1// Copyright 2011 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#if defined(V8_TARGET_ARCH_X64)
31
32#include "serialize.h"
33#include "unicode.h"
34#include "log.h"
35#include "regexp-stack.h"
36#include "macro-assembler.h"
37#include "regexp-macro-assembler.h"
38#include "x64/regexp-macro-assembler-x64.h"
39
40namespace v8 {
41namespace internal {
42
43#ifndef V8_INTERPRETED_REGEXP
44
45/*
46 * This assembler uses the following register assignment convention
47 * - rdx : currently loaded character(s) as ASCII or UC16. Must be loaded using
48 *         LoadCurrentCharacter before using any of the dispatch methods.
49 * - rdi : current position in input, as negative offset from end of string.
50 *         Please notice that this is the byte offset, not the character
51 *         offset! Is always a 32-bit signed (negative) offset, but must be
52 *         maintained sign-extended to 64 bits, since it is used as index.
53 * - rsi : end of input (points to byte after last character in input),
54 *         so that rsi+rdi points to the current character.
55 * - rbp : frame pointer. Used to access arguments, local variables and
56 *         RegExp registers.
57 * - rsp : points to tip of C stack.
58 * - rcx : points to tip of backtrack stack. The backtrack stack contains
59 *         only 32-bit values. Most are offsets from some base (e.g., character
60 *         positions from end of string or code location from Code* pointer).
61 * - r8  : code object pointer. Used to convert between absolute and
62 *         code-object-relative addresses.
63 *
64 * The registers rax, rbx, r9 and r11 are free to use for computations.
65 * If changed to use r12+, they should be saved as callee-save registers.
66 * The macro assembler special registers r12 and r13 (kSmiConstantRegister,
67 * kRootRegister) aren't special during execution of RegExp code (they don't
68 * hold the values assumed when creating JS code), so no Smi or Root related
69 * macro operations can be used.
70 *
71 * Each call to a C++ method should retain these registers.
72 *
73 * The stack will have the following content, in some order, indexable from the
74 * frame pointer (see, e.g., kStackHighEnd):
75 *    - Isolate* isolate     (Address of the current isolate)
76 *    - direct_call          (if 1, direct call from JavaScript code, if 0 call
77 *                            through the runtime system)
78 *    - stack_area_base      (High end of the memory area to use as
79 *                            backtracking stack)
80 *    - int* capture_array   (int[num_saved_registers_], for output).
81 *    - end of input         (Address of end of string)
82 *    - start of input       (Address of first character in string)
83 *    - start index          (character index of start)
84 *    - String* input_string (input string)
85 *    - return address
86 *    - backup of callee save registers (rbx, possibly rsi and rdi).
87 *    - Offset of location before start of input (effectively character
88 *      position -1). Used to initialize capture registers to a non-position.
89 *    - At start of string (if 1, we are starting at the start of the
90 *      string, otherwise 0)
91 *    - register 0  rbp[-n]   (Only positions must be stored in the first
92 *    - register 1  rbp[-n-8]  num_saved_registers_ registers)
93 *    - ...
94 *
95 * The first num_saved_registers_ registers are initialized to point to
96 * "character -1" in the string (i.e., char_size() bytes before the first
97 * character of the string). The remaining registers starts out uninitialized.
98 *
99 * The first seven values must be provided by the calling code by
100 * calling the code's entry address cast to a function pointer with the
101 * following signature:
102 * int (*match)(String* input_string,
103 *              int start_index,
104 *              Address start,
105 *              Address end,
106 *              int* capture_output_array,
107 *              bool at_start,
108 *              byte* stack_area_base,
109 *              bool direct_call)
110 */
111
112#define __ ACCESS_MASM((&masm_))
113
114RegExpMacroAssemblerX64::RegExpMacroAssemblerX64(
115    Mode mode,
116    int registers_to_save)
117    : masm_(Isolate::Current(), NULL, kRegExpCodeSize),
118      no_root_array_scope_(&masm_),
119      code_relative_fixup_positions_(4),
120      mode_(mode),
121      num_registers_(registers_to_save),
122      num_saved_registers_(registers_to_save),
123      entry_label_(),
124      start_label_(),
125      success_label_(),
126      backtrack_label_(),
127      exit_label_() {
128  ASSERT_EQ(0, registers_to_save % 2);
129  __ jmp(&entry_label_);   // We'll write the entry code when we know more.
130  __ bind(&start_label_);  // And then continue from here.
131}
132
133
134RegExpMacroAssemblerX64::~RegExpMacroAssemblerX64() {
135  // Unuse labels in case we throw away the assembler without calling GetCode.
136  entry_label_.Unuse();
137  start_label_.Unuse();
138  success_label_.Unuse();
139  backtrack_label_.Unuse();
140  exit_label_.Unuse();
141  check_preempt_label_.Unuse();
142  stack_overflow_label_.Unuse();
143}
144
145
146int RegExpMacroAssemblerX64::stack_limit_slack()  {
147  return RegExpStack::kStackLimitSlack;
148}
149
150
151void RegExpMacroAssemblerX64::AdvanceCurrentPosition(int by) {
152  if (by != 0) {
153    __ addq(rdi, Immediate(by * char_size()));
154  }
155}
156
157
158void RegExpMacroAssemblerX64::AdvanceRegister(int reg, int by) {
159  ASSERT(reg >= 0);
160  ASSERT(reg < num_registers_);
161  if (by != 0) {
162    __ addq(register_location(reg), Immediate(by));
163  }
164}
165
166
167void RegExpMacroAssemblerX64::Backtrack() {
168  CheckPreemption();
169  // Pop Code* offset from backtrack stack, add Code* and jump to location.
170  Pop(rbx);
171  __ addq(rbx, code_object_pointer());
172  __ jmp(rbx);
173}
174
175
176void RegExpMacroAssemblerX64::Bind(Label* label) {
177  __ bind(label);
178}
179
180
181void RegExpMacroAssemblerX64::CheckCharacter(uint32_t c, Label* on_equal) {
182  __ cmpl(current_character(), Immediate(c));
183  BranchOrBacktrack(equal, on_equal);
184}
185
186
187void RegExpMacroAssemblerX64::CheckCharacterGT(uc16 limit, Label* on_greater) {
188  __ cmpl(current_character(), Immediate(limit));
189  BranchOrBacktrack(greater, on_greater);
190}
191
192
193void RegExpMacroAssemblerX64::CheckAtStart(Label* on_at_start) {
194  Label not_at_start;
195  // Did we start the match at the start of the string at all?
196  __ cmpl(Operand(rbp, kStartIndex), Immediate(0));
197  BranchOrBacktrack(not_equal, &not_at_start);
198  // If we did, are we still at the start of the input?
199  __ lea(rax, Operand(rsi, rdi, times_1, 0));
200  __ cmpq(rax, Operand(rbp, kInputStart));
201  BranchOrBacktrack(equal, on_at_start);
202  __ bind(&not_at_start);
203}
204
205
206void RegExpMacroAssemblerX64::CheckNotAtStart(Label* on_not_at_start) {
207  // Did we start the match at the start of the string at all?
208  __ cmpl(Operand(rbp, kStartIndex), Immediate(0));
209  BranchOrBacktrack(not_equal, on_not_at_start);
210  // If we did, are we still at the start of the input?
211  __ lea(rax, Operand(rsi, rdi, times_1, 0));
212  __ cmpq(rax, Operand(rbp, kInputStart));
213  BranchOrBacktrack(not_equal, on_not_at_start);
214}
215
216
217void RegExpMacroAssemblerX64::CheckCharacterLT(uc16 limit, Label* on_less) {
218  __ cmpl(current_character(), Immediate(limit));
219  BranchOrBacktrack(less, on_less);
220}
221
222
223void RegExpMacroAssemblerX64::CheckCharacters(Vector<const uc16> str,
224                                              int cp_offset,
225                                              Label* on_failure,
226                                              bool check_end_of_string) {
227#ifdef DEBUG
228  // If input is ASCII, don't even bother calling here if the string to
229  // match contains a non-ASCII character.
230  if (mode_ == ASCII) {
231    ASSERT(String::IsAscii(str.start(), str.length()));
232  }
233#endif
234  int byte_length = str.length() * char_size();
235  int byte_offset = cp_offset * char_size();
236  if (check_end_of_string) {
237    // Check that there are at least str.length() characters left in the input.
238    __ cmpl(rdi, Immediate(-(byte_offset + byte_length)));
239    BranchOrBacktrack(greater, on_failure);
240  }
241
242  if (on_failure == NULL) {
243    // Instead of inlining a backtrack, (re)use the global backtrack target.
244    on_failure = &backtrack_label_;
245  }
246
247  // Do one character test first to minimize loading for the case that
248  // we don't match at all (loading more than one character introduces that
249  // chance of reading unaligned and reading across cache boundaries).
250  // If the first character matches, expect a larger chance of matching the
251  // string, and start loading more characters at a time.
252  if (mode_ == ASCII) {
253    __ cmpb(Operand(rsi, rdi, times_1, byte_offset),
254            Immediate(static_cast<int8_t>(str[0])));
255  } else {
256    // Don't use 16-bit immediate. The size changing prefix throws off
257    // pre-decoding.
258    __ movzxwl(rax,
259               Operand(rsi, rdi, times_1, byte_offset));
260    __ cmpl(rax, Immediate(static_cast<int32_t>(str[0])));
261  }
262  BranchOrBacktrack(not_equal, on_failure);
263
264  __ lea(rbx, Operand(rsi, rdi, times_1, 0));
265  for (int i = 1, n = str.length(); i < n; ) {
266    if (mode_ == ASCII) {
267      if (i + 8 <= n) {
268        uint64_t combined_chars =
269            (static_cast<uint64_t>(str[i + 0]) << 0) ||
270            (static_cast<uint64_t>(str[i + 1]) << 8) ||
271            (static_cast<uint64_t>(str[i + 2]) << 16) ||
272            (static_cast<uint64_t>(str[i + 3]) << 24) ||
273            (static_cast<uint64_t>(str[i + 4]) << 32) ||
274            (static_cast<uint64_t>(str[i + 5]) << 40) ||
275            (static_cast<uint64_t>(str[i + 6]) << 48) ||
276            (static_cast<uint64_t>(str[i + 7]) << 56);
277        __ movq(rax, combined_chars, RelocInfo::NONE);
278        __ cmpq(rax, Operand(rbx, byte_offset + i));
279        i += 8;
280      } else if (i + 4 <= n) {
281        uint32_t combined_chars =
282            (static_cast<uint32_t>(str[i + 0]) << 0) ||
283            (static_cast<uint32_t>(str[i + 1]) << 8) ||
284            (static_cast<uint32_t>(str[i + 2]) << 16) ||
285            (static_cast<uint32_t>(str[i + 3]) << 24);
286        __ cmpl(Operand(rbx, byte_offset + i), Immediate(combined_chars));
287        i += 4;
288      } else {
289        __ cmpb(Operand(rbx, byte_offset + i),
290                Immediate(static_cast<int8_t>(str[i])));
291        i++;
292      }
293    } else {
294      ASSERT(mode_ == UC16);
295      if (i + 4 <= n) {
296        uint64_t combined_chars = *reinterpret_cast<const uint64_t*>(&str[i]);
297        __ movq(rax, combined_chars, RelocInfo::NONE);
298        __ cmpq(rax,
299                Operand(rsi, rdi, times_1, byte_offset + i * sizeof(uc16)));
300        i += 4;
301      } else if (i + 2 <= n) {
302        uint32_t combined_chars = *reinterpret_cast<const uint32_t*>(&str[i]);
303        __ cmpl(Operand(rsi, rdi, times_1, byte_offset + i * sizeof(uc16)),
304                Immediate(combined_chars));
305        i += 2;
306      } else {
307        __ movzxwl(rax,
308                   Operand(rsi, rdi, times_1, byte_offset + i * sizeof(uc16)));
309        __ cmpl(rax, Immediate(str[i]));
310        i++;
311      }
312    }
313    BranchOrBacktrack(not_equal, on_failure);
314  }
315}
316
317
318void RegExpMacroAssemblerX64::CheckGreedyLoop(Label* on_equal) {
319  Label fallthrough;
320  __ cmpl(rdi, Operand(backtrack_stackpointer(), 0));
321  __ j(not_equal, &fallthrough);
322  Drop();
323  BranchOrBacktrack(no_condition, on_equal);
324  __ bind(&fallthrough);
325}
326
327
328void RegExpMacroAssemblerX64::CheckNotBackReferenceIgnoreCase(
329    int start_reg,
330    Label* on_no_match) {
331  Label fallthrough;
332  __ movq(rdx, register_location(start_reg));  // Offset of start of capture
333  __ movq(rbx, register_location(start_reg + 1));  // Offset of end of capture
334  __ subq(rbx, rdx);  // Length of capture.
335
336  // -----------------------
337  // rdx  = Start offset of capture.
338  // rbx = Length of capture
339
340  // If length is negative, this code will fail (it's a symptom of a partial or
341  // illegal capture where start of capture after end of capture).
342  // This must not happen (no back-reference can reference a capture that wasn't
343  // closed before in the reg-exp, and we must not generate code that can cause
344  // this condition).
345
346  // If length is zero, either the capture is empty or it is nonparticipating.
347  // In either case succeed immediately.
348  __ j(equal, &fallthrough);
349
350  if (mode_ == ASCII) {
351    Label loop_increment;
352    if (on_no_match == NULL) {
353      on_no_match = &backtrack_label_;
354    }
355
356    __ lea(r9, Operand(rsi, rdx, times_1, 0));
357    __ lea(r11, Operand(rsi, rdi, times_1, 0));
358    __ addq(rbx, r9);  // End of capture
359    // ---------------------
360    // r11 - current input character address
361    // r9 - current capture character address
362    // rbx - end of capture
363
364    Label loop;
365    __ bind(&loop);
366    __ movzxbl(rdx, Operand(r9, 0));
367    __ movzxbl(rax, Operand(r11, 0));
368    // al - input character
369    // dl - capture character
370    __ cmpb(rax, rdx);
371    __ j(equal, &loop_increment);
372
373    // Mismatch, try case-insensitive match (converting letters to lower-case).
374    // I.e., if or-ing with 0x20 makes values equal and in range 'a'-'z', it's
375    // a match.
376    __ or_(rax, Immediate(0x20));  // Convert match character to lower-case.
377    __ or_(rdx, Immediate(0x20));  // Convert capture character to lower-case.
378    __ cmpb(rax, rdx);
379    __ j(not_equal, on_no_match);  // Definitely not equal.
380    __ subb(rax, Immediate('a'));
381    __ cmpb(rax, Immediate('z' - 'a'));
382    __ j(above, on_no_match);  // Weren't letters anyway.
383
384    __ bind(&loop_increment);
385    // Increment pointers into match and capture strings.
386    __ addq(r11, Immediate(1));
387    __ addq(r9, Immediate(1));
388    // Compare to end of capture, and loop if not done.
389    __ cmpq(r9, rbx);
390    __ j(below, &loop);
391
392    // Compute new value of character position after the matched part.
393    __ movq(rdi, r11);
394    __ subq(rdi, rsi);
395  } else {
396    ASSERT(mode_ == UC16);
397    // Save important/volatile registers before calling C function.
398#ifndef _WIN64
399    // Caller save on Linux and callee save in Windows.
400    __ push(rsi);
401    __ push(rdi);
402#endif
403    __ push(backtrack_stackpointer());
404
405    static const int num_arguments = 4;
406    __ PrepareCallCFunction(num_arguments);
407
408    // Put arguments into parameter registers. Parameters are
409    //   Address byte_offset1 - Address captured substring's start.
410    //   Address byte_offset2 - Address of current character position.
411    //   size_t byte_length - length of capture in bytes(!)
412    //   Isolate* isolate
413#ifdef _WIN64
414    // Compute and set byte_offset1 (start of capture).
415    __ lea(rcx, Operand(rsi, rdx, times_1, 0));
416    // Set byte_offset2.
417    __ lea(rdx, Operand(rsi, rdi, times_1, 0));
418    // Set byte_length.
419    __ movq(r8, rbx);
420    // Isolate.
421    __ LoadAddress(r9, ExternalReference::isolate_address());
422#else  // AMD64 calling convention
423    // Compute byte_offset2 (current position = rsi+rdi).
424    __ lea(rax, Operand(rsi, rdi, times_1, 0));
425    // Compute and set byte_offset1 (start of capture).
426    __ lea(rdi, Operand(rsi, rdx, times_1, 0));
427    // Set byte_offset2.
428    __ movq(rsi, rax);
429    // Set byte_length.
430    __ movq(rdx, rbx);
431    // Isolate.
432    __ LoadAddress(rcx, ExternalReference::isolate_address());
433#endif
434
435    { // NOLINT: Can't find a way to open this scope without confusing the
436      // linter.
437      AllowExternalCallThatCantCauseGC scope(&masm_);
438      ExternalReference compare =
439          ExternalReference::re_case_insensitive_compare_uc16(masm_.isolate());
440      __ CallCFunction(compare, num_arguments);
441    }
442
443    // Restore original values before reacting on result value.
444    __ Move(code_object_pointer(), masm_.CodeObject());
445    __ pop(backtrack_stackpointer());
446#ifndef _WIN64
447    __ pop(rdi);
448    __ pop(rsi);
449#endif
450
451    // Check if function returned non-zero for success or zero for failure.
452    __ testq(rax, rax);
453    BranchOrBacktrack(zero, on_no_match);
454    // On success, increment position by length of capture.
455    // Requires that rbx is callee save (true for both Win64 and AMD64 ABIs).
456    __ addq(rdi, rbx);
457  }
458  __ bind(&fallthrough);
459}
460
461
462void RegExpMacroAssemblerX64::CheckNotBackReference(
463    int start_reg,
464    Label* on_no_match) {
465  Label fallthrough;
466
467  // Find length of back-referenced capture.
468  __ movq(rdx, register_location(start_reg));
469  __ movq(rax, register_location(start_reg + 1));
470  __ subq(rax, rdx);  // Length to check.
471
472  // Fail on partial or illegal capture (start of capture after end of capture).
473  // This must not happen (no back-reference can reference a capture that wasn't
474  // closed before in the reg-exp).
475  __ Check(greater_equal, "Invalid capture referenced");
476
477  // Succeed on empty capture (including non-participating capture)
478  __ j(equal, &fallthrough);
479
480  // -----------------------
481  // rdx - Start of capture
482  // rax - length of capture
483
484  // Check that there are sufficient characters left in the input.
485  __ movl(rbx, rdi);
486  __ addl(rbx, rax);
487  BranchOrBacktrack(greater, on_no_match);
488
489  // Compute pointers to match string and capture string
490  __ lea(rbx, Operand(rsi, rdi, times_1, 0));  // Start of match.
491  __ addq(rdx, rsi);  // Start of capture.
492  __ lea(r9, Operand(rdx, rax, times_1, 0));  // End of capture
493
494  // -----------------------
495  // rbx - current capture character address.
496  // rbx - current input character address .
497  // r9 - end of input to match (capture length after rbx).
498
499  Label loop;
500  __ bind(&loop);
501  if (mode_ == ASCII) {
502    __ movzxbl(rax, Operand(rdx, 0));
503    __ cmpb(rax, Operand(rbx, 0));
504  } else {
505    ASSERT(mode_ == UC16);
506    __ movzxwl(rax, Operand(rdx, 0));
507    __ cmpw(rax, Operand(rbx, 0));
508  }
509  BranchOrBacktrack(not_equal, on_no_match);
510  // Increment pointers into capture and match string.
511  __ addq(rbx, Immediate(char_size()));
512  __ addq(rdx, Immediate(char_size()));
513  // Check if we have reached end of match area.
514  __ cmpq(rdx, r9);
515  __ j(below, &loop);
516
517  // Success.
518  // Set current character position to position after match.
519  __ movq(rdi, rbx);
520  __ subq(rdi, rsi);
521
522  __ bind(&fallthrough);
523}
524
525
526void RegExpMacroAssemblerX64::CheckNotRegistersEqual(int reg1,
527                                                     int reg2,
528                                                     Label* on_not_equal) {
529  __ movq(rax, register_location(reg1));
530  __ cmpq(rax, register_location(reg2));
531  BranchOrBacktrack(not_equal, on_not_equal);
532}
533
534
535void RegExpMacroAssemblerX64::CheckNotCharacter(uint32_t c,
536                                                Label* on_not_equal) {
537  __ cmpl(current_character(), Immediate(c));
538  BranchOrBacktrack(not_equal, on_not_equal);
539}
540
541
542void RegExpMacroAssemblerX64::CheckCharacterAfterAnd(uint32_t c,
543                                                     uint32_t mask,
544                                                     Label* on_equal) {
545  __ movl(rax, current_character());
546  __ and_(rax, Immediate(mask));
547  __ cmpl(rax, Immediate(c));
548  BranchOrBacktrack(equal, on_equal);
549}
550
551
552void RegExpMacroAssemblerX64::CheckNotCharacterAfterAnd(uint32_t c,
553                                                        uint32_t mask,
554                                                        Label* on_not_equal) {
555  __ movl(rax, current_character());
556  __ and_(rax, Immediate(mask));
557  __ cmpl(rax, Immediate(c));
558  BranchOrBacktrack(not_equal, on_not_equal);
559}
560
561
562void RegExpMacroAssemblerX64::CheckNotCharacterAfterMinusAnd(
563    uc16 c,
564    uc16 minus,
565    uc16 mask,
566    Label* on_not_equal) {
567  ASSERT(minus < String::kMaxUtf16CodeUnit);
568  __ lea(rax, Operand(current_character(), -minus));
569  __ and_(rax, Immediate(mask));
570  __ cmpl(rax, Immediate(c));
571  BranchOrBacktrack(not_equal, on_not_equal);
572}
573
574
575bool RegExpMacroAssemblerX64::CheckSpecialCharacterClass(uc16 type,
576                                                         Label* on_no_match) {
577  // Range checks (c in min..max) are generally implemented by an unsigned
578  // (c - min) <= (max - min) check, using the sequence:
579  //   lea(rax, Operand(current_character(), -min)) or sub(rax, Immediate(min))
580  //   cmp(rax, Immediate(max - min))
581  switch (type) {
582  case 's':
583    // Match space-characters
584    if (mode_ == ASCII) {
585      // ASCII space characters are '\t'..'\r' and ' '.
586      Label success;
587      __ cmpl(current_character(), Immediate(' '));
588      __ j(equal, &success);
589      // Check range 0x09..0x0d
590      __ lea(rax, Operand(current_character(), -'\t'));
591      __ cmpl(rax, Immediate('\r' - '\t'));
592      BranchOrBacktrack(above, on_no_match);
593      __ bind(&success);
594      return true;
595    }
596    return false;
597  case 'S':
598    // Match non-space characters.
599    if (mode_ == ASCII) {
600      // ASCII space characters are '\t'..'\r' and ' '.
601      __ cmpl(current_character(), Immediate(' '));
602      BranchOrBacktrack(equal, on_no_match);
603      __ lea(rax, Operand(current_character(), -'\t'));
604      __ cmpl(rax, Immediate('\r' - '\t'));
605      BranchOrBacktrack(below_equal, on_no_match);
606      return true;
607    }
608    return false;
609  case 'd':
610    // Match ASCII digits ('0'..'9')
611    __ lea(rax, Operand(current_character(), -'0'));
612    __ cmpl(rax, Immediate('9' - '0'));
613    BranchOrBacktrack(above, on_no_match);
614    return true;
615  case 'D':
616    // Match non ASCII-digits
617    __ lea(rax, Operand(current_character(), -'0'));
618    __ cmpl(rax, Immediate('9' - '0'));
619    BranchOrBacktrack(below_equal, on_no_match);
620    return true;
621  case '.': {
622    // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
623    __ movl(rax, current_character());
624    __ xor_(rax, Immediate(0x01));
625    // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
626    __ subl(rax, Immediate(0x0b));
627    __ cmpl(rax, Immediate(0x0c - 0x0b));
628    BranchOrBacktrack(below_equal, on_no_match);
629    if (mode_ == UC16) {
630      // Compare original value to 0x2028 and 0x2029, using the already
631      // computed (current_char ^ 0x01 - 0x0b). I.e., check for
632      // 0x201d (0x2028 - 0x0b) or 0x201e.
633      __ subl(rax, Immediate(0x2028 - 0x0b));
634      __ cmpl(rax, Immediate(0x2029 - 0x2028));
635      BranchOrBacktrack(below_equal, on_no_match);
636    }
637    return true;
638  }
639  case 'n': {
640    // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
641    __ movl(rax, current_character());
642    __ xor_(rax, Immediate(0x01));
643    // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
644    __ subl(rax, Immediate(0x0b));
645    __ cmpl(rax, Immediate(0x0c - 0x0b));
646    if (mode_ == ASCII) {
647      BranchOrBacktrack(above, on_no_match);
648    } else {
649      Label done;
650      BranchOrBacktrack(below_equal, &done);
651      // Compare original value to 0x2028 and 0x2029, using the already
652      // computed (current_char ^ 0x01 - 0x0b). I.e., check for
653      // 0x201d (0x2028 - 0x0b) or 0x201e.
654      __ subl(rax, Immediate(0x2028 - 0x0b));
655      __ cmpl(rax, Immediate(0x2029 - 0x2028));
656      BranchOrBacktrack(above, on_no_match);
657      __ bind(&done);
658    }
659    return true;
660  }
661  case 'w': {
662    if (mode_ != ASCII) {
663      // Table is 128 entries, so all ASCII characters can be tested.
664      __ cmpl(current_character(), Immediate('z'));
665      BranchOrBacktrack(above, on_no_match);
666    }
667    __ movq(rbx, ExternalReference::re_word_character_map());
668    ASSERT_EQ(0, word_character_map[0]);  // Character '\0' is not a word char.
669    __ testb(Operand(rbx, current_character(), times_1, 0),
670             current_character());
671    BranchOrBacktrack(zero, on_no_match);
672    return true;
673  }
674  case 'W': {
675    Label done;
676    if (mode_ != ASCII) {
677      // Table is 128 entries, so all ASCII characters can be tested.
678      __ cmpl(current_character(), Immediate('z'));
679      __ j(above, &done);
680    }
681    __ movq(rbx, ExternalReference::re_word_character_map());
682    ASSERT_EQ(0, word_character_map[0]);  // Character '\0' is not a word char.
683    __ testb(Operand(rbx, current_character(), times_1, 0),
684             current_character());
685    BranchOrBacktrack(not_zero, on_no_match);
686    if (mode_ != ASCII) {
687      __ bind(&done);
688    }
689    return true;
690  }
691
692  case '*':
693    // Match any character.
694    return true;
695  // No custom implementation (yet): s(UC16), S(UC16).
696  default:
697    return false;
698  }
699}
700
701
702void RegExpMacroAssemblerX64::Fail() {
703  ASSERT(FAILURE == 0);  // Return value for failure is zero.
704  __ Set(rax, 0);
705  __ jmp(&exit_label_);
706}
707
708
709Handle<HeapObject> RegExpMacroAssemblerX64::GetCode(Handle<String> source) {
710  // Finalize code - write the entry point code now we know how many
711  // registers we need.
712  // Entry code:
713  __ bind(&entry_label_);
714
715  // Tell the system that we have a stack frame.  Because the type is MANUAL, no
716  // is generated.
717  FrameScope scope(&masm_, StackFrame::MANUAL);
718
719  // Actually emit code to start a new stack frame.
720  __ push(rbp);
721  __ movq(rbp, rsp);
722  // Save parameters and callee-save registers. Order here should correspond
723  //  to order of kBackup_ebx etc.
724#ifdef _WIN64
725  // MSVC passes arguments in rcx, rdx, r8, r9, with backing stack slots.
726  // Store register parameters in pre-allocated stack slots,
727  __ movq(Operand(rbp, kInputString), rcx);
728  __ movq(Operand(rbp, kStartIndex), rdx);  // Passed as int32 in edx.
729  __ movq(Operand(rbp, kInputStart), r8);
730  __ movq(Operand(rbp, kInputEnd), r9);
731  // Callee-save on Win64.
732  __ push(rsi);
733  __ push(rdi);
734  __ push(rbx);
735#else
736  // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9 (and then on stack).
737  // Push register parameters on stack for reference.
738  ASSERT_EQ(kInputString, -1 * kPointerSize);
739  ASSERT_EQ(kStartIndex, -2 * kPointerSize);
740  ASSERT_EQ(kInputStart, -3 * kPointerSize);
741  ASSERT_EQ(kInputEnd, -4 * kPointerSize);
742  ASSERT_EQ(kRegisterOutput, -5 * kPointerSize);
743  ASSERT_EQ(kStackHighEnd, -6 * kPointerSize);
744  __ push(rdi);
745  __ push(rsi);
746  __ push(rdx);
747  __ push(rcx);
748  __ push(r8);
749  __ push(r9);
750
751  __ push(rbx);  // Callee-save
752#endif
753
754  __ push(Immediate(0));  // Make room for "at start" constant.
755
756  // Check if we have space on the stack for registers.
757  Label stack_limit_hit;
758  Label stack_ok;
759
760  ExternalReference stack_limit =
761      ExternalReference::address_of_stack_limit(masm_.isolate());
762  __ movq(rcx, rsp);
763  __ movq(kScratchRegister, stack_limit);
764  __ subq(rcx, Operand(kScratchRegister, 0));
765  // Handle it if the stack pointer is already below the stack limit.
766  __ j(below_equal, &stack_limit_hit);
767  // Check if there is room for the variable number of registers above
768  // the stack limit.
769  __ cmpq(rcx, Immediate(num_registers_ * kPointerSize));
770  __ j(above_equal, &stack_ok);
771  // Exit with OutOfMemory exception. There is not enough space on the stack
772  // for our working registers.
773  __ Set(rax, EXCEPTION);
774  __ jmp(&exit_label_);
775
776  __ bind(&stack_limit_hit);
777  __ Move(code_object_pointer(), masm_.CodeObject());
778  CallCheckStackGuardState();  // Preserves no registers beside rbp and rsp.
779  __ testq(rax, rax);
780  // If returned value is non-zero, we exit with the returned value as result.
781  __ j(not_zero, &exit_label_);
782
783  __ bind(&stack_ok);
784
785  // Allocate space on stack for registers.
786  __ subq(rsp, Immediate(num_registers_ * kPointerSize));
787  // Load string length.
788  __ movq(rsi, Operand(rbp, kInputEnd));
789  // Load input position.
790  __ movq(rdi, Operand(rbp, kInputStart));
791  // Set up rdi to be negative offset from string end.
792  __ subq(rdi, rsi);
793  // Set rax to address of char before start of the string
794  // (effectively string position -1).
795  __ movq(rbx, Operand(rbp, kStartIndex));
796  __ neg(rbx);
797  if (mode_ == UC16) {
798    __ lea(rax, Operand(rdi, rbx, times_2, -char_size()));
799  } else {
800    __ lea(rax, Operand(rdi, rbx, times_1, -char_size()));
801  }
802  // Store this value in a local variable, for use when clearing
803  // position registers.
804  __ movq(Operand(rbp, kInputStartMinusOne), rax);
805
806  if (num_saved_registers_ > 0) {
807    // Fill saved registers with initial value = start offset - 1
808    // Fill in stack push order, to avoid accessing across an unwritten
809    // page (a problem on Windows).
810    __ Set(rcx, kRegisterZero);
811    Label init_loop;
812    __ bind(&init_loop);
813    __ movq(Operand(rbp, rcx, times_1, 0), rax);
814    __ subq(rcx, Immediate(kPointerSize));
815    __ cmpq(rcx,
816            Immediate(kRegisterZero - num_saved_registers_ * kPointerSize));
817    __ j(greater, &init_loop);
818  }
819  // Ensure that we have written to each stack page, in order. Skipping a page
820  // on Windows can cause segmentation faults. Assuming page size is 4k.
821  const int kPageSize = 4096;
822  const int kRegistersPerPage = kPageSize / kPointerSize;
823  for (int i = num_saved_registers_ + kRegistersPerPage - 1;
824      i < num_registers_;
825      i += kRegistersPerPage) {
826    __ movq(register_location(i), rax);  // One write every page.
827  }
828
829  // Initialize backtrack stack pointer.
830  __ movq(backtrack_stackpointer(), Operand(rbp, kStackHighEnd));
831  // Initialize code object pointer.
832  __ Move(code_object_pointer(), masm_.CodeObject());
833  // Load previous char as initial value of current-character.
834  Label at_start;
835  __ cmpb(Operand(rbp, kStartIndex), Immediate(0));
836  __ j(equal, &at_start);
837  LoadCurrentCharacterUnchecked(-1, 1);  // Load previous char.
838  __ jmp(&start_label_);
839  __ bind(&at_start);
840  __ Set(current_character(), '\n');
841  __ jmp(&start_label_);
842
843
844  // Exit code:
845  if (success_label_.is_linked()) {
846    // Save captures when successful.
847    __ bind(&success_label_);
848    if (num_saved_registers_ > 0) {
849      // copy captures to output
850      __ movq(rdx, Operand(rbp, kStartIndex));
851      __ movq(rbx, Operand(rbp, kRegisterOutput));
852      __ movq(rcx, Operand(rbp, kInputEnd));
853      __ subq(rcx, Operand(rbp, kInputStart));
854      if (mode_ == UC16) {
855        __ lea(rcx, Operand(rcx, rdx, times_2, 0));
856      } else {
857        __ addq(rcx, rdx);
858      }
859      for (int i = 0; i < num_saved_registers_; i++) {
860        __ movq(rax, register_location(i));
861        __ addq(rax, rcx);  // Convert to index from start, not end.
862        if (mode_ == UC16) {
863          __ sar(rax, Immediate(1));  // Convert byte index to character index.
864        }
865        __ movl(Operand(rbx, i * kIntSize), rax);
866      }
867    }
868    __ Set(rax, SUCCESS);
869  }
870
871  // Exit and return rax
872  __ bind(&exit_label_);
873
874#ifdef _WIN64
875  // Restore callee save registers.
876  __ lea(rsp, Operand(rbp, kLastCalleeSaveRegister));
877  __ pop(rbx);
878  __ pop(rdi);
879  __ pop(rsi);
880  // Stack now at rbp.
881#else
882  // Restore callee save register.
883  __ movq(rbx, Operand(rbp, kBackup_rbx));
884  // Skip rsp to rbp.
885  __ movq(rsp, rbp);
886#endif
887  // Exit function frame, restore previous one.
888  __ pop(rbp);
889  __ ret(0);
890
891  // Backtrack code (branch target for conditional backtracks).
892  if (backtrack_label_.is_linked()) {
893    __ bind(&backtrack_label_);
894    Backtrack();
895  }
896
897  Label exit_with_exception;
898
899  // Preempt-code
900  if (check_preempt_label_.is_linked()) {
901    SafeCallTarget(&check_preempt_label_);
902
903    __ push(backtrack_stackpointer());
904    __ push(rdi);
905
906    CallCheckStackGuardState();
907    __ testq(rax, rax);
908    // If returning non-zero, we should end execution with the given
909    // result as return value.
910    __ j(not_zero, &exit_label_);
911
912    // Restore registers.
913    __ Move(code_object_pointer(), masm_.CodeObject());
914    __ pop(rdi);
915    __ pop(backtrack_stackpointer());
916    // String might have moved: Reload esi from frame.
917    __ movq(rsi, Operand(rbp, kInputEnd));
918    SafeReturn();
919  }
920
921  // Backtrack stack overflow code.
922  if (stack_overflow_label_.is_linked()) {
923    SafeCallTarget(&stack_overflow_label_);
924    // Reached if the backtrack-stack limit has been hit.
925
926    Label grow_failed;
927    // Save registers before calling C function
928#ifndef _WIN64
929    // Callee-save in Microsoft 64-bit ABI, but not in AMD64 ABI.
930    __ push(rsi);
931    __ push(rdi);
932#endif
933
934    // Call GrowStack(backtrack_stackpointer())
935    static const int num_arguments = 3;
936    __ PrepareCallCFunction(num_arguments);
937#ifdef _WIN64
938    // Microsoft passes parameters in rcx, rdx, r8.
939    // First argument, backtrack stackpointer, is already in rcx.
940    __ lea(rdx, Operand(rbp, kStackHighEnd));  // Second argument
941    __ LoadAddress(r8, ExternalReference::isolate_address());
942#else
943    // AMD64 ABI passes parameters in rdi, rsi, rdx.
944    __ movq(rdi, backtrack_stackpointer());   // First argument.
945    __ lea(rsi, Operand(rbp, kStackHighEnd));  // Second argument.
946    __ LoadAddress(rdx, ExternalReference::isolate_address());
947#endif
948    ExternalReference grow_stack =
949        ExternalReference::re_grow_stack(masm_.isolate());
950    __ CallCFunction(grow_stack, num_arguments);
951    // If return NULL, we have failed to grow the stack, and
952    // must exit with a stack-overflow exception.
953    __ testq(rax, rax);
954    __ j(equal, &exit_with_exception);
955    // Otherwise use return value as new stack pointer.
956    __ movq(backtrack_stackpointer(), rax);
957    // Restore saved registers and continue.
958    __ Move(code_object_pointer(), masm_.CodeObject());
959#ifndef _WIN64
960    __ pop(rdi);
961    __ pop(rsi);
962#endif
963    SafeReturn();
964  }
965
966  if (exit_with_exception.is_linked()) {
967    // If any of the code above needed to exit with an exception.
968    __ bind(&exit_with_exception);
969    // Exit with Result EXCEPTION(-1) to signal thrown exception.
970    __ Set(rax, EXCEPTION);
971    __ jmp(&exit_label_);
972  }
973
974  FixupCodeRelativePositions();
975
976  CodeDesc code_desc;
977  masm_.GetCode(&code_desc);
978  Isolate* isolate = ISOLATE;
979  Handle<Code> code = isolate->factory()->NewCode(
980      code_desc, Code::ComputeFlags(Code::REGEXP),
981      masm_.CodeObject());
982  PROFILE(isolate, RegExpCodeCreateEvent(*code, *source));
983  return Handle<HeapObject>::cast(code);
984}
985
986
987void RegExpMacroAssemblerX64::GoTo(Label* to) {
988  BranchOrBacktrack(no_condition, to);
989}
990
991
992void RegExpMacroAssemblerX64::IfRegisterGE(int reg,
993                                           int comparand,
994                                           Label* if_ge) {
995  __ cmpq(register_location(reg), Immediate(comparand));
996  BranchOrBacktrack(greater_equal, if_ge);
997}
998
999
1000void RegExpMacroAssemblerX64::IfRegisterLT(int reg,
1001                                           int comparand,
1002                                           Label* if_lt) {
1003  __ cmpq(register_location(reg), Immediate(comparand));
1004  BranchOrBacktrack(less, if_lt);
1005}
1006
1007
1008void RegExpMacroAssemblerX64::IfRegisterEqPos(int reg,
1009                                              Label* if_eq) {
1010  __ cmpq(rdi, register_location(reg));
1011  BranchOrBacktrack(equal, if_eq);
1012}
1013
1014
1015RegExpMacroAssembler::IrregexpImplementation
1016    RegExpMacroAssemblerX64::Implementation() {
1017  return kX64Implementation;
1018}
1019
1020
1021void RegExpMacroAssemblerX64::LoadCurrentCharacter(int cp_offset,
1022                                                   Label* on_end_of_input,
1023                                                   bool check_bounds,
1024                                                   int characters) {
1025  ASSERT(cp_offset >= -1);      // ^ and \b can look behind one character.
1026  ASSERT(cp_offset < (1<<30));  // Be sane! (And ensure negation works)
1027  if (check_bounds) {
1028    CheckPosition(cp_offset + characters - 1, on_end_of_input);
1029  }
1030  LoadCurrentCharacterUnchecked(cp_offset, characters);
1031}
1032
1033
1034void RegExpMacroAssemblerX64::PopCurrentPosition() {
1035  Pop(rdi);
1036}
1037
1038
1039void RegExpMacroAssemblerX64::PopRegister(int register_index) {
1040  Pop(rax);
1041  __ movq(register_location(register_index), rax);
1042}
1043
1044
1045void RegExpMacroAssemblerX64::PushBacktrack(Label* label) {
1046  Push(label);
1047  CheckStackLimit();
1048}
1049
1050
1051void RegExpMacroAssemblerX64::PushCurrentPosition() {
1052  Push(rdi);
1053}
1054
1055
1056void RegExpMacroAssemblerX64::PushRegister(int register_index,
1057                                           StackCheckFlag check_stack_limit) {
1058  __ movq(rax, register_location(register_index));
1059  Push(rax);
1060  if (check_stack_limit) CheckStackLimit();
1061}
1062
1063
1064void RegExpMacroAssemblerX64::ReadCurrentPositionFromRegister(int reg) {
1065  __ movq(rdi, register_location(reg));
1066}
1067
1068
1069void RegExpMacroAssemblerX64::ReadStackPointerFromRegister(int reg) {
1070  __ movq(backtrack_stackpointer(), register_location(reg));
1071  __ addq(backtrack_stackpointer(), Operand(rbp, kStackHighEnd));
1072}
1073
1074
1075void RegExpMacroAssemblerX64::SetCurrentPositionFromEnd(int by) {
1076  Label after_position;
1077  __ cmpq(rdi, Immediate(-by * char_size()));
1078  __ j(greater_equal, &after_position, Label::kNear);
1079  __ movq(rdi, Immediate(-by * char_size()));
1080  // On RegExp code entry (where this operation is used), the character before
1081  // the current position is expected to be already loaded.
1082  // We have advanced the position, so it's safe to read backwards.
1083  LoadCurrentCharacterUnchecked(-1, 1);
1084  __ bind(&after_position);
1085}
1086
1087
1088void RegExpMacroAssemblerX64::SetRegister(int register_index, int to) {
1089  ASSERT(register_index >= num_saved_registers_);  // Reserved for positions!
1090  __ movq(register_location(register_index), Immediate(to));
1091}
1092
1093
1094void RegExpMacroAssemblerX64::Succeed() {
1095  __ jmp(&success_label_);
1096}
1097
1098
1099void RegExpMacroAssemblerX64::WriteCurrentPositionToRegister(int reg,
1100                                                             int cp_offset) {
1101  if (cp_offset == 0) {
1102    __ movq(register_location(reg), rdi);
1103  } else {
1104    __ lea(rax, Operand(rdi, cp_offset * char_size()));
1105    __ movq(register_location(reg), rax);
1106  }
1107}
1108
1109
1110void RegExpMacroAssemblerX64::ClearRegisters(int reg_from, int reg_to) {
1111  ASSERT(reg_from <= reg_to);
1112  __ movq(rax, Operand(rbp, kInputStartMinusOne));
1113  for (int reg = reg_from; reg <= reg_to; reg++) {
1114    __ movq(register_location(reg), rax);
1115  }
1116}
1117
1118
1119void RegExpMacroAssemblerX64::WriteStackPointerToRegister(int reg) {
1120  __ movq(rax, backtrack_stackpointer());
1121  __ subq(rax, Operand(rbp, kStackHighEnd));
1122  __ movq(register_location(reg), rax);
1123}
1124
1125
1126// Private methods:
1127
1128void RegExpMacroAssemblerX64::CallCheckStackGuardState() {
1129  // This function call preserves no register values. Caller should
1130  // store anything volatile in a C call or overwritten by this function.
1131  static const int num_arguments = 3;
1132  __ PrepareCallCFunction(num_arguments);
1133#ifdef _WIN64
1134  // Second argument: Code* of self. (Do this before overwriting r8).
1135  __ movq(rdx, code_object_pointer());
1136  // Third argument: RegExp code frame pointer.
1137  __ movq(r8, rbp);
1138  // First argument: Next address on the stack (will be address of
1139  // return address).
1140  __ lea(rcx, Operand(rsp, -kPointerSize));
1141#else
1142  // Third argument: RegExp code frame pointer.
1143  __ movq(rdx, rbp);
1144  // Second argument: Code* of self.
1145  __ movq(rsi, code_object_pointer());
1146  // First argument: Next address on the stack (will be address of
1147  // return address).
1148  __ lea(rdi, Operand(rsp, -kPointerSize));
1149#endif
1150  ExternalReference stack_check =
1151      ExternalReference::re_check_stack_guard_state(masm_.isolate());
1152  __ CallCFunction(stack_check, num_arguments);
1153}
1154
1155
1156// Helper function for reading a value out of a stack frame.
1157template <typename T>
1158static T& frame_entry(Address re_frame, int frame_offset) {
1159  return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
1160}
1161
1162
1163int RegExpMacroAssemblerX64::CheckStackGuardState(Address* return_address,
1164                                                  Code* re_code,
1165                                                  Address re_frame) {
1166  Isolate* isolate = frame_entry<Isolate*>(re_frame, kIsolate);
1167  ASSERT(isolate == Isolate::Current());
1168  if (isolate->stack_guard()->IsStackOverflow()) {
1169    isolate->StackOverflow();
1170    return EXCEPTION;
1171  }
1172
1173  // If not real stack overflow the stack guard was used to interrupt
1174  // execution for another purpose.
1175
1176  // If this is a direct call from JavaScript retry the RegExp forcing the call
1177  // through the runtime system. Currently the direct call cannot handle a GC.
1178  if (frame_entry<int>(re_frame, kDirectCall) == 1) {
1179    return RETRY;
1180  }
1181
1182  // Prepare for possible GC.
1183  HandleScope handles(isolate);
1184  Handle<Code> code_handle(re_code);
1185
1186  Handle<String> subject(frame_entry<String*>(re_frame, kInputString));
1187
1188  // Current string.
1189  bool is_ascii = subject->IsAsciiRepresentationUnderneath();
1190
1191  ASSERT(re_code->instruction_start() <= *return_address);
1192  ASSERT(*return_address <=
1193      re_code->instruction_start() + re_code->instruction_size());
1194
1195  MaybeObject* result = Execution::HandleStackGuardInterrupt(isolate);
1196
1197  if (*code_handle != re_code) {  // Return address no longer valid
1198    intptr_t delta = code_handle->address() - re_code->address();
1199    // Overwrite the return address on the stack.
1200    *return_address += delta;
1201  }
1202
1203  if (result->IsException()) {
1204    return EXCEPTION;
1205  }
1206
1207  Handle<String> subject_tmp = subject;
1208  int slice_offset = 0;
1209
1210  // Extract the underlying string and the slice offset.
1211  if (StringShape(*subject_tmp).IsCons()) {
1212    subject_tmp = Handle<String>(ConsString::cast(*subject_tmp)->first());
1213  } else if (StringShape(*subject_tmp).IsSliced()) {
1214    SlicedString* slice = SlicedString::cast(*subject_tmp);
1215    subject_tmp = Handle<String>(slice->parent());
1216    slice_offset = slice->offset();
1217  }
1218
1219  // String might have changed.
1220  if (subject_tmp->IsAsciiRepresentation() != is_ascii) {
1221    // If we changed between an ASCII and an UC16 string, the specialized
1222    // code cannot be used, and we need to restart regexp matching from
1223    // scratch (including, potentially, compiling a new version of the code).
1224    return RETRY;
1225  }
1226
1227  // Otherwise, the content of the string might have moved. It must still
1228  // be a sequential or external string with the same content.
1229  // Update the start and end pointers in the stack frame to the current
1230  // location (whether it has actually moved or not).
1231  ASSERT(StringShape(*subject_tmp).IsSequential() ||
1232      StringShape(*subject_tmp).IsExternal());
1233
1234  // The original start address of the characters to match.
1235  const byte* start_address = frame_entry<const byte*>(re_frame, kInputStart);
1236
1237  // Find the current start address of the same character at the current string
1238  // position.
1239  int start_index = frame_entry<int>(re_frame, kStartIndex);
1240  const byte* new_address = StringCharacterPosition(*subject_tmp,
1241                                                    start_index + slice_offset);
1242
1243  if (start_address != new_address) {
1244    // If there is a difference, update the object pointer and start and end
1245    // addresses in the RegExp stack frame to match the new value.
1246    const byte* end_address = frame_entry<const byte* >(re_frame, kInputEnd);
1247    int byte_length = static_cast<int>(end_address - start_address);
1248    frame_entry<const String*>(re_frame, kInputString) = *subject;
1249    frame_entry<const byte*>(re_frame, kInputStart) = new_address;
1250    frame_entry<const byte*>(re_frame, kInputEnd) = new_address + byte_length;
1251  } else if (frame_entry<const String*>(re_frame, kInputString) != *subject) {
1252    // Subject string might have been a ConsString that underwent
1253    // short-circuiting during GC. That will not change start_address but
1254    // will change pointer inside the subject handle.
1255    frame_entry<const String*>(re_frame, kInputString) = *subject;
1256  }
1257
1258  return 0;
1259}
1260
1261
1262Operand RegExpMacroAssemblerX64::register_location(int register_index) {
1263  ASSERT(register_index < (1<<30));
1264  if (num_registers_ <= register_index) {
1265    num_registers_ = register_index + 1;
1266  }
1267  return Operand(rbp, kRegisterZero - register_index * kPointerSize);
1268}
1269
1270
1271void RegExpMacroAssemblerX64::CheckPosition(int cp_offset,
1272                                            Label* on_outside_input) {
1273  __ cmpl(rdi, Immediate(-cp_offset * char_size()));
1274  BranchOrBacktrack(greater_equal, on_outside_input);
1275}
1276
1277
1278void RegExpMacroAssemblerX64::BranchOrBacktrack(Condition condition,
1279                                                Label* to) {
1280  if (condition < 0) {  // No condition
1281    if (to == NULL) {
1282      Backtrack();
1283      return;
1284    }
1285    __ jmp(to);
1286    return;
1287  }
1288  if (to == NULL) {
1289    __ j(condition, &backtrack_label_);
1290    return;
1291  }
1292  __ j(condition, to);
1293}
1294
1295
1296void RegExpMacroAssemblerX64::SafeCall(Label* to) {
1297  __ call(to);
1298}
1299
1300
1301void RegExpMacroAssemblerX64::SafeCallTarget(Label* label) {
1302  __ bind(label);
1303  __ subq(Operand(rsp, 0), code_object_pointer());
1304}
1305
1306
1307void RegExpMacroAssemblerX64::SafeReturn() {
1308  __ addq(Operand(rsp, 0), code_object_pointer());
1309  __ ret(0);
1310}
1311
1312
1313void RegExpMacroAssemblerX64::Push(Register source) {
1314  ASSERT(!source.is(backtrack_stackpointer()));
1315  // Notice: This updates flags, unlike normal Push.
1316  __ subq(backtrack_stackpointer(), Immediate(kIntSize));
1317  __ movl(Operand(backtrack_stackpointer(), 0), source);
1318}
1319
1320
1321void RegExpMacroAssemblerX64::Push(Immediate value) {
1322  // Notice: This updates flags, unlike normal Push.
1323  __ subq(backtrack_stackpointer(), Immediate(kIntSize));
1324  __ movl(Operand(backtrack_stackpointer(), 0), value);
1325}
1326
1327
1328void RegExpMacroAssemblerX64::FixupCodeRelativePositions() {
1329  for (int i = 0, n = code_relative_fixup_positions_.length(); i < n; i++) {
1330    int position = code_relative_fixup_positions_[i];
1331    // The position succeeds a relative label offset from position.
1332    // Patch the relative offset to be relative to the Code object pointer
1333    // instead.
1334    int patch_position = position - kIntSize;
1335    int offset = masm_.long_at(patch_position);
1336    masm_.long_at_put(patch_position,
1337                       offset
1338                       + position
1339                       + Code::kHeaderSize
1340                       - kHeapObjectTag);
1341  }
1342  code_relative_fixup_positions_.Clear();
1343}
1344
1345
1346void RegExpMacroAssemblerX64::Push(Label* backtrack_target) {
1347  __ subq(backtrack_stackpointer(), Immediate(kIntSize));
1348  __ movl(Operand(backtrack_stackpointer(), 0), backtrack_target);
1349  MarkPositionForCodeRelativeFixup();
1350}
1351
1352
1353void RegExpMacroAssemblerX64::Pop(Register target) {
1354  ASSERT(!target.is(backtrack_stackpointer()));
1355  __ movsxlq(target, Operand(backtrack_stackpointer(), 0));
1356  // Notice: This updates flags, unlike normal Pop.
1357  __ addq(backtrack_stackpointer(), Immediate(kIntSize));
1358}
1359
1360
1361void RegExpMacroAssemblerX64::Drop() {
1362  __ addq(backtrack_stackpointer(), Immediate(kIntSize));
1363}
1364
1365
1366void RegExpMacroAssemblerX64::CheckPreemption() {
1367  // Check for preemption.
1368  Label no_preempt;
1369  ExternalReference stack_limit =
1370      ExternalReference::address_of_stack_limit(masm_.isolate());
1371  __ load_rax(stack_limit);
1372  __ cmpq(rsp, rax);
1373  __ j(above, &no_preempt);
1374
1375  SafeCall(&check_preempt_label_);
1376
1377  __ bind(&no_preempt);
1378}
1379
1380
1381void RegExpMacroAssemblerX64::CheckStackLimit() {
1382  Label no_stack_overflow;
1383  ExternalReference stack_limit =
1384      ExternalReference::address_of_regexp_stack_limit(masm_.isolate());
1385  __ load_rax(stack_limit);
1386  __ cmpq(backtrack_stackpointer(), rax);
1387  __ j(above, &no_stack_overflow);
1388
1389  SafeCall(&stack_overflow_label_);
1390
1391  __ bind(&no_stack_overflow);
1392}
1393
1394
1395void RegExpMacroAssemblerX64::LoadCurrentCharacterUnchecked(int cp_offset,
1396                                                            int characters) {
1397  if (mode_ == ASCII) {
1398    if (characters == 4) {
1399      __ movl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
1400    } else if (characters == 2) {
1401      __ movzxwl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
1402    } else {
1403      ASSERT(characters == 1);
1404      __ movzxbl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
1405    }
1406  } else {
1407    ASSERT(mode_ == UC16);
1408    if (characters == 2) {
1409      __ movl(current_character(),
1410              Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16)));
1411    } else {
1412      ASSERT(characters == 1);
1413      __ movzxwl(current_character(),
1414                 Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16)));
1415    }
1416  }
1417}
1418
1419#undef __
1420
1421#endif  // V8_INTERPRETED_REGEXP
1422
1423}}  // namespace v8::internal
1424
1425#endif  // V8_TARGET_ARCH_X64
1426