1// Protocol Buffers - Google's data interchange format
2// Copyright 2008 Google Inc.  All rights reserved.
3// http://code.google.com/p/protobuf/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are
7// met:
8//
9//     * Redistributions of source code must retain the above copyright
10// notice, this list of conditions and the following disclaimer.
11//     * Redistributions in binary form must reproduce the above
12// copyright notice, this list of conditions and the following disclaimer
13// in the documentation and/or other materials provided with the
14// distribution.
15//     * Neither the name of Google Inc. nor the names of its
16// contributors may be used to endorse or promote products derived from
17// this software without specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// Author: kenton@google.com (Kenton Varda)
32//  Based on original Protocol Buffers design by
33//  Sanjay Ghemawat, Jeff Dean, and others.
34//
35// DynamicMessage is implemented by constructing a data structure which
36// has roughly the same memory layout as a generated message would have.
37// Then, we use GeneratedMessageReflection to implement our reflection
38// interface.  All the other operations we need to implement (e.g.
39// parsing, copying, etc.) are already implemented in terms of
40// Reflection, so the rest is easy.
41//
42// The up side of this strategy is that it's very efficient.  We don't
43// need to use hash_maps or generic representations of fields.  The
44// down side is that this is a low-level memory management hack which
45// can be tricky to get right.
46//
47// As mentioned in the header, we only expose a DynamicMessageFactory
48// publicly, not the DynamicMessage class itself.  This is because
49// GenericMessageReflection wants to have a pointer to a "default"
50// copy of the class, with all fields initialized to their default
51// values.  We only want to construct one of these per message type,
52// so DynamicMessageFactory stores a cache of default messages for
53// each type it sees (each unique Descriptor pointer).  The code
54// refers to the "default" copy of the class as the "prototype".
55//
56// Note on memory allocation:  This module often calls "operator new()"
57// to allocate untyped memory, rather than calling something like
58// "new uint8[]".  This is because "operator new()" means "Give me some
59// space which I can use as I please." while "new uint8[]" means "Give
60// me an array of 8-bit integers.".  In practice, the later may return
61// a pointer that is not aligned correctly for general use.  I believe
62// Item 8 of "More Effective C++" discusses this in more detail, though
63// I don't have the book on me right now so I'm not sure.
64
65#include <algorithm>
66#include <google/protobuf/stubs/hash.h>
67
68#include <google/protobuf/stubs/common.h>
69
70#include <google/protobuf/dynamic_message.h>
71#include <google/protobuf/descriptor.h>
72#include <google/protobuf/descriptor.pb.h>
73#include <google/protobuf/generated_message_util.h>
74#include <google/protobuf/generated_message_reflection.h>
75#include <google/protobuf/reflection_ops.h>
76#include <google/protobuf/repeated_field.h>
77#include <google/protobuf/extension_set.h>
78#include <google/protobuf/wire_format.h>
79
80namespace google {
81namespace protobuf {
82
83using internal::WireFormat;
84using internal::ExtensionSet;
85using internal::GeneratedMessageReflection;
86
87
88// ===================================================================
89// Some helper tables and functions...
90
91namespace {
92
93// Compute the byte size of the in-memory representation of the field.
94int FieldSpaceUsed(const FieldDescriptor* field) {
95  typedef FieldDescriptor FD;  // avoid line wrapping
96  if (field->label() == FD::LABEL_REPEATED) {
97    switch (field->cpp_type()) {
98      case FD::CPPTYPE_INT32  : return sizeof(RepeatedField<int32   >);
99      case FD::CPPTYPE_INT64  : return sizeof(RepeatedField<int64   >);
100      case FD::CPPTYPE_UINT32 : return sizeof(RepeatedField<uint32  >);
101      case FD::CPPTYPE_UINT64 : return sizeof(RepeatedField<uint64  >);
102      case FD::CPPTYPE_DOUBLE : return sizeof(RepeatedField<double  >);
103      case FD::CPPTYPE_FLOAT  : return sizeof(RepeatedField<float   >);
104      case FD::CPPTYPE_BOOL   : return sizeof(RepeatedField<bool    >);
105      case FD::CPPTYPE_ENUM   : return sizeof(RepeatedField<int     >);
106      case FD::CPPTYPE_MESSAGE: return sizeof(RepeatedPtrField<Message>);
107
108      case FD::CPPTYPE_STRING:
109        switch (field->options().ctype()) {
110          default:  // TODO(kenton):  Support other string reps.
111          case FieldOptions::STRING:
112            return sizeof(RepeatedPtrField<string>);
113        }
114        break;
115    }
116  } else {
117    switch (field->cpp_type()) {
118      case FD::CPPTYPE_INT32  : return sizeof(int32   );
119      case FD::CPPTYPE_INT64  : return sizeof(int64   );
120      case FD::CPPTYPE_UINT32 : return sizeof(uint32  );
121      case FD::CPPTYPE_UINT64 : return sizeof(uint64  );
122      case FD::CPPTYPE_DOUBLE : return sizeof(double  );
123      case FD::CPPTYPE_FLOAT  : return sizeof(float   );
124      case FD::CPPTYPE_BOOL   : return sizeof(bool    );
125      case FD::CPPTYPE_ENUM   : return sizeof(int     );
126      case FD::CPPTYPE_MESSAGE: return sizeof(Message*);
127
128      case FD::CPPTYPE_STRING:
129        switch (field->options().ctype()) {
130          default:  // TODO(kenton):  Support other string reps.
131          case FieldOptions::STRING:
132            return sizeof(string*);
133        }
134        break;
135    }
136  }
137
138  GOOGLE_LOG(DFATAL) << "Can't get here.";
139  return 0;
140}
141
142inline int DivideRoundingUp(int i, int j) {
143  return (i + (j - 1)) / j;
144}
145
146static const int kSafeAlignment = sizeof(uint64);
147
148inline int AlignTo(int offset, int alignment) {
149  return DivideRoundingUp(offset, alignment) * alignment;
150}
151
152// Rounds the given byte offset up to the next offset aligned such that any
153// type may be stored at it.
154inline int AlignOffset(int offset) {
155  return AlignTo(offset, kSafeAlignment);
156}
157
158#define bitsizeof(T) (sizeof(T) * 8)
159
160}  // namespace
161
162// ===================================================================
163
164class DynamicMessage : public Message {
165 public:
166  struct TypeInfo {
167    int size;
168    int has_bits_offset;
169    int unknown_fields_offset;
170    int extensions_offset;
171
172    // Not owned by the TypeInfo.
173    DynamicMessageFactory* factory;  // The factory that created this object.
174    const DescriptorPool* pool;      // The factory's DescriptorPool.
175    const Descriptor* type;          // Type of this DynamicMessage.
176
177    // Warning:  The order in which the following pointers are defined is
178    //   important (the prototype must be deleted *before* the offsets).
179    scoped_array<int> offsets;
180    scoped_ptr<const GeneratedMessageReflection> reflection;
181    scoped_ptr<const DynamicMessage> prototype;
182  };
183
184  DynamicMessage(const TypeInfo* type_info);
185  ~DynamicMessage();
186
187  // Called on the prototype after construction to initialize message fields.
188  void CrossLinkPrototypes();
189
190  // implements Message ----------------------------------------------
191
192  Message* New() const;
193
194  int GetCachedSize() const;
195  void SetCachedSize(int size) const;
196
197  Metadata GetMetadata() const;
198
199 private:
200  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(DynamicMessage);
201
202  inline bool is_prototype() const {
203    return type_info_->prototype == this ||
204           // If type_info_->prototype is NULL, then we must be constructing
205           // the prototype now, which means we must be the prototype.
206           type_info_->prototype == NULL;
207  }
208
209  inline void* OffsetToPointer(int offset) {
210    return reinterpret_cast<uint8*>(this) + offset;
211  }
212  inline const void* OffsetToPointer(int offset) const {
213    return reinterpret_cast<const uint8*>(this) + offset;
214  }
215
216  const TypeInfo* type_info_;
217
218  // TODO(kenton):  Make this an atomic<int> when C++ supports it.
219  mutable int cached_byte_size_;
220};
221
222DynamicMessage::DynamicMessage(const TypeInfo* type_info)
223  : type_info_(type_info),
224    cached_byte_size_(0) {
225  // We need to call constructors for various fields manually and set
226  // default values where appropriate.  We use placement new to call
227  // constructors.  If you haven't heard of placement new, I suggest Googling
228  // it now.  We use placement new even for primitive types that don't have
229  // constructors for consistency.  (In theory, placement new should be used
230  // any time you are trying to convert untyped memory to typed memory, though
231  // in practice that's not strictly necessary for types that don't have a
232  // constructor.)
233
234  const Descriptor* descriptor = type_info_->type;
235
236  new(OffsetToPointer(type_info_->unknown_fields_offset)) UnknownFieldSet;
237
238  if (type_info_->extensions_offset != -1) {
239    new(OffsetToPointer(type_info_->extensions_offset)) ExtensionSet;
240  }
241
242  for (int i = 0; i < descriptor->field_count(); i++) {
243    const FieldDescriptor* field = descriptor->field(i);
244    void* field_ptr = OffsetToPointer(type_info_->offsets[i]);
245    switch (field->cpp_type()) {
246#define HANDLE_TYPE(CPPTYPE, TYPE)                                           \
247      case FieldDescriptor::CPPTYPE_##CPPTYPE:                               \
248        if (!field->is_repeated()) {                                         \
249          new(field_ptr) TYPE(field->default_value_##TYPE());                \
250        } else {                                                             \
251          new(field_ptr) RepeatedField<TYPE>();                              \
252        }                                                                    \
253        break;
254
255      HANDLE_TYPE(INT32 , int32 );
256      HANDLE_TYPE(INT64 , int64 );
257      HANDLE_TYPE(UINT32, uint32);
258      HANDLE_TYPE(UINT64, uint64);
259      HANDLE_TYPE(DOUBLE, double);
260      HANDLE_TYPE(FLOAT , float );
261      HANDLE_TYPE(BOOL  , bool  );
262#undef HANDLE_TYPE
263
264      case FieldDescriptor::CPPTYPE_ENUM:
265        if (!field->is_repeated()) {
266          new(field_ptr) int(field->default_value_enum()->number());
267        } else {
268          new(field_ptr) RepeatedField<int>();
269        }
270        break;
271
272      case FieldDescriptor::CPPTYPE_STRING:
273        switch (field->options().ctype()) {
274          default:  // TODO(kenton):  Support other string reps.
275          case FieldOptions::STRING:
276            if (!field->is_repeated()) {
277              if (is_prototype()) {
278                new(field_ptr) const string*(&field->default_value_string());
279              } else {
280                string* default_value =
281                  *reinterpret_cast<string* const*>(
282                    type_info_->prototype->OffsetToPointer(
283                      type_info_->offsets[i]));
284                new(field_ptr) string*(default_value);
285              }
286            } else {
287              new(field_ptr) RepeatedPtrField<string>();
288            }
289            break;
290        }
291        break;
292
293      case FieldDescriptor::CPPTYPE_MESSAGE: {
294        if (!field->is_repeated()) {
295          new(field_ptr) Message*(NULL);
296        } else {
297          new(field_ptr) RepeatedPtrField<Message>();
298        }
299        break;
300      }
301    }
302  }
303}
304
305DynamicMessage::~DynamicMessage() {
306  const Descriptor* descriptor = type_info_->type;
307
308  reinterpret_cast<UnknownFieldSet*>(
309    OffsetToPointer(type_info_->unknown_fields_offset))->~UnknownFieldSet();
310
311  if (type_info_->extensions_offset != -1) {
312    reinterpret_cast<ExtensionSet*>(
313      OffsetToPointer(type_info_->extensions_offset))->~ExtensionSet();
314  }
315
316  // We need to manually run the destructors for repeated fields and strings,
317  // just as we ran their constructors in the the DynamicMessage constructor.
318  // Additionally, if any singular embedded messages have been allocated, we
319  // need to delete them, UNLESS we are the prototype message of this type,
320  // in which case any embedded messages are other prototypes and shouldn't
321  // be touched.
322  for (int i = 0; i < descriptor->field_count(); i++) {
323    const FieldDescriptor* field = descriptor->field(i);
324    void* field_ptr = OffsetToPointer(type_info_->offsets[i]);
325
326    if (field->is_repeated()) {
327      switch (field->cpp_type()) {
328#define HANDLE_TYPE(UPPERCASE, LOWERCASE)                                     \
329        case FieldDescriptor::CPPTYPE_##UPPERCASE :                           \
330          reinterpret_cast<RepeatedField<LOWERCASE>*>(field_ptr)              \
331              ->~RepeatedField<LOWERCASE>();                                  \
332          break
333
334        HANDLE_TYPE( INT32,  int32);
335        HANDLE_TYPE( INT64,  int64);
336        HANDLE_TYPE(UINT32, uint32);
337        HANDLE_TYPE(UINT64, uint64);
338        HANDLE_TYPE(DOUBLE, double);
339        HANDLE_TYPE( FLOAT,  float);
340        HANDLE_TYPE(  BOOL,   bool);
341        HANDLE_TYPE(  ENUM,    int);
342#undef HANDLE_TYPE
343
344        case FieldDescriptor::CPPTYPE_STRING:
345          switch (field->options().ctype()) {
346            default:  // TODO(kenton):  Support other string reps.
347            case FieldOptions::STRING:
348              reinterpret_cast<RepeatedPtrField<string>*>(field_ptr)
349                  ->~RepeatedPtrField<string>();
350              break;
351          }
352          break;
353
354        case FieldDescriptor::CPPTYPE_MESSAGE:
355          reinterpret_cast<RepeatedPtrField<Message>*>(field_ptr)
356              ->~RepeatedPtrField<Message>();
357          break;
358      }
359
360    } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING) {
361      switch (field->options().ctype()) {
362        default:  // TODO(kenton):  Support other string reps.
363        case FieldOptions::STRING: {
364          string* ptr = *reinterpret_cast<string**>(field_ptr);
365          if (ptr != &field->default_value_string()) {
366            delete ptr;
367          }
368          break;
369        }
370      }
371    } else if ((field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) &&
372               !is_prototype()) {
373      Message* message = *reinterpret_cast<Message**>(field_ptr);
374      if (message != NULL) {
375        delete message;
376      }
377    }
378  }
379}
380
381void DynamicMessage::CrossLinkPrototypes() {
382  // This should only be called on the prototype message.
383  GOOGLE_CHECK(is_prototype());
384
385  DynamicMessageFactory* factory = type_info_->factory;
386  const Descriptor* descriptor = type_info_->type;
387
388  // Cross-link default messages.
389  for (int i = 0; i < descriptor->field_count(); i++) {
390    const FieldDescriptor* field = descriptor->field(i);
391    void* field_ptr = OffsetToPointer(type_info_->offsets[i]);
392
393    if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE &&
394        !field->is_repeated()) {
395      // For fields with message types, we need to cross-link with the
396      // prototype for the field's type.
397      // For singular fields, the field is just a pointer which should
398      // point to the prototype.
399      *reinterpret_cast<const Message**>(field_ptr) =
400        factory->GetPrototypeNoLock(field->message_type());
401    }
402  }
403}
404
405Message* DynamicMessage::New() const {
406  void* new_base = reinterpret_cast<uint8*>(operator new(type_info_->size));
407  memset(new_base, 0, type_info_->size);
408  return new(new_base) DynamicMessage(type_info_);
409}
410
411int DynamicMessage::GetCachedSize() const {
412  return cached_byte_size_;
413}
414
415void DynamicMessage::SetCachedSize(int size) const {
416  // This is theoretically not thread-compatible, but in practice it works
417  // because if multiple threads write this simultaneously, they will be
418  // writing the exact same value.
419  cached_byte_size_ = size;
420}
421
422Metadata DynamicMessage::GetMetadata() const {
423  Metadata metadata;
424  metadata.descriptor = type_info_->type;
425  metadata.reflection = type_info_->reflection.get();
426  return metadata;
427}
428
429// ===================================================================
430
431struct DynamicMessageFactory::PrototypeMap {
432  typedef hash_map<const Descriptor*, const DynamicMessage::TypeInfo*> Map;
433  Map map_;
434};
435
436DynamicMessageFactory::DynamicMessageFactory()
437  : pool_(NULL), delegate_to_generated_factory_(false),
438    prototypes_(new PrototypeMap) {
439}
440
441DynamicMessageFactory::DynamicMessageFactory(const DescriptorPool* pool)
442  : pool_(pool), delegate_to_generated_factory_(false),
443    prototypes_(new PrototypeMap) {
444}
445
446DynamicMessageFactory::~DynamicMessageFactory() {
447  for (PrototypeMap::Map::iterator iter = prototypes_->map_.begin();
448       iter != prototypes_->map_.end(); ++iter) {
449    delete iter->second;
450  }
451}
452
453const Message* DynamicMessageFactory::GetPrototype(const Descriptor* type) {
454  MutexLock lock(&prototypes_mutex_);
455  return GetPrototypeNoLock(type);
456}
457
458const Message* DynamicMessageFactory::GetPrototypeNoLock(
459    const Descriptor* type) {
460  if (delegate_to_generated_factory_ &&
461      type->file()->pool() == DescriptorPool::generated_pool()) {
462    return MessageFactory::generated_factory()->GetPrototype(type);
463  }
464
465  const DynamicMessage::TypeInfo** target = &prototypes_->map_[type];
466  if (*target != NULL) {
467    // Already exists.
468    return (*target)->prototype.get();
469  }
470
471  DynamicMessage::TypeInfo* type_info = new DynamicMessage::TypeInfo;
472  *target = type_info;
473
474  type_info->type = type;
475  type_info->pool = (pool_ == NULL) ? type->file()->pool() : pool_;
476  type_info->factory = this;
477
478  // We need to construct all the structures passed to
479  // GeneratedMessageReflection's constructor.  This includes:
480  // - A block of memory that contains space for all the message's fields.
481  // - An array of integers indicating the byte offset of each field within
482  //   this block.
483  // - A big bitfield containing a bit for each field indicating whether
484  //   or not that field is set.
485
486  // Compute size and offsets.
487  int* offsets = new int[type->field_count()];
488  type_info->offsets.reset(offsets);
489
490  // Decide all field offsets by packing in order.
491  // We place the DynamicMessage object itself at the beginning of the allocated
492  // space.
493  int size = sizeof(DynamicMessage);
494  size = AlignOffset(size);
495
496  // Next the has_bits, which is an array of uint32s.
497  type_info->has_bits_offset = size;
498  int has_bits_array_size =
499    DivideRoundingUp(type->field_count(), bitsizeof(uint32));
500  size += has_bits_array_size * sizeof(uint32);
501  size = AlignOffset(size);
502
503  // The ExtensionSet, if any.
504  if (type->extension_range_count() > 0) {
505    type_info->extensions_offset = size;
506    size += sizeof(ExtensionSet);
507    size = AlignOffset(size);
508  } else {
509    // No extensions.
510    type_info->extensions_offset = -1;
511  }
512
513  // All the fields.
514  for (int i = 0; i < type->field_count(); i++) {
515    // Make sure field is aligned to avoid bus errors.
516    int field_size = FieldSpaceUsed(type->field(i));
517    size = AlignTo(size, min(kSafeAlignment, field_size));
518    offsets[i] = size;
519    size += field_size;
520  }
521
522  // Add the UnknownFieldSet to the end.
523  size = AlignOffset(size);
524  type_info->unknown_fields_offset = size;
525  size += sizeof(UnknownFieldSet);
526
527  // Align the final size to make sure no clever allocators think that
528  // alignment is not necessary.
529  size = AlignOffset(size);
530  type_info->size = size;
531
532  // Allocate the prototype.
533  void* base = operator new(size);
534  memset(base, 0, size);
535  DynamicMessage* prototype = new(base) DynamicMessage(type_info);
536  type_info->prototype.reset(prototype);
537
538  // Construct the reflection object.
539  type_info->reflection.reset(
540    new GeneratedMessageReflection(
541      type_info->type,
542      type_info->prototype.get(),
543      type_info->offsets.get(),
544      type_info->has_bits_offset,
545      type_info->unknown_fields_offset,
546      type_info->extensions_offset,
547      type_info->pool,
548      this,
549      type_info->size));
550
551  // Cross link prototypes.
552  prototype->CrossLinkPrototypes();
553
554  return prototype;
555}
556
557}  // namespace protobuf
558}  // namespace google
559