1// Copyright 2012 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_UTILS_H_
29#define V8_UTILS_H_
30
31#include <stdlib.h>
32#include <string.h>
33#include <climits>
34
35#include "globals.h"
36#include "checks.h"
37#include "allocation.h"
38
39namespace v8 {
40namespace internal {
41
42// ----------------------------------------------------------------------------
43// General helper functions
44
45#define IS_POWER_OF_TWO(x) (((x) & ((x) - 1)) == 0)
46
47// Returns true iff x is a power of 2 (or zero). Cannot be used with the
48// maximally negative value of the type T (the -1 overflows).
49template <typename T>
50inline bool IsPowerOf2(T x) {
51  return IS_POWER_OF_TWO(x);
52}
53
54
55// X must be a power of 2.  Returns the number of trailing zeros.
56inline int WhichPowerOf2(uint32_t x) {
57  ASSERT(IsPowerOf2(x));
58  ASSERT(x != 0);
59  int bits = 0;
60#ifdef DEBUG
61  int original_x = x;
62#endif
63  if (x >= 0x10000) {
64    bits += 16;
65    x >>= 16;
66  }
67  if (x >= 0x100) {
68    bits += 8;
69    x >>= 8;
70  }
71  if (x >= 0x10) {
72    bits += 4;
73    x >>= 4;
74  }
75  switch (x) {
76    default: UNREACHABLE();
77    case 8: bits++;  // Fall through.
78    case 4: bits++;  // Fall through.
79    case 2: bits++;  // Fall through.
80    case 1: break;
81  }
82  ASSERT_EQ(1 << bits, original_x);
83  return bits;
84  return 0;
85}
86
87
88// The C++ standard leaves the semantics of '>>' undefined for
89// negative signed operands. Most implementations do the right thing,
90// though.
91inline int ArithmeticShiftRight(int x, int s) {
92  return x >> s;
93}
94
95
96// Compute the 0-relative offset of some absolute value x of type T.
97// This allows conversion of Addresses and integral types into
98// 0-relative int offsets.
99template <typename T>
100inline intptr_t OffsetFrom(T x) {
101  return x - static_cast<T>(0);
102}
103
104
105// Compute the absolute value of type T for some 0-relative offset x.
106// This allows conversion of 0-relative int offsets into Addresses and
107// integral types.
108template <typename T>
109inline T AddressFrom(intptr_t x) {
110  return static_cast<T>(static_cast<T>(0) + x);
111}
112
113
114// Return the largest multiple of m which is <= x.
115template <typename T>
116inline T RoundDown(T x, intptr_t m) {
117  ASSERT(IsPowerOf2(m));
118  return AddressFrom<T>(OffsetFrom(x) & -m);
119}
120
121
122// Return the smallest multiple of m which is >= x.
123template <typename T>
124inline T RoundUp(T x, intptr_t m) {
125  return RoundDown<T>(static_cast<T>(x + m - 1), m);
126}
127
128
129template <typename T>
130int Compare(const T& a, const T& b) {
131  if (a == b)
132    return 0;
133  else if (a < b)
134    return -1;
135  else
136    return 1;
137}
138
139
140template <typename T>
141int PointerValueCompare(const T* a, const T* b) {
142  return Compare<T>(*a, *b);
143}
144
145
146// Compare function to compare the object pointer value of two
147// handlified objects. The handles are passed as pointers to the
148// handles.
149template<typename T> class Handle;  // Forward declaration.
150template <typename T>
151int HandleObjectPointerCompare(const Handle<T>* a, const Handle<T>* b) {
152  return Compare<T*>(*(*a), *(*b));
153}
154
155
156// Returns the smallest power of two which is >= x. If you pass in a
157// number that is already a power of two, it is returned as is.
158// Implementation is from "Hacker's Delight" by Henry S. Warren, Jr.,
159// figure 3-3, page 48, where the function is called clp2.
160inline uint32_t RoundUpToPowerOf2(uint32_t x) {
161  ASSERT(x <= 0x80000000u);
162  x = x - 1;
163  x = x | (x >> 1);
164  x = x | (x >> 2);
165  x = x | (x >> 4);
166  x = x | (x >> 8);
167  x = x | (x >> 16);
168  return x + 1;
169}
170
171
172inline uint32_t RoundDownToPowerOf2(uint32_t x) {
173  uint32_t rounded_up = RoundUpToPowerOf2(x);
174  if (rounded_up > x) return rounded_up >> 1;
175  return rounded_up;
176}
177
178
179template <typename T, typename U>
180inline bool IsAligned(T value, U alignment) {
181  return (value & (alignment - 1)) == 0;
182}
183
184
185// Returns true if (addr + offset) is aligned.
186inline bool IsAddressAligned(Address addr,
187                             intptr_t alignment,
188                             int offset = 0) {
189  intptr_t offs = OffsetFrom(addr + offset);
190  return IsAligned(offs, alignment);
191}
192
193
194// Returns the maximum of the two parameters.
195template <typename T>
196T Max(T a, T b) {
197  return a < b ? b : a;
198}
199
200
201// Returns the minimum of the two parameters.
202template <typename T>
203T Min(T a, T b) {
204  return a < b ? a : b;
205}
206
207
208inline int StrLength(const char* string) {
209  size_t length = strlen(string);
210  ASSERT(length == static_cast<size_t>(static_cast<int>(length)));
211  return static_cast<int>(length);
212}
213
214
215// ----------------------------------------------------------------------------
216// BitField is a help template for encoding and decode bitfield with
217// unsigned content.
218template<class T, int shift, int size>
219class BitField {
220 public:
221  // A uint32_t mask of bit field.  To use all bits of a uint32 in a
222  // bitfield without compiler warnings we have to compute 2^32 without
223  // using a shift count of 32.
224  static const uint32_t kMask = ((1U << shift) << size) - (1U << shift);
225
226  // Value for the field with all bits set.
227  static const T kMax = static_cast<T>((1U << size) - 1);
228
229  // Tells whether the provided value fits into the bit field.
230  static bool is_valid(T value) {
231    return (static_cast<uint32_t>(value) & ~static_cast<uint32_t>(kMax)) == 0;
232  }
233
234  // Returns a uint32_t with the bit field value encoded.
235  static uint32_t encode(T value) {
236    ASSERT(is_valid(value));
237    return static_cast<uint32_t>(value) << shift;
238  }
239
240  // Returns a uint32_t with the bit field value updated.
241  static uint32_t update(uint32_t previous, T value) {
242    return (previous & ~kMask) | encode(value);
243  }
244
245  // Extracts the bit field from the value.
246  static T decode(uint32_t value) {
247    return static_cast<T>((value & kMask) >> shift);
248  }
249};
250
251
252// ----------------------------------------------------------------------------
253// Hash function.
254
255static const uint32_t kZeroHashSeed = 0;
256
257// Thomas Wang, Integer Hash Functions.
258// http://www.concentric.net/~Ttwang/tech/inthash.htm
259inline uint32_t ComputeIntegerHash(uint32_t key, uint32_t seed) {
260  uint32_t hash = key;
261  hash = hash ^ seed;
262  hash = ~hash + (hash << 15);  // hash = (hash << 15) - hash - 1;
263  hash = hash ^ (hash >> 12);
264  hash = hash + (hash << 2);
265  hash = hash ^ (hash >> 4);
266  hash = hash * 2057;  // hash = (hash + (hash << 3)) + (hash << 11);
267  hash = hash ^ (hash >> 16);
268  return hash;
269}
270
271
272inline uint32_t ComputeLongHash(uint64_t key) {
273  uint64_t hash = key;
274  hash = ~hash + (hash << 18);  // hash = (hash << 18) - hash - 1;
275  hash = hash ^ (hash >> 31);
276  hash = hash * 21;  // hash = (hash + (hash << 2)) + (hash << 4);
277  hash = hash ^ (hash >> 11);
278  hash = hash + (hash << 6);
279  hash = hash ^ (hash >> 22);
280  return (uint32_t) hash;
281}
282
283
284inline uint32_t ComputePointerHash(void* ptr) {
285  return ComputeIntegerHash(
286      static_cast<uint32_t>(reinterpret_cast<intptr_t>(ptr)),
287      v8::internal::kZeroHashSeed);
288}
289
290
291// ----------------------------------------------------------------------------
292// Miscellaneous
293
294// A static resource holds a static instance that can be reserved in
295// a local scope using an instance of Access.  Attempts to re-reserve
296// the instance will cause an error.
297template <typename T>
298class StaticResource {
299 public:
300  StaticResource() : is_reserved_(false)  {}
301
302 private:
303  template <typename S> friend class Access;
304  T instance_;
305  bool is_reserved_;
306};
307
308
309// Locally scoped access to a static resource.
310template <typename T>
311class Access {
312 public:
313  explicit Access(StaticResource<T>* resource)
314    : resource_(resource)
315    , instance_(&resource->instance_) {
316    ASSERT(!resource->is_reserved_);
317    resource->is_reserved_ = true;
318  }
319
320  ~Access() {
321    resource_->is_reserved_ = false;
322    resource_ = NULL;
323    instance_ = NULL;
324  }
325
326  T* value()  { return instance_; }
327  T* operator -> ()  { return instance_; }
328
329 private:
330  StaticResource<T>* resource_;
331  T* instance_;
332};
333
334
335template <typename T>
336class Vector {
337 public:
338  Vector() : start_(NULL), length_(0) {}
339  Vector(T* data, int length) : start_(data), length_(length) {
340    ASSERT(length == 0 || (length > 0 && data != NULL));
341  }
342
343  static Vector<T> New(int length) {
344    return Vector<T>(NewArray<T>(length), length);
345  }
346
347  // Returns a vector using the same backing storage as this one,
348  // spanning from and including 'from', to but not including 'to'.
349  Vector<T> SubVector(int from, int to) {
350    ASSERT(to <= length_);
351    ASSERT(from < to);
352    ASSERT(0 <= from);
353    return Vector<T>(start() + from, to - from);
354  }
355
356  // Returns the length of the vector.
357  int length() const { return length_; }
358
359  // Returns whether or not the vector is empty.
360  bool is_empty() const { return length_ == 0; }
361
362  // Returns the pointer to the start of the data in the vector.
363  T* start() const { return start_; }
364
365  // Access individual vector elements - checks bounds in debug mode.
366  T& operator[](int index) const {
367    ASSERT(0 <= index && index < length_);
368    return start_[index];
369  }
370
371  const T& at(int index) const { return operator[](index); }
372
373  T& first() { return start_[0]; }
374
375  T& last() { return start_[length_ - 1]; }
376
377  // Returns a clone of this vector with a new backing store.
378  Vector<T> Clone() const {
379    T* result = NewArray<T>(length_);
380    for (int i = 0; i < length_; i++) result[i] = start_[i];
381    return Vector<T>(result, length_);
382  }
383
384  void Sort(int (*cmp)(const T*, const T*)) {
385    typedef int (*RawComparer)(const void*, const void*);
386    qsort(start(),
387          length(),
388          sizeof(T),
389          reinterpret_cast<RawComparer>(cmp));
390  }
391
392  void Sort() {
393    Sort(PointerValueCompare<T>);
394  }
395
396  void Truncate(int length) {
397    ASSERT(length <= length_);
398    length_ = length;
399  }
400
401  // Releases the array underlying this vector. Once disposed the
402  // vector is empty.
403  void Dispose() {
404    DeleteArray(start_);
405    start_ = NULL;
406    length_ = 0;
407  }
408
409  inline Vector<T> operator+(int offset) {
410    ASSERT(offset < length_);
411    return Vector<T>(start_ + offset, length_ - offset);
412  }
413
414  // Factory method for creating empty vectors.
415  static Vector<T> empty() { return Vector<T>(NULL, 0); }
416
417  template<typename S>
418  static Vector<T> cast(Vector<S> input) {
419    return Vector<T>(reinterpret_cast<T*>(input.start()),
420                     input.length() * sizeof(S) / sizeof(T));
421  }
422
423 protected:
424  void set_start(T* start) { start_ = start; }
425
426 private:
427  T* start_;
428  int length_;
429};
430
431
432// A pointer that can only be set once and doesn't allow NULL values.
433template<typename T>
434class SetOncePointer {
435 public:
436  SetOncePointer() : pointer_(NULL) { }
437
438  bool is_set() const { return pointer_ != NULL; }
439
440  T* get() const {
441    ASSERT(pointer_ != NULL);
442    return pointer_;
443  }
444
445  void set(T* value) {
446    ASSERT(pointer_ == NULL && value != NULL);
447    pointer_ = value;
448  }
449
450 private:
451  T* pointer_;
452};
453
454
455template <typename T, int kSize>
456class EmbeddedVector : public Vector<T> {
457 public:
458  EmbeddedVector() : Vector<T>(buffer_, kSize) { }
459
460  explicit EmbeddedVector(T initial_value) : Vector<T>(buffer_, kSize) {
461    for (int i = 0; i < kSize; ++i) {
462      buffer_[i] = initial_value;
463    }
464  }
465
466  // When copying, make underlying Vector to reference our buffer.
467  EmbeddedVector(const EmbeddedVector& rhs)
468      : Vector<T>(rhs) {
469    memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
470    set_start(buffer_);
471  }
472
473  EmbeddedVector& operator=(const EmbeddedVector& rhs) {
474    if (this == &rhs) return *this;
475    Vector<T>::operator=(rhs);
476    memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize);
477    this->set_start(buffer_);
478    return *this;
479  }
480
481 private:
482  T buffer_[kSize];
483};
484
485
486template <typename T>
487class ScopedVector : public Vector<T> {
488 public:
489  explicit ScopedVector(int length) : Vector<T>(NewArray<T>(length), length) { }
490  ~ScopedVector() {
491    DeleteArray(this->start());
492  }
493
494 private:
495  DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedVector);
496};
497
498
499inline Vector<const char> CStrVector(const char* data) {
500  return Vector<const char>(data, StrLength(data));
501}
502
503inline Vector<char> MutableCStrVector(char* data) {
504  return Vector<char>(data, StrLength(data));
505}
506
507inline Vector<char> MutableCStrVector(char* data, int max) {
508  int length = StrLength(data);
509  return Vector<char>(data, (length < max) ? length : max);
510}
511
512
513/*
514 * A class that collects values into a backing store.
515 * Specialized versions of the class can allow access to the backing store
516 * in different ways.
517 * There is no guarantee that the backing store is contiguous (and, as a
518 * consequence, no guarantees that consecutively added elements are adjacent
519 * in memory). The collector may move elements unless it has guaranteed not
520 * to.
521 */
522template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
523class Collector {
524 public:
525  explicit Collector(int initial_capacity = kMinCapacity)
526      : index_(0), size_(0) {
527    current_chunk_ = Vector<T>::New(initial_capacity);
528  }
529
530  virtual ~Collector() {
531    // Free backing store (in reverse allocation order).
532    current_chunk_.Dispose();
533    for (int i = chunks_.length() - 1; i >= 0; i--) {
534      chunks_.at(i).Dispose();
535    }
536  }
537
538  // Add a single element.
539  inline void Add(T value) {
540    if (index_ >= current_chunk_.length()) {
541      Grow(1);
542    }
543    current_chunk_[index_] = value;
544    index_++;
545    size_++;
546  }
547
548  // Add a block of contiguous elements and return a Vector backed by the
549  // memory area.
550  // A basic Collector will keep this vector valid as long as the Collector
551  // is alive.
552  inline Vector<T> AddBlock(int size, T initial_value) {
553    ASSERT(size > 0);
554    if (size > current_chunk_.length() - index_) {
555      Grow(size);
556    }
557    T* position = current_chunk_.start() + index_;
558    index_ += size;
559    size_ += size;
560    for (int i = 0; i < size; i++) {
561      position[i] = initial_value;
562    }
563    return Vector<T>(position, size);
564  }
565
566
567  // Add a contiguous block of elements and return a vector backed
568  // by the added block.
569  // A basic Collector will keep this vector valid as long as the Collector
570  // is alive.
571  inline Vector<T> AddBlock(Vector<const T> source) {
572    if (source.length() > current_chunk_.length() - index_) {
573      Grow(source.length());
574    }
575    T* position = current_chunk_.start() + index_;
576    index_ += source.length();
577    size_ += source.length();
578    for (int i = 0; i < source.length(); i++) {
579      position[i] = source[i];
580    }
581    return Vector<T>(position, source.length());
582  }
583
584
585  // Write the contents of the collector into the provided vector.
586  void WriteTo(Vector<T> destination) {
587    ASSERT(size_ <= destination.length());
588    int position = 0;
589    for (int i = 0; i < chunks_.length(); i++) {
590      Vector<T> chunk = chunks_.at(i);
591      for (int j = 0; j < chunk.length(); j++) {
592        destination[position] = chunk[j];
593        position++;
594      }
595    }
596    for (int i = 0; i < index_; i++) {
597      destination[position] = current_chunk_[i];
598      position++;
599    }
600  }
601
602  // Allocate a single contiguous vector, copy all the collected
603  // elements to the vector, and return it.
604  // The caller is responsible for freeing the memory of the returned
605  // vector (e.g., using Vector::Dispose).
606  Vector<T> ToVector() {
607    Vector<T> new_store = Vector<T>::New(size_);
608    WriteTo(new_store);
609    return new_store;
610  }
611
612  // Resets the collector to be empty.
613  virtual void Reset();
614
615  // Total number of elements added to collector so far.
616  inline int size() { return size_; }
617
618 protected:
619  static const int kMinCapacity = 16;
620  List<Vector<T> > chunks_;
621  Vector<T> current_chunk_;  // Block of memory currently being written into.
622  int index_;  // Current index in current chunk.
623  int size_;  // Total number of elements in collector.
624
625  // Creates a new current chunk, and stores the old chunk in the chunks_ list.
626  void Grow(int min_capacity) {
627    ASSERT(growth_factor > 1);
628    int new_capacity;
629    int current_length = current_chunk_.length();
630    if (current_length < kMinCapacity) {
631      // The collector started out as empty.
632      new_capacity = min_capacity * growth_factor;
633      if (new_capacity < kMinCapacity) new_capacity = kMinCapacity;
634    } else {
635      int growth = current_length * (growth_factor - 1);
636      if (growth > max_growth) {
637        growth = max_growth;
638      }
639      new_capacity = current_length + growth;
640      if (new_capacity < min_capacity) {
641        new_capacity = min_capacity + growth;
642      }
643    }
644    NewChunk(new_capacity);
645    ASSERT(index_ + min_capacity <= current_chunk_.length());
646  }
647
648  // Before replacing the current chunk, give a subclass the option to move
649  // some of the current data into the new chunk. The function may update
650  // the current index_ value to represent data no longer in the current chunk.
651  // Returns the initial index of the new chunk (after copied data).
652  virtual void NewChunk(int new_capacity)  {
653    Vector<T> new_chunk = Vector<T>::New(new_capacity);
654    if (index_ > 0) {
655      chunks_.Add(current_chunk_.SubVector(0, index_));
656    } else {
657      current_chunk_.Dispose();
658    }
659    current_chunk_ = new_chunk;
660    index_ = 0;
661  }
662};
663
664
665/*
666 * A collector that allows sequences of values to be guaranteed to
667 * stay consecutive.
668 * If the backing store grows while a sequence is active, the current
669 * sequence might be moved, but after the sequence is ended, it will
670 * not move again.
671 * NOTICE: Blocks allocated using Collector::AddBlock(int) can move
672 * as well, if inside an active sequence where another element is added.
673 */
674template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
675class SequenceCollector : public Collector<T, growth_factor, max_growth> {
676 public:
677  explicit SequenceCollector(int initial_capacity)
678      : Collector<T, growth_factor, max_growth>(initial_capacity),
679        sequence_start_(kNoSequence) { }
680
681  virtual ~SequenceCollector() {}
682
683  void StartSequence() {
684    ASSERT(sequence_start_ == kNoSequence);
685    sequence_start_ = this->index_;
686  }
687
688  Vector<T> EndSequence() {
689    ASSERT(sequence_start_ != kNoSequence);
690    int sequence_start = sequence_start_;
691    sequence_start_ = kNoSequence;
692    if (sequence_start == this->index_) return Vector<T>();
693    return this->current_chunk_.SubVector(sequence_start, this->index_);
694  }
695
696  // Drops the currently added sequence, and all collected elements in it.
697  void DropSequence() {
698    ASSERT(sequence_start_ != kNoSequence);
699    int sequence_length = this->index_ - sequence_start_;
700    this->index_ = sequence_start_;
701    this->size_ -= sequence_length;
702    sequence_start_ = kNoSequence;
703  }
704
705  virtual void Reset() {
706    sequence_start_ = kNoSequence;
707    this->Collector<T, growth_factor, max_growth>::Reset();
708  }
709
710 private:
711  static const int kNoSequence = -1;
712  int sequence_start_;
713
714  // Move the currently active sequence to the new chunk.
715  virtual void NewChunk(int new_capacity) {
716    if (sequence_start_ == kNoSequence) {
717      // Fall back on default behavior if no sequence has been started.
718      this->Collector<T, growth_factor, max_growth>::NewChunk(new_capacity);
719      return;
720    }
721    int sequence_length = this->index_ - sequence_start_;
722    Vector<T> new_chunk = Vector<T>::New(sequence_length + new_capacity);
723    ASSERT(sequence_length < new_chunk.length());
724    for (int i = 0; i < sequence_length; i++) {
725      new_chunk[i] = this->current_chunk_[sequence_start_ + i];
726    }
727    if (sequence_start_ > 0) {
728      this->chunks_.Add(this->current_chunk_.SubVector(0, sequence_start_));
729    } else {
730      this->current_chunk_.Dispose();
731    }
732    this->current_chunk_ = new_chunk;
733    this->index_ = sequence_length;
734    sequence_start_ = 0;
735  }
736};
737
738
739// Compare ASCII/16bit chars to ASCII/16bit chars.
740template <typename lchar, typename rchar>
741inline int CompareChars(const lchar* lhs, const rchar* rhs, int chars) {
742  const lchar* limit = lhs + chars;
743#ifdef V8_HOST_CAN_READ_UNALIGNED
744  if (sizeof(*lhs) == sizeof(*rhs)) {
745    // Number of characters in a uintptr_t.
746    static const int kStepSize = sizeof(uintptr_t) / sizeof(*lhs);  // NOLINT
747    while (lhs <= limit - kStepSize) {
748      if (*reinterpret_cast<const uintptr_t*>(lhs) !=
749          *reinterpret_cast<const uintptr_t*>(rhs)) {
750        break;
751      }
752      lhs += kStepSize;
753      rhs += kStepSize;
754    }
755  }
756#endif
757  while (lhs < limit) {
758    int r = static_cast<int>(*lhs) - static_cast<int>(*rhs);
759    if (r != 0) return r;
760    ++lhs;
761    ++rhs;
762  }
763  return 0;
764}
765
766
767// Calculate 10^exponent.
768inline int TenToThe(int exponent) {
769  ASSERT(exponent <= 9);
770  ASSERT(exponent >= 1);
771  int answer = 10;
772  for (int i = 1; i < exponent; i++) answer *= 10;
773  return answer;
774}
775
776
777// The type-based aliasing rule allows the compiler to assume that pointers of
778// different types (for some definition of different) never alias each other.
779// Thus the following code does not work:
780//
781// float f = foo();
782// int fbits = *(int*)(&f);
783//
784// The compiler 'knows' that the int pointer can't refer to f since the types
785// don't match, so the compiler may cache f in a register, leaving random data
786// in fbits.  Using C++ style casts makes no difference, however a pointer to
787// char data is assumed to alias any other pointer.  This is the 'memcpy
788// exception'.
789//
790// Bit_cast uses the memcpy exception to move the bits from a variable of one
791// type of a variable of another type.  Of course the end result is likely to
792// be implementation dependent.  Most compilers (gcc-4.2 and MSVC 2005)
793// will completely optimize BitCast away.
794//
795// There is an additional use for BitCast.
796// Recent gccs will warn when they see casts that may result in breakage due to
797// the type-based aliasing rule.  If you have checked that there is no breakage
798// you can use BitCast to cast one pointer type to another.  This confuses gcc
799// enough that it can no longer see that you have cast one pointer type to
800// another thus avoiding the warning.
801
802// We need different implementations of BitCast for pointer and non-pointer
803// values. We use partial specialization of auxiliary struct to work around
804// issues with template functions overloading.
805template <class Dest, class Source>
806struct BitCastHelper {
807  STATIC_ASSERT(sizeof(Dest) == sizeof(Source));
808
809  INLINE(static Dest cast(const Source& source)) {
810    Dest dest;
811    memcpy(&dest, &source, sizeof(dest));
812    return dest;
813  }
814};
815
816template <class Dest, class Source>
817struct BitCastHelper<Dest, Source*> {
818  INLINE(static Dest cast(Source* source)) {
819    return BitCastHelper<Dest, uintptr_t>::
820        cast(reinterpret_cast<uintptr_t>(source));
821  }
822};
823
824template <class Dest, class Source>
825INLINE(Dest BitCast(const Source& source));
826
827template <class Dest, class Source>
828inline Dest BitCast(const Source& source) {
829  return BitCastHelper<Dest, Source>::cast(source);
830}
831
832
833template<typename ElementType, int NumElements>
834class EmbeddedContainer {
835 public:
836  EmbeddedContainer() : elems_() { }
837
838  int length() { return NumElements; }
839  ElementType& operator[](int i) {
840    ASSERT(i < length());
841    return elems_[i];
842  }
843
844 private:
845  ElementType elems_[NumElements];
846};
847
848
849template<typename ElementType>
850class EmbeddedContainer<ElementType, 0> {
851 public:
852  int length() { return 0; }
853  ElementType& operator[](int i) {
854    UNREACHABLE();
855    static ElementType t = 0;
856    return t;
857  }
858};
859
860
861// Helper class for building result strings in a character buffer. The
862// purpose of the class is to use safe operations that checks the
863// buffer bounds on all operations in debug mode.
864// This simple base class does not allow formatted output.
865class SimpleStringBuilder {
866 public:
867  // Create a string builder with a buffer of the given size. The
868  // buffer is allocated through NewArray<char> and must be
869  // deallocated by the caller of Finalize().
870  explicit SimpleStringBuilder(int size);
871
872  SimpleStringBuilder(char* buffer, int size)
873      : buffer_(buffer, size), position_(0) { }
874
875  ~SimpleStringBuilder() { if (!is_finalized()) Finalize(); }
876
877  int size() const { return buffer_.length(); }
878
879  // Get the current position in the builder.
880  int position() const {
881    ASSERT(!is_finalized());
882    return position_;
883  }
884
885  // Reset the position.
886  void Reset() { position_ = 0; }
887
888  // Add a single character to the builder. It is not allowed to add
889  // 0-characters; use the Finalize() method to terminate the string
890  // instead.
891  void AddCharacter(char c) {
892    ASSERT(c != '\0');
893    ASSERT(!is_finalized() && position_ < buffer_.length());
894    buffer_[position_++] = c;
895  }
896
897  // Add an entire string to the builder. Uses strlen() internally to
898  // compute the length of the input string.
899  void AddString(const char* s);
900
901  // Add the first 'n' characters of the given string 's' to the
902  // builder. The input string must have enough characters.
903  void AddSubstring(const char* s, int n);
904
905  // Add character padding to the builder. If count is non-positive,
906  // nothing is added to the builder.
907  void AddPadding(char c, int count);
908
909  // Add the decimal representation of the value.
910  void AddDecimalInteger(int value);
911
912  // Finalize the string by 0-terminating it and returning the buffer.
913  char* Finalize();
914
915 protected:
916  Vector<char> buffer_;
917  int position_;
918
919  bool is_finalized() const { return position_ < 0; }
920
921 private:
922  DISALLOW_IMPLICIT_CONSTRUCTORS(SimpleStringBuilder);
923};
924
925
926// A poor man's version of STL's bitset: A bit set of enums E (without explicit
927// values), fitting into an integral type T.
928template <class E, class T = int>
929class EnumSet {
930 public:
931  explicit EnumSet(T bits = 0) : bits_(bits) {}
932  bool IsEmpty() const { return bits_ == 0; }
933  bool Contains(E element) const { return (bits_ & Mask(element)) != 0; }
934  bool ContainsAnyOf(const EnumSet& set) const {
935    return (bits_ & set.bits_) != 0;
936  }
937  void Add(E element) { bits_ |= Mask(element); }
938  void Add(const EnumSet& set) { bits_ |= set.bits_; }
939  void Remove(E element) { bits_ &= ~Mask(element); }
940  void Remove(const EnumSet& set) { bits_ &= ~set.bits_; }
941  void RemoveAll() { bits_ = 0; }
942  void Intersect(const EnumSet& set) { bits_ &= set.bits_; }
943  T ToIntegral() const { return bits_; }
944  bool operator==(const EnumSet& set) { return bits_ == set.bits_; }
945
946 private:
947  T Mask(E element) const {
948    // The strange typing in ASSERT is necessary to avoid stupid warnings, see:
949    // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43680
950    ASSERT(element < static_cast<int>(sizeof(T) * CHAR_BIT));
951    return 1 << element;
952  }
953
954  T bits_;
955};
956
957} }  // namespace v8::internal
958
959#endif  // V8_UTILS_H_
960