1/* @(#)e_pow.c 5.1 93/09/24 */
2/*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5 *
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
11 */
12
13#if defined(LIBM_SCCS) && !defined(lint)
14static char rcsid[] = "$NetBSD: e_pow.c,v 1.9 1995/05/12 04:57:32 jtc Exp $";
15#endif
16
17/* __ieee754_pow(x,y) return x**y
18 *
19 *		      n
20 * Method:  Let x =  2   * (1+f)
21 *	1. Compute and return log2(x) in two pieces:
22 *		log2(x) = w1 + w2,
23 *	   where w1 has 53-24 = 29 bit trailing zeros.
24 *	2. Perform y*log2(x) = n+y' by simulating muti-precision
25 *	   arithmetic, where |y'|<=0.5.
26 *	3. Return x**y = 2**n*exp(y'*log2)
27 *
28 * Special cases:
29 *	1.  (anything) ** 0  is 1
30 *	2.  (anything) ** 1  is itself
31 *	3.  (anything) ** NAN is NAN
32 *	4.  NAN ** (anything except 0) is NAN
33 *	5.  +-(|x| > 1) **  +INF is +INF
34 *	6.  +-(|x| > 1) **  -INF is +0
35 *	7.  +-(|x| < 1) **  +INF is +0
36 *	8.  +-(|x| < 1) **  -INF is +INF
37 *	9.  +-1         ** +-INF is NAN
38 *	10. +0 ** (+anything except 0, NAN)               is +0
39 *	11. -0 ** (+anything except 0, NAN, odd integer)  is +0
40 *	12. +0 ** (-anything except 0, NAN)               is +INF
41 *	13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
42 *	14. -0 ** (odd integer) = -( +0 ** (odd integer) )
43 *	15. +INF ** (+anything except 0,NAN) is +INF
44 *	16. +INF ** (-anything except 0,NAN) is +0
45 *	17. -INF ** (anything)  = -0 ** (-anything)
46 *	18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
47 *	19. (-anything except 0 and inf) ** (non-integer) is NAN
48 *
49 * Accuracy:
50 *	pow(x,y) returns x**y nearly rounded. In particular
51 *			pow(integer,integer)
52 *	always returns the correct integer provided it is
53 *	representable.
54 *
55 * Constants :
56 * The hexadecimal values are the intended ones for the following
57 * constants. The decimal values may be used, provided that the
58 * compiler will convert from decimal to binary accurately enough
59 * to produce the hexadecimal values shown.
60 */
61
62/*#include "math.h"*/
63#include "math_private.h"
64
65#ifdef __STDC__
66static const double
67#else
68static double
69#endif
70bp[] = {1.0, 1.5,},
71dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
72dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
73	/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
74L1  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
75L2  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
76L3  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
77L4  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
78L5  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
79L6  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
80P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
81P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
82P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
83P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
84P5   =  4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
85lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
86lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
87lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
88ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
89cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
90cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
91cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
92ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
93ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
94ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
95
96#ifdef __STDC__
97	double __ieee754_pow(double x, double y)
98#else
99	double __ieee754_pow(x,y)
100	double x, y;
101#endif
102{
103	double z,ax,z_h,z_l,p_h,p_l;
104	double y1,t1,t2,r,s,t,u,v,w;
105	int32_t i,j,k,yisint,n;
106	int32_t hx,hy,ix,iy;
107	u_int32_t lx,ly;
108
109	EXTRACT_WORDS(hx,lx,x);
110	EXTRACT_WORDS(hy,ly,y);
111	ix = hx&0x7fffffff;  iy = hy&0x7fffffff;
112
113    /* y==zero: x**0 = 1 */
114	if((iy|ly)==0) return one;
115
116    /* +-NaN return x+y */
117	if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
118	   iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
119		return x+y;
120
121    /* determine if y is an odd int when x < 0
122     * yisint = 0	... y is not an integer
123     * yisint = 1	... y is an odd int
124     * yisint = 2	... y is an even int
125     */
126	yisint  = 0;
127	if(hx<0) {
128	    if(iy>=0x43400000) yisint = 2; /* even integer y */
129	    else if(iy>=0x3ff00000) {
130		k = (iy>>20)-0x3ff;	   /* exponent */
131		if(k>20) {
132		    j = ly>>(52-k);
133		    if((u_int32_t)(j<<(52-k))==ly) yisint = 2-(j&1);
134		} else if(ly==0) {
135		    j = iy>>(20-k);
136		    if((j<<(20-k))==iy) yisint = 2-(j&1);
137		}
138	    }
139	}
140
141    /* special value of y */
142	if(ly==0) {
143	    if (iy==0x7ff00000) {	/* y is +-inf */
144	        if(((ix-0x3ff00000)|lx)==0)
145		    return  y - y;	/* inf**+-1 is NaN */
146	        else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
147		    return (hy>=0)? y: zero;
148	        else			/* (|x|<1)**-,+inf = inf,0 */
149		    return (hy<0)?-y: zero;
150	    }
151	    if(iy==0x3ff00000) {	/* y is  +-1 */
152		if(hy<0) return one/x; else return x;
153	    }
154	    if(hy==0x40000000) return x*x; /* y is  2 */
155	    if(hy==0x3fe00000) {	/* y is  0.5 */
156		if(hx>=0)	/* x >= +0 */
157		return __ieee754_sqrt(x);
158	    }
159	}
160
161	ax   = x < 0 ? -x : x; /*fabs(x);*/
162    /* special value of x */
163	if(lx==0) {
164	    if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
165		z = ax;			/*x is +-0,+-inf,+-1*/
166		if(hy<0) z = one/z;	/* z = (1/|x|) */
167		if(hx<0) {
168		    if(((ix-0x3ff00000)|yisint)==0) {
169			z = (z-z)/(z-z); /* (-1)**non-int is NaN */
170		    } else if(yisint==1)
171			z = -z;		/* (x<0)**odd = -(|x|**odd) */
172		}
173		return z;
174	    }
175	}
176
177    /* (x<0)**(non-int) is NaN */
178	if(((((u_int32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x);
179
180    /* |y| is huge */
181	if(iy>0x41e00000) { /* if |y| > 2**31 */
182	    if(iy>0x43f00000){	/* if |y| > 2**64, must o/uflow */
183		if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
184		if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
185	    }
186	/* over/underflow if x is not close to one */
187	    if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
188	    if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
189	/* now |1-x| is tiny <= 2**-20, suffice to compute
190	   log(x) by x-x^2/2+x^3/3-x^4/4 */
191	    t = x-1;		/* t has 20 trailing zeros */
192	    w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
193	    u = ivln2_h*t;	/* ivln2_h has 21 sig. bits */
194	    v = t*ivln2_l-w*ivln2;
195	    t1 = u+v;
196	    SET_LOW_WORD(t1,0);
197	    t2 = v-(t1-u);
198	} else {
199	    double s2,s_h,s_l,t_h,t_l;
200	    n = 0;
201	/* take care subnormal number */
202	    if(ix<0x00100000)
203		{ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
204	    n  += ((ix)>>20)-0x3ff;
205	    j  = ix&0x000fffff;
206	/* determine interval */
207	    ix = j|0x3ff00000;		/* normalize ix */
208	    if(j<=0x3988E) k=0;		/* |x|<sqrt(3/2) */
209	    else if(j<0xBB67A) k=1;	/* |x|<sqrt(3)   */
210	    else {k=0;n+=1;ix -= 0x00100000;}
211	    SET_HIGH_WORD(ax,ix);
212
213	/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
214	    u = ax-bp[k];		/* bp[0]=1.0, bp[1]=1.5 */
215	    v = one/(ax+bp[k]);
216	    s = u*v;
217	    s_h = s;
218	    SET_LOW_WORD(s_h,0);
219	/* t_h=ax+bp[k] High */
220	    t_h = zero;
221	    SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
222	    t_l = ax - (t_h-bp[k]);
223	    s_l = v*((u-s_h*t_h)-s_h*t_l);
224	/* compute log(ax) */
225	    s2 = s*s;
226	    r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
227	    r += s_l*(s_h+s);
228	    s2  = s_h*s_h;
229	    t_h = 3.0+s2+r;
230	    SET_LOW_WORD(t_h,0);
231	    t_l = r-((t_h-3.0)-s2);
232	/* u+v = s*(1+...) */
233	    u = s_h*t_h;
234	    v = s_l*t_h+t_l*s;
235	/* 2/(3log2)*(s+...) */
236	    p_h = u+v;
237	    SET_LOW_WORD(p_h,0);
238	    p_l = v-(p_h-u);
239	    z_h = cp_h*p_h;		/* cp_h+cp_l = 2/(3*log2) */
240	    z_l = cp_l*p_h+p_l*cp+dp_l[k];
241	/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
242	    t = (double)n;
243	    t1 = (((z_h+z_l)+dp_h[k])+t);
244	    SET_LOW_WORD(t1,0);
245	    t2 = z_l-(((t1-t)-dp_h[k])-z_h);
246	}
247
248	s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
249	if(((((u_int32_t)hx>>31)-1)|(yisint-1))==0)
250	    s = -one;/* (-ve)**(odd int) */
251
252    /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
253	y1  = y;
254	SET_LOW_WORD(y1,0);
255	p_l = (y-y1)*t1+y*t2;
256	p_h = y1*t1;
257	z = p_l+p_h;
258	EXTRACT_WORDS(j,i,z);
259	if (j>=0x40900000) {				/* z >= 1024 */
260	    if(((j-0x40900000)|i)!=0)			/* if z > 1024 */
261		return s*huge*huge;			/* overflow */
262	    else {
263		if(p_l+ovt>z-p_h) return s*huge*huge;	/* overflow */
264	    }
265	} else if((j&0x7fffffff)>=0x4090cc00 ) {	/* z <= -1075 */
266	    if(((j-0xc090cc00)|i)!=0) 		/* z < -1075 */
267		return s*tiny*tiny;		/* underflow */
268	    else {
269		if(p_l<=z-p_h) return s*tiny*tiny;	/* underflow */
270	    }
271	}
272    /*
273     * compute 2**(p_h+p_l)
274     */
275	i = j&0x7fffffff;
276	k = (i>>20)-0x3ff;
277	n = 0;
278	if(i>0x3fe00000) {		/* if |z| > 0.5, set n = [z+0.5] */
279	    n = j+(0x00100000>>(k+1));
280	    k = ((n&0x7fffffff)>>20)-0x3ff;	/* new k for n */
281	    t = zero;
282	    SET_HIGH_WORD(t,n&~(0x000fffff>>k));
283	    n = ((n&0x000fffff)|0x00100000)>>(20-k);
284	    if(j<0) n = -n;
285	    p_h -= t;
286	}
287	t = p_l+p_h;
288	SET_LOW_WORD(t,0);
289	u = t*lg2_h;
290	v = (p_l-(t-p_h))*lg2+t*lg2_l;
291	z = u+v;
292	w = v-(z-u);
293	t  = z*z;
294	t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
295	r  = (z*t1)/(t1-two)-(w+z*w);
296	z  = one-(r-z);
297	GET_HIGH_WORD(j,z);
298	j += (n<<20);
299	if((j>>20)<=0) z = SDL_NAME(scalbn)(z,n);	/* subnormal output */
300	else SET_HIGH_WORD(z,j);
301	return s*z;
302}
303