1// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9//   this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11//   this list of conditions and the following disclaimer in the documentation
12//   and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14//   used to endorse or promote products derived from this software without
15//   specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30//
31// An example of solving a dynamically sized problem with various
32// solvers and loss functions.
33//
34// For a simpler bare bones example of doing bundle adjustment with
35// Ceres, please see simple_bundle_adjuster.cc.
36//
37// NOTE: This example will not compile without gflags and SuiteSparse.
38//
39// The problem being solved here is known as a Bundle Adjustment
40// problem in computer vision. Given a set of 3d points X_1, ..., X_n,
41// a set of cameras P_1, ..., P_m. If the point X_i is visible in
42// image j, then there is a 2D observation u_ij that is the expected
43// projection of X_i using P_j. The aim of this optimization is to
44// find values of X_i and P_j such that the reprojection error
45//
46//    E(X,P) =  sum_ij  |u_ij - P_j X_i|^2
47//
48// is minimized.
49//
50// The problem used here comes from a collection of bundle adjustment
51// problems published at University of Washington.
52// http://grail.cs.washington.edu/projects/bal
53
54#include <algorithm>
55#include <cmath>
56#include <cstdio>
57#include <cstdlib>
58#include <string>
59#include <vector>
60
61#include "bal_problem.h"
62#include "ceres/ceres.h"
63#include "gflags/gflags.h"
64#include "glog/logging.h"
65#include "snavely_reprojection_error.h"
66
67DEFINE_string(input, "", "Input File name");
68DEFINE_string(trust_region_strategy, "levenberg_marquardt",
69              "Options are: levenberg_marquardt, dogleg.");
70DEFINE_string(dogleg, "traditional_dogleg", "Options are: traditional_dogleg,"
71              "subspace_dogleg.");
72
73DEFINE_bool(inner_iterations, false, "Use inner iterations to non-linearly "
74            "refine each successful trust region step.");
75
76DEFINE_string(blocks_for_inner_iterations, "automatic", "Options are: "
77            "automatic, cameras, points, cameras,points, points,cameras");
78
79DEFINE_string(linear_solver, "sparse_schur", "Options are: "
80              "sparse_schur, dense_schur, iterative_schur, sparse_normal_cholesky, "
81              "dense_qr, dense_normal_cholesky and cgnr.");
82DEFINE_string(preconditioner, "jacobi", "Options are: "
83              "identity, jacobi, schur_jacobi, cluster_jacobi, "
84              "cluster_tridiagonal.");
85DEFINE_string(sparse_linear_algebra_library, "suite_sparse",
86              "Options are: suite_sparse and cx_sparse.");
87DEFINE_string(dense_linear_algebra_library, "eigen",
88              "Options are: eigen and lapack.");
89DEFINE_string(ordering, "automatic", "Options are: automatic, user.");
90
91DEFINE_bool(use_quaternions, false, "If true, uses quaternions to represent "
92            "rotations. If false, angle axis is used.");
93DEFINE_bool(use_local_parameterization, false, "For quaternions, use a local "
94            "parameterization.");
95DEFINE_bool(robustify, false, "Use a robust loss function.");
96
97DEFINE_double(eta, 1e-2, "Default value for eta. Eta determines the "
98             "accuracy of each linear solve of the truncated newton step. "
99             "Changing this parameter can affect solve performance.");
100
101DEFINE_int32(num_threads, 1, "Number of threads.");
102DEFINE_int32(num_iterations, 5, "Number of iterations.");
103DEFINE_double(max_solver_time, 1e32, "Maximum solve time in seconds.");
104DEFINE_bool(nonmonotonic_steps, false, "Trust region algorithm can use"
105            " nonmonotic steps.");
106
107DEFINE_double(rotation_sigma, 0.0, "Standard deviation of camera rotation "
108              "perturbation.");
109DEFINE_double(translation_sigma, 0.0, "Standard deviation of the camera "
110              "translation perturbation.");
111DEFINE_double(point_sigma, 0.0, "Standard deviation of the point "
112              "perturbation.");
113DEFINE_int32(random_seed, 38401, "Random seed used to set the state "
114             "of the pseudo random number generator used to generate "
115             "the pertubations.");
116DEFINE_string(solver_log, "", "File to record the solver execution to.");
117DEFINE_bool(line_search, false, "Use a line search instead of trust region "
118            "algorithm.");
119
120namespace ceres {
121namespace examples {
122
123void SetLinearSolver(Solver::Options* options) {
124  CHECK(StringToLinearSolverType(FLAGS_linear_solver,
125                                 &options->linear_solver_type));
126  CHECK(StringToPreconditionerType(FLAGS_preconditioner,
127                                   &options->preconditioner_type));
128  CHECK(StringToSparseLinearAlgebraLibraryType(
129            FLAGS_sparse_linear_algebra_library,
130            &options->sparse_linear_algebra_library_type));
131  CHECK(StringToDenseLinearAlgebraLibraryType(
132            FLAGS_dense_linear_algebra_library,
133            &options->dense_linear_algebra_library_type));
134  options->num_linear_solver_threads = FLAGS_num_threads;
135}
136
137void SetOrdering(BALProblem* bal_problem, Solver::Options* options) {
138  const int num_points = bal_problem->num_points();
139  const int point_block_size = bal_problem->point_block_size();
140  double* points = bal_problem->mutable_points();
141
142  const int num_cameras = bal_problem->num_cameras();
143  const int camera_block_size = bal_problem->camera_block_size();
144  double* cameras = bal_problem->mutable_cameras();
145
146  if (options->use_inner_iterations) {
147    if (FLAGS_blocks_for_inner_iterations == "cameras") {
148      LOG(INFO) << "Camera blocks for inner iterations";
149      options->inner_iteration_ordering = new ParameterBlockOrdering;
150      for (int i = 0; i < num_cameras; ++i) {
151        options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 0);
152      }
153    } else if (FLAGS_blocks_for_inner_iterations == "points") {
154      LOG(INFO) << "Point blocks for inner iterations";
155      options->inner_iteration_ordering = new ParameterBlockOrdering;
156      for (int i = 0; i < num_points; ++i) {
157        options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 0);
158      }
159    } else if (FLAGS_blocks_for_inner_iterations == "cameras,points") {
160      LOG(INFO) << "Camera followed by point blocks for inner iterations";
161      options->inner_iteration_ordering = new ParameterBlockOrdering;
162      for (int i = 0; i < num_cameras; ++i) {
163        options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 0);
164      }
165      for (int i = 0; i < num_points; ++i) {
166        options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 1);
167      }
168    } else if (FLAGS_blocks_for_inner_iterations == "points,cameras") {
169      LOG(INFO) << "Point followed by camera blocks for inner iterations";
170      options->inner_iteration_ordering = new ParameterBlockOrdering;
171      for (int i = 0; i < num_cameras; ++i) {
172        options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 1);
173      }
174      for (int i = 0; i < num_points; ++i) {
175        options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 0);
176      }
177    } else if (FLAGS_blocks_for_inner_iterations == "automatic") {
178      LOG(INFO) << "Choosing automatic blocks for inner iterations";
179    } else {
180      LOG(FATAL) << "Unknown block type for inner iterations: "
181                 << FLAGS_blocks_for_inner_iterations;
182    }
183  }
184
185  // Bundle adjustment problems have a sparsity structure that makes
186  // them amenable to more specialized and much more efficient
187  // solution strategies. The SPARSE_SCHUR, DENSE_SCHUR and
188  // ITERATIVE_SCHUR solvers make use of this specialized
189  // structure.
190  //
191  // This can either be done by specifying Options::ordering_type =
192  // ceres::SCHUR, in which case Ceres will automatically determine
193  // the right ParameterBlock ordering, or by manually specifying a
194  // suitable ordering vector and defining
195  // Options::num_eliminate_blocks.
196  if (FLAGS_ordering == "automatic") {
197    return;
198  }
199
200  ceres::ParameterBlockOrdering* ordering =
201      new ceres::ParameterBlockOrdering;
202
203  // The points come before the cameras.
204  for (int i = 0; i < num_points; ++i) {
205    ordering->AddElementToGroup(points + point_block_size * i, 0);
206  }
207
208  for (int i = 0; i < num_cameras; ++i) {
209    // When using axis-angle, there is a single parameter block for
210    // the entire camera.
211    ordering->AddElementToGroup(cameras + camera_block_size * i, 1);
212    // If quaternions are used, there are two blocks, so add the
213    // second block to the ordering.
214    if (FLAGS_use_quaternions) {
215      ordering->AddElementToGroup(cameras + camera_block_size * i + 4, 1);
216    }
217  }
218
219  options->linear_solver_ordering = ordering;
220}
221
222void SetMinimizerOptions(Solver::Options* options) {
223  options->max_num_iterations = FLAGS_num_iterations;
224  options->minimizer_progress_to_stdout = true;
225  options->num_threads = FLAGS_num_threads;
226  options->eta = FLAGS_eta;
227  options->max_solver_time_in_seconds = FLAGS_max_solver_time;
228  options->use_nonmonotonic_steps = FLAGS_nonmonotonic_steps;
229  if (FLAGS_line_search) {
230    options->minimizer_type = ceres::LINE_SEARCH;
231  }
232
233  CHECK(StringToTrustRegionStrategyType(FLAGS_trust_region_strategy,
234                                        &options->trust_region_strategy_type));
235  CHECK(StringToDoglegType(FLAGS_dogleg, &options->dogleg_type));
236  options->use_inner_iterations = FLAGS_inner_iterations;
237}
238
239void SetSolverOptionsFromFlags(BALProblem* bal_problem,
240                               Solver::Options* options) {
241  SetMinimizerOptions(options);
242  SetLinearSolver(options);
243  SetOrdering(bal_problem, options);
244}
245
246void BuildProblem(BALProblem* bal_problem, Problem* problem) {
247  const int point_block_size = bal_problem->point_block_size();
248  const int camera_block_size = bal_problem->camera_block_size();
249  double* points = bal_problem->mutable_points();
250  double* cameras = bal_problem->mutable_cameras();
251
252  // Observations is 2*num_observations long array observations =
253  // [u_1, u_2, ... , u_n], where each u_i is two dimensional, the x
254  // and y positions of the observation.
255  const double* observations = bal_problem->observations();
256
257  for (int i = 0; i < bal_problem->num_observations(); ++i) {
258    CostFunction* cost_function;
259    // Each Residual block takes a point and a camera as input and
260    // outputs a 2 dimensional residual.
261    if (FLAGS_use_quaternions) {
262      cost_function = new AutoDiffCostFunction<
263          SnavelyReprojectionErrorWithQuaternions, 2, 4, 6, 3>(
264              new SnavelyReprojectionErrorWithQuaternions(
265                  observations[2 * i + 0],
266                  observations[2 * i + 1]));
267    } else {
268      cost_function =
269          new AutoDiffCostFunction<SnavelyReprojectionError, 2, 9, 3>(
270              new SnavelyReprojectionError(observations[2 * i + 0],
271                                           observations[2 * i + 1]));
272    }
273
274    // If enabled use Huber's loss function.
275    LossFunction* loss_function = FLAGS_robustify ? new HuberLoss(1.0) : NULL;
276
277    // Each observation correponds to a pair of a camera and a point
278    // which are identified by camera_index()[i] and point_index()[i]
279    // respectively.
280    double* camera =
281        cameras + camera_block_size * bal_problem->camera_index()[i];
282    double* point = points + point_block_size * bal_problem->point_index()[i];
283
284    if (FLAGS_use_quaternions) {
285      // When using quaternions, we split the camera into two
286      // parameter blocks. One of size 4 for the quaternion and the
287      // other of size 6 containing the translation, focal length and
288      // the radial distortion parameters.
289      problem->AddResidualBlock(cost_function,
290                                loss_function,
291                                camera,
292                                camera + 4,
293                                point);
294    } else {
295      problem->AddResidualBlock(cost_function, loss_function, camera, point);
296    }
297  }
298
299  if (FLAGS_use_quaternions && FLAGS_use_local_parameterization) {
300    LocalParameterization* quaternion_parameterization =
301         new QuaternionParameterization;
302    for (int i = 0; i < bal_problem->num_cameras(); ++i) {
303      problem->SetParameterization(cameras + camera_block_size * i,
304                                   quaternion_parameterization);
305    }
306  }
307}
308
309void SolveProblem(const char* filename) {
310  BALProblem bal_problem(filename, FLAGS_use_quaternions);
311  Problem problem;
312
313  srand(FLAGS_random_seed);
314  bal_problem.Normalize();
315  bal_problem.Perturb(FLAGS_rotation_sigma,
316                      FLAGS_translation_sigma,
317                      FLAGS_point_sigma);
318
319  BuildProblem(&bal_problem, &problem);
320  Solver::Options options;
321  SetSolverOptionsFromFlags(&bal_problem, &options);
322  options.solver_log = FLAGS_solver_log;
323  options.gradient_tolerance = 1e-16;
324  options.function_tolerance = 1e-16;
325  Solver::Summary summary;
326  Solve(options, &problem, &summary);
327  std::cout << summary.FullReport() << "\n";
328}
329
330}  // namespace examples
331}  // namespace ceres
332
333int main(int argc, char** argv) {
334  google::ParseCommandLineFlags(&argc, &argv, true);
335  google::InitGoogleLogging(argv[0]);
336  if (FLAGS_input.empty()) {
337    LOG(ERROR) << "Usage: bundle_adjustment_example --input=bal_problem";
338    return 1;
339  }
340
341  CHECK(FLAGS_use_quaternions || !FLAGS_use_local_parameterization)
342      << "--use_local_parameterization can only be used with "
343      << "--use_quaternions.";
344  ceres::examples::SolveProblem(FLAGS_input.c_str());
345  return 0;
346}
347