat::IEEEquad;
3211        else if (LHSExt->getSrcTy()->isX86_FP80Ty())
3212          Sem = &APFloat::x87DoubleExtended;
3213        else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
3214          Sem = &APFloat::PPCDoubleDouble;
3215        else
3216          break;
3217
3218        bool Lossy;
3219        APFloat F = RHSF->getValueAPF();
3220        F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
3221
3222        // Avoid lossy conversions and denormals. Zero is a special case
3223        // that's OK to convert.
3224        APFloat Fabs = F;
3225        Fabs.clearSign();
3226        if (!Lossy &&
3227            ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
3228                 APFloat::cmpLessThan) || Fabs.isZero()))
3229
3230          return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
3231                              ConstantFP::get(RHSC->getContext(), F));
3232        break;
3233      }
3234      case Instruction::PHI:
3235        // Only fold fcmp into the PHI if the phi and fcmp are in the same
3236        // block.  If in the same block, we're encouraging jump threading.  If
3237        // not, we are just pessimizing the code by making an i1 phi.
3238        if (LHSI->getParent() == I.getParent())
3239          if (Instruction *NV = FoldOpIntoPhi(I))
3240            return NV;
3241        break;
3242      case Instruction::SIToFP:
3243      case Instruction::UIToFP:
3244        if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
3245          return NV;
3246        break;
3247      case Instruction::Select: {
3248        // If either operand of the select is a constant, we can fold the
3249        // comparison into the select arms, which will cause one to be
3250        // constant folded and the select turned into a bitwise or.
3251        Value *Op1 = 0, *Op2 = 0;
3252        if (LHSI->hasOneUse()) {
3253          if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3254            // Fold the known value into the constant operand.
3255            Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
3256            // Insert a new FCmp of the other select operand.
3257            Op2 = Builder->CreateFCmp(I.getPredicate(),
3258                                      LHSI->getOperand(2), RHSC, I.getName());
3259          } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3260            // Fold the known value into the constant operand.
3261            Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
3262            // Insert a new FCmp of the other select operand.
3263            Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
3264                                      RHSC, I.getName());
3265          }
3266        }
3267
3268        if (Op1)
3269          return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3270        break;
3271      }
3272      case Instruction::FSub: {
3273        // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
3274        Value *Op;
3275        if (match(LHSI, m_FNeg(m_Value(Op))))
3276          return new FCmpInst(I.getSwappedPredicate(), Op,
3277                              ConstantExpr::getFNeg(RHSC));
3278        break;
3279      }
3280      case Instruction::Load:
3281        if (GetElementPtrInst *GEP =
3282            dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3283          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3284            if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3285                !cast<LoadInst>(LHSI)->isVolatile())
3286              if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
3287                return Res;
3288        }
3289        break;
3290      case Instruction::Call: {
3291        CallInst *CI = cast<CallInst>(LHSI);
3292        LibFunc::Func Func;
3293        // Various optimization for fabs compared with zero.
3294        if (RHSC->isNullValue() && CI->getCalledFunction() &&
3295            TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
3296            TLI->has(Func)) {
3297          if (Func == LibFunc::fabs || Func == LibFunc::fabsf ||
3298              Func == LibFunc::fabsl) {
3299            switch (I.getPredicate()) {
3300            default: break;
3301            // fabs(x) < 0 --> false
3302            case FCmpInst::FCMP_OLT:
3303              return ReplaceInstUsesWith(I, Builder->getFalse());
3304            // fabs(x) > 0 --> x != 0
3305            case FCmpInst::FCMP_OGT:
3306              return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0),
3307                                  RHSC);
3308            // fabs(x) <= 0 --> x == 0
3309            case FCmpInst::FCMP_OLE:
3310              return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0),
3311                                  RHSC);
3312            // fabs(x) >= 0 --> !isnan(x)
3313            case FCmpInst::FCMP_OGE:
3314              return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0),
3315                                  RHSC);
3316            // fabs(x) == 0 --> x == 0
3317            // fabs(x) != 0 --> x != 0
3318            case FCmpInst::FCMP_OEQ:
3319            case FCmpInst::FCMP_UEQ:
3320            case FCmpInst::FCMP_ONE:
3321            case FCmpInst::FCMP_UNE:
3322              return new FCmpInst(I.getPredicate(), CI->getArgOperand(0),
3323                                  RHSC);
3324            }
3325          }
3326        }
3327      }
3328      }
3329  }
3330
3331  // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
3332  Value *X, *Y;
3333  if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
3334    return new FCmpInst(I.getSwappedPredicate(), X, Y);
3335
3336  // fcmp (fpext x), (fpext y) -> fcmp x, y
3337  if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
3338    if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
3339      if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
3340        return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
3341                            RHSExt->getOperand(0));
3342
3343  return Changed ? &I : 0;
3344}
3345