1/*
2 *  i386 emulator main execution loop
3 *
4 *  Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19#include "config.h"
20#include "exec.h"
21#include "disas.h"
22#include "tcg.h"
23#include "kvm.h"
24#include "hax.h"
25#include "qemu-barrier.h"
26
27#if !defined(CONFIG_SOFTMMU)
28#undef EAX
29#undef ECX
30#undef EDX
31#undef EBX
32#undef ESP
33#undef EBP
34#undef ESI
35#undef EDI
36#undef EIP
37#include <signal.h>
38#ifdef __linux__
39#include <sys/ucontext.h>
40#endif
41#endif
42
43#if defined(__sparc__) && !defined(CONFIG_SOLARIS)
44// Work around ugly bugs in glibc that mangle global register contents
45#undef env
46#define env cpu_single_env
47#endif
48
49int tb_invalidated_flag;
50
51//#define CONFIG_DEBUG_EXEC
52//#define DEBUG_SIGNAL
53
54int qemu_cpu_has_work(CPUState *env)
55{
56    return cpu_has_work(env);
57}
58
59void cpu_loop_exit(void)
60{
61    env->current_tb = NULL;
62    longjmp(env->jmp_env, 1);
63}
64
65/* exit the current TB from a signal handler. The host registers are
66   restored in a state compatible with the CPU emulator
67 */
68void cpu_resume_from_signal(CPUState *env1, void *puc)
69{
70#if !defined(CONFIG_SOFTMMU)
71#ifdef __linux__
72    struct ucontext *uc = puc;
73#elif defined(__OpenBSD__)
74    struct sigcontext *uc = puc;
75#endif
76#endif
77
78    env = env1;
79
80    /* XXX: restore cpu registers saved in host registers */
81
82#if !defined(CONFIG_SOFTMMU)
83    if (puc) {
84        /* XXX: use siglongjmp ? */
85#ifdef __linux__
86#ifdef __ia64
87        sigprocmask(SIG_SETMASK, (sigset_t *)&uc->uc_sigmask, NULL);
88#else
89        sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
90#endif
91#elif defined(__OpenBSD__)
92        sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL);
93#endif
94    }
95#endif
96    env->exception_index = -1;
97    longjmp(env->jmp_env, 1);
98}
99
100/* Execute the code without caching the generated code. An interpreter
101   could be used if available. */
102static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
103{
104    unsigned long next_tb;
105    TranslationBlock *tb;
106
107    /* Should never happen.
108       We only end up here when an existing TB is too long.  */
109    if (max_cycles > CF_COUNT_MASK)
110        max_cycles = CF_COUNT_MASK;
111
112    tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
113                     max_cycles);
114    env->current_tb = tb;
115    /* execute the generated code */
116    next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
117    env->current_tb = NULL;
118
119    if ((next_tb & 3) == 2) {
120        /* Restore PC.  This may happen if async event occurs before
121           the TB starts executing.  */
122        cpu_pc_from_tb(env, tb);
123    }
124    tb_phys_invalidate(tb, -1);
125    tb_free(tb);
126}
127
128static TranslationBlock *tb_find_slow(target_ulong pc,
129                                      target_ulong cs_base,
130                                      uint64_t flags)
131{
132    TranslationBlock *tb, **ptb1;
133    unsigned int h;
134    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
135
136    tb_invalidated_flag = 0;
137
138    /* find translated block using physical mappings */
139    phys_pc = get_phys_addr_code(env, pc);
140    phys_page1 = phys_pc & TARGET_PAGE_MASK;
141    phys_page2 = -1;
142    h = tb_phys_hash_func(phys_pc);
143    ptb1 = &tb_phys_hash[h];
144    for(;;) {
145        tb = *ptb1;
146        if (!tb)
147            goto not_found;
148        if (tb->pc == pc &&
149            tb->page_addr[0] == phys_page1 &&
150            tb->cs_base == cs_base &&
151            tb->flags == flags) {
152            /* check next page if needed */
153            if (tb->page_addr[1] != -1) {
154                virt_page2 = (pc & TARGET_PAGE_MASK) +
155                    TARGET_PAGE_SIZE;
156                phys_page2 = get_phys_addr_code(env, virt_page2);
157                if (tb->page_addr[1] == phys_page2)
158                    goto found;
159            } else {
160                goto found;
161            }
162        }
163        ptb1 = &tb->phys_hash_next;
164    }
165 not_found:
166   /* if no translated code available, then translate it now */
167    tb = tb_gen_code(env, pc, cs_base, flags, 0);
168
169 found:
170    /* Move the last found TB to the head of the list */
171    if (likely(*ptb1)) {
172        *ptb1 = tb->phys_hash_next;
173        tb->phys_hash_next = tb_phys_hash[h];
174        tb_phys_hash[h] = tb;
175    }
176    /* we add the TB in the virtual pc hash table */
177    env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
178    return tb;
179}
180
181static inline TranslationBlock *tb_find_fast(void)
182{
183    TranslationBlock *tb;
184    target_ulong cs_base, pc;
185    int flags;
186
187    /* we record a subset of the CPU state. It will
188       always be the same before a given translated block
189       is executed. */
190    cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
191    tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
192    if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
193                 tb->flags != flags)) {
194        tb = tb_find_slow(pc, cs_base, flags);
195    }
196    return tb;
197}
198
199static CPUDebugExcpHandler *debug_excp_handler;
200
201CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
202{
203    CPUDebugExcpHandler *old_handler = debug_excp_handler;
204
205    debug_excp_handler = handler;
206    return old_handler;
207}
208
209static void cpu_handle_debug_exception(CPUState *env)
210{
211    CPUWatchpoint *wp;
212
213    if (!env->watchpoint_hit) {
214        QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
215            wp->flags &= ~BP_WATCHPOINT_HIT;
216        }
217    }
218    if (debug_excp_handler) {
219        debug_excp_handler(env);
220    }
221}
222
223/* main execution loop */
224
225volatile sig_atomic_t exit_request;
226
227/*
228 * Qemu emulation can happen because of MMIO or emulation mode,
229 * i.e. non-PG mode.  For MMIO cases, the pending interrupt should not
230 * be emulated in qemu because MMIO is emulated for only one
231 * instruction now and then back to the HAX kernel module.
232 */
233int need_handle_intr_request(CPUState *env)
234{
235#ifdef CONFIG_HAX
236    if (!hax_enabled() || hax_vcpu_emulation_mode(env))
237        return env->interrupt_request;
238    return 0;
239#else
240    return env->interrupt_request;
241#endif
242}
243
244int cpu_exec(CPUState *env1)
245{
246    volatile host_reg_t saved_env_reg;
247    int ret, interrupt_request;
248    TranslationBlock *tb;
249    uint8_t *tc_ptr;
250    unsigned long next_tb;
251
252    if (env1->halted) {
253        if (!cpu_has_work(env1)) {
254        return EXCP_HALTED;
255        }
256
257        env1->halted = 0;
258    }
259
260    cpu_single_env = env1;
261
262    /* the access to env below is actually saving the global register's
263       value, so that files not including target-xyz/exec.h are free to
264       use it.  */
265    QEMU_BUILD_BUG_ON (sizeof (saved_env_reg) != sizeof (env));
266    saved_env_reg = (host_reg_t) env;
267    barrier();
268    env = env1;
269
270    if (unlikely(exit_request)) {
271        env->exit_request = 1;
272    }
273
274#if defined(TARGET_I386)
275    if (!kvm_enabled()) {
276        /* put eflags in CPU temporary format */
277        CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
278        DF = 1 - (2 * ((env->eflags >> 10) & 1));
279        CC_OP = CC_OP_EFLAGS;
280        env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
281    }
282#elif defined(TARGET_SPARC)
283#elif defined(TARGET_M68K)
284    env->cc_op = CC_OP_FLAGS;
285    env->cc_dest = env->sr & 0xf;
286    env->cc_x = (env->sr >> 4) & 1;
287#elif defined(TARGET_ALPHA)
288#elif defined(TARGET_ARM)
289#elif defined(TARGET_UNICORE32)
290#elif defined(TARGET_PPC)
291#elif defined(TARGET_LM32)
292#elif defined(TARGET_MICROBLAZE)
293#elif defined(TARGET_MIPS)
294#elif defined(TARGET_SH4)
295#elif defined(TARGET_CRIS)
296#elif defined(TARGET_S390X)
297    /* XXXXX */
298#else
299#error unsupported target CPU
300#endif
301    env->exception_index = -1;
302
303    /* prepare setjmp context for exception handling */
304    for(;;) {
305        if (setjmp(env->jmp_env) == 0) {
306#if defined(__sparc__) && !defined(CONFIG_SOLARIS)
307#undef env
308                    env = cpu_single_env;
309#define env cpu_single_env
310#endif
311            /* if an exception is pending, we execute it here */
312            if (env->exception_index >= 0) {
313                if (env->exception_index >= EXCP_INTERRUPT) {
314                    /* exit request from the cpu execution loop */
315                    ret = env->exception_index;
316                    if (ret == EXCP_DEBUG) {
317                        cpu_handle_debug_exception(env);
318                    }
319                    break;
320                } else {
321#if defined(CONFIG_USER_ONLY)
322                    /* if user mode only, we simulate a fake exception
323                       which will be handled outside the cpu execution
324                       loop */
325#if defined(TARGET_I386)
326                    do_interrupt_user(env->exception_index,
327                                      env->exception_is_int,
328                                      env->error_code,
329                                      env->exception_next_eip);
330                    /* successfully delivered */
331                    env->old_exception = -1;
332#endif
333                    ret = env->exception_index;
334                    break;
335#else
336#if defined(TARGET_I386)
337                    /* simulate a real cpu exception. On i386, it can
338                       trigger new exceptions, but we do not handle
339                       double or triple faults yet. */
340                    do_interrupt(env->exception_index,
341                                 env->exception_is_int,
342                                 env->error_code,
343                                 env->exception_next_eip, 0);
344                    /* successfully delivered */
345                    env->old_exception = -1;
346#elif defined(TARGET_PPC)
347                    do_interrupt(env);
348#elif defined(TARGET_LM32)
349                    do_interrupt(env);
350#elif defined(TARGET_MICROBLAZE)
351                    do_interrupt(env);
352#elif defined(TARGET_MIPS)
353                    do_interrupt(env);
354#elif defined(TARGET_SPARC)
355                    do_interrupt(env);
356#elif defined(TARGET_ARM)
357                    do_interrupt(env);
358#elif defined(TARGET_UNICORE32)
359                    do_interrupt(env);
360#elif defined(TARGET_SH4)
361		    do_interrupt(env);
362#elif defined(TARGET_ALPHA)
363                    do_interrupt(env);
364#elif defined(TARGET_CRIS)
365                    do_interrupt(env);
366#elif defined(TARGET_M68K)
367                    do_interrupt(0);
368#elif defined(TARGET_S390X)
369                    do_interrupt(env);
370#endif
371                    env->exception_index = -1;
372#endif
373                }
374            }
375
376#ifdef CONFIG_HAX
377            if (hax_enabled() && !hax_vcpu_exec(env))
378                longjmp(env->jmp_env, 1);
379#endif
380
381            if (kvm_enabled()) {
382                kvm_cpu_exec(env);
383                longjmp(env->jmp_env, 1);
384            }
385
386            next_tb = 0; /* force lookup of first TB */
387            for(;;) {
388                interrupt_request = env->interrupt_request;
389                if (unlikely(need_handle_intr_request(env))) {
390                    if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
391                        /* Mask out external interrupts for this step. */
392                        interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
393                    }
394                    if (interrupt_request & CPU_INTERRUPT_DEBUG) {
395                        env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
396                        env->exception_index = EXCP_DEBUG;
397                        cpu_loop_exit();
398                    }
399#if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
400    defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
401    defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32)
402                    if (interrupt_request & CPU_INTERRUPT_HALT) {
403                        env->interrupt_request &= ~CPU_INTERRUPT_HALT;
404                        env->halted = 1;
405                        env->exception_index = EXCP_HLT;
406                        cpu_loop_exit();
407                    }
408#endif
409#if defined(TARGET_I386)
410                    if (interrupt_request & CPU_INTERRUPT_INIT) {
411                            svm_check_intercept(SVM_EXIT_INIT);
412                            do_cpu_init(env);
413                            env->exception_index = EXCP_HALTED;
414                            cpu_loop_exit();
415                    } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
416                            do_cpu_sipi(env);
417                    } else if (env->hflags2 & HF2_GIF_MASK) {
418                        if ((interrupt_request & CPU_INTERRUPT_SMI) &&
419                            !(env->hflags & HF_SMM_MASK)) {
420                            svm_check_intercept(SVM_EXIT_SMI);
421                            env->interrupt_request &= ~CPU_INTERRUPT_SMI;
422                            do_smm_enter();
423                            next_tb = 0;
424                        } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
425                                   !(env->hflags2 & HF2_NMI_MASK)) {
426                            env->interrupt_request &= ~CPU_INTERRUPT_NMI;
427                            env->hflags2 |= HF2_NMI_MASK;
428                            do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
429                            next_tb = 0;
430			} else if (interrupt_request & CPU_INTERRUPT_MCE) {
431                            env->interrupt_request &= ~CPU_INTERRUPT_MCE;
432                            do_interrupt(EXCP12_MCHK, 0, 0, 0, 0);
433                            next_tb = 0;
434                        } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
435                                   (((env->hflags2 & HF2_VINTR_MASK) &&
436                                     (env->hflags2 & HF2_HIF_MASK)) ||
437                                    (!(env->hflags2 & HF2_VINTR_MASK) &&
438                                     (env->eflags & IF_MASK &&
439                                      !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
440                            int intno;
441                            svm_check_intercept(SVM_EXIT_INTR);
442                            env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
443                            intno = cpu_get_pic_interrupt(env);
444                            qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
445#if defined(__sparc__) && !defined(CONFIG_SOLARIS)
446#undef env
447                    env = cpu_single_env;
448#define env cpu_single_env
449#endif
450                            do_interrupt(intno, 0, 0, 0, 1);
451                            /* ensure that no TB jump will be modified as
452                               the program flow was changed */
453                            next_tb = 0;
454#if !defined(CONFIG_USER_ONLY)
455                        } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
456                                   (env->eflags & IF_MASK) &&
457                                   !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
458                            int intno;
459                            /* FIXME: this should respect TPR */
460                            svm_check_intercept(SVM_EXIT_VINTR);
461                            intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
462                            qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
463                            do_interrupt(intno, 0, 0, 0, 1);
464                            env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
465                            next_tb = 0;
466#endif
467                        }
468                    }
469#elif defined(TARGET_PPC)
470#if 0
471                    if ((interrupt_request & CPU_INTERRUPT_RESET)) {
472                        cpu_reset(env);
473                    }
474#endif
475                    if (interrupt_request & CPU_INTERRUPT_HARD) {
476                        ppc_hw_interrupt(env);
477                        if (env->pending_interrupts == 0)
478                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
479                        next_tb = 0;
480                    }
481#elif defined(TARGET_LM32)
482                    if ((interrupt_request & CPU_INTERRUPT_HARD)
483                        && (env->ie & IE_IE)) {
484                        env->exception_index = EXCP_IRQ;
485                        do_interrupt(env);
486                        next_tb = 0;
487                    }
488#elif defined(TARGET_MICROBLAZE)
489                    if ((interrupt_request & CPU_INTERRUPT_HARD)
490                        && (env->sregs[SR_MSR] & MSR_IE)
491                        && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
492                        && !(env->iflags & (D_FLAG | IMM_FLAG))) {
493                        env->exception_index = EXCP_IRQ;
494                        do_interrupt(env);
495                        next_tb = 0;
496                    }
497#elif defined(TARGET_MIPS)
498                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
499                        cpu_mips_hw_interrupts_pending(env)) {
500                        /* Raise it */
501                        env->exception_index = EXCP_EXT_INTERRUPT;
502                        env->error_code = 0;
503                        do_interrupt(env);
504                        next_tb = 0;
505                    }
506#elif defined(TARGET_SPARC)
507                    if (interrupt_request & CPU_INTERRUPT_HARD) {
508                        if (cpu_interrupts_enabled(env) &&
509                            env->interrupt_index > 0) {
510                            int pil = env->interrupt_index & 0xf;
511                            int type = env->interrupt_index & 0xf0;
512
513                            if (((type == TT_EXTINT) &&
514                                  cpu_pil_allowed(env, pil)) ||
515                                  type != TT_EXTINT) {
516                                env->exception_index = env->interrupt_index;
517                                do_interrupt(env);
518                                next_tb = 0;
519                            }
520                        }
521		    }
522#elif defined(TARGET_ARM)
523                    if (interrupt_request & CPU_INTERRUPT_FIQ
524                        && !(env->uncached_cpsr & CPSR_F)) {
525                        env->exception_index = EXCP_FIQ;
526                        do_interrupt(env);
527                        next_tb = 0;
528                    }
529                    /* ARMv7-M interrupt return works by loading a magic value
530                       into the PC.  On real hardware the load causes the
531                       return to occur.  The qemu implementation performs the
532                       jump normally, then does the exception return when the
533                       CPU tries to execute code at the magic address.
534                       This will cause the magic PC value to be pushed to
535                       the stack if an interrupt occurred at the wrong time.
536                       We avoid this by disabling interrupts when
537                       pc contains a magic address.  */
538                    if (interrupt_request & CPU_INTERRUPT_HARD
539                        && ((IS_M(env) && env->regs[15] < 0xfffffff0)
540                            || !(env->uncached_cpsr & CPSR_I))) {
541                        env->exception_index = EXCP_IRQ;
542                        do_interrupt(env);
543                        next_tb = 0;
544                    }
545#elif defined(TARGET_UNICORE32)
546                    if (interrupt_request & CPU_INTERRUPT_HARD
547                        && !(env->uncached_asr & ASR_I)) {
548                        do_interrupt(env);
549                        next_tb = 0;
550                    }
551#elif defined(TARGET_SH4)
552                    if (interrupt_request & CPU_INTERRUPT_HARD) {
553                        do_interrupt(env);
554                        next_tb = 0;
555                    }
556#elif defined(TARGET_ALPHA)
557                    if (interrupt_request & CPU_INTERRUPT_HARD) {
558                        do_interrupt(env);
559                        next_tb = 0;
560                    }
561#elif defined(TARGET_CRIS)
562                    if (interrupt_request & CPU_INTERRUPT_HARD
563                        && (env->pregs[PR_CCS] & I_FLAG)
564                        && !env->locked_irq) {
565                        env->exception_index = EXCP_IRQ;
566                        do_interrupt(env);
567                        next_tb = 0;
568                    }
569                    if (interrupt_request & CPU_INTERRUPT_NMI
570                        && (env->pregs[PR_CCS] & M_FLAG)) {
571                        env->exception_index = EXCP_NMI;
572                        do_interrupt(env);
573                        next_tb = 0;
574                    }
575#elif defined(TARGET_M68K)
576                    if (interrupt_request & CPU_INTERRUPT_HARD
577                        && ((env->sr & SR_I) >> SR_I_SHIFT)
578                            < env->pending_level) {
579                        /* Real hardware gets the interrupt vector via an
580                           IACK cycle at this point.  Current emulated
581                           hardware doesn't rely on this, so we
582                           provide/save the vector when the interrupt is
583                           first signalled.  */
584                        env->exception_index = env->pending_vector;
585                        do_interrupt(1);
586                        next_tb = 0;
587                    }
588#elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY)
589                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
590                        (env->psw.mask & PSW_MASK_EXT)) {
591                        do_interrupt(env);
592                        next_tb = 0;
593                    }
594#endif
595                   /* Don't use the cached interrupt_request value,
596                      do_interrupt may have updated the EXITTB flag. */
597                    if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
598                        env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
599                        /* ensure that no TB jump will be modified as
600                           the program flow was changed */
601                        next_tb = 0;
602                    }
603                }
604                if (unlikely(env->exit_request)) {
605                    env->exit_request = 0;
606                    env->exception_index = EXCP_INTERRUPT;
607                    cpu_loop_exit();
608                }
609#if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
610                if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
611                    /* restore flags in standard format */
612#if defined(TARGET_I386)
613                    env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
614                    log_cpu_state(env, X86_DUMP_CCOP);
615                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
616#elif defined(TARGET_M68K)
617                    cpu_m68k_flush_flags(env, env->cc_op);
618                    env->cc_op = CC_OP_FLAGS;
619                    env->sr = (env->sr & 0xffe0)
620                              | env->cc_dest | (env->cc_x << 4);
621                    log_cpu_state(env, 0);
622#else
623                    log_cpu_state(env, 0);
624#endif
625                }
626#endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
627                spin_lock(&tb_lock);
628                tb = tb_find_fast();
629                /* Note: we do it here to avoid a gcc bug on Mac OS X when
630                   doing it in tb_find_slow */
631                if (tb_invalidated_flag) {
632                    /* as some TB could have been invalidated because
633                       of memory exceptions while generating the code, we
634                       must recompute the hash index here */
635                    next_tb = 0;
636                    tb_invalidated_flag = 0;
637                }
638#ifdef CONFIG_DEBUG_EXEC
639                qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
640                             (long)tb->tc_ptr, tb->pc,
641                             lookup_symbol(tb->pc));
642#endif
643                /* see if we can patch the calling TB. When the TB
644                   spans two pages, we cannot safely do a direct
645                   jump. */
646                if (next_tb != 0 && tb->page_addr[1] == -1) {
647                    tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
648                }
649                spin_unlock(&tb_lock);
650
651                /* cpu_interrupt might be called while translating the
652                   TB, but before it is linked into a potentially
653                   infinite loop and becomes env->current_tb. Avoid
654                   starting execution if there is a pending interrupt. */
655                env->current_tb = tb;
656                barrier();
657                if (likely(!env->exit_request)) {
658                    tc_ptr = tb->tc_ptr;
659                /* execute the generated code */
660#if defined(__sparc__) && !defined(CONFIG_SOLARIS)
661#undef env
662                    env = cpu_single_env;
663#define env cpu_single_env
664#endif
665                    next_tb = tcg_qemu_tb_exec(tc_ptr);
666                    if ((next_tb & 3) == 2) {
667                        /* Instruction counter expired.  */
668                        int insns_left;
669                        tb = (TranslationBlock *)(long)(next_tb & ~3);
670                        /* Restore PC.  */
671                        cpu_pc_from_tb(env, tb);
672                        insns_left = env->icount_decr.u32;
673                        if (env->icount_extra && insns_left >= 0) {
674                            /* Refill decrementer and continue execution.  */
675                            env->icount_extra += insns_left;
676                            if (env->icount_extra > 0xffff) {
677                                insns_left = 0xffff;
678                            } else {
679                                insns_left = env->icount_extra;
680                            }
681                            env->icount_extra -= insns_left;
682                            env->icount_decr.u16.low = insns_left;
683                        } else {
684                            if (insns_left > 0) {
685                                /* Execute remaining instructions.  */
686                                cpu_exec_nocache(insns_left, tb);
687                            }
688                            env->exception_index = EXCP_INTERRUPT;
689                            next_tb = 0;
690                            cpu_loop_exit();
691                        }
692                    }
693                }
694                env->current_tb = NULL;
695#ifdef CONFIG_HAX
696                if (hax_enabled() && hax_stop_emulation(env))
697                    cpu_loop_exit();
698#endif
699                /* reset soft MMU for next block (it can currently
700                   only be set by a memory fault) */
701            } /* for(;;) */
702        }
703    } /* for(;;) */
704
705
706#if defined(TARGET_I386)
707    /* restore flags in standard format */
708    env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
709#elif defined(TARGET_ARM)
710    /* XXX: Save/restore host fpu exception state?.  */
711#elif defined(TARGET_UNICORE32)
712#elif defined(TARGET_SPARC)
713#elif defined(TARGET_PPC)
714#elif defined(TARGET_LM32)
715#elif defined(TARGET_M68K)
716    cpu_m68k_flush_flags(env, env->cc_op);
717    env->cc_op = CC_OP_FLAGS;
718    env->sr = (env->sr & 0xffe0)
719              | env->cc_dest | (env->cc_x << 4);
720#elif defined(TARGET_MICROBLAZE)
721#elif defined(TARGET_MIPS)
722#elif defined(TARGET_SH4)
723#elif defined(TARGET_ALPHA)
724#elif defined(TARGET_CRIS)
725#elif defined(TARGET_S390X)
726    /* XXXXX */
727#else
728#error unsupported target CPU
729#endif
730
731    /* restore global registers */
732    barrier();
733    env = (void *) saved_env_reg;
734
735    /* fail safe : never use cpu_single_env outside cpu_exec() */
736    cpu_single_env = NULL;
737    return ret;
738}
739
740/* must only be called from the generated code as an exception can be
741   generated */
742void tb_invalidate_page_range(target_ulong start, target_ulong end)
743{
744    /* XXX: cannot enable it yet because it yields to MMU exception
745       where NIP != read address on PowerPC */
746#if 0
747    target_ulong phys_addr;
748    phys_addr = get_phys_addr_code(env, start);
749    tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
750#endif
751}
752
753#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
754
755void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
756{
757    CPUX86State *saved_env;
758
759    saved_env = env;
760    env = s;
761    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
762        selector &= 0xffff;
763        cpu_x86_load_seg_cache(env, seg_reg, selector,
764                               (selector << 4), 0xffff, 0);
765    } else {
766        helper_load_seg(seg_reg, selector);
767    }
768    env = saved_env;
769}
770
771void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
772{
773    CPUX86State *saved_env;
774
775    saved_env = env;
776    env = s;
777
778    helper_fsave(ptr, data32);
779
780    env = saved_env;
781}
782
783void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
784{
785    CPUX86State *saved_env;
786
787    saved_env = env;
788    env = s;
789
790    helper_frstor(ptr, data32);
791
792    env = saved_env;
793}
794
795#endif /* TARGET_I386 */
796
797#if !defined(CONFIG_SOFTMMU)
798
799#if defined(TARGET_I386)
800#define EXCEPTION_ACTION raise_exception_err(env->exception_index, env->error_code)
801#else
802#define EXCEPTION_ACTION cpu_loop_exit()
803#endif
804
805/* 'pc' is the host PC at which the exception was raised. 'address' is
806   the effective address of the memory exception. 'is_write' is 1 if a
807   write caused the exception and otherwise 0'. 'old_set' is the
808   signal set which should be restored */
809static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
810                                    int is_write, sigset_t *old_set,
811                                    void *puc)
812{
813    TranslationBlock *tb;
814    int ret;
815
816    if (cpu_single_env)
817        env = cpu_single_env; /* XXX: find a correct solution for multithread */
818#if defined(DEBUG_SIGNAL)
819    qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
820                pc, address, is_write, *(unsigned long *)old_set);
821#endif
822    /* XXX: locking issue */
823    if (is_write && page_unprotect(h2g(address), pc, puc)) {
824        return 1;
825    }
826
827    /* see if it is an MMU fault */
828    ret = cpu_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
829    if (ret < 0)
830        return 0; /* not an MMU fault */
831    if (ret == 0)
832        return 1; /* the MMU fault was handled without causing real CPU fault */
833    /* now we have a real cpu fault */
834    tb = tb_find_pc(pc);
835    if (tb) {
836        /* the PC is inside the translated code. It means that we have
837           a virtual CPU fault */
838        cpu_restore_state(tb, env, pc);
839    }
840
841    /* we restore the process signal mask as the sigreturn should
842       do it (XXX: use sigsetjmp) */
843    sigprocmask(SIG_SETMASK, old_set, NULL);
844    EXCEPTION_ACTION;
845
846    /* never comes here */
847    return 1;
848}
849
850#if defined(__i386__)
851
852#if defined(__APPLE__)
853# include <sys/ucontext.h>
854
855# define EIP_sig(context)  (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
856# define TRAP_sig(context)    ((context)->uc_mcontext->es.trapno)
857# define ERROR_sig(context)   ((context)->uc_mcontext->es.err)
858# define MASK_sig(context)    ((context)->uc_sigmask)
859#elif defined (__NetBSD__)
860# include <ucontext.h>
861
862# define EIP_sig(context)     ((context)->uc_mcontext.__gregs[_REG_EIP])
863# define TRAP_sig(context)    ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
864# define ERROR_sig(context)   ((context)->uc_mcontext.__gregs[_REG_ERR])
865# define MASK_sig(context)    ((context)->uc_sigmask)
866#elif defined (__FreeBSD__) || defined(__DragonFly__)
867# include <ucontext.h>
868
869# define EIP_sig(context)  (*((unsigned long*)&(context)->uc_mcontext.mc_eip))
870# define TRAP_sig(context)    ((context)->uc_mcontext.mc_trapno)
871# define ERROR_sig(context)   ((context)->uc_mcontext.mc_err)
872# define MASK_sig(context)    ((context)->uc_sigmask)
873#elif defined(__OpenBSD__)
874# define EIP_sig(context)     ((context)->sc_eip)
875# define TRAP_sig(context)    ((context)->sc_trapno)
876# define ERROR_sig(context)   ((context)->sc_err)
877# define MASK_sig(context)    ((context)->sc_mask)
878#else
879# define EIP_sig(context)     ((context)->uc_mcontext.gregs[REG_EIP])
880# define TRAP_sig(context)    ((context)->uc_mcontext.gregs[REG_TRAPNO])
881# define ERROR_sig(context)   ((context)->uc_mcontext.gregs[REG_ERR])
882# define MASK_sig(context)    ((context)->uc_sigmask)
883#endif
884
885int cpu_signal_handler(int host_signum, void *pinfo,
886                       void *puc)
887{
888    siginfo_t *info = pinfo;
889#if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
890    ucontext_t *uc = puc;
891#elif defined(__OpenBSD__)
892    struct sigcontext *uc = puc;
893#else
894    struct ucontext *uc = puc;
895#endif
896    unsigned long pc;
897    int trapno;
898
899#ifndef REG_EIP
900/* for glibc 2.1 */
901#define REG_EIP    EIP
902#define REG_ERR    ERR
903#define REG_TRAPNO TRAPNO
904#endif
905    pc = EIP_sig(uc);
906    trapno = TRAP_sig(uc);
907    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
908                             trapno == 0xe ?
909                             (ERROR_sig(uc) >> 1) & 1 : 0,
910                             &MASK_sig(uc), puc);
911}
912
913#elif defined(__x86_64__)
914
915#ifdef __NetBSD__
916#define PC_sig(context)       _UC_MACHINE_PC(context)
917#define TRAP_sig(context)     ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
918#define ERROR_sig(context)    ((context)->uc_mcontext.__gregs[_REG_ERR])
919#define MASK_sig(context)     ((context)->uc_sigmask)
920#elif defined(__OpenBSD__)
921#define PC_sig(context)       ((context)->sc_rip)
922#define TRAP_sig(context)     ((context)->sc_trapno)
923#define ERROR_sig(context)    ((context)->sc_err)
924#define MASK_sig(context)     ((context)->sc_mask)
925#elif defined (__FreeBSD__) || defined(__DragonFly__)
926#include <ucontext.h>
927
928#define PC_sig(context)  (*((unsigned long*)&(context)->uc_mcontext.mc_rip))
929#define TRAP_sig(context)     ((context)->uc_mcontext.mc_trapno)
930#define ERROR_sig(context)    ((context)->uc_mcontext.mc_err)
931#define MASK_sig(context)     ((context)->uc_sigmask)
932#else
933#define PC_sig(context)       ((context)->uc_mcontext.gregs[REG_RIP])
934#define TRAP_sig(context)     ((context)->uc_mcontext.gregs[REG_TRAPNO])
935#define ERROR_sig(context)    ((context)->uc_mcontext.gregs[REG_ERR])
936#define MASK_sig(context)     ((context)->uc_sigmask)
937#endif
938
939int cpu_signal_handler(int host_signum, void *pinfo,
940                       void *puc)
941{
942    siginfo_t *info = pinfo;
943    unsigned long pc;
944#if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
945    ucontext_t *uc = puc;
946#elif defined(__OpenBSD__)
947    struct sigcontext *uc = puc;
948#else
949    struct ucontext *uc = puc;
950#endif
951
952    pc = PC_sig(uc);
953    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
954                             TRAP_sig(uc) == 0xe ?
955                             (ERROR_sig(uc) >> 1) & 1 : 0,
956                             &MASK_sig(uc), puc);
957}
958
959#elif defined(_ARCH_PPC)
960
961/***********************************************************************
962 * signal context platform-specific definitions
963 * From Wine
964 */
965#ifdef linux
966/* All Registers access - only for local access */
967# define REG_sig(reg_name, context)		((context)->uc_mcontext.regs->reg_name)
968/* Gpr Registers access  */
969# define GPR_sig(reg_num, context)		REG_sig(gpr[reg_num], context)
970# define IAR_sig(context)			REG_sig(nip, context)	/* Program counter */
971# define MSR_sig(context)			REG_sig(msr, context)   /* Machine State Register (Supervisor) */
972# define CTR_sig(context)			REG_sig(ctr, context)   /* Count register */
973# define XER_sig(context)			REG_sig(xer, context) /* User's integer exception register */
974# define LR_sig(context)			REG_sig(link, context) /* Link register */
975# define CR_sig(context)			REG_sig(ccr, context) /* Condition register */
976/* Float Registers access  */
977# define FLOAT_sig(reg_num, context)		(((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
978# define FPSCR_sig(context)			(*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
979/* Exception Registers access */
980# define DAR_sig(context)			REG_sig(dar, context)
981# define DSISR_sig(context)			REG_sig(dsisr, context)
982# define TRAP_sig(context)			REG_sig(trap, context)
983#endif /* linux */
984
985#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
986#include <ucontext.h>
987# define IAR_sig(context)		((context)->uc_mcontext.mc_srr0)
988# define MSR_sig(context)		((context)->uc_mcontext.mc_srr1)
989# define CTR_sig(context)		((context)->uc_mcontext.mc_ctr)
990# define XER_sig(context)		((context)->uc_mcontext.mc_xer)
991# define LR_sig(context)		((context)->uc_mcontext.mc_lr)
992# define CR_sig(context)		((context)->uc_mcontext.mc_cr)
993/* Exception Registers access */
994# define DAR_sig(context)		((context)->uc_mcontext.mc_dar)
995# define DSISR_sig(context)		((context)->uc_mcontext.mc_dsisr)
996# define TRAP_sig(context)		((context)->uc_mcontext.mc_exc)
997#endif /* __FreeBSD__|| __FreeBSD_kernel__ */
998
999#ifdef __APPLE__
1000# include <sys/ucontext.h>
1001typedef struct ucontext SIGCONTEXT;
1002/* All Registers access - only for local access */
1003# define REG_sig(reg_name, context)		((context)->uc_mcontext->ss.reg_name)
1004# define FLOATREG_sig(reg_name, context)	((context)->uc_mcontext->fs.reg_name)
1005# define EXCEPREG_sig(reg_name, context)	((context)->uc_mcontext->es.reg_name)
1006# define VECREG_sig(reg_name, context)		((context)->uc_mcontext->vs.reg_name)
1007/* Gpr Registers access */
1008# define GPR_sig(reg_num, context)		REG_sig(r##reg_num, context)
1009# define IAR_sig(context)			REG_sig(srr0, context)	/* Program counter */
1010# define MSR_sig(context)			REG_sig(srr1, context)  /* Machine State Register (Supervisor) */
1011# define CTR_sig(context)			REG_sig(ctr, context)
1012# define XER_sig(context)			REG_sig(xer, context) /* Link register */
1013# define LR_sig(context)			REG_sig(lr, context)  /* User's integer exception register */
1014# define CR_sig(context)			REG_sig(cr, context)  /* Condition register */
1015/* Float Registers access */
1016# define FLOAT_sig(reg_num, context)		FLOATREG_sig(fpregs[reg_num], context)
1017# define FPSCR_sig(context)			((double)FLOATREG_sig(fpscr, context))
1018/* Exception Registers access */
1019# define DAR_sig(context)			EXCEPREG_sig(dar, context)     /* Fault registers for coredump */
1020# define DSISR_sig(context)			EXCEPREG_sig(dsisr, context)
1021# define TRAP_sig(context)			EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1022#endif /* __APPLE__ */
1023
1024int cpu_signal_handler(int host_signum, void *pinfo,
1025                       void *puc)
1026{
1027    siginfo_t *info = pinfo;
1028#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
1029    ucontext_t *uc = puc;
1030#else
1031    struct ucontext *uc = puc;
1032#endif
1033    unsigned long pc;
1034    int is_write;
1035
1036    pc = IAR_sig(uc);
1037    is_write = 0;
1038#if 0
1039    /* ppc 4xx case */
1040    if (DSISR_sig(uc) & 0x00800000)
1041        is_write = 1;
1042#else
1043    if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1044        is_write = 1;
1045#endif
1046    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1047                             is_write, &uc->uc_sigmask, puc);
1048}
1049
1050#elif defined(__alpha__)
1051
1052int cpu_signal_handler(int host_signum, void *pinfo,
1053                           void *puc)
1054{
1055    siginfo_t *info = pinfo;
1056    struct ucontext *uc = puc;
1057    uint32_t *pc = uc->uc_mcontext.sc_pc;
1058    uint32_t insn = *pc;
1059    int is_write = 0;
1060
1061    /* XXX: need kernel patch to get write flag faster */
1062    switch (insn >> 26) {
1063    case 0x0d: // stw
1064    case 0x0e: // stb
1065    case 0x0f: // stq_u
1066    case 0x24: // stf
1067    case 0x25: // stg
1068    case 0x26: // sts
1069    case 0x27: // stt
1070    case 0x2c: // stl
1071    case 0x2d: // stq
1072    case 0x2e: // stl_c
1073    case 0x2f: // stq_c
1074	is_write = 1;
1075    }
1076
1077    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1078                             is_write, &uc->uc_sigmask, puc);
1079}
1080#elif defined(__sparc__)
1081
1082int cpu_signal_handler(int host_signum, void *pinfo,
1083                       void *puc)
1084{
1085    siginfo_t *info = pinfo;
1086    int is_write;
1087    uint32_t insn;
1088#if !defined(__arch64__) || defined(CONFIG_SOLARIS)
1089    uint32_t *regs = (uint32_t *)(info + 1);
1090    void *sigmask = (regs + 20);
1091    /* XXX: is there a standard glibc define ? */
1092    unsigned long pc = regs[1];
1093#else
1094#ifdef __linux__
1095    struct sigcontext *sc = puc;
1096    unsigned long pc = sc->sigc_regs.tpc;
1097    void *sigmask = (void *)sc->sigc_mask;
1098#elif defined(__OpenBSD__)
1099    struct sigcontext *uc = puc;
1100    unsigned long pc = uc->sc_pc;
1101    void *sigmask = (void *)(long)uc->sc_mask;
1102#endif
1103#endif
1104
1105    /* XXX: need kernel patch to get write flag faster */
1106    is_write = 0;
1107    insn = *(uint32_t *)pc;
1108    if ((insn >> 30) == 3) {
1109      switch((insn >> 19) & 0x3f) {
1110      case 0x05: // stb
1111      case 0x15: // stba
1112      case 0x06: // sth
1113      case 0x16: // stha
1114      case 0x04: // st
1115      case 0x14: // sta
1116      case 0x07: // std
1117      case 0x17: // stda
1118      case 0x0e: // stx
1119      case 0x1e: // stxa
1120      case 0x24: // stf
1121      case 0x34: // stfa
1122      case 0x27: // stdf
1123      case 0x37: // stdfa
1124      case 0x26: // stqf
1125      case 0x36: // stqfa
1126      case 0x25: // stfsr
1127      case 0x3c: // casa
1128      case 0x3e: // casxa
1129	is_write = 1;
1130	break;
1131      }
1132    }
1133    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1134                             is_write, sigmask, NULL);
1135}
1136
1137#elif defined(__arm__)
1138
1139int cpu_signal_handler(int host_signum, void *pinfo,
1140                       void *puc)
1141{
1142    siginfo_t *info = pinfo;
1143    struct ucontext *uc = puc;
1144    unsigned long pc;
1145    int is_write;
1146
1147#if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1148    pc = uc->uc_mcontext.gregs[R15];
1149#else
1150    pc = uc->uc_mcontext.arm_pc;
1151#endif
1152    /* XXX: compute is_write */
1153    is_write = 0;
1154    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1155                             is_write,
1156                             &uc->uc_sigmask, puc);
1157}
1158
1159#elif defined(__mc68000)
1160
1161int cpu_signal_handler(int host_signum, void *pinfo,
1162                       void *puc)
1163{
1164    siginfo_t *info = pinfo;
1165    struct ucontext *uc = puc;
1166    unsigned long pc;
1167    int is_write;
1168
1169    pc = uc->uc_mcontext.gregs[16];
1170    /* XXX: compute is_write */
1171    is_write = 0;
1172    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1173                             is_write,
1174                             &uc->uc_sigmask, puc);
1175}
1176
1177#elif defined(__ia64)
1178
1179#ifndef __ISR_VALID
1180  /* This ought to be in <bits/siginfo.h>... */
1181# define __ISR_VALID	1
1182#endif
1183
1184int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1185{
1186    siginfo_t *info = pinfo;
1187    struct ucontext *uc = puc;
1188    unsigned long ip;
1189    int is_write = 0;
1190
1191    ip = uc->uc_mcontext.sc_ip;
1192    switch (host_signum) {
1193      case SIGILL:
1194      case SIGFPE:
1195      case SIGSEGV:
1196      case SIGBUS:
1197      case SIGTRAP:
1198	  if (info->si_code && (info->si_segvflags & __ISR_VALID))
1199	      /* ISR.W (write-access) is bit 33:  */
1200	      is_write = (info->si_isr >> 33) & 1;
1201	  break;
1202
1203      default:
1204	  break;
1205    }
1206    return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1207                             is_write,
1208                             (sigset_t *)&uc->uc_sigmask, puc);
1209}
1210
1211#elif defined(__s390__)
1212
1213int cpu_signal_handler(int host_signum, void *pinfo,
1214                       void *puc)
1215{
1216    siginfo_t *info = pinfo;
1217    struct ucontext *uc = puc;
1218    unsigned long pc;
1219    uint16_t *pinsn;
1220    int is_write = 0;
1221
1222    pc = uc->uc_mcontext.psw.addr;
1223
1224    /* ??? On linux, the non-rt signal handler has 4 (!) arguments instead
1225       of the normal 2 arguments.  The 3rd argument contains the "int_code"
1226       from the hardware which does in fact contain the is_write value.
1227       The rt signal handler, as far as I can tell, does not give this value
1228       at all.  Not that we could get to it from here even if it were.  */
1229    /* ??? This is not even close to complete, since it ignores all
1230       of the read-modify-write instructions.  */
1231    pinsn = (uint16_t *)pc;
1232    switch (pinsn[0] >> 8) {
1233    case 0x50: /* ST */
1234    case 0x42: /* STC */
1235    case 0x40: /* STH */
1236        is_write = 1;
1237        break;
1238    case 0xc4: /* RIL format insns */
1239        switch (pinsn[0] & 0xf) {
1240        case 0xf: /* STRL */
1241        case 0xb: /* STGRL */
1242        case 0x7: /* STHRL */
1243            is_write = 1;
1244        }
1245        break;
1246    case 0xe3: /* RXY format insns */
1247        switch (pinsn[2] & 0xff) {
1248        case 0x50: /* STY */
1249        case 0x24: /* STG */
1250        case 0x72: /* STCY */
1251        case 0x70: /* STHY */
1252        case 0x8e: /* STPQ */
1253        case 0x3f: /* STRVH */
1254        case 0x3e: /* STRV */
1255        case 0x2f: /* STRVG */
1256            is_write = 1;
1257        }
1258        break;
1259    }
1260    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1261                             is_write, &uc->uc_sigmask, puc);
1262}
1263
1264#elif defined(__mips__)
1265
1266int cpu_signal_handler(int host_signum, void *pinfo,
1267                       void *puc)
1268{
1269    siginfo_t *info = pinfo;
1270    struct ucontext *uc = puc;
1271    greg_t pc = uc->uc_mcontext.pc;
1272    int is_write;
1273
1274    /* XXX: compute is_write */
1275    is_write = 0;
1276    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1277                             is_write, &uc->uc_sigmask, puc);
1278}
1279
1280#elif defined(__hppa__)
1281
1282int cpu_signal_handler(int host_signum, void *pinfo,
1283                       void *puc)
1284{
1285    struct siginfo *info = pinfo;
1286    struct ucontext *uc = puc;
1287    unsigned long pc = uc->uc_mcontext.sc_iaoq[0];
1288    uint32_t insn = *(uint32_t *)pc;
1289    int is_write = 0;
1290
1291    /* XXX: need kernel patch to get write flag faster.  */
1292    switch (insn >> 26) {
1293    case 0x1a: /* STW */
1294    case 0x19: /* STH */
1295    case 0x18: /* STB */
1296    case 0x1b: /* STWM */
1297        is_write = 1;
1298        break;
1299
1300    case 0x09: /* CSTWX, FSTWX, FSTWS */
1301    case 0x0b: /* CSTDX, FSTDX, FSTDS */
1302        /* Distinguish from coprocessor load ... */
1303        is_write = (insn >> 9) & 1;
1304        break;
1305
1306    case 0x03:
1307        switch ((insn >> 6) & 15) {
1308        case 0xa: /* STWS */
1309        case 0x9: /* STHS */
1310        case 0x8: /* STBS */
1311        case 0xe: /* STWAS */
1312        case 0xc: /* STBYS */
1313            is_write = 1;
1314        }
1315        break;
1316    }
1317
1318    return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1319                             is_write, &uc->uc_sigmask, puc);
1320}
1321
1322#else
1323
1324#error host CPU specific signal handler needed
1325
1326#endif
1327
1328#endif /* !defined(CONFIG_SOFTMMU) */
1329