1
2/*
3 * Copyright 2006 The Android Open Source Project
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9
10#ifndef SkRect_DEFINED
11#define SkRect_DEFINED
12
13#include "SkPoint.h"
14#include "SkSize.h"
15
16/** \struct SkIRect
17
18    SkIRect holds four 32 bit integer coordinates for a rectangle
19*/
20struct SK_API SkIRect {
21    int32_t fLeft, fTop, fRight, fBottom;
22
23    static SkIRect SK_WARN_UNUSED_RESULT MakeEmpty() {
24        SkIRect r;
25        r.setEmpty();
26        return r;
27    }
28
29    static SkIRect SK_WARN_UNUSED_RESULT MakeLargest() {
30        SkIRect r;
31        r.setLargest();
32        return r;
33    }
34
35    static SkIRect SK_WARN_UNUSED_RESULT MakeWH(int32_t w, int32_t h) {
36        SkIRect r;
37        r.set(0, 0, w, h);
38        return r;
39    }
40
41    static SkIRect SK_WARN_UNUSED_RESULT MakeSize(const SkISize& size) {
42        SkIRect r;
43        r.set(0, 0, size.width(), size.height());
44        return r;
45    }
46
47    static SkIRect SK_WARN_UNUSED_RESULT MakeLTRB(int32_t l, int32_t t, int32_t r, int32_t b) {
48        SkIRect rect;
49        rect.set(l, t, r, b);
50        return rect;
51    }
52
53    static SkIRect SK_WARN_UNUSED_RESULT MakeXYWH(int32_t x, int32_t y, int32_t w, int32_t h) {
54        SkIRect r;
55        r.set(x, y, x + w, y + h);
56        return r;
57    }
58
59    int left() const { return fLeft; }
60    int top() const { return fTop; }
61    int right() const { return fRight; }
62    int bottom() const { return fBottom; }
63
64    /** return the left edge of the rect */
65    int x() const { return fLeft; }
66    /** return the top edge of the rect */
67    int y() const { return fTop; }
68    /**
69     *  Returns the rectangle's width. This does not check for a valid rect
70     *  (i.e. left <= right) so the result may be negative.
71     */
72    int width() const { return fRight - fLeft; }
73
74    /**
75     *  Returns the rectangle's height. This does not check for a valid rect
76     *  (i.e. top <= bottom) so the result may be negative.
77     */
78    int height() const { return fBottom - fTop; }
79
80    /**
81     *  Since the center of an integer rect may fall on a factional value, this
82     *  method is defined to return (right + left) >> 1.
83     *
84     *  This is a specific "truncation" of the average, which is different than
85     *  (right + left) / 2 when the sum is negative.
86     */
87    int centerX() const { return (fRight + fLeft) >> 1; }
88
89    /**
90     *  Since the center of an integer rect may fall on a factional value, this
91     *  method is defined to return (bottom + top) >> 1
92     *
93     *  This is a specific "truncation" of the average, which is different than
94     *  (bottom + top) / 2 when the sum is negative.
95     */
96    int centerY() const { return (fBottom + fTop) >> 1; }
97
98    /**
99     *  Return true if the rectangle's width or height are <= 0
100     */
101    bool isEmpty() const { return fLeft >= fRight || fTop >= fBottom; }
102
103    bool isLargest() const { return SK_MinS32 == fLeft &&
104                                    SK_MinS32 == fTop &&
105                                    SK_MaxS32 == fRight &&
106                                    SK_MaxS32 == fBottom; }
107
108    friend bool operator==(const SkIRect& a, const SkIRect& b) {
109        return !memcmp(&a, &b, sizeof(a));
110    }
111
112    friend bool operator!=(const SkIRect& a, const SkIRect& b) {
113        return !(a == b);
114    }
115
116    bool is16Bit() const {
117        return  SkIsS16(fLeft) && SkIsS16(fTop) &&
118                SkIsS16(fRight) && SkIsS16(fBottom);
119    }
120
121    /** Set the rectangle to (0,0,0,0)
122    */
123    void setEmpty() { memset(this, 0, sizeof(*this)); }
124
125    void set(int32_t left, int32_t top, int32_t right, int32_t bottom) {
126        fLeft   = left;
127        fTop    = top;
128        fRight  = right;
129        fBottom = bottom;
130    }
131    // alias for set(l, t, r, b)
132    void setLTRB(int32_t left, int32_t top, int32_t right, int32_t bottom) {
133        this->set(left, top, right, bottom);
134    }
135
136    void setXYWH(int32_t x, int32_t y, int32_t width, int32_t height) {
137        fLeft = x;
138        fTop = y;
139        fRight = x + width;
140        fBottom = y + height;
141    }
142
143    /**
144     *  Make the largest representable rectangle
145     */
146    void setLargest() {
147        fLeft = fTop = SK_MinS32;
148        fRight = fBottom = SK_MaxS32;
149    }
150
151    /**
152     *  Make the largest representable rectangle, but inverted (e.g. fLeft will
153     *  be max 32bit and right will be min 32bit).
154     */
155    void setLargestInverted() {
156        fLeft = fTop = SK_MaxS32;
157        fRight = fBottom = SK_MinS32;
158    }
159
160    /** Offset set the rectangle by adding dx to its left and right,
161        and adding dy to its top and bottom.
162    */
163    void offset(int32_t dx, int32_t dy) {
164        fLeft   += dx;
165        fTop    += dy;
166        fRight  += dx;
167        fBottom += dy;
168    }
169
170    void offset(const SkIPoint& delta) {
171        this->offset(delta.fX, delta.fY);
172    }
173
174    /**
175     *  Offset this rect such its new x() and y() will equal newX and newY.
176     */
177    void offsetTo(int32_t newX, int32_t newY) {
178        fRight += newX - fLeft;
179        fBottom += newY - fTop;
180        fLeft = newX;
181        fTop = newY;
182    }
183
184    /** Inset the rectangle by (dx,dy). If dx is positive, then the sides are moved inwards,
185        making the rectangle narrower. If dx is negative, then the sides are moved outwards,
186        making the rectangle wider. The same holds true for dy and the top and bottom.
187    */
188    void inset(int32_t dx, int32_t dy) {
189        fLeft   += dx;
190        fTop    += dy;
191        fRight  -= dx;
192        fBottom -= dy;
193    }
194
195   /** Outset the rectangle by (dx,dy). If dx is positive, then the sides are
196       moved outwards, making the rectangle wider. If dx is negative, then the
197       sides are moved inwards, making the rectangle narrower. The same holds
198       true for dy and the top and bottom.
199    */
200    void outset(int32_t dx, int32_t dy)  { this->inset(-dx, -dy); }
201
202    bool quickReject(int l, int t, int r, int b) const {
203        return l >= fRight || fLeft >= r || t >= fBottom || fTop >= b;
204    }
205
206    /** Returns true if (x,y) is inside the rectangle and the rectangle is not
207        empty. The left and top are considered to be inside, while the right
208        and bottom are not. Thus for the rectangle (0, 0, 5, 10), the
209        points (0,0) and (0,9) are inside, while (-1,0) and (5,9) are not.
210    */
211    bool contains(int32_t x, int32_t y) const {
212        return  (unsigned)(x - fLeft) < (unsigned)(fRight - fLeft) &&
213                (unsigned)(y - fTop) < (unsigned)(fBottom - fTop);
214    }
215
216    /** Returns true if the 4 specified sides of a rectangle are inside or equal to this rectangle.
217        If either rectangle is empty, contains() returns false.
218    */
219    bool contains(int32_t left, int32_t top, int32_t right, int32_t bottom) const {
220        return  left < right && top < bottom && !this->isEmpty() && // check for empties
221                fLeft <= left && fTop <= top &&
222                fRight >= right && fBottom >= bottom;
223    }
224
225    /** Returns true if the specified rectangle r is inside or equal to this rectangle.
226    */
227    bool contains(const SkIRect& r) const {
228        return  !r.isEmpty() && !this->isEmpty() &&     // check for empties
229                fLeft <= r.fLeft && fTop <= r.fTop &&
230                fRight >= r.fRight && fBottom >= r.fBottom;
231    }
232
233    /** Return true if this rectangle contains the specified rectangle.
234        For speed, this method does not check if either this or the specified
235        rectangles are empty, and if either is, its return value is undefined.
236        In the debugging build however, we assert that both this and the
237        specified rectangles are non-empty.
238    */
239    bool containsNoEmptyCheck(int32_t left, int32_t top,
240                              int32_t right, int32_t bottom) const {
241        SkASSERT(fLeft < fRight && fTop < fBottom);
242        SkASSERT(left < right && top < bottom);
243
244        return fLeft <= left && fTop <= top &&
245               fRight >= right && fBottom >= bottom;
246    }
247
248    bool containsNoEmptyCheck(const SkIRect& r) const {
249        return containsNoEmptyCheck(r.fLeft, r.fTop, r.fRight, r.fBottom);
250    }
251
252    /** If r intersects this rectangle, return true and set this rectangle to that
253        intersection, otherwise return false and do not change this rectangle.
254        If either rectangle is empty, do nothing and return false.
255    */
256    bool intersect(const SkIRect& r) {
257        SkASSERT(&r);
258        return this->intersect(r.fLeft, r.fTop, r.fRight, r.fBottom);
259    }
260
261    /** If rectangles a and b intersect, return true and set this rectangle to
262        that intersection, otherwise return false and do not change this
263        rectangle. If either rectangle is empty, do nothing and return false.
264    */
265    bool intersect(const SkIRect& a, const SkIRect& b) {
266        SkASSERT(&a && &b);
267
268        if (!a.isEmpty() && !b.isEmpty() &&
269                a.fLeft < b.fRight && b.fLeft < a.fRight &&
270                a.fTop < b.fBottom && b.fTop < a.fBottom) {
271            fLeft   = SkMax32(a.fLeft,   b.fLeft);
272            fTop    = SkMax32(a.fTop,    b.fTop);
273            fRight  = SkMin32(a.fRight,  b.fRight);
274            fBottom = SkMin32(a.fBottom, b.fBottom);
275            return true;
276        }
277        return false;
278    }
279
280    /** If rectangles a and b intersect, return true and set this rectangle to
281        that intersection, otherwise return false and do not change this
282        rectangle. For speed, no check to see if a or b are empty is performed.
283        If either is, then the return result is undefined. In the debug build,
284        we assert that both rectangles are non-empty.
285    */
286    bool intersectNoEmptyCheck(const SkIRect& a, const SkIRect& b) {
287        SkASSERT(&a && &b);
288        SkASSERT(!a.isEmpty() && !b.isEmpty());
289
290        if (a.fLeft < b.fRight && b.fLeft < a.fRight &&
291                a.fTop < b.fBottom && b.fTop < a.fBottom) {
292            fLeft   = SkMax32(a.fLeft,   b.fLeft);
293            fTop    = SkMax32(a.fTop,    b.fTop);
294            fRight  = SkMin32(a.fRight,  b.fRight);
295            fBottom = SkMin32(a.fBottom, b.fBottom);
296            return true;
297        }
298        return false;
299    }
300
301    /** If the rectangle specified by left,top,right,bottom intersects this rectangle,
302        return true and set this rectangle to that intersection,
303        otherwise return false and do not change this rectangle.
304        If either rectangle is empty, do nothing and return false.
305    */
306    bool intersect(int32_t left, int32_t top, int32_t right, int32_t bottom) {
307        if (left < right && top < bottom && !this->isEmpty() &&
308                fLeft < right && left < fRight && fTop < bottom && top < fBottom) {
309            if (fLeft < left) fLeft = left;
310            if (fTop < top) fTop = top;
311            if (fRight > right) fRight = right;
312            if (fBottom > bottom) fBottom = bottom;
313            return true;
314        }
315        return false;
316    }
317
318    /** Returns true if a and b are not empty, and they intersect
319     */
320    static bool Intersects(const SkIRect& a, const SkIRect& b) {
321        return  !a.isEmpty() && !b.isEmpty() &&              // check for empties
322        a.fLeft < b.fRight && b.fLeft < a.fRight &&
323        a.fTop < b.fBottom && b.fTop < a.fBottom;
324    }
325
326    /**
327     *  Returns true if a and b intersect. debug-asserts that neither are empty.
328     */
329    static bool IntersectsNoEmptyCheck(const SkIRect& a, const SkIRect& b) {
330        SkASSERT(!a.isEmpty());
331        SkASSERT(!b.isEmpty());
332        return  a.fLeft < b.fRight && b.fLeft < a.fRight &&
333                a.fTop < b.fBottom && b.fTop < a.fBottom;
334    }
335
336    /** Update this rectangle to enclose itself and the specified rectangle.
337        If this rectangle is empty, just set it to the specified rectangle. If the specified
338        rectangle is empty, do nothing.
339    */
340    void join(int32_t left, int32_t top, int32_t right, int32_t bottom);
341
342    /** Update this rectangle to enclose itself and the specified rectangle.
343        If this rectangle is empty, just set it to the specified rectangle. If the specified
344        rectangle is empty, do nothing.
345    */
346    void join(const SkIRect& r) {
347        this->join(r.fLeft, r.fTop, r.fRight, r.fBottom);
348    }
349
350    /** Swap top/bottom or left/right if there are flipped.
351        This can be called if the edges are computed separately,
352        and may have crossed over each other.
353        When this returns, left <= right && top <= bottom
354    */
355    void sort();
356
357    static const SkIRect& SK_WARN_UNUSED_RESULT EmptyIRect() {
358        static const SkIRect gEmpty = { 0, 0, 0, 0 };
359        return gEmpty;
360    }
361};
362
363/** \struct SkRect
364*/
365struct SK_API SkRect {
366    SkScalar    fLeft, fTop, fRight, fBottom;
367
368    static SkRect SK_WARN_UNUSED_RESULT MakeEmpty() {
369        SkRect r;
370        r.setEmpty();
371        return r;
372    }
373
374    static SkRect SK_WARN_UNUSED_RESULT MakeWH(SkScalar w, SkScalar h) {
375        SkRect r;
376        r.set(0, 0, w, h);
377        return r;
378    }
379
380    static SkRect SK_WARN_UNUSED_RESULT MakeSize(const SkSize& size) {
381        SkRect r;
382        r.set(0, 0, size.width(), size.height());
383        return r;
384    }
385
386    static SkRect SK_WARN_UNUSED_RESULT MakeLTRB(SkScalar l, SkScalar t, SkScalar r, SkScalar b) {
387        SkRect rect;
388        rect.set(l, t, r, b);
389        return rect;
390    }
391
392    static SkRect SK_WARN_UNUSED_RESULT MakeXYWH(SkScalar x, SkScalar y, SkScalar w, SkScalar h) {
393        SkRect r;
394        r.set(x, y, x + w, y + h);
395        return r;
396    }
397
398    // DEPRECATED: call Make(r)
399    static SkRect SK_WARN_UNUSED_RESULT MakeFromIRect(const SkIRect& irect) {
400        SkRect r;
401        r.set(SkIntToScalar(irect.fLeft),
402              SkIntToScalar(irect.fTop),
403              SkIntToScalar(irect.fRight),
404              SkIntToScalar(irect.fBottom));
405        return r;
406    }
407
408    static SkRect SK_WARN_UNUSED_RESULT Make(const SkIRect& irect) {
409        SkRect r;
410        r.set(SkIntToScalar(irect.fLeft),
411              SkIntToScalar(irect.fTop),
412              SkIntToScalar(irect.fRight),
413              SkIntToScalar(irect.fBottom));
414        return r;
415    }
416
417    /**
418     *  Return true if the rectangle's width or height are <= 0
419     */
420    bool isEmpty() const { return fLeft >= fRight || fTop >= fBottom; }
421
422    /**
423     *  Returns true iff all values in the rect are finite. If any are
424     *  infinite or NaN (or SK_FixedNaN when SkScalar is fixed) then this
425     *  returns false.
426     */
427    bool isFinite() const {
428#ifdef SK_SCALAR_IS_FLOAT
429        float accum = 0;
430        accum *= fLeft;
431        accum *= fTop;
432        accum *= fRight;
433        accum *= fBottom;
434
435        // accum is either NaN or it is finite (zero).
436        SkASSERT(0 == accum || !(accum == accum));
437
438        // value==value will be true iff value is not NaN
439        // TODO: is it faster to say !accum or accum==accum?
440        return accum == accum;
441#else
442        // use bit-or for speed, since we don't care about short-circuting the
443        // tests, and we expect the common case will be that we need to check all.
444        int isNaN = (SK_FixedNaN == fLeft)  | (SK_FixedNaN == fTop) |
445                    (SK_FixedNaN == fRight) | (SK_FixedNaN == fBottom);
446        return !isNaN;
447#endif
448    }
449
450    SkScalar    x() const { return fLeft; }
451    SkScalar    y() const { return fTop; }
452    SkScalar    left() const { return fLeft; }
453    SkScalar    top() const { return fTop; }
454    SkScalar    right() const { return fRight; }
455    SkScalar    bottom() const { return fBottom; }
456    SkScalar    width() const { return fRight - fLeft; }
457    SkScalar    height() const { return fBottom - fTop; }
458    SkScalar    centerX() const { return SkScalarHalf(fLeft + fRight); }
459    SkScalar    centerY() const { return SkScalarHalf(fTop + fBottom); }
460
461    friend bool operator==(const SkRect& a, const SkRect& b) {
462        return SkScalarsEqual((SkScalar*)&a, (SkScalar*)&b, 4);
463    }
464
465    friend bool operator!=(const SkRect& a, const SkRect& b) {
466        return !SkScalarsEqual((SkScalar*)&a, (SkScalar*)&b, 4);
467    }
468
469    /** return the 4 points that enclose the rectangle
470    */
471    void toQuad(SkPoint quad[4]) const;
472
473    /** Set this rectangle to the empty rectangle (0,0,0,0)
474    */
475    void setEmpty() { memset(this, 0, sizeof(*this)); }
476
477    void set(const SkIRect& src) {
478        fLeft   = SkIntToScalar(src.fLeft);
479        fTop    = SkIntToScalar(src.fTop);
480        fRight  = SkIntToScalar(src.fRight);
481        fBottom = SkIntToScalar(src.fBottom);
482    }
483
484    void set(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) {
485        fLeft   = left;
486        fTop    = top;
487        fRight  = right;
488        fBottom = bottom;
489    }
490    // alias for set(l, t, r, b)
491    void setLTRB(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) {
492        this->set(left, top, right, bottom);
493    }
494
495    /** Initialize the rect with the 4 specified integers. The routine handles
496        converting them to scalars (by calling SkIntToScalar)
497     */
498    void iset(int left, int top, int right, int bottom) {
499        fLeft   = SkIntToScalar(left);
500        fTop    = SkIntToScalar(top);
501        fRight  = SkIntToScalar(right);
502        fBottom = SkIntToScalar(bottom);
503    }
504
505    /**
506     *  Set this rectangle to be left/top at 0,0, and have the specified width
507     *  and height (automatically converted to SkScalar).
508     */
509    void isetWH(int width, int height) {
510        fLeft = fTop = 0;
511        fRight = SkIntToScalar(width);
512        fBottom = SkIntToScalar(height);
513    }
514
515    /** Set this rectangle to be the bounds of the array of points.
516        If the array is empty (count == 0), then set this rectangle
517        to the empty rectangle (0,0,0,0)
518    */
519    void set(const SkPoint pts[], int count) {
520        // set() had been checking for non-finite values, so keep that behavior
521        // for now. Now that we have setBoundsCheck(), we may decide to make
522        // set() be simpler/faster, and not check for those.
523        (void)this->setBoundsCheck(pts, count);
524    }
525
526    // alias for set(pts, count)
527    void setBounds(const SkPoint pts[], int count) {
528        (void)this->setBoundsCheck(pts, count);
529    }
530
531    /**
532     *  Compute the bounds of the array of points, and set this rect to that
533     *  bounds and return true... unless a non-finite value is encountered,
534     *  in which case this rect is set to empty and false is returned.
535     */
536    bool setBoundsCheck(const SkPoint pts[], int count);
537
538    void set(const SkPoint& p0, const SkPoint& p1) {
539        fLeft =   SkMinScalar(p0.fX, p1.fX);
540        fRight =  SkMaxScalar(p0.fX, p1.fX);
541        fTop =    SkMinScalar(p0.fY, p1.fY);
542        fBottom = SkMaxScalar(p0.fY, p1.fY);
543    }
544
545    void setXYWH(SkScalar x, SkScalar y, SkScalar width, SkScalar height) {
546        fLeft = x;
547        fTop = y;
548        fRight = x + width;
549        fBottom = y + height;
550    }
551
552    void setWH(SkScalar width, SkScalar height) {
553        fLeft = 0;
554        fTop = 0;
555        fRight = width;
556        fBottom = height;
557    }
558
559    /**
560     *  Make the largest representable rectangle
561     */
562    void setLargest() {
563        fLeft = fTop = SK_ScalarMin;
564        fRight = fBottom = SK_ScalarMax;
565    }
566
567    /**
568     *  Make the largest representable rectangle, but inverted (e.g. fLeft will
569     *  be max and right will be min).
570     */
571    void setLargestInverted() {
572        fLeft = fTop = SK_ScalarMax;
573        fRight = fBottom = SK_ScalarMin;
574    }
575
576    /** Offset set the rectangle by adding dx to its left and right,
577        and adding dy to its top and bottom.
578    */
579    void offset(SkScalar dx, SkScalar dy) {
580        fLeft   += dx;
581        fTop    += dy;
582        fRight  += dx;
583        fBottom += dy;
584    }
585
586    void offset(const SkPoint& delta) {
587        this->offset(delta.fX, delta.fY);
588    }
589
590    /**
591     *  Offset this rect such its new x() and y() will equal newX and newY.
592     */
593    void offsetTo(SkScalar newX, SkScalar newY) {
594        fRight += newX - fLeft;
595        fBottom += newY - fTop;
596        fLeft = newX;
597        fTop = newY;
598    }
599
600    /** Inset the rectangle by (dx,dy). If dx is positive, then the sides are
601        moved inwards, making the rectangle narrower. If dx is negative, then
602        the sides are moved outwards, making the rectangle wider. The same holds
603         true for dy and the top and bottom.
604    */
605    void inset(SkScalar dx, SkScalar dy)  {
606        fLeft   += dx;
607        fTop    += dy;
608        fRight  -= dx;
609        fBottom -= dy;
610    }
611
612   /** Outset the rectangle by (dx,dy). If dx is positive, then the sides are
613       moved outwards, making the rectangle wider. If dx is negative, then the
614       sides are moved inwards, making the rectangle narrower. The same holds
615       true for dy and the top and bottom.
616    */
617    void outset(SkScalar dx, SkScalar dy)  { this->inset(-dx, -dy); }
618
619    /** If this rectangle intersects r, return true and set this rectangle to that
620        intersection, otherwise return false and do not change this rectangle.
621        If either rectangle is empty, do nothing and return false.
622    */
623    bool intersect(const SkRect& r);
624
625    /** If this rectangle intersects the rectangle specified by left, top, right, bottom,
626        return true and set this rectangle to that intersection, otherwise return false
627        and do not change this rectangle.
628        If either rectangle is empty, do nothing and return false.
629    */
630    bool intersect(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom);
631
632    /**
633     *  Return true if this rectangle is not empty, and the specified sides of
634     *  a rectangle are not empty, and they intersect.
635     */
636    bool intersects(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) const {
637        return // first check that both are not empty
638               left < right && top < bottom &&
639               fLeft < fRight && fTop < fBottom &&
640               // now check for intersection
641               fLeft < right && left < fRight &&
642               fTop < bottom && top < fBottom;
643    }
644
645    /** If rectangles a and b intersect, return true and set this rectangle to
646     *  that intersection, otherwise return false and do not change this
647     *  rectangle. If either rectangle is empty, do nothing and return false.
648     */
649    bool intersect(const SkRect& a, const SkRect& b);
650
651    /**
652     *  Return true if rectangles a and b are not empty and intersect.
653     */
654    static bool Intersects(const SkRect& a, const SkRect& b) {
655        return  !a.isEmpty() && !b.isEmpty() &&
656                a.fLeft < b.fRight && b.fLeft < a.fRight &&
657                a.fTop < b.fBottom && b.fTop < a.fBottom;
658    }
659
660    /**
661     *  Update this rectangle to enclose itself and the specified rectangle.
662     *  If this rectangle is empty, just set it to the specified rectangle.
663     *  If the specified rectangle is empty, do nothing.
664     */
665    void join(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom);
666
667    /** Update this rectangle to enclose itself and the specified rectangle.
668        If this rectangle is empty, just set it to the specified rectangle. If the specified
669        rectangle is empty, do nothing.
670    */
671    void join(const SkRect& r) {
672        this->join(r.fLeft, r.fTop, r.fRight, r.fBottom);
673    }
674    // alias for join()
675    void growToInclude(const SkRect& r) { this->join(r); }
676
677    /**
678     *  Grow the rect to include the specified (x,y). After this call, the
679     *  following will be true: fLeft <= x <= fRight && fTop <= y <= fBottom.
680     *
681     *  This is close, but not quite the same contract as contains(), since
682     *  contains() treats the left and top different from the right and bottom.
683     *  contains(x,y) -> fLeft <= x < fRight && fTop <= y < fBottom. Also note
684     *  that contains(x,y) always returns false if the rect is empty.
685     */
686    void growToInclude(SkScalar x, SkScalar y) {
687        fLeft  = SkMinScalar(x, fLeft);
688        fRight = SkMaxScalar(x, fRight);
689        fTop    = SkMinScalar(y, fTop);
690        fBottom = SkMaxScalar(y, fBottom);
691    }
692
693    /**
694     *  Returns true if (p.fX,p.fY) is inside the rectangle, and the rectangle
695     *  is not empty.
696     *
697     *  Contains treats the left and top differently from the right and bottom.
698     *  The left and top coordinates of the rectangle are themselves considered
699     *  to be inside, while the right and bottom are not. Thus for the rectangle
700     *  {0, 0, 5, 10}, (0,0) is contained, but (0,10), (5,0) and (5,10) are not.
701     */
702    bool contains(const SkPoint& p) const {
703        return !this->isEmpty() &&
704               fLeft <= p.fX && p.fX < fRight && fTop <= p.fY && p.fY < fBottom;
705    }
706
707    /**
708     *  Returns true if (x,y) is inside the rectangle, and the rectangle
709     *  is not empty.
710     *
711     *  Contains treats the left and top differently from the right and bottom.
712     *  The left and top coordinates of the rectangle are themselves considered
713     *  to be inside, while the right and bottom are not. Thus for the rectangle
714     *  {0, 0, 5, 10}, (0,0) is contained, but (0,10), (5,0) and (5,10) are not.
715     */
716    bool contains(SkScalar x, SkScalar y) const {
717        return  !this->isEmpty() &&
718                fLeft <= x && x < fRight && fTop <= y && y < fBottom;
719    }
720
721    /**
722     *  Return true if this rectangle contains r, and if both rectangles are
723     *  not empty.
724     */
725    bool contains(const SkRect& r) const {
726        return  !r.isEmpty() && !this->isEmpty() &&
727                fLeft <= r.fLeft && fTop <= r.fTop &&
728                fRight >= r.fRight && fBottom >= r.fBottom;
729    }
730
731    /**
732     *  Set the dst rectangle by rounding this rectangle's coordinates to their
733     *  nearest integer values using SkScalarRound.
734     */
735    void round(SkIRect* dst) const {
736        SkASSERT(dst);
737        dst->set(SkScalarRoundToInt(fLeft), SkScalarRoundToInt(fTop),
738                 SkScalarRoundToInt(fRight), SkScalarRoundToInt(fBottom));
739    }
740
741    /**
742     *  Set the dst rectangle by rounding "out" this rectangle, choosing the
743     *  SkScalarFloor of top and left, and the SkScalarCeil of right and bottom.
744     */
745    void roundOut(SkIRect* dst) const {
746        SkASSERT(dst);
747        dst->set(SkScalarFloorToInt(fLeft), SkScalarFloorToInt(fTop),
748                 SkScalarCeilToInt(fRight), SkScalarCeilToInt(fBottom));
749    }
750
751    /**
752     *  Expand this rectangle by rounding its coordinates "out", choosing the
753     *  floor of top and left, and the ceil of right and bottom. If this rect
754     *  is already on integer coordinates, then it will be unchanged.
755     */
756    void roundOut() {
757        this->set(SkScalarFloorToScalar(fLeft),
758                  SkScalarFloorToScalar(fTop),
759                  SkScalarCeilToScalar(fRight),
760                  SkScalarCeilToScalar(fBottom));
761    }
762
763    /**
764     *  Set the dst rectangle by rounding "in" this rectangle, choosing the
765     *  ceil of top and left, and the floor of right and bottom. This does *not*
766     *  call sort(), so it is possible that the resulting rect is inverted...
767     *  e.g. left >= right or top >= bottom. Call isEmpty() to detect that.
768     */
769    void roundIn(SkIRect* dst) const {
770        SkASSERT(dst);
771        dst->set(SkScalarCeilToInt(fLeft), SkScalarCeilToInt(fTop),
772                 SkScalarFloorToInt(fRight), SkScalarFloorToInt(fBottom));
773    }
774
775
776    /**
777     *  Swap top/bottom or left/right if there are flipped (i.e. if width()
778     *  or height() would have returned a negative value.) This should be called
779     *  if the edges are computed separately, and may have crossed over each
780     *  other. When this returns, left <= right && top <= bottom
781     */
782    void sort();
783
784    /**
785     *  cast-safe way to treat the rect as an array of (4) SkScalars.
786     */
787    const SkScalar* asScalars() const { return &fLeft; }
788};
789
790#endif
791