1// Copyright (c) 2012 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5// This webpage shows layout of YV12 and other YUV formats
6// http://www.fourcc.org/yuv.php
7// The actual conversion is best described here
8// http://en.wikipedia.org/wiki/YUV
9// An article on optimizing YUV conversion using tables instead of multiplies
10// http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf
11//
12// YV12 is a full plane of Y and a half height, half width chroma planes
13// YV16 is a full plane of Y and a full height, half width chroma planes
14//
15// ARGB pixel format is output, which on little endian is stored as BGRA.
16// The alpha is set to 255, allowing the application to use RGBA or RGB32.
17
18#include "media/base/yuv_convert.h"
19
20#include "base/cpu.h"
21#include "base/logging.h"
22#include "base/memory/scoped_ptr.h"
23#include "build/build_config.h"
24#include "media/base/simd/convert_rgb_to_yuv.h"
25#include "media/base/simd/convert_yuv_to_rgb.h"
26#include "media/base/simd/filter_yuv.h"
27
28#if defined(ARCH_CPU_X86_FAMILY)
29#if defined(COMPILER_MSVC)
30#include <intrin.h>
31#else
32#include <mmintrin.h>
33#endif
34#endif
35
36// Assembly functions are declared without namespace.
37extern "C" { void EmptyRegisterState_MMX(); }  // extern "C"
38
39namespace media {
40
41typedef void (*FilterYUVRowsProc)(uint8*, const uint8*, const uint8*, int, int);
42
43typedef void (*ConvertRGBToYUVProc)(const uint8*,
44                                    uint8*,
45                                    uint8*,
46                                    uint8*,
47                                    int,
48                                    int,
49                                    int,
50                                    int,
51                                    int);
52
53typedef void (*ConvertYUVToRGB32Proc)(const uint8*,
54                                      const uint8*,
55                                      const uint8*,
56                                      uint8*,
57                                      int,
58                                      int,
59                                      int,
60                                      int,
61                                      int,
62                                      YUVType);
63
64typedef void (*ConvertYUVAToARGBProc)(const uint8*,
65                                      const uint8*,
66                                      const uint8*,
67                                      const uint8*,
68                                      uint8*,
69                                      int,
70                                      int,
71                                      int,
72                                      int,
73                                      int,
74                                      int,
75                                      YUVType);
76
77typedef void (*ConvertYUVToRGB32RowProc)(const uint8*,
78                                         const uint8*,
79                                         const uint8*,
80                                         uint8*,
81                                         ptrdiff_t);
82
83typedef void (*ConvertYUVAToARGBRowProc)(const uint8*,
84                                         const uint8*,
85                                         const uint8*,
86                                         const uint8*,
87                                         uint8*,
88                                         ptrdiff_t);
89
90typedef void (*ScaleYUVToRGB32RowProc)(const uint8*,
91                                       const uint8*,
92                                       const uint8*,
93                                       uint8*,
94                                       ptrdiff_t,
95                                       ptrdiff_t);
96
97static FilterYUVRowsProc g_filter_yuv_rows_proc_ = NULL;
98static ConvertYUVToRGB32RowProc g_convert_yuv_to_rgb32_row_proc_ = NULL;
99static ScaleYUVToRGB32RowProc g_scale_yuv_to_rgb32_row_proc_ = NULL;
100static ScaleYUVToRGB32RowProc g_linear_scale_yuv_to_rgb32_row_proc_ = NULL;
101static ConvertRGBToYUVProc g_convert_rgb32_to_yuv_proc_ = NULL;
102static ConvertRGBToYUVProc g_convert_rgb24_to_yuv_proc_ = NULL;
103static ConvertYUVToRGB32Proc g_convert_yuv_to_rgb32_proc_ = NULL;
104static ConvertYUVAToARGBProc g_convert_yuva_to_argb_proc_ = NULL;
105
106// Empty SIMD registers state after using them.
107void EmptyRegisterStateStub() {}
108#if defined(MEDIA_MMX_INTRINSICS_AVAILABLE)
109void EmptyRegisterStateIntrinsic() { _mm_empty(); }
110#endif
111typedef void (*EmptyRegisterStateProc)();
112static EmptyRegisterStateProc g_empty_register_state_proc_ = NULL;
113
114void InitializeCPUSpecificYUVConversions() {
115  CHECK(!g_filter_yuv_rows_proc_);
116  CHECK(!g_convert_yuv_to_rgb32_row_proc_);
117  CHECK(!g_scale_yuv_to_rgb32_row_proc_);
118  CHECK(!g_linear_scale_yuv_to_rgb32_row_proc_);
119  CHECK(!g_convert_rgb32_to_yuv_proc_);
120  CHECK(!g_convert_rgb24_to_yuv_proc_);
121  CHECK(!g_convert_yuv_to_rgb32_proc_);
122  CHECK(!g_convert_yuva_to_argb_proc_);
123  CHECK(!g_empty_register_state_proc_);
124
125  g_filter_yuv_rows_proc_ = FilterYUVRows_C;
126  g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_C;
127  g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_C;
128  g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_C;
129  g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_C;
130  g_convert_rgb24_to_yuv_proc_ = ConvertRGB24ToYUV_C;
131  g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_C;
132  g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_C;
133  g_empty_register_state_proc_ = EmptyRegisterStateStub;
134
135#if defined(ARCH_CPU_X86_FAMILY)
136  base::CPU cpu;
137  if (cpu.has_mmx()) {
138    g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_MMX;
139    g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_MMX;
140    g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_MMX;
141    g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_MMX;
142    g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_MMX;
143
144#if defined(MEDIA_MMX_INTRINSICS_AVAILABLE)
145    g_filter_yuv_rows_proc_ = FilterYUVRows_MMX;
146    g_empty_register_state_proc_ = EmptyRegisterStateIntrinsic;
147#else
148    g_empty_register_state_proc_ = EmptyRegisterState_MMX;
149#endif
150  }
151
152  if (cpu.has_sse()) {
153    g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_SSE;
154    g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE;
155    g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_SSE;
156    g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_SSE;
157  }
158
159  if (cpu.has_sse2()) {
160    g_filter_yuv_rows_proc_ = FilterYUVRows_SSE2;
161    g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_SSE2;
162
163#if defined(ARCH_CPU_X86_64)
164    g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE2_X64;
165
166    // Technically this should be in the MMX section, but MSVC will optimize out
167    // the export of LinearScaleYUVToRGB32Row_MMX, which is required by the unit
168    // tests, if that decision can be made at compile time.  Since all X64 CPUs
169    // have SSE2, we can hack around this by making the selection here.
170    g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_MMX_X64;
171#endif
172  }
173
174  if (cpu.has_ssse3()) {
175    g_convert_rgb24_to_yuv_proc_ = &ConvertRGB24ToYUV_SSSE3;
176
177    // TODO(hclam): Add ConvertRGB32ToYUV_SSSE3 when the cyan problem is solved.
178    // See: crbug.com/100462
179  }
180#endif
181}
182
183// Empty SIMD registers state after using them.
184void EmptyRegisterState() { g_empty_register_state_proc_(); }
185
186// 16.16 fixed point arithmetic
187const int kFractionBits = 16;
188const int kFractionMax = 1 << kFractionBits;
189const int kFractionMask = ((1 << kFractionBits) - 1);
190
191// Scale a frame of YUV to 32 bit ARGB.
192void ScaleYUVToRGB32(const uint8* y_buf,
193                     const uint8* u_buf,
194                     const uint8* v_buf,
195                     uint8* rgb_buf,
196                     int source_width,
197                     int source_height,
198                     int width,
199                     int height,
200                     int y_pitch,
201                     int uv_pitch,
202                     int rgb_pitch,
203                     YUVType yuv_type,
204                     Rotate view_rotate,
205                     ScaleFilter filter) {
206  // Handle zero sized sources and destinations.
207  if ((yuv_type == YV12 && (source_width < 2 || source_height < 2)) ||
208      (yuv_type == YV16 && (source_width < 2 || source_height < 1)) ||
209      width == 0 || height == 0)
210    return;
211
212  // 4096 allows 3 buffers to fit in 12k.
213  // Helps performance on CPU with 16K L1 cache.
214  // Large enough for 3830x2160 and 30" displays which are 2560x1600.
215  const int kFilterBufferSize = 4096;
216  // Disable filtering if the screen is too big (to avoid buffer overflows).
217  // This should never happen to regular users: they don't have monitors
218  // wider than 4096 pixels.
219  // TODO(fbarchard): Allow rotated videos to filter.
220  if (source_width > kFilterBufferSize || view_rotate)
221    filter = FILTER_NONE;
222
223  unsigned int y_shift = yuv_type;
224  // Diagram showing origin and direction of source sampling.
225  // ->0   4<-
226  // 7       3
227  //
228  // 6       5
229  // ->1   2<-
230  // Rotations that start at right side of image.
231  if ((view_rotate == ROTATE_180) || (view_rotate == ROTATE_270) ||
232      (view_rotate == MIRROR_ROTATE_0) || (view_rotate == MIRROR_ROTATE_90)) {
233    y_buf += source_width - 1;
234    u_buf += source_width / 2 - 1;
235    v_buf += source_width / 2 - 1;
236    source_width = -source_width;
237  }
238  // Rotations that start at bottom of image.
239  if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_180) ||
240      (view_rotate == MIRROR_ROTATE_90) || (view_rotate == MIRROR_ROTATE_180)) {
241    y_buf += (source_height - 1) * y_pitch;
242    u_buf += ((source_height >> y_shift) - 1) * uv_pitch;
243    v_buf += ((source_height >> y_shift) - 1) * uv_pitch;
244    source_height = -source_height;
245  }
246
247  int source_dx = source_width * kFractionMax / width;
248
249  if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_270)) {
250    int tmp = height;
251    height = width;
252    width = tmp;
253    tmp = source_height;
254    source_height = source_width;
255    source_width = tmp;
256    int source_dy = source_height * kFractionMax / height;
257    source_dx = ((source_dy >> kFractionBits) * y_pitch) << kFractionBits;
258    if (view_rotate == ROTATE_90) {
259      y_pitch = -1;
260      uv_pitch = -1;
261      source_height = -source_height;
262    } else {
263      y_pitch = 1;
264      uv_pitch = 1;
265    }
266  }
267
268  // Need padding because FilterRows() will write 1 to 16 extra pixels
269  // after the end for SSE2 version.
270  uint8 yuvbuf[16 + kFilterBufferSize * 3 + 16];
271  uint8* ybuf =
272      reinterpret_cast<uint8*>(reinterpret_cast<uintptr_t>(yuvbuf + 15) & ~15);
273  uint8* ubuf = ybuf + kFilterBufferSize;
274  uint8* vbuf = ubuf + kFilterBufferSize;
275
276  // TODO(fbarchard): Fixed point math is off by 1 on negatives.
277
278  // We take a y-coordinate in [0,1] space in the source image space, and
279  // transform to a y-coordinate in [0,1] space in the destination image space.
280  // Note that the coordinate endpoints lie on pixel boundaries, not on pixel
281  // centers: e.g. a two-pixel-high image will have pixel centers at 0.25 and
282  // 0.75.  The formula is as follows (in fixed-point arithmetic):
283  //   y_dst = dst_height * ((y_src + 0.5) / src_height)
284  //   dst_pixel = clamp([0, dst_height - 1], floor(y_dst - 0.5))
285  // Implement this here as an accumulator + delta, to avoid expensive math
286  // in the loop.
287  int source_y_subpixel_accum =
288      ((kFractionMax / 2) * source_height) / height - (kFractionMax / 2);
289  int source_y_subpixel_delta = ((1 << kFractionBits) * source_height) / height;
290
291  // TODO(fbarchard): Split this into separate function for better efficiency.
292  for (int y = 0; y < height; ++y) {
293    uint8* dest_pixel = rgb_buf + y * rgb_pitch;
294    int source_y_subpixel = source_y_subpixel_accum;
295    source_y_subpixel_accum += source_y_subpixel_delta;
296    if (source_y_subpixel < 0)
297      source_y_subpixel = 0;
298    else if (source_y_subpixel > ((source_height - 1) << kFractionBits))
299      source_y_subpixel = (source_height - 1) << kFractionBits;
300
301    const uint8* y_ptr = NULL;
302    const uint8* u_ptr = NULL;
303    const uint8* v_ptr = NULL;
304    // Apply vertical filtering if necessary.
305    // TODO(fbarchard): Remove memcpy when not necessary.
306    if (filter & media::FILTER_BILINEAR_V) {
307      int source_y = source_y_subpixel >> kFractionBits;
308      y_ptr = y_buf + source_y * y_pitch;
309      u_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
310      v_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
311
312      // Vertical scaler uses 16.8 fixed point.
313      int source_y_fraction = (source_y_subpixel & kFractionMask) >> 8;
314      if (source_y_fraction != 0) {
315        g_filter_yuv_rows_proc_(
316            ybuf, y_ptr, y_ptr + y_pitch, source_width, source_y_fraction);
317      } else {
318        memcpy(ybuf, y_ptr, source_width);
319      }
320      y_ptr = ybuf;
321      ybuf[source_width] = ybuf[source_width - 1];
322
323      int uv_source_width = (source_width + 1) / 2;
324      int source_uv_fraction;
325
326      // For formats with half-height UV planes, each even-numbered pixel row
327      // should not interpolate, since the next row to interpolate from should
328      // be a duplicate of the current row.
329      if (y_shift && (source_y & 0x1) == 0)
330        source_uv_fraction = 0;
331      else
332        source_uv_fraction = source_y_fraction;
333
334      if (source_uv_fraction != 0) {
335        g_filter_yuv_rows_proc_(
336            ubuf, u_ptr, u_ptr + uv_pitch, uv_source_width, source_uv_fraction);
337        g_filter_yuv_rows_proc_(
338            vbuf, v_ptr, v_ptr + uv_pitch, uv_source_width, source_uv_fraction);
339      } else {
340        memcpy(ubuf, u_ptr, uv_source_width);
341        memcpy(vbuf, v_ptr, uv_source_width);
342      }
343      u_ptr = ubuf;
344      v_ptr = vbuf;
345      ubuf[uv_source_width] = ubuf[uv_source_width - 1];
346      vbuf[uv_source_width] = vbuf[uv_source_width - 1];
347    } else {
348      // Offset by 1/2 pixel for center sampling.
349      int source_y = (source_y_subpixel + (kFractionMax / 2)) >> kFractionBits;
350      y_ptr = y_buf + source_y * y_pitch;
351      u_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
352      v_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
353    }
354    if (source_dx == kFractionMax) {  // Not scaled
355      g_convert_yuv_to_rgb32_row_proc_(y_ptr, u_ptr, v_ptr, dest_pixel, width);
356    } else {
357      if (filter & FILTER_BILINEAR_H) {
358        g_linear_scale_yuv_to_rgb32_row_proc_(
359            y_ptr, u_ptr, v_ptr, dest_pixel, width, source_dx);
360      } else {
361        g_scale_yuv_to_rgb32_row_proc_(
362            y_ptr, u_ptr, v_ptr, dest_pixel, width, source_dx);
363      }
364    }
365  }
366
367  g_empty_register_state_proc_();
368}
369
370// Scale a frame of YV12 to 32 bit ARGB for a specific rectangle.
371void ScaleYUVToRGB32WithRect(const uint8* y_buf,
372                             const uint8* u_buf,
373                             const uint8* v_buf,
374                             uint8* rgb_buf,
375                             int source_width,
376                             int source_height,
377                             int dest_width,
378                             int dest_height,
379                             int dest_rect_left,
380                             int dest_rect_top,
381                             int dest_rect_right,
382                             int dest_rect_bottom,
383                             int y_pitch,
384                             int uv_pitch,
385                             int rgb_pitch) {
386  // This routine doesn't currently support up-scaling.
387  CHECK_LE(dest_width, source_width);
388  CHECK_LE(dest_height, source_height);
389
390  // Sanity-check the destination rectangle.
391  DCHECK(dest_rect_left >= 0 && dest_rect_right <= dest_width);
392  DCHECK(dest_rect_top >= 0 && dest_rect_bottom <= dest_height);
393  DCHECK(dest_rect_right > dest_rect_left);
394  DCHECK(dest_rect_bottom > dest_rect_top);
395
396  // Fixed-point value of vertical and horizontal scale down factor.
397  // Values are in the format 16.16.
398  int y_step = kFractionMax * source_height / dest_height;
399  int x_step = kFractionMax * source_width / dest_width;
400
401  // Determine the coordinates of the rectangle in 16.16 coords.
402  // NB: Our origin is the *center* of the top/left pixel, NOT its top/left.
403  // If we're down-scaling by more than a factor of two, we start with a 50%
404  // fraction to avoid degenerating to point-sampling - we should really just
405  // fix the fraction at 50% for all pixels in that case.
406  int source_left = dest_rect_left * x_step;
407  int source_right = (dest_rect_right - 1) * x_step;
408  if (x_step < kFractionMax * 2) {
409    source_left += ((x_step - kFractionMax) / 2);
410    source_right += ((x_step - kFractionMax) / 2);
411  } else {
412    source_left += kFractionMax / 2;
413    source_right += kFractionMax / 2;
414  }
415  int source_top = dest_rect_top * y_step;
416  if (y_step < kFractionMax * 2) {
417    source_top += ((y_step - kFractionMax) / 2);
418  } else {
419    source_top += kFractionMax / 2;
420  }
421
422  // Determine the parts of the Y, U and V buffers to interpolate.
423  int source_y_left = source_left >> kFractionBits;
424  int source_y_right =
425      std::min((source_right >> kFractionBits) + 2, source_width + 1);
426
427  int source_uv_left = source_y_left / 2;
428  int source_uv_right = std::min((source_right >> (kFractionBits + 1)) + 2,
429                                 (source_width + 1) / 2);
430
431  int source_y_width = source_y_right - source_y_left;
432  int source_uv_width = source_uv_right - source_uv_left;
433
434  // Determine number of pixels in each output row.
435  int dest_rect_width = dest_rect_right - dest_rect_left;
436
437  // Intermediate buffer for vertical interpolation.
438  // 4096 bytes allows 3 buffers to fit in 12k, which fits in a 16K L1 cache,
439  // and is bigger than most users will generally need.
440  // The buffer is 16-byte aligned and padded with 16 extra bytes; some of the
441  // FilterYUVRowProcs have alignment requirements, and the SSE version can
442  // write up to 16 bytes past the end of the buffer.
443  const int kFilterBufferSize = 4096;
444  const bool kAvoidUsingOptimizedFilter = source_width > kFilterBufferSize;
445  uint8 yuv_temp[16 + kFilterBufferSize * 3 + 16];
446  uint8* y_temp = reinterpret_cast<uint8*>(
447      reinterpret_cast<uintptr_t>(yuv_temp + 15) & ~15);
448  uint8* u_temp = y_temp + kFilterBufferSize;
449  uint8* v_temp = u_temp + kFilterBufferSize;
450
451  // Move to the top-left pixel of output.
452  rgb_buf += dest_rect_top * rgb_pitch;
453  rgb_buf += dest_rect_left * 4;
454
455  // For each destination row perform interpolation and color space
456  // conversion to produce the output.
457  for (int row = dest_rect_top; row < dest_rect_bottom; ++row) {
458    // Round the fixed-point y position to get the current row.
459    int source_row = source_top >> kFractionBits;
460    int source_uv_row = source_row / 2;
461    DCHECK(source_row < source_height);
462
463    // Locate the first row for each plane for interpolation.
464    const uint8* y0_ptr = y_buf + y_pitch * source_row + source_y_left;
465    const uint8* u0_ptr = u_buf + uv_pitch * source_uv_row + source_uv_left;
466    const uint8* v0_ptr = v_buf + uv_pitch * source_uv_row + source_uv_left;
467    const uint8* y1_ptr = NULL;
468    const uint8* u1_ptr = NULL;
469    const uint8* v1_ptr = NULL;
470
471    // Locate the second row for interpolation, being careful not to overrun.
472    if (source_row + 1 >= source_height) {
473      y1_ptr = y0_ptr;
474    } else {
475      y1_ptr = y0_ptr + y_pitch;
476    }
477    if (source_uv_row + 1 >= (source_height + 1) / 2) {
478      u1_ptr = u0_ptr;
479      v1_ptr = v0_ptr;
480    } else {
481      u1_ptr = u0_ptr + uv_pitch;
482      v1_ptr = v0_ptr + uv_pitch;
483    }
484
485    if (!kAvoidUsingOptimizedFilter) {
486      // Vertical scaler uses 16.8 fixed point.
487      int fraction = (source_top & kFractionMask) >> 8;
488      g_filter_yuv_rows_proc_(
489          y_temp + source_y_left, y0_ptr, y1_ptr, source_y_width, fraction);
490      g_filter_yuv_rows_proc_(
491          u_temp + source_uv_left, u0_ptr, u1_ptr, source_uv_width, fraction);
492      g_filter_yuv_rows_proc_(
493          v_temp + source_uv_left, v0_ptr, v1_ptr, source_uv_width, fraction);
494
495      // Perform horizontal interpolation and color space conversion.
496      // TODO(hclam): Use the MMX version after more testing.
497      LinearScaleYUVToRGB32RowWithRange_C(y_temp,
498                                          u_temp,
499                                          v_temp,
500                                          rgb_buf,
501                                          dest_rect_width,
502                                          source_left,
503                                          x_step);
504    } else {
505      // If the frame is too large then we linear scale a single row.
506      LinearScaleYUVToRGB32RowWithRange_C(y0_ptr,
507                                          u0_ptr,
508                                          v0_ptr,
509                                          rgb_buf,
510                                          dest_rect_width,
511                                          source_left,
512                                          x_step);
513    }
514
515    // Advance vertically in the source and destination image.
516    source_top += y_step;
517    rgb_buf += rgb_pitch;
518  }
519
520  g_empty_register_state_proc_();
521}
522
523void ConvertRGB32ToYUV(const uint8* rgbframe,
524                       uint8* yplane,
525                       uint8* uplane,
526                       uint8* vplane,
527                       int width,
528                       int height,
529                       int rgbstride,
530                       int ystride,
531                       int uvstride) {
532  g_convert_rgb32_to_yuv_proc_(rgbframe,
533                               yplane,
534                               uplane,
535                               vplane,
536                               width,
537                               height,
538                               rgbstride,
539                               ystride,
540                               uvstride);
541}
542
543void ConvertRGB24ToYUV(const uint8* rgbframe,
544                       uint8* yplane,
545                       uint8* uplane,
546                       uint8* vplane,
547                       int width,
548                       int height,
549                       int rgbstride,
550                       int ystride,
551                       int uvstride) {
552  g_convert_rgb24_to_yuv_proc_(rgbframe,
553                               yplane,
554                               uplane,
555                               vplane,
556                               width,
557                               height,
558                               rgbstride,
559                               ystride,
560                               uvstride);
561}
562
563void ConvertYUY2ToYUV(const uint8* src,
564                      uint8* yplane,
565                      uint8* uplane,
566                      uint8* vplane,
567                      int width,
568                      int height) {
569  for (int i = 0; i < height / 2; ++i) {
570    for (int j = 0; j < (width / 2); ++j) {
571      yplane[0] = src[0];
572      *uplane = src[1];
573      yplane[1] = src[2];
574      *vplane = src[3];
575      src += 4;
576      yplane += 2;
577      uplane++;
578      vplane++;
579    }
580    for (int j = 0; j < (width / 2); ++j) {
581      yplane[0] = src[0];
582      yplane[1] = src[2];
583      src += 4;
584      yplane += 2;
585    }
586  }
587}
588
589void ConvertNV21ToYUV(const uint8* src,
590                      uint8* yplane,
591                      uint8* uplane,
592                      uint8* vplane,
593                      int width,
594                      int height) {
595  int y_plane_size = width * height;
596  memcpy(yplane, src, y_plane_size);
597
598  src += y_plane_size;
599  int u_plane_size = y_plane_size >> 2;
600  for (int i = 0; i < u_plane_size; ++i) {
601    *vplane++ = *src++;
602    *uplane++ = *src++;
603  }
604}
605
606void ConvertYUVToRGB32(const uint8* yplane,
607                       const uint8* uplane,
608                       const uint8* vplane,
609                       uint8* rgbframe,
610                       int width,
611                       int height,
612                       int ystride,
613                       int uvstride,
614                       int rgbstride,
615                       YUVType yuv_type) {
616  g_convert_yuv_to_rgb32_proc_(yplane,
617                               uplane,
618                               vplane,
619                               rgbframe,
620                               width,
621                               height,
622                               ystride,
623                               uvstride,
624                               rgbstride,
625                               yuv_type);
626}
627
628void ConvertYUVAToARGB(const uint8* yplane,
629                       const uint8* uplane,
630                       const uint8* vplane,
631                       const uint8* aplane,
632                       uint8* rgbframe,
633                       int width,
634                       int height,
635                       int ystride,
636                       int uvstride,
637                       int astride,
638                       int rgbstride,
639                       YUVType yuv_type) {
640  g_convert_yuva_to_argb_proc_(yplane,
641                               uplane,
642                               vplane,
643                               aplane,
644                               rgbframe,
645                               width,
646                               height,
647                               ystride,
648                               uvstride,
649                               astride,
650                               rgbstride,
651                               yuv_type);
652}
653
654}  // namespace media
655