1// Copyright (c) 2013 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "net/quic/crypto/strike_register.h"
6
7#include "base/logging.h"
8
9using std::pair;
10using std::set;
11using std::vector;
12
13namespace net {
14
15// static
16const uint32 StrikeRegister::kExternalNodeSize = 24;
17// static
18const uint32 StrikeRegister::kNil = (1 << 31) | 1;
19// static
20const uint32 StrikeRegister::kExternalFlag = 1 << 23;
21
22// InternalNode represents a non-leaf node in the critbit tree. See the comment
23// in the .h file for details.
24class StrikeRegister::InternalNode {
25 public:
26  void SetChild(unsigned direction, uint32 child) {
27    data_[direction] = (data_[direction] & 0xff) | (child << 8);
28  }
29
30  void SetCritByte(uint8 critbyte) {
31    data_[0] &= 0xffffff00;
32    data_[0] |= critbyte;
33  }
34
35  void SetOtherBits(uint8 otherbits) {
36    data_[1] &= 0xffffff00;
37    data_[1] |= otherbits;
38  }
39
40  void SetNextPtr(uint32 next) { data_[0] = next; }
41
42  uint32 next() const { return data_[0]; }
43
44  uint32 child(unsigned n) const { return data_[n] >> 8; }
45
46  uint8 critbyte() const { return data_[0]; }
47
48  uint8 otherbits() const { return data_[1]; }
49
50  // These bytes are organised thus:
51  //   <24 bits> left child
52  //   <8 bits> crit-byte
53  //   <24 bits> right child
54  //   <8 bits> other-bits
55  uint32 data_[2];
56};
57
58// kCreationTimeFromInternalEpoch contains the number of seconds between the
59// start of the internal epoch and |creation_time_external_|. This allows us
60// to consider times that are before |creation_time_external_|.
61static const uint32 kCreationTimeFromInternalEpoch = 63115200.0;  // 2 years.
62
63StrikeRegister::StrikeRegister(unsigned max_entries,
64                               uint32 current_time,
65                               uint32 window_secs,
66                               const uint8 orbit[8],
67                               StartupType startup)
68    : max_entries_(max_entries),
69      window_secs_(window_secs),
70      // The horizon is initially set |window_secs| into the future because, if
71      // we just crashed, then we may have accepted nonces in the span
72      // [current_time...current_time+window_secs) and so we conservatively
73      // reject the whole timespan unless |startup| tells us otherwise.
74      creation_time_external_(current_time),
75      internal_epoch_(current_time > kCreationTimeFromInternalEpoch
76                          ? current_time - kCreationTimeFromInternalEpoch
77                          : 0),
78      horizon_(ExternalTimeToInternal(current_time) + window_secs),
79      horizon_valid_(startup == DENY_REQUESTS_AT_STARTUP) {
80  memcpy(orbit_, orbit, sizeof(orbit_));
81
82  // TODO(rtenneti): Remove the following check, Added the following to silence
83  // "is not used" error.
84  CHECK_GE(creation_time_external_, 0u);
85
86  // We only have 23 bits of index available.
87  CHECK_LT(max_entries, 1u << 23);
88  CHECK_GT(max_entries, 1u);           // There must be at least two entries.
89  CHECK_EQ(sizeof(InternalNode), 8u);  // in case of compiler changes.
90  internal_nodes_ = new InternalNode[max_entries];
91  external_nodes_.reset(new uint8[kExternalNodeSize * max_entries]);
92
93  Reset();
94}
95
96StrikeRegister::~StrikeRegister() { delete[] internal_nodes_; }
97
98void StrikeRegister::Reset() {
99  // Thread a free list through all of the internal nodes.
100  internal_node_free_head_ = 0;
101  for (unsigned i = 0; i < max_entries_ - 1; i++)
102    internal_nodes_[i].SetNextPtr(i + 1);
103  internal_nodes_[max_entries_ - 1].SetNextPtr(kNil);
104
105  // Also thread a free list through the external nodes.
106  external_node_free_head_ = 0;
107  for (unsigned i = 0; i < max_entries_ - 1; i++)
108    external_node_next_ptr(i) = i + 1;
109  external_node_next_ptr(max_entries_ - 1) = kNil;
110
111  // This is the root of the tree.
112  internal_node_head_ = kNil;
113}
114
115bool StrikeRegister::Insert(const uint8 nonce[32],
116                            const uint32 current_time_external) {
117  const uint32 current_time = ExternalTimeToInternal(current_time_external);
118
119  // Check to see if the orbit is correct.
120  if (memcmp(nonce + sizeof(current_time), orbit_, sizeof(orbit_))) {
121    return false;
122  }
123  const uint32 nonce_time = ExternalTimeToInternal(TimeFromBytes(nonce));
124  // We have dropped one or more nonces with a time value of |horizon_|, so
125  // we have to reject anything with a timestamp less than or equal to that.
126  if (horizon_valid_ && nonce_time <= horizon_) {
127    return false;
128  }
129
130  // Check that the timestamp is in the current window.
131  if ((current_time > window_secs_ &&
132       nonce_time < (current_time - window_secs_)) ||
133      nonce_time > (current_time + window_secs_)) {
134    return false;
135  }
136
137  // We strip the orbit out of the nonce.
138  uint8 value[24];
139  memcpy(value, &nonce_time, sizeof(nonce_time));
140  memcpy(value + sizeof(nonce_time),
141         nonce + sizeof(nonce_time) + sizeof(orbit_),
142         sizeof(value) - sizeof(nonce_time));
143
144  // Find the best match to |value| in the crit-bit tree. The best match is
145  // simply the value which /could/ match |value|, if any does, so we still
146  // need a memcmp to check.
147  uint32 best_match_index = BestMatch(value);
148  if (best_match_index == kNil) {
149    // Empty tree. Just insert the new value at the root.
150    uint32 index = GetFreeExternalNode();
151    memcpy(external_node(index), value, sizeof(value));
152    internal_node_head_ = (index | kExternalFlag) << 8;
153    return true;
154  }
155
156  const uint8* best_match = external_node(best_match_index);
157  if (memcmp(best_match, value, sizeof(value)) == 0) {
158    // We found the value in the tree.
159    return false;
160  }
161
162  // We are going to insert a new entry into the tree, so get the nodes now.
163  uint32 internal_node_index = GetFreeInternalNode();
164  uint32 external_node_index = GetFreeExternalNode();
165
166  // If we just evicted the best match, then we have to try and match again.
167  // We know that we didn't just empty the tree because we require that
168  // max_entries_ >= 2. Also, we know that it doesn't match because, if it
169  // did, it would have been returned previously.
170  if (external_node_index == best_match_index) {
171    best_match_index = BestMatch(value);
172    best_match = external_node(best_match_index);
173  }
174
175  // Now we need to find the first bit where we differ from |best_match|.
176  unsigned differing_byte;
177  uint8 new_other_bits;
178  for (differing_byte = 0; differing_byte < sizeof(value); differing_byte++) {
179    new_other_bits = value[differing_byte] ^ best_match[differing_byte];
180    if (new_other_bits) {
181      break;
182    }
183  }
184
185  // Once we have the XOR the of first differing byte in new_other_bits we need
186  // to find the most significant differing bit. We could do this with a simple
187  // for loop, testing bits 7..0. Instead we fold the bits so that we end up
188  // with a byte where all the bits below the most significant one, are set.
189  new_other_bits |= new_other_bits >> 1;
190  new_other_bits |= new_other_bits >> 2;
191  new_other_bits |= new_other_bits >> 4;
192  // Now this bit trick results in all the bits set, except the original
193  // most-significant one.
194  new_other_bits = (new_other_bits & ~(new_other_bits >> 1)) ^ 255;
195
196  // Consider the effect of ORing against |new_other_bits|. If |value| did not
197  // have the critical bit set, the result is the same as |new_other_bits|. If
198  // it did, the result is all ones.
199
200  unsigned newdirection;
201  if ((new_other_bits | value[differing_byte]) == 0xff) {
202    newdirection = 1;
203  } else {
204    newdirection = 0;
205  }
206
207  memcpy(external_node(external_node_index), value, sizeof(value));
208  InternalNode* inode = &internal_nodes_[internal_node_index];
209
210  inode->SetChild(newdirection, external_node_index | kExternalFlag);
211  inode->SetCritByte(differing_byte);
212  inode->SetOtherBits(new_other_bits);
213
214  // |where_index| is a pointer to the uint32 which needs to be updated in
215  // order to insert the new internal node into the tree. The internal nodes
216  // store the child indexes in the top 24-bits of a 32-bit word and, to keep
217  // the code simple, we define that |internal_node_head_| is organised the
218  // same way.
219  DCHECK_EQ(internal_node_head_ & 0xff, 0u);
220  uint32* where_index = &internal_node_head_;
221  while (((*where_index >> 8) & kExternalFlag) == 0) {
222    InternalNode* node = &internal_nodes_[*where_index >> 8];
223    if (node->critbyte() > differing_byte) {
224      break;
225    }
226    if (node->critbyte() == differing_byte &&
227        node->otherbits() > new_other_bits) {
228      break;
229    }
230    if (node->critbyte() == differing_byte &&
231        node->otherbits() == new_other_bits) {
232      CHECK(false);
233    }
234
235    uint8 c = value[node->critbyte()];
236    const int direction =
237        (1 + static_cast<unsigned>(node->otherbits() | c)) >> 8;
238    where_index = &node->data_[direction];
239  }
240
241  inode->SetChild(newdirection ^ 1, *where_index >> 8);
242  *where_index = (*where_index & 0xff) | (internal_node_index << 8);
243
244  return true;
245}
246
247const uint8* StrikeRegister::orbit() const {
248  return orbit_;
249}
250
251void StrikeRegister::Validate() {
252  set<uint32> free_internal_nodes;
253  for (uint32 i = internal_node_free_head_; i != kNil;
254       i = internal_nodes_[i].next()) {
255    CHECK_LT(i, max_entries_);
256    CHECK_EQ(free_internal_nodes.count(i), 0u);
257    free_internal_nodes.insert(i);
258  }
259
260  set<uint32> free_external_nodes;
261  for (uint32 i = external_node_free_head_; i != kNil;
262       i = external_node_next_ptr(i)) {
263    CHECK_LT(i, max_entries_);
264    CHECK_EQ(free_external_nodes.count(i), 0u);
265    free_external_nodes.insert(i);
266  }
267
268  set<uint32> used_external_nodes;
269  set<uint32> used_internal_nodes;
270
271  if (internal_node_head_ != kNil &&
272      ((internal_node_head_ >> 8) & kExternalFlag) == 0) {
273    vector<pair<unsigned, bool> > bits;
274    ValidateTree(internal_node_head_ >> 8, -1, bits, free_internal_nodes,
275                 free_external_nodes, &used_internal_nodes,
276                 &used_external_nodes);
277  }
278}
279
280// static
281uint32 StrikeRegister::TimeFromBytes(const uint8 d[4]) {
282  return static_cast<uint32>(d[0]) << 24 |
283         static_cast<uint32>(d[1]) << 16 |
284         static_cast<uint32>(d[2]) << 8 |
285         static_cast<uint32>(d[3]);
286}
287
288uint32 StrikeRegister::ExternalTimeToInternal(uint32 external_time) {
289  return external_time - internal_epoch_;
290}
291
292uint32 StrikeRegister::BestMatch(const uint8 v[24]) const {
293  if (internal_node_head_ == kNil) {
294    return kNil;
295  }
296
297  uint32 next = internal_node_head_ >> 8;
298  while ((next & kExternalFlag) == 0) {
299    InternalNode* node = &internal_nodes_[next];
300    uint8 b = v[node->critbyte()];
301    unsigned direction =
302        (1 + static_cast<unsigned>(node->otherbits() | b)) >> 8;
303    next = node->child(direction);
304  }
305
306  return next & ~kExternalFlag;
307}
308
309uint32& StrikeRegister::external_node_next_ptr(unsigned i) {
310  return *reinterpret_cast<uint32*>(&external_nodes_[i * kExternalNodeSize]);
311}
312
313uint8* StrikeRegister::external_node(unsigned i) {
314  return &external_nodes_[i * kExternalNodeSize];
315}
316
317uint32 StrikeRegister::GetFreeExternalNode() {
318  uint32 index = external_node_free_head_;
319  if (index == kNil) {
320    DropNode();
321    return GetFreeExternalNode();
322  }
323
324  external_node_free_head_ = external_node_next_ptr(index);
325  return index;
326}
327
328uint32 StrikeRegister::GetFreeInternalNode() {
329  uint32 index = internal_node_free_head_;
330  if (index == kNil) {
331    DropNode();
332    return GetFreeInternalNode();
333  }
334
335  internal_node_free_head_ = internal_nodes_[index].next();
336  return index;
337}
338
339void StrikeRegister::DropNode() {
340  // DropNode should never be called on an empty tree.
341  DCHECK(internal_node_head_ != kNil);
342
343  // An internal node in a crit-bit tree always has exactly two children.
344  // This means that, if we are removing an external node (which is one of
345  // those children), then we also need to remove an internal node. In order
346  // to do that we keep pointers to the parent (wherep) and grandparent
347  // (whereq) when walking down the tree.
348
349  uint32 p = internal_node_head_ >> 8, *wherep = &internal_node_head_,
350         *whereq = NULL;
351  while ((p & kExternalFlag) == 0) {
352    whereq = wherep;
353    InternalNode* inode = &internal_nodes_[p];
354    // We always go left, towards the smallest element, exploiting the fact
355    // that the timestamp is big-endian and at the start of the value.
356    wherep = &inode->data_[0];
357    p = (*wherep) >> 8;
358  }
359
360  const uint32 ext_index = p & ~kExternalFlag;
361  const uint8* ext_node = external_node(ext_index);
362  horizon_ = TimeFromBytes(ext_node);
363
364  if (!whereq) {
365    // We are removing the last element in a tree.
366    internal_node_head_ = kNil;
367    FreeExternalNode(ext_index);
368    return;
369  }
370
371  // |wherep| points to the left child pointer in the parent so we can add
372  // one and dereference to get the right child.
373  const uint32 other_child = wherep[1];
374  FreeInternalNode((*whereq) >> 8);
375  *whereq = (*whereq & 0xff) | (other_child & 0xffffff00);
376  FreeExternalNode(ext_index);
377}
378
379void StrikeRegister::FreeExternalNode(uint32 index) {
380  external_node_next_ptr(index) = external_node_free_head_;
381  external_node_free_head_ = index;
382}
383
384void StrikeRegister::FreeInternalNode(uint32 index) {
385  internal_nodes_[index].SetNextPtr(internal_node_free_head_);
386  internal_node_free_head_ = index;
387}
388
389void StrikeRegister::ValidateTree(
390    uint32 internal_node,
391    int last_bit,
392    const vector<pair<unsigned, bool> >& bits,
393    const set<uint32>& free_internal_nodes,
394    const set<uint32>& free_external_nodes,
395    set<uint32>* used_internal_nodes,
396    set<uint32>* used_external_nodes) {
397  CHECK_LT(internal_node, max_entries_);
398  const InternalNode* i = &internal_nodes_[internal_node];
399  unsigned bit = 0;
400  switch (i->otherbits()) {
401    case 0xff & ~(1 << 7):
402      bit = 0;
403      break;
404    case 0xff & ~(1 << 6):
405      bit = 1;
406      break;
407    case 0xff & ~(1 << 5):
408      bit = 2;
409      break;
410    case 0xff & ~(1 << 4):
411      bit = 3;
412      break;
413    case 0xff & ~(1 << 3):
414      bit = 4;
415      break;
416    case 0xff & ~(1 << 2):
417      bit = 5;
418      break;
419    case 0xff & ~(1 << 1):
420      bit = 6;
421      break;
422    case 0xff & ~1:
423      bit = 7;
424      break;
425    default:
426      CHECK(false);
427  }
428
429  bit += 8 * i->critbyte();
430  if (last_bit > -1) {
431    CHECK_GT(bit, static_cast<unsigned>(last_bit));
432  }
433
434  CHECK_EQ(free_internal_nodes.count(internal_node), 0u);
435
436  for (unsigned child = 0; child < 2; child++) {
437    if (i->child(child) & kExternalFlag) {
438      uint32 ext = i->child(child) & ~kExternalFlag;
439      CHECK_EQ(free_external_nodes.count(ext), 0u);
440      CHECK_EQ(used_external_nodes->count(ext), 0u);
441      used_external_nodes->insert(ext);
442      const uint8* bytes = external_node(ext);
443      for (vector<pair<unsigned, bool> >::const_iterator i = bits.begin();
444           i != bits.end(); i++) {
445        unsigned byte = i->first / 8;
446        DCHECK_LE(byte, 0xffu);
447        unsigned bit = i->first % 8;
448        static const uint8 kMasks[8] =
449            {0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};
450        CHECK_EQ((bytes[byte] & kMasks[bit]) != 0, i->second);
451      }
452    } else {
453      uint32 inter = i->child(child);
454      vector<pair<unsigned, bool> > new_bits(bits);
455      new_bits.push_back(pair<unsigned, bool>(bit, child != 0));
456      CHECK_EQ(free_internal_nodes.count(inter), 0u);
457      CHECK_EQ(used_internal_nodes->count(inter), 0u);
458      used_internal_nodes->insert(inter);
459      ValidateTree(inter, bit, bits, free_internal_nodes, free_external_nodes,
460                   used_internal_nodes, used_external_nodes);
461    }
462  }
463}
464
465}  // namespace net
466