1
2/*--------------------------------------------------------------------*/
3/*--- Store and compare stack backtraces            m_execontext.c ---*/
4/*--------------------------------------------------------------------*/
5
6/*
7   This file is part of Valgrind, a dynamic binary instrumentation
8   framework.
9
10   Copyright (C) 2000-2012 Julian Seward
11      jseward@acm.org
12
13   This program is free software; you can redistribute it and/or
14   modify it under the terms of the GNU General Public License as
15   published by the Free Software Foundation; either version 2 of the
16   License, or (at your option) any later version.
17
18   This program is distributed in the hope that it will be useful, but
19   WITHOUT ANY WARRANTY; without even the implied warranty of
20   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
21   General Public License for more details.
22
23   You should have received a copy of the GNU General Public License
24   along with this program; if not, write to the Free Software
25   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
26   02111-1307, USA.
27
28   The GNU General Public License is contained in the file COPYING.
29*/
30
31#include "pub_core_basics.h"
32#include "pub_core_debuglog.h"
33#include "pub_core_libcassert.h"
34#include "pub_core_libcprint.h"     // For VG_(message)()
35#include "pub_core_mallocfree.h"
36#include "pub_core_options.h"
37#include "pub_core_stacktrace.h"
38#include "pub_core_machine.h"       // VG_(get_IP)
39#include "pub_core_vki.h"           // To keep pub_core_threadstate.h happy
40#include "pub_core_libcsetjmp.h"    // Ditto
41#include "pub_core_threadstate.h"   // VG_(is_valid_tid)
42#include "pub_core_execontext.h"    // self
43
44/*------------------------------------------------------------*/
45/*--- Low-level ExeContext storage.                        ---*/
46/*------------------------------------------------------------*/
47
48/* The first 4 IP values are used in comparisons to remove duplicate
49   errors, and for comparing against suppression specifications.  The
50   rest are purely informational (but often important).
51
52   The contexts are stored in a traditional chained hash table, so as
53   to allow quick determination of whether a new context already
54   exists.  The hash table starts small and expands dynamically, so as
55   to keep the load factor below 1.0.
56
57   The idea is only to ever store any one context once, so as to save
58   space and make exact comparisons faster. */
59
60
61/* Primes for the hash table */
62
63#define N_EC_PRIMES 18
64
65static SizeT ec_primes[N_EC_PRIMES] = {
66         769UL,         1543UL,         3079UL,          6151UL,
67       12289UL,        24593UL,        49157UL,         98317UL,
68      196613UL,       393241UL,       786433UL,       1572869UL,
69     3145739UL,      6291469UL,     12582917UL,      25165843UL,
70    50331653UL,    100663319UL
71};
72
73
74/* Each element is present in a hash chain, and also contains a
75   variable length array of guest code addresses (the useful part). */
76
77struct _ExeContext {
78   struct _ExeContext* chain;
79   /* A 32-bit unsigned integer that uniquely identifies this
80      ExeContext.  Memcheck uses these for origin tracking.  Values
81      must be nonzero (else Memcheck's origin tracking is hosed), must
82      be a multiple of four, and must be unique.  Hence they start at
83      4. */
84   UInt ecu;
85   /* Variable-length array.  The size is 'n_ips'; at
86      least 1, at most VG_DEEPEST_BACKTRACE.  [0] is the current IP,
87      [1] is its caller, [2] is the caller of [1], etc. */
88   UInt n_ips;
89   Addr ips[0];
90};
91
92
93/* This is the dynamically expanding hash table. */
94static ExeContext** ec_htab; /* array [ec_htab_size] of ExeContext* */
95static SizeT        ec_htab_size;     /* one of the values in ec_primes */
96static SizeT        ec_htab_size_idx; /* 0 .. N_EC_PRIMES-1 */
97
98/* ECU serial number */
99static UInt ec_next_ecu = 4; /* We must never issue zero */
100
101
102/* Stats only: the number of times the system was searched to locate a
103   context. */
104static ULong ec_searchreqs;
105
106/* Stats only: the number of full context comparisons done. */
107static ULong ec_searchcmps;
108
109/* Stats only: total number of stored contexts. */
110static ULong ec_totstored;
111
112/* Number of 2, 4 and (fast) full cmps done. */
113static ULong ec_cmp2s;
114static ULong ec_cmp4s;
115static ULong ec_cmpAlls;
116
117
118/*------------------------------------------------------------*/
119/*--- Exported functions.                                  ---*/
120/*------------------------------------------------------------*/
121
122
123/* Initialise this subsystem. */
124static void init_ExeContext_storage ( void )
125{
126   Int i;
127   static Bool init_done = False;
128   if (LIKELY(init_done))
129      return;
130   ec_searchreqs = 0;
131   ec_searchcmps = 0;
132   ec_totstored = 0;
133   ec_cmp2s = 0;
134   ec_cmp4s = 0;
135   ec_cmpAlls = 0;
136
137   ec_htab_size_idx = 0;
138   ec_htab_size = ec_primes[ec_htab_size_idx];
139   ec_htab = VG_(arena_malloc)(VG_AR_EXECTXT, "execontext.iEs1",
140                               sizeof(ExeContext*) * ec_htab_size);
141   for (i = 0; i < ec_htab_size; i++)
142      ec_htab[i] = NULL;
143
144   init_done = True;
145}
146
147
148/* Print stats. */
149void VG_(print_ExeContext_stats) ( void )
150{
151   init_ExeContext_storage();
152   VG_(message)(Vg_DebugMsg,
153      "   exectx: %'lu lists, %'llu contexts (avg %'llu per list)\n",
154      ec_htab_size, ec_totstored, ec_totstored / (ULong)ec_htab_size
155   );
156   VG_(message)(Vg_DebugMsg,
157      "   exectx: %'llu searches, %'llu full compares (%'llu per 1000)\n",
158      ec_searchreqs, ec_searchcmps,
159      ec_searchreqs == 0
160         ? 0ULL
161         : ( (ec_searchcmps * 1000ULL) / ec_searchreqs )
162   );
163   VG_(message)(Vg_DebugMsg,
164      "   exectx: %'llu cmp2, %'llu cmp4, %'llu cmpAll\n",
165      ec_cmp2s, ec_cmp4s, ec_cmpAlls
166   );
167}
168
169
170/* Print an ExeContext. */
171void VG_(pp_ExeContext) ( ExeContext* ec )
172{
173   VG_(pp_StackTrace)( ec->ips, ec->n_ips );
174}
175
176
177/* Compare two ExeContexts.  Number of callers considered depends on res. */
178Bool VG_(eq_ExeContext) ( VgRes res, ExeContext* e1, ExeContext* e2 )
179{
180   Int i;
181
182   if (e1 == NULL || e2 == NULL)
183      return False;
184
185   // Must be at least one address in each trace.
186   tl_assert(e1->n_ips >= 1 && e2->n_ips >= 1);
187
188   switch (res) {
189   case Vg_LowRes:
190      /* Just compare the top two callers. */
191      ec_cmp2s++;
192      for (i = 0; i < 2; i++) {
193         if ( (e1->n_ips <= i) &&  (e2->n_ips <= i)) return True;
194         if ( (e1->n_ips <= i) && !(e2->n_ips <= i)) return False;
195         if (!(e1->n_ips <= i) &&  (e2->n_ips <= i)) return False;
196         if (e1->ips[i] != e2->ips[i])               return False;
197      }
198      return True;
199
200   case Vg_MedRes:
201      /* Just compare the top four callers. */
202      ec_cmp4s++;
203      for (i = 0; i < 4; i++) {
204         if ( (e1->n_ips <= i) &&  (e2->n_ips <= i)) return True;
205         if ( (e1->n_ips <= i) && !(e2->n_ips <= i)) return False;
206         if (!(e1->n_ips <= i) &&  (e2->n_ips <= i)) return False;
207         if (e1->ips[i] != e2->ips[i])               return False;
208      }
209      return True;
210
211   case Vg_HighRes:
212      ec_cmpAlls++;
213      /* Compare them all -- just do pointer comparison. */
214      if (e1 != e2) return False;
215      return True;
216
217   default:
218      VG_(core_panic)("VG_(eq_ExeContext): unrecognised VgRes");
219   }
220}
221
222/* VG_(record_ExeContext) is the head honcho here.  Take a snapshot of
223   the client's stack.  Search our collection of ExeContexts to see if
224   we already have it, and if not, allocate a new one.  Either way,
225   return a pointer to the context.  If there is a matching context we
226   guarantee to not allocate a new one.  Thus we never store
227   duplicates, and so exact equality can be quickly done as equality
228   on the returned ExeContext* values themselves.  Inspired by Hugs's
229   Text type.
230
231   Also checks whether the hash table needs expanding, and expands it
232   if so. */
233
234static inline UWord ROLW ( UWord w, Int n )
235{
236   Int bpw = 8 * sizeof(UWord);
237   w = (w << n) | (w >> (bpw-n));
238   return w;
239}
240
241static UWord calc_hash ( Addr* ips, UInt n_ips, UWord htab_sz )
242{
243   UInt  i;
244   UWord hash = 0;
245   vg_assert(htab_sz > 0);
246   for (i = 0; i < n_ips; i++) {
247      hash ^= ips[i];
248      hash = ROLW(hash, 19);
249   }
250   return hash % htab_sz;
251}
252
253static void resize_ec_htab ( void )
254{
255   SizeT        i;
256   SizeT        new_size;
257   ExeContext** new_ec_htab;
258
259   vg_assert(ec_htab_size_idx >= 0 && ec_htab_size_idx < N_EC_PRIMES);
260   if (ec_htab_size_idx == N_EC_PRIMES-1)
261      return; /* out of primes - can't resize further */
262
263   new_size = ec_primes[ec_htab_size_idx + 1];
264   new_ec_htab = VG_(arena_malloc)(VG_AR_EXECTXT, "execontext.reh1",
265                                   sizeof(ExeContext*) * new_size);
266
267   VG_(debugLog)(
268      1, "execontext",
269         "resizing htab from size %lu to %lu (idx %lu)  Total#ECs=%llu\n",
270         ec_htab_size, new_size, ec_htab_size_idx + 1, ec_totstored);
271
272   for (i = 0; i < new_size; i++)
273      new_ec_htab[i] = NULL;
274
275   for (i = 0; i < ec_htab_size; i++) {
276      ExeContext* cur = ec_htab[i];
277      while (cur) {
278         ExeContext* next = cur->chain;
279         UWord hash = calc_hash(cur->ips, cur->n_ips, new_size);
280         vg_assert(hash < new_size);
281         cur->chain = new_ec_htab[hash];
282         new_ec_htab[hash] = cur;
283         cur = next;
284      }
285   }
286
287   VG_(arena_free)(VG_AR_EXECTXT, ec_htab);
288   ec_htab      = new_ec_htab;
289   ec_htab_size = new_size;
290   ec_htab_size_idx++;
291}
292
293/* Do the first part of getting a stack trace: actually unwind the
294   stack, and hand the results off to the duplicate-trace-finder
295   (_wrk2). */
296static ExeContext* record_ExeContext_wrk2 ( Addr* ips, UInt n_ips ); /*fwds*/
297static ExeContext* record_ExeContext_wrk ( ThreadId tid, Word first_ip_delta,
298                                           Bool first_ip_only )
299{
300   Addr ips[VG_(clo_backtrace_size)];
301   UInt n_ips;
302
303   init_ExeContext_storage();
304
305   vg_assert(sizeof(void*) == sizeof(UWord));
306   vg_assert(sizeof(void*) == sizeof(Addr));
307
308   vg_assert(VG_(is_valid_tid)(tid));
309
310   if (first_ip_only) {
311      n_ips = 1;
312      ips[0] = VG_(get_IP)(tid) + first_ip_delta;
313   } else {
314      n_ips = VG_(get_StackTrace)( tid, ips, VG_(clo_backtrace_size),
315                                   NULL/*array to dump SP values in*/,
316                                   NULL/*array to dump FP values in*/,
317                                   first_ip_delta );
318   }
319
320   return record_ExeContext_wrk2 ( ips, n_ips );
321}
322
323/* Do the second part of getting a stack trace: ips[0 .. n_ips-1]
324   holds a proposed trace.  Find or allocate a suitable ExeContext.
325   Note that callers must have done init_ExeContext_storage() before
326   getting to this point. */
327static ExeContext* record_ExeContext_wrk2 ( Addr* ips, UInt n_ips )
328{
329   Int         i;
330   Bool        same;
331   UWord       hash;
332   ExeContext* new_ec;
333   ExeContext* list;
334   ExeContext  *prev2, *prev;
335
336   static UInt ctr = 0;
337
338   tl_assert(n_ips >= 1 && n_ips <= VG_(clo_backtrace_size));
339
340   /* Now figure out if we've seen this one before.  First hash it so
341      as to determine the list number. */
342   hash = calc_hash( ips, n_ips, ec_htab_size );
343
344   /* And (the expensive bit) look a for matching entry in the list. */
345
346   ec_searchreqs++;
347
348   prev2 = NULL;
349   prev  = NULL;
350   list  = ec_htab[hash];
351
352   while (True) {
353      if (list == NULL) break;
354      ec_searchcmps++;
355      same = True;
356      for (i = 0; i < n_ips; i++) {
357         if (list->ips[i] != ips[i]) {
358            same = False;
359            break;
360         }
361      }
362      if (same) break;
363      prev2 = prev;
364      prev  = list;
365      list  = list->chain;
366   }
367
368   if (list != NULL) {
369      /* Yay!  We found it.  Once every 8 searches, move it one step
370         closer to the start of the list to make future searches
371         cheaper. */
372      if (0 == ((ctr++) & 7)) {
373         if (prev2 != NULL && prev != NULL) {
374            /* Found at 3rd or later position in the chain. */
375            vg_assert(prev2->chain == prev);
376            vg_assert(prev->chain  == list);
377            prev2->chain = list;
378            prev->chain  = list->chain;
379            list->chain  = prev;
380         }
381         else if (prev2 == NULL && prev != NULL) {
382            /* Found at 2nd position in the chain. */
383            vg_assert(ec_htab[hash] == prev);
384            vg_assert(prev->chain == list);
385            prev->chain = list->chain;
386            list->chain = prev;
387            ec_htab[hash] = list;
388         }
389      }
390      return list;
391   }
392
393   /* Bummer.  We have to allocate a new context record. */
394   ec_totstored++;
395
396   new_ec = VG_(arena_malloc)( VG_AR_EXECTXT, "execontext.rEw2.2",
397                               sizeof(struct _ExeContext)
398                               + n_ips * sizeof(Addr) );
399
400   for (i = 0; i < n_ips; i++)
401      new_ec->ips[i] = ips[i];
402
403   vg_assert(VG_(is_plausible_ECU)(ec_next_ecu));
404   new_ec->ecu = ec_next_ecu;
405   ec_next_ecu += 4;
406   if (ec_next_ecu == 0) {
407      /* Urr.  Now we're hosed; we emitted 2^30 ExeContexts already
408         and have run out of numbers.  Not sure what to do. */
409      VG_(core_panic)("m_execontext: more than 2^30 ExeContexts created");
410   }
411
412   new_ec->n_ips = n_ips;
413   new_ec->chain = ec_htab[hash];
414   ec_htab[hash] = new_ec;
415
416   /* Resize the hash table, maybe? */
417   if ( ((ULong)ec_totstored) > ((ULong)ec_htab_size) ) {
418      vg_assert(ec_htab_size_idx >= 0 && ec_htab_size_idx < N_EC_PRIMES);
419      if (ec_htab_size_idx < N_EC_PRIMES-1)
420         resize_ec_htab();
421   }
422
423   return new_ec;
424}
425
426ExeContext* VG_(record_ExeContext)( ThreadId tid, Word first_ip_delta ) {
427   return record_ExeContext_wrk( tid, first_ip_delta,
428                                      False/*!first_ip_only*/ );
429}
430
431ExeContext* VG_(record_depth_1_ExeContext)( ThreadId tid, Word first_ip_delta )
432{
433   return record_ExeContext_wrk( tid, first_ip_delta,
434                                      True/*first_ip_only*/ );
435}
436
437ExeContext* VG_(make_depth_1_ExeContext_from_Addr)( Addr a ) {
438   init_ExeContext_storage();
439   return record_ExeContext_wrk2( &a, 1 );
440}
441
442StackTrace VG_(get_ExeContext_StackTrace) ( ExeContext* e ) {
443   return e->ips;
444}
445
446UInt VG_(get_ECU_from_ExeContext)( ExeContext* e ) {
447   vg_assert(VG_(is_plausible_ECU)(e->ecu));
448   return e->ecu;
449}
450
451Int VG_(get_ExeContext_n_ips)( ExeContext* e ) {
452   vg_assert(e->n_ips >= 1);
453   return e->n_ips;
454}
455
456ExeContext* VG_(get_ExeContext_from_ECU)( UInt ecu )
457{
458   UWord i;
459   ExeContext* ec;
460   vg_assert(VG_(is_plausible_ECU)(ecu));
461   vg_assert(ec_htab_size > 0);
462   for (i = 0; i < ec_htab_size; i++) {
463      for (ec = ec_htab[i]; ec; ec = ec->chain) {
464         if (ec->ecu == ecu)
465            return ec;
466      }
467   }
468   return NULL;
469}
470
471ExeContext* VG_(make_ExeContext_from_StackTrace)( Addr* ips, UInt n_ips )
472{
473   return record_ExeContext_wrk2(ips, n_ips);
474}
475
476/*--------------------------------------------------------------------*/
477/*--- end                                           m_execontext.c ---*/
478/*--------------------------------------------------------------------*/
479