1// Copyright 2010 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "config.h"
29
30#include "bignum.h"
31#include "utils.h"
32
33namespace WTF {
34
35namespace double_conversion {
36
37    Bignum::Bignum()
38    : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) {
39        for (int i = 0; i < kBigitCapacity; ++i) {
40            bigits_[i] = 0;
41        }
42    }
43
44
45    template<typename S>
46    static int BitSize(S value) {
47        return 8 * sizeof(value);
48    }
49
50    // Guaranteed to lie in one Bigit.
51    void Bignum::AssignUInt16(uint16_t value) {
52        ASSERT(kBigitSize >= BitSize(value));
53        Zero();
54        if (value == 0) return;
55
56        EnsureCapacity(1);
57        bigits_[0] = value;
58        used_digits_ = 1;
59    }
60
61
62    void Bignum::AssignUInt64(uint64_t value) {
63        const int kUInt64Size = 64;
64
65        Zero();
66        if (value == 0) return;
67
68        int needed_bigits = kUInt64Size / kBigitSize + 1;
69        EnsureCapacity(needed_bigits);
70        for (int i = 0; i < needed_bigits; ++i) {
71            bigits_[i] = (uint32_t)value & kBigitMask;
72            value = value >> kBigitSize;
73        }
74        used_digits_ = needed_bigits;
75        Clamp();
76    }
77
78
79    void Bignum::AssignBignum(const Bignum& other) {
80        exponent_ = other.exponent_;
81        for (int i = 0; i < other.used_digits_; ++i) {
82            bigits_[i] = other.bigits_[i];
83        }
84        // Clear the excess digits (if there were any).
85        for (int i = other.used_digits_; i < used_digits_; ++i) {
86            bigits_[i] = 0;
87        }
88        used_digits_ = other.used_digits_;
89    }
90
91
92    static uint64_t ReadUInt64(Vector<const char> buffer,
93                               int from,
94                               int digits_to_read) {
95        uint64_t result = 0;
96        for (int i = from; i < from + digits_to_read; ++i) {
97            int digit = buffer[i] - '0';
98            ASSERT(0 <= digit && digit <= 9);
99            result = result * 10 + digit;
100        }
101        return result;
102    }
103
104
105    void Bignum::AssignDecimalString(Vector<const char> value) {
106        // 2^64 = 18446744073709551616 > 10^19
107        const int kMaxUint64DecimalDigits = 19;
108        Zero();
109        int length = value.length();
110        int pos = 0;
111        // Let's just say that each digit needs 4 bits.
112        while (length >= kMaxUint64DecimalDigits) {
113            uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
114            pos += kMaxUint64DecimalDigits;
115            length -= kMaxUint64DecimalDigits;
116            MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
117            AddUInt64(digits);
118        }
119        uint64_t digits = ReadUInt64(value, pos, length);
120        MultiplyByPowerOfTen(length);
121        AddUInt64(digits);
122        Clamp();
123    }
124
125
126    static int HexCharValue(char c) {
127        if ('0' <= c && c <= '9') return c - '0';
128        if ('a' <= c && c <= 'f') return 10 + c - 'a';
129        if ('A' <= c && c <= 'F') return 10 + c - 'A';
130        UNREACHABLE();
131        return 0;  // To make compiler happy.
132    }
133
134
135    void Bignum::AssignHexString(Vector<const char> value) {
136        Zero();
137        int length = value.length();
138
139        int needed_bigits = length * 4 / kBigitSize + 1;
140        EnsureCapacity(needed_bigits);
141        int string_index = length - 1;
142        for (int i = 0; i < needed_bigits - 1; ++i) {
143            // These bigits are guaranteed to be "full".
144            Chunk current_bigit = 0;
145            for (int j = 0; j < kBigitSize / 4; j++) {
146                current_bigit += HexCharValue(value[string_index--]) << (j * 4);
147            }
148            bigits_[i] = current_bigit;
149        }
150        used_digits_ = needed_bigits - 1;
151
152        Chunk most_significant_bigit = 0;  // Could be = 0;
153        for (int j = 0; j <= string_index; ++j) {
154            most_significant_bigit <<= 4;
155            most_significant_bigit += HexCharValue(value[j]);
156        }
157        if (most_significant_bigit != 0) {
158            bigits_[used_digits_] = most_significant_bigit;
159            used_digits_++;
160        }
161        Clamp();
162    }
163
164
165    void Bignum::AddUInt64(uint64_t operand) {
166        if (operand == 0) return;
167        Bignum other;
168        other.AssignUInt64(operand);
169        AddBignum(other);
170    }
171
172
173    void Bignum::AddBignum(const Bignum& other) {
174        ASSERT(IsClamped());
175        ASSERT(other.IsClamped());
176
177        // If this has a greater exponent than other append zero-bigits to this.
178        // After this call exponent_ <= other.exponent_.
179        Align(other);
180
181        // There are two possibilities:
182        //   aaaaaaaaaaa 0000  (where the 0s represent a's exponent)
183        //     bbbbb 00000000
184        //   ----------------
185        //   ccccccccccc 0000
186        // or
187        //    aaaaaaaaaa 0000
188        //  bbbbbbbbb 0000000
189        //  -----------------
190        //  cccccccccccc 0000
191        // In both cases we might need a carry bigit.
192
193        EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_);
194        Chunk carry = 0;
195        int bigit_pos = other.exponent_ - exponent_;
196        ASSERT(bigit_pos >= 0);
197        for (int i = 0; i < other.used_digits_; ++i) {
198            Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry;
199            bigits_[bigit_pos] = sum & kBigitMask;
200            carry = sum >> kBigitSize;
201            bigit_pos++;
202        }
203
204        while (carry != 0) {
205            Chunk sum = bigits_[bigit_pos] + carry;
206            bigits_[bigit_pos] = sum & kBigitMask;
207            carry = sum >> kBigitSize;
208            bigit_pos++;
209        }
210        used_digits_ = Max(bigit_pos, used_digits_);
211        ASSERT(IsClamped());
212    }
213
214
215    void Bignum::SubtractBignum(const Bignum& other) {
216        ASSERT(IsClamped());
217        ASSERT(other.IsClamped());
218        // We require this to be bigger than other.
219        ASSERT(LessEqual(other, *this));
220
221        Align(other);
222
223        int offset = other.exponent_ - exponent_;
224        Chunk borrow = 0;
225        int i;
226        for (i = 0; i < other.used_digits_; ++i) {
227            ASSERT((borrow == 0) || (borrow == 1));
228            Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow;
229            bigits_[i + offset] = difference & kBigitMask;
230            borrow = difference >> (kChunkSize - 1);
231        }
232        while (borrow != 0) {
233            Chunk difference = bigits_[i + offset] - borrow;
234            bigits_[i + offset] = difference & kBigitMask;
235            borrow = difference >> (kChunkSize - 1);
236            ++i;
237        }
238        Clamp();
239    }
240
241
242    void Bignum::ShiftLeft(int shift_amount) {
243        if (used_digits_ == 0) return;
244        exponent_ += shift_amount / kBigitSize;
245        int local_shift = shift_amount % kBigitSize;
246        EnsureCapacity(used_digits_ + 1);
247        BigitsShiftLeft(local_shift);
248    }
249
250
251    void Bignum::MultiplyByUInt32(uint32_t factor) {
252        if (factor == 1) return;
253        if (factor == 0) {
254            Zero();
255            return;
256        }
257        if (used_digits_ == 0) return;
258
259        // The product of a bigit with the factor is of size kBigitSize + 32.
260        // Assert that this number + 1 (for the carry) fits into double chunk.
261        ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1);
262        DoubleChunk carry = 0;
263        for (int i = 0; i < used_digits_; ++i) {
264            DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry;
265            bigits_[i] = static_cast<Chunk>(product & kBigitMask);
266            carry = (product >> kBigitSize);
267        }
268        while (carry != 0) {
269            EnsureCapacity(used_digits_ + 1);
270            bigits_[used_digits_] = (uint32_t)carry & kBigitMask;
271            used_digits_++;
272            carry >>= kBigitSize;
273        }
274    }
275
276
277    void Bignum::MultiplyByUInt64(uint64_t factor) {
278        if (factor == 1) return;
279        if (factor == 0) {
280            Zero();
281            return;
282        }
283        ASSERT(kBigitSize < 32);
284        uint64_t carry = 0;
285        uint64_t low = factor & 0xFFFFFFFF;
286        uint64_t high = factor >> 32;
287        for (int i = 0; i < used_digits_; ++i) {
288            uint64_t product_low = low * bigits_[i];
289            uint64_t product_high = high * bigits_[i];
290            uint64_t tmp = (carry & kBigitMask) + product_low;
291            bigits_[i] = (uint32_t)tmp & kBigitMask;
292            carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
293            (product_high << (32 - kBigitSize));
294        }
295        while (carry != 0) {
296            EnsureCapacity(used_digits_ + 1);
297            bigits_[used_digits_] = (uint32_t)carry & kBigitMask;
298            used_digits_++;
299            carry >>= kBigitSize;
300        }
301    }
302
303
304    void Bignum::MultiplyByPowerOfTen(int exponent) {
305        const uint64_t kFive27 = UINT64_2PART_C(0x6765c793, fa10079d);
306        const uint16_t kFive1 = 5;
307        const uint16_t kFive2 = kFive1 * 5;
308        const uint16_t kFive3 = kFive2 * 5;
309        const uint16_t kFive4 = kFive3 * 5;
310        const uint16_t kFive5 = kFive4 * 5;
311        const uint16_t kFive6 = kFive5 * 5;
312        const uint32_t kFive7 = kFive6 * 5;
313        const uint32_t kFive8 = kFive7 * 5;
314        const uint32_t kFive9 = kFive8 * 5;
315        const uint32_t kFive10 = kFive9 * 5;
316        const uint32_t kFive11 = kFive10 * 5;
317        const uint32_t kFive12 = kFive11 * 5;
318        const uint32_t kFive13 = kFive12 * 5;
319        const uint32_t kFive1_to_12[] =
320        { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
321            kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
322
323        ASSERT(exponent >= 0);
324        if (exponent == 0) return;
325        if (used_digits_ == 0) return;
326
327        // We shift by exponent at the end just before returning.
328        int remaining_exponent = exponent;
329        while (remaining_exponent >= 27) {
330            MultiplyByUInt64(kFive27);
331            remaining_exponent -= 27;
332        }
333        while (remaining_exponent >= 13) {
334            MultiplyByUInt32(kFive13);
335            remaining_exponent -= 13;
336        }
337        if (remaining_exponent > 0) {
338            MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
339        }
340        ShiftLeft(exponent);
341    }
342
343
344    void Bignum::Square() {
345        ASSERT(IsClamped());
346        int product_length = 2 * used_digits_;
347        EnsureCapacity(product_length);
348
349        // Comba multiplication: compute each column separately.
350        // Example: r = a2a1a0 * b2b1b0.
351        //    r =  1    * a0b0 +
352        //        10    * (a1b0 + a0b1) +
353        //        100   * (a2b0 + a1b1 + a0b2) +
354        //        1000  * (a2b1 + a1b2) +
355        //        10000 * a2b2
356        //
357        // In the worst case we have to accumulate nb-digits products of digit*digit.
358        //
359        // Assert that the additional number of bits in a DoubleChunk are enough to
360        // sum up used_digits of Bigit*Bigit.
361        if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) {
362            UNIMPLEMENTED();
363        }
364        DoubleChunk accumulator = 0;
365        // First shift the digits so we don't overwrite them.
366        int copy_offset = used_digits_;
367        for (int i = 0; i < used_digits_; ++i) {
368            bigits_[copy_offset + i] = bigits_[i];
369        }
370        // We have two loops to avoid some 'if's in the loop.
371        for (int i = 0; i < used_digits_; ++i) {
372            // Process temporary digit i with power i.
373            // The sum of the two indices must be equal to i.
374            int bigit_index1 = i;
375            int bigit_index2 = 0;
376            // Sum all of the sub-products.
377            while (bigit_index1 >= 0) {
378                Chunk chunk1 = bigits_[copy_offset + bigit_index1];
379                Chunk chunk2 = bigits_[copy_offset + bigit_index2];
380                accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
381                bigit_index1--;
382                bigit_index2++;
383            }
384            bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
385            accumulator >>= kBigitSize;
386        }
387        for (int i = used_digits_; i < product_length; ++i) {
388            int bigit_index1 = used_digits_ - 1;
389            int bigit_index2 = i - bigit_index1;
390            // Invariant: sum of both indices is again equal to i.
391            // Inner loop runs 0 times on last iteration, emptying accumulator.
392            while (bigit_index2 < used_digits_) {
393                Chunk chunk1 = bigits_[copy_offset + bigit_index1];
394                Chunk chunk2 = bigits_[copy_offset + bigit_index2];
395                accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
396                bigit_index1--;
397                bigit_index2++;
398            }
399            // The overwritten bigits_[i] will never be read in further loop iterations,
400            // because bigit_index1 and bigit_index2 are always greater
401            // than i - used_digits_.
402            bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
403            accumulator >>= kBigitSize;
404        }
405        // Since the result was guaranteed to lie inside the number the
406        // accumulator must be 0 now.
407        ASSERT(accumulator == 0);
408
409        // Don't forget to update the used_digits and the exponent.
410        used_digits_ = product_length;
411        exponent_ *= 2;
412        Clamp();
413    }
414
415
416    void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) {
417        ASSERT(base != 0);
418        ASSERT(power_exponent >= 0);
419        if (power_exponent == 0) {
420            AssignUInt16(1);
421            return;
422        }
423        Zero();
424        int shifts = 0;
425        // We expect base to be in range 2-32, and most often to be 10.
426        // It does not make much sense to implement different algorithms for counting
427        // the bits.
428        while ((base & 1) == 0) {
429            base >>= 1;
430            shifts++;
431        }
432        int bit_size = 0;
433        int tmp_base = base;
434        while (tmp_base != 0) {
435            tmp_base >>= 1;
436            bit_size++;
437        }
438        int final_size = bit_size * power_exponent;
439        // 1 extra bigit for the shifting, and one for rounded final_size.
440        EnsureCapacity(final_size / kBigitSize + 2);
441
442        // Left to Right exponentiation.
443        int mask = 1;
444        while (power_exponent >= mask) mask <<= 1;
445
446        // The mask is now pointing to the bit above the most significant 1-bit of
447        // power_exponent.
448        // Get rid of first 1-bit;
449        mask >>= 2;
450        uint64_t this_value = base;
451
452        bool delayed_multipliciation = false;
453        const uint64_t max_32bits = 0xFFFFFFFF;
454        while (mask != 0 && this_value <= max_32bits) {
455            this_value = this_value * this_value;
456            // Verify that there is enough space in this_value to perform the
457            // multiplication.  The first bit_size bits must be 0.
458            if ((power_exponent & mask) != 0) {
459                uint64_t base_bits_mask =
460                ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
461                bool high_bits_zero = (this_value & base_bits_mask) == 0;
462                if (high_bits_zero) {
463                    this_value *= base;
464                } else {
465                    delayed_multipliciation = true;
466                }
467            }
468            mask >>= 1;
469        }
470        AssignUInt64(this_value);
471        if (delayed_multipliciation) {
472            MultiplyByUInt32(base);
473        }
474
475        // Now do the same thing as a bignum.
476        while (mask != 0) {
477            Square();
478            if ((power_exponent & mask) != 0) {
479                MultiplyByUInt32(base);
480            }
481            mask >>= 1;
482        }
483
484        // And finally add the saved shifts.
485        ShiftLeft(shifts * power_exponent);
486    }
487
488
489    // Precondition: this/other < 16bit.
490    uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
491        ASSERT(IsClamped());
492        ASSERT(other.IsClamped());
493        ASSERT(other.used_digits_ > 0);
494
495        // Easy case: if we have less digits than the divisor than the result is 0.
496        // Note: this handles the case where this == 0, too.
497        if (BigitLength() < other.BigitLength()) {
498            return 0;
499        }
500
501        Align(other);
502
503        uint16_t result = 0;
504
505        // Start by removing multiples of 'other' until both numbers have the same
506        // number of digits.
507        while (BigitLength() > other.BigitLength()) {
508            // This naive approach is extremely inefficient if the this divided other
509            // might be big. This function is implemented for doubleToString where
510            // the result should be small (less than 10).
511            ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16));
512            // Remove the multiples of the first digit.
513            // Example this = 23 and other equals 9. -> Remove 2 multiples.
514            result += bigits_[used_digits_ - 1];
515            SubtractTimes(other, bigits_[used_digits_ - 1]);
516        }
517
518        ASSERT(BigitLength() == other.BigitLength());
519
520        // Both bignums are at the same length now.
521        // Since other has more than 0 digits we know that the access to
522        // bigits_[used_digits_ - 1] is safe.
523        Chunk this_bigit = bigits_[used_digits_ - 1];
524        Chunk other_bigit = other.bigits_[other.used_digits_ - 1];
525
526        if (other.used_digits_ == 1) {
527            // Shortcut for easy (and common) case.
528            int quotient = this_bigit / other_bigit;
529            bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient;
530            result += quotient;
531            Clamp();
532            return result;
533        }
534
535        int division_estimate = this_bigit / (other_bigit + 1);
536        result += division_estimate;
537        SubtractTimes(other, division_estimate);
538
539        if (other_bigit * (division_estimate + 1) > this_bigit) {
540            // No need to even try to subtract. Even if other's remaining digits were 0
541            // another subtraction would be too much.
542            return result;
543        }
544
545        while (LessEqual(other, *this)) {
546            SubtractBignum(other);
547            result++;
548        }
549        return result;
550    }
551
552
553    template<typename S>
554    static int SizeInHexChars(S number) {
555        ASSERT(number > 0);
556        int result = 0;
557        while (number != 0) {
558            number >>= 4;
559            result++;
560        }
561        return result;
562    }
563
564
565    static char HexCharOfValue(int value) {
566        ASSERT(0 <= value && value <= 16);
567        if (value < 10) return value + '0';
568        return value - 10 + 'A';
569    }
570
571
572    bool Bignum::ToHexString(char* buffer, int buffer_size) const {
573        ASSERT(IsClamped());
574        // Each bigit must be printable as separate hex-character.
575        ASSERT(kBigitSize % 4 == 0);
576        const int kHexCharsPerBigit = kBigitSize / 4;
577
578        if (used_digits_ == 0) {
579            if (buffer_size < 2) return false;
580            buffer[0] = '0';
581            buffer[1] = '\0';
582            return true;
583        }
584        // We add 1 for the terminating '\0' character.
585        int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
586        SizeInHexChars(bigits_[used_digits_ - 1]) + 1;
587        if (needed_chars > buffer_size) return false;
588        int string_index = needed_chars - 1;
589        buffer[string_index--] = '\0';
590        for (int i = 0; i < exponent_; ++i) {
591            for (int j = 0; j < kHexCharsPerBigit; ++j) {
592                buffer[string_index--] = '0';
593            }
594        }
595        for (int i = 0; i < used_digits_ - 1; ++i) {
596            Chunk current_bigit = bigits_[i];
597            for (int j = 0; j < kHexCharsPerBigit; ++j) {
598                buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
599                current_bigit >>= 4;
600            }
601        }
602        // And finally the last bigit.
603        Chunk most_significant_bigit = bigits_[used_digits_ - 1];
604        while (most_significant_bigit != 0) {
605            buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
606            most_significant_bigit >>= 4;
607        }
608        return true;
609    }
610
611
612    Bignum::Chunk Bignum::BigitAt(int index) const {
613        if (index >= BigitLength()) return 0;
614        if (index < exponent_) return 0;
615        return bigits_[index - exponent_];
616    }
617
618
619    int Bignum::Compare(const Bignum& a, const Bignum& b) {
620        ASSERT(a.IsClamped());
621        ASSERT(b.IsClamped());
622        int bigit_length_a = a.BigitLength();
623        int bigit_length_b = b.BigitLength();
624        if (bigit_length_a < bigit_length_b) return -1;
625        if (bigit_length_a > bigit_length_b) return +1;
626        for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) {
627            Chunk bigit_a = a.BigitAt(i);
628            Chunk bigit_b = b.BigitAt(i);
629            if (bigit_a < bigit_b) return -1;
630            if (bigit_a > bigit_b) return +1;
631            // Otherwise they are equal up to this digit. Try the next digit.
632        }
633        return 0;
634    }
635
636
637    int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
638        ASSERT(a.IsClamped());
639        ASSERT(b.IsClamped());
640        ASSERT(c.IsClamped());
641        if (a.BigitLength() < b.BigitLength()) {
642            return PlusCompare(b, a, c);
643        }
644        if (a.BigitLength() + 1 < c.BigitLength()) return -1;
645        if (a.BigitLength() > c.BigitLength()) return +1;
646        // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
647        // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
648        // of 'a'.
649        if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
650            return -1;
651        }
652
653        Chunk borrow = 0;
654        // Starting at min_exponent all digits are == 0. So no need to compare them.
655        int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_);
656        for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
657            Chunk chunk_a = a.BigitAt(i);
658            Chunk chunk_b = b.BigitAt(i);
659            Chunk chunk_c = c.BigitAt(i);
660            Chunk sum = chunk_a + chunk_b;
661            if (sum > chunk_c + borrow) {
662                return +1;
663            } else {
664                borrow = chunk_c + borrow - sum;
665                if (borrow > 1) return -1;
666                borrow <<= kBigitSize;
667            }
668        }
669        if (borrow == 0) return 0;
670        return -1;
671    }
672
673
674    void Bignum::Clamp() {
675        while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) {
676            used_digits_--;
677        }
678        if (used_digits_ == 0) {
679            // Zero.
680            exponent_ = 0;
681        }
682    }
683
684
685    bool Bignum::IsClamped() const {
686        return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0;
687    }
688
689
690    void Bignum::Zero() {
691        for (int i = 0; i < used_digits_; ++i) {
692            bigits_[i] = 0;
693        }
694        used_digits_ = 0;
695        exponent_ = 0;
696    }
697
698
699    void Bignum::Align(const Bignum& other) {
700        if (exponent_ > other.exponent_) {
701            // If "X" represents a "hidden" digit (by the exponent) then we are in the
702            // following case (a == this, b == other):
703            // a:  aaaaaaXXXX   or a:   aaaaaXXX
704            // b:     bbbbbbX      b: bbbbbbbbXX
705            // We replace some of the hidden digits (X) of a with 0 digits.
706            // a:  aaaaaa000X   or a:   aaaaa0XX
707            int zero_digits = exponent_ - other.exponent_;
708            EnsureCapacity(used_digits_ + zero_digits);
709            for (int i = used_digits_ - 1; i >= 0; --i) {
710                bigits_[i + zero_digits] = bigits_[i];
711            }
712            for (int i = 0; i < zero_digits; ++i) {
713                bigits_[i] = 0;
714            }
715            used_digits_ += zero_digits;
716            exponent_ -= zero_digits;
717            ASSERT(used_digits_ >= 0);
718            ASSERT(exponent_ >= 0);
719        }
720    }
721
722
723    void Bignum::BigitsShiftLeft(int shift_amount) {
724        ASSERT(shift_amount < kBigitSize);
725        ASSERT(shift_amount >= 0);
726        Chunk carry = 0;
727        for (int i = 0; i < used_digits_; ++i) {
728            Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount);
729            bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask;
730            carry = new_carry;
731        }
732        if (carry != 0) {
733            bigits_[used_digits_] = carry;
734            used_digits_++;
735        }
736    }
737
738
739    void Bignum::SubtractTimes(const Bignum& other, int factor) {
740        ASSERT(exponent_ <= other.exponent_);
741        if (factor < 3) {
742            for (int i = 0; i < factor; ++i) {
743                SubtractBignum(other);
744            }
745            return;
746        }
747        Chunk borrow = 0;
748        int exponent_diff = other.exponent_ - exponent_;
749        for (int i = 0; i < other.used_digits_; ++i) {
750            DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i];
751            DoubleChunk remove = borrow + product;
752            Chunk difference = bigits_[i + exponent_diff] - ((uint32_t)remove & kBigitMask);
753            bigits_[i + exponent_diff] = difference & kBigitMask;
754            borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
755                                        (remove >> kBigitSize));
756        }
757        for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) {
758            if (borrow == 0) return;
759            Chunk difference = bigits_[i] - borrow;
760            bigits_[i] = difference & kBigitMask;
761            borrow = difference >> (kChunkSize - 1);
762            ++i;
763        }
764        Clamp();
765    }
766
767
768}  // namespace double_conversion
769
770} // namespace WTF
771